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SUMMARY
Craving is central to methamphetamine use disorder (MUD) and both characterizes the disease and predicts
relapse. However, there is currently a lack of robust and reliable biomarkers for monitoring craving and diag-
nosing MUD. Here, we seek to identify a neurobiological signature of craving based on individual-level func-
tional connectivity pattern differences between healthy control and MUD subjects. We train high-density
electroencephalography (EEG)-basedmodels using data recorded during the resting state and then calculate
imaginary coherence features between the band-limited time series across different brain regions of interest.
Our prediction model demonstrates that eyes-open beta functional connectivity networks have significant
predictive value for craving at the individual level and can also identify individuals with MUD. These findings
advance the neurobiological understanding of craving through an EEG-tailored computational model of the
brain connectome. Dissecting neurophysiological features provides a clinical avenue for personalized treat-
ment of MUD.
INTRODUCTION

Methamphetamine use disorder (MUD) is a prevalent substance

use disorder (SUD) with a high relapse rate.1 According to the

2020 National Survey on Drug Use and Health, the methamphet-

amine use prevalence of individuals aged 12 or older increased

by over 50% from 2017 to 2020.2 The consequences of metham-

phetamine use and addiction result in a significant cost. Howev-

er, current interventions for MUD have limited efficacy, with a

high relapse rate of about 61%.3 Moreover, there is significant

heterogeneity among clinical MUD syndromes.4 Identifying reli-

able biomarkers of methamphetamine use and relapse is crucial

to assisting with diagnosis, monitoring, prognosis, and treatment

by tailoring interventions more effectively to each individual

with MUD.

Craving and drug cue reactivity are considered central mech-

anisms and critical predictors of drug use outcome and

relapse.5,6 They are included in DSM-5 as a diagnostic criterion

for SUD.7 Cue-elicited craving serves as a good predicator of

subsequent drug use and relapse in the clinical population,5,8

while treatments targeting craving can reduce drug use and pre-

vent relapse.5,9 A recent systematic review and meta-analysis
Cell Repo
This is an open access article under the CC BY-N
emphasized that craving is one of the most important clinical in-

dicators across all stages of treatment, including primary clinical

care.10 There has been a continuing need to investigate the

neurobiological bases underlying craving and MUD.

Compared to neuroimaging approaches such as functional

magnetic resonance imaging (fMRI) and positron emission to-

mography (PET), scalp electroencephalography (EEG) has the

advantage of high temporal resolution, low cost, and easy data

acquisition, offering a viable path for translating biomarkers of

craving in subjects with SUD. However, conventional 32- or

64-channel scalp EEGs perform poorly in source localization

analysis, as the effect of volume conduction can substantially

change the scalp EEG signal.11 Notably, the use of high-density

EEG (128 channels or higher) could largely alleviate the effects of

volume conduction.12 A high-density EEG system provides

direct assessments of regional and global activity, throughwhich

brain activities can be reconstructed by applying precise source

imaging.13 Traditional resting EEG biomarkers of abnormal brain

activities have proven useful in the assessment of epilepsy14 and

have also demonstrated promise for depression, both for diag-

nosis and treatment prediction.15,16 Identifying EEG signatures

of craving may yield mechanistic insight into craving, provide
rts Medicine 5, 101347, January 16, 2024 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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novel brain targets, and offer feedback signals for developing

closed-loop neurostimulation therapies for MUDs.

To understand the neurophysiological architecture of MUD,

researchers have typically used two approaches. The first

approach is hypothesis driven, where researchers compare

different groups (e.g., a group of individuals withMUD and a con-

trol group) to probe the clinical relevance of specific neural sig-

nals in line with the a priori hypotheses. For example, previous

studies have suggested that increased slow-wave activity (delta

and theta) in methamphetamine abusers and increased beta

band synchronization of the medial prefrontal cortex (MPFC)

are associated with enhanced cued craving.17,18 In this

approach, previous EEG evidence is used to determine the neu-

ral indicators that will be measured, which population will be

tested, and which analytical method will be carried out. Using

such an approach, although multiple brain regions have been

identified as relevant to craving in MUD and capable of distin-

guishing between healthy control individuals and patients with

MUD, these associations and statistically significant distinctions

have not yielded a robust biomarker for individuals with MUD.

The hypothesis-driven approach seeks to elucidate the variance

or disparities between multiple variables but has limited applica-

bility to novel individuals.

The second approach employs data-driven machine learning

methods, which use a variety of neurobiological features for

MUD classification and craving prediction. For instance, Ding

et al. proposed using the mean and standard deviation (SD) of

absolute EEG power and galvanic skin response to classify indi-

viduals with MUD and healthy control individuals, achieving an

accuracy of 90.68%.19 Li et al. used arterial spin labeling to clas-

sify individuals with MUD and healthy control individuals,

covering related brain circuits including the occipital lobe, insular

cortex, postcentral gyrus, corpus callosum, and inferior frontal

cortex.20 These studies have shown promising results in classi-

fication, but the low-density EEG poses challenges in effectively

modeling features of input connections topology. The neural

substrate underlying cued craving is inconsistent and variable

at the individual level. As of yet, biomarkers have not been suc-

cessfully used to predict cravings and identify individuals with

MUD at the individual level in a reliable manner. Here, data-

driven machine learning methods can potentially harness

discriminating information within the data more effectively, and

the resulting models can be assessed for overfitting through vali-

dation on independent samples.

Here, leveraging high-density 128-channel resting-state EEG,

we sought to investigate the neurophysiological connectomes

of MUD and identify biomarkers for identification of abnormality

andcraving at the individual level. Our study builds uponprevious

EEG studies ofMUD as follows: (1) a total of 153 subjects (101 in-
Figure 1. MUD biomarker identification framework

(A) EEG processing and functional connectivity feature extraction. EEG data wer

passing, we conducted source localization using sensor-level data and obtained

(iCoh) was extracted at the ROI level.

(B) Individual-level analysis pipeline. FCNs in individuals withMUDwere used to p

model was also applied in the abnormality identification between individuals with

coefficient and root-mean-square errors (RMSEs) were calculated to evaluate the

and ROC curve were calculated.
dividuals with MUD and 52 well-matched healthy control [HC] in-

dividuals) were included in the study to increase statistical power

compared to previous studies with smaller samples. (2) We esti-

mated brain functional connectivity networks (FCNs) from

resting-state EEG in individuals with MUD and HC individuals,

both for group comparison and as features for machine learning

models (Figures 1A and 1B). The FCNs were quantified using

imaginary coherence (iCoh), which is defined as the imaginary

part of coherency and not confounded by volume conduction.21

(3) The use of high-density EEG and iCoh functional connectivity

allowedus to identify a robust neurobiological biomarker forMUD

brain abnormalities and correlates of craving. (4) Our machine

learning analysis of neurobiological biomarkers at the individual

level helped to explain individual variability andsuggestmore effi-

cient measures to be used to develop artificial intelligence (AI)

methodologies in supporting diagnosis of MUD. Our aim in this

study was to identify a transdiagnostic, reliable neurobiological

biomarker by utilizing machine learning models on individual-

level functional connectivity data in order to classify individuals

with MUD and predict craving in those individuals.

RESULTS

Group-level analysis with EEG FCNs
EEG FCNs for 57 individuals with MUD and 52 HC individuals (Ta-

ble 1; Figure S1) were computed. EEG FCNs were calculated be-

tween 465 region of interest (ROI) pairs (among 31 ROIs) across 5

carrier frequency bands (delta, theta, alpha, beta, and gamma)

with 2 resting conditions (resting-state eyes closed and resting-

state eyes open) from cortical current source density in source

space (see STAR Methods). Pearson’s r values were used to

quantify the correlations between FCNs and craving scores in in-

dividuals withMUD (Figures 2A and 2B). The results indicated sig-

nificant correlations between craving and LINS (left insula)-RORB

(right orbital gyrus) connections in the delta frequency band in the

resting-state eyes open (REO) condition (hereafter referred to as

REO delta; r = 0.505, p = 0.029, false discovery rate [FDR] cor-

rected), as well as LPMFG (left posterior middle frontal gyrus)-

MPFC connections in REO beta (r = 0.500, p = 0.034, FDR cor-

rected) and RSUP (right supramarginal gyrus)-PCC (posterior

cingulate cortex) connections in REO beta (r = 0.473, p = 0.047,

FDR corrected). No significant correlations were found with other

connections in REO delta or REO beta. No significant correlations

were found in resting-state eyes-closed conditions or in other fre-

quency bands in REO conditions.

Furthermore, we conducted an independent-sample t test on

EEG FCNs across 465 ROI pairs to determinewhether they could

differentiate individuals with MUD from HC individuals. Our re-

sults revealed a significant difference between the two groups
e collected using a high-density EEG cap. After EEG preprocessing and band

cortical current source density in source space. Then functional connectivity

redict craving with relevance vector machinemodel. Relevance vector machine

MUD and HC individuals. For craving score prediction, Pearson’s correlation

performance. For MUD vs. HC classification, accuracy, sensitivity, specificity,

Cell Reports Medicine 5, 101347, January 16, 2024 3



Table 1. Demographic and clinical characteristics of individuals with MUD and healthy control individuals

Demographic information on individuals with MUD and healthy control individuals

Variable MUD dataset 1 MUD dataset 2

Healthy control

individuals F t p

n 57 44 52 – – –

Age 34.8 years (7.2) 34.8 years (7.6) 36.6 years (10.0) 0.743 – 0.477

Educational attainment 8.8 years (3.6) 9.3 years (2.0) 9.2 years (2.5) 0.496 – 0.610

First age of use/addiction 26.1 years (6.4) 26.1 years (7.0) – – �0.049 0.961

Addiction years 7.9 years (4.3) 8.1 years (4.5) – – �0.230 0.819

Usage per month before abstinence 17.1 g/month (15.7) 15.6 g/month (10.7) – – 0.537 0.592

Duration of current abstinence

before experiment

10.3 months (8.5) 6.6 months (6.6) – – 2.337 0.021

Number of DSM-V symptoms 7.9 (1.7) 8.1 (1.9) – – �0.565 0.574

Craving scores 60.4 (21.1) 60.7 (22.6) – – �0.075 0.940

57 individuals with MUD in MUD dataset 1, 44 individuals with MUD in MUD dataset 2, and 52 HC individuals were included in the analysis. Values are

presented as mean with standard deviation in parentheses. One-way ANOVA was conducted to compare age and educational attainment in MUD

dataset 1, MUD dataset 2, and HC individuals. Independent t test was conducted to compare first age of use/addiction, methamphetamine usage

per month before abstinence, duration of current abstinence before experiment, number of DSM-V symptoms, and craving scores in MUD dataset

1 and MUD dataset 2.

Article
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OPEN ACCESS
in the strength of connections between LSMC (left somatosen-

sory cortex) and LV1 (left visual area 1) (t = �4.188, p = 0.027,

FDR corrected) and in connections between RINS (right insula)

and RSEF (right supplementary eye fields) (t = 3.986, p =

0.029, FDR corrected) in REO beta (Figures 2C and 2D). No sig-

nificant differences were found in other connections in REObeta.

No significant differences were found in other frequency bands.

In addition to the relationship between neurobiological mea-

surements and craving, we also calculated correlations between

craving and behavioral measurements, including the Pittsburgh

Sleep Quality Index (PSQI), the Beck Depression Inventory

(BDI-II), Barratt Impulsivity Scale (BIS-II) subscores (attention,

motor, no plan, and total impulsiveness), and Barratt Anxiety In-

ventory (BAI). However, none of these behavioral variables

showed a significant correlation with craving scores.

EEG connectomic biomarker for craving prediction at
the individual level
We next investigated whether EEG FCNs could serve as bio-

markers for MUD craving (measured as peak-provoked craving

[PPC]) at the individual level. To accomplish this, we used a rele-

vance vector machine (RVM) to build models that predicted

craving scores in individuals with MUD (MUD dataset 1) (STAR

Methods; Figures S2A and S2B). The predictive performance

of models built for all frequency bands and resting conditions

is shown in Figure S3. The models based on REO beta and

REO delta were able to significantly predict the craving scores

(Figures 3A–3C). Specifically, the REO delta model showed a

Pearson’s r of 0.41, p = 0.009 (FDR corrected), with a root-

mean-square error (RMSE) of 21.60, while the REO beta model

exhibited a highest performance with Pearson’s r = 0.73,

p < 3 3 10�9 (FDR corrected), and RMSE = 14.75.

To assess the importance of EEG FCNs in predicting individual

craving scores using RVM models for REO delta and REO beta,

we evaluated the weights of the connections in the models
4 Cell Reports Medicine 5, 101347, January 16, 2024
(Figures 3D–3G). As the RVM model is a sparse model, only a

few connections contribute to the model and are important for

the prediction. In the REO delta model, important connections

included those among RORB and LMTG (left middle temporal

gyrus) in the frontoparietal control network, INS (insula) and

SUP (supramarginal gyrus) in the ventral attention network,

and FEF (frontal eye fields) in the dorsal attention network (e.g.,

RORB-LINS, LSMC-RSUP, LIPS [left intraparietal sulcus]-

RINS, LMTG-LSUP [left supramarginal gyrus], LMTG-LIFJ [left

inferior frontal junction], RFEF [right frontal eye fields]-RANG

[right angular gyrus], and LFEF [left frontal eye fields]-LPMFG).

In contrast, the REO beta model was predominantly driven by

connections between theMPFC and LPMFG, as well as connec-

tions between PCC and RSUP, which were also significantly

correlated with craving scores in the univariate group-level anal-

ysis (Figure 2B). Additionally, connections with RAMFG (right

anterior midlle frontal gyrus) in the ventral attention network

(LSEF (left supplementary eye fields)-RAMFG and LIPL (left

inferior parietal lobule)-RAMFG) were also important for predic-

tion. A more detailed list of the important connections in the

REO delta and REO beta models is provided in Table S1.

Despite the weak correlations observed between the craving

scores and behavioral measurements in the univariate analysis,

it was still possible that combining behavioral measurements

with EEG features could enhance the predictive performance.

However, this was not found to be the case. Combining EEG

connectivity features with behavioral measurements did not

lead to an improvement in the performance of the model in pre-

dicting craving scores.

Replication of craving prediction in the other
independent MUD dataset
We tested whether our craving prediction models could be repli-

cated by conducting the same analysis on an independent

resting-state EEG dataset of 44 individuals with MUD (MUD
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Figure 2. Resting-state EEG iCoh connectomes in the discovery MUD dataset and HC dataset

(A) Pearson’s r values in REO delta iCoh between FCNs and craving scores in individuals with MUD (n = 57 individuals with MUD). Only the correlations between

LINS and RORB (r = 0.505, p = 0.029, FDR corrected) survived correction for multiple comparisons. Inset: the connections between LINS and RORB in brain

networks.

(B) Pearson’s r values in REO beta iCoh between FCNs and craving (n = 57 individuals with MUD). The correlations between LPMFG and MPFC (r = 0.500, p =

0.034, FDR corrected) and the correlations between RSUP and PCC (r = 0.473, p = 0.047, FDR corrected) survived correction for multiple comparisons. Inset:

LPMFG-MPFC connections and RSUP-PCC connections in brain networks.

(C) Mean REO beta connectivity matrices of all individuals with MUD and HC individuals (n = 57 individuals with MUD and 52 HC individuals). ROIs were divided

into frontal lobe, parietal lobe, temporal lobe, visual cortex, MPFC, PCC, and DACC.

(D) t statistic in REO beta iCoh between individuals with MUD and HC individuals (n = 57 individuals with MUD and 52 HC individuals). The differences of the

connections between LSMC and LV1 (t =�4.189, p = 0.027, FDR corrected) and the connections between RINS and RSEF (t = 3.986, p = 0.029, FDR corrected)

were significant. Inset: LSMC-LV1 connections and RINS-RSEF connections in brain networks.
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dataset 2). First, we tested the model performance of REO beta,

the best predictor trained on dataset 1, using dataset 2 (Fig-

ure S4A). We observed a relatively high level of performance
(Pearson’s r = 0.60, p < 2 3 10�5, RMSE = 19.31), which was

only slightly lower than the performance on the training dataset

(dataset 1; Figure 3B). This result demonstrates the robustness
Cell Reports Medicine 5, 101347, January 16, 2024 5
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Figure 3. Resting-state EEG iCoh connectomes predict craving in individuals with MUD in dataset 1

(A) Predictive performance of REO delta iCoh model: Pearson’s r = 0.41, p = 0.009, FDR corrected, RMSE = 21.60 (n = 55 individuals with MUD). Gray: 95%

confidence interval.

(legend continued on next page)
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of the craving prediction model trained on REO beta from data-

set 1.

Next, we used MUD dataset 2 as an independent dataset and

conducted 10-time 10-fold cross-validation. The prediction per-

formance of models built for all frequency bands and resting

conditions is shown in Figure S5. The REO beta model was

able to significantly predict the craving scores (Figures S4B

and S4C; Pearson’s r = 0.65, p < 2 3 10�5, FDR corrected,

RMSE = 17.56), consistent with the results from the discovery

MUD dataset. However, compared to dataset 1, the REO delta

model did not show significant prediction (Figures S4C and S5;

Pearson’s r = 0.29, p = 0.222, FDR corrected, RMSE = 22.78).

In line with the results obtained from the discovery dataset, the

results from the REO beta model trained on MUD dataset 2

demonstrate the robustness of our RVM model in predicting

craving in individuals with MUD.

We then evaluated the weights of the RVM models for REO

beta trained on dataset 2 (Figures S4D and S4E). As with the

weights trained on dataset 1, the connections within and among

MPFC, RSUP, and AMFG (anterior middle frontal gyrus) (e.g.,

MPFC-RANG and RSUP-LAMFG (left anterior middle frontal

gyrus)) were observed to play an important role in the prediction.

In addition, connections between RSEF and LANG (left angular

gyrus) were also important to the prediction.

EEG connectomic biomarker for the identification of
individuals with MUD
We proceeded to investigate whether EEG FCNs could serve as

biomarkers for identifying MUD at the individual level. We em-

ployed the RVM model to classify individuals with MUD and

HC individuals using FCNs from each frequency band and

resting condition (STAR Methods). The predictive performance

of the RVM classification models was evaluated with 10-time

10-fold cross-validation, presented in Figures 4 and S6. Consis-

tent with the group-level results, the REO beta model demon-

strated the best classification performance across all frequency

bands and resting conditions, achieving a classification accu-

racy of 80.95% (sensitivity: 82.14%; specificity: 79.59%), which

was substantially higher than that of the other models (all with

classification accuracies below 70%; Figure S6). Furthermore,

the REO beta model also exhibited the highest area under the

operating characteristic curve (AUC; 0.859, Figure 4B) and diag-

nostic odds ratio (DOR; 17.94; Figure 4C) compared to other fre-

quency bands and resting conditions.

To determine the contribution of different connections to the

identification of individuals with MUD, we evaluated and visual-

ized the weights of the REO beta RVM classification model, as

shown in Figures 4D and 4E. Based on the feature weights, con-
(B) Predictive performance of REO beta iCoh model: Pearson’s r = 0.73, p < 3 3

confidence interval.

(C) Predictive performance comparisons between different predictors. Pearson’s

(D) Feature weight matrix for REO delta iCoh model.

(E) Connections of REO delta iCoh that contributed to the prediction with positive

network; DAN: dorsal attention network; DMN: default mode network; FPN: fron

(F) Feature weight matrix for REO beta iCoh model.

(G) Connections of REO beta iCoh that contributed to the prediction with positiv

See also Figures S3–S5 and Table S1.
nections among the primary visual cortex and insula were impor-

tant for the classification, such as LINS-RV1 (right visual area 1),

RINS-RSEF, and LV1-LSMC. Notably, the RINS-RSEF and LV1-

LSMC connections were also found to differ significantly be-

tween the MUD and HC groups (Figure 2D). More details about

important connections in the REO beta model can be found in

Table S2.

Machine learning analysis using sensor-space spectral
power features
Besides FCNs, EEG spectral powers are also used as alternative

features to characterize oscillatory activities in the brain. Howev-

er, it remains unclear whether the band power spectrum can truly

reflect the alterations in brain function and the neural mecha-

nisms underlying neurological and psychiatric disorders.

Furthermore, it is unknown whether FCNs encodemore informa-

tion about MUD. To address these questions, we developedma-

chine learningmodels based on spectral powers in sensor space

to assess the ability of band powers to generate EEG biomarkers

for individuals with MUD. We applied similar RVM models with

sensor-space band powers as the input features for craving pre-

diction and identification of MUD (STAR Methods).

The predictive performance of the resultingmodels was signif-

icantly inferior to that of the source-space connectivity-based

models (Figure 5). The prediction performance of band power

models built for all frequency bands and resting conditions is

shown in Figure S7. Specifically, for craving score prediction,

only the REO alpha power feature yielded a significantly predic-

tive model (Figures 5A–5C; Pearson’s r = 0.47, p = 0.003, FDR

corrected, RMSE = 22.66), which was still considerably worse

than REO beta iCoh. Concerning the classification of individuals

with MUD and HC individuals, the best classification accuracy

achieved was 64.22% using resting-state eyes closed (REC)

gamma power features (Figures 5D–5F), which was much lower

than the FCNmodels with 80.95% accuracy utilizing the source-

space REO beta iCoh features. REO beta power feature had

weak performance both in prediction (Figures 5A and S7; Pear-

son’s r = 0.10, p = 0.700, FDR corrected, RMSE = 30.00) and

classification (Figures 5D, 5E, and S7; accuracy = 60.55%,

sensitivity = 63.16%, specificity = 57.69%, AUC = 0.604,

DOR = 2.34) compared to REO beta iCoh performance

(Figures 3B, 3C, 4A–4C, S3, and S6).

DISCUSSION

The current study employed a two-pronged approach,

combining (1) theoretical analysis to compare the connectomic

profiles of healthy individuals to those with MUD and (2) a
10�9, FDR corrected, RMSE = 14.75 (n = 56 individuals with MUD). Gary: 95%

correlation, **p < 0.01; ***p < 0.001.

and negative weights, respectively. VIS: visual network; SMN: somatosensory

toparietal control network; VAN: ventral attention network.

e and negative weights, respectively.
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Figure 4. Identification of individuals with MUD by EEG iCoh connectomes

(A) Accuracy of classification performance of different carrier bands.

(B) Receiver operating characteristic curve (ROC) of classification performance.

(C) Diagnostic odds ratio of classification performance.

(D) Feature weight matrix for REO beta iCoh model.

(E) Connections that contributed to the identification of individuals with MUD. Red edges: positive weights; blue edges: negative weights. Edges are thicker for

connections with a larger contribution.

See also Figure S6 and Table S2.
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machine learning approach to identify neurobiological bio-

markers for craving evaluation and MUD identification based

on high-density EEG functional connectivity during resting-state

recording. Unlike current EEG biomarkers for diagnosing brain

diseases, this method utilized EEG source imaging to explore

the complex interaction between brain regions and contrasted

the results with the sensor-based dynamics of MUD. Our find-

ings revealed nodes and network connectivity patterns that

could serve as potential brain circuit markers for developing

more targeted, mechanism-based therapeutics for MUD. With

a precise connectomic road map, our findings lay the ground-

work for machine-learning-driven personalized neuromodulation

interventions and psycho-therapeutics for individuals with MUD.
8 Cell Reports Medicine 5, 101347, January 16, 2024
Across our identified machine learning models, predictive

brain regions such as the MPFC, angular gyrus, orbital gyrus,

and insula, as well as their connections, were investigated in

detail for craving prediction and MUD identification, consistent

with previous studies of MUD.18,22,23 In our previous studies,

we demonstrated increased synchronization of the MPFC in

the beta frequency band in individuals with MUD who had ab-

stained from substance use for 1–3 months, which correlated

with the incubation of craving.18 The connections between the

orbitofrontal cortex and other brain regions were found to be

weaker in individuals with MUD compared to HC individuals in

another study.23 Moreover, individuals with MUD exhibit gray-

matter volume deficits in the orbitofrontal cortex, angular gyrus,
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Figure 5. Craving prediction and MUD identification by sensor-space spectral power

(A) Prediction performance comparisons between different predictors. Only REO alpha power model is significantly predictive. **p < 0.01.

(B) Prediction performance using REO alpha power (Pearson’s r = 0.47, p = 0.003, FDR corrected, RMSE = 22.66, n = 57 individuals with MUD). Gray: 95%

confidence interval.

(C) Feature weights of REO alpha power prediction model shown in topographical plot.

(D) ROC of classification performance. The highest AUC is from the REC beta power model (AUC = 0.649).

(E) Diagnostic odds ratio of classification performance.

(F) Classification performance using REC gamma power (n = 57 individuals with MUD and 52 HC individuals). Accuracy: 64.22%, sensitivity: 66.67%, and

specificity: 61.54%.

See also Figure S7.
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and insula.22 Additionally, disruptions in risk-related processing

are observed in the insula of individuals with MUD.24 A meta-

analysis further indicates decreased regional metabolites in the

MPFC of individuals with MUD.25

The correlation between the insula and the orbital gyrus in the

delta band may suggest an association between the heightened

awareness of bodily states and the drive for reward-seeking be-

haviors during craving inMUD.26 The correlation in the beta band

between LPMFG and MPFC may suggest a link between cogni-

tive control processes and self-referential or emotional aspects

of craving.27 These specific connections could potentially serve
as targets for therapeutic interventions. Modulating the connec-

tivity between these regions might help reduce the intensity of

craving or improve cognitive control over cravings in individuals

with SUD. In summary, the significant correlations between

craving and these specific brain connections in the delta and

beta frequency bands suggest that the interplay between re-

gions associated with emotional processing, reward seeking,

and cognitive control may be crucial for understanding the neural

basis of craving inMUD. Further research is needed to fully eluci-

date the functional significance of these connections and their

potential role in the development and treatment of addiction.
Cell Reports Medicine 5, 101347, January 16, 2024 9
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The complexity ofMUDas a brain disorder has led researchers

to consider neurophysiological activity as a reliable predictor of

drug use and relapse.28 Previous studies of EEG event-related

potentials (ERPs) have explored their relationship with drug-

seeking behaviors, but the results have been inconsistent, likely

due to different responses to substance-related stimuli in

different contexts.28–30 In contrast, resting-state EEG records

the spontaneous electrical activity of the brain, which is ongoing

andmore reliable and can be obtained more easily in clinical set-

tings. Thus, resting-state EEG may be a more effective tool for

predicting drug use and relapse in individuals with MUD and

may be especially helpful for developing AI methodologies to

support diagnosis of and craving prediction in MUD.

Eyes-open beta FCNs as a biomarker in craving
prediction and identification of MUD
Our study sheds light on the potential of eyes-open beta FCNs as

a biomarker of MUD. REO beta FCNs demonstrated predictive

capabilities in evaluating cue-induced craving and correlated

well with the phenomenon of craving in individuals with MUD.

Although previous studies have used craving scores to predict

methamphetamine use31,32 and treatment response33 in MUD,

few have explored baseline craving evaluation through neuro-

physiological activities. To further understand the neurobiolog-

ical biomarkers for craving in individuals with MUD, we devel-

oped a machine learning model for predicting cue-induced

craving scores.

In addition to craving prediction, eyes-open beta FCNs also

show potential as a biomarker for identifying abnormalities in

individuals with MUD. Previous studies have investigated abnor-

mality identification in MUD using various methods, such as

arterial spin labeling,20 EEG and galvanic skin response in

drug-simulated virtual reality environments,19 urine,34 cue-eli-

cited heart rate variability,35 and weighted phase lag index.36

Among these studies, weighted phase lag index, a type of FCN

obtained from resting-state EEG at the sensor level, achieved

a high classification accuracy of 93%, sensitivity of 100%, and

specificity of 83%, demonstrating the potential of FCNs for clas-

sifying MUD. However, the classification model using FCNs at

the sensor level failed to establish a clear relationship between

brain activities and MUD. Our study, on the other hand, used

source localization to obtain cortical current source density

from resting-state scalp EEG, which allowed us to associate

brain activities and interactions in different brain regions with

MUD and establish a neurobiological biomarker pattern. To

reduce the impact of volume conduction on the inverse problem,

we utilized another type of FCN, iCoh.

Based on our findings, eyes-open beta FCNs appeared to be

the most effective biomarker among all frequency bands and

resting conditions for predicting and evaluating craving in indi-

viduals with MUD. In our previous studies, MPFC activities in

the beta frequency synchronized in individuals with MUD who

had been abstinent for 1–3 months.18 Beta band oscillation

has also been associated with negative symptoms in the predic-

tion of psychosis37,38 and has also shown good accuracy in clas-

sifying methamphetamine-dependent individuals.36 In addition

to the regions of interest (ANG (angular gyrus), INS, PCC,

MFG, etc.) previously mentioned, long-term methamphetamine
10 Cell Reports Medicine 5, 101347, January 16, 2024
exposure may lead to a reduction in cortical complexity, partic-

ularly in frontal regions,39 as well as increased frontal delta band

power in patients at clinical high risk for psychosis.40 One study

found positive connectivity between the right anterior INS and

the precuneus in response to smoking cues,41 which may be

related to craving. Other studies have shown activation of

MPFC neurons during cue-induced alcohol seeking in rats42

and differences in the structure and function of brain regions

related to salience evaluation (INS and ACC) in SUD.43 Long-

term-abstinent methamphetamine users have been found to

exhibit decreased cortical gray matter volumes in visual associ-

ated cortices, which may contribute to psychiatric symptoms44

and drug cue-induced craving.45 Additionally, brain regions

related to auditory/visual regulation may also play a crucial role

in the psychiatric symptoms of MUD.46,47

The correspondence between the significant ROIs identified in

our EEG functional connectivity analysis, taken together with

prior research on MUD and SUDs more broadly, implies that

EEG FCNs at the ROI level have the potential to act as neurobi-

ological biomarkers for both identifying abnormalities and esti-

mating craving in individuals with MUD.

Brain functional connectivity is a better biomarker for
individuals with MUD than spectral power
Previous studies have extensively investigated the role of EEG

band power in SUDs. For example, studies have shown increased

alpha bandpower in smokerswhenexposed to smoking virtual re-

ality environments,48 altered theta bandpower in themedial frontal

cortex (MFC)and functionalconnectivitybetween theMFCand the

dorsal PFC (dPFC) in individuals with alcohol use disorder,49 and

reduced alpha band power in response to emotional and ciga-

rette-related stimuli compared to neutral stimuli in smokers.50

However, it is questionable whether the band power spectrum

can truly reflect theneuralmechanismsunderlying theseneurolog-

ical and psychiatric disorders. A recent retrospective study on

brain lesionshas identifiedaconnectomicprofile includingspecific

brain regions such as the paracingulate gyrus, the left frontal oper-

culum,and themedial fronto-polarcortexas important inaddiction

remission.51 In light of the findings in this study, lesions in specific

regions or activation patterns alone may not be sufficient to inter-

pret the neural dysfunction in individuals with MUD. Instead,

changes in the activation patterns of interactions within and be-

tween specific neural circuits and systems are more likely to be

associated with MUD.52 Our findings suggest that FCNs may be

better for MUD identification and craving estimation than spectral

power, highlighting the need for more complex models to under-

stand the neural mechanisms underlying MUD.

In the context of addiction, characterized by dysfunctional inter-

communication among brain networks, the examination of

network-level connections such as those provided by FCNs offers

a comprehensive perspective on craving.51 Craving, a multifac-

eted phenomenon within SUDs, involves intricate coordination

across multiple brain regions.53 FCNs emerge as invaluable tools

for dissecting these complex interactions. Moreover, FCNs

possess the capability to capture the temporal dynamics of con-

nectivity patterns during craving states. Leveraging measures

like iCoh, they discern authentic brain interactions from potential

artifacts. Furthermore, FCN analysis unveils noteworthy
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alterations in functional connectivity, a critical insight that holds

particular relevance in neurological and psychiatric disorders,

including SUDs.54 These alterations in connectivity often eclipse

changes in localizedbrainactivity. Thishighlights theclinicalprom-

ise of FCNs for advancing our comprehension and therapeutic ap-

proaches to these challenging conditions.

Conclusion
Here, we reported potential neurophysiological connectomic bio-

markers for identifying abnormalities and predicting craving in

MUD using resting-state high-density EEG. Our findings suggest

a promising approach for clinical symptom evaluation, auxiliary

diagnosis, and treatment and pave the way for oscillation-based

non-invasive brain stimulation treatments for addiction.

Limitations of the study
The studyhassome limitations that future researchshould address

to better understand its clinical implications. First, we did not

include event-related EEG data on cue reactivity, and combining

multimodal EEG data could enhance the predictive performance

of the biomarkers. The procedure of cue exposure may also lead

to certain network changes in the resting EEG data analyzed in

the study. In future work, we are considering the inclusion of sup-

plementarymeasuresor scales that couldprovide amore compre-

hensive understanding of the multifaceted nature of craving in

MUD. This augmentation would help enrich our data interpretation

and better capture the complexity of craving experiences among

ourparticipants.Secondly,weadoptedthePPCstrategymeasure-

ment in the present study rather than disentangling pre-video

(tonic) and cue-induced (phasic) components of craving. PPC

aims to induce the most robust craving states that originate from

both environmental cues and abstinence factors that also asso-

ciate with several clinically significant outcomes. In the future, it is

critical to carefully assess the cue-induced craving more specif-

ically in detail and to compare the neural substrate underlying

PPC and cue-induced craving. Such an adjustment will bolster

thecredibility ofour findingsandalignwithbestpractices incraving

assessments. Third, high-density EEG source imaging approach

may not be sensitive to subcortical neuronal activity, which can

be highly relevant to communication in large-scale neural circuits.

The source imaging analysis would benefit from an individualized

head model with more precise anatomical information. Addition-

ally, longitudinal and pre-post intervention EEG studies exploring

biomarkers associated with abstinence/relapse or treatment are

necessary before the biomarkers can be adopted clinically.
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MATLAB package: Relevance vector

machine
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RVM-MATLAB
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Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Ti-Fei Yuan (ytf0707@

126.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All original data reported in this paper will be shared by the lead contact upon request.

d All data analysis and visualization in this study are implemented based on Python 3.7 andMATLAB 2021a. Custom codes used

in this study are available in the GitHub repository at https://github.com/Weiwen-Tian/EEG_MUD/tree/main and are publicly

available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A total of 162male individuals withMUDaged between 21 and 54 years old were recruited from four drug addiction rehabilitation cen-

ters (Tiantanghe, Dalianshan, Taihu andWuhan). Inclusion criteria included: (1) Subjectswhose diagnosiswasMUD formore than two

years, usingmore than 0.1gper dayonaverage, and reported urinedrug screening test positive formethamphetamine before entering

rehabilitation centers; (2) Subjects who met diagnostic criteria for MUD according to the fifth edition of the American Psychiatric As-

sociation’s Diagnostic and Statistical Manual of Mental Disorder (DSM-5); (3) Subjects who didn’t have other substances use disor-

ders, including heroin, marijuana, methcathinone, alcohol, etc., as their primary addiction diagnosis in the most recent five years. An

experienced psychiatrist confirmed the diagnosis of MUD. A total of 68 healthy subjects were also recruited as controls, and the two

groupswerematched for age, education, smoking, and drinking status. Exclusion criteria were current or historical neurological, psy-

chiatric, or medical disorders and the use of any medication within the past three months. See Figure S1 for further details.

At the rehabilitation centers, all individuals with MUD received standardized rehabilitation procedures, including daily physical ex-

ercise and supportive therapy for relapse prevention. These participants maintained abstinence throughout the study. Ethics

approval was granted by the Research Ethics Boards of Shanghai Mental Health Center and the four rehabilitation centers. All par-

ticipants were well-informed and provided written informed consent in accordance with the Declaration of Helsinki. They were also

compensated for their time.
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Peak provoked craving (PPC) assessment and resting-state Electroencephalography (EEG) were conducted. The study also

included behavioral measurements, such as the Pittsburgh Sleep Quality Index (PSQI), Beck Depression Inventory (BDI-II), Barratt

Impulsivity Scale (BIS-II) sub-scores (attention, motor, no plan, and total impulsiveness), and Barratt Anxiety Inventory (BAI).

METHOD DETAILS

Peak provoked craving (PPC) assessment
To assess peak provoked craving (PPC) or maximal craving status, participants were exposed to a 5-min video presentation that

vividly depicted scenarios involving methamphetamine use. This video presentation was thoughtfully designed to engage partici-

pants and evoke reactions that mirror real-world situations. After viewing the video, participants engaged in a critical aspect of

our evaluation – the completion of a visual analogue scale (VAS). On this scale, participants were prompted to express their subjective

experience of craving by assigning a value along a continuum. Ranging from 0 (indicating a complete absence of desire) to 100 (rep-

resenting an intense and overwhelming urge), the VAS enabled participants to articulate their craving level with precision.

EEG acquisition
EEG data were acquired with a high-density, 128-electrode array (Electrical Geodesics, Inc.) using high-impedance amplifiers. All

scalp channels were adjusted tomaintain an impedance of <50 kU. The sampling rate was 500 Hz, and offline filtering was performed

with a bandpass filter of 0.01–100Hz (with a notch filter at 50Hz). Participants were instructed to remain awake and relaxed while

sitting in a quiet room for 5 min with eyes closed, followed by 5 min of fixating on a given point with their eyes open, and another

5 min with their eyes closed (some participants completed an additional 5 min of eyes-open recording). Custom MATLAB scripts

were used for preprocessing and source localization. The resting-state eyes-closed condition yielded a total of 604.7 ± 57.3 s of

EEG recordings, while the resting-state eyes-open condition yielded 268.0 ± 69.4 s of EEG recordings (mean ± std).

After ensuring demographic information (age and education years) matched and excluding subjects who did not pass strict pre-

processing quality control, we included 57MUD subjects from dataset 1, 44MUD subjects from dataset 2, and 52 HC subjects in our

study. Dataset 1 and dataset 2 were recruited independently with different individuals. Please refer to Table 1 for detailed demo-

graphic and clinical characteristics, and to Figure S1 for a flowchart illustrating the procedure.

EEG pre-processing
Offline preprocessing of EEG recordings was conducted with the EEGLAB toolbox57 in MATLAB.

In general, the preprocessing process was as follows: first, the time series was down-sampled to 250Hz, with notch filtering to

remove 50 Hz power frequency noise and bandpass filtering between 1 Hz and 100 Hz by a zero-phase finite impulse response filter.

Then bad channels including bridged channels and noise channels were removed and spherically interpolated. Paroxysmal seg-

ments were rejected and excised. To remove artifacts such as blinks, eye movements, heartbeat and myoelectricity, independent

components analysis (ICA) with the extend informationmaximization algorithm58 was used to decompose independent components.

Then bad components were detected and removed by principal components analysis (PCA) through dimensionality reduction and

the least number of principal components which accounted for more than 99.9% of the total variance was determined as the number

of dimensions. After the last re-reference, preprocessed EEG time series were obtained. With custom pipelines and EEG expert vali-

dation, extremes of flatline amplitudes or aberrant points, channel correlations and robust paroxysmal spike measures could be de-

tected and removed by an automated algorithm.55 Preprocessed time series at the sensor level were filtered into 5 canonical fre-

quency bands: delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz).

Source localization
Source localization was performed using the standard head model in the Brainstorm toolbox.59 A three-layer symmetric boundary

element model of the head was computed with OpenMEEG60 and then rotating dipoles of 3003 vertices on the cortical surface

were selected. We estimated the imaging kernel, which mapped from the sensor-level EEG to the source-level current source den-

sity, using the minimum norm estimation approach (MNE) with depth weighting and regularization. Subsequently, we reduced the

current density time series in three space dimensions for each vertex to one dimension from three orthogonal axes by PCA.

Region of interest parcellation
Connectivity analysis was performed among 31 ROIs in theMontreal Neurological Institute (MNI) space, derived from an independent

parcellation of resting-state fMRI functional connectivity based on the peaks of the ICA clusters.61,62 Time series representing the

main pattern of variation of all vertices in the same ROI were generated through PCA. We extracted the dominant signal of the

time series using singular-value decomposition (SVD), considering the first singular vector as the signal at the ROI level.63

These 31 ROIs were divided into 6 networks: VIS (Visual Network): Visual Area 1 (V1); SMN (Somatosensory Network): Somato-

sensory Cortex (SMC); DAN (Dorsal Attention Network): Inferior Frontal Junction (IFJ), Intraparietal Sulcus (IPS), Frontal Eye Fields

(FEF) and Supplementary Eye Fields (SEF); DMN (Default Mode Network): Posterior Cingulate Cortex (PCC), Medial Prefrontal Cortex

(MPFC) and Angular Gyrus (ANG); FPN (Frontoparietal Control Network): Posterior Middle Frontal Gyrus (PMFG), Inferior Parietal
Cell Reports Medicine 5, 101347, January 16, 2024 e2
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Lobule (IPL), Orbital Gyrus (ORB) and Middle Temporal Gyrus (MTG); and VAN (Ventral Attention Network): Anterior Middle Frontal

Gyrus (AMFG), Insula (INS), Dorsal Anterior Cingulate Cortex (DACC) and Supramarginal Gyrus (SUP).

Functional connectivity network calculation
Functional Connectivity Networks (FCNs) play a crucial role in capturing dynamic interactions by examining the temporal correlations

or phase synchronization among multiple brain regions. Coherency and coherence are two widely used methods for analyzing EEG

connectivity. To reduce the influence of volume conduction, a solution was developed that involves extracting the imaginary coher-

ence, which represents the time delay between two channels.21 In this study, we used imaginary coherence (iCoh) to reveal cortical

interactions. Here the Fieldtrip toolbox was used to compute the iCoh connectivity of 465 unique ROI pairs in each of the 5 carrier

bands and each of the 2 resting eye conditions.64

Denoting Sij;t as the cross-spectral density of xiðtÞ and xjðtÞ at time point or trial t, Sij;t is defined as

Sij;tðfÞ= < xi;tðfÞxj;t�ðfÞ> ;

where * means complex conjugation and < > means expectation value.

Denoting SijðfÞ as the cross-spectrum, the imaginary coherence is defined as

iCohijðfÞ = ImagðCohijðfÞÞ =
ImagðSijðfÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SiiðfÞ,SjjðfÞ

p ;

where CohijðfÞ is the complex form of coherency.

Calculating this connectivity at the ROI level by averaging correlations of each source-space vertex between two given ROI nodes

could lead to errors due to the anti-symmetry of the imaginary part (iCohijðfÞ = � iCohjiðfÞ). Therefore, to avoid such errors, we

directly calculated the iCoh at the ROI level in the carrier frequency bands.

Group level analysis
We first performed a group-level analysis of the source-space FCNs. To investigate the relationship between craving and FCNs, we

computed the correlations between these two factors while correcting the p values for multiple comparisons using false discovery

rate (FDR) adjustment. Additionally, we conducted an independent t-test to compare FCNs between individuals with MUD and

healthy controls (HCs), with p values for each pair of functional connectivity corrected using FDR adjustment. Furthermore, we calcu-

lated the correlations between craving and behavioral measurements while correcting with FDR adjustment.

Machine learning analysis
We used two machine learning models, based on two biomarkers (craving prediction and abnormality identification), to evaluate the

strength of the relationship. For bothmodels, each ROI pair connectivity measure was used. See Figure 1 for an illustration of our data

processing framework, and Figure S2 for the machine learning workflow.

Cross validation: The data were randomly divided into 10 subsets, with each subset containing approximately the same number of

subjects. One subset was selected as the test data and the other 9 subsets were used as training data. This process was repeated 10

times, with each of the 10 subsets used once as the test data. As a result, each subject had a predicted probability. To improve the

stability of the prediction, the data were randomized 10 times, and the stratified 10-fold cross-validation was run on each randomized

set of data. Details of the cross-validation are illustrated in Figure S2A.

Machine learning workflow: Outlier data, defined as having a sum of feature values more than three median absolute deviations

(MAD) from the median, were removed from the EEG connectivity feature vectors. The dataset was then Z score normalized, and

the processed EEGFCNswere used as input features for themachine learningmodels. For predicting craving scores, the RVMmodel

and 10*10 cross-validation were applied to the dataset for predicting craving scores and classifying individuals with MUD and HCs.

Pearson’s correlation coefficient (r) and root-mean-square error were calculated to evaluate the prediction model, while accuracy,

sensitivity, specificity, diagnostic odds ratio, and area under the ROC curve were calculated to evaluate the classification model.

The machine learning workflow is illustrated in Figure S2B.

Relevance vectormachine: A relevance vectormachine (RVM)with the linear kernel of EEGdatawasused tobuild sparse linear regres-

sionmodels for craving prediction fromconnectivity features.56WealsoemployedanRVMwith the linear kernel of EEGdata andanouter

layerof a sigmoid function tobuildsparseclassificationmodels todistinguishMUDandHCs.AnRVMisamachine learning technique that

automatically selects relevant features forpredictionbymaximizing themarginal likelihoodwithasparseprior topenalizecomplexmodels

under the sparse Bayesian learning framework. Compared to a support vector machine (SVM), an RVMcan provide probabilistic predic-

tions, reduce computational complexity, and estimate the error/margin trade-off parameter. Additionally, the kernel function of an RVM

does not need to satisfy Mercer’s condition, which means it works without additional validation to determine the hyperparameters.56

Craving prediction in MUD individuals
We used the RVM model with 10-time 10-fold cross-validation to predict craving scores in individuals with MUD based on resting

FCNs among the ROIs. We assessed the predictive performance by calculating Pearson’s correlation coefficient and root-mean-
e3 Cell Reports Medicine 5, 101347, January 16, 2024
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square error (RMSE) between the cross-validated predicted scores and true scores. We also reported the p values, after correction

for multiple comparisons using the FDR method, for the one-tailed alternative hypothesis that the coefficient of determination was

greater than 0 for iCoh of 5 bands in resting eyes-open and eyes-closed conditions (a total of 10 patterns). Additionally, since the

RVMmodel was a sparse model, we used the feature weight matrix of the RVMmodel to indicate the predictive importance and abil-

ity of brain functional connections.

Identification of MUD individuals
The RVM model with 10-time 10-fold cross-validation was used to classify individuals with MUD and HCs based on EEG functional

connectivity estimates. The model assigned a label of ’1’ to individuals with MUD and ’0’ to HCs. Classification performance was

assessed using classification accuracy, sensitivity (true positive rate), specificity (true negative rate), and area under the receiver

operating characteristic curve (AUC). AUC was calculated by scikit-learn package in python (https://scikit-learn.org/stable/). AUC

represents the resolution of the model in distinguishing between different categories. It measures the ability of the model to correctly

discriminate between positive and negative instances, indicating how well the model separates the classes based on the chosen

evaluation criteria. Higher AUC values indicated better separability and higher classification performance. The diagnostic odds ratio,

defined as the ratio of the odds of a positive test when the subject has a disease to the odds of a positive test when the subject does

not have the disease,65 was also calculated to measure the effectiveness of our classification model.

ANALYSIS WITH SENSOR-SPACE SPECTRAL POWER

To test the predictive ability of FCNs in individuals with MUD, we also used sensor-space power spectra as input features for the

machine learning models and compared the classification and predictive performance between FCNs and band power spectra.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed by Excel and MATLAB. The statistical details of experiments can be found in the figure legends.

Significant difference between two groups was evaluated by two-sided Student’s t test. Correlation between two variables was eval-

uated by Pearson’s correlation coefficient. Correction for multiple comparisons with false discovery rate (FDR) methodwas conduct-

ed. p < 0.05 was considered as statistically significant. *, **, and *** indicate statistical significance at p < 0.05, p < 0.01, and p < 0.001,

respectively.
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