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Abstract

Cross-ratio is an important local measure of the strength of dependence among correlated failure 

times. If a covariate is available, it may be of scientific interest to understand how the cross-ratio 

varies with the covariate as well as time components. Motivated by the Tremin study, where the 

dependence between age at a marker event reflecting early lengthening of menstrual cycles and 

age at menopause may be affected by age at menarche, we propose a proportional cross-ratio 

model through a baseline cross-ratio function and a multiplicative covariate effect. Assuming a 

parametric model for the baseline cross-ratio, we generalize the pseudo-partial likelihood approach 

of Hu et al. (2011) to the joint estimation of the baseline cross-ratio and the covariate effect. We 

show that the proposed parameter estimator is consistent and asymptotically normal. The 

performance of the proposed technique in finite samples is examined using simulation studies. In 

addition, the proposed method is applied to the Tremin study for the dependence between age at a 

marker event and age at menopause adjusting for age at menarche. The method is also applied to 

the Australian twin data for the estimation of zygosity effect on cross-ratio for age at appendicitis 

between twin pairs.

Keywords

Bivariate survival; Cross-ratio; Empirical process theory; Local pseudo-partial likelihood; U-
process

1 Introduction

In female reproductive aging research, there has been considerable interest in identifying 

marker events for the onset of menopausal transition and investigating their utility for 

predicting the age at menopause. In the Tremin study, conducted as part of the Menstrual 

and Reproductive Health Study (Treloar, Boynton, Behn, and Brown 1967), scientists are 

interested in understanding several bleeding pattern change criteria that have been proposed 

as potential marker events for the early stage of menopausal transition. For instance, it has 

been suggested that the age at onset of experiencing a menstrual cycle of at least 45 days in 

length might be a good marker for the early menopausal transition (Lisabeth, Harlow, 
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Gillespie, Lin, and Sowers 2004). However, the validity of these proposed bleeding markers 

and their associations with the age at menopause have not been adequately investigated, and 

sophisticated statistical analysis tools are lacking in this area.

To formally assess the utility of a proposed bleeding marker, Nan et al. (2006) analyzed the 

association between the age at a marker event (defined as the age at onset of a specific 

bleeding pattern change) and the age at natural menopause (defined as the final menstrual 

period (FMP), with FMP confirmed after at least 12 months of amenorrhea). They proposed 

using cross-ratio to measure the dependence by assuming the cross-ratio to be a piecewise 

constant function of the age at onset of the marker event. They focused on the age at which a 

woman first experienced a menstrual cycle of at least 45 days in length, which has been 

proposed as a marker event for entry into the early menopausal transition stage.

One advantage of using cross-ratio as the dependence measure is that it has an attractive 

hazard ratio interpretation comparing two groups of practical interest, which is simple to 

understand for practitioners and provides a convenient way to evaluate the marker. In 

particular, the cross-ratio can be interpreted as the relative hazard of menopause comparing 

women who have experienced the marker event at a certain age with women who have not 

yet experienced the marker event.

However, the piecewise constant model requires prior knowledge on cut-off points which is 

usually lacking in practice. To bypass the difficulty in determining the cut-off points in the 

piecewise constant model, we estimate the cross-ratio as a smooth function of t1 and t2. A 

similar idea was described in Hu et al (2011), where the cross-ratio is estimated by a flexible 

continuous function of both time components via a pseudo partial-likelihood approach 

without considering the covariate effect on the cross-ratio.

Moreover, in the Tremin Trust data, the cross-ratio of age at menopause and age at the 45-

day cycle marker event may be affected by age at menarche, which motivates a model that 

explicitly characterizes the covariate effect on the cross-ratio function directly. It is well 

known that when a covariate exists, cross-ratio for the failure times of the two members of a 

pair should be estimated with some adjustment for known characteristics of the pair 

(Clayton 1978; Oakes 1982, 1986, 1989). For example, in the Australian twin study of 

appendicitis, Duffy et al. (1990) discovered significant concordance rate with respect to 

appendicitis within twin pairs. It was also found that monozygotic twins exhibited higher 

concordance rate than dizygotic twins, likely due to shared genetic factors. Therefore, it is of 

interest to quantify this genetic effect on cross-ratio within twin pairs.

In the literature, the covariate effect is often modeled through marginal distributions. Shih & 

Louis (1995) proposed a model that incorporates covariates via marginal Cox regression 

model, assuming constant cross-ratio θ. Likewise, when θ is piecewise constant on a grid of 

the sample space of (T1, T2), Nan et al. (2006) proposed a sequential two-stage method 

where covariates are modeled via marginal Cox regression model. Its estimation is similar to 

the two-stage method of Shih & Louis (1995) for the Clayton copula model, but with left 

truncation at the lower left corner of each rectangle. Fan and Prentice (2002) adjusted their 
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previously proposed class of weighted dependence measures for bivariate failure times to 

accommodate covariate effects on marginal hazard rates as well.

However, when the cross-ratio function itself is of major interest, modeling the covariate 

effect via marginal models does not answer explicitly how a covariate changes the cross-

ratio or by how much. Mimicking the Cox proportional hazards model, we propose an 

analogous model where the covariate effect is multiplicative on cross-ratio. One novelty of 

this model lies in linking the covariate effect to the cross-ratio explicitly, by extending the 

model of Hu et al (2011) to the regression setting.

For estimation, we construct an objective function, which we call the local pseudo-partial 

likelihood, by mimicking the partial likelihood of the Cox proportional hazards model (Cox 

1972). Specifically, when the covariate is discrete with finite levels, we group observations 

into distinct strata by covariate values. Within each stratum, we then treat whether an event 

happens at a time point or beyond along one time axis as a binary covariate and the other 

time component as the survival outcome variable, and construct the corresponding partial 

likelihood function. When the covariate is continuous, kernel smoothing is applied to the 

estimating equations. We obtain the parameter estimates by maximizing the local pseudo-

partial likelihood function. This construction does not need any model for either the joint or 

the marginal survival function, and thus is robust against model mis-specification. We show 

that the proposed parameter estimator is consistent and asymptotically normal. The proposed 

method is readily extendable to the estimation of an arbitrary baseline cross-ratio function 

by using tensor product splines.

2 The conditional cross-ratio function given covariate

Let (T1, T2) be a pair of absolutely continuous failure times. In the Tremin Trust data, T1 is 

time to the 45-day cycle marker and T2 is time to menopause. Given covariate W, e.g., age at 

menarche, cross-ratio is a quantity conditional on W. Specifically, the definition of cross-

ratio becomes:

θ t1, t2, w =
λ2 t2 T1 = t1, W = w
λ2 t2 T1 > t1, W = w

=
λ1 t1 T2 = t2, W = w
λ1 t1 T2 > t2, W = w

, (1)

where λ1 and λ2 are the conditional hazard functions of T1 and T2, respectively, given a 

common covariate W for both survival times. We propose an analogous model to the Cox 

proportional hazards model with multiplicative covariate effect on the cross-ratio:

θ t1, t2, w = θ0 t1, t2 exp(αw), (2)

where θ0(t1, t2) is the baseline cross-ratio, i.e.
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θ0 t1, t2 =
λ2 t2 T1 = t1, W = 0

λ2 t2 T1 > t1, W = 0
=

λ1 t1 T2 = t2, W = 0

λ1 t1 T2 > t2, W = 0
.

Model (2), which we call the proportional cross-ratio model, effectively separates the 

baseline cross-ratio function and the covariate effect, so that we can model each piece 

individually. We consider a parametric model β0(t1, t2; γ) = log θ0(t1, t2) parameterized by a 

finite-dimensional Euclidean parameter γ. It is straightforward to extend the parametric 

model to a nonparametric model using tensor product splines. For covariate W, we consider 

a linear function parameterized by a Euclidean parameter α. Specifically, we assume

β t1, t2, w; ξ = β0 t1, t2; γ + αw

= ∑
k, l

γklbkl t1, t2 + αw, (3)

where ξ is the finite-dimensional vector of coefficients {γkl} and α, and {bkl} are the basis 

functions of t1 and t2 that do not involve parameter ξ. For notational simplicity, we consider 

one-dimensional covariate W hereafter. Results developed in this article hold for any finite-

dimensional discrete covariates, but need to be properly modified for multiple continuous 

covariates when a multi-dimensional kernel smoothing is implemented.

3 Regression parameter estimation

To estimate the baseline cross-ratio function and the covariate effect jointly, we first focus on 

a discrete covariate with a finite number of levels, by creating a dummy variable for each 

level or assuming a linear trend across levels. We then extend this method to continuous 

covariates using smoothing techniques, in particular, applying kernel smoothing to the 

estimating equation obtained for a discrete covariate.

Suppose we observe n independent and identically distributed copies of (X1, X2, Δ1, Δ2, W), 

where X1 = min(T1, C1), X2 = min(T2, C2), Δ1 = I(T1 ≤ C1), and Δ2 = I(T2 ≤ C2). Here I(·) 
denotes the indicator function. The pair of continuous failure times (T1, T2) are subject to 

right censoring by a pair of censoring times (C1, C2). Assume censoring times are 

independent of failure times conditional on covariate W. We further assume that there are no 

ties among observed times for each of the two time components.

3.1 Discrete covariate with a finite number of levels

Borrowing the idea in Hu et al. (2011), we construct an objective function by treating {j: T1j 

= t1} and {j: T1j > t1} as the “exposure” group and the “non-exposure” group respectively. 

Then from the first equality in (1), the cross-ratio θ(t1, t2, w) becomes the hazard ratio of T2 

between these two groups within the stratum W = w. Denote λ2(X2j|X1j > X1i, Wk = Wi) by 

Ai j
k  and θ(X1i, X2j Wi)I(X1k = X1i) by Bi j

k  respectively. By mimicking the partial likelihood 

idea, we can construct the objective function as follows based on these two groups 

categorized by t1 = X1i:
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∏
j = 1

n Ai j
j Bi j

j

∑X2k ≥ X2 j
I Wk = Wi I X1k ≥ X1i Ai j

k Bi j
k

I W j = Wi I X1 j ≥ X1i Δ2 jΔ1i

= ∏
j = 1

n Bi j
j

∑X2k ≥ X2 j
I Wk = Wi I X1k ≥ X1i Bi j

k

I W j = Wi I X1 j ≥ X1i Δ2 jΔ1i

,

where Ai j
j  cancels with Ai j

k  in the above equation because of the restriction W = Wi, which is 

achieved by indicators I(Wj = Wi) in the outer exponent and I(Wk = Wi) in the denominator. 

Following a similar argument to Hu et al. (2011), the denominator in the bracket can be 

simplified as N(X1i;X2j; Wi) − I(X2j ≤ X2i)(1 − θ(X1i;X2j; Wi)), where 

N t1, t2, w = ∑k = 1
n I X1k ≥ t1, X2k ≥ t2, Wk = w . So we can rewrite the above objective 

function as

∏
j = 1

n θ X1i, X2 j, W i
I X1 j = X1i

N X1i, X2 j, W i − I X2 j ≤ X2i 1 − θ X1i, X2 j, W i

I Wi = W j I X1 j ≥ X1i Δ1iΔ2 j

. (4)

Now denote (4) as Li
(1) Considering the symmetric structure of the definition of θ(t1, t2, w) 

determined by the second equality in (1), we can construct a similar objective function as (4) 

by switching the roles of X1 and X2, and denote it as Li
(2) By multiplying such constructed 

two objective functions over all possible ways of creating the “exposure” and “non-

exposure” groups, i.e. all subjects, we obtain the following local pseudo-partial likelihood 

function:

Ln = ∏
i = 1

n
Li

(1)Li
(2) . (5)

The estimator obtained by maximizing (5) is then called the maximum local pseudo-partial 

likelihood estimator.

Denote ln = n−1 log Ln, ξ = (γ,α) and β̇ t1, t2, w = ∂β t1, t2, w; ξ / ∂ξ that is free of ξ. 

Differentiating ln(ξ) with respect to ξ and assuming no ties among observed times, we 

obtain the following estimating function for ξ:

Un(ξ) =
∂ln(ξ)

∂ξ = Un
(1)(ξ) − Un

(2)(ξ) + Un
(3)(ξ) − Un

(4)(ξ),
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where

Un
(1) = Un

(3) = 1
n ∑

i = 1

n
Δ1iΔ2iβ̇ X1i, X2i, W i (6)

and

Un
(2) = 1

n ∑
i = 1

n
∑
j = 1

n I W j = W i Δ1iΔ2 jI X1 j ≥ X1i I X2 j ≤ X2i e
β X1i, X2 j, Wi; ξ

N X1i, X2 j, W i − I X2 j ≤ X2i 1 − e
β X1i, X2 j, Wi; ξ

× β̇ X1i, X2 j, W i ,

(7)

Un
(4) = 1

n ∑
i = 1

n
∑
j = 1

n I W j = W i Δ1 jΔ2iI X2 j ≥ X2i I X1 j ≤ X1i e
β X1 j, X2i, Wi; ξ

N X1 j, X2i, W i − I X1 j ≤ X1i 1 − e
β X1 j, X2i, Wi; ξ

× β̇ X1 j, X2i, W i .

(8)

Note that by switching indices i and j, (7) and (8) only differ in the second term of their 

denominators, which is a negligible term asymptotically. Then an estimator ξ n can be 

obtained by solving the equation Un(ξ) = 0 using Newton-Raphson algorithm.

3.2 Continuous covariate

When the covariate is continuous, the “grouping” idea by restricting observations with the 

same covariate values into distinct strata is no longer applicable. However, based on the 

estimating equations obtained for a discrete covariate, we replace the grouping indicator 

function I(Wj = Wi) by a kernel function Kh(Wj − Wi) in (7) and (8), where Kh(·) = 1/

hK(·/h) and h is a bandwidth. Function K(·) is usually chosen to be a symmetric probability 

density function. In the numerical study presented later, we use the standard normal kernel. 

Specifically, we propose the following estimating function for ξ when the covariate is 

continuous:

Un(ξ) = Un
(1)(ξ) − Un

(2)(ξ) + Un
(3)(ξ) − Un

(4)(ξ),
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where Un
(1) and Un

(3) are the same as in (6) and

Un
(2) = 1

n ∑
i = 1

n
∑

j = 1

n Kh W j − Wi Δ1iΔ2 jI X1 j ≥ X1i I X2 j ≤ X2i e
β X1i, X2 j, Wi; ξ

N X1i, X2 j, Wi − Kh(0)I X2 j ≤ X2i 1 − e
β X1i, X2 j, Wi; ξ

  × β̇ X1i, X2 j, Wi ,

Un
(4) = 1

n ∑
i = 1

n
∑

j = 1

n Kh W j − Wi Δ1 jΔ2iI X2 j ≥ X2i I X1 j ≤ X1i e
β X1 j, X2i, Wi; ξ

N X1 j, X2i, Wi − Kh(0)I X1 j ≤ X1i 1 − e
β X1 j, X2i, Wi; ξ

× β̇ X1 j, X2i, Wi ,

where N t1, t2, w = ∑k = 1
n I X1k ≥ t1, X2k ≥ t2 Kh Wk − w . Then an estimator ξ n can be 

obtained by solving the equation Un(ξ) = 0 using Newton-Raphson algorithm.

4 Asymptotic properties

In this section, we provide asymptotic results for the estimation of ξ in (3). We consider the 

following regularity conditions for model (3):

C1. The covariate W is either continuous or discrete with finite levels, whose sample 

space W is bounded with 0 < infw∈W f(w) and supw∈Wf(w) < ∞. Here f is the density 

function of W.

C2. Consider the support region (t1, t2) ∈ [0, τ1)×[0, τ2), 0 < τ1, τ2 <, ∞ with infw∈W 

Pr(T1 > τ1, T2 > τ2|W = w) > 0 and infw∈W Pr(C1 > τ1, C2 >τ2|W = w) > 0.

C3. The parameter space of ξ, denoted by Γ, is a compact set, and the true value ξ0 is 

an interior point of Γ.

C4. The matrix E Δ1Δ2β̇ X1, X2, W ⊗ 2  is positive definite. Here β̇ ⊗ 2 = β̇β̇′.

C5. (T1, T2) and (C1, C2) are independent conditional on W.

For a continuous covariate, in order for the kernel smoothing technique to work, the 

following conditions are further warranted in addition to the above regularity conditions with 

functions h(), b() and S() defined in equations (14), (13) and (12) given in Appendix A:

C6. For some ϵ satisfying 0 < ϵ ≤ 1, h(V; ξ) < ∞ is uniformly locally Lipschitz of 

order ϵ,

Sup
x1,x2, δ1, δ2

Sup
W − W′ ≤ δϵ

h x1, x2, δ1, δ2, W; ξ − h x1, x2, δ1, δ2, W′; ξ ≤ Mϵ W − W′ ϵ, where

constant Mϵ < ∞ .
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where constant Mϵ < ∞.

C7. E b V*, V; ξ
S X1*, X2, W*

λ 1/λ
< ∞ for some λ, 2 < λ ≤∞.

C8. Bandwidth h satisfies (i) 0 ≤ h → 0, (ii) nh/ log n →∞, (iii) n1/4h → 0, and (iv) 

(n/log n)1 − 2/λh ∞.

C9. The kernel K is bounded and of bounded variation.

Details on conditions C6–C8 can be found in Härdle, Janssen and Serfling (1988), and 

conditions C8 (i), (ii) and C9 can be found in Nolan and Pollard (1987). It can be easily seen 

that h ∝ nd with 2/λ − 1 < d < −1/4 for some 8/3 < λ ≤ ∞ satisfies conditions C7 and C8. In 

general, small λ is preferred, which means d is preferred to be close to −1/4. Therefore, for 

the simulations and data analysis in this paper, we chose d = −1/3.

Theorem 1 Suppose that Conditions C1–C5 hold for discrete W and that Conditions C1–C8 

hold for continuous W. Then the solution of Un(ξ) = 0, denoted by ξ n is a consistent 

estimator of ξ0.

The proof of Theorem 1 is treated separately for discrete W with finite levels and continuous 

W, but follows similar steps. We first show that Un(ξ) converges to a deterministic function 

u(ξ) uniformly, then show that u(ξ) is monotone and has a unique root at ξ0. Then 

consistency follows easily. Details are provided in Appendix B.

Theorem 2 Suppose that Conditions C1–C5 hold for discrete W and that Conditions C1–C9 

hold for continuous W. Then we have that n1/2 ξ n − ξ0  converges in distribution to a normal 

random variable with mean zero and−variance I ξ0
−1Σ ξ0 I ξ0

−1, where 

I ξ0 = 2E Δ1Δ2β̇ X1, X2, W ⊗ 2  and Σ(ξ0) is the asymptotic variance of Un(ξ0), whose 

estimator is described in equation (19) for discrete W and equation (20) for continuous W in 
Appendix C.

The asymptotic normality in Theorem 2 can be achieved by using Taylor expansion of Un ξn

around ξ0. Again the detailed calculation which centers on the linearization of Un(ξ0) − 

u(ξ0) is deferred to Appendix C. A variance estimator of n1/2 ξ n − ξ0  can be obtained by 

estimating I(ξ0) directly from the data with ξ0 substituted by ξ n and by evaluating the 

asymptotic expression of Σ(ξ0) from the data with details given at the end of Sections C.1 

and C.2 in Appendix C.

5 Simulations

5.1 Discrete covariate

We conduct simulations to assess the performance of the proposed method. We generate data 

from Clayton model and the piecewise constant cross-ratio model, which accommodate 

multiplicative covariate effect easily. Generating data from a bivariate distribution with an 
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arbitrary cross-ratio function is almost impossible because there is no corresponding closed 

form survival function in general. For simplicity, we assume W is a binary random variable 

from Bernoulli (0.5). We generate data for β0(t1, t2; γ) = γ0 = 0.25 and α= 0.5. Marginally, 

both T1 and T2 follow unit exponential distribution. We first generate T1, then for a given 

covariate value, T2 is generated from the conditional distribution of T2 given T1 derived 

from the corresponding Clayton model. This setup is equivalent to generating data from two 

Clayton models with θ= e0.25 when W = 0 and θ= e0.75 when W = 1. The censoring times 

C1 and C2 both follow a uniform (0, 3) distribution, resulting in a marginal censoring rate of 

about 30%. The basis functions used for the estimation are 1, t1 and t2, though only the 

intercept term is needed in the true model. The results based on sample sizes of 400 and 800 

are summarized in Table 1, where α is the true covariate effect and γ’s are the true 

coefficients for the basis functions 1, t1 and t2 respectively. Simulation results based on 1000 

replications show that our estimators work well. The model-based variance estimator also 

works well since the empirical coverage probabilities are all close to the 95% nominal value.

To mimic the cross-ratio results of the Tremin Trust data, we also simulate data using 

algorithm in Nan et al. (2006) with a binary covariate W ~ Bernoulli(0.5) and α = 0.5. For 

W = 0, the cross-ratio is piecewise constant over four intervals: θ = .9 when t1 ∈ [0, .25), θ= 

2.0 when t1 ∈ [.25, .5), θ= 4.0 when t1 ∈ [.5, .75), and θ = 1.5 when t1 > .75. For W = 1, the 

cross-ratio θ is equal to 0.9 × e0.5, 2.0 × e0.5, 4.0 × e0.5 and 1.5 × e0.5 in the above intervals. 

Marginally, both event times T1 and T2 follow unit exponential distribution. The censoring 

times C1 and C2 both follow a uniform (0, 2) distribution, resulting in a marginal censoring 

rate of about 40%. Note that we do not intend to simulate the marginal distributions of the 

Tremin data that satisfy the constraint T1 < T2 due to the technical challenges of generating 

ordered bivariate survival times with a piecewise constant cross-ratio. We use the following 

indicator functions as basis functions I(t1 < 0.25), I(0.25 ≤ t1 < 0.5), I(0.5 ≤ t1 < 0.75), I(0.75 

≤ t1) together with a linear covariate w, assuming the cutoffs are known, i.e.,

β t1, t2, w; ξ = γ1I t1 < 0.25 + γ2I 0.25 ≤ t1 < 0.5

+γ3I 0.5 ≤ t1 < 0.75 + γ4I 0.75 ≤ t1 + αw .

The results in Table 2 show that our estimators as well as their model based variance 

estimators all work well.

5.2 Continuous covariate

Like the simulations for the discrete covariate, we simulate data with W ~ unif(−0.5, 0.5) 

and α = 0.5 assuming the same Clayton model and piecewise constant model for the 

baseline cross-ratio. For Clayton model, the censoring times C1 and C2 both follow a 

uniform (0, 3) distribution, resulting in a marginal censoring rate of about 30%. For the 

piecewise constant model, the censoring times C1 and C2 both follow a uniform (0, 2) 

distribution, resulting in a marginal censoring rate of about 40%. A challenging issue in the 

continuous covariate case is the search for an optimal bandwidth for the kernel smoothing. 

Unfortunately, standard procedures for finding the optimal bandwidth such as cross 

validation are not applicable because we lack the proper objective function to optimize. 
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Therefore we recommend using h = range(x) × n−1/3. Simulation results for sample sizes of 

400 and 800 summarized in Tables 3 and 4 have shown our recommended bandwidth works 

well.

6 Data analysis

6.1 The Tremin study

The Tremin Trust data were collected as part of the Menstrual and Reproductive Health 

Study (Treloar et al. 1967). This longitudinal cohort study followed participants throughout 

their reproductive life span. It provides a unique opportunity to investigate the process of 

female reproductive aging and menopausal transition. The study sample consisted of white 

college students enrolled at the University of Minnesota. Data collection started in 1935 and 

enrolled a sample of 1,997 women over 4 years. Study participants were followed for up to 

40 years. Each woman was asked to use menstrual diary cards to record the days when 

bleeding was experienced. Some covariate information (e.g., age at menarche) was available.

Nan et al. (2006) used a subset of the Tremin Trust data to study the age at onset of a 45-day 

cycle as the bleeding pattern change criteria for the early and late stages of menopausal 

transition. They estimated the cross-ratio as a piecewise constant function. Here we analyze 

the same subset that consisted of 562 women in the original study cohort who were age 25 

or younger at enrollment, had information on age at menarche, and were still participating in 

the study at age 35 (which they used as the baseline age in their study). Both time to a 

marker event and time to menopause were subject to right-censoring in the Tremin Trust 

data. For each individual, the censoring time was the same for both events. A total of 193 

(34%) women were observed to experience natural menopause, and a total of 357 (64%) 

women were observed to experience a 45-day cycle marker. The median age at menopause 

was 51.7 years, the median age at the 45-day cycle marker was 42.7 years and the median 

age at menarche is 12 years. One woman had her 45-day cycle time censored at the time of 

menopause and was excluded from our analysis. Note that for this data example, the cross-

ratio is only well-defined in the region T1 < T2, where T1 is the age at onset of a 45-day 

cycle and T2 is the age at menopause.

To be able to compare the results with Nan et al. (2006) and for the ease of interpretation, we 

model the cross-ratio as a quadratic function of t1 only, i.e. the age at onset of a 45-day 

cycle, based on the same data. Assuming a multiplicative effect of menarche on cross-ratio, 

we model the log cross-ratio as:

β t1, t2, w; ξ = γ0 + γ1t1 + γ2t1
2 + αw, (9)

where w is the age at menarche. For model (9), we further consider two functional forms for 

the age at menarche: an ordinal age covariate with five levels (“≤ 10” = 1, “11” = 2, “12” = 

3, “13” = 4, “≥ 14” = 5) where its linear trend is of interest; and a nominal age covariate with 

the same five levels where level 3 is the reference group, which ignores the ordering of these 

five levels.
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We compare the baseline cross-ratio results of (9) fitted at the median age at menarche (w = 

12) with results in Nan et al. (2006). The general pattern of the estimated cross-ratio 

curvature is an open-down parabola, consistent with piecewise-constant result in Nan et al. 

(2006). However, age at menarche is not significant in any covariate model, although Table 5 

does suggest the larger the age at menarche, the smaller the log cross-ratio and hence the 

weaker correlation between marker event and menopause. We also fit the age at menarche as 

a continuous covariate which was recorded as integers in the Tremin dataset. Although 

applying kernel smoothing would not be appropriate, using h = 1 ≈ 9×562−1/3, where 9 is 

the range of the covariate and 562 is the sample size, we obtain the covariate estimate of to 

be −0.10 (s.e.=0.23), close to the linear trend estimation (α = −0.12) reported in Table 5.

6.2 The Australian twin study revisited

In the analysis of the Australian twin study of appendicitis in Hu et al. (2011), it was found 

that monozygotic twins exhibited higher concordance rate than dizygotic twins. It is 

therefore of interest to quantify the disparity between the different types of twin pairs. 

Additionally, it is desirable to characterize the dependence between twin pairs when the 

effect of zygocity is controlled for. Analyses presented here are based on 1953 female twin 

pairs with available appendectomy information. The data comprised 1218 monozygotic twin 

pairs and 735 dizygotic twin pairs. Out of the monozygotic twin pairs, there are 144 pairs in 

which both twins were appendectomized, 304 pairs in which one twin underwent 

appendectomy and 770 pairs in which neither twin received the procedure. The 

corresponding numbers for the dizygotic twin pairs are 63, 208 and 464, respectively.

Since the order of twin one and twin two is arbitrary in the Australian Twin Study, we can 

take advantage of such symmetry to improve the estimation e ciency. Assuming a 

multiplicative effect of zygocity on cross-ratio, we model the log cross-ratio as:

β t1, t2, w; ξ = γ0 + γ1 t1 + t2 + γ2 t1
2 + t2

2 + γ3t1t2 + γ4 t1
2t2 + t1t2

2

+γ5 t1
3 + t2

3 + αw,
(10)

where w is a binary variable that encodes monozygotic twins vs dizygotic twins.

Implementing our proposed estimating method, we obtain an estimator of α at 0.39 (95% 

CI: 0.08 – 0.70), suggesting a genetic component to the disease. So the cross-ratio of 

monozygotic twins is estimated to be 1.47 times higher than that of dizygotic twins.

7 Discussion

We have developed a novel method for estimating the covariate effect on cross-ratio where 

we model the covariate effect parametrically and the baseline log cross-ratio as a linear 

model of polynomial basis functions of time. When the covariate is discrete of a few levels, 

the proposed method is a simple extension of Hu et al. (2011). When the covariate is 

continuous, kernel smoothing is applied to the estimating equations developed for a discrete 

covariate. A key contribution of this paper is that we have established consistency and 
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asymptotic normality of the regression coefficient estimate, facilitated by theorems in Härdle 

et al. (1988) and Nolan and Pollard (1987).

We have considered in this paper a single covariate function. But in some situations, 

multiple covariates are to be accounted for. For example, in an oncology clinical trial setting, 

investigators may be interested in the correlation between overall survival and progression 

free survival after adjusting for treatment and disease stage. The current method can easily 

accommodate discrete multiple covariates by simply recoding the combination of multiple 

covariates into a single discrete covariate. However, extension to multiple continuous 

covariates is less straightforward. We suggest using a multi-dimensional kernel function, for 

example a multivariate normal probability density function, to smooth the estimating 

equations. A modified version of C8 is required for the asymptotic properties to continue to 

hold. Let p be the dimension of the continuous covariate, then bandwidth h should satisfy (i) 

0 ≤ h → 0, (ii) nhp/ log n → ∞, (iii) n1/4hp → 0, and (iv) (n/log n)1 − 2/λhp ∞.

Following Hu, Lin and Nan (2014), the objective function (4) can be easily modified to 

accommodate left truncation. We leave the details to interested readers.

Appendix A:: definitions

We extend the notation used in Hu et al. (2011) to accommodate covariates. Define the 

following simplified notation:

∂1F t1, t2 w =
∂F t1, t2 w

∂t1
, ∂1G t1, t2 w =

∂G t1, t2 w

∂t1
,

∂2F t1, t2 w =
∂F t1, t2 w

∂t2
, ∂2G t1, t2 w =

∂G t1, t2 w

∂t2
,

∂1, 2F t1, t2 w =
∂2F t1, t2 w

∂t1∂t2
, ∂1, 2G t1, t2 w =

∂2G t1, t2 w

∂t1∂t2
,

where F and G denote the survival functions of (T1, T2) and (C1, C2) conditional on W = w, 

respectively. Then the conditional density function of (X1, X2,Δ1,Δ2) given W = w can be 

written as
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q t1, t2, δ1, δ2 w

= ∂1, 2F t1, t2 w
δ1δ2 − ∂1F t1, t2 w

δ1 1 − δ2 − ∂2F t1, t2 w
1 − δ1 δ2

F t1, t2 w
1 − δ1 1 − δ2 ∂1, 2G t1, t2 w

1 − δ1 1 − δ2

− ∂1G t1, t2 w
1 − δ1 δ2 − ∂2G t1, t2 w

δ1 1 − δ2 G t1, t2 w
δ1δ2,

and the joint density of (X1, X2,Δ1,Δ2, W) is

p t1, t2, δ1, δ2, w = q t1, t2, δ1, δ2 w f W(w), (11)

where fW (w) denotes the distribution function of W.

For a discrete covariate W, we introduce the following notation:

gd Δ2, X1, X2, W , Δ1*, X1*, X2*, W*; ξ

=
I W = W* Δ1*Δ2β̇ X1*, X2, W* I X1 ≥ X1* I X2 ≤ X2* θ X1*, X2, W*, ξ

S X1*, X2, W*

where

S t1, t2, w = Pr X1 ≥ t1, X2 ≥ t2 W = w f W(w) . (12)

By fixing Δ1*, X1*, X2*, W*  at (δ1, x1, x2, w), we also define

hQ
d δ1, x1, x2, w; ξ = Qgd Δ2, X1, X2, W , δ1, x1, x2, w; ξ .

Similarly, fixing (Δ2, X1, X2, W) at (δ2, x1, x2, w), define

hP
d δ2, x1, x2, w; ξ = Pgd δ2, x1, x2, w, Δ1*, X1*, X2*, W*; ξ .

For a continuous covariate W, define V = (X1, X2,Δ1,Δ2, W) and

b V i, V j; ξ = Δ1iΔ2 jI X1 j ≥ X1i I X2 j ≤ X2i e
β X1i, X2 j, Wi; ξ

× β̇ X1i, X2 j, W i , (13)

v Vi, V j; ξ = 1
n N X1i, X2 j, Wi − Kh(0)I X2 j ≤ X2i 1 − θ X1i, X2 j, Wi; ξ ],
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g(n) Vi, V j; ξ =
Kh W j − Wi b Vi, V j; ξ

v Vi, V j; ξ
,

gh
(n) Vi, V j; ξ =

Kh W j − Wi b Vi, V j; ξ

Sh X1i, X2 j, Wi

g(n) Vi, V j; ξ =
Kh W j − Wi b Vi, V j; ξ

S X1i, X2 j, Wi

h V i; ξ = E
X1 j, X2 j, Δ1 j, Δ2 j W j = Wi, X1i, X2i, Δ1i, Δ2i

b V i, V j; ξ

S X1i, X2 j W i
(14)

h* V j; ξ = E
X1i, X2i, Δ1i, Δ2i Wi = W j, X1 j, X2 j, Δ1 j, Δ2 j

b Vi, V j; ξ

S X1i, X2 j W j

u(2)(ξ) = EX1i, X2i, Δ1i, Δ2i, Wi
h Vi; ξ ,

where

Sh t1, t2, w = E I X1 ≥ t1, X2 ≥ t2 Kh(W − w) .

Clearly, we have S(t1, t2, w) = limh↓0 Sh(t1, t2, w).

Appendix B:: proof of Theorem 1

For consistency, we will first show that Un
(k)(ξ) converges uniformly to u(k), k = 1, 2, then 

show that u(ξ) = 0 has the unique solution at ξ0, and finally show the consistency of ξ n

satisfying Un ξ n = 0.

The uniform convergence of Un
(1)(ξ) to u(1)(ξ) remains the same for both discrete and 

continuous covariates. However, for a continuous covariate, Un
(2)(ξ) involves the kernel 

function which is unbounded as the bandwidth goes to 0, so the proof for the uniform 
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convergence of Un
(2)(ξ) to u(2)(ξ) is treated separately for discrete W with finite levels and 

continuous W. When W is discrete with finite levels, the proof is similar to that provided in 

Hu et al. (2011). So we focus on continuous W.

First, let X1*, X2*, Δ1*, Δ2*, W*  be an identical copy of (X1, X2,Δ1,Δ2, W). Define the 

deterministic function u(ξ) = u(1)(ξ) − u(2)(ξ) + u(3)(ξ) − u(4)(ξ), with

u(1)(ξ) = u(3)(ξ) = E Δ1Δ2β̇ X1, X2, W ,

u(2)(ξ) = u(4)(ξ)

= E Δ1*Δ2β̇ X1*, X2, W
I X1 ≥ X1* I X2 ≤ X2* θ X1*, X2, W; ξ

S X1*, X2 W*
,

where S(x1, x2|w) = Pr(X1 > x1, X2 > x2|W = w).

Similar to Hu et al. (2011), we use ℙn and ℚn to denote the empirical measures of n 

independent copies of X1*, X2*, Δ1*, Δ2*, W*  and (X1, X2,Δ1,Δ2, W) that follow the 

distributions P and Q, respectively, which make the double summations more tractable. For 

model (3), Un
(1)(ξ) = ℚnΔ1Δ2β̇ X1, X2, W  is free of ξ, and β̇ X1, X2, W  is bounded from 

Conditions C1, C2 and C5. Hence by the law of large numbers, we have

sup
ξ

Un
(1)(ξ) − u(1)(ξ) = ℚn − Q Δ1Δ2β̇ X1, X2, W 0

either almost surely or in probability. Convergence in probability should be adequate here 

for the proof.

By Härdle, Janssen and Serfling (1988),

1
n N t1, t2, w

= 1
n ∑

k = 1

n
I X1k ≥ t1, X2k ≥ t2 Kh Wk − w

=
∑k = 1

n I X1k ≥ t1, X2k ≥ t2 Kh Wk − w

∑k = 1
n Kh Wk − w

×
∑k = 1

n Kh Wk − w

n

= E I X1 ≥ t1, X2 ≥ t2 W = w f (w) + op(1)

= S t1, t2, w + op(1) .

Also note that the difference between g(n) and g(n) is their denominators wherein we replace 

the denominator of g(n) by its limit. We then have the following:
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sup
ξ

1
n2 ∑

i = 1

n
∑

j = 1

n
g(n) Vi, V j; ξ − 1

n2 ∑
i = 1

n
∑

j = 1

n
g(n) Vi, V j; ξ

≤ 1
n ∑

i = 1

n
sup
ξ

1
n ∑

j = 1

n
g(n) Vi, V j; ξ − 1

n ∑
j = 1

n
g(n) Vi, V j; ξ

= 1
n ∑

i = 1

n
sup
ξ

1
n ∑

j = 1

n Kh W j − Wi b Vi, V j; ξ

v Vi, V j; ξ S X1i, X2 j, Wi
× v Vi, V j; ξ − S X1i, X2 j, Wi

= 1
n ∑

i = 1

n 1
n ∑

j = 1

n
Kh W j − Wi sup

ξ

b Vi, V j; ξ

v Vi, V j; ξ S X1i, X2 j, Wi
× v Vi, V j; ξ − S X1i, X2 j, Wi

≤ 1
n ∑

i = 1

n 1
n ∑ j = 1

n Kh W j − Wi
1
n N X1i, X2 j, Wi + op(1)

sup
ξ

b Vi, V j; ξ

S X1i, X2 j, Wi
× sup n−1N X1i, X2 j, Wi − S X1i, X2 j, Wi

+ sup
ξ

n−1Kh(0)I X2 j ≤ X2i 1 − θ X1i, X2 j, Wi; ξ

≤ 1
n ∑

i = 1

n
Op(1)Op(1) sup n−1N X1i, X2 j, Wi − S X1i, X2 j, Wi + Op (nh)−1

≤ Op(1) Op max (nh/log n)−1/2, hϵ + Op (nh)−1

= op(1) .

In the last inequality, we used the result of strong uniform consistency for conditional 

functional estimators of Härdle, Janssen and Serfling (1988).

Next, we want to show that the difference between 1
n2 ∑i = 1

n ∑ j = 1
n gi j

(n)(ξ) and 1
n ∑i = 1

n h V i; ξ

is op(1). Again using the result of Härdle, Janssen and Serfling (1988) in the following 

calculation, we have

sup
ξ

1
n2 ∑

i = 1

n
∑

j = 1

n
g(n) Vi, V j; ξ − 1

n ∑
i = 1

n
h Vi; ξ

≤ 1
n ∑

i = 1

n
sup
ξ

1
n ∑

i = 1

n
g(n) Vi, V j; ξ − h Vi; ξ

≤ 1
n ∑

i = 1

n
sup
ξ, Vi

1
n ∑

i = 1

n
g(n) Vi, V j; ξ − h Vi; ξ

= sup
ξ, Vi

1
n ∑

i = 1

n
g(n) Vi, V j; ξ − h Vi; ξ

= Op max (nh/logn)−1/2, hϵ

= op(1) .

Last, we want to show that the difference between 1
n ∑i = 1

n h V i; ξ  and its deterministic limit 

u(2)(ξ) is op(1) uniformly in ξ. For model (3) under C1–C3, it is straightforward to see that 
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all the component functions of b(Vi, Vj; ξ) are Donsker. Thus b(Vi, Vj; ξ) is Donsker. Then 

by Theorem 2.10.2 in van der Vaart and Wellner (1996), h V i; ξ  is also Donsker. Hence, 

h V i; ξ  is Glivenko-Cantelli. We then have

sup
ξ

1
n ∑

i = 1

n
h Vi; ξ − u(2)(ξ) = op(1) .

Thus we have shown that Un(ξ) converges uniformly to u(ξ) in probability. Following a 

similar calculation in Hu et al. (2011), we can also show that ξ0 is the unique solution of 

u(ξ) = 0. The consistency of ξ n follows immediately.

Appendix C:: proof of Theorem 2

For asymptotic normality, the goal is to write Un(ξ0) as an average of n i.i.d. terms plus a 

op(n−1/2) term. The technical difficulty arises when Un(ξ0) involves the kernel function 

which is unbounded as the bandwidth goes to 0, so that we can no longer rely on the 

properties of Donsker functions. Here, we briefly give the results of a discrete covariate and 

then focus mainly on the linearization of Un(ξ0) for a continuous covariate.

Define U̇n(ξ) ≡ dUn(ξ)/dξ. By Taylor expansion of Un ξ n  around ξ0, we have

n1/2 ξ n − ξ0 = − U̇n ξ* −1n1/2Un ξ0 , (15)

where ξ* lies between ξ n and ξ0. By a similar calculation as in the proof of Theorem 1 

showing the uniform consistency of Un(ξ), we can show that sup U̇n(ξ) − u̇(ξ) = op(1), Thus 

by the consistency of ξ n, which implies the consistency of ξ*, and the continuity of u̇(ξ), we 

obtain U̇n ξ* = u̇ ξ0 + op(1) where u̇ ξ0 = − 2E Δ1Δ2β̇ X1, X2, W ⊗ 2 = − I(ξ0) is invertible 

by Condition C4. Hence based on the fact that continuity holds for the inverse operator, (15) 

can be written as

n1/2 ξ n − ξ0 = I ξ0
−1 + op(1) n1/2Un ξ0 . (16)

We now need to find the asymptotic representation of n1/2Un(ξ0). We only check it for 

Un
(1) ξ0 − Un

(2) ξ0 . The calculation for Un
(3) ξ0 − Un

(4) ξ0  is virtually identical and yields the 

same asymptotic representation.

It is easily seen that

n1/2 Un
(1) ξ0 − u(1) ξ0 = 𝔾n Δ1Δ2β̇ X1, X2, W , (17)
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where 𝔾n = n1/2 ℙn − P . We then focus on n1/2 Un
(2) ξ0 − u(2) ξ0 , whose linearization 

differs vastly for a discrete covariate and a continuous covariate, largely because we could 

no longer rely on Donsker Theorem for a continuous covariate case when kernel functions 

are involved. Thus the two cases are treated separately in the proof.

C.1. Linearization n1/2 Un
(2) V i, V j; ξ0 − u(2) ξ0  of for a discrete covariate

Following similar calculation as in Hu et al. (2011), we can show that

n1/2 Un
(2) ξ0 − u(2) ξ0

= 𝔾n hQ
d Δ1, X1, X2, W; ξ0 + hP

d Δ2, X1, X2, W; ξ0

−∬ I X1 ≥ x1*, X2 ≥ x2, W = w* r δ1, x1, x2, w, δ2*, x1*, x2*, w*

dP δ1*, δ2*, x1*, x2*, w* dQ δ1, δ2, x1, x2, w + op(1),

(18)

where

r δ1, x1, x2, w, δ2*, x1*, x2*, w*

=
I w = w* δ1*δ2β̇ x1*, x2, w* I x1 ≥ x1* I x2 ≤ x2* e

β x1*, x2, w*; ξ0

S x1*, x2, w* 2 .

Then we obtain

n1/2Un ξ0 = 2𝔾n Δ1Δ2β̇ X1, X2, W − hQ
d Δ1, X1, X2, W; ξ0

−hP
d Δ2, X1, X2, W; ξ0

+∬ I X1 ≥ x1*, X2 ≥ x2, W = w* × r δ1, x1, x2, w, δ2*, x1*, x2*, w*

dP δ1*, δ2*, x1*, x2*, w* dQ δ1, δ2, x1, x2, w + op(1)

d N 0, Σ ξ0 .

(19)

Thus from (16) we obtain the desired asymptotic distribution of n1/2 ξ n − ξ0 .

Let Z(ξ0) denote the expression inside {} in (19) for a generic data point. It is clear that each 

Zi(ξ0) is a function of i-th observation, hence Zi(ξ0)’s are i.i.d. Then under the regularity 

conditions we have the weak convergence in (19) with Σ ξ0 = 4E Z ξ0
⊗ 2 , where 

𝔾n Z ξ0 = n−1∑i = 1
n Zi ξ0 . We estimate the covariance matrix of Z(ξ0) by its sample 

covariance matrix with hQ
d Δ1, X1, X2, W; ξ0 , hP

d Δ1, X1, X2, W; ξ0  and the double integral 
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substituted by their sample averages, and ξ0 replaced by ξ n. After the approximation/

substitution, quantities are no longer i.i.d. However, it can be shown that Z(ξ0) and its 

sample approximation belong to Glivenko-Cantelli class of functions, which leads to an 

asymptotically valid covariance estimator. Our simulation has shown the empirical variance 

and the variance estimates are very close.

C.2. Linearization of n1/2 Un
(2) V i, V j; ξ0 − u(2) ξ0  for a continuous covariate

We focus on n1/2 Un
(2) V i, V j; ξ0 − u(2) ξ0  with the following decomposition:

n1/2 Un
(2) Vi, V j; ξ0 − u(2) ξ0

= n1/2 1
n2 ∑

i = 1

n
∑

j = 1

n
g(n) Vi, V j; ξ0 − gh

(n) Vi, V j; ξ0

+n1/2 1
n2 ∑

i = 1

n
∑

j = 1

n
gh
(n) Vi, V j; ξ0 − g(n) Vi, V j; ξ0

+ 1
n1/2 ∑

i = 1

n 1
n ∑

j = 1

n
g(n) Vi, V j; ξ0 − h Vi; ξ0

+ 1
n1/2 ∑

i = 1

n
h Vi; ξ0 − u(2) ξ0

= − A − B + C + D .

Now we will look at the four terms separately. Firstly, term D is a sum of i.i.d. items, and 

thus D = 𝔾n h V , ξ0 .

Secondly, term C can be decomposed as follows:

C = 1
n1/2 ∑

i = 1

n 1
n ∑

j = 1

n
g(n) Vi, V j; ξ0 − h Vi, ξ0

= 𝔾n ℙn*g(n) V , V*, ξ0 − P*g(n) V , V*, ξ0

+𝔾n P*g(n) V , V*, ξ0 − h* V , ξ0

+𝔾n h* V , ξ0 + n1/2ℙn* Pg(n) V , V*, ξ0 − h V*, ξ0
= C1 + C2 + C3 + C4 .

For the last equality of the above equation, we want to show that C1 = op(1), C2 = op(1) and 

C4 = op(1), so that C = C3 + op(1). First, by lemma A.2 of Ichimura (1993) 

Pg(n) V , V*, ξ0 − h V*, ξ0 = O h2 . Thus C4 = n1/2O(h2) = op(1) for h satisfying C8. 

Likewise, P*g(n) V , V*, ξ0 − h* V , ξ0 = O h2 , and therefore C2 = n1/2O(h2) = op(1) for h 

satisfying C8. Finally, we need to show that 

C1 = 𝔾n ℙn* − P* Kh W* − W
b V*, V; ξ0

S X1*, X2, W*; ξ0
= op(1).
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First, set

rh V , V* = K W* − W
h

b V*, V; ξ0
S X1*, X2, W*; ξ0

,

rh V , V* = rh V , V* − Prh V , V* − P*rh V , V* + PP*rh V , V* ,

and

Tn rh = ∑
1 ≤ i ≠ j ≤ n

rh Vi, V j .

Then we have

C1 = h−1𝔾n ℙn* − P* rh V , V*

= h−1 n ℙn − P ℙn* − P* rh V , V*

= h−1 n 1
n2 Tn rh + ∑

i = 1

n
rh Vi, Vi

= 1
nhn

Tn rh + 1
nh n ∑

i = 1

n
rh Vi, Vi

= C11 + C12 .

Applying the central limit theorem, it is easy to see that C12 = op(1). To show that C11 = 

op(1), we need the following definition and theorem from Nolan and Pollard (1987). We 

keep the same numbering for the definition and theorem as in the original paper for the ease 

of reference.

Definition 8. Call a class of functions F Euclidean for the envelop F if there exist constants 

A and V such that

N1(ϵ, Q, ℱ, F) ≤ Aϵ−V , for 0 < ϵ ≤ 1,

whenever 0 < QF < ∞, where N1 denotes the covering number with L1 norm.

Theorem 9. Let F be a Euclidean class of P-degenerate functions with envelope 1. Let W (n, 

x) be a bounded weight function that is decreasing in both arguments and satisfies

∑
n = 1

∞ ∫0
1

n−1W(n, x)(1 + log(1/x))dx < ∞ .

If v(·) is a function on F for which v(f) ≥ supx P|f(x, ·)|, then
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n−1 W n, v( f )1/2 Tn( f ) 0.

In our case, each rh is P-degenerate; that is Prh(V , ⋅ ) = 0. The class of all rh is a candidate 

for the above theorem. Following Nolan and Pollard (1987) page 795, it is easy to check that 

there exists a constant C for which

sup
x, y, h

rh(x, y) ≤ C and sup
x

P* rh(x, ⋅ ) ≤ C(1 ∧ h)

for all h > 0. We can rescale to make C equal to 1.

If kernel K is of bounded variation, e.g. standard normal density, then rh  is a Euclidean 

class. For details of establishing Euclidean property in a particular class, please refer to 

Section 5 of Nolan and Pollard (1987).

Invoking Theorem 9 of Nolan and Pollard (1987), we obtain

n−1 W n, v( f )1/2 Tn( f ) = op(1),

where v rh = 1 ∧ h and W (n, x) = (1 + nx10)−1. Since W is bounded by 1 and

∫0
1

W(n, x)(1 + log(1/x))dx = O n−1/10 log n

the conditions of Theorem 9 are satisfied.

Returning to the calculation for C11,

C11 = 1
nhn

Tn rh

≤ 1
nhW n, v( f )1/2 n−1W n, v( f )1/2 Tn rh

= 1 + n(1 ∧ h)5
nh

op(1)

≤ 1 + nh5
nh

op(1)

= op(1) + nh4op(1)

Thus C11 = op(1) for h satisfying C8. Then we obtain C1 = C11 + C12 = op(1) and thus 

C = 𝔾n h* V , ξ0 + op(1).
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Thirdly, we want to show B is op(1) and hence negligible. Now

B = n

1
2n−2 ∑

i = 1

n
∑

j = 1

n Kh W j − Wi b Vi, V j; ξ0
S X1i, X2 j, Wi Sh X1i, X2 j, Wi

× Sh X1i, X2 j, Wi − S X1i, X2 j, Wi

= n

1
2n−2 ∑

i = 1

n
∑

j = 1

n Kh W j − Wi b Vi, V j; ξ0
S X1i, X2 j, Wi Sh X1i, X2 j, Wi

O h2 .

The inner summation divided by n is bounded by the density of W at Wi times O(h2), which 

is seen from the following:

n−1 ∑
j = 1

n Kh W j − Wi b Vi, V j; ξ0
S X1i, X2 j, Wi Sh X1i, X2 j, Wi

O h2

= n−1 ∑
j = 1

n Kh W j − Wi b Vi, V j; ξ0
S X1i, X2 j, Wi S X1i, X2 j, Wi + o(1)

O h2

≲ O h2 n−1 ∑
j = 1

n
Kh W j − Wi

≈ f Wi O h2

= O h2

where “≲” denotes “less than up to some constant coefficient”. Therefore, we have B = 

n1/2O(h2) = op(1) for h satisfying C8.

Lastly, term A can be decomposed as
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A = n

1
2n−2 ∑

i = 1

n
∑

j = 1

n Kh W j − Wi b Vi, V j; ξ0
v Vi, V j; ξ0 Sh X1i, X2 j, Wi

× v Vi, V j; ξ0 − Sh X1i, X2 j, Wi

= n

1
2n−2 ∑

i = 1

n
∑

j = 1

n Kh W j − Wi b Vi, V j; ξ0
v Vi, V j; ξ0 Sh X1i, X2 j, Wi

× 1
n N X1i, X2 j, Wi − Sh X1i, X2 j, Wi

+n−2 ∑
i = 1

n
∑

j = 1

n Kh W j − Wi b Vi, V j; ξ0
v Vi, V j; ξ0 Sh X1i, X2 j, Wi

Kh(0)

n

1
2

× I X2 j ≤ X2i 1 − θ X1i, X2 j, Wi; ξ0

= n

1
2n−2 ∑

i = 1

n
∑

j = 1

n Kh W j − Wi b Vi, V j; ξ0
Sh X1i, X2 j, Wi

2 × 1
n N X1i, X2 j, Wi − Sh X1i, X2 j, Wi + op(1)

= n

1
2n−3 ∑

k = 1

n
∑

i = 1

n
∑

j = 1

n Kh W j − Wi b Vi, V j; ξ0
Sh X1i, X2 j, Wi

2 × I X1k ≥ X1i, X2k ≥ X2 j Kh Wk − Wi − Sh X1i, X2 j, Wi

+op(1)

= n

1
2 ℙn

†ℙn*Kh W† − W* ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2

−P†ℙn*Kh W† − W* ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2

+P†ℙn*Kh W† − W* ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2

−ℙn*ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W*
+ op(1)

= 𝔾n
† ℙn*Kh W* − W† ℙnKh W − W*

b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2

+n

1
2P†ℙn*Kh W† − W* ℙn

Kh W − W* b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2

−n

1
2ℙn*ℙn

Kh W − W* b V*, V; ξ0
Sh X1*, X2, W*

+ op(1)

= A1 + A2 − A3 + op(1)

Term A1 can be further decomposed as
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A1 = 𝔾n
† ℙn*Kh W* − W† ℙnKh W − W*

b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2

= Gn
† ℙn*Kh W* − W† ℙnKh W − W*

b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2

−P*Kh W* − W† PKh W − W*
b V*, V; ξ0

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2

+𝔾n
† P*Kh W* − W† PKh W − W*

b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2

−E
V * W* = W†EV W = W*

b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2 f W†

+𝔾n
† EV* W* = W†EV W = W*

b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2 f W†

= A11 + A12 + A13 .

We will show that A12 = op(1) and A11 = op(1) separately. First of all,
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A12 = 𝔾n
† P*Kh W* − W† PKh W − W*

b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2

−E
V* W* = W†EV W = W*

b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2 f W†

= 𝔾n
† P*Kh W* − W† PKh W − W*

b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2

−P*Kh W* − W† EV W = W*
b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2

+P*Kh W* − W† EV W = W*
b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2

−E
V* W* = W+EV W = W*

b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2 f W†

= 𝔾n
† P*Kh W* − W† PKh W − W*

b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2

−EV W = W*
b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 I X1
† ≥ X1*, X2

† ≥ X2

+P*Kh W* − W† EV W = W*
b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2

−E
V* W* = W† EV W = W *

b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 I X1
† ≥ X1*, X2

† ≥ X2 f W† .

Note that by Lemma A.2 of Ichimura (1993),

PKh W − W*
b V*, V; ξ0

Sh X1*, X2, W* 2 I X1
† ≥ X1*, X2

† ≥ X2

= EV W = W*
b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 I X1
† ≥ X1*, X2

† ≥ X2 + O h2 ,

and

P*Kh W* − W† EV W = W*
b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 I X1
† ≥ X1*, X2

† ≥ X2

= E
V* W* = W†EV W = W*

b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 I X1
† ≥ X1*, X2

† ≥ X2 f W†

+O h2 .
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So term A12 = n1/2 O(h2) = op(1) for h satisfying C8.

To show term A11 = op(1), first for fixed V† set

mh V , V*, V†

= h−1K W* − W†
h K W − W*

h

b V*, V; ξ0
Sh X1*, X2, W* 2 × I X1

† ≥ X1*, X2
† ≥ X2 ,

mh V , V*, V†

= mh V , V*, V† − Pmh V , V*, V† − P*mh V , V*, V† + PP*mh V , V*, V† .

Then term A11 can be decomposed into:

𝔾n
† h−1ℙn*ℙnmh − h−1P*Pmh

= 𝔾n
† h−1ℙn*ℙnmh + ℙn* − P* h−1Pmh + ℙn − P h−1P*mh .

Note that ℙn*ℙnmh is again a U-process. Using a proof similar to the one that shows C1 = 

op(1), we have 𝔾n
† h−1ℙn*ℙnmh = op(1), 𝔾n

† ℙn* − P* h−1Pmh = op(1), and 

𝔾n
† ℙn − P h−1P*mh = op(1) for h satisfying C8. Thus,

A1 = A13 + op(1)

= 𝔾n
† E

V * W* = W†EV W = W*
b V*, V; ξ0 f W*

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2 f W† + op(1) .

Now focusing on X1
†, X2

†, W† and their probability measure P†, we have

A2 = P†ℙn*Kh W† − W* ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W* 2 × I X1
† ≥ X1*, X2

† ≥ X2

= ℙn*ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W* 2 × Sh X1*, X2, W* + O h2

= ℙn*ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W*

+ℙn*ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W* 2 O h2

= ℙn*ℙn
Kh W − W* b V*, V; ξ0

Sh X1*, X2, W*
+ Op(1)O h2

= A3 + op(1) .
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Putting everything together, we obtain

n1/2Un ξ0 = n1/2 Un ξ0 − u ξ0

= n1/2 Un
(1) ξ0 − u(1) ξ0 − n1/2 Un

(2) ξ0 − u(2) ξ0

+n1/2 Un
(3) ξ0 − u(3) ξ0 − n1/2 Un

(4) ξ0 − u(4) ξ0

= 2𝔾n Δ1Δ2β̇(V) − h⋆ V; ξ0 − h V; ξ0

+E
V* W* = W†EV W = W*

b V*, V; ξ0 f W*
Sh X1*, X2, W* 2

× I X1
† ≥ X1*, X2

† ≥ X2 f W† + op(1)

d N 0, Σ ξ0 .

(20)

Thus from (16) we obtain the desired asymptotic distribution of n1/2 ξ n − ξ0 . The estimator 

of Σ(ξ0) can be obtained similarly to the case of a discrete covariate, with the conditional 

expectations evaluated using kernel smoothing.
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Table 1:

Cross-ratio regression for a discrete covariate with α = 0.5 and constant baseline cross-ratio with γ0 = 0.25. α

and γ , point estimate average; E.SE, the empirical standard error; M.SE, the average of the model based 

standard error estimates; M.CP, the 95% coverage probability.

n=400 n=800

α α E.SE M.SE M.CP α E.SE M.SE M.CP

0.50 0.51 0.19 0.18 95% 0.50 0.12 0.13 96%

γ γ E.SE M.SE M.CP γ E.SE M.SE M.CP

0.25 0.24 0.19 0.19 96% 0.25 0.13 0.13 96%

0 0.02 0.23 0.22 96% 0.01 0.15 0.15 96%

0 0.02 0.22 0.22 95% 0.01 0.14 0.15 95%
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Table 2:

Cross-ratio regression for a discrete covariate with α = 0.5 and the piecewise constant baseline cross-ratio. α
and γ , point estimate average; E.SE, the empirical standard error; M.SE, the average of the model based 

standard error estimates; M.CP, the 95% coverage probability.

n=400 n=800

α α E.SE M.SE M.CP α E.SE M.SE M.CP

0.50 0.50 0.21 0.21 95% 0.50 0.14 0.14 96%

γ γ E.SE M.SE M.CP γ E.SE M.SE M.CP

−0.11 −0.10 0.18 0.18 95% −0.10 0.13 0.13 94%

0.69 0.72 0.20 0.19 94% 0.70 0.13 0.13 95%

1.39 1.41 0.23 0.24 96% 1.41 0.16 0.16 95%

0.41 0.41 0.26 0.25 94% 0.42 0.17 0.17 94%
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Table 3:

Cross-ratio regression for continuous covariate with α = 0.5 and constant baseline cross-ratio with γ0 = 0.25. α

and γ , point estimate average; E.SE, the empirical standard error; M.SE, the average of the model based 

standard error estimates; M.CP, the 95% coverage probability.

n=400 n=800

α α E.SE M.SE M.CP α E.SE M.SE M.CP

0.50 0.49 0.30 0.30 95% 0.47 0.20 0.21 95%

γ γ E.SE M.SE M.CP γ E.SE M.SE M.CP

0.25 0.24 0.17 0.17 94% 0.25 0.11 0.12 95%

0 0.02 0.23 0.22 95% 0.01 0.15 0.15 95%

0 0.02 0.22 0.22 96% 0.00 0.14 0.15 95%
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Table 4:

Cross-ratio regression for continuous covariate with α = 0.5 and piecewise constant baseline cross-ratio. α and 

γ , point estimate average; E.SE, the empirical standard error; M.SE, the average of the model based standard 

error estimates; M.CP, the 95% coverage probability.

n=400 n=800

α α E.SE M.SE M.CP α E.SE M.SE M.CP

0.50 0.46 0.34 0.35 96% 0.46 0.24 0.25 94%

γ γ E.SE M.SE M.CP γ E.SE M.SE M.CP

−0.11 −0.10 0.15 0.15 95% −0.10 0.11 0.10 94%

0.69 0.71 0.17 0.17 95% 0.70 0.12 0.12 96%

1.39 1.40 0.21 0.23 97% 1.40 0.15 0.16 97%

0.41 0.41 0.23 0.23 95% 0.41 0.16 0.16 96%
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Table 5:

Estimate of covariate effect and standard error of the effect of age at menarche in Tremin data. We consider 

two functional forms for the age at menarche: nominal (nominal covariate with 5 levels (≤10 = 1, 11 = 2, 12 = 

3, 13 = 4, ≥ 14 = 5)) and linear trend (ordinal covariate with linear trend effect with the same 5 levels).

w: age at menarche α se

Nominal

1: ≤ 10 0.10 0.59

2: 11 0.15 0.52

3: 12 − −

4: 13 0.03 0.54

5: ≥ 14 −0.36 0.52

Linear trend −0.12 0.17
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