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purpose of the rk is t o  demonstrate the 
usefulness of the s imi la r i ty  method f o r  analyzing 
in jec t ion  tests and t o  confirm the accuracy of 
SHAFT79 by comparing r e su l t s  obtained with the 
two methods. 

BASIC EQUATIONS 

INTRODUCTION geothermal system are: 

(1) 

When water is in jec ted  i n t o  a groundwater 

steam and water at even higher temperatures, 
e i t h e r  caae the  physical properties of the reser- 

I n  

ected f l u i d  with a temperature of 

ormalizing with a f ac to r  of 271): 



o'sullivan 

(8) Also boundary conditions and initial condi- aT 
Qe hfQ,,, + Kmr v 

tions are required. 

The initial conditions are 
where k is the permeability of the rock matrix 
and Km is the effective conductivity of the satu- 
rated porous medium. The formulas (7) and (8) 
assume that Darcy's law gives the volume flow rate Q , = O ,  p = p o ,  h = h o  at t = O .  (11) 
of the liquld and vapor phases, Va and V *respec- 
tively, in tenus of the pressure gradienr as Theboundary conditions at the well, approximated by - _  

r - 0 as for the Theis solution, are kkri 

vv = - 

v, =-  
A vla ar ' 

% + Q o , h + h l  a s r + O  . (12) 

*  far from the well the reservoir is unchanned from Y. - " its Initial state; that is 
where u and p are viscosities. The permeability 
reduction fact& kra and k are commonly assumed p + p o , h + h o  a s r + - .  (13) 
to have the form suggested Corey (1954): 

a 

SIMILARITY METHOD 

Following the standard similarity procedure, *2 
the variable q = r / K  is introduced and then (l), a-sp 1 , 

* (21, (7), and (8) can be rewritten as 
where Sa = ( S a  - Str) / (l-Sar - S,J. 

and Sm are the irreducible liquid and vapor satu- 
rations often taken as 0.30 and 0.05, respectively, 
in geothermal reservoir modeling. 

Here SLr 

' 0 ,  (14) - dQm+L dA, 
drl 2 drl 

(15) drl 
The total kinematic viscosity ut is defined by 

and the flowing enthalpy hf by 
h k  

+ v rv) hf = v 

(9) 

(10) 

A more complete discussion of the basic equa- 
tions presented here ls given in the work on reser- 
voir modeling by Pruess and Schroeder (1979). The 
most important assumptions made are that Darcy's 
law applies, the fluid and rock are I n  local thermal 
equilibrium, and capillary pressure i s  negligible. 

The SHPPT79 program can be used for solving 
problems in any coordinate system. It approximates 
the general three-dimensional equations' correspond- 
ing to (I), (21, (7) and (8) by using an Integrated 
finite difference form for all spatial derivatives 
and fully Implicit differencing of the time deriva- 
tives. More details are included in the SHAFT78 
user's manual (see Pruess, et al., 1979). 

The equations above apply to the flow of any 
single-phase or two-phase fluid In a porous medium. 
To complete the formulation thermodynamic data 
defining p a ,  pV, ha, hv, v i ,  ", and T in terms of 
p and h (or p and mixture energy for SHAFT79) must 
be supplied. Suitable approximating formulas are 
given by 0' Sullivan (1980). 

'm = Tm ' * *  dn 

dT 
Qe = hfQm + Km rl - drl ' 

where Tm = k/vt . 

(16 

The idea of using the similarity technique for 
solving geothermal injectibn problems was also 
suggested by Tsang and 'bang (1978), but they con- 
sidered single-phase flow only and used simplified 
thermodynamics in their formulation. 
assumed an approximate form for k/va 
n 

They also 
in terms of 

in order to obtaln an analytic solution. 

The boundary conditions and initial conditions 
combine to give the boundary conditions 

%+Qo, h + h l a s  n + o  

p +  po,h+ ho a s n + - .  

The only difference between equati 

and 

and those derived by O'Sullivan (1980) for constant 
flow rate production problems I s  the Inclusion of 
the conduction term in*(l7). The injection of cold . 
water into a reservpir produces very large tempera- 
ture gradients vhereas the production of hot fluid 
out of a reservoir does not. Mathematically, the 
conduction term Introduces considerable complexity. 
This can be best seen by rewriting (14) and (15) 
showing their dependence on Qn, p, h and the enthalpy 

t . . -  . 
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0' Sullivan 
b gradient, dh/dz, where z - log n, more expl ic i t ly :  the two-phase region. 

_O"m rn" 
" J I . L J  

(18) The reservoir parameters used here (see Table 1 )  
"Q.+$(aAmQm+ aAmdh 
dz 2 ar, T ah dzk0 '  

were used by Sorey et al., (1979) and by O'Sullivan 
(1980) f o r  a production w e l l  test problem. lbo 
cases are reported here. The f i r s t  is a single-phase 
problem for the  in jec t ion  of 100°C water i n t o  a 
231OC reservoir. The second problem is f o r  theo 
in jec t ionof  100°C water in to  a reservoir of 233 C 
with an i n i t i a l  l iqu id  sa tura t ion  of 0.80. The 
pressure and temperature responses are shown i n  
Figure 1 and the flow rate build-up and sa tura t ion  
p ro f i l e  are shown i n  Figure 2. As can be seen, the 
agreement with SHAFT79 re su l t s  is good. Naturally, 
the d iscre te  nature of the SHAFT79 simulator tends 
t o  smear the sharp thermal f ront  but it gives 
a reasonable estimate of i ts  position. There were 
some differences i n  the  steam tab le  approximations 
used between SHAFT79 and the s imi la r i ty  technique 
and therefore exact correspondence cannot be expected. 

- m  

ahf 8, + ahf dh) 
ap Tm ah dz 

d (a?% + z&) 

h f T + e ( - -  dQm 

+ ' m Z  ap T,. ah dz 

+ f ( T T  9, + 3,) 'ah dz (19) o. 

For the in jec t ion  of cold water i n t o  a hot water 
reservoir the f l u i d  remains s ing le  phase but f o r  
the in jec t ionof  cold water i n t o  a two-phase o r  dry 
steam reservoir the spreading cold water heats up The r e su l t s  show a dual s t r a igh t  l i n e  pressure 
by extracting thermal energy from the rock drop corresponding t o  the Theis curves f o r  cold and 
it advances, the  reservoi r  f l u i d  condenses. hot water,respectively. A l s q t h e  very high effec- 
the two-phase region of flow, the  term aT/ah t i v e  compressibility of the two-phase f lu id  is 
zero and equation (19) reduces from a second order evident from the much later build up of pressure. . 
equation i n  h t o  f i r s t  order, thus tequiring only 
one boundary condition instead o f  two. This singu- CONCLUSIONS 
lar behavior of equation (19) i n  the  two-phase 
region leads t o  considerable d i f f i cu l ty  i n  its solu- 
tion. 

The s imi la r i ty  method 'described here enables 
the ready analysis of single-phase geothermal in- 
jec t lon  t e s t s .  

tests f o r  two-phase o r  dry steam reservoirs can 
a l so  be analyzed. 
f a r  ind ica te  tha t  the SWT79 program is a useful 
t o o l  f o r  analyzing such tests and is much more 
f lex ib le  than the  s imi la r i ty  method i n  terms of 
the types of tests, such as 

With more e f f o r t ,  because of the 
NUMERICAL PROCEDURE t r i a l  and e r ro r  procedure required, in jec t ion  

For. single-phase flow the  numerical procedure The l imited r e su l t s  obtained so 
follows tha t  used by O'Sullivan (1980). 
mic sca l e  is introduced by solving i n  terms of z 
where z = log q. 

A logarith- 

Then (18) is numerically integrated 
a t  n = 0 using estimated 
en (16) is used t o  
culated values f o r  

t i p l e  rate tests, 

Q,(n) and the boundary condition p + p a  as n + REFERENCES 
Finally, a difference approximation of (19) is solved, 
by inverting a tridiagonal matrix, using the  latest 
values f o r  p(n) and Q(n) and the  boundary conditions 
h + h 1  as n+o and h + h o  as n + -.. 
a re  then repeated u n t i l  convergence is obtained. 
For single-phase flow the  process works very we 
with convergence t o  within a very small toleran 
requiring only 5 -10  i t e r a t ions  on crude i n t i t i  
estimates. Nowever, f o r  two-phase flows the  ab p. 355-64. 
process does not work. Instead,an inverse proc 
i s  adopted where the  posit ion,  say nc, of the  c 
densing f ront  is specified and the correspondin 
in jec t ion  rate Q req 
ted. 
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1 .I TABLE 1.' Reservoir Data. 
O'Sullivan 
Sorey, M. L., Grant;: . , an8 Bradford, E., 1979, 

Nonlinear effects In two-phase flow to wells In 
geothermal reservoirs: unpublished paper, 1979. 

study of geothermal-reservoir pressure response 
to cold water reinjection: presented at the 
Fourth Annual Workshop on Geothermal Reservoir 
Engineering, Stanford University, Dee. 13-15, 
1978. 

0 = 0.15 

pr = 2000 kg/m3 

Cr = 1.0 kJ1kg.K 

porosity 

Rock density 

Rock specific heat 

Permeability 

Tsang, Y. W., and Tsang, C. F., 1978, An analytic 

k - 0.24 x 10'lz~ 

Figure' 1. 

- I  Initial pressure po 3.0 HPa 

Initial enthalpy 

Injection rate 

ho - 1.0 W/kg or 1.0158MJ/kg 
Qo = 0.4036 kg/s 

are shown as o for pressure and x for temperature for the hot-water reservoir 
and o for pressure and + for temperature for the boiling reservoir 

Figure 2. Flow rate and liquid saturation profiles. 
curves coincide after cooling commences. 

The flow rate 
SHAFT79 results 

. are shown as 0 .  - 
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