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ABSTRACT OF THE DISSERTATION

A Fresh Look at Spline Approximation Theory and Its Applications

by

Jean-Michel Maldague

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Christopher Anderson, Chair

This dissertation gives explicit algorithms for constructing multiple types of high dimen-

sional 1D splines (standard and exponential A-splines, standard and exponential C-splines),

and generating L2-orthogonal bases for various families of splines (via the standard and ex-

ponential A-spline procedures). These orthogonal bases of spline functions are used in L2

approximation of functions by way of orthogonal projection, and relevant error bounds for

these approximations are given in L2 and L∞. The 1D spline approximation procedures

developed here are used in construction of tensor product approximations of multivariate

functions. Computational examples are provided.
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Notation

In the remaining sections we use the following notation.

• Let [a, b] be the interval of interest

• Let f : [a, b]→ R be a function we are trying to approximate

• Let M ∈ N be the panel count, i.e., the finite number of subdomains for the piecewise

polynomial

• Let t0 < t1 < t2 < · · · < tM−1 < tM be the knots that define the subdomains of the

spline (n.b. these can correspond to the x1, . . . , xn where the image of f is known, but

in general this need not be the case; also, we often have t0 = a and tM = b, but this

need not be the case).

• Let hi := ti − ti−1 be the panel widths

• Let h = ∆t = maxi(hi) be the max panel width

• Let Ŝk be the space of splines of degree k (each polynomial piece of the spline is of

degree ≤ k) with the above knots.

• We will focus on the splines Sk with (k − 1) continuous derivatives. In other words,

Sk = Ŝk ∩ Ck−1[a, b].

• D ∈ N is the degree of the spline that will be produced; i.e., we will find a spline in

SD to approximate a given function f .
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1 Introduction

Splines have been a subject of interest since the late 1960s, when they were popularized

by Schoenberg and de Boor. De Boor’s seminal work on the subject, A Practical Guide

to Splines ([7]), in which de Boor developed the general theory of B-splines and laid the

groundwork for further study of these piecewise-polynomial functions, was an important de-

velopment in the field. It was around this time that computers were becoming capable of

performing simple, computationally inexpensive B-spline routines, many of which de Boor

introduced as well ([6]). Shortly after their development, Schoenberg, de Boor, and others

set out to establish error bounds for certain low-degree interpolatory (and other) splines in

the L2, L1, and L∞ norms ([21] [8] [16] [4] [3] [13]).

For several decades afterwards, the focus was not on L2 projection of functions onto spline

spaces, but rather interpolation. There was some work in L2 projection onto specific spline

spaces (e.g. least squares with noisy data, [22]), but the bulk of it was in interpolation.

Recently, interest was generated in solving PDEs by finite element method incorporating

spline approximations as part of isogeometric analysis, and this has led to key theoretical

developments in the area of L2 and Ritz projection of functions onto a wide variety of spline

spaces (see for example [20], [19], [23]).

Much of the early work on splines was in constructing splines using computationally effi-

cient algorithms for early hardware, and developing error bounds for splines of low degree.

Much of the recent work on splines is in theoretical error estimates (most of which not in

the L2 setting), and neglects practical considerations for spline construction ([20], [19], [23]).

The goal of this dissertation is to fill in the gap left by these two groups. The primary objec-

tive is to give explicit algorithms for constructing multiple types of high degree 1D splines

(standard and exponential A-splines, standard and exponential C-splines), and generating

orthogonal bases for various families of splines (via the standard and exponential A-spline
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procedures). With the availability of these orthogonal bases, we facilitate L2 approximation

of functions by way of projection, and we can give a fairly general class of relevant error

bounds for this type of approximation. The 1D spline approximation procedures developed

facilitate construction of multidimensional approximants to multivariate functions in the

context of tensor product approximations.

In section (2), some background is given to motivate why we look at splines. Specifically,

we discuss why polynomials are a sufficiently large class of functions to use as agents of

approximation, and how amongst functions which interpolate a given function, splines have

a tendency to minimize certain L2 estimates of derivatives. This warrants a general study of

splines, and in particular warrants the usage of splines for approximation routines in which

we want to reduce unnecessary oscillation, such as for the purpose of obtaining tensor prod-

uct approximations to multivariate functions. Notation that will be used throughout the

dissertation is also given here.

In section (3), an account of B-splines is given. Certain deficiencies are given to moti-

vate the development of A-splines. The B-spline discussion also serves as background for

some of the theoretical results in this thesis– in particular, our proof of an L2 error bound.

In section (4), we introduce the procedure for approximating functions f by standard and

exponential A-splines. We give reasons for looking at exponential A-splines in addition to

standard A-splines; namely, to control the degree of the spline in regions where the function

to be approximated experiences great irregularity/lack of smoothness.

In section (5), we motivate another type of spline, C-splines, as tools to help us achieve

error bounds for exponential A-splines. These classes of splines are an original contribution

to the body of knowledge on splines. Although the C-splines were originally developed as
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constructs to help prove error bounds, it turns out they exhibit many desirable characteristics

as splines in their own right. Some of the immediately recognizable properties of C-splines

are given here in order to motivate their study beyond them merely serving as a tool for the

error bounds of exponential A-splines.

Section (6) concerns the analysis of L2 error incurred by the approximation procedures

described in the previous sections. We begin by proving properties of B-splines that are re-

quired for proof of our L2 error estimates. We then move on to proving L2 error estimates for

standard A-splines. Next in this section are L∞ bounds for the C-splines that are necessary

for the derivation of error bounds for exponential A-splines. These bounds are new. Follow-

ing the bounds for C-splines are bounds for exponential A-splines, and a discussion of how

to choose tension parameters heuristically. Intuition is given for how to view the additional

two exponential terms associated with exponential A-splines compared to standard A-splines.

In section (7), we apply the 1D spline approximation techniques to the problem of tensor

product approximation of multivariate functions. This application demonstrates the utility

of creating 1D spline approximation using L2 projection. In particular, the use of 1D L2

projection facilitates the construction of multi-dimensional tensor product approximations

that have few terms, thus providing a way of generating multi-dimensional approximations

that are both accurate and computationally efficient to evaluate.

And finally in section (8), we look at what future work can be undertaken in the direc-

tion this dissertation heads, giving some potential additional practical applications for 1D

spline approximations as well as ideas for improving the selection of parameters associated

with the splines discussed.
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2 Background

A common problem that arises in numerical analysis is how to approximate a function of

complicated form by a function with simpler form. A more precise mathematical framework

defining this problem can be expressed as follows.

Let C[a, b] denote the vector space of real-valued continuous functions on the interval [a, b]

and let || · || be some norm on C[a, b]. Let X ⊂ C[a, b] be a finite-dimensional subspace.

Given some f ∈ C[a, b], one may try to find a best approximation g ∈ X such that

||g − f || = min
ĝ∈X
||ĝ − f ||. (1)

If one only knows the image of f on some finite subset

{x0, x1, . . . , xn} ⊂ [a, b]; where xi < xi+1 ∀i.

and the norm is an integral norm, one can consider minimizing the corresponding numerical

quadrature to the norms. There are also other norms one can consider; e.g., one can use the

squared 2-norm

min
ĝ∈X

n∑
i=0

(ĝ(xi)− f(xi))
2. (2)

If the functions in X are twice differentiable, one may incorporate a smoothness penalty:

min
ĝ∈X

[
n∑
i=0

(ĝ(xi)− f(xi))
2 + λ

∫ b

a

(ĝ′′(x))2dx

]
(3)

where λ ≥ 0 is the smoothing parameter. This parameter controls the trade-off between

fitting the data and smoothness as measured by the second derivative squared. If λ = 0,

then the problem is one of strict interpolation and if λ = ∞, then the problem is one of

linear least squares. Let us now turn our attention to defining the function space X.
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2.1 Why Splines?

The Weierstrass approximation theorem guarantees every function in C[a, b] can be uni-

formly approximated as closely as desired by a polynomial function, with respect to the

uniform norm. Bernstein polynomials provide a constructive way to find such approxi-

mating polynomials ([11]), but the sequence of polynomial approximations can be slow to

converge. Polynomial interpolation provides a fast and simple way to approximate functions,

but high-order polynomial interpolation often runs into the problem of Runge’s phenomenon

(especially when the interpolation nodes are equispaced), causing wild oscillations of the ap-

proximating polynomial near the endpoints ([9]). The efficacy of polynomial interpolation is

very sensitive to the number and placement of the data points (x0, f(x0)), . . . , (xn, f(xn));

too few, and the polynomial interpolant will not be very accurate; too many, and the poly-

nomial interpolant suffers from Runge’s phenomenon near the endpoints, or worse if the

underlying function is not sufficiently differentiable.

For interpolation (and smoothing) problems, splines (piecewise polynomials), are usually

preferred to polynomial interpolation because splines do not suffer from Runge’s oscillation

phenomenon in the way the high-degree polynomials do. We can increase the number of

data points and distribute them arbitrarily within the interval [a, b], and splines can still

do a great job approximating a function over that interval. Also, we can tune parameters

of our spline to get far more accurate approximants than one can obtain using Bernstein

polynomials for a similar amount of work.

Another reason to consider splines is that they (specifically natural cubic splines) min-

imize the smoothing problem in (3) over the class of twice differentiable functions. To see

this, consider two functions– an arbitrary twice continuously differentiable function g, and

a twice differentiable piecewise cubic polynomial g̃ that coincides with g on the set {xi}ni=0

with vanishing second derivative at a = x0 and b = xn. Because they coincide on this set,
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the first term in the minimization is equal for both g and g̃. We now show that

∫ b

a

(g′′(x))2dx ≥
∫ b

a

(g̃′′(x))2dx (4)

where equality holds iff g = g̃. Let g(x) = g̃(x) + φ(x) and consider

∫ b

a

(g′′(x))2dx =

∫ b

a

(g̃′′(x)+φ′′(x))2dx =

∫ b

a

(g̃′′(x))2dx+2

∫ b

a

g̃′′(x)φ′′(x)dx+

∫ b

a

(φ′′(x))2dx.

Using integration by parts and the fact that φ(x) = 0 on {xi}ni=0, we get

∫ b

a

g̃′′(x)φ′′(x)dx =
n−1∑
i=0

∫ xi+1

xi

g̃′′(x)φ′′(x)dx =
n−1∑
i=0

(
g̃′′(x)φ′(x)|xi+1

xi
−
∫ xi+1

xi

g̃′′′(x)φ′(x)dx

)

= 0−
n−1∑
i=0

g̃′′′
(
xi + xi+1

2

)∫ xi+1

xi

φ′(x)dx = −
n−1∑
i=0

g̃′′′
(
xi + xi+1

2

)
(φ(xi+1)− φ(xi))

= 0.

Thus ∫ b

a

(g′′(x))2dx =

∫ b

a

(g̃′′(x))2dx+ 0 +

∫ b

a

(φ′′(x))2dx ≥
∫ b

a

(g̃′′(x))2dx, (5)

where equality holds iff φ′′(x) ≡ 0, which (since φ vanishes on {xi}ni=0) is equivalent to g = g̃.

both accurate and computationally efficient to evaluate.

This alludes to a recurring feature of many types of splines, that is noticeably absent from

such routines as polynomial interpolation: when tuned and chosen correctly, splines can

reduce unwanted oscillation in the approximant. This will be a recurring theme throughout

our development and discussion of exponential splines in particular.
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3 B-splines

Basis splines, also known as B-splines, are commonly used representation of a finite dimen-

sional vector space of splines using minimally supported functions as the basis. By having

basis functions with support concentrated on fewer panels, B-spline interpolation approxi-

mations can be evaluated by a stable and computationally efficient procedure.

One downside to using B-splines is it is often difficult to obtain the coefficients of the poly-

nomial pieces making up the approximation. One can often get around this issue by using

recursive formulas for evaluation B-splines such as the Cox-deBoor algorithm, but this can

be unwieldy in some cases, such as when you need to do orthogonal projection. The reason

orthogonal projection doesn’t work so cleanly with B-splines is, in order to do the inte-

gration, we need to sample the B-spline at various points to make the integration formula

accurate. We could employ a quadrature scheme with aptly-chosen knots to perfectly inte-

grate polynomials multiplying B-splines, such as those that are needed for the orthogonal

projection, but it may be preferable to have the explicit polynomial representation of the

polynomial pieces, because this allows analytic integration techniques to be exploited. If

we are integrating more complicated functions multiplying B-splines, such as calculations

arising from orthogonally projecting with exponential splines, this problem becomes even

more acute, and the desire to have polynomial representations of pieces of splines becomes

even greater.

Another problem with the lack of polynomial representation of B-splines is in applications

where the application of differential or integral operators is required. For example, the appli-

cation of a differential operator would in practice require differentiating the equation defining

the recursive relationship between B-splines, but it is not always convenient or preferable to

have to derive new recursive formulas every time one wants to perform some procedure with

B-splines.
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These reasons are in part why we turn to A-splines. B-splines, for all their faults, are rela-

tively cheap to compute, and certainly had great importance in the past when computational

power was more limited.

8



4 A-Splines

4.1 Standard A-splines

Motivation

A-splines are an alternative way of generating a basis of the spline family SD to the well-

known B-spline construction ([1]). One major advantage to using A-splines is the ability to

easily obtain polynomial representations of splines, as will be apparent through the method

described below. The A-spline basis is orthonormal with respect to the standard L2 inner

product on C([a, b];R) and this facilitates L2 approximations of f .

Representation

One must choose the local polynomial representation of the spline that is conducive to accu-

rate and stable computational procedures for determining the spline coefficients. Consider

the form

y = a0 + a1t+ · · ·+ aDtD

over a spline panel [tj−1, tj], where a0, · · · , aD ∈ R are the coefficients. Suppose h =

max(tj − tj−1) is small. If a0 through aD are stored imperfectly as ã0 through ãD, re-

spectively, and |ai− ãi| ≈ ε for each i, then the error induced by the term ãiti over this panel

is roughly ε|tj|i, which is bad because this means the accuracy of our approximation scheme

will be dependent on the distance of the panel from 0. Ideally we would like the accuracy of

the approximation to be translationally invariant.

One might attempt to amend this issue using the representation

y = a0 + a1(t− tj−1) + a2(t− tj−1)2 + · · ·+ aD(t− tj−1)D
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but now, assuming the same error in numerical representation of the coefficients, the error

contributed by the term ãi(t − tj−1)i is roughly εhi, which is bad because over any given

panel, the terms with higher powers of t will be more accurate than terms with lower powers

of t. This representation also leads to large coefficients of higher powers of t, and indirectly

inhibits the stable construction of spline coefficients.

If one considers the form

y = a0 + a1

(
t− tj−1

tj − tj−1

)
+ a2

(
t− tj−1

tj − tj−1

)2

+ · · ·+ aD
(
t− tj−1

tj − tj−1

)D

then performing the same heuristic error analysis for this representation as in the previous

two cases, we find that the error from faulty representation of the coefficient emanating from

the term ai

(
t− tj−1

tj − tj−1

)i
is roughly ε, independent of i, j, and even h. This is clearly the

best representation, and that used for A-splines.

Procedure for generating A-splines and approximating f

We are trying to construct a spline approximation to f using the A-spline construction. This

entails finding a basis for SD and then finding the L2-projection of f onto SD. The general

procedures are described in ([1]), but for completeness we outline them here. The following

steps are used to create an A-spline basis:

(1) Associate polynomial coefficients to splines in SD over each panel [tj−1, tj], using no-

tation hj = tj − tj−1, with

Sj(t) = a0
j + a1

j

(
t− tj−1

hj

)
+ · · ·+ aDj

(
t− tj−1

hj

)D
(6)

and S(t) = Sj(t) for t ∈ [tj−1, tj], j = 1, . . . ,M , where S ∈ SD. Note: S is well-defined at

the knots tj due to continuity constraints.
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(2) The required continuity & smoothness properties of the splines form an underdeter-

mined homogeneous linear system for the coefficients, Pa = 0, where P ∈ R(M−1)D×M(D+1).

These constraints are

S
(l)
j (tj) = S

(l)
j+1(tj) (7)

for l = 0, 1, . . . , D − 1, which translates to equations for the spline coefficients akj

l!

0!

alj
hlj

+
(l + 1)!

1!

al+1
j

hlj
+ · · ·+ D!

(D − l)!
aDj
hlj

=
l!alj+1

hlj+1

(8)

for j = 1, 2, . . . ,M − 1 and l = 0, 1, . . . , D − 1. We can move all terms to the LHS of this

last equation, and then write it in the form Pa = 0, where a ∈ RM(D+1) are the spline basis

coefficients. Multiplying the rows of P by min(hlj, h
l
j+1) will in general result in P being

better conditioned.

(3) The problem of finding a basis in C([a, b];R) of splines in the subspace SD becomes

a problem of finding a basis in RM(D+1) of spline coefficient vectors a solving the homoge-

neous system above. Note that Pa = 0 ⇐⇒ a ∈ im(P t)⊥, so we may instead find a basis

for the orthogonal complement of the image of P t (with respect to the standard l2 vector

inner product).

(4) Orthonormalize the columns of P t and then form a basis for the complement by cre-

ating a collection of M + D vectors with random coefficients and orthonormalizing them

with respect to the orthogonalized columns of P t.

(5) Generate a new basis of coefficient vectors corresponding to a basis of splines in SD

that is orthonormal with respect to the standard L2 inner product on C([a, b];R). If splines

S, T ∈ SD have respective spline coefficients akj , b
k
j , then an elementary integral computation
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yields ∫ b

a

S(x)T (x)dx =
M∑
j=1

∫ tj

tj−1

Sj(x)Tj(x)dx =
M∑
j=1

2D∑
k=0

∑
p+q=k

hja
p
jb
q
j

k + 1
(9)

Note that if we use the (Hilbert matrix) notation

J ′ =



1 1/2 1/3 · · · 1/(D + 1)

1/2 1/3
...

1/3
. . .

...

1/(D + 1) · · · 1/(2D + 1)



J =



h1J
′

h2J
′

. . .

hMJ
′


, a =



a0
1

...

aD1
...

a0
M

...

aDM



, b =



b0
1

...

bD1
...

b0
M

...

bDM


then the L2 inner product of the splines S, T associated with coefficient vectors a, b ∈

RM(D+1) is

〈S, T 〉L2 =

∫ b

a

S(x)T (x)dx = atJb =: 〈a, b〉J (10)

Now we orthonormalize our basis vectors found in the previous step w.r.t. this new in-

ner product on RM(D+1), which is equivalent to performing Gram-Schmidt on the associ-

ated splines and then converting back to coefficients. This generates coefficient vectors

{ai ∈ RM(D+1) : i = 1, . . . ,M + D} corresponding to an L2-orthonormal basis {si} of SD.

We call this basis {si} of SD the A-spline basis, and the si’s A-splines.
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(6) With an orthonormal basis of SD, one can create an approximation to a given func-

tion f , using projection. Specifically, the L2 projection of f onto SD is obtained using

S(f) := f || =
M+D∑
i=1

˜〈f, si〉si (11)

where S(·) is the spline operator that takes functions to their L2 spline approximants in SD,

the inner product ˜〈f, si〉 =
∫ T
t0
f(t)si(t)dt is computed approximately using a quadrature

rule like Trapezoidal rule, and f = f || + f⊥, where f⊥ would be orthogonal to the space

SD if our quadrature rule were exact. To combat numerical imprecision brought upon by

imperfectly orthogonalized basis splines, we can alternatively solve a least squares problem

for the coefficients of each si on the RHS of the above equation. See ([1]) for details.
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4.2 Exponential A-Splines

Motivation

Exponential A-splines are very similar in construction to A-splines, but they allow for ad-

ditional parameters to give greater control over monotonicity/smoothing properties of the

spline approximations ([15]). Many physical phenomena, e.g. those that can be modeled by

a linear differential equation system like

d~x

dt
= A~x (12)

exhibit trajectories which can suddenly grow or decay, and it is often the case that polynomi-

als are ill-suited for approximating these trajectories. It is towards this end that we modify

the structure of the components of splines in order to accommodate such trajectories. Here,

this is accomplished by appending two exponential terms to each piecewise polynomial part.

Two different forms

It should be noted that there exist different generalizations from splines to exponential

splines; another common form is the general solution over each panel to the differential

equation

(D− α1)k1(D− α2)k2 · · · (D− αl)kly =
M−1∑
m=1

bmδ(t− tm) (13)

for some α1, . . . , αl ∈ R distinct, b1, . . . , bM−1 ∈ R, and k1, . . . , kl ∈ N, where D is the

standard differential operator, i.e.

Dy = y′ =
dy

dt
(14)

and δ(t− tm) is the Dirac delta, defined distributionally so that

∫ b

a

f(t)δ(t− tm)dt = f(tm) (15)
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for continuous f , where a = t0 ≤ t1 ≤ t2 ≤ · · · tM−1 ≤ tM = b are the knots.

This alternative description of exponential splines yields the form

y = (a0
1 + a1

1t+ · · ·+ ak1−1
1 tk1−1)eα1t + · · ·+ (a0

l + a1
l t+ · · ·+ akl−1

l tkl−1)eαlt (16)

over each panel, with possibly discontinuous Dth derivatives at the knots, where

D = −1 +
M∑
m=1

km. (17)

Specifically,

y(D)(t+m)− y(D)(t−m) = lim
t→t+m

y(D)(t)− lim
t→t−m

y(D)(t) = bm (18)

This is the version of exponential splines explored by e.g. Christensen & Massopust ([14]).

The version of exponential splines explored here will instead take on the form

y = a0 + a1t+ · · ·+ aDtD + aD+1e−αt + aD+2eαt (19)

over each spline panel, i.e. a polynomial part of degree D and two additional exponential

terms. In fact, we will do some normalization of these terms, as will be evident in the next

subsection, in order to improve computational accuracy. Note that subscripts on the coeffi-

cients will generally denote which panel we are on, and the superscript will generally denote

the power of t associated with that coefficient. Unlike the other version, we can have a

different exponential parameter α over each spline panel, instead of the same fixed α1, . . . , αl

over each panel.

The choice of this form for the exponential splines matches that of McCartin ([15]). The

reason for this choice is it facilitates the construction of an orthonormal basis of exponen-
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tial splines, and produces splines which are not much more computationally expensive than

standard splines, while still capturing the dominant behavior of the more generalized expo-

nential splines. It is observed heuristically that the two additional exponential terms are

sufficient for correctly mimicking the growth/decay, as well as monotonicity, of the function

being approximated.

Representation

Just as in the case of standard A-splines, we will employ the following normalization for

exponential A-splines:

y = a0 + a1

(
t− tj−1

tj − tj−1

)
+ a2

(
t− tj−1

tj − tj−1

)2

+ · · ·+ aD
(
t− tj−1

tj − tj−1

)D
(20)

+aD+1 exp

(
ρj
tj−1 − t
tj − tj−1

)
+ aD+2 exp

(
ρj

t− tj
tj − tj−1

)

over the interval [tj−1, tj].

Generating exponential A-splines and approximating f

The procedure here will resemble that for standard A-splines, but with the two additional

exponential terms. The ρj parameters associated with each panel [tj, tj+1] together form

the tension of the exponential spline. Just as in the case for standard A-splines, we will

try to construct a spline approximation to f using the exponential A-spline construction.

This entails finding a basis for ED, the space of exponential splines with polynomial part D,

namely the solutions to the differential equation

DD+1

(
D2 −

M∑
j=1

α2
j1[tj−1,tj)(t)

)
y =

M−1∑
m=1

bjδ(t− tj) (21)
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where D is the standard differential operator, α1, . . . , αM ∈ R are the tensions over each

panel, 1A(t) =


1 t ∈ A

0 t /∈ A
is the standard indicator function over a set, b1, . . . bM−1 ∈ R

are the discontinuous jumps in the (D + 2)th derivative across the knots

a = t0 ≤ t1 ≤ · · · ≤ tM−1 ≤ tM = b, (22)

and δ(t− tj) is the Dirac delta defined above. The tensions will be normalized to match the

form given above:

ρj = αj(tj − tj−1), j = 1, 2, . . . ,M (23)

We will then find the L2-projection of f onto ED, by performing the following steps:

(1) Associate coefficients to splines in ED over each panel [tj−1, tj], with

Sj(t) = a0
j + a1

j

(
t− tj−1

hj

)
+ a2

j

(
t− tj−1

hj

)
+ · · ·+ aDj

(
t− tj−1

hj

)D
(24)

+aD+1
j exp

(
ρj
tj−1 − t
hj

)
+ aD+2

j exp

(
ρj
t− tj
hj

)

and S(t) = Sj(t) for t ∈ [tj−1, tj], j = 1, . . . ,M , where S ∈ ED. The tensions ρj ∈ (0,∞) are

prescribed in advance. hj = tj − tj−1 are the panel widths. Note: S is well-defined at the

knots tj due to continuity constraints.

(2) The required continuity & smoothness properties of the splines as an underdetermined

homogeneous linear system for the coefficients, Pa = 0, where P ∈ R(M−1)(D+2)×M(D+3).

These constraints are

S
(l)
j (tj) = S

(l)
j+1(tj) (25)
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for l = 0, 1, . . . , D − 1, which translates to equations for the spline coefficients akj

l!

0!

alj
hlj

+
(l + 1)!

1!

al+1
j

hlj
+ · · ·+ D!

(D − l)!
aDj
hlj

+ aD+1
j

(
−ρj
hj

)l
exp(−ρj) + aD+2

j (ρjhj)
l =

l!alj+1

hlj+1

+ aD+1
j+1

(
−ρj+1

hj+1

)l
+ aD+2

j+1

(
ρj+1

hj+1

)l
exp(−ρj+1) (26)

for j = 1, 2, . . . ,M−1 and l = 0, 1, . . . , D+1. We have (D+2) many smoothness constraints

on the spline for each interior knot, of which there are (M − 1). We can move all terms to

the LHS of this last equation, and then write it in the form Pa = 0, where a ∈ RM(D+3)

houses the spline coefficients (we need (D+ 3) many coefficients per panel, and there are M

many panels). Multiplying the rows of P by min(hlj, h
l
j+1) will in general result in P being

better conditioned, so this is usually a good idea.

(3) The problem of finding a basis in C([a, b];R) of exponential splines in the subspace

ED becomes a problem of finding a basis in RM(D+1) of spline coefficient vectors a solving

the homogeneous system above. Note that Pa = 0 ⇐⇒ a ∈ im(P t)⊥, so we may instead

find a basis for the orthogonal complement of the image of P t (with respect to the standard

l2 vector inner product).

(4) Orthonormalize the columns of P t and then form a basis for the complement by cre-

ating a collection of M +D+ 2 vectors with random coefficients and orthonormalizing them

with respect to the orthogonalized columns of P t.

(5) Generate a new basis of coefficient vectors corresponding to a basis of splines in ED

that is orthonormal with respect to the standard L2 inner product on C([a, b];R). If splines

S, T ∈ ED have respective spline coefficients akj , b
k
j for k = 0, 1, . . . , D+2 and j = 1, 2, . . . ,M ,
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then an elementary but tedious integral computation yields

∫ b

a

S(x)T (x)dx =
M∑
j=1

∫ tj

tj−1

Sj(x)Tj(x)dx (27)

=
M∑
j=1

2D∑
k=0

∑
p+q=k

hja
p
jb
q
j

k + 1
(28)

+
M∑
j=1

D∑
k=0

hj(a
k
j b
D+1
j + aD+1

j bkj )

(
k!(1− e−ρj)

ρk+1
j

−
k−1∑
l=0

k!e−ρj

(k − l)!ρl+1
j

)

+
M∑
j=1

D∑
k=0

hje
−ρj(akj b

D+1
j + aD+1

j bkj )

(
(−1)kk!(eρj − 1)

ρk+1
j

−
k−1∑
l=0

(−1)lk!eρj

(k − l)!ρl+1
j

)

+
M∑
j=1

hja
D+1
j bD+1

j

2ρj

(
1− e−2ρj

)
+

M∑
j=1

hj(a
D+1
j bD+2

j + aD+2
j bD+1

j )e−ρj

+
M∑
j=1

hja
D+2
j bD+2

j

2ρj

(
eρj − e−ρj

)
Note that if we use the notation

J ′j =



1 1/2 1/3 · · · 1/(D + 1) α0
j β0

j

1/2 1/3
... α1

j β1
j

1/3
. . . α2

j β2
j

...
...

1/(D + 1) · · · 1/(2D + 1) αDj βDj

α0
j α1

j α2
j · · · αDj γ1

j γ2
j

β0
j β1

j β2
j · · · βDj γ3

j γ4
j
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J =



h1J
′

h2J
′

. . .

hMJ
′


, a =



a0
1

...

aD+2
1

...

a0
M

...

aD+2
M



, b =



b0
1

...

bD+2
1

...

b0
M

...

bD+2
M


αkj =

k!(1− e−ρj)
ρk+1
j

−
k−1∑
l=0

k!e−ρj

(k − l)!ρl+1
j

βkj =
(−1)kk!(eρj − 1)

ρk+1
j

−
k−1∑
l=0

(−1)lk!eρj

(k − l)!ρl+1
j

γ1
j =

1− e−2ρj

2ρj

γ2
j = e−ρj

γ3
j = γ2

j

γ4
j =

eρj − e−ρj
2ρj

then the L2 inner product of the exponential splines S, T associated with coefficient vectors

u, v ∈ RM(D+3) is

〈S, T 〉L2 =

∫ b

a

S(x)T (x)dx = utJv =: 〈u, v〉J (29)

Now we orthonormalize our basis vectors found in the previous step w.r.t. this new in-

ner product on RM(D+3), which is equivalent to performing Gram-Schmidt on the associ-

ated splines and then converting back to coefficients. This generates coefficient vectors

{ai ∈ RM(D+3) : i = 1, . . . ,M + D + 2} corresponding to an L2-orthonormal basis {si} of

ED. We call this basis {si} of ED the exponential A-spline basis, and the si’s exponential
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A-splines. Note that this family of exponential A-splines is dependent on a combination of

the pre-specified tensions, knots, and polynomial part degree.

(6) With an orthonormal basis of ED, one can create an approximation to a given func-

tion f , using projection. Specifically, the L2 projection of f onto ED is obtained using the

orthogonal projection formula

S(f) := f || =
M+D+2∑
i=1

˜〈f, si〉si (30)

where S(·) is the spline operator that takes functions to their L2 spline approximants in

ED, the inner product ˜〈f, si〉 =
∫ T
t0
f(t)si(t)dt is computed approximately using a quadrature

rule like Trapezoidal rule, and f = f || + f⊥, where f⊥ would be orthogonal to the space

ED if our quadrature rule were exact. To combat numerical imprecision brought upon by

imperfectly orthogonalized basis splines, we can alternatively solve a least squares problem

for the coefficients of each si on the RHS of the above equation.
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5 C-splines

5.1 Standard C-splines

Description

In order to prove a certain convergence result for exponential A-splines, we need to introduce

another type of spline to help us with that task. These are the C-splines, where the “C”

stands for“cycle”. The idea behind them is to construct a spline that periodically exactly

matches a Taylor polynomial of the desired function to approximate. In the case of a standard

spline of degree D, with (D + 1) degrees of freedom per panel, we can accomplish this

matching the degree d Taylor polynomial for f exactly once every (D + 1) panels. We

assume d ≤ D here. The construction yields a Hermite-style spline, where we match not

only function value but also derivatives at a point. In contrast to traditional Hermite splines,

we do not impose interpolation/osculatory conditions at every knot; rather, we do so only

every (D + 1) many knots.

Motivation

The reason this type of spline assists in establishing error bounds for the exponential A-

spline procedure, is there is an analogous construction of C-splines that are exponential

splines, and we can easily develop error bounds for this type of spline. This will establish

an upper bound on the “closeness” of exponential splines to a function being approximated.

Since the exponential A-spline procedure finds the closest exponential spline in ED to the

desired function (in the L2 sense), the error bound for C-splines results in an error bound

for exponential splines.
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Properties and Discussion of standard C-splines

The defining feature of C-splines is that they match a certain Taylor polynomial of f every

(D + 1) many panels. This property easily gives us some salient information about these

splines.

First, they are semi-local approximations, so that errors in one section of (D + 1) panels

do not propagate to the next section of (D + 1) panels. This will be demonstrated through

plots in the analysis section, where we also demonstrate general error bounds for C-splines.

Since the Taylor polynomial of degree d is in general accurate to order O(hd+1), assuming

sufficient differentiability of the underlying function, we already have a very natural error

bound to work with for C-splines. In fact, we can even quantify the closeness of derivatives

of C-splines to the corresponding derivatives of the underlying functions they approximate.

This will be seen in the analysis section.

A C-spline approximation can be efficiently computed, just requiring work that is linear

in the number of panels M and quartic in the degree D, i.e. the computational complexity

of producing C-splines is O(MD4).

C-splines are flexible in that they can be “grafted” onto existing splines, extending them

as needed. If we wish to extend a spline without redoing it entirely, we can accomplish this

by appending C-splines to it. This is a crucial characteristic that is a result of C-splines

being semi-local. This is also a unique characteristic of C-splines that is not enjoyed by most

other types of splines; notably B-splines. The A-spline procedure can be manufactured to

enforce certain osculatory behavior of the spline at the leftmost endpoint, so it is possible

to “extend” splines by using A-splines, though doing this would also decrease the number of

A-splines in the A-spline basis used for L2 projection.
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By selecting the d parameter appropriately, we can limit the degree of the Taylor polynomial

to match according to however many derivatives f has. If f has unbounded behavior in one

of its later derivatives, we can shield the spline from emulating this blow-up by designing

the spline to match a Taylor polynomial of lesser degree where the relevant derivative of f

misbehaves. Since the blocks in between the panels where the Taylor polynomial is matched

are completely independent of each other, C-splines can be computed in parallel. This

is especially advantageous in the modern era, in which processor speeds are stagnating but

processor core counts are growing, making parallelization a desirable trait among algorithms.

Overall, C-splines are very robust, cheap, and flexible in their placement. Three down-

sides are: (1) in between the panels where the Taylor polynomial is matched exactly, we lose

a power of h in the accuracy (details in the analysis section); (2) C-splines are relatively

inflexible in the role that they play approximating f (i.e., we might not necessarily want to

periodically match Taylor polynomials of f , we might want a different idea for our approx-

imation); and (3) in order to construct C-splines, we need to know derivative information

about f once every (D+ 1) panels (though, there are ways around this, e.g. by approximat-

ing these derivatives with finite differences). However, independently from their practical

use as a family of splines for approximating functions, they are particularly useful for the

purpose of establishing error bounds for exponential splines.

Finally, as the algorithm described next will demonstrate, a key idea within C-splines is

treating the (D + 1)th coefficients of each spline panel as controls for whatever purpose

we devise. The previous coefficients are locked into place according to the continuity con-

straints imposed on splines in SD, but we have full control over the very last coefficient.

Parametrizing these “controls” can enable us to satisfy a number of desirable conditions, not

just periodically matching Taylor polynomials.
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Representation

We will represent standard C-splines in exactly the same way we represent standard A-

splines, namely,

yj = a0
j + a1

j

(
t− tj−1

tj − tj−1

)
+ a2

j

(
t− tj−1

tj − tj−1

)2

+ · · ·+ aDj

(
t− tj−1

tj − tj−1

)D
(31)

over the jth panel, [tj−1, tj]. We will also use the panel width notation hj = tj − tj−1.

Generating standard C-splines and approximating f

Let f be the function we wish to approximate. Let the knots

a = t0 < t1 < t2 < · · · < tM−1 < tM = b

be decided upon in advance. Let D be the degree of the spline we wish to produce, existing

within SD (i.e., the spline will be (D−1) times continuously differentiable). Let d ∈ N∪{0}

be the degree of the Taylor polynomial of f we wish to match every (D + 1) many panels.

First we try to quantify how the choice of aDj affects the coefficients aij+1 for i = 0, 1, . . . , D−1.

The mechanism by which the last coefficient will impact the coefficients of the next panel, is

of course the continuity constraints on the spline. The derivative continuity condition across

node tj is

S
(i)
j (tj) =

i!aij
hij

+
(i+ 1)!

1!
·
ai+1
j

hij
+

(i+ 2)!

2!
·
ai+2
j

hij
+ · · ·+ D!

(D − i)!
·
aDj
hij

=
i!aij+1

hij
= S

(i)
j+1(tj) (32)

for i = 0, 1, . . . , D − 1. Isolating the coefficient aij+1 yields

aij+1 =

(
hj+1

hj

)i 
i
i

 aij +

i+ 1

i

 ai+1
j + · · ·+

D
i

 aDj

 , i = 0, 1, . . . , D − 1 (33)
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We can represent these equations in a linear system, as follows:



a0
j+1

a1
j+1

a2
j+1

...

aD−1
j+1



=



(
hj+1

hj

)0

0

0

 (
hj+1

hj

)0

1

0

 · · ·
(
hj+1

hj

)0

D − 2

0

 (
hj+1

hj

)0

D − 1

0


0

(
hj+1

hj

)1

1

1

 · · ·
(
hj+1

hj

)1

D − 2

1

 (
hj+1

hj

)1

D − 1

1


0 0 · · ·

(
hj+1

hj

)2

D − 2

2

 (
hj+1

hj

)2

D − 1

2


...

0 0 · · · 0

(
hj+1

hj

)D−1

D − 1

D − 1







a0
j

a1
j

a2
j

...

aD−1
j



+aDj



(
hj+1

hj

)0

D
0


(
hj+1

hj

)1

D
1


(
hj+1

hj

)2

D
2


...(

hj+1

hj

)D−1

 D

D − 1





(34)
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Using the notation

aj =



a0
j

a1
j

a2
j

...

aD−1
j



Aj =



(
hj+1

hj

)0

0

0

 (
hj+1

hj

)0

1

0

 · · ·
(
hj+1

hj

)0

D − 2

0

 (
hj+1

hj

)0

D − 1

0


0

(
hj+1

hj

)1

1

1

 · · ·
(
hj+1

hj

)1

D − 2

1

 (
hj+1

hj

)1

D − 1

1


0 0 · · ·

(
hj+1

hj

)2

D − 2

2

 (
hj+1

hj

)2

D − 1

2


...

0 0 · · · 0

(
hj+1

hj

)D−1

D − 1

D − 1
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bj =



(
hj+1

hj

)0

D
0


(
hj+1

hj

)1

D
1


(
hj+1

hj

)2

D
2


...(

hj+1

hj

)D−1

 D

D − 1




we can condense this “update” equation to

aj+1 = Ajaj + aDj bj (35)

Now, fixing j, we can begin the cycle of preparing the next matched Taylor polynomial.

Specifically, given any coefficient vector aj, we can use this update equation to express the

coefficient vector (D + 1) many panels to the right, namely, aj+(D+1), in terms of aj and

the undetermined coefficients aDj+1, . . . , a
D
j+D. Since we have the power to choose these latter

coefficients (the coefficients corresponding to the largest power of t in the spline representa-

tion over each panel), this gives us D degrees of freedom. Forcing the D-dimensional vector

aj+D+1 to have coefficients prescribed according to the Taylor polynomial of f of degree d

over panel [tj+D, tj+D+1] imposes D constraints. So, we end up with a D by D linear system,

aj+1 = Ajaj + aDj bj (36)

aj+2 = Aj+1aj+1 + aDj+1bj+1 (37)

= Aj+1Ajaj + aDj Aj+1bj + aDj+1bj+1 (38)

aj+3 = Aj+2aj+2 + aDj+2bj+2 (39)
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= Aj+2Aj+1Ajaj + aDj Aj+2Aj+1bj + aDj+1Aj+2bj+1 + aDj+2bj+2 (40)

... (41)

aj+(D+1) = Aj+DAj+D−1 · · ·Ajaj +
D∑
k=0

aDj+k

[
D−k∏
l=1

Aj+D+1−l

]
bj+k (42)

= Aj+DAj+D−1 · · ·Ajaj + aDj Aj+DAj+D−1 · · ·Aj+1bj +
D∑
k=1

aDj+k

[
D−k∏
l=1

Aj+D+1−l

]
bj+k

(43)

= Aj+DAj+D−1 · · ·Aj+1(Ajaj + aDj bj) +
D∑
k=1

aDj+k

[
D−k∏
l=1

Aj+D+1−l

]
bj+k (44)

Now we can isolate the variables aDj+1, . . . , a
D
j+D in terms of all the other (known) quantities:

Cj



aDj+1

aDj+2

...

aDj+D



= aj+(D+1) − Aj+DAj+D−1 · · ·Aj+1(Ajaj + aDj bj) (45)

=⇒



aDj+1

aDj+2

...

aDj+D



= C−1
j

(
aj+(D+1) − Aj+DAj+D−1 · · ·Aj+1(Ajaj + aDj bj)

)
(46)
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where

Cj =

[[
D−1∏
l=1

Aj+D+1−l

]
bj+1

[
D−2∏
l=1

Aj+D+1−l

]
bj+2 · · ·

[
1∏
l=1

Aj+D+1−l

]
bj+D−1 bj+D

]
∈ RD×D.

(47)

It will be demonstrated in the analysis section that this matrix Cj is invertible.

We can explicitly solve for aj+(D+1) by matching the degree d Taylor polynomial at node

tj+D, by heeding
k!akj+(D+1)

hkj+(D+1)

= S
(k)
j+(D+1)(tj+D) = f (k)(tj+D) (48)

for k = 0, 1, . . . , d and setting akj+(D+1) = 0 for k = d+ 1, . . . , D. That is,

aj+(D+1) =



a0
j+(D+1)

a1
j+(D+1)

...

adj+(D+1)

ad+1
j+(D+1)

...

aDj+(D+1)



=



(hj+(D+1))
0f(tj+D)

0!

(hj+(D+1))
1f ′(tj+D)

1!

...

(hj+(D+1))
df (d)(tj+D)

d!

0

...

0



(49)
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The overall procedure is:

(1) Start with any set of coefficients a1 ∈ RD+1 on the first panel [t0, t1].

(2) Use equation (49) to solve for the spline coefficients needed (D + 1) panels to the right

(3) Use equation (46) to solve for the coefficients of the highest power terms for each inter-

mediate interval

(4) Use the update equation (35) to update all the remaining coefficients over each in-

termediate panel

(5) Repeat the process over again, cycling through steps (1) through (4) until there are

fewer than (D + 1) panels to the right

(6) Once we can no longer continue the process due to not having enough panels to the

right, we simply choose the coefficients of the highest powers of t over the remaining panels,

namely, aDj+1, a
D
j+2, . . . , a

D
M , so that the Dth derivatives of the spline and the function match

up at the nodes tj, tj+1, . . . , tM−1. Note: if d < D, then we may instead simply set these

coefficients to 0.

This gives us the standard C-spline approximation to f .
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In figures (1) through (10), we give some salient examples of C-splines to demonstrate the

properties discussed above. The first figure shows how a quadratic C-spline can periodically

match the 0th degree Taylor polynomial of a sine function. We see this manifest in regions

where the spline is flat. This procedure is replicated with cubic splines, which demonstrates

the same phenomenon. As we increase the degree of the Taylor polynomial matched, the

spline becomes more accurate, as evidenced by the shrinking error. Once we reach the

maximum degree Taylor polynomial that a spline of a certain degree can replicate (namely,

the degree of the spline itself), we may further shrink the error by refining the panel width,

as is done in the last few figures. It is important to note two observations with these graphs:

(1) due to the semi-local nature of these splines, and the periodicity of the underlying sine

function they are approximating, we expect the error plots to look periodic; and (2) due

to the crude approximation scheme used when there are not enough panels to the right

to match the next Taylor polynomial, we expect the errors to magnify towards the right

endpoint. Both of these phenomena are demonstrated in these examples.

Figure 1: Quadratic C-spline that matches the degree 0 Taylor polynomial of a sine function
once every 3 panels, 10 panels in total
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Figure 2: Quadratic C-spline that matches the degree 1 Taylor polynomial of a sine function
once every 3 panels, 10 panels in total

Figure 3: Cubic C-spline that matches the degree 0 Taylor polynomial of a sine function
once every 4 panels, 40 panels in total
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Figure 4: Cubic C-spline that matches the degree 1 Taylor polynomial of a sine function
once every 4 panels, 40 panels in total

Figure 5: Cubic C-spline that matches the degree 2 Taylor polynomial of a sine function
once every 4 panels, 40 panels in total
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Figure 6: Cubic C-spline that matches the degree 3 Taylor polynomial of a sine function
once every 4 panels, 40 panels in total

Figure 7: Cubic C-spline that matches the degree 3 Taylor polynomial of a sine function
once every 4 panels, 80 panels in total
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Figure 8: Cubic C-spline that matches the degree 3 Taylor polynomial of a sine function
once every 4 panels, 160 panels in total

Figure 9: Cubic C-spline that matches the degree 3 Taylor polynomial of a sine function
once every 4 panels, 320 panels in total
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Figure 10: Cubic C-spline that matches the degree 3 Taylor polynomial of a sine function
once every 4 panels, 640 panels in total

5.2 Exponential C-splines

Description

In order to demonstrate how close exponential splines can get to functions they approximate

(in the L2 sense), we will find at least one candidate exponential spline that is sufficiently

close. This will be accomplished with exponential C-splines, which are the exponential vari-

ant of the standard C-splines just described.

Exponential C-splines are exponential splines (in the sense defined above) with polynomial

part of degree D, that match the 0th through (d + 2)th derivative of f periodically every

(D + 3) many panels, where d ≤ D.

Equivalently, if we expand out the two exponential terms appearing in each spline panel

as

exp

(
ρj
tj−1 − t
tj − tj−1

)
= 1 + ρj

(
tj−1 − t
tj − tj−1

)
+
ρ2
j

2!

(
tj−1 − t
tj − tj−1

)2

+ · · · (50)
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and

exp

(
ρj

t− tj
tj − tj−1

)
= 1 + ρj

(
t− tj
tj − tj−1

)
+
ρ2
j

2!

(
t− tj
tj − tj−1

)2

+ · · · (51)

then we are just ensuring that every (D + 3) many panels, our exponential spline approxi-

mation to f correctly matches the terms up to order (D + 2) of the degree (d + 2) Taylor

polynomial to f .

Properties of exponential C-splines

The properties of these splines are essentially identical to those of standard C-splines, with

the additional benefit that we can select tension parameters (ρj)
M
j=1 to be high on panels

where f induces oscillatory behavior in the approximation and low on panels where f doesn’t

induce oscillatory behavior. The representation being used is

Sj(t) = a0
j + a1

j

(
t− tj−1

hj

)
+ a2

j

(
t− tj−1

hj

)
+ · · ·+ aDj

(
t− tj−1

hj

)D
+aD+1

j exp

(
ρj
tj−1 − t
hj

)
+ aD+2

j exp

(
ρj
t− tj
hj

)
(52)

Generating exponential C-splines and approximating f

The ith derivative of this approximation is given by

S
(i)
j (t) = aij

i!

(hj)i
+ ai+1

j

(i+ 1)!

1!(hj)i

(
t− tj−1

hj

)
+ ai+2

j

(i+ 2)!

2!(hj)i

(
t− tj−1

hj

)2

+ · · ·

+aDj
(D)!

(D − i)!(hj)i

(
t− tj−1

hj

)D−i
+ aD+1

j

(
−ρj
hj

)i
exp

(
ρj
tj−1 − t
hj

)
+aD+2

j

(
ρj
hj

)i
exp

(
ρj
t− tj
hj

)
(53)

which implies, at the panel endpoints,

S
(i)
j (tj−1) = aij

i!

(hj)i
+ aD+1

j

(
−ρj
hj

)i
+ aD+2

j

(
ρj
hj

)i
exp (−ρj) (54)
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and

S
(i)
j (tj) = aij

i!

(hj)i
+ ai+1

j

(i+ 1)!

1!(hj)i
+ ai+2

j

(i+ 2)!

2!(hj)i
+ · · ·+ aDj

(D)!

(D − i)!(hj)i
+

aD+1
j

(
−ρj
hj

)i
exp (−ρj) + aD+2

j

(
ρj
hj

)i
(55)

This makes the derivative continuity condition across node tj

aij
i!

(hj)i
+ ai+1

j

(i+ 1)!

1!(hj)i
+ ai+2

j

(i+ 2)!

2!(hj)i
+ · · ·+ aDj

(D)!

(D − i)!(hj)i
+ aD+1

j

(
−ρj
hj

)i
exp (−ρj) + aD+2

j

(
ρj
hj

)i
= S

(i)
j (tj)

= S
(i)
j+1(tj)

= aij+1

i!

(hj+1)i
+ aD+1

j+1

(
−ρj+1

hj+1

)i
+ aD+2

j+1

(
ρj+1

hj+1

)i
exp (−ρj+1) (56)

for i = 0, 1, . . . , D + 1. Also, once every (D + 3) many panels, we will want to enforce the

matching of the Taylor polynomial, leading to the constraints

aij
i!

(hj)i
+ aD+1

j

(
−ρj
hj

)i
+ aD+2

j

(
ρj
hj

)i
exp (−ρj)

= S
(i)
j (tj−1)

= f (i)(tj−1) (57)

for i = 0, 1, . . . , d+ 2, and

aij
i!

(hj)i
+ aD+1

j

(
−ρj
hj

)i
+ aD+2

j

(
ρj
hj

)i
exp (−ρj)

= S
(i)
j (tj−1)

= 0 (58)
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for i = d+3, d+4, . . . , D+2. This will ensure that Sj is the degree (d+2) Taylor polynomial

of f centered at tj−1, correct up to order (D + 2).

At this point, we could proceed in one of two ways. We could parametrize the last co-

efficient on each intermediate spline panel, set up a linear system to solve for them, and then

use an update equation (determined by the derivative continuity constraints) to update the

remaining coefficients over each intermediate spline panel. This is an awkward construction,

since the last coefficient of each spline panel doesn’t have the same simple interpretation as

that of standard C-splines. Instead, we construct a linear system and solve for all coefficients

of the exponential spline in a batch of (D+3) panels. This results in a banded system whose

solution has similar computational complexity to that of the standard C-spline procedure,

provided an optimal band solver is employed to solve the banded linear system.

The smoothness constraints on the exponential spline, across node tj, result in the linear

system

Lj+1aj+1 = Riaj (59)
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where aj ∈ RD+3 houses the (D + 3) spline coefficients over the jth panel, i.e.

aj =



a0
j

a1
j

...

aDj

aD+1
j

aD+2
j


and Lj+1 and Rj are representations of the smoothness constraints above, so

Lj+1 =



1 0 0 · · · 0 1 e−ρj+1

0 1 0 · · · 0
−ρj+1

1!

ρj+1

1!
e−ρj+1

0 0 1 · · · 0
(−ρj+1)2

2!

(ρj+1)2

2!
e−ρj+1

. . .
...

...

0 0 0 · · · 1
(−ρj+1)D

D!

(ρj+1)D

D!
e−ρj+1

0 0 0 · · · 0
(−ρj+1)D+1

(D + 1)!

(ρj+1)D+1

(D + 1)!
e−ρj+1
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and

Rj =



(
hj+1

hj

)0

0

0

 (
hj+1

hj

)0

1

0

 · · ·
(
hj+1

hj

)0

D
0

 (
hj+1

hj

)0
(−ρj)0

0!
e−ρj

(
hj+1

hj

)0
(ρj)

0

0!

(
hj+1

hj

)1

1

1

 · · ·
(
hj+1

hj

)1

D
1

 (
hj+1

hj

)1
(−ρj)1

1!
e−ρj

(
hj+1

hj

)1
(ρj)

1

1!

. . .
...(

hj+1

hj

)DD
D

 (
hj+1

hj

)D
(−ρj)D

D!
e−ρj

(
hj+1

hj

)D
(ρj)

D

D!(
hj+1

hj

)D+1
(−ρj)D+1

(D + 1)!
e−ρj

(
hj+1

hj

)D+1
(ρj)

D+1

(D + 1)!


It is important to note that both Lj+1 and Rj are in R(D+2)×(D+3).

For exponential C-splines, we will compute the coefficient vectors aj in blocks of (D + 3) at

a time. So, given aj, we will set up a large linear system for aj+1, . . . , aj+D+3 so that aj+D+3

causes the exponential spline to match the degree (d+2) Taylor polynomial (to order (D+2))

on the (J +D + 3)th panel.
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The large linear system to solve for the block of coefficient vectors aj+1, . . . , aj+D+3 is:



ID+3

−Rj Lj+1

−Rj+1 Lj+2

−Rj+2 Lj+3

. . .

−Rj+D+2 Lj+D+3

L̃j+D+3


︸ ︷︷ ︸

E



a0
j

...

aD+2
j

...

a0
j+D+3

...

aD+2
j+D+3


︸ ︷︷ ︸

~a

=



a0
j

...

aD+2
j

0

...

0

(hj+D+3)0f(tj+D+2)/0!

...

(hj+D+3)D+2f (D+2)(tj+D+2)/(D + 2)!


︸ ︷︷ ︸

~b

(60)

where

L̃j+D+3 =



1 0 0 · · · 0 1 e−ρj+D+3

0 1 0 · · · 0
−ρj+D+3

1!

ρj+D+3

1!
e−ρj+D+3

0 0 1 · · · 0
(−ρj+D+3)2

2!

(ρj+D+3)2

2!
e−ρj+D+3

. . .
...

...

0 0 0 · · · 1
(−ρj+D+3)D

D!

(ρj+D+3)D

D!
e−ρj+D+3

0 0 0 · · · 0
(−ρj+D+3)D+1

(D + 1)!

(ρj+D+3)D+1

(D + 1)!
e−ρj+D+3

0 0 0 · · · 0
(−ρj+D+3)D+2

(D + 2)!

(ρj+D+3)D+2

(D + 2)!
e−ρj+D+3



∈ R(D+3)×(D+3)

and where for simplicity’s sake, we assumed d = D. If d < D, then we just replace

f (k)(tj+D+2) with 0 for k = d+ 3, . . . , D + 2 in the vector on the right hand side.

In the equation directly above, we already know a0
j , . . . , a

D+2
j . The large linear system is
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square and of size R(D+4)(D+3)×(D+4)(D+3). It is an elementary procedure to perform Gaus-

sian elimination on this system to advance it to lower triangular form with nonzero diagonal

entries, at which point we may conclude it is invertible. The calculation is omitted.

The overall procedure for approximating f via exponential C-splines is:

(1) Start with any set of coefficients a1 ∈ RD+1 on the first panel [t0, t1].

(2) Use the equation E~a = ~b to solve for the block of spline coefficients aj+1, . . . , aj+D+3

(3) Repeat the process over again, cycling through steps (1) through (2) until there are

fewer than (D + 3) panels to the right

(4) Once we can no longer continue the process due to not having enough panels to the

right, we choose the coefficients of the remaining panels so that the (D + 2)th derivative of

the spline and the function match up at the nodes tj, tj+1, . . . , tM−1. Note: if d < D, then

we may instead treat these derivatives of f as 0.

This gives us the exponential C-spline approximation to f .

In the next section, we discuss the crucial convergence results pertaining to these splines.

44



In figures (11) through (18), we give some salient examples of exponential C-splines to

demonstrate the properties discussed above. The first figure shows how an exponential C-

spline with linear polynomial part can periodically match the 0th degree Taylor polynomial

of an exponential function. We see this manifest in periodic regions where the spline is

flat. As we increase the degree of the Taylor polynomial matched, the spline becomes more

accurate, as evidenced by the shrinking error. Once we reach the maximum degree Taylor

polynomial that our exponential spline (namely, the degree of the spline’s polynomial part,

plus two), we may further shrink the error by refining the panel width, as is done in the

last few figures. It is important to note two observations with these graphs: (1) due to the

semi-local nature of these splines, and the exponential growth of the underlying exponential

function they are approximating, we expect the error curves to look periodic but increasing

exponentially in scale; and (2) due to the crude approximation scheme used when there

are not enough panels to the right to match the next Taylor polynomial, we expect the

errors to magnify towards the right endpoint. Both of these phenomena are demonstrated

in these examples. It should also be noted that even though we are using exponential terms

in our spline approximation, this does not mean the approximation will be exact, since the

coefficients of the exponents are different.
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Figure 11: Cubic exponential C-spline (i.e., with polynomial part of degree 1) that matches
the degree 0 Taylor polynomial of an exponential function once every 4 panels, 10 panels in
total. Uniform panel width, uniform tensions equal to 1.

Figure 12: Cubic exponential C-spline (i.e., with polynomial part of degree 1) that matches
the degree 1 Taylor polynomial of an exponential function once every 4 panels, 10 panels in
total. Uniform panel width, uniform tensions equal to 1.
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Figure 13: Cubic exponential C-spline (i.e., with polynomial part of degree 1) that matches
the degree 2 Taylor polynomial of an exponential function once every 4 panels, 10 panels in
total. Uniform panel width, uniform tensions equal to 1.

Figure 14: Cubic exponential C-spline (i.e., with polynomial part of degree 1) that matches
the degree 3 Taylor polynomial of an exponential function once every 4 panels, 10 panels in
total. Uniform panel width, uniform tensions equal to 1.

47



Figure 15: Cubic exponential C-spline (i.e., with polynomial part of degree 1) that matches
the degree 3 Taylor polynomial of an exponential function once every 4 panels, 20 panels in
total. Uniform panel width, uniform tensions equal to 1.

Figure 16: Cubic exponential C-spline (i.e., with polynomial part of degree 1) that matches
the degree 3 Taylor polynomial of an exponential function once every 4 panels, 40 panels in
total. Uniform panel width, uniform tensions equal to 1.
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Figure 17: Cubic exponential C-spline (i.e., with polynomial part of degree 1) that matches
the degree 3 Taylor polynomial of an exponential function once every 4 panels, 80 panels in
total. Uniform panel width, uniform tensions equal to 1.

Figure 18: Cubic exponential C-spline (i.e., with polynomial part of degree 1) that matches
the degree 3 Taylor polynomial of an exponential function once every 4 panels, 160 panels
in total. Uniform panel width, uniform tensions equal to 1.
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6 Convergence results

6.1 Main convergence result for A-splines

In this section we develop error bounds for the determination of an approximation to a func-

tion f obtained by projecting f onto an orthonormal basis of the spline space SD. We assume

the function to be approximated, f , is orthogonally projected onto the relevant spline space,

SD, without error.

We derive an error bound which shows that for any continuously differentiable function

f , the spline operator produces approximations of f that are more and more accurate as

h ↘ 0 (in the absence of roundoff error), and one obtains higher order convergence with h

the more continuous derivatives f has.

The L2 error bound derived is:

||f − S(f)||2 ≤
(D + 1)!

2j · (D − j)!
· (∆t)j+1 ·

√
tM − t0 · ||f (j+1)||∞, j = 0, 1, . . . , D (61)

with the slight improvement of an additional factor of 2 in the denominator when j = D.

Here, S is the spline operator that orthogonally projects functions onto the spline space

SD, in the L2 sense (i.e., ∀s ∈ SD we have S(s) = s, and for any function φ we have

S(φ) ⊥ (φ − S(φ)) in the L2 sense). The proof of the bound is based on several theorems

from Carl deBoor’s celebrated book on splines (see the Thm. 12.1 Jackson type, from chap-

ter 12), as well as elementary computations involving L2 projections. Since the proof relies

on some delicate facts regarding B-splines, we first give a lemma containing all the needed

facts about B-splines before proving the main convergence result.
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Given the knot sequence t0 < t1 < t2 < · · · < tM , we can define the family of B-splines

of degree D with respect to these knots, via a simple recursive formula. In the recursive

formula, B-splines of degree k will be linear combinations of two B-splines of degree k − 1,

one associated with the same panel, and one associated with the panel one place to the right.

In order to make the recursive definition well-defined, we need to append D additional de-

generate panels at the right endpoint, so we set tM+1 = · · · = tM+D = tM . In order to have

our family of B-splines span all of SD, we will also need to append D additional degenerate

panels at the left endpoint, so we set t−D = · · · = t−1 = t0. With these additional knots

specified, we are ready to give the recursive definition of the B-spline family of degree D.

In the process of obtaining this family, we will also generate B-spline families of all lower

degree with respect to the same knot sequence.

The following recursive definition of B-splines is known as the Cox-de Boor formula. Al-

though it is not the definition of B-splines that de Boor gave in his seminal work in the

field (he used divided differences for the definition), it is quicker to demonstrate the desired

properties using this definition, even if it partly hides some intuition behind the construction.

Define:

B0
j (x) =


1 tj ≤ x < tj+1

0 else

, j = −D, . . . ,M +D − 1 (62)

Bk
j (x) =

x− tj
tj+k − tj

Bk−1
j (x) +

tj+k+1 − x
tj+k+1 − tj+1

Bk−1
j+1 (x), k = 1, . . . , D, j = −D, . . . ,M +D − k − 1

(63)

Then for each k = 0, 1, . . . D, we say {Bk
j }M−1

j=−k is the B-spline family of degree k, with respect

to the knot sequence t0 < t1 < t2 < · · · < tM .
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The following is a lemma establishing the properties of B-splines we’ll use in the error bound

for A-splines.

Lemma 6.1 (B-spline properties). Let the B-spline construction be as above. Then the

following properties hold for all k = 0, 1, . . . , D and all j = −k, . . . ,M − 1:

(1) each Bk
j is nonnegative

(2) each Bk
j has support [tj, tj+k+1]

(3) each Bk
j is positive on the interior of its support

(4) for all x ∈ [t0, tM ], we have
∑

j B
k
j (x) = 1 (that is, {Bk

j }j is a partition of unity)

(5) each Bk
j is a member of Sk (that is, Bk

j is a Ck−1-smooth degree k piecewise polynomial)

Proof. By the construction, each spline Bk
j gains one more panel of support on the right side,

due to the presence of the Bk−1
j+1 term in the recursive definition. Since each B0

j has support

over the single panel [tj, tj+1], we get that each Bk
j has support contained in [tj, tj+k+1].

From the recursive definition of the B-splines, we can use an induction argument to see

that each B-spline is positive on the interior of its support. This is clearly true of B0
j for all

j. Suppose it is true for B-splines of degree k− 1. Then since Bk−1
j has support on [tj, tj+k],

the term
x− tj
tj+k − tj

Bk−1
j (x) is positive for x ∈ (tj, tj+k) and 0 everywhere else. Similarly,

tj+k+1 − x
tj+k+1 − tj+1

Bk−1
j+1 (x) is positive for x ∈ (tj+1, tj+k+1) and 0 everywhere else. Adding these

terms together, we get that Bk
j is positive on (tj, tj+k+1) and 0 everywhere else, completing

the inductive step. This establishes properties (1), (2), and (3).

Also by this construction, for all x ∈ [a, b] we have

∑
j

B0
j (x) = 1 (64)

To show that the B-splines Bk
j of each degree k sum to 1 for all x ∈ [a, b], we appeal to the
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recursive definition, as follows:

∑
j

Bk
j (x) =

∑
j

[
x− tj
tj+k − tj

Bk−1
j (x) +

tj+k+1 − x
tj+k+1 − tj+1

Bk−1
j+1 (x)

]
(65)

=
∑
j

x− tj
tj+k − tj

Bk−1
j (x) +

∑
j

tj+k+1 − x
tj+k+1 − tj+1

Bk−1
j+1 (x) (66)

=
∑
j

x− tj
tj+k − tj

Bk−1
j (x) +

∑
j

tj+k − x
tj+k − tj

Bk−1
j (x) (index shift) (67)

=
∑
j

tj+k − tj
tj+k − tj

Bk−1
j (x) (68)

=
∑
j

Bk−1
j (x) (69)

at which point we may argue by induction, having already verified the base case. It is

important to note here that the index shift is valid, since the extra terms gained and lost

at a and b respectively do not contribute to the sum, as those B-splines have a degenerate

interval as their support. Thus,

∀k = 0, 1, . . . , D, ∀x ∈ [a, b],
∑
j

Bk
j (x) = 1 (70)

and property (4) is established.

Since each B0
j is a 0th degree polynomial, and the factors multiplying Bk−1

j and Bk−1
j+1 in

the recursive definition for Bk
j are linear, we can see by an induction argument that the

degree of each polynomial part of each Bk
j is ≤ k. In fact, we will now show by induction

that each B-spline of degree k has the following explicit form:

Bk
j (x) = (tj+k+1 − tj)

j+k+1∑
i=j

(x− ti)k+
j+k+1∏
l=j, l 6=i

(tl − ti)
(71)
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where

(x− ti)k+ =


(x− ti)k x ≥ ti

0 x < ti

(72)

For reference, this form was found in the notes by Michael S. Floater with the University

of Oslo, on pg. 53 of chapter 2 of his notes for Math 5340. Another way to arrive at this

form is to use the divided difference definition of B-splines introduced by de Boor, and then

convert the divided difference to an explicit form.

For k = 0, the explicit form is

(tj+1 − tj)
j+1∑
i=j

(x− ti)0
+

j+1∏
l=j, l 6=i

(tl − ti)
= (tj+1 − tj)

(
(x− tj)0

+

tj+1 − tj
+

(x− tj+1)0
+

tj − tj+1

)
(73)

=


1 tj ≤ x < tj+1

0 else

(74)

= B0
j (x) (75)

which verifies the base case. For the inductive step, assume the explicit form holds for all

B-splines of degree k − 1. Then by the recursive definition for B-splines, we have

Bk
j (x) =

x− tj
tj+k − tj

Bk−1
j (x) +

tj+k+1 − x
tj+k+1 − tj+1

Bk−1
j+1 (x) (76)

=
x− tj
tj+k − tj

(tj+k − tj)
j+k∑
i=j

(x− ti)k−1
+

j+k∏
l=j, l 6=i

(tl − ti)
(77)

+
tj+k+1 − x
tj+k+1 − tj+1

(tj+k+1 − tj+1)

j+k+1∑
i=j+1

(x− ti)k−1
+

j+k+1∏
l=j+1, l 6=i

(tl − ti)
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= (x− tj)
j+k∑
i=j

(x− ti)k−1
+

j+k∏
l=j, l 6=i

(tl − ti)
+ (tj+k+1 − x)

j+k+1∑
i=j+1

(x− ti)k−1
+

j+k+1∏
l=j+1, l 6=i

(tl − ti)
(78)

=
(x− tj)(x− tj)k−1

+

j+k∏
l=j+1

(tl − tj)
+ (x− tj)

j+k∑
i=j+1

(x− ti)k−1
+

(tj − ti)
j+k∏

l=j+1, l 6=i
(tl − ti)

(79)

− (x− tj+k+1)(x− tj+k+1)k−1
+

j+k∏
l=j+1

(tl − tj+k+1)

+ (tj+k+1 − x)

j+k∑
i=j+1

(x− ti)k−1
+

(tj+k+1 − ti)
j+k∏

l=j+1, l 6=i
(tl − ti)

=
(x− tj)k+
j+k∏
l=j+1

(tl − tj)
+ (x− tj)

j+k∑
i=j+1

(x− ti)k−1
+

(tj − ti)
j+k∏

l=j+1, l 6=i
(tl − ti)

(80)

−
(x− tj+k+1)k+
j+k∏
l=j+1

(tl − tj+k+1)

+ (tj+k+1 − x)

j+k∑
i=j+1

(x− ti)k−1
+

(tj+k+1 − ti)
j+k∏

l=j+1, l 6=i
(tl − ti)

= (tj+k+1 − tj)
(x− tj)k+

j+k+1∏
l=j+1

(tl − tj)
+ (x− tj)

j+k∑
i=j+1

(x− ti)k−1
+

(tj − ti)
j+k∏

l=j+1, l 6=i
(tl − ti)

(81)

+ (tj+k+1 − tj)
(x− tj+k+1)k+
j+k∏
l=j

(tl − tj+k+1)

+ (tj+k+1 − x)

j+k∑
i=j+1

(x− ti)k−1
+

(tj+k+1 − ti)
j+k∏

l=j+1, l 6=i
(tl − ti)

= (tj+k+1 − tj)
(x− tj)k+

j+k+1∏
l=j+1

(tl − tj)
+ (tj+k+1 − tj)

(x− tj+k+1)k+
j+k∏
l=j

(tl − tj+k+1)

(82)

+

j+k∑
i=j+1

(
x− tj
tj − ti

+
tj+k+1 − x
tj+k+1 − ti

)
(x− ti)k−1

+

j+k∏
l=j+1, l 6=i

(tl − ti)

= (tj+k+1 − tj)
(x− tj)k+

j+k+1∏
l=j+1

(tl − tj)
+ (tj+k+1 − tj)

(x− tj+k+1)k+
j+k∏
l=j

(tl − tj+k+1)

(83)

+

j+k∑
i=j+1

((x− tj)(tj+k+1 − ti) + (tj+k+1 − x)(tj − ti)) (x− ti)k−1
+

j+k+1∏
l=j, l 6=i

(tl − ti)
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= (tj+k+1 − tj)
(x− tj)k+

j+k+1∏
l=j+1

(tl − tj)
+ (tj+k+1 − tj)

(x− tj+k+1)k+
j+k∏
l=j

(tl − tj+k+1)

(84)

+

j+k∑
i=j+1

(xtj+k+1 − tjtj+k+1 − xti + tjti + tj+k+1tj − xtj − tj+k+1ti + xti) (x− ti)k−1
+

j+k+1∏
l=j, l 6=i

(tl − ti)

= (tj+k+1 − tj)
(x− tj)k+

j+k+1∏
l=j+1

(tl − tj)
+ (tj+k+1 − tj)

(x− tj+k+1)k+
j+k∏
l=j

(tl − tj+k+1)

(85)

+

j+k∑
i=j+1

(xtj+k+1 + tjti − xtj − tj+k+1ti) (x− ti)k−1
+

j+k+1∏
l=j, l 6=i

(tl − ti)

= (tj+k+1 − tj)
(x− tj)k+

j+k+1∏
l=j+1

(tl − tj)
+ (tj+k+1 − tj)

(x− tj+k+1)k+
j+k∏
l=j

(tl − tj+k+1)

(86)

+

j+k∑
i=j+1

(tj+k+1 − tj)(x− ti)(x− ti)k−1
+

j+k+1∏
l=j, l 6=i

(tl − ti)

= (tj+k+1 − tj)
(x− tj)k+

j+k+1∏
l=j+1

(tl − tj)
+ (tj+k+1 − tj)

(x− tj+k+1)k+
j+k∏
l=j

(tl − tj+k+1)

(87)

+ (tj+k+1 − tj)
j+k∑
i=j+1

(x− ti)k+
j+k+1∏
l=j, l 6=i

(tl − ti)

= (tj+k+1 − tj)
j+k+1∑
i=j

(x− ti)k+
j+k+1∏
l=j, l 6=i

(tl − ti)
(88)

finally reaching the required form, and concluding the inductive step.

Clearly, the functions x 7→ (x − ti)
k
+ are (k − 1)-times differentiable (with derivatives up

to order k−1 at x = ti equal to 0). Then since we’ve expressed each Bk
j as a linear combina-

tion of Ck−1-smooth functions, it follows that Bk
j is Ck−1-smooth. This establishes property

(5), and concludes the proof of the lemma.
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In the figures that follow, we plot B-splines of increasing degree for a fixed sequence

of knots. The properties discussed in the preceding theorem are immediately evident in

these examples, for instance the properties that at any given input the family of B-splines

sums to 1 (partition of unity property), and with each increasing degree of the B-spline one

more panel of support is appended to the right. The B-splines plotted below in figures (19)

through (22) were evaluated using the Cox-deBoor algorithm.

Figure 19: As we can see in this collection of degree 0 B-splines, they are just step functions
that are 1 over a single panel and 0 otherwise.
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Figure 20: Increasing the degree of the B-splines by 1 causes the support of each spline to
increase by one panel on the right, compared to the B-splines of degree 0. We can also see
that there is one more B-spline added to the family over the lesser degree family.
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Figure 21: Further increasing the degree of B-splines by 1 causes the support of each spline to
extend by one panel to the right over the linear splines of the last generation. Since these are
quadratic B-splines, they have 1+2=3 panels of support each (including degenerate panels
at the left- and right-most endpoints).

Figure 22: Cubic B-splines, with 1+3=4 panels of support.
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With these B-spline properties, we are now able to prove the main convergence result

for A-splines. This next theorem will provide a reasonably tight bound on dist(f,SD) in

the L2 sense. For reference, similar bounds (albeit with different coefficients) already exist

(e.g. [20], which uses Fourier transform techniques), and de Boor gives a skeleton argument

in ([7]). The theorem given here, while yielding the same order of convergence as previous

work, has the benefit of utilizing an elementary approach.

Theorem 6.2 (A-spline Convergence Theorem). Let t0 < t1 < · · · < tM be a knot sequence.

Let f : [t0, tM ] → R be some function. Let S : Map([t0, tM ],R) → SD be the projection

mapping that orthogonally projects functions onto the spline space SD of degree D splines

with the knots above, w.r.t. the continuous L2 inner product. Then the L2 error bound is:

||f − S(f)||2 ≤
(D + 1)!

2j · (D − j)!
· (∆t)j+1 ·

√
tM − t0 · ||f (j+1)||∞, j = 0, 1, . . . , D (89)

with the slight improvement of an additional factor of 2 in the denominator when j = D.

Proof. Let {Bk
j }M−1

j=−k be the B-spline family of degree k ∈ {0, 1, . . . , D} with the knots above.

Define the following smoothing spline operator, applied to some function g : [t0, tM ]→ R:

Akg :=
M−1∑
i=−k

g(ci)B
k
i , ci =


(ti+k/2 + ti+k/2+1)/2 k even

ti+(k+1)/2 k odd

(90)

Note that supp(Bk
i ) = [ti, ti+k+1] for each i ∈ {−k, . . . ,M − 1}. So the only B-splines which

are nonzero on [tj, tj+1] are Bk
j−k, . . . , B

k
j , and ∀x ∈ [tj, tj+1], 1 =

M−1∑
i=−k

Bk
i =

j∑
i=j−k

Bk
i .

So, the ci points are roughly the midpoints of the support of Bk
i .
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ti ti+k+1
ci

supp(Bk
i )

≤ (k + 2)∆t/2

(k + 1)∆t

Then for all x ∈ [tj, tj+1) we have

|Akg(x)− g(x)| = |
M−1∑
i=−k

g(ci)B
k
i (x)−

M−1∑
i=−k

g(x)Bk
i (x)| (91)

= |
j∑

i=j−k

g(ci)B
k
i (x)−

j∑
i=j−k

g(x)Bk
i (x)| (92)

= |
j∑

i=j−k

(g(ci)− g(x))Bk
i (x)| (93)

≤
j∑

i=j−k

|g(ci)− g(x)|Bk
i (x) (94)

≤
(

sup
i=j−k,...,j

|g(ci)− g(x)|
) j∑
i=j−k

Bk
i (x) (95)

= sup
i=j−k,...,j

|g(ci)− g(x)| (96)

≤ ω

(
g;

(
k + 1

2

)
∆t

)
(97)

≤ ceil((k + 1)/2)ω(g; ∆t) (by triangle inequality) (98)

≤ (k + 2)

2
ω(g; ∆t) (99)

where

ω(g; ∆t) := sup
|x−y|≤∆t

|g(x)− g(y)| (100)

is the modulus of continuity.

61



Since Akg ∈ Sk, we can now use inequality (97) to say that

dist(g,Sk) ≤ ||Akg − g||∞ ≤ ω

(
g;

(
k + 1

2

)
∆t

)
≤
(
k + 2

2

)
ω(g; ∆t) (101)

where the distance function here is with respect to the∞-norm. This bound (101) holds for

any nonnegative integer k. Also, this bound holds for arbitrary functions g, even discontinu-

ous ones. But now let us assume g is sufficiently differentiable for the following calculations,

and attempt to express dist(g,SD) in terms of higher powers of ∆t and higher derivatives of g.

The following calculation uses the fact that S ′j = Sj−1, which can be demonstrated by

simply differentiating/integrating polynomial pieces and keeping track of continuity condi-

tions at the knots.

For any s ∈ SD we have

dist(g,SD) = dist(g − s,SD) (since SD is a vector space) (102)

≤ ω

(
g − s;

(
D + 1

2

)
∆t

)
(by (101)) (103)

≤
(
D + 1

2

)
∆t||g′ − s′||∞ (by mean value theorem) (104)

Continuing this line, for any ε > 0 we can find a spline s0 ∈ SD−1 such that

||g′ − s0||∞ < dist(g′,SD−1) + ε (105)

Now letting s be any antiderivative of s0, it must be that s ∈ SD, and so by the above

calculation,

dist(g,SD) ≤
(
D + 1

2

)
∆t||g′ − s′||∞ (106)

62



=

(
D + 1

2

)
∆t||g′ − s0||∞ (107)

≤
(
D + 1

2

)
∆t · (dist(g′,SD−1) + ε) (108)

Since this holds for all ε > 0, it follows that

dist(g,SD) ≤
(
D + 1

2

)
∆t · dist(g′,SD−1) (109)

Now by repeating this argument j times, we obtain

dist(g,SD) ≤
(
D + 1

2

)(
D

2

)
· · ·
(
D + 2− j

2

)
(∆t)j · dist(g(j),SD−j), j = 0, 1, . . . , D

(110)

At this point we may reuse inequality (101) (with g(j) and SD−j playing the roles of g and

Sk, respectively) to assert

dist(g(j),SD−j) ≤ ω(g(j);

(
D − j + 1

2

)
∆t) (111)

and now combining this and the mean value theorem with the result immediately above, we

see

dist(g,SD) ≤ (D + 1)!

2j · (D + 1− j)!
(∆t)j · dist(g(j),SD−j) (112)

≤ (D + 1)!

2j · (D + 1− j)!
(∆t)j · ω(g(j);

(
D − j + 1

2

)
∆t) (113)

≤ (D + 1)!

2j+1 · (D − j)!
(∆t)j+1 · ||g(j+1)||∞, j = 0, 1, . . . , D (114)

In fact, when j = D, we may do slightly better (by a factor of 2), by using the top inequality

for j = D − 1 and using a broken line (in S1) approximation of g(D−1), which has uniform
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error bound (∆t)2||g(D+1)||∞/4:

dist(g,SD) ≤ (D + 1)!

2D−1 · (2)!
(∆t)(D−1) · dist(g(D−1),S1) (115)

≤ (D + 1)!

2D
(∆t)(D−1) · (∆t)2||g(D+1)||∞

4
(116)

=
(D + 1)!

2D+2
(∆t)D+1 · ||g(D+1)||∞ (117)

Then using the fact that the (linear) spline operator S is an orthogonal projection (w.r.t. the

L2 inner product) of an input function onto the vector space SD, the Pythagorean Theorem

asserts that for any input function φ, we have

||φ||22 = ||S(φ)||22 + ||φ− S(φ)||22 (118)

which implies

||S(φ)||2 ≤ ||φ||2 (119)

and so we may bound the operator norm of the spline operator S by

||S||2,op =: ||S||2 ≤ 1 (120)

Now if we let ε > 0 and select s ∈ SD such that ||f − s||∞ < dist(f,SD) + ε, then S(s) = s

(as S reproduces splines of degree D and with the knots declared above) and we can use

inequality (114)

dist(f,SD) ≤ (D + 1)!

2j+1 · (D − j)!
(∆t)j+1 · ||f (j+1)||∞, j = 0, 1, . . . , D (121)

to say that

||f − S(f)||2 ≤ ||f − s||2 + ||s− S(f)||2 (122)
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= ||f − s||2 + ||S(s)− S(f)||2 (123)

= ||f − s||2 + ||S(s− f)||2 (124)

≤ ||f − s||2 + ||S||2||s− f ||2 (125)

= (1 + ||S||2) · ||f − s||2 (126)

≤ 2||f − s||2 (127)

= 2

√∫ tM

t0

(f(x)− s(x))2dx (128)

≤ 2

√∫ tM

t0

||f − s||2∞dx (129)

= 2||f − s||∞

√∫ tM

t0

dx (130)

= 2
√
tM − t0||f − s||∞ (131)

≤ 2
√
tM − t0(dist(f,SD) + ε) (132)

Since this holds for all ε > 0, it follows that

||f−S(f)||2 ≤ 2
√
tM − t0dist(f,SD) ≤ (D + 1)!

2j · (D − j)!
·(∆t)j+1·

√
tM − t0·||f (j+1)||∞, j = 0, 1, . . . , D

(133)

and again in the special case j = D, we get the slightly improved bound

||f − S(f)||2 ≤
(D + 1)!

2D+1
· (∆t)D+1 ·

√
tM − t0 · ||f (D+1)||∞ (134)
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In figures (23) through (30), we demonstrate the efficacy of approximating a function with

a sharp peak by projection onto an orthogonal basis of cubic splines with equispaced knots.

In each subsequent figure, the panel count is doubled. In theory, the error should diminish

by a factor of 24 = 16 with each subsequent approximation, but several factors impede us

from observing this order of convergence: (1) the underlying function has a relatively fast-

growing derivatives, so the 4th order convergence is only expected to be realized for small

h values, and (2) the quadrature rule induces an error which is accurate of a lesser order

than the error associated with the projection. These two factors detract from the theoretical

order of convergence for large and small h values, respectively. Nevertheless, we observe an

improvement in the approximation with each refinement of the spline grid, both in the error

metrics and by observation. The closeness of the first derivative of the function to that of

the approximation is also recorded.
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Figure 23: Cubic A-spline approximation of f(t) =
1

(t2 + .1)2
, 0th derivative of spline vs

function, 5 panels. Average error (computed as L2 error divided by (b-a)) = 15; max error
= 82; relative error = .82

Figure 24: Cubic A-spline approximation of f(t) =
1

(t2 + .1)2
, 0th derivative of spline vs

function, 10 panels. Average error (computed as L2 error divided by (b-a)) = 9.3; max error
= 48; relative error = .48
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Figure 25: Cubic A-spline approximation of f(t) =
1

(t2 + .1)2
, 0th derivative of spline vs

function, 20 panels. Average error (computed as L2 error divided by (b-a)) = 3.8; max error
= 19; relative error = .19

Figure 26: Cubic A-spline approximation of f(t) =
1

(t2 + .1)2
, 0th derivative of spline vs

function, 40 panels. Average error (computed as L2 error divided by (b-a)) = .33; max error
= 1.7; relative error = .017
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Figure 27: Cubic A-spline approximation of f(t) =
1

(t2 + .1)2
, 1st derivative of spline vs

function, 5 panels. Average error (computed as L2 error divided by (b-a)) = 66; max error
= 300; relative error = 1.0

Figure 28: Cubic A-spline approximation of f(t) =
1

(t2 + .1)2
, 1st derivative of spline vs

function, 10 panels. Average error (computed as L2 error divided by (b-a)) = 59; max error
= 280; relative error = .92
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Figure 29: Cubic A-spline approximation of f(t) =
1

(t2 + .1)2
, 1st derivative of spline vs

function, 20 panels. Average error (computed as L2 error divided by (b-a)) = 37; max error
= 190; relative error = .64

Figure 30: Cubic A-spline approximation of f(t) =
1

(t2 + .1)2
, 1st derivative of spline vs

function, 40 panels. Average error (computed as L2 error divided by (b-a)) = 6.5; max error
= 35; relative error = .12
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In the next series of plots, figures (31) through (40), we demonstrate the efficacy of

approximating a sine function by projection onto an orthogonal basis of cubic splines with

equispaced knots. In each subsequent figure, the panel count is doubled. In theory, the error

should diminish by a factor of 24 = 16 with each subsequent approximation. Though the

derivatives of the underlying function do not grow as they did in the previous example, the

theoretical order of convergence is still impeded by imprecision brought on by quadrature

error. Despite this, we observe a decay of error that is within appreciable tolerance of the

theoretical error decay. The closeness of the first derivative of the function to that of the

approximation is also recorded. We expect the derivative to converge of one order less than

that of the underlying function; this is observed for the first few grid refinements, before the

error from quadrature outweighs the error from projection.
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Figure 31: Cubic A-spline approximation of f(t) = sin(t), 0th derivative of spline vs function,
5 panels. Average error (computed as L2 error divided by (b-a)) = 4.5e-2; max error = 7.6e-2;
relative error = 7.6e-2

Figure 32: Cubic A-spline approximation of f(t) = sin(t), 0th derivative of spline vs function,
10 panels. Average error (computed as L2 error divided by (b-a)) = 3.8e-3; max error =
1.8e-2; relative error = 1.8e-2
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Figure 33: Cubic A-spline approximation of f(t) = sin(t), 0th derivative of spline vs function,
20 panels. Average error (computed as L2 error divided by (b-a)) = 2.6e-4; max error =
7.2e-4; relative error = 7.2e-4

Figure 34: Cubic A-spline approximation of f(t) = sin(t), 0th derivative of spline vs function,
40 panels. Average error (computed as L2 error divided by (b-a)) = 8.3e-5; max error =
7.1e-4; relative error = 7.1e-4
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Figure 35: Cubic A-spline approximation of f(t) = sin(t), 0th derivative of spline vs function,
80 panels. Average error (computed as L2 error divided by (b-a)) = 7.7e-5; max error =
8.1e-4; relative error = 8.1e-4. The quadrature rule is a bottleneck on the error, since
Trapezoidal Rule is used, which is only 2nd order accurate, whereas cubic A-splines are 4th
order accurate.

Figure 36: Cubic A-spline approximation of f(t) = sin(t), 1st derivative of spline vs function,
5 panels. Average error (computed as L2 error divided by (b-a)) = 1.0e-1; max error = 1.8e-1;
relative error = 1.8e-1
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Figure 37: Cubic A-spline approximation of f(t) = sin(t), 1st derivative of spline vs function,
10 panels. Average error (computed as L2 error divided by (b-a)) = 2.3e-2; max error =
1.4e-1; relative error = 1.4e-1

Figure 38: Cubic A-spline approximation of f(t) = sin(t), 1st derivative of spline vs function,
20 panels. Average error (computed as L2 error divided by (b-a)) = 2.3e-3; max error =
1.8e-2; relative error = 1.8e-2
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Figure 39: Cubic A-spline approximation of f(t) = sin(t), 1st derivative of spline vs function,
40 panels. Average error (computed as L2 error divided by (b-a)) = 1.2e-3; max error =
8.8e-3; relative error = 8.8e-3

Figure 40: Cubic A-spline approximation of f(t) = sin(t), 1st derivative of spline vs function,
80 panels. Average error (computed as L2 error divided by (b-a)) = 1.9e-3; max error =
2.3e-2; relative error = 2.3e-2. The quadrature rule is a bottleneck on the error, since
Trapezoidal Rule is used, which is only 2nd order accurate, whereas cubic A-splines are 4th
order accurate.
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Note regarding a limitation of this result: this only applies to the orthogonal spline oper-

ator S w.r.t. the continuous L2 inner product, that reproduces SD. So, It does not directly

apply to, say, natural or clamped splines, which have various pre-determined derivatives at

the endpoints. It does, however, apply to orthogonal spline operators which produce splines

with not-a-knot conditions, because we may simply eliminate knots from the formula for the

error bound and treat the spline operator as a projection onto the resulting space of splines.

This can be done by increasing ∆t in the error bound.

Tightness of the error bound

This bound is likely not optimal in the coefficient. Indeed, there are already-existing tight

bounds for cubic splines, and the coefficients in those error formulas are lower than the co-

efficients here ([12]). But there is good reason to believe this error bound is optimal in the

power of ∆t. We give several example scenarios here to demonstrate this.

If we try to approximate a function f using piecewise-constant splines, it is clear that over

each interval ti, ti+1, the spline approximant will have L∞ error over that panel greater than

or equal to (supt∈[ti,ti+1](f) − inft∈[ti,ti+1](f))/2, with the optimal approximant (in the L∞

sense) being an average of those two values over the panel [tj, tj+1]. Then since

supt∈[ti,ti+1](f)− inft∈[ti,ti+1](f)

2
≤ (ti+1 − ti)||f ′||∞ ≤ (∆t)||f ′||∞ (135)

by the mean value theorem, we can see that the power of ∆t is correct in the case D = 0.

More specifically, we can approximate the function f(t) = t using a piecewise-constant spline

to get this.

Another indication of the tightness of this error bound in the derivative of f present in

it is discovered when we try to approximate a certain function f(t) which is orthogonal to
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the basis of A-splines (in the L2 sense) over [0, 1] using a single panel. So the knots are just

t0 = 0 and t1 = 1 in this example, and splines of degree D w.r.t. these knots are simply

polynomials of degree D. Since orthogonal projection is independent of the particular basis

chosen for the procedure, we may express f as an infinite sum of Legendre polynomials

{Li}∞i=0 (which are orthonormal w.r.t. the L2 inner product), and we may also obtain our

orthogonal projection onto SD = PD via

S(f) = 〈f, L0〉L0 + · · ·+ 〈f, LD〉LD (136)

Now if f(t) = αtD+1 for some α > 0 then f does not lie inside the spline space SD, and

so the above A-spline approximation will necessarily not be exact. By linearity of the inner

products above, we see that the error incurred in this approximation is proportional to α,

and is due to f (D+1) not being 0. f (D+1) is also proportional to α. This reaffirms the exis-

tence of the derivative of f present in the error bound.

We can also compare the bound derived here to that of Lagrange interpolation with nodes

x0, . . . , xD:

f(t)− LD(t) = (t− x0) · · · (t− xD)
f (D+1)(ξ)

(D + 1)!
(137)

which, even if the nodes are chosen judiciously (e.g. Chebyshev points), is still an O(hD+1)

approximation.

Taylor polynomial approximation of course has the same order error, over a single panel:

f(t)− PD(t) = (t− x0)D+1f
(D+1)(ξ)

(D + 1)!
(138)

It is a general trend we observe here that polynomials of degree D cannot approximate

functions with greater accuracy than O(hD+1).
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Closeness of Derivatives

It would be ideal to extend the error bounds already obtained for A-splines, to error bounds

which discuss the closeness of derivatives of A-splines to the corresponding derivatives of the

functions they approximate. In particular, the desired theorem is:

Conjecture. (Closeness of derivatives for A-splines).

Let SD be the degree D A-spline approximation to f with knots t0 < · · · < tM . Let

h = max(tj − tj−1) be the maximum panel width. Then

||f (k) − S(k)
D ||∞ = ||f (j)||∞O(hj−k) (139)

for k = 0, 1, . . . , D and j = k + 1, . . . , D + 1.

Such bounds already exist for popular spline routines such as cubic spline interpolation,

and there’s no reason to suspect they don’t apply to A-splines. As was shown above in

figures (36) through (40), there is numerical evidence to support the above conjecture.

The proof of this conjecture will require a different set of tools to the ones used for the

error bound above, because in our proof, we just find one particular spline in SD to satisfy

each error bound (depending on how many derivatives f has) in order to declare that the

best spline amongst every spline in SD must also satisfy the bound. But, this doesn’t tell

us that the derivatives of the particular best spline will also be close to the corresponding

derivatives of f . Even if we find one particular spline in SD satisfying this property, it is

possible for the optimal spline in the L2 sense might have some derivatives that are further

away from those of f than the non-optimal spline in SD with close derivatives.

One idea for such a proof would be the introduction of a new norm on SD more akin to

79



a Sobolev norm but with weights on derivatives; each subsequent derivative term getting

multiplied by an additional factor of h. Finding the optimal spline in such a space, and

showing that this new norm on it is no more than O(hD+1) would at least give this result

for j = D + 1.

Quadrature error

In the standard (and exponential) A-spline procedures, the projection of f onto SD relies on

certain L2 inner products of f with the basis splines being sufficiently accurate. These inner

products are computed approximately according to a quadrature routine of our choosing. If

we wish to determine an O(hp) accurate approximation to a general, smooth f , then the

spline degree D must be sufficiently high (D ≥ p− 1) and the quadrature error should be of

order O(hp). If we are using something like trapezoidal rule for the quadrature, then in order

to achieve the desired accuracy, it may be necessary to refine the grid we use for quadrature.

Alternatively, we can select higher-order schemes for quadrature such as Gauss quadrature,

and require fewer (but still carefully spaced) nodes for the quadrature step. The latter is

used for the plots generated here. Note that the knots of the spline need not coincide with

the nodes for the quadrature, but we will need to know the image of f at each of these points

for the procedure to complete. For reference, one treatment of the influence of quadrature

errors on the projection is given in ([17]). The influence of the quadrature error can also

be reduced by orthonormalizing the spline basis functions with respect to the associated

discrete inner product. See ([1]) for details.
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6.2 Standard C-spline error bounds

As mentioned in the motivation section for C-splines, our main use for them is in establishing

error bounds for exponential A-splines. First we establish some lemmas that will help us

bound the spline coefficients, which we will then use to prove L∞ error bounds for standard

C-splines. The lemmas will also establish that the C-spline procedure is well-defined, since

it will show the matrix Cj appearing in the algorithm is invertible. We begin demonstrating

the relevant bounds in the case of uniform panel widths, and them move on to the case of

nonuniform panel widths.

Lemma 6.3 (standard C-spline lemma, uniform panel width case). Let S ∈ CD−1 be the

C-spline of degree D to the function f . Assume we are periodically matching the Taylor

polynomial of degree d, where d ≤ D. Let a = t0 < t1 < · · · < tM−1 < tM = b be the knot

sequence for our spline. Assume f ∈ Cd([a, b];R). Let h = tm − tm−1 be the uniform panel

width. Let Aj, Cj, and bj be as in the construction of standard C-splines. Then

||Aj||∞, ||Cj||∞, ||C−1
j ||∞, and ||bj||∞

are bounded independently of h. In particular, Cj is invertible.

Proof.

Aj =



0

0


1

0

 · · ·

D − 2

0


D − 1

0


0

1

1

 · · ·

D − 2

1


D − 1

1


0 0 · · ·

D − 2

2


D − 1

2


...

0 0 · · · 0

D − 1

D − 1
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so

||Aj||∞ = max
0≤l≤D−1

D−1∑
i=l

i
l

 (140)

≤ max
0≤l≤D−1

D−1∑
i=l

i! (141)

≤ max
0≤l≤D−1

D−1∑
i=l

(D − 1)! (142)

≤ max
0≤l≤D−1

(D − 1)! ·D (143)

= D! (144)

next,

bj =



D
0

D
1

D
2


... D

D − 1




so

||bj|| = max
0≤l≤D−1

D
l

 (145)

≤ D! (146)

82



next,

Cj =

[[
D−1∏
l=1

Aj+D+1−l

]
bj+1

[
D−2∏
l=1

Aj+D+1−l

]
bj+2 · · ·

[
1∏
l=1

Aj+D+1−l

]
bj+D−1 bj+D

]
(147)

which means Cj has only positive entries. Thus, the || · ||∞ norm will be realized by right-

multiplying Cj by the vector


1

...

1

. We get

||Cj||∞ = ||Cj


1

...

1

 ||∞ (148)

= ||

[
D−1∏
l=1

Aj+D+1−l

]
bj+1 +

[
D−2∏
l=1

Aj+D+1−l

]
bj+2 + · · ·+

[
1∏
l=1

Aj+D+1−l

]
bj+D−1 + bj+D||∞

(149)

≤

[
D−1∏
l=1

||Aj+D+1−l||∞

]
||bj+1||∞ +

[
D−2∏
l=1

||Aj+D+1−l||∞

]
||bj+2||∞ + · · · (150)

+

[
1∏
l=1

||Aj+D+1−l||∞

]
||bj+D−1||∞ + ||bj+D||∞

at which point the claim follows for Cj, since we have already established the claims for Aj

and bj.

To prove Cj is invertible, we will show its columns are linearly independent. Since each
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Aj is identical, and same for the bjs, put

A =



0

0


1

0

 · · ·

D − 2

0


D − 1

0


0

1

1

 · · ·

D − 2

1


D − 1

1


0 0 · · ·

D − 2

2


D − 1

2


...

0 0 · · · 0

D − 1

D − 1




and

b =



D
0

D
1

D
2


... D

D − 1




so that

C := Cj =

[
AD−1b AD−2b · · · Ab b

]
(151)

Since A− I is strictly upper triangular (i.e. with diagonal entries of 0), with positive entries

above the diagonal, a simple induction argument shows that for any k ∈ {0, 1, . . . , D − 1},
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(A − I)k will be upper triangular with a diagonal band of zeros of width k; specifically,

((A − I)k)(i,j) = 0 for j − i < k, and ((A − I)k)i,j) > 0 for j − i ≥ k. Combining this with

the fact that b is a vector with only positive entries, we arrive at

b =



∗

∗
...

∗

∗

∗


, (A− I)b =



∗

∗
...

∗

∗

0


, (A− I)2b =



∗

∗
...

∗

0

0


, . . . , (A− I)D−1b =



∗

0

...

0

0

0


(152)

where ∗ represents a positive number. Then clearly the set of vectors

{b, (A− I)b, (A− I)2b, . . . , (A− I)D−1b} (153)

is linearly independent; for they form the columns of an upper triangular matrix with nonzero

diagonal entries.

Now to show the columns of C are linearly independent, we note that

0 = c0b+ c1Ab+ c2A
2b+ · · ·+ cD−1A

D−1b (154)

= c0b+ c1(A− I + I)b+ c2(A− I + I)2b+ · · ·+ cD−1(A− I + I)D−1b (155)

= c0b+ c1 ((A− I) + I) b+ · · ·+ cD−1

D−1∑
j=0

D − 1

j

 (A− I)j

 b (156)

=⇒ cD−1 = 0 (157)

and we can continue this strategy, showing cD−2 = cD−3 = . . . = c0 = 0. Thus the columns

of Cj are linearly independent, so Cj is invertible. Since Cj is composed of A and b, neither
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of which are dependent on h, we see that ||C−1
j ||∞ is bounded w.r.t. h.

We now proceed with the more general case of nonuniform panel widths.

Lemma 6.4 (standard C-spline lemma, nonuniform panel width case). Let S ∈ CD−1 be

the C-spline of degree D to the function f . Assume we are periodically matching the Taylor

polynomial of degree d, where d ≤ D. Let a = t0 < t1 < · · · < tM−1 < tM = b be the

knot sequence for our spline. Assume f ∈ Cd([a, b];R). Let hm = tm − tm−1 be the panel

widths and h = maxhm be the maximum panel width. Assume there exist u, U > 0 such

that 0 < u <
hm
hm−1

< U for all m. Let Aj, Cj, and bj be as in the construction of standard

C-splines. Then

||Aj||∞, ||Cj||∞, ||C−1
j ||∞, and ||bj||∞

are bounded independently of h. In particular, Cj is invertible.

Proof.

Aj =



(
hj+1

hj

)0

0

0

 (
hj+1

hj

)0

1

0

 · · ·
(
hj+1

hj

)0

D − 2

0

 (
hj+1

hj

)0

D − 1

0


0

(
hj+1

hj

)1

1

1

 · · ·
(
hj+1

hj

)1

D − 2

1

 (
hj+1

hj

)1

D − 1

1


0 0 · · ·

(
hj+1

hj

)2

D − 2

2

 (
hj+1

hj

)2

D − 1

2


...

0 0 · · · 0

(
hj+1

hj

)D−1

D − 1

D − 1




so

||Aj||∞ = max
0≤l≤D−1

D−1∑
i=l

(
hj+1

hj

)li
l

 (158)
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≤ max
0≤l≤D−1

D−1∑
i=l

U l

i
l

 (159)

≤ max
0≤l≤D−1

D−1∑
i=l

(max(U, 1))D−1

i
l

 (160)

≤ (max(U, 1))D−1 max
0≤l≤D−1

D−1∑
i=l

i! (161)

≤ (max(U, 1))D−1 max
0≤l≤D−1

D−1∑
i=l

(D − 1)! (162)

≤ (max(U, 1))D−1 max
0≤l≤D−1

(D − 1)! ·D (163)

= (max(U, 1))D−1 ·D! (164)

next,

bj =



(
hj+1

hj

)0

D
0


(
hj+1

hj

)1

D
1


(
hj+1

hj

)2

D
2


...(

hj+1

hj

)D−1

 D

D − 1




so

||bj|| = max
0≤l≤D−1

(
hj+1

hj

)lD
l

 (165)

≤ (max(U, 1))D−1 ·D! (166)
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next,

Cj =

[[
D−1∏
l=1

Aj+D+1−l

]
bj+1

[
D−2∏
l=1

Aj+D+1−l

]
bj+2 · · ·

[
1∏
l=1

Aj+D+1−l

]
bj+D−1 bj+D

]
(167)

which means Cj has only positive entries. Thus, the || · ||∞ norm will be realized by right-

multiplying Cj by the vector


1

...

1

. We get

||Cj||∞ = ||Cj


1

...

1

 ||∞ (168)

= ||

[
D−1∏
l=1

Aj+D+1−l

]
bj+1 +

[
D−2∏
l=1

Aj+D+1−l

]
bj+2 + · · ·+

[
1∏
l=1

Aj+D+1−l

]
bj+D−1 + bj+D||∞

(169)

≤

[
D−1∏
l=1

||Aj+D+1−l||∞

]
||bj+1||∞ +

[
D−2∏
l=1

||Aj+D+1−l||∞

]
||bj+2||∞ + · · · (170)

+

[
1∏
l=1

||Aj+D+1−l||∞

]
||bj+D−1||∞ + ||bj+D||∞

at which point the claim follows for Cj, since we have already established the claims for Aj

and bj.

To prove Cj is invertible, we will show its columns are linearly independent.
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Put Pm equal to the diagonal matrix whose diagonal is equal to that of Am, i.e.

Pm =



(
hm+1

hm

)0

(
hm+1

hm

)1

. . . (
hm+1

hm

)D−2

(
hm+1

hm

)D−1


Observe that for each m and each k ∈ {0, 1, . . . , D−1}, Am−Pm is strictly upper triangular

(i.e. with diagonal entries of 0), with positive entries above the diagonal. A simple induction

argument shows that for any k ∈ {0, 1, . . . , D − 1}, it will be the case that

k∏
l=1

(Aj+D+1−l − Pj+D+1−l) (171)

will be upper triangular with a diagonal band of zeros of width k; specifically,

k∏
l=1

(Aj+D+1−l − Pj+D+1−l)(i,j)


= 0 for j − i < k

> 0 for j − i ≥ k

(172)

Combining this with the fact that each bm is a vector with only positive entries, we arrive at

bj+D =



∗

∗
...

∗

∗

∗


,

1∏
l=1

(Aj+D+1−l − Pj+D+1−l)bj+D−1 =



∗

∗
...

∗

∗

0


, (173)
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2∏
l=1

(Aj+D+1−l − Pj+D+1−l)bj+D−2 =



∗

∗
...

∗

0

0


, . . . ,

D−1∏
l=1

(Aj+D+1−l − Pj+D+1−l)bj+1 =



∗

0

...

0

0

0


(174)

where ∗ represents a positive number. Then clearly the set of vectors

{bj+D,
1∏
l=1

(Aj+D+1−l − Pj+D+1−l)bj+D−1,
2∏
l=1

(Aj+D+1−l − Pj+D+1−l)bj+D−2, . . . , (175)

D−1∏
l=1

(Aj+D+1−l − Pj+D+1−l)bj+1}

is linearly independent; for they form the columns of an upper triangular matrix with nonzero

diagonal entries.

Now to show the columns of Cj are linearly independent, we note that

0 = c0bj+D + c1

1∏
l=1

(Aj+D+1−l)bj+D−1 + c2

2∏
l=1

(Aj+D+1−l)bj+D−2 + · · ·+ cD−1

D−1∏
l=1

(Aj+D+1−l)bj+1

(176)

= c0bj+D + c1

1∏
l=1

(Aj+D+1−l − Pj+D+1−l + Pj+D+1−l)bj+D−1 (177)

+ c2

2∏
l=1

(Aj+D+1−l − Pj+D+1−l + Pj+D+1−l)bj+D−2 + · · ·

+ cD−1

D−1∏
l=1

(Aj+D+1−l − Pj+D+1−l + Pj+D+1−l)bj+1

at which point we may continue in a manner analogous to that of the uniform case. The

details are omitted.
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Thus the columns of Cj are linearly independent, so Cj is invertible.

Parametrizing

τj =
hj+1

hj
(178)

we can express

g(τj, τj+1, . . . , τj+D) = ||C−1
j ||∞ (179)

g is the multiplicative reciprocal of the smallest singular value of Cj. We are guaranteed this

is positive and finite for each set of inputs (τk)k, since Cj is invertible. Since singular values

vary continuously with the matrix entries, g is continuous on its compact domain [u, U ]D+1.

g therefore has a maximum on its domain, independent of h. This concludes the lemma.

We now prove the error bound for a C-spline approximation.

Theorem 6.5 (Standard C-spline Error Bounds). Let S ∈ CD−1 be the C-spline of degree

D to the function f . Assume we are periodically matching the Taylor polynomial of degree

d, where d ≤ D. Let a = t0 < t1 < · · · < tM−1 < tM = b be the knot sequence for our spline.

Assume f ∈ Cd([a, b];R). Let hm = tm − tm−1 be the panels widths and h = maxhm be the

maximum panel width. Assume there exist u, U > 0 such that 0 < u <
hm
hm−1

< U for all m.

Then for each k ∈ {0, 1, . . . , d− 1}, we have

||S(k) − f (k)||∞ = O(hd−k) (180)

Proof. Let t ∈ [a, b] be arbitrary. Find j ∈ {0, 1, . . . ,M} so that tj−1 ≤ t ≤ tj+D+1 and the

C-spline matches the degree d Taylor polynomial over the panels [tj−1, tj] and [tj+D, tj+D+1].

Suppose t is in the jth panel; that is, t ∈ [tj∗−1, tj∗ ]. Then, making heavy use of the

91



Fundamental Theorem of Calculus, we get

S(k)(t)− f (k)(t) = [S(k)(t)− f (k)(t)]− [S(k)(tj−1)− f (k)(tj−1)]︸ ︷︷ ︸
0

(181)

=

∫ t

tj−1

[S(k+1)(t(k+1))− f (k+1)(t(k+1))]dt(k+1) (182)

=

∫ t

tj−1

[S(k+1)(t(k+1))− f (k+1)(t(k+1))]− [S(k+1)(tj−1)− f (k+1)(tj−1)]︸ ︷︷ ︸
0

dt(k+1)

(183)

=

∫ t

tj−1

∫ t(k+1)

tj−1

[S(k+2)(t(k+2))− f (k+2)(t(k+2))]dt(k+2)dt(k+1) (184)

= · · · (185)

=

∫ t

tj−1

∫ t(k+1)

tj−1

∫ t(k+2)

tj−1

· · ·
∫ t(d−2)

tj−1

[S(d−1)(t(d−1))− f (d−1)(t(d−1))]dt(d−1) · · · dt(k+2)dt(k+2)dt(k+1)

(186)

=

∫ t

tj−1

· · ·
∫ t(d−1)

tj−1

[S(d)(t(d))− f (d)(t(d))]dt(d) · · · dt(k+1) (187)

The last step in the above chain of inequalities works despite the final integrand being

(potentially) merely piecewise-continuous, e.g. if the function g : [a, b]→ R has a derivative

which exists and is continuous over each panel [tl−1, tl], and t ∈ [a, b] is arbitrary, say tl−1 ≤

t ≤ tl, then we have

g(t)− g(tj−1) = [g(t)− g(tl−1)] + [g(tl−1)− g(tl−2)] + [g(tl−2)− g(tl−3)] + · · ·+ [g(tj)− g(tj−1)]

(188)

=

∫ t

tl−1

g′(s)ds+

∫ tl−1

tl−2

g′(s)ds+

∫ tl−2

tl−3

g′(s)ds+ · · ·+
∫ tj

tj−1

g′(s)ds (189)

=

∫ t

tj−1

g′(s)ds (190)

which demonstrates that FTC holds regardless, as expected.
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Now bounding the above quantity, we have by heavy use of the triangle inequality,

|S(k)(t)− f (k)(t)| =

∣∣∣∣∣
∫ t

tj−1

· · ·
∫ t(d−1)

tj−1

[S(d)(t(d))− f (d)(t(d))]dt(d) · · · dt(k+1)

∣∣∣∣∣ (191)

≤
∫ t

tj−1

· · ·
∫ t(d−1)

tj−1

∣∣S(d)(t(d))− f (d)(t(d))
∣∣ dt(d) · · · dt(k+1) (192)

≤
(
||S(d)||∞,[tj−1,tj+D+1] + ||f (d)||∞,[tj−1,tj+D+1]

) ∫ t

tj−1

· · ·
∫ t(d−1)

tj−1

1dt(d) · · · dt(k+1)

(193)

≤
(
||S(d)||∞,[tj−1,tj+D+1] + ||f (d)||∞

) ∫ t

tj−1

· · ·
∫ t(d−1)

tj−1

1dt(d) · · · dt(k+1) (194)

=
(
||S(d)||∞,[tj−1,tj+D+1] + ||f (d)||∞

) (t− tj−1)(d−k)

(d− k)!
(195)

≤
(
||S(d)||∞,[tj−1,tj+D+1] + ||f (d)||∞

) ((D + 2)h)(d−k)

(d− k)!
(196)

=
(
||S(d)||∞,[tj−1,tj+D+1] + ||f (d)||∞

)
· (D + 2)d−k

(d− k)!
· hd−k (197)

From the standard spline form, over the mth panel [tm−1, tm], we have

S(i)
m (t) = aim

i!

(hm)i
+ ai+1

m

(i+ 1)!

1!(hm)i

(
t− tm−1

hm

)
+ ai+2

m

(i+ 2)!

2!(hm)i

(
t− tm−1

hm

)2

+ · · · (198)

+aDm
(D)!

(D − i)!(hm)i

(
t− tm−1

hm

)D−i

for each i ∈ {0, 1, . . . , D}.

Setting i = d and taking the || · ||∞ norm over the mth panel [tm−1, tm], we get

||S(d)
m ||∞ ≤ |adm|

d!

(hm)d
+ |ad+1

m |
(d+ 1)!

1!(hm)d
+ |ad+2

m |
(d+ 2)!

2!(hm)d
+ · · ·+ |aDm|

(D)!

(D − d)!(hm)d
(199)

The proof will be complete once we show that the ratio of the spline coefficient to the panel

width to the dth power,
aim

(hm)d
, is bounded w.r.t. h for each i = d, d+ 1, . . . , D.
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Put ĥ = maxl=j,...,j+D+1 hl. So ĥ ≤ h.

It is enough to show this for ĥ in place of hm, since

∣∣∣∣ aim
(hm)d

∣∣∣∣ =

∣∣∣∣aimĥd
∣∣∣∣ · ĥd

(hm)d
≤
∣∣∣∣aimĥd

∣∣∣∣ · ( max
j+1≤l≤j+D+1

(
hl
hl−1

))Dd
≤
∣∣∣∣aimĥd

∣∣∣∣ · UDd (200)

Note that at the leftmost endpoint of the block of panels under consideration, due to match-

ing of the degree d Taylor polynomial over this panel, we have

adj =
(hj)

df (d)(tj−1)

d!
, ad+1

j = 0, . . . , aDj = 0 (201)

The update equation for adm, . . . , a
D
m is given according to

am = Am−1am−1 + aDm−1bm−1 (202)

and recursing down,

am = Am−1am−1 + aDm−1bm−1 (203)

= Am−1(Am−2am−2 + aDm−2bm−2) + aDm−1bm−1 (204)

= Am−1Am−2am−2 + aDm−2Am−1bm−2 + aDm−1bm−1 (205)

= Am−1Am−2(Am−3am−3 + aDm−3bm−3) + aDm−2Am−1bm−2 + aDm−1bm−1 (206)

= Am−1Am−2Am−3am−3 + aDm−3Am−1Am−2bm−3 + aDm−2Am−1bm−2 + aDm−1bm−1 (207)

= · · · (208)

=

(
m−j∏
l=1

Am−l

)
aj +

m−j∑
i=1

aDm−i

(
i−1∏
l=1

Am−l

)
bm−l (209)

We note that since
(∏m−j

l=1 Am−l

)
is upper triangular, with || · ||∞ norm bounded indepen-

dently of h (according to the previous lemma), looking at the (d + 1)th row of this vector
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equation reveals the first term contributes a magnitude of no more than O(ĥd), as

adj =
(hj)

df (d)(tj−1)

d!
= O(ĥd), ad+1

j = 0, . . . , aDj = 0 (210)

All that remains to show is that the second term in the sum above is also of magnitude

O(ĥd). Again by the previous lemma, the boundedness of ||Am−l||∞ and ||bm−l||∞ w.r.t. h

means it is enough to show that aDl = O(ĥd) for l = j, j+ 1, . . . ,m−1. Due to the matching

of the degree d Taylor polynomial on panel [tj−1, tj], we already know aDj = O(ĥd).

From the procedure for standard C-splines, we have



aDj+1

aDj+2

...

aDj+D



=

bounded︷︸︸︷
C−1
j

aj+(D+1) −
bounded︷ ︸︸ ︷

Aj+DAj+D−1 · · ·Aj+1(Ajaj︸ ︷︷ ︸
(∗)

+

small︷︸︸︷
aDj bj)

 (211)

but the portion (∗) is also small (in particular, O(ĥd)), because it represents the difference in

weighted coefficients over panel [tj+D, tj+D+1] between the degree (d− 1) Taylor polynomial

of f centered at node tj+D, and the degree (d− 1) Taylor polynomial of f centered at node

tj−1 but recentered at node tj+D. According to the Taylor error formula, we do indeed get

that this difference in coefficients is O((Dĥ)d) = O(ĥd), which is all that is needed. This

concludes the proof.
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In figures (41) through (46), we approximate a sine function by a 5th degree C-spline

that periodically matches the 3rd degree Taylor polynomial of f . With each successive

approximation, we refine the grid by a factor of 2. Thus, according to the error bound just

derived, we expect the error to roughly diminish by a factor of 23 = 8 with every successive

refinement. We then compare the first derivatives of the function and this C-spline. The

theoretical error bounds just derived suggest the error in the first derivative should shrink

by a factor of 22 = 4 with each successive grid refinement. This is observed in the error

estimates given. The robustness of the error bounds is tested by using nonuniform panel

widths.

Figure 41: Quintic C-spline approximation of f(t) = sin(t) matching 3rd degree Taylor
polynomial every 6 panels, 0th derivative of spline vs function, 160 panels of random width.
max error = 7.6e-4
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Figure 42: Quintic C-spline approximation of f(t) = sin(t) matching 3rd degree Taylor
polynomial every 6 panels, 0th derivative of spline vs function, 320 panels of random width.
max error = 1.2e-4

Figure 43: Quintic C-spline approximation of f(t) = sin(t) matching 3rd degree Taylor
polynomial every 6 panels, 0th derivative of spline vs function, 640 panels of random width.
max error = 4.6e-6
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Figure 44: Quintic C-spline approximation of f(t) = sin(t) matching 3rd degree Taylor
polynomial every 6 panels, 1st derivative of spline vs function, 160 panels of random width.
max error = 4.1e-3

Figure 45: Quintic C-spline approximation of f(t) = sin(t) matching 3rd degree Taylor
polynomial every 6 panels, 1st derivative of spline vs function, 320 panels of random width.
max error = 2.7e-4
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Figure 46: Quintic C-spline approximation of f(t) = sin(t) matching 3rd degree Taylor
polynomial every 6 panels, 1st derivative of spline vs function, 160 panels of random width.
max error = 4.4e-5

In the next two figures, figures (47) and (48), we demonstrate that the C-spline ap-

proximation is impervious to faulty initial data. This is due to its nature as a semi-local

approximation.

Figure 47: Quartic C-spline approximation of f(t) = t6 matching 1st degree Taylor polyno-
mial every 5 panels, 0th derivative of spline vs function, 40 panels of random width. Faulty
initial data.
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Figure 48: Cubic C-spline approximation of f(t) = t6 matching 2nd degree Taylor polynomial
every 4 panels, 0th derivative of spline vs function, 80 panels of random width. Faulty initial
data.

6.3 Exponential C-spline error bounds

The error bound for exponential C-splines is the main tool for establishing error bounds for

exponential A-splines.

In the following we give the general error bound for exponential C-splines.

Theorem 6.6 (Exponential C-spline error bounds). Let S ∈ CD+1 be the exponential C-

spline with polynomial part of degree D to the function f . Assume we are periodically match-

ing the Taylor polynomial of degree (d + 2), where d ≤ D. Let a = t0 < t1 < · · · < tM−1 <

tM = b be the knot sequence for our spline. Assume f ∈ Cd+2([a, b];R). Let ρl > 0,

l = 1, 2, . . . ,M be the spline tensions over each panel. Let hm = tm − tm−1 be the panel

widths and h = maxhm be the maximum panel width. Assume there exist u, U > 0 such that

0 < u <
hm
hm−1

< U for all m. Then for each k ∈ {0, 1, . . . , d+ 1}, we have

||S(k) − f (k)||∞ = O(hd+2−k) (212)
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Proof. Let t ∈ [a, b] be arbitrary. Find j ∈ {0, 1, . . . ,M} so that tj−1 ≤ t ≤ tj+D+1 and the

exponential C-spline matches the degree (d+ 2) Taylor polynomial over the panels [tj−1, tj]

and [tj+D, tj+D+1]. Suppose t is in the jth panel; that is, t ∈ [tj∗−1, tj∗ ]. Then, making heavy

use of the Fundamental Theorem of Calculus, we get

S(k)(t)− f (k)(t) = [S(k)(t)− f (k)(t)]− [S(k)(tj−1)− f (k)(tj−1)]︸ ︷︷ ︸
0

(213)

=

∫ t

tj−1

[S(k+1)(t(k+1))− f (k+1)(t(k+1))]dt(k+1) (214)

=

∫ t

tj−1

[S(k+1)(t(k+1))− f (k+1)(t(k+1))]− [S(k+1)(tj−1)− f (k+1)(tj−1)]︸ ︷︷ ︸
0

dt(k+1)

(215)

=

∫ t

tj−1

∫ t(k+1)

tj−1

[S(k+2)(t(k+2))− f (k+2)(t(k+2))]dt(k+2)dt(k+1) (216)

= · · · (217)

=

∫ t

tj−1

∫ t(k+1)

tj−1

∫ t(k+2)

tj−1

· · ·
∫ t(d)

tj−1

[S(d+1)(t(d+1))− f (d+1)(t(d+1))]dt(d+1) · · · dt(k+2)dt(k+2)dt(k+1)

(218)

=

∫ t

tj−1

· · ·
∫ t(d+1)

tj−1

[S(d+2)(t(d+2))− f (d+2)(t(d+2))]dt(d+2) · · · dt(k+1) (219)

The last step in the above chain of inequalities works despite the final integrand being

(potentially) merely piecewise-continuous, e.g. if the function g : [a, b]→ R has a derivative

which exists and is continuous over each panel [tl−1, tl], and t ∈ [a, b] is arbitrary, say tl−1 ≤

t ≤ tl, then we have

g(t)− g(tj−1) = [g(t)− g(tl−1)] + [g(tl−1)− g(tl−2)] + [g(tl−2)− g(tl−3)] + · · ·+ [g(tj)− g(tj−1)] (220)

=

∫ t

tl−1

g′(s)ds+

∫ tl−1

tl−2

g′(s)ds+

∫ tl−2

tl−3

g′(s)ds+ · · ·+
∫ tj

tj−1

g′(s)ds (221)

=

∫ t

tj−1

g′(s)ds (222)
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which demonstrates that FTC holds regardless, as expected.

Now bounding the above quantity, we have by heavy use of the triangle inequality,

|S(k)(t)− f (k)(t)| =

∣∣∣∣∣
∫ t

tj−1

· · ·
∫ t(d+1)

tj−1

[S(d+2)(t(d+2))− f (d+2)(t(d+2))]dt(d+2) · · · dt(k+1)

∣∣∣∣∣ (223)

≤
∫ t

tj−1

· · ·
∫ t(d+1)

tj−1

∣∣S(d+2)(t(d+2))− f (d+2)(t(d+2))
∣∣ dt(d+2) · · · dt(k+1) (224)

≤
(
||S(d+2)||∞,[tj−1,tj+D+1] + ||f (d+2)||∞,[tj−1,tj+D+1]

) ∫ t

tj−1

· · ·
∫ t(d+1)

tj−1

1dt(d+2) · · · dt(k+1)

(225)

≤
(
||S(d+2)||∞,[tj−1,tj+D+1] + ||f (d+2)||∞

) ∫ t

tj−1

· · ·
∫ t(d+1)

tj−1

1dt(d+2) · · · dt(k+1)

(226)

=
(
||S(d+2)||∞,[tj−1,tj+D+1] + ||f (d+2)||∞

) (t− tj−1)(d+2−k)

(d+ 2− k)!
(227)

≤
(
||S(d+2)||∞,[tj−1,tj+D+1] + ||f (d+2)||∞

) ((D + 4)h)(d+2−k)

(d+ 2− k)!
(228)

=
(
||S(d+2)||∞,[tj−1,tj+D+1] + ||f (d+2)||∞

)
· (D + 4)d+2−k

(d+ 2− k)!
· hd+2−k (229)

The proof will be complete once we show that ||S(d+2)||∞,[tj−1,tj+D+1] is bounded w.r.t. h.

From the exponential spline form, we have

S(i)
m (t) = aim

i!

(hm)i
+ ai+1

m

(i+ 1)!

1!(hm)i

(
t− tm−1

hm

)
+ ai+2

m

(i+ 2)!

2!(hm)i

(
t− tm−1

hm

)2

+ · · · (230)

+aDm
(D)!

(D − i)!(hm)i

(
t− tm−1

hm

)D−i
+ aD+1

m

(
−ρm
hm

)i
exp

(
ρm

tm−1 − t
hm

)
+aD+2

m

(
ρm
hm

)i
exp

(
ρm

t− tm
hm

)

for each i ∈ {0, 1, . . . , D + 2}.

Setting i = d + 2, ĥ = maxl=j,...,j+D+3 hl, and taking the || · ||∞ norm over the mth panel
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[tm−1, tm], we get

||S(d+2)
m ||∞ ≤ |ad+2

m |
(d+ 2)!

(hm)d+2
+ |ad+3

m |
(d+ 3)!

1!(hm)d+2
+ |ad+4

m |
(d+ 4)!

2!(hm)d+2
+ · · ·+ |aDm|

(D)!

(D − (d+ 2))!(hm)d+2

+ ||gm||∞ (231)

≤ U (D+2)(d+2)(|ad+2
m |

(d+ 2)!

(ĥ)d+2
+ |ad+3

m |
(d+ 3)!

1!(ĥ)d+2
+ |ad+4

m |
(d+ 4)!

2!(ĥ)d+2
+ · · ·+ |aDm|

(D)!

(D − (d+ 2))!(ĥ)d+2
)

+ ||gm||∞ (232)

where the last inequality is due to

1

(hm)d+2
=

1

ĥd+2
· ĥd+2

(hm)d+2
≤ 1

ĥd+2
·
(

max
j+1≤l≤j+D+3

(
hl
hl−1

))(D+2)(d+2)

≤ 1

ĥd+2
·U (D+2)(d+2) (233)

and where

gm(t) = aD+1
m

(
−ρm
hm

)d+2

exp

(
ρm

tm−1 − t
hm

)
+ aD+2

m

(
ρm
hm

)d+2

exp

(
ρm

t− tm
hm

)
(234)

Thus it will be sufficient to show that

|alm| = O(ĥd+2) (235)

for l = d+ 2, d+ 3, . . . , D and

||gm||∞ = O(1) (236)

i.e. gm is bounded w.r.t. h.

We will do this by rephrasing the linear system for the block of exponential spline coef-

ficients according to the coefficient substitutions

cim =
aim

(hm)i
i = 0, 1, . . . , D (237)
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cD+1
m =

aD+1
m

(hm)D+1
(238)

cD+2
m =

aD+2
m

(hm)D+1
(239)

for m = 1, 2, . . . ,M .

Equivalently,



c0
m

c1
m

c2
m

...

cDm

cD+1
m

cD+2
m


︸ ︷︷ ︸

=:cm

=



(hm)0

(hm)−1

(hm)−2

. . .

(hm)−D

(hm)−(D+1)

(hm)−(D+1)


︸ ︷︷ ︸

=:H−1
m



a0
m

a1
m

a2
m

...

aDm

aD+1
m

aD+2
m


︸ ︷︷ ︸

am

(240)

or in compact notation,

cm = H−1
m am (241)

It is noted that Hm is

Hm =



(hm)0

(hm)1

(hm)2

. . .

(hm)D

(hm)(D+1)

(hm)(D+1)



104



We will be done when we show |cim| = O(1) for i = j, . . . , j + D + 3 and ||gm||∞ = O(1).

In fact, when bounding the latter, we may ignore second-order terms and just show that

|gm(tm−1)| = O(1) for m = j, . . . , j +D + 3.

Now, to rephrase the linear system for the block of spline coefficients



ID+3

−Rj Lj+1

−Rj+1 Lj+2

−Rj+2 Lj+3

. . .

−Rj+D+2 Lj+D+3

L̃j+D+3


︸ ︷︷ ︸

E



a0
j

...

aD+2
j

...

a0
j+D+3

...

aD+2
j+D+3


︸ ︷︷ ︸

~a

=



a0
j

...

aD+2
j

0

...

0

(hj+D+3)0f(tj+D+2)/0!

...

(hj+D+3)D+2f (D+2)(tj+D+2)/(D + 2)!


︸ ︷︷ ︸

~b

(242)

where

L̃j+D+3 =



1 0 0 · · · 0 1 e−ρj+D+3

0 1 0 · · · 0
−ρj+D+3

1!

ρj+D+3

1!
e−ρj+D+3

0 0 1 · · · 0
(−ρj+D+3)2

2!

(ρj+D+3)2

2!
e−ρj+D+3

. . .
...

...

0 0 0 · · · 1
(−ρj+D+3)D

D!

(ρj+D+3)D

D!
e−ρj+D+3

0 0 0 · · · 0
(−ρj+D+3)D+1

(D + 1)!

(ρj+D+3)D+1

(D + 1)!
e−ρj+D+3

0 0 0 · · · 0
(−ρj+D+3)D+2

(D + 2)!

(ρj+D+3)D+2

(D + 2)!
e−ρj+D+3



∈ R(D+3)×(D+3)
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Lj+1 =



1 0 0 · · · 0 1 e−ρj+1

0 1 0 · · · 0
−ρj+1

1!

ρj+1

1!
e−ρj+1

0 0 1 · · · 0
(−ρj+1)2

2!

(ρj+1)2

2!
e−ρj+1

. . .
...

...

0 0 0 · · · 1
(−ρj+1)D

D!

(ρj+1)D

D!
e−ρj+1

0 0 0 · · · 0
(−ρj+1)D+1

(D + 1)!

(ρj+1)D+1

(D + 1)!
e−ρj+1


and

Rj =



(
hj+1

hj

)0

0

0

 (
hj+1

hj

)0

1

0

 · · ·
(
hj+1

hj

)0

D
0

 (
hj+1

hj

)0
(−ρj)0

0!
e−ρj

(
hj+1

hj

)0
(ρj)

0

0!

(
hj+1

hj

)1

1

1

 · · ·
(
hj+1

hj

)1

D
1

 (
hj+1

hj

)1
(−ρj)1

1!
e−ρj

(
hj+1

hj

)1
(ρj)

1

1!

. . .
...(

hj+1

hj

)DD
D

 (
hj+1

hj

)D
(−ρj)D

D!
e−ρj

(
hj+1

hj

)D
(ρj)

D

D!(
hj+1

hj

)D+1
(−ρj)D+1

(D + 1)!
e−ρj

(
hj+1

hj

)D+1
(ρj)

D+1

(D + 1)!


we get

EH~c = ~b (243)

where ~c =


cj
...

cj+D+3

 and H =



Hj

Hj+1

. . .

Hj+D+3


.
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Now define

Ĥm =



(hm)0

(hm)1

(hm)2

. . .

(hm)D

(hm)D+1


and

Ĥ =



Hj

Ĥj+1

. . .

Ĥj+D+3

Hj+D+3


Left-multiplying both sides of (243) by Ĥ−1 yields

Ĥ−1EH~c = Ĥ~b =



c0
j

...

cD+2
j

0

...

0

f(tj+D+2)/0!

...

f (D)(tj+D+2)/D!

f (D+1)(tj+D+2)/(D + 1)!

hj+D+3f
(D+2)(tj+D+2)/(D + 2)!



(244)
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A careful treatment of matrix multiplication yields

Ĥ−1EH =



H−1
j ID+3Hj

−Ĥ−1
j+1RjHj Ĥ−1

j+1Lj+1Hj+1

−Ĥ−1
j+2Rj+1Hj+1 Ĥ−1

j+2Lj+2Hj+2

. . .

−Ĥ−1
j+D+3Rj+D+2Hj+D+2 Ĥ−1

j+D+3Lj+D+3Hj+D+3

H−1
j+D+3L̃j+D+3Hj+D+3



(245)

The effect on the Rs and L is the diagonal entries are unaffected, but every subsequent

diagonal above the main diagonal gets multiplied by a factor of hm for an appropriate m,

except that the (D + 3)rd column has one less factor of hm and the (D + 3)rd row has one

more one factor of hm. In the limit as h→ 0, we can see from this that

Ĥ−1
m+1RmHm →



1

1

. . .

1

(−ρm)D+1

(D + 1)!
e−ρm

(ρm)D+1

(D + 1)!


(246)

Ĥ−1
m LmHm →



1

1

. . .

1

(−ρm)D+1

(D + 1)!

(ρm)D+1

(D + 1)!
e−ρm


(247)
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and

Ĥ−1
m L̃mHm →



1

1

. . .

1

(−ρm)D+1

(D + 1)!

(ρm)D+1

(D + 1)!
e−ρm

(−ρm)D+2

(D + 2)!

(ρm)D+2

(D + 2)!
e−ρm


(248)

From the resulting form of the matrix Ĥ−1EH in the limit as h → 0, we can see that

the dominant behavior of matrix equation (244) is for information to be passed between

corresponding coefficients cim for fixed i and different m, for i = 0, 1, . . . , D, and also for in-

formation to be passed between the exponential coefficients cD+1
m , cD+2

m for varying m. There

are other interactions, but the information passed in other ways is all second-order in com-

parison (O(h)).

By forward substitution and the fact that

Ĥ~b

is O(1), we deduce that

c0
j , . . . , c

D+2
j , . . . , c0

j+D+3, . . . , c
D+2
j+D+3 are all O(1) w.r.t. h.

All that remains is to show that |gm(tm−1)| = O(1).

gm(tm−1) = aD+1
m

(
−ρm
hm

)d+2

+ aD+2
m

(
ρm
hm

)d+2

e−ρm (249)

= [cD+1
m (−ρm)d+2 + cD+2

m (ρm)d+2e−ρm ]/hm (250)

We may compute the last two coefficients over the rightmost panel in the block directly,
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since they are solely determined by the constraint

L̃j+D+3Hj+D+3cj+D+3 =


(hj+D+3)0f(tj+D+2)/0!

...

(hj+D+3)D+2f (D+2)(tj+D+2)/(D + 2)!

 (251)

i.e. 

(−ρj+D+3)D+1

(D + 1)!
hD+1
j+D+3c

D+1
j+D+3 +

(ρj+D+3)D+1

(D + 1)!
e−ρj+D+3hD+1

j+D+3c
D+2
j+D+3

= (hj+D+3)D+1f (D+1)(tj+D+2)/(D + 1)!

(−ρj+D+3)D+2

(D + 2)!
hD+1
j+D+3c

D+1
j+D+3 +

(ρj+D+3)D+2

(D + 2)!
e−ρj+D+3hD+1

j+D+3c
D+2
j+D+3

= (hj+D+3)D+2f (D+2)(tj+D+2)/(D + 2)!

(252)

and dividing by hD+1
j+D+3, this becomes


(−ρj+D+3)D+1

(D + 1)!
cD+1
j+D+3 +

(ρj+D+3)D+1

(D + 1)!
e−ρj+D+3cD+2

j+D+3 = f (D+1)(tj+D+2)/(D + 1)!

(−ρj+D+3)D+2

(D + 2)!
cD+1
j+D+3 +

(ρj+D+3)D+2

(D + 2)!
e−ρj+D+3cD+2

j+D+3 = hj+D+3f
(D+2)(tj+D+2)/(D + 2)!

(253)

The LHS of the last equation above is an O(hj+D+3) multiple of gj+D+3(tj+D+2), so in the

case d = D, this tells us that gj+D+3(tj+D+2) = O(1), since the RHS of this equation is

also O(1). If d < D, then gj+D+3(tj+D+2) will be an O(1) multiple of an earlier line of

the equation H−1
j+D+3L̃j+D+3Hj+D+3cj+D+3 = O(1) after moving an O(1) term over to the

RHS, since the derivatives of f past the (d + 2)nd will be set to zero. In either case, this

tells us gj+D+3(tj+D+2) = O(1). Similarly, since the degree (d + 2) Taylor polynomial of f

is also matched on panel [tj−1, tj], we get gj(tj−1) = O(1), by the same computation. The

intermediate values, gm(tm−1) for m = j + 1, j + 2, . . . , j + D + 2, are then deduced to be

O(1) according to the manner in which information is passed in matrix equation (244) in

the limit h→ 0 as discussed above. This completes the proof.
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In figures (49) and (50), we approximate a 6th degree polynomial by a quintic exponen-

tial spline (i.e. with cubic polynomial part), periodically matching the 4th degree Taylor

polynomial. The panel widths are random, but the error still diminishes by a factor near

the expected factor 24 = 16. With continued refinement of the grid, the theoretical factor

by which the error shrinks is matched more closely.

Figure 49: Quintic exponential C-spline (i.e. with polynomial part of degree 3) approxima-
tion of f(t) = t6 matching 4th degree Taylor polynomial every 6 panels, 0th derivative of
spline vs function, 40 panels of random width. max error = 4.6e-3
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Figure 50: Quintic exponential C-spline (i.e. with polynomial part of degree 3) approxima-
tion of f(t) = t6 matching 4th degree Taylor polynomial every 6 panels, 0th derivative of
spline vs function, 80 panels of random width. max error = 4.8e-4

6.4 Exponential A-spline error bound

With an exponential C-spline error bound, we can then deduce an error bound for exponential

A-splines. The reason for this, is the exponential A-spline procedure finds the closest spline

in ED, the exponential spline space with polynomial part degree D and the pre-specified

knots t0 < · · · < tM and tensions ρ1, . . . , ρM > 0; if we already know that some exponential

spline satisfies some closeness condition to f (in the L2 sense), then we may immediately

conclude the best spline in ED also satisfies this condition.

Theorem 6.7 (Exponential A-spline error bound). Let E : CD+2([a, b];R) → ED be the

exponential spline operator defined by the exponential A-spline procedure, with knots a =

t0 < t1 < · · · < tM−1 < tM = b and tensions ρ1, . . . , ρM > 0. Then

||f − E(f)||2 = O(hD+2) (254)

Proof. The exponential C-spline from the preceding section is an element of ED that satisfies

the bound, and by the exponential A-spline procedure, E(f) is even closer to f than the
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exponential C-spline, and so the bound follows trivially.

Note that the exponential C-splines satisfy an L∞ error bound which implies they also

satisfy the same error bound (multiplied by
√
b− a) in the L2 sense. This is the norm we

need for exponential A-splines, because afterall, the exponential A-spline procedure finds

optimal splines with respect to the L2 error rather than the L∞ error.

It is hypothesized that the actual error is an additional factor of h better than the one

just presented, but in order to prove this a different technique would be needed, since expo-

nential C-splines are only accurate to order O(hD+2). Though, they are accurate to order

O(hD+3) once every (D+ 3) many panels, by the Taylor remainder formula. This “periodic”

bound doesn’t trickle down to exponential A-splines however, due to the shift from L∞ norm

to L2 norm. We give this error bound as a conjecture.

Conjecture. (Optimal bounds for exponential A-splines).

Let SD be the exponential A-spline approximation to f with polynomial part degree D, with

knots t0 < · · · < tM and tensions ρ1, . . . , ρM > 0. Let h = max(tj − tj−1) be the maximum

panel width. Then

||f − SD||∞ = ||f (j)||∞O(hj) (255)

for j = 1, . . . , D + 3.

We give numerical evidence of the veracity of the above claim in the following.

One could of course attempt to prove the tighter error bound with the additional factor

of h by using a technique analogous to that used in finding standard A-spline error bounds,

but the difficulty there lies in finding the exponential analogue to B-splines from which to

form a smoothing spline as we did for standard A-splines. Such analogues do exist (see e.g.
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[5], [24]), but they are for the alternate description of exponential splines described when we

introduced exponential splines here, so that will have limited usefulness here.

Closeness of derivatives

Just like for standard A-splines, we suspect there is a bound on the closeness of derivatives

of exponential A-splines to the corresponding derivatives of the functions they approximate.

We summarize this in the following conjecture.

Conjecture. (Closeness of derivatives for exponential A-splines).

Let SD be the exponential A-spline approximation to f with polynomial part degree D, with

knots t0 < · · · < tM and tensions ρ1, . . . , ρM > 0. Let h = max(tj − tj−1) be the maximum

panel width. Then

||f (k) − S(k)
D ||∞ = ||f (j)||∞O(hj−k) (256)

for k = 0, 1, . . . , D + 2 and j = k + 1, . . . , D + 3.

Many of the comments surrounding closeness of derivatives for standard A-splines hold in

the exponential A-spline setting as well. We suspect that looking at a modified Sobolev-

style norm, where subsequent derivatives are multiplied by additional factors of h, would be

prudent in demonstrating these error bounds on derivatives.

Tension control

Perhaps the most useful feature of exponential splines over standard splines is the ability to

tune the tension parameters ρj to our needs. In general, setting a high tension parameter

over some panel will result in the spline essentially producing a degree D polynomial over

said panel (i.e., essentially ignoring the two exponential terms in its form); setting a low

tension parameter will cause the spline to more closely resemble a standard spline of degree
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(D + 2); i.e., the two exponential terms are treated as if they collectively contribute two

additional monomial terms of subsequent degree added to the already-existing polynomial

part. A heuristic analysis of this phenomenon is hinted at by the following:

exp

(
ρj
tj−1 − t
hj

)
= 1 + ρj

(
tj−1 − t
hj

)
+

(ρj)
2

2!

(
tj−1 − t
hj

)2

+ · · ·+ (ρj)
D

D!

(
tj−1 − t
hj

)D
(257)

+
(ρj)

D+1

(D + 1)!

(
tj−1 − t
hj

)D+1

+
(ρj)

D+2

(D + 2)!

(
tj−1 − t
hj

)D+2

+
(ρj)

D+3

(D + 3)!

(
tj−1 − t
hj

)D+3

+ · · ·

exp

(
ρj
t− tj
hj

)
= 1 + ρj

(
t− tj
hj

)
+

(ρj)
2

2!

(
t− tj
hj

)2

+ · · ·+ (ρj)
D

D!

(
t− tj
hj

)D
(258)

+
(ρj)

D+1

(D + 1)!

(
t− tj
hj

)D+1

+
(ρj)

D+2

(D + 2)!

(
t− tj
hj

)D+2

+
(ρj)

D+3

(D + 3)!

(
t− tj
hj

)D+3

+ · · ·

where tj−1 ≤ t ≤ tj.

We first observe that

(
t− tj
hj

)
and

(
tj−1 − t
hj

)
are both order O(1) terms, so the rela-

tive size of each of the terms in the power series expansions above will be determined by the

factors
(ρj)

i

i!
in each term.

When i is large, the terms vanish, since factorial growth beats geometric growth, as is known

from the exponential power series converging on all of R. We now specialize to looking at

the first (D+ 3) terms in the above expansions, since these are the terms that will have the

largest impact on exponential splines.

When ρj > 0 is small, the contribution of the O((ρj)
D+3) term is vanishingly small relative

to that of the previous O((ρj)
D+2) term. As such, in the exponential A-spline and C-spline

115



procedures outlined above, the two exponential terms will essentially function jointly as the

O(hD+1) and O(hD+2) terms of a standard spline of degree (D + 2). Specifically, in the

C-spline procedure, the coefficients of the exponential terms are found so as to match the

(D+1)st and (D+2)nd derivatives of f over the appropriate panels, and the polynomial part

handles the lesser derivatives. In the A-spline procedure, the basis of exponential A-splines,

the span of which is what f is projected onto, also resembles polynomials of degree (D+ 2).

So when ρj is small, the exponential spline with polynomial part degree D essentially be-

comes a standard spline with degree (D + 2).

When ρj is large, the exact opposite effect is observed: the contribution of the O((ρj)
D+3)

term is large relative to that of the previous O((ρj)
D+2) term. In the exponential C-spline

procedure, the correct Taylor polynomials are still matched every (D+ 3) many panels, but

in the panels between them, it is observed that the coefficients of the two exponential terms

are small, leading to exponential splines that resemble their polynomial parts. For exponen-

tial A-splines, the large ρj values manifest in very small weighting of the two exponential

terms, since the O((ρj)
D+3) terms in the expansion of the exponentials are too large to have

any decent approximation abilities to the function f ; increasing the magnitude of the coef-

ficients of the two exponential terms would result in non-optimal L2 error arising from the

large O((ρj)
D+3) terms. So when ρj is large, the exponential spline with polynomial part D

essentially becomes a standard spline with degree D.

Another intuitive way to see this behavior with respect to the tension parameter is from

looking at the differential equation which is satisfied by the spline over any given panel:

DD+1
(
D2 − ρ2

j

)
y = 0 (259)
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When ρj is large, y essentially needs to lie in the kernel of the DD+1 operator for the dif-

ferential equation to be satisfied; when ρj is small, the differential equation looks more like

DD+3y = 0. The solutions to these differential equations are polynomials of degree D and

D + 2 respectively.

This means we can code an adaptive routine that assigns panel tensions according to how

many derivatives f has over that panel. Too few, and we might need to “drop down” the

degree of our spline by setting high tensions. Whereas if f has sufficiently many derivatives,

then we might want to select low tension parameters in that region, so as to take advantage

of superior approximating abilities of splines with higher degree polynomial parts.

Another reason we might want to reduce spline tension in a certain area, is to decrease

the oscillations of our spline there. High-degree polynomials often exhibit this oscillatory

behavior, and so by dropping two degrees, we limit the spline from oscillating too much

there. This phenomenon is studied in e.g. ([15]), but only with respect to cubic exponential

splines. There, the author uses exponential splines with linear polynomial part, and he finds

that increasing the tensions cause the spline to look more and more like a linear function

over the affected panels, and this manifests in a certain monotonicity theorem saying that

increasing tensions causes the spline to exhibit monotonicity past a certain threshold tension.

We don’t quite get this in the setting of general degree polynomial parts, but the behavior

that increasing tensions decreases oscillation is noted nonetheless.

117



Figures (51) through (59) demonstrate the effect the tension parameter has on a cubic

exponential A-spline approximation of the sine function. What we can observe from these

plots is when the tension is low, the error resembles that of linear A-splines (which converge

of order 2), and when the tension is high, the error resembles that of cubic A-splines (which

converge of order 4). This is as expected, because the cubic exponential spline has a linear

polynomial part.

Figure 51: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t), 0th derivative of spline vs function, 5 panels of uniform width. Average
error = 4.5e-2, max error = 7.6e-2. Low tension parameter of ρ = .1
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Figure 52: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t), 0th derivative of spline vs function, 10 panels of uniform width. Average
error = 3.8e-3, max error = 1.8e-2. Low tension parameter of ρ = .1

Figure 53: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t), 0th derivative of spline vs function, 20 panels of uniform width. Average
error = 2.7e-4, max error = 7.7e-4. Low tension parameter of ρ = .1
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Figure 54: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t), 0th derivative of spline vs function, 40 panels of uniform width. Average
error = 8.3e-5, max error = 6.9e-4. The quadrature error arising from comparatively low-
order Trapezoidal method is causing the error to plateau. Low tension parameter of ρ = .1

Figure 55: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t)s, 0th derivative of spline vs function, 5 panels of uniform width. Average
error = 1.6e-1, max error = 2.9e-1. High tension parameter of ρ = 10
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Figure 56: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t)s, 0th derivative of spline vs function, 10 panels of uniform width. Average
error = 6.0e-2, max error = 2.2e-1. High tension parameter of ρ = 10

Figure 57: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t)s, 0th derivative of spline vs function, 20 panels of uniform width. Average
error = 1.5e-2, max error = 6.1e-2. High tension parameter of ρ = 10
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Figure 58: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t)s, 0th derivative of spline vs function, 40 panels of uniform width. Average
error = 2.7e-3, max error = 9.7e-3. High tension parameter of ρ = 10

Figure 59: Cubic exponential A-spline (i.e. with polynomial part of degree 1) approximation
of f(t) = sin(t)s, 0th derivative of spline vs function, 80 panels of uniform width. Average
error = 7.4e-4, max error = 7.5e-3. The quadrature error arising from comparatively low-
order Trapezoidal method is beginning to cause the error to plateau. High tension parameter
of ρ = 10
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7 Tensor Product Approximations with A-splines

Suppose f : D → R is some multivariate function defined on a subset D ⊂ R2 of the plane.

If we suppose f is analytic, and we fix a point in D, say, (x0, y0) ∈ D, then there exists a disk

of positive radius centered about (x0, y0) on which the following multivariate Taylor series

representation of f is valid:

f(x, y) =
∞∑
k=0

k∑
j=0

k
j

 (x− x0)j(y − y0)k−j

k!

(
∂kf

∂jx∂k−jy

∣∣∣∣
(x0,y0)

)
(260)

If our disk D has finite positive radius, then for any ε > 0 there exists an N ∈ N such that

for all n > N we have∣∣∣∣∣∣∣f(x, y)−
n∑
k=0

k∑
j=0

k
j

 (x− x0)j(y − y0)k−j

k!

(
∂kf

∂jx∂k−jy

∣∣∣∣
(x0,y0)

)∣∣∣∣∣∣∣ < ε (261)

This last fact is a consequence of the uniform convergence of the partial sums of a power

series to the power series itself on a compact set contained in its disk of convergence.

The inequality above tells us that f may be approximated to within ε by a finite sum

of products of single-variable functions of x and y. So,

f(x, y) ≈
m∑
l=0

gl(x)hl(y) (262)

for aptly chosen m, gl, and hl.

It is in this sense that we attempt to find a tensor product approximation to f(·, ·) us-

ing splines.
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In particular, one may consider an interpolatory tensor product of the form

f(x, y) ≈
Mx∑
i=0

My∑
j=0

f(xi, yi)S
x
i (x)Syj (y) (263)

where (xi, yj), i = 0, 1, . . . ,Mx, j = 0, 1, . . . ,My are grid points on a rectangular grid, Sxi (·)

is an interpolatory spline of degree Dx ∈ N such that

Sxi (xk) = δi,k =


1 i = k

0 i 6= k

(264)

and Syj (·) is an interpolatory spline of degree Dy ∈ N such that

Syj (xk) = δj,k =


1 j = k

0 j 6= k

(265)

Given the splines {Sxi } and {Syj } this approximation is easy to construct, but it is very com-

putationally expensive to evaluate, since at each of the (Mx + 1)(My + 1) grid points (xi, yj)

we must evaluate a product of two polynomials. The amount of work needed to evaluate the

approximation at a single point is O(MxMy(Dx+Dy)), which can be prohibitively expensive

over fine grids.

A fix to the exorbitantly high cost of evaluation is to collect like terms, thereby obtain-

ing coefficients ck,lp,q ∈ R such that

Mx∑
i=0

My∑
j=0

f(xi, yi)S
x
i (x)Syj (y) =

Dx∑
k=0

Dy∑
l=0

ck,lp,q

(
x− xp−1

xp − xp−1

)k (
y − yq−1

yq − yq−1

)l
(266)
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valid on the square [xp−1, xp]×[yq−1, yq]. This reduces the cost of evaluation to just O(DxDy),

and since

DxDy << MxMy(Dx +Dy) (267)

this reduces the computational complexity of evaluation.

More specifically, if

Sxi (x) =
Dx∑
k=0

aki,p

(
x− xp−1

xp − xp−1

)k
(268)

for x ∈ [xp−1, xp], and

Syj (x) =

Dy∑
l=0

blj,q

(
y − yq−1

yq − yq−1

)l
(269)

for y ∈ [yq−1, yq], then for (x, y) ∈ [xp−1, xp]× [yq−1, yq] we have

Mx∑
i=0

My∑
j=0

f(xi, yi)S
x
i (x)Syj (y) =

Mx∑
i=0

My∑
j=0

f(xi, yi)

[
Dx∑
k=0

aki,p

(
x− xp−1

xp − xp−1

)k][ Dy∑
l=0

blj,q

(
y − yq−1

yq − yq−1

)l]
(270)

=
Dx∑
k=0

Dy∑
l=0

Mx∑
i=0

My∑
j=0

f(xi, yi)a
k
i,p

(
x− xp−1

xp − xp−1

)k
blj,q

(
y − yq−1

yq − yq−1

)l
(271)

=
Dx∑
k=0

Dy∑
l=0

(
Mx∑
i=0

My∑
j=0

f(xi, yi)a
k
i,pb

l
j,q

)
︸ ︷︷ ︸

ck,lp,q

(
x− xp−1

xp − xp−1

)k (
y − yq−1

yq − yq−1

)l
(272)

=
Dx∑
k=0

Dy∑
l=0

ck,lp,q

(
x− xp−1

xp − xp−1

)k (
y − yq−1

yq − yq−1

)l
(273)

as desired.

However, one still needs to store O(MxMyDxDy) coefficients ck,lp,q, which can be a very large

number of coefficients.

Given the explosive growth of coefficients when using the type of approximation (266), this
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suggests that one is likely using too many coefficients, i.e. for smooth functions, many of

the coefficients are very small or vanish. Such an inference suggests another type of tensor

product spline approximation where one incrementally adds terms until a desired accuracy

is achieved.

In order to implement such a procedure, one must develop a technique for determining

the coefficients of a tensor product spline with a set number of terms. One method for doing

this is as follows.

If we have an orthonormal (w.r.t. L2) basis of splines {φi(x)}pi=1 for SDx with respect to the

knots x0 < · · · < xMx and an orthonormal basis of splines {γj(y)}qj=1 for SDy with respect

to the knots y0 < · · · < yMx then {φi(x)γj(y)}i,j form an orthonormal set of multivariate

functions on [x0, xMx ]× [y0, yMy ], since

∫ xMx

x0

∫ yMy

y0

φi1(x)γj1(y)·φi2(x)γj2(y)dydx =

(∫ xMx

x0

φi1(x)φi2(x)dx

)(∫ yMy

y0

γj1(y)γj2(y)dy

)
= δi1,i2·δj1,j2

(274)

and we can form the approximation

f(x, y) ≈
p∑
i=1

q∑
j=1

αi,jφi(x)γj(y) (275)

where, by taking inner products and using orthonormality of the basis functions, we can

arrive at the formula for the coefficients

αi,j =< f, φiγj >=

∫ xMx

x0

∫ yMy

y0

f(x, y)φi(x)γj(y)dxdy (276)

A small issue arises when computing the continuous inner product though, since in general

we will be approximating the continuous inner product < ·, · > with a discrete one < ·, · >′:

the basis functions φi(x)γj(y) will no longer necessarily be orthonormal with respect to the
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discrete inner product. This can be partially remedied in one of two ways: (1) by setting up

a linear system for the coefficients αi,j after taking discrete inner products:



< φ1γ1, φ1γ1 >
′ · · · < φ1γ1, φ1γq >

′ · · · < φ1γ1, φpγ1 >
′ · · · < φ1γ1, φpγq >

′

...
...

< φ1γq, φ1γ1 >
′ · · · < φ1γq, φ1γq >

′ · · · < φ1γq, φpγ1 >
′ · · · < φ1γq, φpγq >

′

...
...

< φpγ1, φ1γ1 >
′ · · · < φpγ1, φ1γq >

′ · · · < φpγ1, φpγ1 >
′ · · · < φpγ1, φpγq >

′

...
...

< φpγq, φ1γ1 >
′ · · · < φpγq, φ1γq >

′ · · · < φpγq, φpγ1 >
′ · · · < φpγq, φpγq >

′





α1,1

...

α1,q

...

αp,1
...

αp,q



=



< f, φ1, γ1 >
′

...

< f, φ1γq >
′

...

< f, φp, γ1 >
′

...

< f, φpγq >
′


(277)

or (2) by selecting N data points (x′k, y
′
k)
N
k=1 from amongst the rectangle [x0, xMx ]× [y0, yMy ]

and setting up a least-squares problem



φ1(x′1)γ1(y′1) · · · φ1(x′1)γp(y
′
1) · · · φq(x

′
1)γ1(y′1) · · · φq(x

′
1)γp(y

′
1)

φ1(x′2)γ1(y′2) · · · φ1(x′2)γp(y
′
2) · · · φq(x

′
2)γ1(y′2) · · · φq(x

′
2)γp(y

′
2)

...
...

φ1(x′N)γ1(y′N) · · · φ1(x′N)γp(y
′
N) · · · φq(x

′
N)γ1(y′N) · · · φq(x

′
N)γp(y

′
N)





α1,1

...

α1,q

...

αp,1
...

αp,q



=



f(x′1, y
′
1)

f(x′2, y
′
2)

...

f(x′N , y
′
N)



(278)

where N >> pq. Using method (1) can be expected to minimize the discrete L2 norm of the

error between f and our approximation, and using method (2) can be expected to minimize

the discrete L∞ norm of the error over the N selected data points.

Similarly to (266), one we may collect like terms to achieve an approximation requiring
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only O(DxDy) evaluations, though we do still need to store MxMy(Dx + 1)(Dy + 1) many

coefficients, even after this simplification.

To avoid excessive growth of coefficients of the approximation, one considers an adaptive

construction. The adaptive procedure is based upon an approximation

f(x, y) ≈
∑
r

ur(x)vr(y) (279)

where ur and vr are splines in x and y respectively, and additional products are added as we

go (i.e. the upper bound on the sum increments by 1 with each iteration of the procedure).

Here is how we do this:

(1) Start with a spline v1 in the y variable.

(2) Given v1, . . . , vr, take inner products w.r.t. the y variable of both sides of (279) with the

vi’s, and set up a linear system for u = u(x) according to


< v1, v1 > · · · < v1, vr >

...
...

< vr, v1 > · · · < vr, vr >



u1(x)

...

ur(x)

 =


< v1, f > (x)

...

< vr, f > (x)

 (280)

and fit ui(x) according to this system, for various x (possibly the knots in the x direction).

(3) With the ui’s just found, we now take inner products w.r.t. the x variable of both
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sides of (279) with the ui’s, and set up a linear system for v = v(y) according to


< u1, u1 > · · · < u1, ur >

...
...

< ur, u1 > · · · < ur, ur >



v1(y)

...

vr(y)

 =


< u1, f > (y)

...

< ur, f > (y)

 (281)

and fit vi(y) according to this system, for various y (possibly the knots in the y direction).

(4) cycle through steps (2) and (3) until the difference between successive ui’s and vi’s

is small. If the tensor product approximation overall is poor (which would be reflected as a

large discrete L2 norm of the error, or large discrete L∞ norm of the error) and the systems

aren’t close to singular, increment r (the number of terms) by 1, generate a spline vr(y)

which is linearly independent to the previous vi’s, and return to step (2).

The nice thing about this procedure is it runs very fast compared to the previous attempts

at solving the problem, since we are only using a couple well-picked splines to capture the

dominant behavior of f . Another feature of this procedure is it is fully generalizable to high

dimensions, and still only requires being able to fit splines in 1D. We can incorporate any of

the 1D splines developed earlier into this procedure.

There are sensible alterations we can make to this procedure, such as fixing past prod-

ucts ui(x)vi(y) and iterating only on the residual, or imposing orthogonality conditions on

the new splines being generated in step (4), but these are variations on a theme. Below, we

demonstrate the efficacy of this procedure with numerical examples inspired by the Genz

functions in ([2]), using both standard and exponential A-splines as the 1D approximants.

There are error bounds for such types of tensor approximation procedures (e.g. [10]), though

this does not yet exist for the procedures outlined above.
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Figures (60) and (61) demonstrate interpolatory approximations of Kronecker deltas.

The tensor product of splines appears as a sharp bump where the Kronecker delta takes

on the value 1. We demonstrate this for an interior point and a corner point. Due to

the astronomical computational complexity of these algorithms, the panel count is severely

limited.

Figure 60: Cubic A-spline tensor product approximation of f(x, y) = δ(0,0)(x, y), effectively
producing the basis spline which acts as δ(0,0). 8 panels of uniform width along each axis.
Interpolatory spline approximation.

Figure 61: Cubic exponential A-spline tensor product approximation of f(x, y) =
δ(−1,−1)(x, y), effectively producing a corner basis spline that acts as δ(−1,−1). 8 panels of
uniform width along each axis. Interpolatory spline approximation. Uniform tension of
ρ = 1.
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Figures (62) and (63) showcase how well a multivariate function can be approximated

using the interpolatory spline approximation. The multivariate function was chosen so that

it cannot be expressed as a finite sum of products of single-variable functions in x and y.

As in the previous examples, the panel count is severely limited due to high computational

complexity of the algorithm.

Figure 62: Cubic A-spline tensor product approximation of f(x, y) = sin(xy), 8 panels of
uniform width along each axis. Interpolatory spline approximation. max error = 1.0e-4,
relative error = 1.2e-4

Figure 63: Cubic exponential A-spline tensor product approximation of f(x, y) = sin(xy),
8 panels of uniform width along each axis. Interpolatory spline approximation. Uniform
tension of ρ = 1. max error = 1.9e-3, relative error = 2.2e-3
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Figures (64) through (67) demonstrate the same multivariate function being approxi-

mated using the adaptive tensor spline approximation. Only 3 terms were used before the

program terminated due to the residual error being sufficiently small. Because few terms are

needed, the algorithm is much more computationally efficient, and larger panel counts can be

used. We observe a general trend that high panel counts in the x and y directions correspond

to smaller errors for the same number of terms, but the resulting error in the approximation

depends mostly on the tolerance we set for the residual error stopping condition.

Figure 64: Cubic A-spline tensor product approximation of f(x, y) = sin(xy), 8 panels
of uniform width along each axis. Adaptive tensor spline approximation, 3 terms used.
Gaussian quadrature is used for projection formulas. max error = 1.3e-4, relative error =
1.6e-4

Figure 65: Cubic A-spline tensor product approximation of f(x, y) = sin(xy), 16 panels of
uniform width along each axis. Adaptive tensor spline approximation, 3 terms used. max
error = 2.3e-5, relative error = 2.7e-5
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Figure 66: Cubic A-spline tensor product approximation of f(x, y) = x sin(y) + yx2, 16
panels of uniform width along each axis. Adaptive tensor spline approximation, 3 terms
used. max error = 3.7e-5, relative error = 2.0e-5

Figure 67: Cubic A-spline tensor product approximation of f(x, y) = x sin(y) + yx2, 32
panels of uniform width along each axis. Adaptive tensor spline approximation, 3 terms
used. max error = 6.9e-5, relative error = 3.7e-5
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The last two figures, (68) and (69), show approximations of step functions by 5th and

6th degree tensor spline approximations. The L∞ error cannot fall below 0.5 due to the

discontinuous nature of the step functions. We observe that the higher-order splines lead to

more oscillatory approximations of the discontinuous function, as one would expect in the

single-variable case as well.

Figure 68: Quintic A-spline tensor product approximation of a step function in y, 8 panels
of uniform width along each axis. Adaptive tensor spline approximation, 2 terms used. max
error = 5.0e-1, relative error = 5.0e-1

Figure 69: 6th degree A-spline tensor product approximation of a diagonal step function, 16
panels of uniform width along each axis. Adaptive tensor spline approximation, 10 terms
used. max error = 8.4e-1, relative error = 8.4e-1
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8 Future work

8.1 Closeness of Derivatives

As mentioned in the convergence analysis section above, it would be nice to have theorems

pertaining to the closeness of derivatives of the various spline procedures mentioned herein.

These were left as conjectures where we discussed them above.

8.2 Rational Splines

Rational splines are an interesting tool to use for situations where we need to approximate

functions with either the decay or singularities associated with rational functions. In par-

ticular, it would be nice to develop a procedure for using rational splines as approximators,

that is amenable to finding nice error bounds for. Rational splines can be put in the A-spline

framework.

8.3 Splines on Lines

Linear ODEs are not difficult to factor into the constraint matrix as additional constraints

that must be satisfied at each node, or at certain subsets of nodes. Nonlinear ODEs would

require more work to solve using the A-spline framework, as we can’t as neatly package them

as linear constraints; but the basis of A-splines generated by the A-spline procedure can still

be used to form a span that the true solution is projected onto. It is then feasible for the

method of lines of solving PDEs to be used in conjunction with A-splines, the solution to

the PDE along each “line” being fitted to a certain spline. Such a procedure would be an

interesting application of using A-splines to solve PDEs.
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8.4 Derivative Approximator

Developing a general nth-order accurate, kth-derivative approximating routine given a set

of function values and some subset of various of its derivatives on a finite subset of the real

line, would be helpful in assessing where to increase tension parameters in the context of

modeling with exponential splines. For reference, some work has already tried to answer

this question of optimal tension parameters (e.g. [18]), but this doesn’t rely on derivative

approximators as described here. It would also help in determining adaptive stepsize routines

for standard splines in addition. One could use forward/backward difference formulas, and

divided differences in general, but this doesn’t always lead to optimal usage of the data given

(e.g. osculatory information of f at certain nodes), and can introduce complications when

the panel size is not uniform (e.g. some divided difference formulas no longer approximate

the derivative at one particular knot, but rather at some nearby point). This wouldn’t be

too difficult, but would require some careful choices in the procedure, and merits a separate

paper in the future.
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9 Conclusion

In this thesis we provided explicit algorithms for constructing multiple types of high degree

1D splines (standard and exponential A-splines, standard and exponential C-splines) as well

as algorithms for generating orthogonal bases for families of splines SD and ED (via the

standard and exponential A-spline procedures). With these orthogonal bases, one is able

to perform L2 approximation of functions by way of projection, and we gave relevant error

bounds in L2 and L∞ for approximations constructed in this way for each class of splines that

we’ve considered. We also considered the use of a tensor product of splines to approximate

multi-dimensional functions. This application demonstrates the utility of creating 1D splines

approximation using L2 projection. In particular, the use of 1D L2 projection facilitates the

construction of multi-dimensional tensor product approximations that have few terms, thus

providing a way of generating multi-dimensional approximations that are both accurate and

computationally efficient to evaluate.

It is the hope of the author that the framework we established for A-splines and C-splines

herein takes afoot in the spline community, to aid in L2 approximation techniques, and also

to aid in providing inspiration for related spline families waiting to be discovered.
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