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Learning Global Proliferation Expertise Evolution
Using AI-Driven Analytics and Public Information

Maria Glenski , Ellyn Ayton , Sannisth Soni, Emily Saldanha, Dustin Arendt, Brian Quiter ,

Ren Cooper, Member, IEEE, and Svitlana Volkova

Abstract— Detecting and anticipating global proliferation
expertise and capability evolution from unstructured, noisy,
and incomplete public data streams is a highly desired, but
extremely challenging task. In this article, we present our
pioneering data-driven approach to support the non-proliferation
mission to detect and explain the evolution of proliferation
expertise and capability development globally from terabytes of
publicly available information (PAI), focusing on our knowledge
extraction pipeline and descriptive analytics. We first discuss how
we fuse nine open-source data streams, including multilingual
data, to convert 4 TB of unstructured data to structured knowl-
edge and encode dynamically evolving proliferation expertise
representations—content and context graphs. For this, we rely
on natural language processing (NLP) and deep learning (DL)
models to perform information extraction, topic modeling,
and distributed text representation (aka embedding) learning.
We then present interactive, usable, and explainable descriptive
analytics to refine domain knowledge and present it in a human-
understandable form. Finally, we introduce future work avenues
that will leverage our dynamic knowledge representations and
descriptive analytics to enable predictive and prescriptive infer-
ences to achieve real-time domain understanding and contextual
reasoning about global proliferation expertise and capability
evolution.

Index Terms— Artificial neural networks, big data applications,
data mining, data visualization, decision support systems, knowl-
edge discovery, knowledge representations, machine learning,
natural language processing (NLP), prediction models.

I. MOTIVATION

Open source data analytics have been shown to have a 
tremendous success and impact across a variety of appli-
cations that support national security missions ranging from
cognitive security (e.g., detecting influence operations in the
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information environment [1]–[3]) to biosecurity (e.g., infec-
tious disease modeling [4], [5]), cybersecurity (e.g., threat
hunting), and nuclear security and safeguards [6]–[9]. This
work demonstrates how recent advances in data science and
artificial intelligence (AI), such as machine learning, deep
learning (DL), and natural language processing (NLP) in
combination with large amounts of publicly available infor-
mation (PAI), advance U.S. nuclear security and impact the
nonproliferation mission to reduce the risk of catastrophic
consequences from the use of a nuclear weapon.

Terabytes of PAI combined with AI-driven decision intel-
ligence and analytics offer an excellent potential capabil-
ity to detect, anticipate, and reason about global nuclear
proliferation expertise and capability development [8], [10].
The ability to identify emerging proliferation expertise and
technologies from open-source data streams to monitor its
evolution and forecast potential proliferation risks, as well
as unexpected shifts in research interests, are critical to
support the nonproliferation mission. The U.S. withdrawal
from the Joint Comprehensive Plan of Action (JCPOA)1 and
Iran’s announcement of noncompliance with the agreement2

are likely leading to diminished U.S. insights into Iranian
nuclear expertise and capability development. Early research
via GoogleScholar3 indicates that Iranian scientists and sub-
ject matter experts (SMEs) are still actively publishing and
developing domestic capabilities, sometimes in collaboration
with chemical and material scientists. This is only one example
of potential proliferation activity that may require additional
open-source insights; it is critical to monitor the evolution
of the nuclear expertise and technology development net-
work globally to anticipate changes that may require a rapid
response.

The existing efforts primarily focused on proliferation
expertise detection in bibliometric data in English using
co-citation network analysis (i.e., knowledge generation
process via collaborative efforts), ignoring emerging scientific
content (i.e., domain knowledge itself) [11]–[14]. In compar-
ison, our approach (outlined in Fig. 1) considers both the
knowledge generation process and the knowledge that is gen-
erated. Our approach fuses nine multilingual, heterogeneous
open-source data streams, for example, academic publications,

1https://www.whitehouse.gov/briefings-statements/president-donald-j-
trump-ending-united-states-participation-unacceptable-iran-deal/

2https://www.bbc.com/news/world-middle-east-51001167
3https://scholar.google.com/
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Fig. 1. Overview of the AI-enabled technologies to detect, anticipate, and reason about global proliferation expertise and capability evolution from unstructured
dynamic multilingual real-world data, highlighting the data fusion and structure knowledge representation construction pipelines that are the focus of the current
work.

and converts 4 TB of unstructured data (both scientific
knowledge—content—and knowledge generation processes—
context) into domain knowledge representations.

Our core contributions are an overview of our novel mul-
tilingual data collection, enrichment, fusion pipeline, and our
process to extract structured knowledge representations over
time using our dynamic context (who, where, when, with
whom) and content (what) graphs. We also highlight inter-
active analytics that, using our dynamic context and content
graphs, enable descriptive analytics to answer questions like
What are the existing capabilities and expertise for a country?

In the discussion section, we highlight our avenues of
future work which will leverage these dynamically evolving
structured proliferation expertise and capability representations
to enable predictive modeling [5], [15] and counterfactual
reasoning [16], [17] to answer operational questions, including
those shown below.

• Predictive: What are the next likely capabilities to be
acquired by a country?

• Prescriptive: What should a country do to acquire a
specific capability?

• Counterfactual reasoning: Could a country have acquired
a capability if an alternate event had happened?

II. OPEN-SOURCE DATA COLLECTION AND FUSION

To construct dynamically evolving proliferation expertise
knowledge graphs, we fuse nine multilingual, heterogeneous
open-source data streams, for example, academic literature.
Although there is a wealth of PAI, we leverage domain exper-
tise to address the challenge of identifying nuclear-related
information and relevant signals of proliferation expertise.
We focus on two approaches to identify signals related to
varying countries: the language in which scientific publications
were written (or in which nuclear domain keywords are trans-
lated), which can be associated with international locations,
and the locations linked to scientists, publications, and venues.

A. Cross-Lingual Data Collection

To ensure multilingual coverage, we constructed queries
using 638 nuclear terms in English, Russian, Korean, and

Fig. 2. Summary of the relative frequency of nuclear terms in our data
collection. Size indicates the frequency of the query term’s presence in the
scientific publications collected to date.

Arabic using a combination of domain knowledge from
nuclear SMEs and nuclear resources–IAEA Safety Glossary.4

First, we combined a set of English SME-identified nuclear
terms and search queries with terminology extracted from
the IAEA Safety Glossary, a document produced by the
International Atomic Energy Agency that defines and explains
technical terms related to or used in IAEA publications includ-
ing safety standards. After identifying this set of English terms
and queries, we translated the terms and queries into three
other languages (Russian, Korean, and Arabic) to increase the
coverage across these languages.

Using these 638 multilingual terms, we collected relevant
data from nine PAI sources. Fig. 2 illustrates the relative
frequency of each term, with the query terms “nuclear,”
“radiation,” “hydrodynamic,” “radioactive,” and “ionizing radi-
ation” among the most frequently occurring. To date, we have
processed more than 4 TB of publicly available scientific lit-
erature from SCOPUS, the Web of Science, OSTI.gov, arXiv,
DBLP, and bioRXiv. In addition, we queried Google Scholar,
ArabArXiv, and eLibrary.ru to expand our multilingual data
representation.

42018 edition of the IAEA Safety Glossary, collected from: https://
www-pub.iaea.org/MTCD/Publications/PDF/PUB1830_web.pdf



Fig. 3. Data summary plotting unique nuclear terms matched as a function
of the number of records matched using multilingual queries for each data
source, with wordclouds illustrating the prevalence of each language to the
right.

We summarize the scale of nuclear-related data collected
from each source and the representation of languages in the
scientific publications collected in Fig. 3. Although we see that
English is one of the top two most frequent languages for all
data sources, the wordclouds illustrating the relative presence
of all languages in data collected from each source illustrates
the multilingual coverage—including Arabic, Russian, and
Korean—across all data sources.

B. Global Coverage of Content and Context Information
Alongside examining the language of the content itself,

we also evaluated the global worldwide representation of the
locations referenced in the publication metadata or context to
evaluate the global coverage. This includes locations linked to
publications with the institutions’ authors are associated with,
or the locations of conferences or publication venues.

In Fig. 4, we illustrate the complementary nature of the
global coverage identified during our location-based analyses
across the data sources. While Scopus (top) has global cover-
age, the highest concentration is in the United States. In con-
trast, Google Scholar data (bottom) shows global coverage,
with the highest concentration in India and China. As our
data fusion approach leverages multiple PAI sources, it is
able to take advantage of this diversity in coverage for a
more complete global representation overall. This enables our
descriptive analytics to support global proliferation expertise
identification and summarization.

III. TOPIC MODELING AND REPRESENTATION LEARNING

After data collection and fusion, we employ topic modeling
to summarize and filter signals about potential nuclear prolifer-
ation activities. Using rich probabilistic topics and embedding
representations allows us to extract insights about key topics—
more abstract summarizations of content and proliferation

Fig. 4. Global coverage of data collection illustrated using Scopus (above)
and Google Scholar (below) publications identified using the 638 multilingual
nuclear queries.

Fig. 5. Illustration of a 2-D UMAP representation of the top2vec embeddings
generated from the OSTI, Scopus, and Web of Science datasets. Clusters are
annotated by topics identified (e.g., nuclear chemistry, thermodynamics, and
reactors).

signals than query terms—and increase the precision of the
data collected.

We use Top2Vec [18], an algorithm developed for topic
modeling and semantic search that is able to jointly embed
topics, documents, and word vectors when given a corpus of
documents. In contrast to other topic modeling approaches,
Top2Vec is able to automatically detect the number of topics
present, which reduces the number of parameters to tune
(or identify a priori). In Fig. 5, we illustrate an example
of how this approach allows us to explore the publications
(i.e., abstracts) in the OSTI, Scopus, and Web of Science
datasets relative to the topics covered in the publication
content. Using these topics, we can both summarize the data
and identify unrelated topics, for example, medical imaging
and so on, which can be used to increase the precision (focus
on nuclear-related documents).



TABLE I

IMPACT OF TOPIC MODEL-BASED FILTERING WITH DOMAIN EXPERT
FEEDBACK TO REMOVE UNRELATED DATA (I.E., FALSE-POSITIVES)

Using domain knowledge and SME feedback (aka as
the human-in-the-loop approach), we remove unrelated pub-
lications (included as a result of noisy matches to our
queries). We identified several identifiable non-nuclear top-
ics (e.g., biological applications) which allowed us to filter
several unrelated publications. Intuitively, all of the bioRxiv
publications were identified as noisy matches to our queries
resulting from non-nuclear biological applications. Therefore,
we removed bioRxiv publications from consideration. This
filtering approach allows us to significantly reduce the noise in
the collections from the four largest data sources, as illustrated
in Table I. We see that the removal of identifiable irrelevant
documents reduces the size of each collection by 41%–78%,
which would have otherwise contributed noise to subsequent
descriptive, predictive, or prescriptive analytics.

IV. CROSS-LINGUAL TEXT ENRICHMENTS USING NLP

We leverage several NLP enrichments to enhance text
representations in our dataset, for example, abstracts, docu-
ments, and so on. We incorporate both structured information
and distributed representations—word or document embedding
vectors—that encode the semantic meaning of the information
within each document and across the documents. We use
AllenNLP [19] and spaCy5 models to perform linguistic
annotation of English text. Each token within a document is
annotated with the following:

• a list of all other references to the token via co-reference
resolution [20];

• grammatical relationships between the token and any
modifiers via syntactic parsing;

• a dictionary denoting the token’s placement in the latent
predicate argument structure of the sentence through
semantic role labeling (SRL) [21];

• any noun phrase involving the token (noun phrase tag-
ging); and

• part of speech (POS) tagging for the token.

For each document, in addition to the NLP enrichments,
we learn the word and document embedding vectors based on
the state-of-the-art BERT model [23] from the HuggingFace
transformers library.6 This provides a semantic representation
of the information within each document, which can be
leveraged for downstream analytics using similarity measures
to other documents, queries, or clustering.

Furthermore, we extract relevant scientific entities and rela-
tions from each document using the SpERT model [22], which

5https://spacy.io/
6https://huggingface.co/transformers/model_doc/bert.html

Fig. 6. Example entity and relation extraction applied to the academic papers
using linguistic annotations and the pre-trained model from [22].

is trained on the SciERC [24] dataset. Extracting entities
and relationships in combination with linguistic enrichments
enables us to construct knowledge graph representations for
each document. An example of the entities and relations
extracted from a nuclear-related academic paper is illustrated
in Fig. 6. For all non-English documents, we apply models
from the Stanza NLP toolkit [25] to perform similar linguistic
annotations-syntactic parsing, noun phrase, and part-of-speech
tagging. We use these annotations to provide rich represen-
tations for the downstream analytics. Additional multilingual
NLP resources support annotations (e.g., SRL, co-reference)
for relevant non-English languages (e.g., Arabic) [26]–[29].

V. GRAPH CONSTRUCTION

We construct content and context graph representations that
will enable the end-users with search capabilities to answer
questions relevant to global proliferation expertise evolution.
Content graphs consist of nuclear domain keywords, tags
associated with the academic papers, and concepts, combined
with rich probabilistic topics and embedding representations.
Context graphs encode the relationships between scientists,
venues, institutions, countries, and papers over time.

A. Content Graphs to Encode Domain Knowledge
Our NLP-driven approach allows us to encode the relation-

ships between key concepts described in the abstracts and full
text of the nuclear publications at two scales—global and local.
Global content graphs encode the relationships of concepts
across all publications, whereas local content graphs illus-
trate the relationships of concepts within a specific document
(e.g., a scientific publication or technical report), enabling
us to summarize general connections (global) and precise
applications (local) for topics, methodology, and concepts.

First, we construct the global content graph, which is the
structure of knowledge and expertise that is revealed by the
co-occurrence of concepts across our full corpus of papers
and abstracts. To do so, we leverage the observed relation-
ships between context (scientific publications) and content
(key concepts), such as the occurrence of entities, topics,
keywords, and tags within the papers and abstracts or within
the descriptions of conferences and journals. We construct a
bipartite graph connecting concept nodes to documents, where
documents are papers, conference descriptions, and journal
descriptions and project this set of bipartite relationships to
create a concept-to-concept projection (see Fig. 7). Using this
projection, we can observe which concepts are closely related
to each other by observing whether they tend to co-occur in the



Fig. 7. Illustration of the process projecting a bipartite graph encoding the
co-occurrence of concepts (entities, topics, keywords, and tags) in documents
(papers, and conference or journal descriptions) to construct the global content
graph.

Fig. 8. Local content graph example, illustrating the knowledge extracted
from the document in Fig. 6.

same documents. This reveals the underlying structure behind
the concepts that we use to summarize expertise patterns.

While the global content graph reveals the general rela-
tionships that exist between key concepts, we are able to
extract a much richer and deeper semantic understanding of
the relationships between concepts by using the actual text of
the abstracts and papers. We do so through our local content
graph construction, where we aim to leverage the language
used to relate concepts within a specific paper or abstract.

To construct a local content graph for each document,
we combine two techniques for automatic concept and rela-
tionship extraction introduced in Section IV. The first is the
SRL model which parses the sentences in the text and assigns
words and phrases to semantic roles, such as the agent, action,
and the object of the action. This allows us to relate pairs of
concepts through the verbs that define their relationships, for
example, “graphite” and “heat capacity” are related through
the verb “act.” The second uses the SpERT model trained
to extract entities such as tasks, methods, and materials
and how they are related such as “Feature-Of” and “Used-
for” relationships. By combining the extracted entities and
relationships from both methods, we can construct a local
graph representation of the key concepts. Finally, to resolve
nodes returned by these two approaches and preserve edges
to and from these nodes, we use the Needleman–Wunsch
algorithm [30]. In Fig. 8, we illustrate a sample of the local
graph constructed from the same nuclear text used in Fig. 6.

B. Context Graphs to Encode Relationships Between Entities
Once we identified and pre-processed our corpus of

nuclear-related scientific publications, we construct context

Fig. 9. Summary of the node types and the relationships in the context
graph representations, extracted from the metadata and content of scientific
publications.

TABLE II

SUMMARY OF THE CONTEXT GRAPHS EXTRACTED FROM PUBLICATIONS
COLLECTED FROM EACH OF THE CORE DATASETS

graphs from both content and metadata. These context graphs
represent how different papers, scientists, topics, locations,
journals, conferences, and funding agencies are connected to
each other in the scientific publication (aka scientific knowl-
edge generation) space. We use the resulting heterogeneous
graphs and relevant projections (e.g., Scientist-to-Scientist
collaboration networks) to support identification, monitoring,
and reasoning about global proliferation expertise evolution.

In Fig. 9, we illustrate the various relationships and node
types that our approach extracts from scientific publication
data. The resulting context graphs encode what is published
(“Paper” and “Topic” nodes and “Related To” links), who
funds the research (“Funding Agency” nodes), who performed
the research (“Scientist” nodes, “Author Of” links), where sci-
entists publish (“Conference” and “Journal” nodes, “Published
In” links), which “Institutions” scientists are affiliated with,
and where those institutions and conferences are located.

In Table II, we present the size of each data source’s
resulting context graphs in regard to the number of nodes (enti-
ties) and edges (relationships between entities), and the dis-
tribution across node and edge types in Fig. 10. Of the
core datasets, Web of Science and Scopus have the largest
context graphs, with millions of entities and relationships
represented. To derive actionable insights, we can focus on
subsets of interest using entity or relationship-based queries.
For example, Fig. 11 illustrates a sample of the context graph
extracted from the Scopus data source, focusing on papers
linked to Russian query terms.

C. Entity Resolution

Real-world scientific publication data is noisy [31]. Even
within the same dataset, ambiguous entities are often present,
for example, different spellings of the same author’s name
or two different authors having the same name [32]–[34].
It is necessary to address the issue of entity resolution to



Fig. 10. Summary of the distribution across node (entity) types and edge (relationships between entities) types for the four largest data sources.

Fig. 11. Sample of the context graph extracted from the Scopus data source,
focused on papers linked to Russian query terms.

increase the reliability of analytics run on and the quality of
knowledge extracted from publication records. A human in
the loop approach is necessary to address edge cases where
simple rule-based approaches cannot be used with confidence,
for example, common names and incomplete formatting, such
as “J. Jones,” that requires additional context (email address,
institution, coauthors, etc.) to resolve.

The solution we developed for entity resolution in both
content and context graphs relies on a combination of the
graph- and language-based heuristics to address this challenge
at scale but allows a user (i.e., analyst) to quickly validate the
proposed results and fix any issues. First, a graph is formed
connecting entities (e.g., scientists) whose edges are weighted
by a combination of character-level distance metrics (text
similarity of names using Levenshtein distance, similarity of
substrings within names that minimize Levenshtein distance,
word-level tfidf cosine similarity) and bibliographic distance
metrics (similarity of projection graphs that represent shared
coauthors, institutional affiliations). We also incorporate like-
lihoods of how frequently names occur in the dataset overall,

to down-weight the similarity of names that are most likely
to be common names (e.g., “Jones”) rather than multiple
representations of the same person. Then, clusters are found
by running community detection (greedy modularity optimiza-
tion [35], [36]) on each connected component of the graph.

Within each cluster, we compute the minimum spanning
tree. If the user validates all edges in the spanning tree of
a cluster, then using the transitive property, we can assume
that all nodes in the cluster are equivalent. The spanning tree
reduces the number of edges for the user to validate from
O(n2) to O(n).

We developed a Jupyter widget7 to allow a user to quickly
validate edges and clusters (see Fig. 12). The tool presents
a potential edge to merge with the user, showing the names
of the two nodes on the edge’s endpoints. It also presents
contextual information including what papers, institutions,
and topics overlap (or not). The user can accept or reject
individual nodes or entire clusters. Accepting a cluster accepts
all edges in that cluster (every node is treated as the same
entity), and rejecting a cluster rejects every edge (every node
is treated as a different/unique entity). A limitation of the
overall approach is that it will not allow nodes to be merged
if the spanning tree path includes an edge that the user
chooses to reject. To address this, we allow the clustering and
merging process to be repeated as necessary after merging
occurs.

VI. DESCRIPTIVE ANALYTICS: NUCLEAR EXPERT

KNOWLEDGE EVOLUTION

In order to understand how nuclear domain knowledge
and expertise is evolving over time globally and contrasting
these across countries in the context of real-world events, for
example, before and after JCPOA, we leverage an in-house
developed descriptive analytics tool called Evaluating Spa-
tiotemporal Embeddings (ESTEEM) [37]. To do so, we fine-
tuned BERT [23] models to learn country- and time-specific
word embeddings for India, Iran, North Korea, Pakistan,

7https://jupyter.org/widgets



Fig. 12. Entity resolution tool used to disambiguate entities in context and content graphs (e.g., scientists, institutions, and venues) using an iterative,
human-in-the-loop approach supported by automated text and graph similarity-based clustering techniques.

Fig. 13. ESTEEM tool illustrating the search query “denuclearization,” comparing USA and Iran in a single, combined view.

Russia, and the U.S. per year. We summarize the volume of
data used to fine-tune these models in Table III.

ESTEEM allows us to rapidly explore how the seman-
tics (i.e., associated meaning) of different queries of interest
(e.g., “denuclearization” in Fig. 13) varies depending on
the country and year in which the term is used. We can
analyze countries independently in separate visualizations or
jointly in a combined plot (as shown in Fig. 13). To replicate
the analyses supported by ESTEEM with a manual human
approach would require not only significant time and cognitive
effort to read thousands of scientific papers, but also domain

expertise to identify and summarize semantic associations,
which would need to be replicated for all additional queries.

When we examine the use of “denuclearization,” we can
identify shared context and country-specific context over time
in a combined plot. Terms highlighted in black reflect nearest
neighbors in the embedding space of the term “denucleariza-
tion” (terms used in the same context) for both U.S.-linked
scientific publications and Iran-linked scientific publications,
while green terms are U.S.-specific and red terms are Iran-
specific. We have also highlighted key real-world events
related to the establishment of the JCPOA (finalization in



TABLE III

SUMMARY OF THE NUMBER OF PUBLICATIONS LINKED TO EACH
COUNTRY OF INTEREST USED TO FINE-TUNE A COUNTRY-SPECIFIC

BERT EMBEDDING MODEL PER YEAR FOR

THE ESTEEM ANALYSES

July 2015, adoption in October 2015, and implementation in
January 2016) and the five breaches in 2019 and early 2020.
There are several shared associations with “denuclearization”
between the two countries (e.g., “destabilization,” “degen-
eracy,” “reconfiguration”) and several distinctions between
the two, including a focus on weaponization associations in
Iran-linked publications around the time of adoption, that
do not persist after the JCPOA is implemented: “warhead,”
“reinstallation,” “immobilization,” “deterrence.”

VII. DISCUSSION

In this article, we demonstrate how PAI in combination
with data science and AI can contribute to the reduction of
nuclear risks worldwide: analysts will have access to a finer
level of details on descriptive analytics for increased situational
awareness, leading to a higher level of confidence in insights
and analyses at the scale used for real-time informed decision-
making. This aligns with previous work highlighting the value
of data analytics and open-source information for nuclear
security, safeguards, and risk reduction [6], [9], [38]–[41].
We presented our NLP and DL approaches to automatically
learn dynamically evolving proliferation expertise represen-
tations from open data sources that have extreme volume,
velocity, and complexity—terabytes of unstructured scientific
publications over the last five years—focusing on six countries
of interest—Russia, North Korea, Pakistan, India, Iran, and
the United States. Specifically, we fused multiple multilingual
open-source data streams and converted unstructured data
to information then generated knowledge representations to
encode dynamically evolving proliferation expertise with the
goal to use these dynamically evolving knowledge repre-
sentations to enable predictive and prescriptive inferences
to achieve real-time global proliferation expertise evolution
understanding and contextual reasoning.

A. Predictive and Prescriptive Interactive Analytics

We have illustrated an example of the descriptive analytics
our nontraditional approach can support using the ESTEEM
tool, summarizing the shift in the semantic and associated
meaning of nuclear-related concepts across locations over time
to explain how the use of concepts and how the context
surrounding the use of concepts changes over time in each
location of interest. Future work will focus on expanding
our descriptive analytics for the rapid, spatiotemporal under-
standing of proliferation expertise and capabilities and the
development of novel predictive and prescriptive analytics.

To develop novel predictive analytics, we will build on
our prior work using DL models, for example, graph con-
volutional networks (GCNs) and long short-term memory
networks (LSTMs), for anticipating the future [5], [15] and
take advantage of recently emerged DL architectures for link
prediction [42], [43]. We will leverage structured represen-
tations of nuclear domain knowledge using our context and
content graphs combined with node embeddings and topic
vectors to anticipate future proliferation expertise evolution.
This will allow us to answer operational questions like “In
what venue will a given country publish next?,” “What topics
will a given country publish on?,” and “Which institutions will
publish from a given country?”

A second avenue of future work focuses on identifying
causal relationships between domain knowledge evolution and
the knowledge generation processes (e.g., as has been done
for the computational linguistics research community [44]).
We will estimate the causal effects of varying treatments on
outcomes of interest (e.g., acquisition of a nuclear capability,
speed of capability acquisition) and support the recommenda-
tion of interventions to achieve the desired outcome.

As a result, our future work, expanding beyond the descrip-
tive analytics introduced in this article, will support forecast-
ing, prescription, counterfactual reasoning, and prescriptive
intervention by allowing a user to first focus on an actor or
capability of interest and then understand this visually in the
context of related actors, capabilities, events, venues, and so
on. These answers to the aforementioned key questions will
then be presented in terms of this context. For example, when
the user queries specific actor X , that actor’s publications,
affiliations, events, and capabilities will be visible. The tool
will also show actor X ’s next likely capabilities in this context.
Clicking on a predicted future capability will then reveal
what relationships, events, and so on are likely to occur to
obtain that capability. This then provides the end-user the
means to have the model predict the effectiveness of certain
interventions including early identification of potential failure
to adhere to ITAR/export or treaty terms.

Example workflows could include examining how specific
countries’ scientists are reacting to the advances in hypersonic
and ASATs with concern for its effect on deterrence and
determine what scientists located in two countries entering
hostilities are discussing related to nuclear issues (increased
or decreased publications while hostilities occur versus during
interims).

B. Ethical Considerations

Our approach leverages PAI [10] to identify and explain
the evolution of global proliferation expertise and capability
development. The use of PAI raises ethical considerations;
often individuals who contribute or create content online are
not aware or do not have the ability to opt in/out of research
using their content or public interactions [45], [46]. In contrast
to PAI mined from social media platforms, scientific publica-
tions and the knowledge they contain are meant to be publicly
disseminated and leveraged to advance the field of study within
and outside the specified scientific domains. Compared to
traditional use wherein subsequent research studies leverage



published findings to motivate, support, or build upon the 
current state of the art, we leverage this public knowledge to 
identify and understand signals of proliferation and support 
reasoning and anticipation of future activity and expertise 
evolution.

C. Data Access and Reproducibility
Data and structured knowledge representations (context and

content graphs) described in this article are maintained within
documented data collections in the Berkeley Data Cloud
(BDC),8 under the “Global Expertise Forecasting” project. The
data is stored in line-delimited json9 files for ease of access and
consistent readability across file and operating systems. The
code developed on the project is publicly available on GitHub:
https://github.com/pnnl/expert, to support the reproducibility
of our analyses and extension to additional analyses.

VIII. CONCLUSION AND MISSION IMPACT

Our novel approach to learning global proliferation expertise
evolution from PAI using AI-driven descriptive, predictive,
and prescriptive analytics allows users to quickly uncover
hidden patterns and relationships across multiple disparate
public data sources and otherwise incomprehensible masses
of open-source data. This work will:

• add strong multilingual, knowledge representation, and
modeling components to traditional efforts;

• allow analysts to move away from traditional reactive
analyses and take a proactive posture;

• provide a deeper understanding of how publicly available
data could be used to detect, monitor, forecast, and
prevent proliferation; and

• provide the quality, scale, and timeliness required for
operational monitoring capability.

More generally, this work will enable more effective global
allocation of resources, for example, better and faster vali-
dation of declarations and monitoring of safeguards and will
allow non-proliferation efforts to move to a more predictive
posture versus the current reactionary posture. Our interactive
analytics will accelerate decisions and increase analyst effi-
ciency and accuracy with advanced analysis capabilities that
perform at speed and scale.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the U.S. Government or
any agency thereof. The authors thank Kevin Cronk and Kate
Gibb for their invaluable advice on the use cases, mission
assurance, and mission alignment.

REFERENCES

[1] M. Alizadeh, J. N. Shapiro, C. Buntain, and J. A. Tucker, “Content-based
features predict social media influence operations,” Sci. Adv., vol. 6,
no. 30, Jul. 2020, Art. no. eabb5824.

8https://bdc.lbl.gov/
9https://www.json.org/json-en.html

[2] L. Vargas, P. Emami, and P. Traynor, “On the detection of disinformation
campaign activity with network analysis,” in Proc. ACM SIGSAC Conf.
Cloud Comput. Secur. Workshop, Nov. 2020, pp. 133–146.

[3] O. Varol, E. Ferrara, F. Menczer, and A. Flammini, “Early detection of
promoted campaigns on social media,” EPJ Data Sci., vol. 6, pp. 1–19,
2017.

[4] C. Zhan, C. K. Tse, Y. Fu, Z. Lai, and H. Zhang, “Modeling and
prediction of the 2019 coronavirus disease spreading in China incor-
porating human migration data,” PLoS ONE, vol. 15, no. 10, Oct. 2020,
Art. no. e0241171.

[5] S. Volkova, E. Ayton, K. Porterfield, and C. D. Corley, “Forecasting
influenza-like illness dynamics for military populations using neural
networks and social media,” PLoS ONE, vol. 12, no. 12, Dec. 2017,
Art. no. e0188941.

[6] G. Renda, L. Kim, R. Jungwirth, F. Pabian, E. Wolfart, and G. Cojazzi,
“The potential of open source information in supporting acquisition path-
way analysis to design iaea state level approaches,” in Proc. IAEA Int.
Safeguards Symp., Linking Strategy, Implement. People, 2014, pp. 1–10.

[7] F. Pabian, G. Renda, R. Jungwirth, L. Kim, E. Wolfart, and G. Cojazzi,
“Open source analysis in support to non-proliferation monitoring and
verification activities: Using the new media to derive unknown new
information,” in Proc. Symp. Int. Safeguards, Linking Strategy, Imple-
ment. People, vol. 312, 2014, pp. 1–10.

[8] M. Kas et al., “Analyzing scientific networks for nuclear capabil-
ities assessment,” J. Amer. Soc. Inf. Sci. Technol., vol. 63, no. 7,
pp. 1294–1312, Jul. 2012.

[9] J. DIAB, P. BURR, and R. Stohr, “Using machine learning and natural
language processing to enhance uranium mining and milling safegaurds,”
IAEA, Vienna, Austria Tech. Rep. IAEA-CN–267, 2018.

[10] J. Arterburn, E. D. Dumbacher, and P. O. Stoutland, “Preventing nuclear
proliferation with machine learning and publicly available information,”
Nucl. Threat Initiative (NTI), Washington, DC, USA, Tech. Rep., 2021.

[11] S. Fortunato et al., “Science of science,” Science, vol. 359, no. 6379,
2018, Art. no. eaao0185.

[12] A. K. Khakimova, O. V. Zolotarev, and M. A. Berberova, “Visualization
of bibliometric networks of scientific publications on the study of the
human factor in the operation of nuclear power plants based on the bib-
liographic database dimensions,” Sci. Vis., vol. 12, no. 2, pp. 127–138,
2020.

[13] E. A. Agyeman and A. Bilson, “Research focus and trends in nuclear
science and technology in Ghana: A bibliometric study based on the
INIS database,” Library Philosophy Pract., vol. 4, pp. 1–45, Oct. 2015.

[14] K. Akbari and A. Bozorgi, “Citation analysis of articles indexed by
atomic energy organization of Iran for INIS database during the years
2002-2006,” Sci. Inf. Database, Tech. Rep., 2009.

[15] P. Shrestha, S. Maharjan, D. Arendt, and S. Volkova, “Learning from
dynamic user interaction graphs to forecast diverse social behavior,”
in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019,
pp. 2033–2042.

[16] S. Volkova et al., “Explaining and predicting human behavior and social
dynamics in simulated virtual worlds: Reproducibility, generalizability,
and robustness of causal discovery methods,” Comput. Math. Org.
Theory, pp. 1–22, 2021

[17] E. Saldanha et al., “Evaluation of algorithm selection and ensemble
methods for causal discovery,” in Proc. Workshop Causal Discovery
Causality-Inspired Mach. Learn., Colocated NeurIPS, 2020.

[18] D. Angelov, “Top2 Vec: Distributed representations of topics,” 2020,
arXiv:2008.09470.

[19] M. Gardner et al., “AllenNLP: A deep semantic natural language
processing platform,” 2017, arXiv:1803.07640.

[20] K. Lee, L. He, M. Lewis, and L. Zettlemoyer, “End-to-end neural
coreference resolution,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2017, pp. 188–197.

[21] L. He, K. Lee, M. Lewis, and L. Zettlemoyer, “Deep semantic role
labeling: What works and What’s next,” in Proc. 55th Annu. Meeting
Assoc. Comput. Linguistics, 2017, pp. 473–483.

[22] Y. Luan, L. He, M. Ostendorf, and H. Hajishirzi, “Multi-task identi-
fication of entities, relations, and coreference for scientific knowledge
graph construction,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2018, pp. 3219–3232.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[24] Y. Luan, L. He, M. Ostendorf, and H. Hajishirzi, “Multi-task identi-
fication of entities, relations, and coreference for scientific knowledge
graph construction,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2018, pp. 1–14.



[25] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning,
“Stanza: A Python natural language processing toolkit for many
human languages,” in Proc. 58th Annu. Meeting Assoc. Comput.
Linguistics, Syst. Demonstrations, 2020, pp. 1–8. [Online]. Available:
https://nlp.stanford.edu/pubs/qi2020stanza.pdf

[26] D. Larionov et al., “Semantic role labeling with pretrained language
models for known and unknown predicates,” in Proc. Natural Lang.
Process. Deep Learn. World, Oct. 2019, pp. 619–628.

[27] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An
annotated corpus of semantic roles,” Comput. Linguistics, vol. 31, no. 1,
pp. 71–106, Mar. 2005.

[28] A. Aloraini, J. Yu, and M. Poesio, “Neural coreference resolution for
Arabic,” 2020, arXiv:2011.00286.

[29] K. Ak, C. Toprak, V. Esgel, and O. T. Yildiz, “Construction of a Turkish
proposition bank,” TURKISH J. Electr. Eng. Comput. Sci., vol. 26,
pp. 570–581, 2018.

[30] V. Likic, “The needleman-wunsch algorithm for sequence alignment,”
in Proc. 7th Melbourne Bioinf. Course, 2008, pp. 1–46.

[31] F. Morillo, I. Santabárbara, and J. Aparicio, “The automatic nor-
malisation challenge: Detailed addresses identification,” Scientometrics,
vol. 95, no. 3, pp. 953–966, Jun. 2013.

[32] C. A. D’Angelo and N. J. van Eck, “Collecting large-scale publication
data at the level of individual researchers: A practical proposal for author
name disambiguation,” Scientometrics, vol. 123, no. 2, pp. 883–907,
May 2020.

[33] C. Schulz, “Exploiting citation networks for large-scale author name
disambiguation,” EPJ Data Sci., vol. 3, no. 11, pp. 1–14, Sep. 2014.

[34] S. Huang, B. Yang, S. Yan, and R. Rousseau, “Institution name dis-
ambiguation for research assessment,” Scientometrics, vol. 99, no. 3,
pp. 823–838, Jun. 2014.

[35] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 70, no. 6, 2004, Art. no. 066111.

[36] M. Newman, Networking. London, U.K.: Oxford Univ. Press, 2018.
[37] D. Arendt and S. Volkova, “Esteem: A novel framework for qualitatively

evaluating and visualizing spatiotemporal embeddings in social media,”
in Proc. ACL, 2017, pp. 25–30.

[38] C. Bischof and D. Wilfinger, “Big data-enhanced risk management,”
Trans. FAMENA, vol. 43, no. 2, pp. 73–84, Jul. 2019.

[39] C. J. Unger, A. M. Lechner, J. Kenway, V. Glenn, and A. Walton,
“A jurisdictional maturity model for risk management, accountability
and continual improvement of abandoned mine remediation programs,”
Resour. Policy, vol. 43, pp. 1–10, Mar. 2015.

[40] Y. Badr, S. Hariri, A.-N. Youssif, and E. Blasch, “Resilient and
trustworthy dynamic data-driven application systems (DDDAS) services
for crisis management environments,” Proc. Comput. Sci., vol. 51,
pp. 2623–2637, Dec. 2015.

[41] S. García-Herrero, M. A. Mariscal, J. M. Gutiérrez, and A. Toca-Otero,
“Bayesian network analysis of safety culture and organizational culture
in a nuclear power plant,” Saf. Sci., vol. 53, pp. 82–95, Mar. 2013.

[42] W. Jin, M. Qu, X. Jin, and X. Ren, “Recurrent event network:
Autoregressive structure inferenceover temporal knowledge graphs,” in
Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2020,
pp. 6669–6683.

[43] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and
M. Bronstein, “Temporal graph networks for deep learning on dynamic
graphs,” 2020, arXiv:2006.10637.

[44] M. Glenski and S. Volkova, “Identifying causal influences on publication
trends and behavior: A case study of the computational linguistics com-
munity,” in Proc. 1st Workshop Causal Inference NLP, 2021, pp. 83–94.

[45] C. Fiesler and N. Proferes, “‘Participant’ perceptions of Twitter
research ethics,” Social Media Soc., vol. 4, no. 1, 2018,
Art. no. 2056305118763366.

[46] K. Beninger, A. Fry, N. Jago, H. Lepps, L. Nass, and H. Silvester,
“Research using social media; users’ views,” NatCen Social Res., vol. 4,
pp. 1–40, Feb. 2014.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




