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N E U R O P H Y S I O L O G Y

Reward activity in ventral pallidum tracks  
satiety-sensitive preference and drives choice behavior
David J. Ottenheimer1,2, Karen Wang2, Xiao Tong2, Kurt M. Fraser2,  
Jocelyn M. Richard3, Patricia H. Janak1,2,4*

A key function of the nervous system is producing adaptive behavior across changing conditions, like physio-
logical state. Although states like thirst and hunger are known to impact decision-making, the neurobiology of this 
phenomenon has been studied minimally. Here, we tracked evolving preference for sucrose and water as rats 
proceeded from a thirsty to sated state. As rats shifted from water choices to sucrose choices across the session, 
the activity of a majority of neurons in the ventral pallidum, a region crucial for reward-related behaviors, closely 
matched the evolving behavioral preference. The timing of this signal followed the pattern of a reward prediction 
error, occurring at the cue or the reward depending on when reward identity was revealed. Additionally, opto-
genetic stimulation of ventral pallidum neurons at the time of reward was able to reverse behavioral preference. 
Our results suggest that ventral pallidum neurons guide reward-related decisions across changing physiological 
states.

INTRODUCTION
Individuals frequently adjust their decision-making across dynamic 
states, both internal and external. Changes in external states, like 
the probability of a certain action leading to reward, have been well 
modeled in the laboratory and have provided key insights into neural 
signals underlying decisions across dynamic conditions (1–3). Less 
is known about how changes in internal states, like hunger or thirst, 
affect functioning of decision-related neural circuits. Internal states 
are fundamental to the concept of reward; reward acquisition is strong-
ly motivated by homeostatic drive, and the perceived pleasantness 
of a reward depends on internal satiety signals (“alliesthesia”) (4–6). 
A growing body of work has demonstrated that the reward-related 
activity of individual neurons across the brain is altered as an animal 
reaches satiety, a state often accompanied by reduced participation 
in the experimental task (7–14). A crucial question remaining is how 
satiety affects decision-related neural activity when subjects’ prefer-
ences are altered by physiological state and the subjects remain 
engaged in reward-seeking behavior. This topic is critical for under-
standing how the brain flexibly drives our consumption-related choices.

One brain area potentially important for satiety-sensitive reward 
processing is the ventral pallidum (VP). This ventral basal ganglia 
region is hypothesized to integrate information about available re-
wards to direct reward-related behaviors (15, 16). Reward signals in 
VP reflect reward preference (17–20) and are sensitive to physio-
logical state (13, 14, 21, 22). In particular, VP neural responses to 
salt and salt-predicting cues are enhanced by experimentally-induced 
salt deprivation, while neural responses to sucrose remain stable 
(21, 22). Along with the orbitofrontal cortex and hypothalamus 
(23–25), this makes VP one of the few regions with reports of neural 
activity that are selectively altered for reward outcomes differentially 
affected by the physiological state. However, because none of these 
prior studies presented subjects with a choice between reward out-

comes, it is unclear how neural activity in VP (and elsewhere) tracks 
behavioral preference as physiological state evolves. Moreover, a 
causal link between VP activity and subjects’ reward choices remains 
untested. To address these questions, we performed a series of 
experiments where we recorded from and manipulated VP activity 
while rats chose between dynamically preferred rewards. We found 
that the reward activity of a large subset of VP neurons closely 
matched evolving behavioral preference. Furthermore, optogenetic 
stimulation of VP at the time of reward biased future choices toward 
that option. These results establish that VP activity tracks dynamic 
reward preference at the single neuron level and influences reward 
decisions.

RESULTS
Dynamic preference driven by physiological state
To model dynamic preference, we designed two tasks where thirsty 
rats earned either a 55-l sucrose reward or a 110-l water reward 
(Fig. 1). The choice component of both tasks was the same: On 40% 
of trials, a “choice” auditory cue indicated that rats could press 
either of the available levers, triggering delivery of the associated 
reward into the reward port 2 s later. These trials allowed us to 
assess the rats’ preference for sucrose versus water across the session 
(Fig. 1, C and D). In the “specific cues” task (Fig. 1A), the remaining 
60% of trials were either forced sucrose or forced water trials, each 
indicated with a distinct auditory cue and requiring the rat to press 
the correct associated lever, triggering delivery of that reward 2 s 
later. Because the outcome on forced trials was indicated by the cue, 
we could evaluate how cue-evoked behavior and neural activity 
evolved as rats’ preferences shifted. In the “uncertain outcome” task 
(Fig. 1B), the remaining 60% of trials were forced trials where the 
rats responded to a single auditory cue by going directly to the 
reward port, which triggered delivery of either sucrose or water 2 s 
later with 50/50 probability. By revealing the outcome at either the 
cue (specific cues task) or reward delivery (uncertain outcome task), 
we could observe how closely the recorded neural activity followed 
the pattern of a reward prediction error (26), as has been proposed 
for VP reward-related activity (14, 27–30).
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In the sessions included here, rats (n = 5) completed 88 to 149 
(median, 99) trials of the specific cues task and 126 to 175 trials 
(median, 157) of the uncertain outcome task. In both tasks, rats demon-
strated dynamic preference, initially preferring water when thirsty at 
the beginning of the session and switching to preferring sucrose by the 
end of the session (Fig. 1, C and D). This was largely driven by a re-

duced motivation to consume water, evident in maintained licking for 
sucrose across the session but consistently decreasing licking for water 
(Fig. 1, E and F). Thus, we succeeded in training rats on a task where, 
despite unchanging task conditions, the rats demonstrated a preference 
that shifted according to physiological state, allowing characterization 
of VP encoding of internally driven changes in preference.
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Fig. 1. Dynamic preference driven by physiological state. (A) Schematic of the “specific cues” task, where there were three trial types, each with a unique auditory cue. 
Correct lever presses on forced-choice trials led to delivery of the associated reward, while rats could choose to receive water or sucrose on free-choice trials. (B) Schematic 
of the “uncertain outcome” task. The choice trials (and cue) were the same as for the specific cues task, but the forced trials had a different auditory cue and required entry 
into the reward port rather than a lever press, after which either reward was delivered. (C) Example uncertain outcome session, depicting choice trials (colored, longer 
lines) and forced trials (black, shorter lines) for sucrose (top) and water (bottom), overlaid with preference (green). (D) Preference in each task for each of the five rats across 
four quarters of completed trials. (E) Mean (±SEM) lick rate relative to reward delivery across the four quarters (Q) of trials, split into forced sucrose (left) and water (right) 
trials. Sessions from both tasks are combined here. (F) Mean (±SEM) lick rate across 13 s, capturing nearly all of the reward-related licking (top), and within the bin used 
for neural analysis (0.75 to 1.95 s after delivery).
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Dynamic reward encoding in VP occurs when outcome 
identity is revealed
We recorded the activity of individual neurons (single units) from 
VP while rats performed the specific cues (n = 164 neurons) and 
the uncertain outcome (n = 210 neurons) tasks (fig. S1). Because we 
observed a change in behavioral preference within each session, our 
goal was to evaluate whether cue- and reward-evoked VP activity 
also changed across the session and, if so, whether these changes 
were reward specific. To accomplish this analysis, we implemented 
a generalized linear model (GLM) that assessed the impact of out-
come, time (in numbers of trials), and the interaction between these 
two predictors (“outcome × time”) on the activity of individual neu-
rons on forced trials at the time of cue or reward (Fig. 2, A and B). 
We then asked how many neurons from each task were significantly 
modulated by each predictor (Fig. 2C). We were especially interested 
in neurons whose activity was predicted by outcome × time and had 
more positive slopes for sucrose than for water, that is, neurons 
whose activity tended to increase for sucrose relative to water as the 
session progressed. We found that the within-trial timing of activity 
predicted by outcome × time was highly dependent on the task. In 
the task with specific cues, 35% of neurons had cue-evoked activity 
that followed this pattern and 22% had reward-evoked activity with 
this pattern. In the task with uncertain outcome, 4% of neurons had 
cue-evoked activity with this pattern (essentially noise, because there 
was only a single, nonspecific cue), and 71% had reward-evoked 
activity with this pattern. These proportions follow a reward predic-
tion error framework, where outcome-specific responses are encoded 
by the earliest predictive stimulus; specific cues increased the num-
ber of VP neurons with outcome × time activity at the time of cue 
(P < 1 × 10−14, 2 test) and decreased the number of neurons with 
outcome × time activity at the time of reward (P < 1 × 10−20, 2 test) 
compared with the task with uncertain outcome. This pattern was 
present in all five rats (fig. S2).

Our next step was to characterize this evolving cue- and reward-
evoked firing in the specific cues and uncertain outcome tasks, 
respectively. We first examined the activity of the cue-evoked 
outcome × time neurons (n = 58) in the specific cues task. The GLM 
described a sizable amount of the variance of these neurons’ cue-
evoked activity (median R2 = 0.3). These cue outcome × time neu-
rons were notable for their pronounced excitations to the water cue 
at the beginning of the session, which decreased and eventually 
became inhibitions by the end of the session (Fig. 2, D to F). On the 
other hand, their sucrose cue-evoked activity remained stable across 
the session (Fig. 2, D to F). This pattern was present on the very first 
water trial and sucrose trial of the session, so it was not dependent 
on experiencing the cue-reward pairing in the current physiological 
state (fig. S3) (22, 31). The ranking of outcome × time neuron activity 
evoked by each cue switched midway through the session, echoing 
the switch in behavioral preference (Fig. 1D). These data are note-
worthy for demonstrating that individual VP neurons’ cue-evoked 
representations not only are dependent on physiological state (13, 14) 
but also are specific to the cue’s associated reward (and the impact 
of physiological state on that reward), a phenomenon previously 
seen at a population level across days (22) but not on a per-neuron 
basis as physiological state changes within session. We further 
found that the cue-evoked activity of outcome × time neurons pre-
dicted the latency to press the lever on a trial-by-trial basis (fig. S4), 
suggesting that these VP cue representations could invigorate reward-
seeking actions. The remaining, non–outcome × time neurons had 

weaker correlations with lever pressing (fig. S4F) and minimal 
modulation around cue onset (fig. S5, A and B).

We next examined the reward-evoked activity of outcome × time 
neurons (n = 149) in the uncertain outcome task. Impressively, the 
GLM described a large amount of the variance of these neurons’ 
reward-evoked activity (median R2 = 0.47). Working within a pre-
diction error framework, reward delivery resolves the uncertainty 
of which reward will be delivered; therefore, this signal should 
reflect a positive error when receiving the preferred reward and a 
negative error when receiving the nonpreferred reward. We thus were 
interested to determine whether water-evoked activity decreased 
across the session as it became less preferred, and sucrose-evoked 
activity increased. In contrast to specific cues cue-evoked activity, 
which decreased for both cues across the session (Fig. 2, D to F), this 
was indeed the case for the reward-evoked activity of outcome × time 
neurons, which had decreasing activity for water and increasing 
activity for sucrose (Fig. 2, G to I). Again, the ranking of the activity 
of these outcome × time neurons for the respective rewards switched 
during the session (Fig. 2I), mirroring the switch in behavioral pref-
erence from these uncertain outcome sessions (Fig. 1D). The re-
maining, non–outcome × time neurons from the uncertain outcome 
task had little modulation around reward delivery (fig. S5, C and D).

VP reward-evoked activity accurately predicts  
behavioral preference
The particularly strong dynamic reward-specific activity at the time 
of reward in the uncertain outcome task, with decreasing activity 
for water and increasing activity for sucrose, encouraged us to ex-
plore how this signal related to rats’ choice behavior across the ses-
sion, which also followed this general pattern. First, we compared 
the reward-evoked activity of outcome × time neurons on forced 
water and sucrose trials with the choice-derived preference for the 
respective reward. We found a strong correlation between the two, 
particularly in comparison with the weaker correlation for non–
outcome × time neurons (Fig. 3, A and B). Nevertheless, we noticed 
that, on average, the neural responses of outcome × time neurons to 
sucrose and water do not change symmetrically across the session 
(Fig. 2I), as might be expected for an error signal driven purely by 
preference. Because the overall value of the task declines as the rats 
become sated, we hypothesized that the outcome × time reward-evoked 
activity in VP may reflect a prediction error where the value of the 
outcome is derived from a combination of satiety and preference 
(because there is an equal probability of receiving sucrose and water 
on these trials, the prediction is the same regardless of outcome, and 
the prediction error will be proportional to the value of the out-
come). To evaluate how well satiety and preference can explain the 
activity of VP outcome × time neurons, we designed a series of models 
incorporating these features that could be fit to the activity of indi-
vidual outcome × time neurons (Fig. 3C). The first, “unmodulated,” 
has no reward-specific or satiety-related modulation. The second, 
“satiety,” is a linear approximation of declining motivation that de-
creases uniformly with each trial. The third, “preference,” is a logistic 
function with midpoint and steepness as free parameters to flexibly 
capture the continuous, opposing changes in preference for each 
reward across the session. The final, “mixed,” is a linear combina-
tion of Satiety and Preference with an additional free parameter 
determining their relative weights. We fit all four models to the 
reward-evoked activity of outcome × time neurons in the uncertain 
outcome task with maximum likelihood estimation and determined 
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which model best described each neuron’s activity with cross-validated 
likelihood. The mixed model best described the activity of the vast 
majority of outcome × time cells (Fig. 3D), suggesting that the activity 
of these neurons is influenced by both preference and satiety.

To determine how closely reward-evoked outcome × time neuron 
activity related to the rats’ choices in the uncertain outcome ses-
sions, we next attempted to predict behavioral preference using the 
activity of outcome × time cells. During the model fitting process, 

A B

C

D

E

–1 0 1
Spearman's 

0

0.5

1

C
um

ul
. f

ra
ct

io
n 

of
 n

eu
ro

ns

Water correlation

Out. × time
Others

–1 0 1
Spearman's 

0

0.5

1
Sucrose correlation

Out. × time
Others

* *0 50 100 150
Trial

0

0.5

1

W
at

er
 p

re
fe

re
nc

e 
an

d 
fir

in
g

Example outcome × time neuron in the uncertain outcome task

0 50 100 150
0

0.5

1

S
uc

. p
re

fe
re

nc
e 

an
d 

fir
in

g
Trial

0 0.5 1
Session progress

0

0.5

1

R
ew

ar
d 

va
lu

e

Satiety

Water
Sucrose

0 0.5 1
Session progress

0

0.5

1 Preference

0 0.5 1
Session progress

0

0.5

1 Mixed

0 0.5 1
Session progress

0

5

10

15

S
pi

ke
s/

tri
al

Example neuron Model fits

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100 150
0

0.2

0.4

–1 0 1
0

0.2

0.4

0.6

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100 150
0

0.2

0.4

–1 0 1
0

0.2
0.4
0.6
0.8

Behavioral estimate Mean neural estimate Indifference point

Neural estimates
Behavioral est.

Correlation

TrialCoefficientTrialTrial

R
at

 3
R

at
 5

W
at

er
 a

nd
 s

uc
ro

se
 p

re
fe

re
nc

e

Fr
ac

tio
n 

of
 th

e 
po

pu
la

tio
n

0 100
0

0.5

1

0 100
0

0.5

1

0 50 100 150
0

0.2

0.4

–1 0 1
0

0.2

0.4

0.6

R
at

 4

n = 42

n = 20

n = 36

F G H

–1 0 1
Coefficient

0

0.5

1
Preference correlation

Out. × time  
Others

0 50 100 150
Error (no. trials)

0

0.5

1
Indifference point estimate

Out. × time  
Others

C
um

ul
. f

ra
ct

io
n 

of
 n

eu
ro

ns
C

um
ul

. f
ra

ct
io

n 
of

 n
eu

ro
ns

*

*

I

J

Modeling the reward-evoked activity of outcome × time neurons in the uncertain outcome task 

Estimating behavior from mixed models of outcome × time neurons’ reward-evoked activity 
Unm

od
.

Sati
ety

Pref
ere

nc
e

Mixe
d

0

40

80

120

# 
of

 o
ut

. ×
 ti

m
e 

ne
ur

on
s

Best-fit model
(cross-validated
likelihood)

Fig. 3. Reward-evoked activity accurately predicts behavioral preference. (A) Normalized reward-evoked firing of an example outcome × time neuron in the uncertain 
outcome task on forced trials overlaid with preference for water (left) and sucrose (right). (B) Distribution of correlation coefficients between firing rate and preference for 
outcome × time (blue or orange) and non–outcome × time (gray) neurons on forced water trials (left) or forced sucrose trials (right). Vertical line is mean. *P < 1 × 10−24, 
Wilcoxon rank sum test comparing outcome × time and non–outcome × time neurons on water trials, and P < 1 × 10−13 for sucrose trials. (C) Example fits of three models 
we considered to describe the activity of outcome × time neurons in the uncertain outcome task at time of reward delivery: satiety, preference, and mixed, which linearly 
combined satiety and preference. (D) Distribution of best-fit model for all outcome × time neurons, determined with cross-validated likelihood. (E) From three example 
sessions, the choices of the rats across the session and the preference estimated with a logistic function. (F) Mean (±SEM) estimate of preference from fits of the mixed 
model to the outcome × time neurons from these sessions. (G) Correlation between neural estimate and behavioral estimate of preference for each outcome × time 
neuron. (H) Estimates of the indifference point (sucrose and water equally preferred) from the neural and behavioral (±SE) models. (I) Across all uncertain outcome 
sessions, outcome × time neurons had preference estimates with higher correlations with the behavioral estimate than the remaining non–outcome × time neurons did 
(P < 1 × 10−21, Wilcoxon rank sum test). (J) Outcome × time neurons’ estimates of indifference point were closer to the behavioral estimate than the remaining non–
outcome × time neurons (P < 1 × 10−15, Wilcoxon rank sum test).
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maximum likelihood estimation finds the values of the model 
parameters that best describe the activity of each neuron. From the 
parameters associated with the mixed model, we could estimate the 
rat’s preference across the session. Because each neuron was fit in-
dividually, each neuron produces a prediction of the rat’s preference 
based on its best-fit parameters. To compare the outcome × time 
neuron estimates of preference to the rat’s behavioral preference, 
we fit the same logistic function in the mixed model to the choices 
from each session (instead of neural activity) and found the best 
parameters (Fig. 3E). Preference estimates from the outcome × time 
neurons in each session agreed well with the behavioral estimates 
(Fig. 3, F and G). The preference estimates from outcome × time 
neurons were better correlated with the behavioral estimate than 
the estimates from the remaining neurons (Fig. 3I). The logistic 
function also explicitly estimates the indifference point, the point at 
which the preference for the two rewards is ambivalent; there was 
generally high agreement between neural and behavioral estimates 
of indifference point among outcome × time neurons (Fig. 3H), 
which outperformed the remaining neurons (Fig. 3J). These metrics 
indicate that, despite being derived completely independently of the 
choice behavior, outcome × time neuronal estimates of preference 
predicted choice behavior well.

To confirm the robustness of these findings, we performed the 
same analysis on neurons (n = 112) recorded during four additional 
uncertain outcome sessions from four of the rats. These sessions had 
fewer neurons, and two did not meet our inclusion criteria, so they 
provided a strict test of the reproducibility of this method to estimate 
preference from neural activity. Notably, these neurons had a similarly 
high proportion of neurons with a significant impact of outcome × 
time on reward activity (66%). Overall, the reward outcome × time 
neurons from these additional sessions were also able to accurately 
predict behavioral preference and did so better than the remaining 
non–outcome × time neurons (fig. S6). These results indicate that 
VP reward activity very reliably tracks behavioral preference.

VP reward-evoked activity instructs choice behavior
Above, we showed that reward-related activity in VP is closely relat-
ed to behavioral preference and satiety and that this activity occurs 
at the moment when the outcome is indicated, resembling a reward 
prediction error. If VP reward activity serves as a reward prediction 
error, then this activity would have the ability to inform future pref-
erences by updating the value of the recently chosen option. We 
next sought to test this hypothesis by manipulating reward-evoked 
activity in VP directly. Prior work has shown that stimulation of VP 
is positively reinforcing (fig. S7) (14, 32, 33), but the role of VP in 
modifying reward-seeking actions in a decision-making context is 
unclear. We hypothesized that artificially elevating VP activity fol-
lowing delivery of a less-preferred reward (mimicking the positive 
prediction error following receipt of the preferred reward in the 
uncertain outcome task) would bias preference toward that option 
in the future. To test our hypothesis, we implanted a new group of 
rats with optic fibers and virus containing channelrhodopsin (n = 11; 
fig. S1) or green fluorescent protein (GFP) control (n = 9) and 
trained them on a modified version of the specific cues task with 
sucrose and maltodextrin as rewards (Fig. 4, A and B). We chose 
these rewards because rats consistently prefer sucrose over malto-
dextrin (17, 34), permitting a more stable backdrop for our manip-
ulation than sucrose and water. After training, we ran a test session 
where we stimulated VP concurrent with maltodextrin receipt: 

either the moment when maltodextrin was delivered if rats were in 
the reward port, or else upon the first port entry following malto-
dextrin delivery (Fig. 4C). We stimulated at 40 Hz with 10-ms pulse 
width, parameters previously shown to be maximally reinforcing in 
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Fig. 4. Stimulation of VP at reward delivery biases choice behavior. (A) Task 
design for optogenetic stimulation experiment. Rats chose between sucrose and 
maltodextrin. Levers were retracted after press. (B) Optic fibers and virus containing 
ChR2 (or GFP control) were implanted/infused bilaterally in VP, but only the right 
hemisphere was stimulated in this experiment. (C) During the test session, on malto-
dextrin trials, VP was photostimulated unilaterally for 5 s at 40 Hz, beginning with 
maltodextrin delivery, or whenever the rat first entered the port thereafter, to overlap 
with maltodextrin consumption. (D) Preference for sucrose versus maltodextrin on 
choice trials at baseline (after training), on test session, and for five recovery days after 
without laser. There was a significant interaction between day and group across these 
seven sessions (F6,126 = 10.6, P < 0.00000001). Post hoc Tukey tests (corrected for multi-
ple comparisons) revealed a significant difference between groups on test day (P < 
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VP (33). Impressively, pairing maltodextrin with VP stimulation 
shifted rats’ preference from the sucrose lever to the maltodextrin 
lever on choice trials (Fig. 4D); this shift could be tracked within the 
session as the rats experienced additional laser-paired maltodextrin 
trials (Fig. 4E). In addition, while stimulation had no effect on lever 
press latency on the subsequent trial, it did bias rats toward quicker 
presses on maltodextrin trials relative to sucrose trials (fig. S8). Un-
expectedly, this shift in maltodextrin lever preference persisted for 
at least one additional day when laser stimulation was withheld 
(Fig. 4D), demonstrating that VP activity at the time of reward can 
induce persistent behavioral preferences.

DISCUSSION
Our findings here unify and expand upon a number of previous 
observations of VP activity. Prior work has demonstrated that 
VP neural activity is sensitive to preference (17–20) and satiety 
(13, 14, 21, 22), has some features of a reward prediction error 
(14, 27–30), and is reinforcing (14, 32, 33), although the interaction 
between these distinct aspects of VP signaling was unclear because 
they were characterized in separate experiments. Our data also 
build upon reports of individual neurons in the orbitofrontal cortex 
and hypothalamus whose responses diminish for rewards (and their 
predictive cues) fed to satiety but remain intact for other rewards 
(23–25). Our work here is an important advance over all these 
findings because, by implementing a behavioral task that allows rats 
to choose their preferred reward as they proceed from thirsty to 
sated, we were able to demonstrate that VP activity was tightly 
linked not just with physiological state but also with the subjects’ 
ongoing choices as they were influenced by their physiological state. 
With the additional result that optogenetic stimulation of VP biased 
behavioral preference, we propose that reward signaling in VP inte-
grates physiological state and reward preference to direct subjects’ 
choices. These data lend clarity to the poorly characterized func-
tional role of VP (and other satiety-sensitive reward signals) in 
decision-making.

These findings are part of a larger body of work characterizing 
the impact of satiety on brain-wide neural dynamics. There is evi-
dence that, across the brain, task-related activity in individual neu-
rons is reduced when animals are sated, and this reduction in activity 
is accompanied by less engagement in the behavioral task (7–14). 
By presenting subjects with multiple reward outcomes differentially 
affected by satiety, we were able to measure not just reduced moti-
vation for water but also an increased preference for sucrose as rats 
became less thirsty. This allowed us to observe an enhancement in 
sucrose-related activity within a single uncertain outcome session, 
in contrast to the predominant finding from previous work that satiety 
uniformly blunts reward-related activity. Thus, our work establishes 
the importance (and feasibility) of studying how satiety influences 
not just overall motivation but also deliberative processes compar-
ing different rewards and physiological needs.

Another notable finding from our work is that, like many obser-
vations of dopamine neurons, the timing of preference-sensitive 
signaling in VP followed the general framework of a reward predic-
tion error (26). In particular, there was a notable difference in the 
number of neurons tracking reward preference at the time of re-
ward delivery in the specific cues and uncertain outcome tasks, in 
which the reward identity on a given trial is signaled by a preceding 
cue, or not, respectively. The fact that there were many more neu-

rons with this preference-related activity at the time of reward when 
the outcome had not already been signaled to the rat suggests that 
VP encodes an error signal derived from momentary reward prefer-
ence (if VP merely encoded the preference of the received reward, 
we would see this signal in both tasks). The interaction between sa-
tiety, preference, and reward prediction errors has not been charac-
terized well, so our results are some of the first data showing that the 
hallmark transfer of error signal from reward to cue (26) can occur 
in scenarios where the value of the outcomes changes (and switches 
ranking) across the session. This type of signal could not be easily 
explained in a model-free framework where the value of cues is 
updated only by the value of the received outcome irrespective of 
reward identity. This is most clearly seen in the specific cues task 
where the very first presentation of the water cue evokes very strong 
firing, indicating a high valuation, despite the low firing and low 
value of water at the conclusion of the previous session [see also 
(22)]. Thus, in some scenarios, VP encodes a model-based signal 
that takes into account the current value of the predicted outcome 
(35). This result is also consistent with frameworks incorporating 
prediction errors and incentive salience (22, 31, 36–38).

Our data indicate that VP is a functionally important node within 
the brain circuits that process the value of available rewards. How 
these VP signals interact with a brain-wide network to drive decision-
making remains to be determined. Given the reward prediction 
error-like signaling we observed in VP and the connectivity between 
VP and the dopamine system (16, 28, 32, 33), it will be important to 
clarify both the influence of these regions on each other and their 
separable roles in reward prediction error signaling. There have been 
mixed reports of prediction errors in VP (14, 27–30). We previously 
characterized a robust reward prediction error signal in VP where 
predictions were derived from the previously received reward out-
comes, but we saw less of an influence of predictions derived from 
reward-specific cues (29). An important difference in the current 
experiment compared with our and others’ prior work is that, not 
only are the cues specific to the outcome, but they also require the 
rats to perform distinct actions (pressing the appropriate lever). 
Moreover, the relative value of the outcomes changes throughout the 
session, which may make the cue-action-outcome contingencies 
particularly salient to the rats. Thus, the relatively prominent reward 
prediction error-like signaling we observed here could indicate that 
VP is especially recruited to update the value of particular actions in 
dynamic reward-seeking settings, an idea supported by our finding 
that optogenetic stimulation of VP biased rats’ reward-seeking 
actions across a single session. Future work will need to determine 
whether the complementary experiment, inhibition of VP following 
delivery of a preferred reward, can bias future choices away from 
that option.

Another important future direction will be to integrate the cur-
rent findings with known heterogeneity within VP. There has been 
considerable work delineating distinct connectivity and functions 
of VP subregions (15, 16). Nevertheless, consistent with previous 
in vivo electrophysiology studies (17, 38), we saw little evidence for 
spatially distinct differences in reward encoding; more systematic 
and precise approaches are necessary to confirm the presence or 
absence of regional differences. There is also a growing literature on 
the roles of different cell types in VP in motivated behavior, espe-
cially the opposing roles of glutamatergic and GABAergic popula-
tions (14, 32, 33, 39). Given the evidence that GABAergic neurons 
make up the majority of the VP population and that they positively 
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encode value and promote reward-seeking behavior, we speculate 
that the outcome × time neurons we describe here are GABAergic. 
Future studies would need to clarify if this is the case and whether 
our optogenetic findings replicate when targeting GABAergic cells 
specifically. It will also be important to consider more carefully the 
link between physiology and optogenetic manipulations; although 
40-Hz optogenetic stimulation is maximally reinforcing (33), as we 
use here, this is greater than typically observed in vivo. Precise aug-
mentation or reduction of existing VP signals would provide a more 
rigorous test for the role of observed neural dynamics in reward-
seeking behavior. Overall, these findings reveal that VP encodes 
reward prediction error-like signals derived from dynamic reward 
preference and emphasize the importance of a continued, detailed 
study of VP to understand reward learning and decision-making 
processes affected by physiological state.

MATERIALS AND METHODS
Animals
Subjects were male and female Long-Evans rats from Envigo weigh-
ing 200 to 275 g at arrival and single-housed on a 12-hour light/dark 
cycle. Rats were given free access to food in their home cages for the 
duration of the experiment and maintained above 90% baseline 
body weight. For training and test sessions, they were water restricted 
overnight. All experimental procedures were performed in strict 
accordance with protocols approved by the Animal Care and Use 
Committee at the Johns Hopkins University.

Reward solutions
We used 10% solutions by weight of sucrose (Thermo Fisher Scientific, 
MA) and maltodextrin (SolCarb, Solace Nutrition, CT) in tap water 
or tap water alone. Before behavioral training, rats were given 1 day 
of free access to sucrose and/or maltodextrin solution in their home 
cages depending on the rewards used for the experiment to permit 
acclimation to the rewarding solutions.

Surgical procedures
Rats were anesthetized with isoflurane (5%) and maintained under anes-
thesia for the duration of the surgery (1 to 2%). Rats received injections 
of carprofen (5 mg/kg) and cefazolin (70 mg/kg) before incision.
Electrophysiology
Drivable bundles of 16 tungsten wires were implanted in VP [+0.5 mm 
anterior-posterior (AP), +2.4 mm mediolateral (ML), and −8 mm 
dorsoventral (DV)] of trained rats.
Optogenetics
We infused 0.7 l of virus containing channelrhodopsin [AAV5-
hsyn-hChR2(H134R)-EYFP, 1.7 × 1013 viral particles/ml from 
Addgene, gift from K. Deisseroth] or control virus (AAV5-hsyn-EGFP, 
1.2 × 1013 viral particles/ml from Addgene, gift from B. Roth) bilat-
erally in VP (+0.5 mm AP, ±2.5 mm ML, and −8.2 mm DV) at a rate 
of 0.1 l/min for 7 min. We then implanted 300-m-diameter optic 
fibers 0.3 mm above.

Histology
Deeply anesthetized rats were perfused intracardially with 0.9% sa-
line followed by 4% paraformaldehyde. Brains were postfixed in 4% 
paraformaldehyde for 24 hours and then transferred to 25% sucrose 
for a minimum of 24 hours before being sectioned in 50-m slices 
on a cryostat.

Electrophysiology
Electrode sites were labeled by passing a DC through each electrode 
before perfusion. Slices were stained with cresyl violet to determine 
recording sites.
Optogenetics
Slices were coverslipped with Vectashield mounting medium with 
4′,6-diamidino-2-phenylindole (DAPI) and imaged. Viral expression 
was determined from the fluorescence of the expressed virus.

Recording and spike sorting
Electrical signals and behavioral events were collected from freely 
moving rats with OmniPlex (Plexon) as in (17, 29). Waveforms 
were sorted into units using offline sorter (Plexon), and any units 
that were not detectable for the entire session were discarded. When 
isolating units, to ensure that they were single units rather than 
multi-units, we examined the auto- and cross-correlograms of 
candidate units, plotted waveform features over time to ensure 
unimodal continuity, and discarded any units with more than 0.2% 
of spikes within a 2-ms window of another spike, a conservative 
estimate of refractory period. The resulting units had baseline firing 
rates ranging from 0.2 to 9.7 Hz. The 25th, 50th, and 75th percen-
tiles were 3.7, 4.8, and 5.7 Hz, respectively.

Behavioral tasks (electrophysiology)
The behavioral apparatus consisted of two retractable levers (Med 
Associates), one on each side of a reward port. Rats were trained to 
associate each lever with a distinct reward: 55 l of sucrose or 110 l 
of water. The pairing of rewards with levers was counterbalanced 
across rats but remained the same for each rat across days. Rats were 
first trained on FR1 with both levers present and then were moved 
to a mixture of forced- and free-choice trials with lever retracting 
upon successful press. Once rats were trained, the levers remained 
extended for the duration of the session. For the specific cues task, 
trial types (forced sucrose, 30% of trials; forced water, 30% of trials; 
or choice, 40% of trials) were announced by distinct auditory cues 
(white noise, pure tones, or siren, assignments counterbalanced). 
Trials were randomly interspersed throughout the session. If the rat 
selected the incorrect lever on forced trials, both levers retracted for 
10 s, and then the rat could correct its mistake upon reinsertion. 
Cues remained on until the rat selected a correct lever; correct presses 
triggered vacuum-mediated evacuation of any residual liquid in the 
reward cup and delivery of the lever-associated reward 2 s later. 
There was a 20- to 45-s intertrial interval following reward delivery 
before the next cue onset. Rats had experienced ≥10 sessions with 
final contingencies when recording started, and all performed above 
chance on forced-choice trials (57 to 97% accuracy; median, 65%). 
After we completed recordings from these sessions, rats were trained 
on the second task, uncertain outcome. In this task, there were two 
trial types: forced (60% of trials) and choice (40% of trials). Instead 
of distinct auditory cues announcing forced sucrose and water 
trials, a fourth auditory cue (lower-frequency siren) indicated that 
the rat should go directly to the reward port, which terminated the 
cue and triggered random delivery of sucrose or water 2 s later. 
Lever presses had no effect on these trials. Choice trials remained 
the same as specific cues. Sessions were self-paced; we stopped the 
session after 90 min. In total, five rats (three males and two females) 
completed these sessions and had electrodes successfully targeted 
to VP. We analyzed one session from each rat (for each of the two 
tasks) that best reflected the average trend across all sessions: water 
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preference in the first quarter of trials, sucrose preference in the 
final quarter, and relatively monotonic transition. Electrodes remained 
in the same location for the duration of the experiment.

Optogenetic manipulations
Rats were connected unilaterally via ceramic mating sleeves to a 
200-m core patch cord, which interfaced with a 473-nm DPSS 
(diode-pumped solid-state) laser (Opto-Engine LLC). Laser delivery 
during test sessions was initiated by signals from MedPC SmartCTRL 
cards to a Master-9 Stimulus Controller (AMPI).

For this experiment, rats were trained on a sucrose/maltodextrin 
choice task where they earned 55 l of either reward. Trial frequency 
was 30% forced sucrose, 30% forced maltodextrin, and 40% choice, 
randomly interspersed. The available levers extended at trial onset, 
and all extended levers retracted after a press was made, triggering 
reward delivery 2 s later. Lever assignments were counterbalanced. 
Rats received 12 days of training on the final task before testing. On 
test session, maltodextrin delivery was paired with unilateral 40-Hz 
pulsed photoexcitation of VP for 5 s (10-ms pulse width, 10 to 
12 mW), parameters we selected for being maximally reinforcing (33). 
Although rats were implanted bilaterally, we stimulated the right 
hemisphere only in all rats for this test for consistency and for a 
stronger test of sufficiency. We only included rats who had their right 
fiber and viral expression in VP. This resulted in 11 rats with ChR2 
(5 males and 6 females) and 9 rats with GFP (4 males and 5 females). 
For intracranial self-stimulation, the same rats were given access 
to two previously occluded nosepoke ports in the same behavioral 
chambers. Entry into one port triggered 1 s of 40-Hz stimulation 
(10-ms pulse width, 10 to 12 mW) of the right hemisphere.

Analyzing trials in session quarters
Because the sessions were self-paced, each rat completed a different 
number of trials (88 to 149; median, 99 for specific cues; 126 to 175; 
median, 157 for uncertain outcome). To analyze changes across the 
session, we elected to group trials into quarters of total completed 
trials, which should ensure similar levels of motivation (within task), 
rather than dividing sections by a set number of trials.

Behavioral analysis
We estimated preference across choice trials by smoothing the rats’ 
choices (0 for water and 1 for sucrose) with a Gaussian filter ( = 5). We 
then estimated preference on forced trials by assigning each forced trial 
the smoothed preference of the nearest choice trial. Preference within 
a given quarter was calculated by finding the fraction of choices from that 
quarter that were sucrose; this was then linearly transformed from −1 
to 1. For analysis of lever press latency, we performed a natural log 
transformation of the time interval between cue onset and first cor-
rect lever press. The mean latency and licking per quarter were cal-
culated per session, so each session only contributed 1 point to each 
quarter.

PSTH creation
To construct peristimulus time histograms (PSTHs), we used 0.01-ms 
bins surrounding the event of interest. PSTHs were first smoothed 
on an individual trial basis using a half-normal filter ( = 3) that only 
used activity in previous, but not upcoming, bins. Then, the PSTH 
across all trials was smoothed with another half-normal filter ( = 8). 
Each bin of the PSTH was z scored by subtracting the mean firing rate 
across 10-s windows before each trial and dividing by the SD across those 

windows. PSTHs for licking were created in the same manner (without 
z scoring) with only one round of smoothing after PSTH creation,  = 25.

Generalized linear model
To determine the influence of time and outcome on cue- and reward-
evoked firing, we fit a GLM with a Poisson distribution to the un-
smoothed, binned activity of each neuron on forced trials (“fitglm” 
in MATLAB). For cue activity, we used a bin 0 to 0.75 s following 
cue onset, which captured the majority of the phasic response to the 
cue (Fig. 2). For reward activity, we used a bin 0.75 to 1.95 s following 
reward delivery to remain consistent with our previous work (29), 
where we saw this was a bin particularly sensitive to modulation by 
previous outcome. We only included trials where the rat was in the 
reward port during reward delivery. For the GLM’s predictors, we 
used trial number as a proxy for time, the outcome on each trial, 
and the interaction between these two predictors (outcome × time). 
Significant predictors were determined by the fitglm function in 
MATLAB with a cutoff of P < 0.05.

Correlations with latency and preference
We calculated correlations for cue activity with lever press latency and 
reward activity with preference using the nonparametric Spearman’s . 
We chose this test because we wanted to assess covariance among 
the variables of interest without assuming a linear relationship. For 
cue activity and lever press latency, we included all trials (including 
choice trials). For reward activity and preference, we only looked 
at forced trials.

Model fitting
These methods are adapted from (29). For each neuron, we took the 
spike count, s(t), within the 0.75- to 1.95-s postreward delivery time 
bin for each forced trial and fit the following four Poisson spike 
count models. We only included trials where the rat was in the 
reward port during reward delivery. For all but the unmodulated 
model, we used a as a slope (gain) and b as an intercept (offset) 
parameter to map the model values to spike counts.
Unmodulated model

	​ s(t ) ∼  Poisson(exp(ln(​   s ​ ) ) )​	

where ​​   s ​​ is the mean firing rate across all trials.
Satiety model

	​​
Sat(t ) = 1 − ​  t ─ ​t​ end​​ ​​  
s(t ) ∼  Poisson(exp(a · Sat(t ) + b ) )

​​	

where tend is the total number of trials.
Preference model

	​​

For sucrose trials

​  

Pref(t ) = ​  1 ─ 
1 + ​e​​ −k·(t−​t​ 0​​)​

 ​

​  For water trials​  
Pref(t ) = 1 − ​  1 ─ 

1 + ​e​​ −k·(t−​t​ 0​​)​
 ​
​  

s(t ) ∼  Poisson(exp(a · Pref(t ) + b ) )

​​	
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where k is the steepness of the curve and t0 is the midpoint (in trials). 
The convention for the logistic function was to approximate sucrose 
preference (increasing throughout the session), so it needed to be 
inverted for water trials. Preference (Pref) was then normalized from 
0 to 1 across all trials in the session before being transformed into 
spikes.
Mixed model

	​​
SWP(t ) = w · Pref(t ) + (1 − w ) · Sat(t)

​   s(t ) ∼  Poisson(exp(a · SWP(t ) + b ) ) ​​	

where Pref and satiety (Sat) are found as above and w determines 
the relative contribution of each to the satiety-weighted prefer-
ence (SWP).

For all models with a slope parameter, we constrained the slope, 
a, to be >0, as our previous work demonstrated that the majority of 
outcome-selective VP neurons are positively correlated with value. 
We found maximum likelihood estimates for each model and se-
lected the best model using cross-validated likelihood, which was 
calculated by finding the mean likelihood from 50 repetitions of fitting 
the model parameters to 80% of the data and testing these parame-
ters on the remaining 20%. We used 20 randomly selected starting 
initial values for each parameter to avoid finding local minima.

We also tried a model where we inputted the total number of 
licks on each trial to predict firing rate, as a possible alternative ex-
planation for the across-session changes in VP activity. When we 
included this model in the comparison, it was the best model for 10 
of 149 reward outcome × time neurons in the uncertain outcome 
task in contrast to 111 of 149 best fit by the mixed model. Thus, the 
number of licks was not a better predictor of outcome × time neuron 
activity than the mixture of preference and satiety.

To find the logistic function estimate of preference from the 
choice behavior (Fig. 4E), we used “nlinfit” in MATLAB to find the 
best parameters for fitting the Pref equation above to the choices on 
each trial (rather than neural activity) for a given session. To com-
pare this to the neural estimate of preference from neurons recorded 
during that session, we used the values of the logistic function pa-
rameters from the mixed model, found during the fitting process, to 
generate a per-neuron estimate of behavioral preference across the 
session. The t0 from the mixed model gave us the neural estimates 
of midpoint.

Data availability
The data and code used to analyze the data are available on GitHub: 
https://github.com/djottenheimer/dynamic-preference
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