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RESEARCH Open Access

Hierarchical cortical transcriptome
disorganization in autism
Michael V. Lombardo1,2*, Eric Courchesne3, Nathan E. Lewis4,5 and Tiziano Pramparo3

Abstract

Background: Autism spectrum disorders (ASD) are etiologically heterogeneous and complex. Functional genomics
work has begun to identify a diverse array of dysregulated transcriptomic programs (e.g., synaptic, immune, cell
cycle, DNA damage, WNT signaling, cortical patterning and differentiation) potentially involved in ASD brain
abnormalities during childhood and adulthood. However, it remains unclear whether such diverse dysregulated
pathways are independent of each other or instead reflect coordinated hierarchical systems-level pathology.

Methods: Two ASD cortical transcriptome datasets were re-analyzed using consensus weighted gene co-expression
network analysis (WGCNA) to identify common co-expression modules across datasets. Linear mixed-effect models
and Bayesian replication statistics were used to identify replicable differentially expressed modules. Eigengene
network analysis was then utilized to identify between-group differences in how co-expression modules interact
and cluster into hierarchical meta-modular organization. Protein-protein interaction analyses were also used to
determine whether dysregulated co-expression modules show enhanced interactions.

Results: We find replicable evidence for 10 gene co-expression modules that are differentially expressed in ASD
cortex. Rather than being independent non-interacting sources of pathology, these dysregulated co-expression
modules work in synergy and physically interact at the protein level. These systems-level transcriptional signals are
characterized by downregulation of synaptic processes coordinated with upregulation of immune/inflammation,
response to other organism, catabolism, viral processes, translation, protein targeting and localization, cell proliferation,
and vasculature development. Hierarchical organization of meta-modules (clusters of highly correlated modules) is also
highly affected in ASD.

Conclusions: These findings highlight that dysregulation of the ASD cortical transcriptome is characterized by the
dysregulation of multiple coordinated transcriptional programs producing synergistic systems-level effects that cannot
be fully appreciated by studying the individual component biological processes in isolation.

Keywords: Autism, Immune, Synapse, Transcriptome, Translation, Systems biology, Gene co-expression networks

Background
The pathophysiology behind atypical brain development
in autism spectrum disorders (ASD) is highly complex.
Elegant biological studies are continually unveiling an
ever more diverse array of etiological factors and
neurodevelopmental processes associated with ASD
(e.g., [1–17]). With such diversity, key questions arise as
to what are the consistent and robust mechanisms

involved and whether such mechanisms point to many
independent disrupted pathways or some convergence
on a few common pathways affecting large-scale bio-
logical systems and/or interactions between such sys-
tems [18, 19]. One way to test this question is to
examine pathophysiology at a level above genetics and
non-genetic perturbations, such as the transcriptome,
and examine whether the diversity of disrupted tran-
scriptomic signals converge onto many independent or
interacting systems.
Seminal work examining cortical transcriptome dys-

regulation in ASD has highlighted the dysregulation of
multiple transcriptional programs. These programs
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include cell cycle/DNA damage, WNT signaling, cortical
patterning and differentiation, and immune/inflamma-
tion at young ASD ages [5] and apoptosis, repair and re-
modeling, synaptic and immune/inflammation functions
at older ages [8, 20, 21]. However, it remains unclear if
such pathways are independently dysregulated or
whether there is synergy between multiple dysregulated
pathways. For example, prior work has shown downreg-
ulated synaptic and upregulated immune/inflammation
signals in ASD cortical tissue [8, 20, 21]. Pointing to-
wards the idea that such dysregulated signals may not be
independent, strong correlations are found between
these dysregulated modules when collapsing data across
both groups [8, 20]. While this observation is important
for generally suggesting statistical dependency between
modules, more evidence is needed to suggest that such
potentially synergistic effects among interacting modules
are dysregulated in ASD. To test the hypothesis that
transcriptome dysregulation in ASD extends beyond the
level of single-dysregulated co-expression modules and
involves dysregulation spanning interactions between
larger systems-level processes, differences in between-
module correlations need to be investigated. Further-
more, tests should also go beyond observations of
statistical dependency in co-expression and test whether
there are enhanced direct physical interactions between
the protein products of such dysregulated modules com-
pared to unaffected modules. An enhancement of direct
physical protein interactions among dysregulated versus
non-dysregulated modules would further suggest plausi-
bility for synergistic interactions across disparate
biological processes conferred by each individual co-
expression module.
We examined this topic via re-analysis of two existing

datasets that investigated multiple cortical regions. We
tested the hypothesis that diverse molecular mechanisms
are hierarchically disrupted in the cortical transcriptome
of ASD and reflect interacting systems-level pathology
rather than multiple independent types of molecular
pathology. By “hierarchical disruption,” we refer specific-
ally to evidence of dysregulation of individual co-
expression modules as well as higher level disruptions in
how such modules interact. Our approach is substan-
tially different from previous work in leveraging the
identification of consensus modules that robustly exist
across datasets. We also account for known methodo-
logical differences intrinsic to the existing studies (e.g.,
age, gender, brain areas). Our approach also utilizes
identical parameters to identify consensus networks
across datasets, as these parameters vary across different
studies in the literature (e.g., network type—signed ver-
sus unsigned, soft-power thresholds, deepSplit parameter
for cutting dendrograms). These parameters can affect
how modules are identified (i.e., clustering and cutting

dendrograms) as well as affect the content (i.e., genes,
module eigengene variability) composing different dis-
covered modules, thus making direct cross-study com-
parisons across the literature somewhat difficult. Such a
viewpoint of integrating information from multiple data-
sets currently does not exist in the literature, and we
specifically implement this type of analysis in order to be
best positioned to make inferences that are applicable
across datasets.
Here, we also directly address “replication” as it per-

tains to ASD gene expression studies. While some
existing studies we have re-analyzed here [20, 21] con-
stitute “conceptual” replications (i.e., studies that differ
in numerous ways yet show roughly similar findings,
such as similar gene ontology enrichment results) and
are definitely important in their own right, more exact
attempts at replication holding constant a variety of
analysis issues may also prove insightful. For example,
several independent studies may not detect certain dys-
regulated signals due to analytic or other methodo-
logical variance across studies. Repeated detection of
such dysregulated signals across multiple studies under
more uniform conditions of analysis may likely pull out
such prominent signals that otherwise go undetected.
Also of importance is how to formally quantify evi-
dence for or against replication. Such formal quantifica-
tion is missing in the ASD gene expression literature.
In this study, we tackle these issues head on by analyz-
ing multiple datasets under uniform analysis conditions
(e.g., extracting consensus co-expression networks that
exist in multiple datasets) and utilize new Bayesian
methods developed directly from replication debates
ongoing in other fields like psychology that more for-
mally quantify the strength of evidence for or against
replication.
This work also represents the first study to specific-

ally aim at examining hierarchical disruption of the
cortical transcriptome in ASD. That is, we go beyond
examination of dysregulation at the level of single-
gene co-expression modules and also examine
whether dysregulation is present in higher level inter-
actions between modules. We provide the first look at
the full organization of correlations between gene
modules across the transcriptome (i.e., eigengene net-
works) and examine how such connections manifest
differently both at the level of inter-modular connect-
ivity (i.e., connections between specific modules) as
well as connectivity relevant to organization of clus-
ters of highly correlated modules (i.e., meta-modules)
[22–24]. Localized subtle/specific changes in eigen-
gene network organization or larger global patterns of
network reorganization are both plausible predictions
regarding how eigengene networks are organized dif-
ferently in ASD. Both scenarios would lead to the
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prediction that the composition of meta-modules as
well as connectivity within and outside of normative
meta-module boundaries would differ in ASD.

Methods
Datasets
We re-analyzed two existing datasets probing cortical
gene expression in ASD. The first dataset utilized mi-
croarrays on frontal (BA9; n = 16 ASD; n = 16 Controls)
and temporal cortex (BA 41/42; n = 13 ASD; n = 13
Controls) tissue and was first described by Voineagu
and colleagues (Gene Expression Omnibus (GEO) Ac-
cession ID: GSE28521) [21]. The second dataset utilized
RNAseq on frontal (BA10, n = 6 ASD, n = 8 Controls;
BA44, n = 16, n = 11 Controls) and occipital cortex
(BA19, n = 24 ASD, n = 38 Controls) tissue and was first
described by Gupta and colleagues (http://www.arkin-
glab.org/resources/) [20]. Across both datasets, there
was a total n = 162 samples (Voineagu n samples = 58;
Gupta n samples = 104). The total number of unique
individuals across both datasets was n = 86 (Voineagu
n = 32; Gupta n = 54). Of the total n = 73 unique indi-
viduals within the Gupta dataset, n = 19 individuals
overlapped with Voineagu dataset. n = 26 samples of
the total n = 104 (25% of samples) from the Gupta data-
set came from these overlapping individuals, while the
remaining n = 76 samples come from new individuals.
For each dataset, we utilized the already pre-processed

and quality-controlled datasets publicly available in
order to be as congruent as possible with prior published
work. For genes with multiple probes in the Voineagu
dataset, we selected the probe with the highest mean ex-
pression value across the full dataset using the collap-
seRows function in R [25]. Within the Gupta dataset,
missing values were present for some genes in some
subjects and these missing values were imputed using
the impute.knn function within the impute R library.
This procedure was done in order to maximize the total
number of genes possible for inclusion into further
weighted gene co-expression network analysis
(WGCNA). All further analyses utilize a subset of the
8075 genes that were common across both datasets.

Weighted gene co-expression network analysis
Co-expression analysis was implemented with the
WGCNA package in R [26]. A consensus WGCNA ana-
lysis was implemented in order to detect consensus
modules for cross-dataset comparisons (implemented
with the blockwiseConsensusModules function) [22].
Consensus WGCNA analysis consisted of construction
of correlation matrices, which were then converted into
adjacency matrices that retain information about the
sign of the correlation (i.e., signed networks use a trans-
formation of 0.5 × (r + 1)). Adjacency matrices were

raised to a soft power threshold selected based on an
analysis across various soft power thresholds and choos-
ing the soft power threshold based on a measure of R2

scale-free topology model fit that maximized and plat-
eaued well above 0.8 (i.e., soft power = 14 for both data-
sets; see Additional file 1: Figure S1). Soft power
thresholded adjacency matrices were then converted into
a topological overlap matrix (TOM) and a TOM dissimi-
larity matrix (i.e., 1-TOM). The TOM dissimilarity
matrix was then input into agglomerative hierarchical
clustering using the average linkage method. Gene mod-
ules were defined from the resulting clustering tree, and
branches were cut using a hybrid dynamic tree cutting
algorithm (the deepSplit parameter was left at the de-
fault value of 2) [27]. Modules were merged at a cut
height of 0.2, and the minimum module size was set to
30. For each gene module, a summary measure called
the module eigengene (ME) was computed as the first
principal component of the scaled (standardized) mod-
ule expression profiles. Genes that cannot be clustered
into any specific module are left within the M0 module,
and this module is not considered in any further
analyses.
To test for differential expression at the level of ME

variation, we used linear mixed-effect models imple-
mented with the lme function in the nlme R library.
These models included diagnosis as the fixed effect of
interest and additionally included age, sex, RNA integrity
number (RIN), post-mortem interval (PMI), brain re-
gion, and median 5′ to 3′ prime bias (specific to Gupta
dataset) as fixed effect covariates. Subject ID was mod-
eled as the within-subject random effect modeled with
random intercepts. To identify MEs with replicable dif-
ferential expression across both datasets, we utilized t
statistics from the linear mixed models to compute repli-
cation Bayes Factor (repBF) statistics [28] that quantify
evidence for or against replication (see here for R code:
http://bit.ly/1GHiPRe). Replication Bayes Factors greater
than 10 are generally considered as strong evidence for
replication. To identify replicable modules, we first con-
sidered modules that possessed a significant effect
passing false discovery rate (FDR) [29] q < 0.05 within
the Voineagu dataset and then also required these
modules possess significant effects in the Gupta dataset
(FDR q < 0.05) and that this evidence quantitatively
produces evidence for replication with a replication
Bayes Factor statistic >10.

Gene-level differential expression analyses
Differential expression analyses at the level of individual
genes were performed in R. The same linear mixed-
effect models used for analysis of dysregulation of ME
variation were also used for these analysis (e.g., lme
function from nlme R library, same fixed and random
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effects). Genes passing FDR q < 0.05 were considered dif-
ferentially expressed genes. To identify common differ-
entially expressed genes across datasets, we ran gene set
overlap analyses implemented using the sum(dhyper())
function in R. The background pool total was set to the
total number of genes common to both datasets (8075).

Process level gene set enrichment analyses
To characterize specific biological processes for all mod-
ules, we performed process level (i.e., process networks)
enrichment analyses within the MetaCore GeneGO soft-
ware platform. To identify emergent processes from col-
lections of highly correlated dysregulated modules, we
used gene ontology (GO) biological processes enrich-
ment analysis (AmiGO 2; http://amigo.geneontolo-
gy.org/) in order to leverage GO’s relatively broader
hierarchical structure (compared to MetaCore GeneGO).
For these enrichment analyses, we used a custom back-
ground of 7872 genes which represented all genes ana-
lyzed minus the 203 genes within the M0 module.
REVIGO [30] was then utilized on the top 50 GO terms
ranked by fold enrichment in order to assist in reducing
the large number of GO terms into semantically similar
clusters of terms. We manually edited the REVIGO out-
put by inserting custom descriptive terms for each clus-
ter and to correct for obvious errors in semantic
clustering (e.g., a term like “synaptic organization”
occurring outside of the synaptic cluster).

Cell type/cellular compartment enrichment analyses
To characterize differentially expressed modules by
enrichments in specific cell types (neuron, astrocyte,
oligodendrocyte, M1 and M2 microglia states) and cellu-
lar compartments (synapse, postsynaptic density, riboso-
mal subunits), we utilized lists of markers previously
used by Gupta and colleagues [20]. The exception to this
was lists of ribosomal subunit markers. These were
obtained from lists contained in GO. Enrichment tests
were hypergeometric tests (i.e., sum(dhyper()) in R)
using the total 7872 genes as the background pool.

Eigengene network analysis
Eigengene network analysis proceeded by constructing
robust ME partial correlation matrices separately for
each group. These matrices were computed in MATLAB
using robust regression to be insensitive to outliers [31]
and the robust regression models incorporated the re-
moval of variation from nuisance covariates (i.e., age,
sex, RIN, PMI, median 5′ to 3′ bias, brain region).
Partial correlation matrices were then converted into
adjacency matrices that retain information about the
sign of the correlation. ME adjacency matrices were
converted into topological overlap dissimilarity matrices
(1-TOM) and then were inserted into agglomerative

hierarchical clustering using the ward.D linkage method.
The resulting cluster tree was then cleaved into meta-
modules using the same dynamic hybrid tree cutting
algorithm utilized in WGCNA. We used a deepSplit par-
ameter of 3 since this selection was optimal over and
above other options for being able to accurately capture
the major branch divisions that are apparent upon visual
inspection of the dendrograms.
To visualize eigengene network topology, we utilized

the qgraph library in R [32] to construct weighted
graphs of the ME adjacency matrices for each group.
These graphs are depicted using a spring-embedded lay-
out algorithm [33] whereby highly connected nodes are
attracted to each other and less highly connected nodes
are repulsed away from each other. Because these plots
are constructed from the adjacency matrices, distance is
furthest apart when the correlation is r = −1 and closest
when r = 1.
All hypothesis tests on connectivity strength between

replicable differentially expressed modules, within and
outside meta-module connectivity, and specific inter-
modular (i.e., between-module) connectivity were imple-
mented with permutation tests (10,000 iterations). The
test statistic in each case was the difference in connect-
ivity strength between ASD and Controls. On each iter-
ation, we randomized group labels and recomputed the
test statistic. FDR [29] q < 0.05 was used as the threshold
for multiple comparisons correction. Statistically signifi-
cant results from this analysis are indicated by stars
within Figs. 7c and 8c and as green outlines around cells
within Figs. 7d and 8d.

Protein-protein interaction analysis between dysregulated
co-expression modules
To further underscore that statistical dependencies in
highly correlated co-expression modules indicate direct
protein interactions between modules, we implemented
a protein-protein interaction analysis. Specifically, if
there is hierarchical molecular pathology above single-
dysregulated modules indicated by highly interacting
dysregulated modules, we should also expect that the
degree of such protein interactions would be much
higher compared to non-dysregulated and dysregulated
module pairings. To test this hypothesis, we used Java-
based command line tools for GeneMANIA [34] to
query the latest protein-protein interaction database
(Data Set ID: 2014-08-12; Database Version: 1 June
2014). For each of the 27 modules used as seed modules,
we quantified the number of protein-protein interactions
between these seed modules and other genes within spe-
cific dysregulated module categories (i.e., number of
connections between the seed module and downregu-
lated or upregulated modules respectively). If the seed
module was itself a dysregulated module, we did not

Lombardo et al. Molecular Autism  (2017) 8:29 Page 4 of 17

http://amigo.geneontology.org/
http://amigo.geneontology.org/


count self-connections (i.e., connections between genes
within the same module) in order to guard against re-
sults showing higher number of connections simply due
to high connectivity within the seed co-expression mod-
ule. Because co-expression modules differ in size (e.g.,
the largest module, M1, contains 1568 genes, while the
smallest module, M27, contains only 39 genes), we plot-
ted the number of connections for each module as a
function of module size. We expect that if dysregulated
seed modules are indeed more highly enriched in con-
nections with other dysregulated modules, that the num-
ber of connections would be much higher than other
non-dysregulated modules of similar size.

Results
Replicable dysregulation of specific gene modules in ASD
Consensus WGCNA on the 8075 genes common to
both the Voineagu and Gupta datasets identified 27
co-expression modules. Information regarding the en-
richments for each of these modules can be found in
Additional file 2: Table S1. Module membership (i.e.,
the correlation between a gene and its module eigen-
gene) and the top 10 hub genes based on module
membership for each module are reported in

Additional file 3: Table S2. Ten of the 27 modules were
identified as differentially expressed in a replicable
fashion across datasets (i.e., replication Bayes Factor
>10; see Additional file 4: Table S3 for full statistical
information on these comparisons). Five of these 10
modules were on-average upregulated in ASD, while
the remaining 5 were on-average downregulated in
ASD. Three of the 5 ASD-upregulated modules (M12,
M24, M27) were enriched in a variety of processes re-
lated to the immune system and inflammation; pro-
cesses such as interferon signaling, complement
system, phagocytosis, innate immune response to RNA
viral infection, among several others (Fig. 1). Interest-
ingly, M12 and M27 are also enriched in M1 microglia
markers, while M24 is enriched in M2 microglia
markers (Fig. 3; Additional file 5: Table S4). The ASD-
upregulated M25 module was heavily enriched for
translation initiation, and this enrichment is driven by
a large number of genes coding for ribosomal proteins
for the 40 and 60S ribosomal subunits (Fig. 1). These
genes also contributed to a significant enrichment in
markers for the postsynaptic density (Fig. 3; Additional
file 5: Table S4). The ASD-upregulated M1 module
was also enriched in translation elongation-
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Fig. 1 Upregulated gene co-expression modules in ASD. This figure shows gene co-expression modules that were on-average elevated in ME
expression in ASD and in a replicable manner across datasets. Each module has a scatter-boxplot whereby each individual is represented by a dot
and the central tendency (median) and dispersion (interquartile range) is shown with the boxplot. Next to each scatter-boxplot are the process-
level enrichment terms passing FDR q < 0.05 (limited to the top 10 terms) from MetaCore GeneGO. The vertical black line on the enrichment bar
plots represents the p value where FDR q < 0.05. For each module, the replication Bayes Factor statistic (repBF) is cited above the scatter-boxplot
(repBF >10 indicates strong evidence for replication). In the bottom right corner of this figure is a Venn diagram summarizing the common overlap
between ASD-upregulated genes across both datasets
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termination processes (Fig. 1) and astrocyte and M2
microglia markers (Fig. 3; Additional file 5: Table S4).
In contrast to the ASD-upregulated modules, the rep-
licable ASD-downregulated modules were enriched in
a variety of processes that occur at the synapse—GA-
BAergic neurotransmission, synaptic vesicle exocytosis,
long-term potentiation, and transmission of nerve im-
pulse (Fig. 2). In terms of cell type and cellular compo-
nent enrichment, downregulated modules are enriched
in neuronal (M3, M14), synaptic (M9), and postsynap-
tic density markers (M9) (Fig. 3; Additional file 5:
Table S4).
Results from differential expression analysis at the

gene level also showed high degree of overlap between
datasets (Figs. 1 and 2; Additional file 4: Table S3). We
utilized these gene level differential expression results to
characterize the load of differential expression signal
within each of the 10 identified replicable dysregulated
modules. Congruent with the labels of “upregulated” or
“downregulated” modules, we find that each of these
modules are heavily loaded with differential expression
signal at the gene level congruent with such labels
(Additional file 6: Figure S2). For example, all

upregulated modules had pronounced shifts in differen-
tial expression signal in the direction of ASD > Control,
while all downregulated modules had pronounced dif-
ferential expression signal shift in the direction of Con-
trol > ASD. These results confirm that the on-average
between-group differentiation in dysregulated modules
is underpinned by large magnitude of differential ex-
pression signal within each module at the level of indi-
vidual genes.

Differentially expressed modules are highly correlated in ASD
Modules that are on-average differentially expressed
(Figs. 1 and 2) are highly correlated. This pattern of
correlation was one of strong positive correlations
within modules that share similar directionality of dif-
ferential expression but strong negative correlations
between modules with different directionality of
differential expression. Interestingly, these correlations
become significantly enhanced in ASD compared to
Controls in the Voineagu dataset (within
downregulated modules p = 0.012; within upregulated
modules p = 0.042; between downregulated and upreg-
ulated modules p = 0.008; Fig. 4a, b). Within the Gupta
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dot and the central tendency (median) and dispersion (interquartile range) is shown with the boxplot. Next to each scatter-boxplot are the
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downregulated genes across both datasets
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dataset, this phenomenon of highly correlated differen-
tially expressed modules as well as strong negative cor-
relations between upregulated and downregulated
modules is already present in Controls and stays
present in ASD, though quantitative strengthening of
such connectivity in ASD does not occur (within
downregulated modules p = 0.957; within upregulated
modules p = 0.327; between downregulated and upreg-
ulated modules p = 0.667; Fig. 4c, d).

Highly correlated differentially expressed modules highly
interact at the level of protein-protein interactions
Statistical dependencies (i.e., correlations) between dys-
regulated co-expression modules suggest that hierarch-
ical pathology may be present in the interactions
between such modules. From this result, we further rea-
soned that strong correlations between dysregulated
modules may result from high levels of direct physical
interactions between proteins of such modules. If some
important synergistic pathology were apparent across
such ASD-dysregulated modules, we would also expect
that the high degree of protein-protein interactions be-
tween collections of dysregulated modules would be
much stronger degree of interactions between dysregu-
lated and non-dysregulated modules. Such protein-
protein interaction evidence would further indicate
plausibility of the idea that hierarchical pathology evi-
dent in the interactions between dysregulated co-
expression modules exists in ASD. To answer this

question, we queried the GeneMANIA protein-protein
interaction database [34] and discovered that each of
the dysregulated modules do indeed show a large de-
gree of connections with other dysregulated modules.
Interestingly, modules dysregulated in opposite direc-
tions (e.g., connections between a downregulated seed
module and all other upregulated modules) showed
just as many connections as modules dysregulated in
the same direction. While one might expect high de-
gree of connections between modules dysregulated in
the same direction (e.g., modules dysregulated and
enriched in similar kinds of biological processes), the
fact that similar numbers of protein interactions exist
between modules dysregulated in opposite directions
(e.g., connections between a downregulated synaptic
seed module and other upregulated immune and trans-
lation modules) supports the idea that large-scale
hierarchical interactions are important to the patho-
physiology of ASD. Importantly, the number of con-
nections between dysregulated seed modules and other
dysregulated target modules was much higher than
when non-dysregulated modules were the seed. This is
evident in the predicted observation that dysregulated
seed modules show much higher degree of connections
than non-dysregulated seed modules of similar size
(Fig. 5). This evidence alongside the observed statis-
tical dependencies between co-expression modules fur-
ther support the idea that disparate co-expression
modules enriched in different biological processes are
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astrocyte

M2 microglia

M1 microglia

small ribosomal subunit

large ribosomal subunit

0 20 40 60 0 20 40 60
log10(p)

M3
M9
M14

M1
M12
M24
M25
M27

OR = 1.71

OR = 2.99

OR = 3.58

OR = 2.05

OR = 7.10

OR = 49.60

OR = 37.97

OR = 2.36

OR = 3.45

OR = 4.17

OR = 73.76

OR = 78.48

Cell Type/Cellular Component Enrichment

Fig. 3 Cell type/cellular compartment enrichments for dysregulated modules. This figure shows enrichments in a variety of cell types and cellular
components for the modules that are replicably dysregulated in ASD. The left panel shows enrichments for downregulated modules, while the
right panel shows enrichments for the upregulated modules. The coloring of the bars denote which specific module shows the enrichment and
the color legend is shown in the bottom right box for each panel. The x-axis plots the –log10 p values while the y-axis indicates the specific cell
type or cellular compartment. Next to each bar, we indicate the enrichment odds ratio (OR)
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likely interacting in important ways in the pathophysi-
ology of the ASD cortical transcriptome.

Processes enriched within dysregulated modules
We next asked the question of what biological processes
might characterize such emergent phenomena of inter-
acting collections of co-expression modules. Leveraging
the hierarchical structure of gene ontology (GO), we in-
put merged lists of all differentially expressed modules
together and computed GO biological process gene set
enrichment and then clustered the top 50 enriched GO
terms by semantic similarity [30]. Here, we find that the
emergent process represented by the combination of
highly connected downregulated modules is primarily
synaptic function (Fig. 6a). In contrast, there were sev-
eral emergent processes represented by the combination
of highly connected upregulated modules—immune/in-
flammation processes, response to other organism, viral
processes, catabolism, translation, protein targeting and
localization, cell proliferation, and vasculature

development (Fig. 6b). These results suggest that highly
connected differentially expressed modules spanning
multiple cell types and cellular compartments, also inter-
act at the protein level and result in emergent phenom-
ena that are not visible simply by examining modules in
isolation.

Topological reorganization of eigengene networks
While we have primarily focused on dysregulated mod-
ules, viewing hierarchical organization just within these
10 modules limits the insights that could be made by
examining the full hierarchical organization of eigengene
networks across all modules. By examining eigengene
networks, we can observe organization at higher levels
above individual co-expression modules. Such observa-
tions can show how individual modules cluster into
collections of highly connected modules, known as
“meta-modules.” These analyses go beyond the 10 indi-
vidually dysregulated modules to allow for further in-
sights into how eigengene networks are composed
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Fig. 4 Correlations between dysregulated modules. a, b Correlations between differentially expressed modules in the Voineagu Control (a) or
ASD (b) datasets. c, d Correlations between these same modules in the Gupta Control (a) or ASD (b) datasets
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across groups and to provide deeper insights into how
such organization takes shape with regard to meta-
modular clustering. These analyses visualize full
eigengene network organization and meta-module mem-
bership with spring-embedded graphs that indicate topo-
logical change via distancing nodes based on strength of
correlation between modules (i.e., shorter distance indi-
cates stronger correlation; further distance indicates
weaker correlation). We also quantitatively tested for dif-
ferences with respect to connectivity strength within and
outside meta-module boundaries as well as identifying
specific modules with disrupted connectivity.
Initial examination of preservation of the Control

eigengene network organization indicated that high
levels of preservation are not present across many nodes
of the network (see Additional file 7: Figure S3). Thus,
this low level of preservation suggests that assessing rep-
licability of any between-group differences in eigengene
network organization across datasets is likely not pos-
sible. Unlike our initial consensus WGCNA analysis that
ensured similar co-expression networks across datasets,
this procedure does not guarantee that eigengene

network organization may be similar, and this analysis
verifies that the organization of eigengene networks
across datasets differs considerably. This effect could be
due to a variety of the methodological factors that differ
across these datasets (e.g., different brain regions, differ-
ing age of the samples, microarray versus RNA-seq,
etc.). Nevertheless, this issue does not invalidate obser-
vations of how eigengene network organization differs
within each dataset, and therefore, we restrict our
descriptions of eigengene network organization to each
dataset independently.
Within the Voineagu dataset, ASD-dysregulated mod-

ules are topologically arranged closer together in ASD
and within the same meta-module, compared to the
more disperse and heterogeneous organization in Con-
trols with respect to meta-module membership of dys-
regulated modules. This differing pattern of topological
organization at the meta-module level can be clearly
seen in the spring-embedded graph layouts shown in
Fig. 7a, b. For example, upregulated modules (circled in
red in Fig. 7a, b) are spread across 3 different meta-
modules in Controls, while in ASD, these modules are
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Fig. 5 Protein-protein interactions between dysregulated modules. This figure plots the number of protein-protein interactions (on log10 scale)
between seed modules and downregulated (left) or upregulated (right) modules (y-axis) as a function of module size (number of genes in the
module; x-axis). Seed modules that are downregulated are colored in blue, while upregulated seed modules are colored in red. Non-dysregulated
seed modules are colored in green. For dysregulated seed modules, the number of connections reflects the number of protein connections with
other dysregulated modules, not counting self-connections (e.g., connections between genes of the same co-expression module). This figure
clearly shows that seed modules that are dysregulated (red or blue) possess a far greater number of connections with other dysregulated modules
compared to non-dysregulated modules (green) of a similar size
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positioned close together and within the same orange
meta-module (Fig. 7a, b). Quantitatively, network
reorganization can be examined in connectivity strength
differences within and outside normative (Control-de-
fined) meta-module boundaries. Four modules (M25,
M9, M21, and M23) show ASD-decreased connectivity
within normative meta-module boundaries. These same
modules along with one other module (M16) also show
enhanced connectivity outside of normative meta-
module boundaries in ASD (Fig. 7c). At a nodal level, we
further observed specific between-module connections
that are prominently affected in ASD (Fig. 7d). The
ASD-upregulated M25 translation initiation module is
normatively negatively correlated with the prominent
ASD-upregulated M27 interferon signaling and M1
translation elongation-termination module. However, in
ASD, these negative correlations significantly reverse
and turn into positive correlations, suggesting some ab-
normally heightened integration between these distinct
biological processes/pathways. In another example, the
ASD-downregulated M9 module is normatively posi-
tively correlated with M1, M15, and M16, but these rela-
tionships reverse into negative correlations in ASD. This
suggests that what should typically be a natural integra-
tion between these modules ends up being an abnormal
lack of integration in ASD. Furthermore, M9’s connect-
ivity with another ASD-downregulated module (M3) is
normatively negative, yet in ASD is highly positively

correlated. Finally, while there is little to no normative
relationship between the ASD-downregulated M9 mod-
ule and the ASD-upregulated M27 module, in ASD, this
relationship turns into a strong negative correlation.
This effect could potentially indicate an abnormal
immune-synapse interaction between upregulation of in-
flammation interferon signaling processes and downreg-
ulation of important synaptic processes in ASD.
Within the Gupta dataset, there was also evidence of

topological reorganization, with a much more fraction-
ated organization of meta-modules in ASD compared to
Controls (i.e., 6 meta-modules in ASD versus 4 in Con-
trols). This differing pattern of topological organization
at the meta-module level can be clearly seen in the
spring-embedded graph layouts shown in Fig. 8a, b.
Similar to the Voineagu dataset, dysregulated modules
again clustered close together and within the same
meta-modules relative to a more heterogeneous
organization in Controls (Fig. 8a, b). Quantitatively, con-
nectivity within and outside of normative meta-module
boundaries was perturbed in ASD for nearly every single
module (Fig. 8c). This indicates that ASD eigengene net-
work organization is highly perturbed with regard to
connectivity of modules within normative eigengene net-
work topology. In contrast to the numerous modules
showing connectivity differences at the nodal level in the
Voineagu dataset, very few nodal-level differences
emerged in the Gupta dataset. Thus, within the Gupta
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dataset, it appears that overall eigengene network top-
ology is reorganized in ASD in subtle ways that are
spread across many modules and considerably affect
meta-modular organizational structure. However, they
cannot be tied to very pronounced and specific differ-
ences within specific subsets of modules.

Discussion
Here we provide the first detailed characterization of
how the ASD cortical transcriptome is hierarchically

disorganized both at the level of specific co-expression
modules and at higher levels of eigengene network
organization (i.e., connectivity between modules and
meta-modules). We have pinpointed several novel co-
expression signals that show strong evidence for replic-
able dysregulation across datasets [20, 21]. Rather than
pinpointing a single synaptic or immune-related module,
we have identified several dysregulated synaptic and im-
mune modules. These modules are differentiated in
terms of cell type/compartment enrichment and/or show
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Fig. 7 Eigengene network topology and connectivity differences within the Voineagu dataset. a, b Eigengene networks as weighted graphs in a
spring embedded layout for the Voineagu Control (a) or ASD (b) groups. The spring-embedded layout places modules (nodes within the graphs)
that are highly connected as much closer in space whereas modules that are less highly connected are repelled away from each other. The
thickness of the connections (i.e., edges) between modules are scaled to connection strength whereby the thinnest line represents a correlation
of r = −1 and the thickest line represents a correlation of r = 1. The color of each module node represents the ASD meta-module it belongs to. This
was done to represent where the ASD meta-modules are located within the Control graph. The color-filled outlines around collections of modules
represent the meta-module boundaries. Modules with a solid red or blue circle around it are modules that were identified in Figs. 1 and 2 as being
replicably dysregulated in ASD across both datasets (blue = ASD-downregulated; red = ASD-upregulated). The dotted circles represent differentially
expressed modules (FDR q < 0.05) present only within that specific dataset (see Additional file 4: Table S3). c Within (c) and outside (d) normative
meta-module connectivity strength for each seed module depicted on the y-axis. The normative (Control-defined) meta-modules are denoted by
the color of the rectangular outlines on the y-axis. Connectivity strength is depicted on the x-axis and for within meta-module connectivity is
defined as the sum of connection strength between the seed module and all other modules within the seed module’s normative meta-module.
Outside meta-module connectivity strength is defined as the sum of connection strength between the seed module and all other modules
outside of the seed module’s normative meta-module. Turquoise bars indicated Controls, and salmon-colored bars indicate ASD. The stars next to
specific modules indicate a significant between-group difference in connectivity strength. d Eigengene networks as robust ME partial correlation
matrices. Red coloring within the matrices indicates increasing positive correlation strength, while blue coloring indicates increasing negative
correlation strength; see color bar for key indicating how color corresponds to correlation strength. Matrices have rows and columns ordered by
hierarchical clustering based on the Control group, and the individual module numbers as well as meta-module colors are shown. Normative
(Control-defined) meta-module boundaries are also clearly delineated by the black outlines over cells in the correlation matrices. Any cells with
green outlines are those specific between-module connectivity comparisons that differed between-groups
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different biological process enrichment within the
broader class of synaptic and immune-related processes.
For example, while both M3 and M9 modules are down-
regulated in ASD and enriched in similar synaptic pro-
cesses, their cell type/compartment enrichments differ.
M3 is primarily enriched in neuronal markers, whereas
M9 is specifically enriched in synaptic and postsynaptic
density markers. Synaptic M3 and M9 modules also dif-
ferentiate in how they interact with other modules (see
Fig. 7c, d for example). These results provide an example

of how subtle distinctions may be present within the
class of downregulated synaptic signals.
We have also identified multiple types of ASD-

upregulated immune/inflammation modules that are
novel distinctions from past work. Although prior work
has implicated interferon signaling, particularly with re-
spect to M2 microglia markers [20], here, we find evi-
dence for two upregulated interferon signaling modules
(M24, M27). These modules differentiate by M1 and M2
microglia activation states, with M27 enriched in M1
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Fig. 8 Eigengene network topology and connectivity differences within the Gupta dataset. a, b Eigengene networks as weighted graphs in a
spring embedded layout for the Gupta Control (a) or ASD (b) groups. The spring-embedded layout places modules (nodes within the graphs)
that are highly connected as much closer in space whereas modules that are less highly connected are repelled away from each other. The thick-
ness of the connections (i.e., edges) between modules are scaled to connection strength whereby the thinnest line represents a correlation of r =
−1 and the thickest line represents a correlation of r = 1. The color of each module node represents the ASD meta-module it belongs to. This was
done to represent where the ASD meta-modules are located within the Control graph. The color-filled outlines around collections of modules
represent the meta-module boundaries. Modules with a solid red or blue circle around it are modules that were identified in Figs. 1 and 2 as being
replicably dysregulated in ASD across both datasets (blue = ASD-downregulated; red = ASD-upregulated). The dotted circles represent differentially
expressed modules (FDR q < 0.05) present only within that specific dataset (see Additional file 4: Table S3). c Within (c) and outside (D) normative
meta-module connectivity strength for each seed module depicted on the y-axis. The normative (Control-defined) meta-modules are denoted by
the color of the rectangular outlines on the y-axis. Connectivity strength is depicted on the x-axis and for within meta-module connectivity is
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outside of the seed module’s normative meta-module. Turquoise bars indicated Controls and salmon-colored bars indicate ASD. The stars next to
specific modules indicate a significant between-group difference in connectivity strength. d Eigengene networks as robust ME partial correlation
matrices. Red coloring within the matrices indicates increasing positive correlation strength, while blue coloring indicates increasing negative
correlation strength; see color bar for key indicating how color corresponds to correlation strength. Matrices have rows and columns ordered by
hierarchical clustering based on the Control group, and the individual module numbers as well as meta-module colors are shown. Normative
(Control-defined) meta-module boundaries are also clearly delineated by the black outlines over cells in the correlation matrices. Any cells with
green outlines are those specific between-module connectivity comparisons that differed between-groups
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microglia markers while M24 is enriched in M2 micro-
glia markers. Between-module connectivity evidence also
suggests that these two interferon signaling modules are
disrupted in different ways. M27 is abnormally con-
nected to an important ASD-upregulated translation ini-
tiation (M25) and ASD-downregulated synaptic module
(M9). Given the enrichment in M27 for M1 microglia
activation markers, this evidence suggests that cytotoxic
M1 microglia processes may be affecting synaptic pro-
teins in ASD. On the other hand, M24 shows intact con-
nectivity between M25 and M9 but aberrant
connectivity between other modules (M2, M22). These
results suggest that while upregulated interferon signal-
ing can be linked to both M1 and M2 microglia pheno-
types, such aberrant processes may have differing impact
on ASD brain function and structure.
In addition to the multiple dysregulated interferon sig-

naling modules, we have also uncovered novel evidence
for ASD-upregulation of an immune/inflammation mod-
ule (M12) enriched in the complement system and
phagocytosis processes and M1 microglia markers. In
conjunction with effects from interferon signaling mod-
ules, the addition of the complement system may be of
particular importance given the known links between
the complement system and synaptic pruning [35, 36]
and remodeling as well as enhancing pro-inflammatory
states of microglia activation in ASD [37–39]. Recently,
the complement system has been noted as a prominent
player in the pathophysiology of schizophrenia, particu-
larly for its role in synaptic pruning [40]. In the larger
context of eigengene networks, it is interesting that all
of these important immune/inflammation modules are
members of the same meta-module in ASD and that
such a meta-module also includes other prominent
modules such as the ASD-upregulated M25 translation
initiation module. The current data present a role for
complement system signaling alongside interferon sig-
naling and other immune processes working together
and potentially in concert with other important modules
relating to translation and also for their role in various
types of microglia activation states.
New modules not highlighted at all by prior work were

also identified. Two of these modules (M1 and M25) are
heavily enriched in translation initiation and translation
elongation-termination processes and are enriched in
genes coding for proteins that make up the 40S and 60S
ribosomal subunits (RPL and RPS genes). Translation
has been an important topic in ASD primarily because
of work on syndromic forms of autism related to
mutations in FMR1, TSC1/2, and PTEN [6, 41], as well
as the important cap-dependent translation gene EIF4E
[42–45]. However, none of this work has specifically
implicated ribosomal proteins themselves and no prior
work on the cortical transcriptome in ASD has

specifically implicated upregulation of translation initi-
ation signals. These modules were dysregulated with re-
spect to connectivity within and outside of normative
meta-modular boundaries and showed specific abnormal
interactions with each other as well as other ASD-
upregulated modules (e.g., M27). Additionally, these
translation modules were also a member of a meta-
module in ASD that was composed of other upregulated
immune/inflammation modules (M12, M24, M27), sug-
gesting that they may play important roles integrating
with upregulated immune/inflammation processes in
ASD. Thus, not only have we discovered evidence for a
novel and important upregulated signal in the ASD
cortical transcriptome, but this finding also may have
important implications with regards to its potential as a
cross-cutting influence on other pathophysiological
processes in ASD.
This novel finding of upregulated translation initiation

and elongation-termination processes in ASD is import-
ant, as it agrees with other work on blood transcriptome
markers. Our recent work on blood leukocyte gene ex-
pression has also uncovered upregulated translation ini-
tiation as a prominent signal in young toddlers with
ASD and this signal is present alongside other upregu-
lated immune/inflammation signals, particularly inter-
feron signaling and phagocytosis [46]. Further bolstering
these inferences, a recent mega-analysis of seven differ-
ent studies in the literature and also found ribosomal
translation as one prominent upregulated process in
blood [47]. The presence of these dysregulated and
highly connected translation initiation and immune/in-
flammation signals across brain and blood is potentially
important because it may signal a unique opportunity to
assay brain-relevant dysregulation in peripheral tissues
and in vivo in living patients. This peripheral window
into potentially brain-relevant dysfunction that can be
assayed in living patients may be particularly important
given the recent discovery of a direct linkage between
the brain and lymphatic vessels of the immune system
[48]. Investigating this possible peripheral linkage to
brain-relevant dysfunction in living patients using in vivo
techniques like functional and structural neuroimaging
[49] will be an important next step in understanding
whether peripherally dysregulated signals in blood play
some role in linking directly to important macro-level
neural systems dysfunction in living patients [50]. We
have also recently identified similar upregulation of
translation initiation signals, particularly ribosomal pro-
teins, in a rodent model of maternal immune activation
[51], indicating that sources of translation initiation up-
regulation in ASD may have pathophysiological impact
in early fetal development and can be influenced by en-
vironmental factors. Furthermore, modeling the upregu-
lated expression of a long non-coding RNA, MSNP1AS,
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in neural progenitor cells also leads to differential ex-
pression of genes involved in translation, protein synthe-
sis and which are localized to the ribosome [52].
MSNP1AS was the first genome-wide association study
(GWAS) hit in ASD [53] and is known to be upregulated
in expression in ASD cortex [54]. Influence via this com-
mon variant may further indicate influence over this
process of translation in the developing ASD brain.
Future work using in vivo and in vitro models targeting
these novel ribosomal protein genes from the M25
translation initiation module (e.g., hub genes shown in
Additional file 3: Table S2) may be important for leading
to further insights on the pathophysiology behind ASD.
In addition to implicating several new gene co-

expression modules of significance to ASD, this work
provides primary evidence supporting the idea that the
cortical transcriptome is dysregulated at hierarchical
levels and this hierarchical view of pathophysiology
cannot be well understood from the vantage point of
examining single co-expression modules in isolation. By
identifying disruption in the interaction between-
modules and in how eigengene networks are
reconfigured into different meta-modular structures, this
work presents a larger view on how multiple dysregu-
lated signals may operate in conjunction with one
another and potentially implicate important emergent
interactions at the protein level. We show that a number
of specific modules that are on-average up- or downreg-
ulated in ASD are also highly correlated and that this
correlation can become stronger in ASD. This result is
not apparent in prior work on this topic, with the closest
result being the previous observation of a negative cor-
relation when collapsing across both groups between
single pair of modules enriched in synaptic and immune
functions [8, 20]. We have gone much further to show
correlations between dysregulated modules including
translation initiation modules and several other modules.
We also demonstrated that beyond the statistical de-
pendencies between co-expression modules, these dys-
regulated modules physically interact at the level of
proteins. The disruption of these coordinated higher
order interactions at a protein level suggests that
systems-level phenomena are disrupted in ASD that co-
ordinates disparate biological processes and which
cannot be adequately characterized by viewing smaller
elements (e.g., single genes, single co-expression
modules) in isolation. Thus, a primary conceptual
advance from this aspect our work suggests that we may
need to move beyond arguments about single unitary
processes, since the interactions between multiple
dysregulated processes may underlie and better describe
the pathology.
As a whole, the collection of ASD-downregulated

modules appears to involve a number of processes

occurring at the synapse. While synaptic processes
are commonly discussed as important mechanisms
[21, 55], genes that are typically characterized as syn-
aptic genes may have other pleiotropic roles in very
early neural developmental processes. It is known
that annotations in enrichment databases (e.g., GO,
MetaCore) may be incomplete and an example of this
can be seen in potential other interpretations of
genes typically thought of as involved in synaptic pro-
cesses. Casanova and colleagues recently showed that
many high-risk ASD genes that have canonical roles
in synapse development are also involved in very
early stages of neural proliferation, growth, and mat-
uration [56]. As a specific example of this idea,
Konopka and colleagues discovered that NRXN3 plays
a role in earlier neural progenitor biology that is dif-
ferent from its later function at the synapse [57].
Early fetal brain developmental processes occurring as
early as the end of the first trimester of gestation
[58] and are key signals of importance highlighted by
prior studies on very early pathophysiology in ASD
[5, 12, 17, 49, 56, 59–62]. These specific neural devel-
opmental processes are developmentally prior to ab-
normalities in synaptic processes which emerge at
later points in fetal development and continue to
change throughout life as a result of postnatal experi-
ence and adaptation. Therefore, a nuanced interpret-
ation of the role of synapse gene dysregulation in
ASD could be that these genes have pleiotropic roles
in both early stages of neural development (e.g., pro-
liferation, growth, and maturation) and at later stages
dealing with synaptic processes that continue
throughout the lifespan.
The collections of modules upregulated in ASD

showed evidence for several novel and emergent bio-
logical phenomena. To our knowledge, the novel signal
of upregulated catabolism has not been implicated in
any past work. Additionally, there are novel upregulated
processes involved in protein targeting and localization
that can be intertwined with translation processes (e.g.,
SRP-dependent co-translational protein targeting to
membrane). Finally, we also found enrichment in several
viral processes, responses to other organisms, cell prolif-
eration, and vasculature developmental processes are
highly prominent. These highly coordinated processes
are associated with multiple cell types/compartments
and the downregulation of synaptic processes—as evi-
denced by the strong negative correlations between up-
regulated and downregulated modules. This evidence is
generally in agreement with past theoretical ideas [60]
that suggested that early manifestations of pathophysi-
ology potentially emerging in fetal development could
then trigger a later corrective phase of development
characterized by downregulation of synaptic and
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neuronal processes and potential upregulation immune/
inflammation (e.g., microglia activation) [37–39], apop-
totic, and other processes. A challenge for future re-
search will be to unpack the relationships between
known and novel upregulated processes with downregu-
lated synaptic and neural developmental processes.
However, it is important to underscore that these infer-
ences emerge from the looking at the highly coordinated
interactions between multiple dysregulated co-
expression modules and are not obvious by simply tar-
geting specific modules and looking at such elements in
isolation. Thus, these new insights regarding systems-
level phenomena in ASD can further guide future
studies to unravel specific novel mechanisms (e.g.,
targeting hub genes for many of the dysregulated
modules we have implicated and examining their impact
on other connected systems-level processes; Additional
file 3: Table S2).

Conclusions
In summary, this work highlights several novel aspects
about how the cortical transcriptome is dysregulated in
ASD. A primary advance of this work is the idea that
dysregulation of the cortical transcriptome in ASD does
not occur only at the level of individual gene co-
expression modules. Rather, the cortical transcriptome is
disorganized at higher levels of analysis such as the in-
teractions between modules and how modules form
hierarchical organization structure as meta-modules
within eigengene networks. The insight that this new
view may shed on the biology of autism is yet to be ex-
plored but at the very least implicates that emergent
pathology may arise out of interactions across otherwise
disparate separate biological processes and pathways. As
development progresses, the brain in ASD may be en-
gaging in adaptive processes to compensate for inherent
biological problems that originate in very early fetal or
postnatal brain development [60, 63, 64]. This might
lead to the interesting proposition that the core symp-
tomatology of ASD present by 2–4 years of age is the
direct output of this postnatal early developmental adap-
tation process that attempts to compensate for early fetal
abnormalities in how the brain lays down core elements
to build upon with further experience. Our approach
here may provide a better viewpoint on how to describe
such processes and may further help enable future trans-
lational insights.
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Additional file 1: Figure S1. Scale-free topology model fit across a
range of soft power thresholds. This plot shows the scale-free topology
model fit scores (R2) across a range of soft power thresholds. This analysis
is done in order to choose a soft-power threshold to use in the main

analyses. As a rule, we picked the soft power threshold whereby
scale-free topology model fit R2 is maximum and begins to plateau
(i.e., soft power = 14). (PDF 1946 kb)

Additional file 2: Table S1. Enrichments for all dysregulated modules
and collections of downregulated and upregulated modules. (XLSX 81 kb)

Additional file 3: Table S2. Module membership and hub gene
information for each module. (XLSX 4890 kb)

Additional file 4: Table S3. Full result table of analysis examining on-
average differential expression in module eigengene variation. (XLSX 37 kb)

Additional file 5: Table S4. Cell type and cellular component
enrichment information. (XLSX 46 kb)

Additional file 6: Figure S2. Differential expression load within
replicably dysregulated co-expression modules. This plot shows strength of
differential expression (DE) for each gene within the 10 replicably
dysregulated co-expression modules. DE strength is quantified continuously
as the effect size (t stat) from the DE gene-level analyses. All modules show a
substantial shift in DE signal in the direction congruent with the label of
“upregulated” (ASD > Control) or “downregulated” (Control > ASD) given to
each module. (PDF 107 kb)

Additional file 7: Figure S3. Preservation of eigengene networks in
the TD group. Panel A shows the eigengene networks for Voineagu and
Gupta datasets when the rows and columns of the matrix are ordered by
meta-module clustering. Panel B shows the matrices when ordered only
by the Voineagu TD dataset clustering. Panel C shows average preservation
levels across each module. Panel D shows preservation for all pairwise
module comparisons. The plots in panels C and D were made using a
modified version of the plotEigengeneNetworks function in the WGCNA R
library. We modified this function to use ME robust partial correlation
matrices. (PDF 331 kb)
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