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Electron-impact excitation-autoionization of helium in the S-wave limit

D. A. Horner,"?* C. W. McCurdy,>3 't and T. N. Rescigno? *

! Department of Chemistry, University of California, Berkeley, California 94720
2 Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720
3 Departments of Applied Science and Chemistry,
University of California, Davis, California 95616
(Dated: September 17, 2004)

Excitation of the autoionizing states of helium by electron impact are shown in calculations in the
s-wave limit to leave a clear signature in the singly differential cross section for the (e,2e) process.
It is suggested that such behavior should be seen generally in experiments that measure the singly
differential cross section in (e,2e) experiments on atoms.

PACS numbers:

Doubly excited, autoionizing states of the helium atom
have been the subject of numerous experimental and the-
oretical studies ever since the 1S states were first de-
tected in photoabsorption by Madden and Codling [1]
some forty years ago. These states, as well as addi-
tional optically forbidden states, were subsequently ob-
served in electron impact studies by Simpson et al. [2]
and there have since been numerous experimental stud-
ies of excitation-autoionization. The process is gener-
ally regarded as happening in two steps, excitation of
the autoionizing state followed by its decay, although it
was realized quite early [3] that post-collision interactions
between scattered and ejected electons could complicate
this simple picture. In any case, since it is not possible to
distinguish electrons that have been ejected directly from
an atom from those that are first promoted to an autoion-
izing state, the two processes will interfere, as first shown
by van den Brink et al. [4]. The observable consequences
of this interference are pronounced changes in the energy
and angular dependence of the ejected electrons in the
vicinity of autoionization resonances [5].

Theoretical treatments of excitation-autoionization
have assumed that, for situations where one of the final
state continuum electrons is near an autoionizing level,
the ionization amplitude can be written as a sum of di-
rect and resonant terms. The resonant part of the am-
plitude is frequently parametrized in terms of Shore [6]
or Fano [7] parameters whereas the direct or background
component is generally approximated using a perturba-
tive treatment, such as the plane-wave [8] or distorted-
wave [9] Born approximations. Such treatments, not sur-
prisingly, can be very sensitive to the model used for the
direct ionization [10]. Our purpose here is to present
the initial results of a completely non-perturbative treat-
ment of excitation-autoionization of helium in the S-wave
model. The S-wave model simplifies the full problem by
treating only states with zero orbital angular momentum.
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While such a model cannot give a quantitatively accurate
description of the full e -He ionization problem, it does
represent a true four-body Coulomb problem and there-
fore shows much of the complexity associated with the
full problem. In particular, we will show how doubly
excited target states leave a clear signature on the sin-
gle differential cross sections for ionization and provide
a sensitive measure of post-collision interaction effects -
a situation we expect will carry over to the full prob-
lem. Moreover, by using the method of exterior complex
scaling (ECS) to compute the required wave functions,
we are able to compute accurate ionization cross sections
without having to make any a prioi assumptions about
the form of the ionization amplitudes.

Most of the recent theoretical work on e -He ioniza-
tion using non-perturbative methods has been carried
out with a single active electron model where one of
the target electrons is frozen to be in the 1s orbital of
Het. Such a model is incapable of describing excitation-
autoionization, which requires two active target elec-
trons. In our recent study of electron-He ionization in the
S-wave model [11], we showed how the exterior complex
scaling method could be applied to the full 3-electron
problem without invoking a frozen-core model. In the
ECS method, the radial coordinates of the electrons are
scaled beyond some point Ry using the transformation
r — Ry + (r — Ry)e?. This transformation allows one
to solve for the scattered wave portion of the full wave
function with the simple boundary condition that the so-
lution vanish as r — oo for any electron along the exterior
scaling contour. This condition is formally equivalent to
outgoing scattering boundary conditions (for producing
the solution for 7 < Rp), even in the presence of long
range potentials, as has been discussed at length else-
where [12].

In all applications of ECS to scattering problems, the
full wave function, T, is partitioned into unperturbed
and scattered wave components,

ot = (I)O + lIISC7 (1)

which then yields a driven equation for the scattered



TABLE I: Energy levels for S-wave helium that are relevant to the results presented in this paper.

Energy (a.u.)

State ECS Draeger et al. [ref. [16]]" Manby and Doggett [ref. [17]]
ksk's 0
2s ks —0.5 —0.5 —0.5
2535 (1) —0.571923  —0.28473(—3)i —0.57188195  —0.2820(—3)i —0.571495  —0.33090(—3)
253s (35) —0.584855 —0.90332(—6)i —0.58485477 —0.58481068 —0.95985(—6)
2s2s (15) —0.722837 —0.11992(—2)¢ —0.72265081 —0.1205(—2)4 —0.722281 —0.12205(—2)
1sks —2 -2
1s3s (1S) —2.06079 —2.06079
1535 (35) —2.06849 —2.06849
1525 (1S) —2.14420 —2.14419
1525 (35) —2.17426 —2.17426
1s1s('S) —2.87903 —2.87903
“The values given are the corrected values cited in ref. [17] (see text).
wave: solving large linear systems, it requires that we propa-

(E — H)¥sc = (H — E)®o. (2)

Expansion of the wave function on a grid using an ap-
propriate discretization method (finite difference or fi-
nite elements) reduces Eq. (2) to a system for complex,
linear equations. In the present study, the discretiza-
tion was achieved by using the combined finite element-
discrete variable representation (FEM-DVR) introduced
by Rescigno and McCurdy [13]. With two radial elec-
tron coordinates, it is feasible to solve these equations
directly. However, with three electron coordinates, even
with zero orbital angular momentum for each electron,
the size of the linear systems become very large and im-
practical to solve. We addressed this difficulty by re-
casting the problem with an equivalent time-dependent
formulation [11, 14] that does not require us to solve large
linear systems.

The time-dependent formulation follows from noting
that the solution of Eq. (2) which we seek can be formally
written as

Usc = G (H - E)®,, ()
with GT being the full Green’s function

G+30(}3—1t1+ie)—1

_ 1= Qi Bie)t g—iHlt g (4)
e—0 Z 0 )
We can thus write
0 .
Wso =i [P at (5)
0

where, under ECS, the “wavepacket”, x(t) = e *#t(H —
E)®(0) will limit to zero for large {r;} as t — oo, so
the +ie in Eq. (4) can be dropped. Eq. (5) is thus for-
mally equivalent to the solution of Eq. (2). Instead of

gate x(0) on the ECS contour in multiple dimensions for
times sufficiently large to converge the Fourier transform
that provides the numerical representation of ¥sc. That
this formulation could be practically applied to the S-
wave electron-He problem was demonstrated in ref. [11],
where further computational details of the method are
fully explained. Here we extend these calculations by
considering collision energies where autoionizing states
of the target atom can be excited. All of the computa-
tional parameters, such as the number and spacing of the
finite elements, the order of the DVR and the parameters
the time propagation, are identical to what was used in
that earlier study.

We begin with a description of the singly (bound) and
doubly excited target states relavant to the present study.
These can be found by diagonalizing the complex-scaled
He Hamiltonian as the bound states are unaffected by
the transformation and the doubly excited states nat-
urally appear as eigenvalues of this Hamiltyonian with
complex eigenvalues whose imaginary parts are equal to
half the corresponding autoionization widths [15]. Ta-
ble I shows the relavant states for the S-wave He tar-
get. Where possible, comparison is made with the re-
sults of Draeger et al. [16], who used quantum defect
theory to compute the energy positions and a numerical
solution of coupled-channel scattering equations to ob-
tain the widths, and Manby and Doggett [17], who used
Feshbach theory. There was evidently an error in the
original resonance widths published by Draeger et al;
the error was later corrected and the corrected values,
given in the Manby and Doggett paper, are the values
we give in Table I. We note that the values we found
for the bound and autoionizing states were insensitive to
changes in the rotation angle, the size of the grid and
the order of the DVR functions employed, ie, they are
effectively exact to the number of figures given.

We now turn to the evaluation of scattering cross sec-
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FIG. 1: SDCS for ionization from the 2°S state at 37.0 eV
(upper curve) and 44.0 eV (lower curve) incident electron
energy, showing the characteristic symmetric appearance of
autoionizing features in the SDCS, in this case due to the
2525(19) state.

tions in the S-wave electron-He problem. The most prac-
tical approach to calculating both excitation and breakup
cross sections is to formulate the problem in terms of inte-
gral expressions for the underlying scattering amplitudes
[18]. The amplitudes for discrete excitations can be read-
ily computed by starting with the formal expression

fion = \/ik_n (pn(r1,r2) sin(kyrs) |[E — H | ®T),  (6)

where ¢,, is a discrete target state and H; is the unper-
turbed Hamiltonian corresponding to the incident chan-
nel arrangement. We can then use Green’s theorem to
express the amplitude as a surface integral:

\/% f5[¢n (7'17 7‘2) Sin(kn’f':;)v‘;[’sc (7'1, r2, 7‘3)
—Usc(r1,m2,73)Vn(r1,2) sin(k,rs)] - dS

fi—)n =

(7)

where the replacement of ¥+ by ¥gc in the surface in-
tegral follows from an examination of the integrand of
Eq. (7) on the surface.

The development of a workable expression for the sin-
gle ionization amplitude on a finite volume is more diffi-
cult. The following expression for the ionization ampli-
tude,

fk1,k2) = 2 (sin(kyr1) sin(kare)on(rs) |E — Hy| \Ilscz ,)
8

where ¢,,, is a bound He't orbital, while formally cor-
rect, is not computationally useful on a finite volume.
The problem arises from the fact that the scattered wave
contains asymptotic terms arising from both discrete tar-
get excitations and ionization and the discrete terms con-
taminate the evaluation of the ionization amplitude when
the integration is carried out on a finite volume. While
we have yet to find a perfect solution to this problem, we
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FIG. 2: SDCS for ionization from the 23S (left) and 2'S
(right) states, for various incident electron energies, at ejected
electron energies near the decay of the 2s2s(*S) resonance
state. For the 23S case, incident energies run (top to bottom)
from 41.0 to 45.0 €V in increments of 0.5 V. For the 215 case,
the energies run from 39.5 to 45.0 eV in increments of 0.5 eV.

have shown that useful results can be obtained by mak-
ing a judicious choice of distorted waves to represent the
final continuum electrons and by using the technique of
“asymptotic subtraction” to try to remove the asymp-
totic contribution of the discrete two-body channels to
the scattered wave before computing the ionization am-
plitude. Details can be found in ref. [11].

When the incident electron energy is high enough to
promote the target to a doubly excited state, then one
might expect to find structure in the energy sharing or
single differential cross section (SDCS) for ionization at
ejected electron energies corresponding to the decay of
the autoionizing state. Whether such structure is ob-
servable depends on the probability of exciting the reso-
nance state relative to the total ionization probability. To
get some idea of the magnitude of these effects, we first
computed the excitation cross sections to the doubly ex-
cited states, using the amplitudes given by Eq. 6, as if
the resonance states were bound excited states. For this
purpose, we obtained unit normalized target states by di-
agonalizing the real target Hamiltonian on a small (~40
bohr) box. We calculated excitation cross sections for the
2525(1S), 2s3s(1S) and 2s3s(3S) states, starting from
the ground state and as well as from the 1s2s(21:3S) and
183s5(31:3S) excited states at a few energies near thresh-
old. Comparing these cross sections with the total ion-
ization cross sections from the various target states we
previously computed [11], we found that, starting from
the ground state, the ratio of the 2s2s(19) excitation
cross section to the total ionization cross section is less
that one part in a thousand, while the same ratios start-
ing from the 215 and 23S states are of the order of ten
percent. From the 215 and 23S states, the ratios for
exciting the 2s3s(3S) state are about 5 percent, while
the ratios for exciting the 2s3s(1S) state are about one
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FIG. 3: SDCS for ionization from the 33S (left) and 3'S
(right) states, for various incident electron energies, at ejected
electron energies near the decay of the 2s3s(*S) resonance
state. For the 33S case, incident energies run (top to bottom)
from 41.0 to 45.0 eV in increments of 0.5 eV. For the 3 'S case,
the energies run from 39.5 to 45.0 €V in increments of 0.5 eV.

percent. If we start from the 3135 states, the ratios for
exciting the 2s3s(135) states are about ??? percent.
Fig. 1 shows the SDCS from the 23S state at inci-
dent electron energies of 37.0 and 44.0 eV. At the lower
energy, which is ~2.5 eV below the energy required to
excite the 2s52s(1S) autoionizing state, we find the usual
bow-shaped SDCS, while at 44.0 eV the SDCS shows
two sharp peaks, symmetrically positioned with respect
to E/2 as they must be, at ejected electron energies corre-
sponding to the decay of the 252s(1S) autoionizing state.
In fact, because of post-collision interactions, there is a
shift of ~0.25 eV between the unperturbed energy of
the autoionizing electron and the energy at which the
peak appears in the SDCS. This effect is further illus-
trated in Fig. 2 where we plot the SDCS, from both the
238 and 2'S initial states, for ejected electron energies
near those corresponding to the decay of the 2s52s(1S)
autoionizing state, as a function of incident electron en-
ergy. The calculations clearly show that as the incident
energy increases, the magnitude of the peaks decrease as
they shift closer to the unperturbed energy of the doubly
excited target state. Fig. 3 shows similar data for the

335 and 3'S initial states, in this case for ejected elec-
tron energies near those corresponding to the decay of
the 2s3s(1S) autoionizing state. We note the widths of
the resonance features seen in the SDCS are similar to
those seen in Fig. 2 for the 2s2s(1S) autoionizing state
despite the fact that the 2s3s('S) autoionizing state has
an intrinsic width that is about four times smaller than
the width of the 2s2s(19) state.

The widths of the doubly excited states do appear to
correlate with the number of steps required in our time
propagation scheme to converge the autoionization fea-
tures in the SDCS. In the case of the 23S and 2! initial
state calculations, we found that the initial wavepackets
had to be propagated for ~400 atomic time units to con-
verge the 2s2s(1S) peaks in the calculated SDCS. How-
ever, to obtain similar convergence for the 2s3s(1S) peaks
seen in the 325 and 3'S$ initial state ionization cross sec-
tions required propagation times of ~3000 atomic time
units. This kind of scaling would indicate that propaga-
tion times on the order of half a million atomic time units,
which are completely impractical, would be required to
see peaks corresponding to the 2s3s(3S) doubly excited
state. This undoubtedly explains why we have not seen
peaks corresponding to this state in any of our calculated
SDCS.

In summary, we have presented non-perturbative cal-
culations of electron-helium ionization in the S-wave
model that clearly show structure in the SDCS corre-
sponding to excitation-ionization. In this model, the
structures are seen in the cross sections for ionization
starting from excited helium target states. The peaks
in the SDCS initially appear at ejected electron ener-
gies slightly greater than those corresponding to decay of
the doubly excited states in agreement with experimen-
tal observation [3] . These shifts decrease with increasing
incident electron energy, as the effects of post-collision
interaction decrease.
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