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Abstract

Background—Most genetic variants associated with breast cancer risk have been discovered in 

women of European ancestry, and only a few genome-wide association studies (GWAS) have 

been conducted in minority groups. This research disparity persists in post-GWAS gene-

environment interaction analyses. We tested the interaction between hormonal and lifestyle risk 

factors for breast cancer, and ten GWAS-identified single nucleotide polymorphisms (SNPs) 

among 2,107 Hispanic women with breast cancer and 2,587 unaffected controls, to gain insight 

into a previously reported gene by ancestry interaction in this population.

Methods—We estimated genetic ancestry with a set of 104 ancestry-informative markers 

selected to discriminate between Indigenous American and European ancestry. We used logistic 

regression models to evaluate main effects and interactions.
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Results—We found that the rs13387042-2q35(G/A) SNP was associated with breast cancer risk 

only among postmenopausal women who never used hormone therapy [per A allele odds ratio 

(OR): 0.94 (95% confidence interval 0.74–1.20), 1.20 (0.94–1.53) and 1.49 (1.28–1.75) for 

current, former and never hormone therapy users, respectively, P-interaction 0.002] and 

premenopausal women who breastfed >12 months [OR: 1.01 (0.72–1.42), 1.19 (0.98–1.45) and 

1.69 (1.26–2.26) for never, <12 months, and >12 months breastfeeding, respectively, P-interaction 

0.014].

Conclusions—The correlation between genetic ancestry, hormone replacement therapy use, and 

breastfeeding behavior partially explained a previously reported interaction between a breast 

cancer risk variant and genetic ancestry in Hispanic women.

Impact—These results highlight the importance of understanding the interplay between genetic 

ancestry, genetics, and non-genetic risk factors and their contribution to breast cancer risk.

Keywords

Breast cancer; Hispanics; Latinas; Gene-environment interaction; Genetic ancestry

Introduction

Breast cancer is a common disease caused by genetic and non-genetic factors (e.g. hormonal 

and lifestyle factors) and possibly, by the interaction between the two(1). Since the 

discovery of the high penetrance breast cancer causing genes, BRCA1 and BRCA2, multiple 

breast cancer genome-wide association studies (GWAS) have unveiled new genetic variants 

with moderate to small contributions to breast cancer risk−(2–19). When combined, all 

common genetic variants explain approximately 30% of familial risk(5), and it has been 

postulated that an important proportion of the unexplained familial risk might be buried 

within complex gene by gene and gene by environment interactions(1). Most of the risk-

associated variants were originally discovered in samples that included women of European 

ancestry, and, to our knowledge, only four U.S.-based GWAS have been conducted in or 

included racial/ethnic minority groups(4, 19–21). The gene by environment interaction 

analyses that followed the GWAS have also been mostly conducted in populations of 

European origin(22–34). Studies assessing the relationship between intermediate to low 

penetrance variants and non-genetic risk factors (from here on referred to as 

“environmental”) have had little success in identifying consistent interactions(22–34). A 

study including over 70,000 women of European or Asian descent from 24 studies, reported 

three statistically robust interactions: rs3817198-LSP1 and parity, rs17468277-CASP8 and 

alcohol consumption, and rs11249433-1p11.2 and parity(26). A later study by the same 

consortium evaluated interactions for an additional set of 47 breast cancer susceptibility loci 

and reported non-statistically significant interactions for three additional single nucleotide 

polymorphisms (SNPs) (rs6828523 and height; rs4808801 and number of full-term 

pregnancies; and rs11242675 and smoking)(34). Beyond the statistical evidence there are no 

clear biological mechanisms explaining the reported interactions.

We previously found statistically significant interactions between Indigenous American 

genetic ancestry and genotypes for three out of ten GWAS-discovered breast cancer risk 
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variants in 2,107 Hispanic/Latina (from here on referred to as Hispanics) women with breast 

cancer and 2,587 unaffected controls (rs13387042-2q35, rs17157903-RELN, and rs7696175-

TLR1)(35). For these three SNPs, the risk allele showed stronger associations among the 

group of women with the highest proportion of Indigenous American ancestry. The analyses 

were aimed at detecting heterogeneity by genetic ancestry based on the underlying 

hypothesis that if an interaction was observed, it could reflect either a difference in genetic 

predisposition between populations, or differences in environmental exposures by ancestry 

that would modify the associations with the genetic variants(35).

In the present study, we investigated multiple environmental breast cancer risk factors to 

evaluate if the previously observed heterogeneity by ancestry could be due to the correlation 

between genetic ancestry and those risk factors. First, we tested the interaction between the 

3 GWAS-identified breast cancer risk SNPs that had previously shown interaction by 

ancestry(35) and 15 environmental breast cancer risk factors in a total of 4,694 Hispanic 

women (2,107 cases and 2,587 controls). Secondly, we assessed the interaction between the 

7 other GWAS-identified breast cancer risk SNPs and environmental risk factors to evaluate 

the possibility of additional interactions.

Materials and Methods

The present analysis was conducted as part of the Breast Cancer Health Disparities Study 

(36). This collaborative effort to study breast cancer in Hispanic and non-Hispanic White 

women, combined and harmonized data from two population-based case-control studies 

conducted in the US: the 4-Corners Breast Cancer Study (4-CBCS) (37) and the San 

Francisco Bay Area Breast Cancer Study (SFBCS) (38, 39); and a population-based 

multicenter case-control study conducted in Mexico (MBCS) (40). Details about the Breast 

Cancer Health Disparities Study have been previously published (35, 36,41–45). All 

participants signed a written informed consent, and the study was approved by the 

Institutional Review Board for Human Subjects at each institution. The present analysis is 

based on 4,697 women of Hispanic/Native American origin living in the U.S. or Mexico 

with complete genotype and exposure data including 603 Hispanic cases and 730 controls 

from 4-CBCS, 812 Mexican cases and 989 controls from MBCS, and 692 Hispanic cases 

and 871 controls from SFBCS.

Genetic Data

The Breast Cancer Health Disparities Study is focused on variants in genes related to 

inflammation, hormones, metabolism and risk of breast cancer in Hispanic and non-Hispanic 

White women (36). The genotyping platform included 10 GWAS-identified SNPs associated 

with breast cancer risk that were published at the time of platform design(3, 6,R11, 12, 14) 

[rs13387042-2q35 region (G/A), rs17157903-7q22 (C/T) within the RELN gene, 

rs2067980-5q11 (A/G) near the MRPS30 gene, rs2180341-6q22.1-q22.33 (A/G) within the 

RNF146 gene, rs2981582-10q26 (C/T) within the FGFR2 gene, rs3803662-16q12.1 (C/T) 

within the TOX3 gene, rs3817198-11p15.5 (T/C) within the LSP1 gene, rs7696175-4p14 

(C/T) near the TLR1 gene, rs889312-5q11.2 (A/C) near the MAP3k1 gene and 

rs999737-14q23-q24.2 (C/T) within the RAD51L1 gene]. The platform also included a set of 
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104 ancestry-informative markers (AIMs) used to infer genetic ancestry among study 

participants. Details about these AIMs have been previously published(36). All markers 

were genotyped using a multiplexed bead array assay based on GoldenGate chemistry 

(Illumina, San Diego, California) attaining a genotyping call rate of 99%. In the present 

study we analyzed the ten GWAS-identified SNPs associated with breast cancer risk in 

Europeans or Asians, with a focus on three variants that had previously shown statistically 

significant interactions with genetic ancestry in Hispanics: rs13387042-2q35, 

rs17157903-7q22 and rs7696175-4p14(35).

Environmental risk factors (Reproductive/lifestyle)

From available questionnaire data that had been harmonized between the three different 

studies we selected a set of breast cancer risk factors to explore if the interaction between 

SNPs and genetic ancestry could be due to the correlation between environmental factors 

and genetic ancestry. The variables we analyzed were: menopausal status (premenopausal, 

postmenopausal), age at menopause (<50 or ≥50 years), age at menarche (<11; 11–13; ≥13), 

age at diagnosis/interview (<40; 40–50; 50–60; >60), alcohol intake (no alcohol; ≤10 gms 

daily; >10 gms daily), smoking status (ever, never), body mass index (<25; 25–29.9; ≥30 

kg/m2), height (below mean; above mean), waist-to-hip ratio (below mean; above mean), 

number of full-term pregnancies/age at first-full term pregnancy (no children; 1 or 2 children 

<25 years old; 1 or 2 children ≥25 years old; ≥3 children <25 years old; ≥3 children ≥25 

years old), breastfeeding (no breastfeeding; ≤12 months; >12 months), use of hormone 

therapy (current, former, never), use of oral contraceptives (ever, never), and family history 

of breast cancer (yes, no).

Genetic ancestry estimation

Indigenous American ancestry was modeled as continuous or categorical variable depending 

on the analysis. The cutoffs for three ancestry categories were defined based on sample size 

as previously described: low Indigenous American ancestry (0–28%), intermediate 

Indigenous American ancestry (29 to 70%), and high Indigenous American ancestry (71 to 

100%)(36). We acknowledge that Hispanic populations would be best modeled as resulting 

from a three-way admixture process, with a European, an Indigenous American and an 

African component. However, the African influence in most Hispanic populations is minor 

(between 0 and 8%) and studies that include women of mostly Mexican or Central American 

origin, such as ours, do not have sufficient power to evaluate the association of this minor 

component with health outcomes. We focused the analyses on the Indigenous American/

European proportions and estimated genetic ancestry using an unsupervised two-way 

admixture model. We compared the Indigenous American ancestry estimates obtained with 

this model, with those obtained with a supervised three-way admixture model in a subset of 

1769 Hispanics that were included in a previous study(46) and found that the estimates were 

highly correlated (Pearson correlation coefficient = 0.94, mean absolute difference between 

pairs of estimates = 0.09, standard deviation = 0.06).

Statistical Analysis

Indigenous American ancestry proportions were compared between the different categories 

of environmental risk factors by study and by case/control status using the non-parametric 
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Kruskal-Wallis equality-of-populations rank test, which is appropriate for variables that 

deviate from normality, as was the case for genetic ancestry in the analyzed samples. We 

estimated ancestry-specific odds ratios (OR) for the non-genetic risk factors using logistic 

regression stratified by ancestry category (low, intermediate, and high Indigenous American 

ancestry) and adjusting for study, and tested the heterogeneity of the effects by evaluating a 

logistic regression model that included an environmental risk factor and genetic ancestry 

interaction term (ExAncestry). We also used logistic regression to evaluate SNP by 

environmental risk factor interactions (GxE), with adjustment for study, genetic ancestry and 

age, and to test GxE interactions stratified by ancestry, including age and study as 

covariates. For those stratified analyses that had results suggestive of an interaction with an 

environmental risk factor, we conducted likelihood ratio tests (LRT) to compare a model 

with the SNP by ancestry interaction (GxAncestry) term and adjusted for the environmental 

factor, to a model with GxAncestry and GxE interaction terms. In the first analyses where 

we tested the interaction between the three SNPs previously associated with genetic ancestry 

and environmental risk factors, we considered as statistically significant any interaction with 

a P value <0.003, which corresponds to a Bonferroni correction for the number of risk 

factors tested (0.05/15). For analyses that included the other 7 SNPs that did not show 

interaction by genetic ancestry, we took both the environmental risk factors and the number 

of SNPs into account when we considered statistical significance. For those analyses we 

considered as statistically significant a P value <4.8×10−4.

Results

Many risk factors showed associations with breast cancer risk that were statistically 

significant at the 5% level and concordant with the direction of associations that have been 

previously reported for these risk factors (Table 1). P values were higher in the low 

Indigenous American ancestry group, which is to be expected given that the sample size for 

that group was smaller than that for the other two ancestry groups. We did not find 

statistically significant heterogeneity by ancestry category for any of the environmental risk 

factors. However, among postmenopausal women, current use (vs. never use) of hormone 

therapy showed a positive association in all strata but a suggestive stronger association 

among Hispanics with high Indigenous American ancestry (P=0.05).

Environmental risk factors and Indigenous American ancestry

Average Indigenous American ancestry differed by risk factor category, and tended to be 

higher among women with no family history of breast cancer, women with more children at 

a younger age, a longer duration of breastfeeding, a higher body mass index, a higher waist-

to-hip ratio, shorter height, no smoking or alcohol consumption history, no history of oral 

contraceptive use, with a younger age at diagnosis, menopause before age 50 years, and no 

history of postmenopausal hormone therapy use (Table 2). Despite the difference in mean 

Indigenous American ancestry between studies, the direction of association between 

ancestry and environmental risk factors is similar for most variables.
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Interactions of SNPs and environmental factors by Indigenous American ancestry

Assessment of the interaction between the three SNPs that had previously shown an 

interaction with genetic ancestry and the environmental risk factors showed a statistically 

significant interaction between the SNP rs13387042-2q35 (G/A) and hormone therapy use 

among postmenopausal women (P interaction 0.002) and a suggestive interaction with 

breastfeeding among premenopausal women (P interaction 0.01) (Table 3). We observed 

that the rs13387042-A variant was associated with increased breast cancer risk among 

postmenopausal women who had never used hormone therapy and among premenopausal 

women who breastfed more than 12 months. The strength of the interactions was not 

affected when other variables were included in the model and LRTs suggested that the 

models that included the rs13387042-hormone therapy or rs13387042-breastfeeding 

interaction terms fit the data better than the models that only included the GxAncestry 

interaction term (hormone therapy use: LRT P = 0.021; breastfeeding: LRT P = 0.028, Table 

3). Estrogen receptor (ER) status information was available for 46% of the cases included in 

the present analysis. There were 720 patients with ER+ tumors and 257 patients with ER- 

tumors. Given that our analyses were based on stratification by ancestry and risk factors, 

further stratification by ER status greatly reduced the size of the groups being compared. 

Even though these exploratory ER status-specific results were inconclusive due to the small 

sample size, they suggest that the observed associations and interactions in the case/control 

analyses do not change for ER+ tumors (Supplementary Table S1).

After correcting for multiple testing, no statistically significant interactions were found for 

the seven SNPs that had not previously shown interactions with genetic ancestry 

(Supplementary Table S2). For suggestive GxE interactions (P<0.15) involving the three 

SNPs with previously observed GxAncestry interaction (rs13387042, rs17157903, and 

rs7696175), we conducted analyses stratified by genetic ancestry to evaluate if the observed 

GxE interaction affected the previously observed GxAncestry interaction and found no 

additional statistically significant results (Supplementary Table S3).

Discussion

Our results suggest that the previously reported interaction between a breast cancer risk 

variant at 2q35 (rs13387042) and genetic ancestry in Hispanics was partially due to the 

correlation between genetic ancestry and two environmental breast cancer risk factors that 

affect estrogen levels: use of menopausal hormone therapy and breastfeeding among 

premenopausal women. We found that the the rs13387042 derived allele (A) only increases 

breast cancer risk among postmenopausal women who have never been exposed to hormone 

therapy and among premenopausal women who have breastfed for more than 12 months.

An interaction between breast cancer susceptibility SNP rs13387042-2q35 and menopausal 

hormone therapy use has been previously reported(26). Nickels et. al. found weak evidence 

of interaction between the rs13387042 SNP and use of menopausal hormone therapy for 

combined estrogen/progesterone formulations (P interaction =2.4×10−3)(26). However, they 

reported a stronger association among current hormone therapy users compared to never 

users, while we observed an association among never users only. Two other studies that 

investigated the interaction between previously reported risk SNPs and never/ever use of 
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hormone therapy(24, 29) did not find statistically significant interactions for the rs13387042 

SNP (47, 48). A possible reason for the inter-study incosistencies could be heterogeneity in 

the definition and categorization of the hormone therapy use variable (e.g. estrogen only, 

estrogen/progesterone or not specified)(26).

The rs13387042 SNP is located in the short arm of chromosome 2 in an intergenic region. 

The derived allele A is associated with increased risk of breast cancer and is most common 

in African populations (77%), has lower frequencies in Europeans (51%) and Mexican 

Americans (41%), and is less common in Asians (12%) (frequencies from 1000 Genomes 

Project). The closest known genes are TNP1 (transition protein 1), IGFBP5 (insulin-like 

growth factor binding protein 5), IGFBP2 (insulin-like growth factor binding protein 2) and 

TNS1 (tensin 1/matrix- remodelling-associated protein 6)(12). Recent studies have shown 

that two polymorphisms that are in strong linkage disequilibrium (LD) with rs13387042 

(rs6721996 and rs4442975, r2=0.92) are associated with expression of the IGFBP5 gene, 

with decreasing expression of IGFBP5 with increasing number of A alleles(49, 50). One of 

these studies was a fine-mapping effort that included functional analyses, and concluded that 

the rs4442975 SNP was the most likely functional variant(50). It has been reported that 

IGFBP5 is expressed in breast cancer and breast cancer cell lines, and it is produced by 

estrogen receptor (ER)-alpha positive tumors, which is concordant with the previous 

observation that the rs13387042 polymorphism is more strongly associated with risk of ER 

positive disease(12). IGFBP5 has been shown to inhibit cell proliferation via an insulin 

growth factor (IGF)-dependent mechanism(51). Adding to this, estrogen-induced 

transcriptional activity of ER-alpha is reduced by IGFBP5 expression independent of 

IGF(51). The observation that the rs13387042 SNP is associated with breast cancer risk only 

among women who have never used hormone therapy is counterintuitive and needs to be 

further explored. A possible explanation could be that in a low estrogenic environment (such 

as that of postmenopausal women who do not use hormone therapy or women who 

breastfeed for more than a year), the level of expression of IGFBP5 becomes crucial in 

limiting cell growth and proliferation, while in an estrogen-rich environment, the inhibitory 

effect of IGFBP5 might be overridden by other estrogen dependent regulatory mechanisms. 

We did not find strong evidence of heterogeneity of GxE interaction by tumor ER status, but 

the analysis was limited by the small size of the compared categories after ER status 

stratification.

We were not able to explain the previously reported gene by ancestry interactions for two 

SNPs (rs17157903 and rs7696175) and none of the remaining polymorphisms analyzed 

show statistically significant GxE interactions. We cannot dismiss the possibility that our 

study might have failed to detect interactions between these SNPs and non-genetic risk 

factors due to reduced power after accounting for multiple testing. In addition, we want to 

acknolwedge that the present analysis only included a small subset of all SNPs that have 

been reported to be associated with breast cancer risk to date (2–19), which was determined 

by the limited number of published associated polymorphisms at the time of platform 

design. Despite these limitations, our study is the largest study to date that tested the 

interaction between breast cancer GWAS-identified polymorphisms and non-genetic risk 

factors in Hispanic women.
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In summary, in this study we present the results of a breast cancer GxE interaction analysis 

in Hispanic women. We found that the association between the rs13387042-2q35 

polymorphism and breast cancer risk is modified by hormone therapy use among 

postmenopausal women and by breastfeeding among premenopausal women. The present 

analysis illustrates how genetic ancestry in admixed populations might not only reflect 

population differences in genetic predisposition, but also differences in environmental 

exposures that together with genetic factors can influence breast cancer risk. Future research 

should confirm the reported interactions as well as the negative results and properly account 

for the complex interactions between environment, genetics, and behavior in populations of 

mixed descent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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