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On the Three Body-Scattering Amplitude:
I. Separation of Angular Moment:um='<
Roland L. Omnes
'Léwrence Radiation Laboratory
University of California
Berkeley, California

December 13, 1963

"ABSTRACT

The angular momentum is separated in-the Fadeev equations for the
three-body scattering amplitude. The method used is symmetrical with
respect to the three particles and does not introduce any relative _an_gula.r mo-
mentum of two-particles, The resulting equations are well suited to a numer-
ical solution and éan be applied to a study of the problem ofvoverla.pping
resonances, They also provide a natural starting point for an extension of

the three-body scattering amplitude to complex angular momentum,
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I‘. INTRODUCTION
This is-the first of a series of papers devoted to t;he angular
momentum analysis of the three-body scattering amplitude, by which we
mean the amplitude for three particles going from one initial configuration

to a final one through the effect of two-particle interactions, In the follow-

' inglpaper, we shall see how one can find equations for the three-body scat-

tering amplitude when the total angular momentum is made complex. The
present artilcl.e therefore treats of more immediate - -and less -mathematical- -
questions, The reason for the splitting is our hope that this work will prove
useful for people who are not interested in the extension of the Regge theory
to three-body problems or who do not.want to enter into the necessarily more
sophisticated mathematics it involves,

When one tries to extend to three-body scattering,the Wel»l-known
methods for treating two-body scattering, several new problems appear, be -
side the obvious increase in complexity due to the larger number of param-
eters, 1 Certainly the most essential such problem is the nonconnectedness
of the scattering matrix. -This means that processes are possible in which
two of the particles interact while the third one has no interaction with them.
In terms of perturbation-theory graphs, such a disconnected process is
represented by a graph in which the propagation line for the third particle is
disconnected from the r<‘est of the graph (which represents.the interaction of
the two first particles). = This phenomenon leads to difficulties which can be
expi'essed in several ways: |

If one.uses the Lippma.n—‘Schwinger2 equation to formulate the three-
body scattering problem, the disconnectedness leads to the appearance of ©

functions in the kernel. This in turn entails that the' Lippman-Schwinger
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kernel has a continuous spectrum, which means that any classical approx-
imation method such as, for instance, the iteration method, will converge
very slowly if at all, ahd that it will be practically impossible to derive any
analytic property of the solution as a function of the parameters such as the o
energy or the angular momentum Another d1ff1cu1ty of the. Llppman-SchW1nger
equation is that the homogeneous equation has solutions when there exist bound

states of a pair of particles. Such a solution is in fact provided by the wave

function for a scattervi'ng process in which the initial state contains a bound

state. In fact, these two difficulties are linked, since one can derive the ex-

istence of a c‘ontinuous spectrum from the existence of these solutions of the
nomogeneous equation. Generally, it is necessary to add to a solution-of the
complete Lippmah-Schwinger equation a solution of the homogeneous equation

in order to fit the boundary. conditions, ‘which .means:that the.equation is ot in

fact very useful in practice,

This difficulty has been removed by Fadeev, 3 who has given a set of
equations for the three-body scattering amplitude where there are no 6 func-
tions and whose kernel has continuous spectrum. Another set of equations
that can be extended to more than three-body processes has also been given by
Weinberg.,_4 In the following, we shall use the Fadeev equations, but most of
what we shall say will also be '\}alid for the Weihberg equations.

Another nontriviality of the three-body pr‘obllem, although less fun-
damental than the preceding one, appears when one wants to separate the total .
angular momentum. The customary method5 consists in introducing the
relative angular momentum of particles 1 and 2, for instance, in their center- ¥
of-mass system and combining with the angular momentum of particle 3 in

the total center-of~mass system in order to get the total angular momentum
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(here and in the following, we assume for simp_licity that.the three particlés
are spinless), This procedure leads tokvery slowly convergent expressions
when one wants to consider states of particles 1 and 3 together, as in re-
arrangement collisions. We shall show how this difficulty can be removed
by never introducing the relative angular momentum of a pair of particieso
Our method consists in associating a reference system of axes in
the momentum re‘presentatic.)n with each configuration of the three particles.
The wave function ;is,theref_oreb a function of the total momentum, the three
energies.of the particles in.the total center-of-mass system, and three Eulcr

angies which characterize the position of the body-fixed axes. Correspond-

.ingly, the quantum numbers are the total momentum, the three energies,

the total angular momentum and its two projections on a body-fixed axis and

' on a space-fixed axis, Because of the conservation of angular momentum,

its projection on the spaced-fixed axis will be a constant that does not appear
in the final equations. This method pres.erx‘res the symmetry of the problem
with respect to the three particles, An unexpected result is that the Fadeev
equations then assume a simple enough form that it is a fair hope to solve
them on a computer, We thus get a metho'd for investigating the important
problems of three-body resonances and of the interference of several res-
onances in a Délitz, plot.

The interest of this extremely simple technique can best be seen by
.c;,omparing it with the present studies of the three-body scattering problem

with separation of the angular momentumos’ 6. To our knowledge, they con-

- sist in introducing the relative angular momentum of particles 1 and 2, as

said before. Then the total wave function is projected out on a complete set

of states of particles 1 and 2; these states are solutions of the Schriddinger
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.

equation for these particles interacting through their mutual potential,

These two-particles states are characterized by the angular momentum 512

and the energy E which is an eigenvalue of the two-particle Hamiltonian.

127
The Schrbdinger equation for the three-body wave funCtion.,. after separation

of the total angular momentum, appears then as a differential equation where
the only variable is the distance be‘tween.pavrticle 3 and the center of mass of
particles 1 and 2. This equation is formally very simila; to the Schrbdinger
equation of a twc‘)‘—body problem, and looks extremely simple. Unfortunately,
this sim'pl'icity:'is only apparent, The first difficulty is that'the wave function
‘i_s now a. matrix with indices f! 12’ Ei 12¢ initialvvalueS‘ of the parameters;

. [ . ol N A - S f . COT - _
and 312, EiZ’ projection indices., As E12 and E qp 2re comt;nu_ous param

eters, this means that one is in fact dealing with matrices with continuous

indices, which >makes any correct mathematical éﬁélAysis very difficult, The
éustorhafy trick of putting the system into a finite box is clearly unsound
when the final aim is to make the variabies comi:)lex,

This ‘method has been used by Newton6 to investigate the properties
of the three-body scattering amplitude és a function of the angular momentum,
However, another trap is open, which is linked to the treacherous character
of the Lippman-Schwinger equation. Newton solves the one-variable
Schrbdinger equation by the Green's-function method. However, it is easily
seen that this is equivalent to using.the Lippman-Schwinger equation. There-
fore it is necessary to add a solution of the homog’eneoué equation as soon as
there are two-body bound states, and a simple analysis of an actual problém
like the scattering of an electron on a hydrogen atom shows that this additive
solution is indeed different from zero, When one extends the equations to

complex angular momenta, there are always bound states, since these are

@
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now the Regge poles, 7 so that such an analysis may be dangerously mis-

leading. In any case, we shall see at the end of the second paper that our

. results disagree with-those of Newtocn.,

In Section II, we recall rapidly the Fadeev equations (which are

apparently not so widely well known as they should be). This will also fix

.the notations. The wave functions that allow symmetric reduction of the

total angular momentum are introduced in Section III. In Section IV, we

analyze in detail the reduction of the inhomogeneous term of the Fadeev

equation; the complete 'e'quation's are considered in Section V together with

a discussion of the possible applications of the results.

II. THE FADEEV EQUATIONS
Let us consider three nonrelativistic spinless particles with masses

m,, m,, m,. They will be assumed to be different. The Hamiltonian of the

1’ 2° 773

system has the form
H=T1+T2+T3+-V23+V31+V12, v (1)

where Ti (1/2 mi) Viz and Vij is a two-body potential acting on the var-

iable rij = r.-r j of the wave function,

It will be convenient to introduce the two-body scattering amplitudes.

The Hamiltonian of the system made up by the two particles 4 and 2 is

H=T, + TZ..+ Voo (2)

and the scattering matrix for these two particles is defined by the Lippman-
Schwinger equation,

A B -~ -~ 1 . ~
T23(2) = Va3 = Vog m = Tasle) s (3)
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Here the "hat''- means that the operators act in the Hilbert space of two-body
- states; and we have explicitly inf’roduced the parameter 2z, which indicates
an extension off the shell of real energies. The scattering matrix for physical
two-body scattering is defined as
T.. = lim T_.(z), (4)
- 23 L-E+i0 23
E being the total energy (for instance, the total initial energy).
- One can also define the scattering matrix for two-body,p_r,oc'es-ses
in the Hilbert state of three-body states aé_ the scattering matrix in the
absence of interactions between particles 1 and the two other particles, i,e.

by

'T23_(=z)_=, Vygm Vs Gols) Tpsleh (5)

where Go(z) is the Green's function (T1+ T2+ T, - z)_1. Using these def-

3

initions, one gets immediately the relation between- 'I‘23 and 'f‘23 as
! ! v |
(4" B2" Bs' | T23(2) | By Ror 3)
A~ Z .
= <P.1' | B1> <Bz" B3| Tpslz-py /2my) ’_.EZ’ P3>" (6)

Fadeev has shown that the amplitude for a transition between an
initial configuration of the three free particles with momenta Pys Py 'p3 and
a final configuration with momenta p1', BZ" p3' is the matrix element of

the scattering'matrix T,

i t f . .
]Z-]f1E+1O <Ri ’ BZ 4 B3PIT(Z)|B19 222 R3> ’ (7)
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where T can be written as a sum of three contributions,

. | T(z) = Tz) Py m) B g )3, (8)
o which satisfy a set of equations that, in a matrix form, is
TS AN TS 0 T,,(2) T, )
T(Z‘)(z) =| Tyqlz) | -| Tgy(z) O T, ,(2) G (z) T(Z)(z) . (9)
T3)(2) AT, (=) T,,(z) T,lz) O | 73)(2)

It is ve_'ry easy to see the meaning of Eq. (9) in terms of graphs of
.perturbation theory: let us call T(i)(z) the sum of the contributions of the
| set .of all graphs where the last interaction is between particles 2 ’and. 3
through the poteﬁtial V23.’ Clearly,’ T(i)(z) contains the contributions from
éll graphs where particles 2 and 3 interact any number of times without
interacting w‘ith particle. 1, i,e., it contains’ T23(z). All other contributions
_ to T(i)(z) are frém graphs where particles 2 and 3 interact any number of
times before _particles 1 and 3, for instance, interact through potential" V13
and then anything else happens. This gives the contribution —T23(Z)GO(Z_.) T(Z)(z)
of the Fadeev equations, iThe important property of these equations is that, if
we call K (z) the Fadeev's kernel, \
. | 0 TZ3(Z) T23(z)

K(z) = | Tyy(z) 0  Ty(2) | Gla),

T,,(2) T ,(z) 0O
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while the matrix elements. of K(z) contain & functions of the momenta, the
square KZ(-z) (in the operator sense) does not contain any & functions, owing
to the zeros on the ma1n diagonal. Furthermo‘re, as has been proved by
Fadeev8 and Lov,éla'ce, 9_K2_(z) is rcoméletely continuous, _.‘I‘his means essen-
tialiy that | |

Trace K%(z) 'KZJ) < o 14

if the potentials Vij are superposition of Yukawa potentials,

00 -Hrij '
. ; . . e
V. L) = " do,, ‘9 12
L 1JL._(r1J ) f _ 1_](“) rIJ ] ( )

and if the nondecfeasing function O'ij(}.L) is of bounded variation. _Equa.tio'h
(11) is-true for values-of z which are not-equal to the energy of a physical
state, As, furthermore, ‘Krz_(z) is a bourided kernel in that CaSé, it follows,

9

as shown explicitly by Lovelace, ’ that the scattering matrix T is.an analytic
function of z -except for these values, which are equal to the energy of a
physical state.

These é(iuatidns need. to be completed when one wants.to include
initial or final ‘st,ates‘ that contain bound._stétes of a. _pair of particles. We
shall not enter into fhese refinements here, just assuming that we are-dealing
with a case in which thefe-afe no such bound states. The modific_a‘tii_on‘s .tha,t

ha_,\}e to be introduced when this hypothesis is abandoned will be considered if

necessary in a later paper on practical applications.

Y
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III, ASETOF WAVE FUNCTIONS
Let us now consider the kinematics of the three-body system, A
state can be characterized by the three morﬁenta Py B Ps- The corre-

sponding kinetic energies Wyy Wy, Wy are equal to

o, = p.2/ 2mi. (13)
i i .
The total momentum is p= p1 p + p,. We shall need also to introduce

the relative momentum of particles 2. and 3 in their relative center-of-mass

.system as

323 3B2 7 ™M2B3

We shall occasionally use a special notation for certain sums of masses like

m,, = 'rn2 + @3 and M = m, + m.2+ ms
The reduced rﬁass of par-ticles 2 and 3 .in their relative center-of-mass

system is m,m 3/m23, and their energy in that system is

R 2, - ’
Ey3 = mp3 93 (2mymy) (15)

23

in the total center-of-mass system. Its cosine is given by

We shall need frequently the angle 6 between the two momenta P, and P,

2 2. 2 ,
P, 1Py =Py M0, mMawg-m,®,
cosby3 = — T 77 -
: 2p,P; 2(m,m w,0,)

(16)
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We shall also need to introduce the angle Yy between p;1 in the
' total center-of-mass system,a‘.nd. 4,3 in the relative center-of-mass system

of particles 2 and 3. It is defined through

o g = 23(m 3" 2w2)+(m -m )m1 (47) b
one easily deduces the value of Yy through |
-1 -1
where
= 2m.m.m.. He + w, + )-meM -2 (19)
d23 T e 37%23 (wy ‘*’z w 23 Moy Wy

This kinematics being rather cumbersome, it is. often convenient to

consider the Speci‘al case m,=m, = m,= 1 -where the formulas simplify

greatly. One has, in that case,

oo e 2 |
cos 623 = (w2 + w5 = w1)(4w2w3) , (19b)
2 1 ' :
Qs = 7 (2(.02 + 2.<.o3‘-= wi), (19c)
cosY1-(w - w )[ 1(29.) +2w3- Q1 ]'-1/:2‘,

from which one gets

. 2 -1 :
sin 923 = -)\(‘wi,wz, ‘<.o3)[b4ul>2w3] s - (20a)

sinz"\(1 = - K(®1, W, w3)[<.o,1(2w2 + 'Zw3- w1)] , ‘ (20b)

where’

_ 2 2 2 .
)\(wi, wz,w3) = w, + w, + Wy - 2w2w3 - 2w1w3;-w2w3,
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A remarkable property of Y4 and 623 is shown by Eqgs. (20), namely
that sin Yy and sin 923 vanish together. This result does not depend on the
special choice of the masses, since it expresses only the fact that, when all

Bi’ Py and B are collinear, is also collinear to them.

423

We now introduce a new set of variables in place of the components

of :Ifai’ BZ’ 23 First let us introduce the total momentum E Then, in the

total center-of-mass system Py P B3 add up to zero and make up a tri-

P2
arigle with sides equal to Pys Py and P3- This triangle is completely de-
fined, up to a displacement, by the lengths of its sides or, equivalently, by
w

w and w,. In order to fix the position of the triangle in space, it is

i T2 3

useful to introduce a reference system of axes linked to it. We define that
reference system as being right-handed, the =z axisv].ying along ] (which
is one of the three vectors Pys Py and Ps chosen once for all) and the y
axis being normal to the plane of the triangle. Keeping the freedom of choice
of the momentum alongside the 2z axis: will help us to maintain'a more
symmetrical notation in the following. Finally, Pys Bys and P, will be

completely determined if one knows the three Euler angleS"10 (

Y, 6, ¢) which
define the position of that body-fixed reference .syste‘m with respect to a
space-fixed reference system, Finally, the wave function will be a function
of E, Wyy Wy, W L!J, 0, and ¢.-

In fact, p 4 Pps and p, are not only arguments of the wave-function

but they are also quantum numbers which completely label a state Py» Py p3>

We choose for the normalization of these states

(Bi Bav By IRy B By = 8(Ry' - By) &R, - B3)6 (R - By (21)

son
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Another convenient complete set of commuting observables is provided by

é'l’ Wy W5, Wgy .the square of the total angul‘ar.rnOmentvum iz = J(J + 1),
and.the'projection M of i on the body-fixed axis, together with its  projeétion
MZ on the space=fixe‘d. z axis. An ‘eigen‘state of this set of bobs_é‘r'vablesvvwi.ll o
bé denoted by P wi, wz, w3, J, M, Mz-> . As. E is a constant of the motion,

it w111 be convenient to put it equal to zero, In that case, we shall consider

it no further; and write the state as ,wi, @y W J, M, Mz> . Furthermore,

we shall _often note all three symbols .wi’QZ’ ws‘ by only one w. Lastly, as

i is a constant of the motion, and so is the space'—ﬁxed z axis, MZ will

also bé ‘a constant of‘ the rn'otioh and will appear only as a dummy index, so

that we shall frequently omit it, writing simply the state: 'wJM>

- These states will be normalized accordlng to

P') <P' ',w' 3,J M'M'[Pwi,wz,w J,M,Mz'>

= 6(];3) 6(13")6(0)1 '~"‘°1'),6(w2 - wz') A . (22)

- ! 5 L
X 8@y = 93" Sy Onine OMzMa

The passage of the basis lp,, Py p3> of the Hilbert space to the
basis 'P w, J, M, Mz> will be completely determlned by the coefficients
< p1', pz', p3' I P, w, J, M, _Mz> . Because of the meaning of the different

variables, one has necessarily

§(p,' + p,' + py') <B1" gz',' P’ If}, Wps Wy, @g, T, M, Mz> . ' o

o~

(23)

:A".6"+ "+ '6P6w-w'6w= ! '

Xé(w - ')0@’M M(q":e 4))9
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- where a@' J

M
zZ

-the rotation with Euler angles ({,6,¢) in the irreducible representation of

M(ﬂ,},@,(p) is the conventional rotation matrix which represents

angular momentum J.io The coefficient A is a normalization coefficient
which can be easily deduced from a comparison between Eqgs. (21) and (22)
as |

-1 -1 -1 -1.1T-z]1/z

A=[@2i+1) 2n? m, ' m, N (24)

Furthermore, the number of states in a domain of measure -d3P dm1 dwz dw3,

with J, M, and MZ fixed, 'is equal to

-9 .3
(2n) “ 4P d(.o1 de dg>3.

Although the calculation of expressions (24) and (25) is straightforward, the

necessary steps are indicated in the Appendix,

Iv. THE INHOMOGENEOUS TERM OF THE FADEEV EQUATIONS
We have now to find what the Fadeev Eq. (9) become when we take
their matrix elements between states ‘IEwJM> . For i}nstanc»e, one matrix
element of the first row in the left-hand side of Eq. (9) will be
| <12' w' ITM! , T(i)(z) leJM> . Taking advantage of the‘ conservation of total

momentum, we shall extract the & functions which take care of it by writing

sp) (Prwsm || pasm) = s(p)s (@) (wam |7 wrm ) (26a)

§(p) (P'wIM' |T,, | PuIM )

@,

5(p) 6 (B') (wamr [T, |wm) , (26b)

and so on,
Our first task will be to compute (26b), which is the inhomogeneous

term in the Fadeev equations, Using Eq. (23) and defining
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An ! ¥ U | / 1 1, r ) :; \ .
= 8o '+o. '+ 116 Lo ' vt o ' 5.\
= 8(py 4y * B3 18Ry TR R3) (e By B3 | 530 [Py e By

one has

6(P' <P'w‘JM'M "t ]PwJMM ) f(zﬂ*sc?pi 1 A2 6(<.o -By)

23(z E3

X (e, -E N0 M'M'(R')”&I;I/IZM(R) 5<13.'>5(E’.>5‘21*.19.2*33)5(21'*‘22'*23"
x(p 7552 [ R) - ~ o | - (28)

In writing that last equation we have tried to avoid unnecessary indices.
Here R stands for the set of three Euler angles (¥, 6,4), Wh11e E1 Py

“and so on, According to Eq. (6), the matrix element in Eq, (28) is equal to

'/,1?.1""?.5'23" lﬁ;s(z)'l&’ By B3) = ( Bz"»’ P3 |9)23(Z'Ei)'2;’ R3>"5(B1'°£1)°
(29)

In order to compﬁté Egtp'r'ession' (28), one can p'r"oceed:as follows:
(i) 1ntegrate the two & functions of" Byt p2+p3 and: p1 +p2 -l-p3 on
3 3
clp1 and dpi, -
(ii) choose‘ the body-fixed z axis élong p, so that

d”p

Ev 1 2773

d’p, = m, m,m,dE, dE,dE, dR, (30)
where dR is the measﬁr_e on the rotation group,
dR = d cosfdide;
(iii) rewrite the 6 function in Eq. (29)as
T '
6(21-21')=(m1p1) ) 6(E1—E1‘)6(C056— 9059”‘5(4"41'); . (31)

. (iv) remark that

' ' : ~ ) . \ ) 4 w l. . )
<EZ B3 7 23 (2 E1)lpzp3/ Fos(EE, ESE) B ujz-E))
(32)

/Zm._i’

43

<



LW,
ot

-15= v UCRL-11162

depends only on the angle
us=¢ - ¢‘? (33)
so that after integration on cosf' and ¢, using Eq. (31), we are left with. a

rotation matrix, 1
G@I{/[*WMW ($,6,¢") =eiM'(¢'a¢)00ﬁ v (9205 0); : (34)
‘ 2 z

(v) replace the remaining integration over. Angles d cosf dy d¢ dy'
by dcos 8 dydd du. The integration over the three first Euler angles can
then be performed explicitly, using the orthogonality relation (A.5) of the
appendix for the rotation matrices, Then Expression (28) becomes

-1

§(P)§(P') m m,m, (Zw)°9m1pi)

(_SM"M(-SM M '
. Z Z

Ve 1yi o cw 1) oiMu
f 23(@0'1 w2w3,w2 w,'; u; 2 001)6(401 w, Je du, . (35)

Finally one has-
G 1%3(” .|°°JM1>» - mimzm3(2")-9 6M1'M
f 23(w W, u,z-E ) iM4u ‘du 6(w1-w1°>);(m1p1)'1, ‘ (36)
where we have written M,l' rafher than M tcs'ebmphasiz.e that Eq (36) is true
only when the body-fixed z axis is chosen alongside Bi'

In order to remove that last condltlon we have to find what Eq. (36)
becomes when the body-fixed axis, wh11e lylng in the plane of Bys B2r B3 is
not collinear to . 21 (for 1nstanc¢, when it is along Bys oF along the b1sectioﬁ
of the angle between Bé and E;,}--in any case, with a con&ention that is th¢ ’
same for the initial and the final states). At this point, we shall define as
the angle between 0z and p,- Then one ha.s1

%y

|M1> - |M>.d i/IMi (-ay), (37)
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where the matrix .d‘:r  {a) is defined as.10
. MM1 SR -
3 A&7 | .
dv, @ =y (0a0) 1)
1 1
and therefore W
<w“JM' ,.(J (z) leM> = 2m3(Z1T) (mipi) 6(0) @ ')

(39)

r ‘ S
XJFZ3(ww uzw)dMM (-d )exp(1Mu)d 11\/I(cti)du.

It is clear from Eq. (36) that the matrix in Eq. (39) _is the ro_tgtion matrix for
a rotation of an angle -_ub.baround‘ the'axis P in the irr"e'd’u'cible' representation
of angular momenfum J :

Mayvbe some comments aré"in orde.r: at‘tl.'lat':_s';cage coricérh‘ing the

23 23 '°
nothing but the off-the-energy-shell scattering amplitude for particles 2 and

function F and how to compute it. ' It is obvious from Egq. (29) that F

3. Generally, this scattering amplitude is a function of four variables: thé
c. m. initial moméntu.rn q23,A thg final c. m momentum q'23,. the ext.ended
c.m. energy &, ‘and the cosine of the s.cattering angle cosB. Let us write it
cAbs‘B), v'}I‘herle we have

2 2
fa3ldyy 95 &

1 '.'t. S %
3(001 wZ, w3 wz ) 0! ,‘u,v z E'i‘)

y 1. ! 3 Sinv !
3(q23, q' 23, m23 2éZm 3,) scos yjcos v, +siny, siny, cos u),

4

where q,, is given by Eq.(19); q'223 by an analogous expression, cosy,, is
given by Eq. (17); while | | - o . v
m, 4 0. emm) sz -Mm,, 1. , ' (41)

23 2737 23 1
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In practical applications, it will be useful to express the scattering

-

amplitude in terms of the partial-wave 'amplitudes by

< 2. 2,2 o
— 1 1 ° . i .
F23_ L[ (240+1) az(q23 , 0_23 , q23)>< P/’e(cos Y, cos y; + 51nY.1 siny) cos u). (42)

‘Many of the applicationsin which one can be interested are concerned

~with the case in which only one amplitude is Substanti:illy different from zero

in the series (42), this amplitude having a resonance at an énergy ‘E with

width T". In these conditions, (42) becomes

A(q,,) B(qg,,") - .
F, o= =23 =25 _ | (43)

23 . =1 I
sz23 wi—E+1~Z

 For further consideration concerning the meaning of the quantities entering

into Eq. (43) and their relations to the wave functions of the resonating state,

see Lovelace,

V. REDUCED FADEEV EQUATIONS
The complete Fadeev equations Lcan be reduced in thé same way we

used for .the inhomogenéous term. -~ One thus obtains

y‘&)&ﬂ(“"?“ c/kgMiM(w w) - _/K&'i\./w (w ',w")Q/MJ.?I\‘/T[(w“:, w) dw'" (44)

(here i, j, k, £=1, 2, 3, 1#k i# 4, k;éz),

andej %\;I)';{\/I( w)— <w1, Z,Q“ J M'K_j/(l) lw w 3,J M> (45)

cy/kﬁM'M » @) = m1m2m3(3'") (m p;)". 6(w ')

. 1 PR |
Xka ,Z(w: W', u, Z"’wl) dM'Ml( al ) € o leI’iM (al) du’ (46)

K&.ﬁ{ (@, W) =0 for i=j, _ (47a)
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] J g Y | N 1-1_‘. .- ”
K(lt/I'le/I“ (@, @) = m zm3(2") 9(mi_Pi) S(e," - ")
X’ F, (o', 2z~ v u) J‘. (-a')
g (0h oz Quuy ley)
. 1M u o 1 g
X e - dMM" (a; ‘)[wi o, W, - z] ~du (47Db)

for i # j. (Here k‘;é'i, 4 # i, k # £.)

| In fact, the kernel ‘(.47) is not completely c.ontin_uous, ‘svince_it still
contains & functions, However, its Square'(K‘T)Z_is completely continuous,
This result follows immédiatély from the proof by Fadeev th"at K2 i_:s completely

continuous and.

Trace K°K*'= / (2J+1) Trace (K’) (Kﬂ 2 (48)
| | | T | |
which show$ ”tl_'lxat |
Trace (K)2 (k2 cw, = (49)

i, e.. , that K'2 is completely cc;nt.'inuous

As an apphcatlon of th1s result, 1t is. posmblé to.approx1mate K by
finite matrices, i, e., 1f we replace the 1ntegrat10n on w/!, wz”, w3" by a
fsurhmation on a finite set of values-of these varlables, the solution of the
" corresponding 'rﬁat;.rix:_‘pr‘oblem fénds_-tdthe solufio_n of f:he operator problem
when the number ofv_\./a'lu‘es of the var‘iable-s tends to vi_n"finity.. Analogous
c’onsiderations_ could be: m_ade fqr:vthe .Weinb‘erg, ke_rnel.

Although the kernel K is not itself éofﬁp'le"t'e‘l‘y' conﬁnﬁous, ‘we
believe that it is ‘worthvw}.lile to try to use it directly by solving the Fadeev
equations directly into the form (44). ‘The reason. is that, owing to the 5
function in Eq, ‘(47b),,'- 1A:he intégrafion dd;' in Eq. (44) béars upon only two

variables. This is an important simplification, when one wants to solve the



0
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equations on a computer, with respect to the use of KZ where it is necessary

to make triple ihtegr_ations.

Vi. CONCLUSIONS
We have indicated how to separate angulaf momentum in the Fadeev
equations in a-symmetrical way. - The resulting equations will be used for a

study of the problem of overlapping resonances wheref_'thé approximation (43)

for the two-body scattering amplitudes can be made. One problem to which

this method is particularly well suited is to find that effects the spins of two
resonances can have on the Dalitz i:)lot in the region where the two resonances
overlap. 1 Another interestingtype of problem to study is whether three
strong two-body interactions can generate a three-body resonance. Such an
effect has been hinted at in the KK vsystem, 12 Ghere both K and Km show
a- I{>:< resonance while the loW~evnergy S-wave K-K interaction is presumably

strong. While our method is essentially nonrelativistic, it is easy to derive

relativistic approximation which, at least, will_.keep the qualitative character

"of the interactions,

The following paper is devoted to the extension of Eq. (44) to complex

values of the angular momentum.,

Finally, it may be worth while to indicate that, _é,t least in principle,

the present method can be extended to systems of more than three particles.
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APPENDIX
In this appendix, we indicate how to compute the coefficient A of
(23) and the dens1ty of sta’ces(ZS)

One f1rst computes the scalar product (22) as >

3 3 3 _ - : : » : :
fd P19 B2 B3 (R (BluIMIM! | -IP ITMM (A1)
, P w D,P,P P,P,P ht s :
(2w)9 » (= R4R2P3) ( B4BoR3 2 2) e
then replace the scalar products in that éx’pr‘e'ssion according to Eq. (23),
thus getting
. _Az
(Z'n')

5 8(P) 5(P‘)f5(g1+_g;+.,g3)5(°1-P1Z/2m1)"-'5(@3=p3_'_“_2,/2m3)» (a2
S W80 ) W 6,0) a’p, aOp, ap,
z & e : T :

One evaluates (A.2) 1n the following way:

1. 'dispose o_f the & function by integrating over 23,

2. choose a system of bod}"?fi\xed axes with the z-axis in the direction
ofk By and B> inAthe plane of‘the x and z. axes. Then

3 3 2 2 | o ap e
d Rid p,= Py P, dpy dpy2 d cos 61-2 $1n31.2d¢d6d¢, (A.3)

3. | using the_éxpression'analo_gous.to Eq. (16) for cos@iz, pass from

(A.3) to

d’p, & p, = m,m,m, dw, dw, dw3 sin 6 dy d6 do; (A.4)

4, using the orthogonality property of the rotation matrices,

fﬂ (b 6, ¢>019J i (0 $)sin6ddodp =316 & 8 0, , (A5)
zZ Z .
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one get an expression-of the scalar produétv which canrbe directly compared
to Eq. (ZZ)Iand gives for the coefficient A the expression (24).

Let us now compute the number of éta_,tes with fiked values of J, M,
‘Let us start from the development of

Mz, in the domain ‘d3'P dw, dwz dw3.

the © function on the rotation group in terms of rotation matrices,

Be0s0) 6(4) 0(6) = L. d@’fnm ($,6,6). (A.6)
m

. Equation (A.6) can be obtained by using thé orthogonality property (A.5).

Clearly the total momentum will give a factor d % for the number
(2m) '
of states. Around P'= 0, the number of states will be of the form

XJ(wi’ w5, w3) dw1 dwz d‘f’3’ In order to compute the function XJ(wi, w5, w3),

we evaluate the scalar product (21), which leads to

1 1 1 '
(1B B3 By 22 P3) 8(py * By +B3)

f 5( '.+ '+ p,') dw, dw,dw aF X )
Sy R TR TR N3 A

{ 3 .
><<g1gzg3|13w1 2w3JMM‘><JMM w 35131B2g3> ; (A.7)

when Eqgs. (23) and (24) are used, this integral is : ,
2 dwidwzdw3d3§‘
6 1 1 1 |
z A [ (B4 +RatR3)%(Ry "+ Ry B3 ") )3
IMM! (2m)

6“_“’1“1’12/2“‘1)"’." {?(‘*.’;':,2-10312/?-1713)%{5?,;.‘1\/[(R‘)p@'J (R X (00,0,

(A.8)
where R stands for ({, 6,4¢). One has clearly

Yy  ox LT RYO TR =Y X BT R TIR) (a9)

JMM' JM
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Equat'ivon (A.6) suggests putting -

| 2T+ . - ‘ |
XJ(w1w2w3) = — X(wiwzwa). . (A.10)
so that (A.8) is simply
(v7-rr)=3A2' 6(. +p +p' )6(p "4 p. '+ p ')S(PZ/Zm -P 'Z/Zm' ) . 8(p 2/2 n, -P ‘2/2'm '
2 BT R ROy TR TR /O My Ty /ey 3/ CM3 T3 /4

2 "2 2
1 PZ o P3
mi’ Zmz’ 2m

> =0, 7py"15(p, Ry 8(Ry R5") SRy *R, R -
| | (A1)

[P
2 3

| ja(ii'R,) X \

In ordér to fix X( W, 95, w3) one integrates (A.11) over d3p1 'd3p2 ci.3p3,

: ‘us.ing Eq. (A.3), which reads

o ' 3. 43 .3 ’ ’P12 .p32
: ‘f5(31+22+g3).d Py d Rz’d.,g3= m,m,m, ‘d iy T iy dR,.v’

which leads immediately to the expfeésion (25) for the density of-st‘ates{

0

N
-
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