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ABSTRACT OF THE DISSERTATION

A General Mixture Model for Nonlinear Heterogeneous Tumor Growth

By

Andrew Thomas

Doctor of Philosophy in Mathematics

University of California, Irvine, 2017

Professor John Lowengrub, Chair

In this paper we develop a general mixture model that incorporates a non-constant water

fraction. A novel energy for the system is devised that allows for different water levels to be

considered in the host and viable cell regions. For the first time the energy provides a way

to flux the water out of the necrotic core and produce stable tumor spheroids with liquid

centers. The model is also capable of producing invasive tumors with a detailed morphology.

Parameter studies are performed to characterize the model. The parameters that can in-

fluence the size of the stable tumor and the growth rate are identified and the parameter

regimes that can destabilize the tumor are explored. We demonstrate that this model is able

to capture a wide range of tumor behavior.In particular, water fraction parameters for the

host and viable cell regions allows us to consider the effects of different water fraction levels

in the host and viable cell regions.

Finally, the non-constant water fraction model is extended to describe hierarchical structures

that incorporate cancer stem cells. This model is capable of producing a detailed invasive

morphology that has hierarchical and heterogeneous cell distributions and develops necrotic

cores. The model is also capable of forming stable tumors with heterogeneous cell distri-

butions. A parameter study on the positive and negative feedback rates for the stem cell

differentiation rate shows how the morphology of the tumor is dependent on the sensitivity

xi



to these parameters and possible avenues for therapy are seen.
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Chapter 1

Introduction

1.1 Motivation

In 2012 about 14.1 million new cases of cancer were diagnosed globally [53, Ch.1.1] and it

was responsible for 14.6 percent of all deaths or about 8.2 million deaths worldwide [53,

Ch.1.3][52]. Of the 14.1 million new cases, 165,000 were children under 15 years of age

[53, Ch.6.7]. Additionally, the financial cost of cancer worldwide has been estimated at

1.16 trillion US dollars per year. For the past several decades there has been extraordinary

focus on understanding, identifying causes and developing effective treatments for cancer.

However, as the numbers above suggest, there is still a considerable amount of work that

needs to be done help eradicate this deadly disease.

At its most basic, cancer is a family of diseases that are marked by abnormal cell growth with

the potential to spread to other parts of the body [53, 32]. In particular, ten characteristics

of cancer have been proposed [25]:

1. Sustaining proliferative signaling
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2. Evading growth suppressors

3. Avoiding immune destruction

4. Enabling replicative immortality

5. Tumor promoting inflammation

6. Activating invasion and metastasis

7. Inducing angiogensis

8. Genome instability and mutation

9. Resisting cell death

10. Deregulating cellular energetics.

The tumor microenvironment (stromal, immune, endothelial, and other accessory cells in

the extracellular matrix) is now recognized as a facilitator of tumor growth and metastasis

[24, 50]. Further, the recognition that tumors consist of heterogeneous compartments includ-

ing stem cells, transit-amplifying or committed progenitor cells, and terminally differentiated

cells has implicated both endogenous and exogenous signaling from the tumor microenvi-

roment in promoting and maintaining the spatial heterogeneity that is optimal for tumor

spread [64]. It is clear that cancer progression involves many events that occur at multiple

time and space scales. Further, what occurs at the scale of molecules and the scale of cells

effects the behavior of the tumor on the tissue scale. In order to understand how these

different scales interact we employ mathematical models and simulations to study tumor

behavior. In particular, the close connection between the tumor morphology and the cellu-

lar/molecular dynamics are studied in the hopes of determining the key factors involved in

tumor progression. The ultimate goal of mathematical modeling of cancer is the prevention,

early diagnosis, and effective treatment of this complex disease. Theory and simulations will
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Figure 1.1: Time course of crypt organoid growth. Differential interference contrast image
reveals granule containing Paneth cells (red arrowheads) at the site of budding where a new
crypt forms. Lgr5GFP (green) stem cells expand at the crypt base in close proximity to
Paneth cells. Asterisk and dotted oval indicate autofluorescence.[65] Scale bar: 50 mm.

help aid in developing individualized patient therapy that minimizes patient suffering and

maximizes treatment effectiveness.

In addition, the same mathematical models that simulate cancer growth can also be used

to model the morphology of healthy cells and tissues. In 2013 one of the runners up for

breakthrough of the year in Science magazine was growing mini-organs from stem cells. One

of the the organs they grew included a rudimentary human brain [40]. Once the cells were

the size of an apple seed the cells at the core started to die out from lack of nutrients and

formed a necrotic core. However, even at this size the researchers were able to gain insights

into the brain disease microcephaly [40]. In the future the researchers hope to use these

mini-organs and mathematical models as a way to investigate other diseases. A different set

of experiments along the same lines has demonstrated that intestinal crypts (mini-guts) can

be grown from a single stem cell [62, 65]. In figure 1.1 and figure 1.2 the evolution of an

Lgr5 stem cell into a self-organized mini-gut is shown. Note the similarities here between
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Figure 1.2: Time course of organoid growth. A single stem cell forms a symmetric cyst
structure. The symmetry is broken by bud formation. The budding structure resembles a
crypt. Lgr5+ CBC cells are depicted in yellow, and Paneth cells are shown in blue.[62]

avascular tumor growth and the evolution of mini-organs from stem as seen in figures (1.1)

and (D.1). In particular, they have a strikingly similar morphology. This is because cancer

cells typically use the same pathways and mechanisms as healthy cells to develop. The

difference between the cancer tissue and healthy tissue is that the mechanisms that control

growth in cancer are unregulated. Thus, the cancer models herein can also be used to model

healthy organ tissue development by altering the model parameters to match the regulated

healthy tissue. Protocols have already been established to grow human epithelial mini-guts

from biopsies [65]. Because of this it is possible to obtain a ”bio bank” and make a side by

side comparison of the disease tissue with the healthy tissue. Then computational models can

be used to try to bridge the gap between experiment and patient treatment and outcome.

Thus the need to develop accurate and efficient mathematical models of tumor growth is

clear.
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1.2 Background

In this paper, a continuum model that treats the tumor as a collection of tissue cells is

used. This approach uses principles from continuum mechanics to describe the variables

as continuous fields by means of partial differential equations. The model variables include

cell volume fractions or densities and cell substrate concentrations, e.g. nutrient, oxygen

and growth factors. Although continuum models are appropriate at the tissue scale where

gross tumor behavior can be quantified, the limitations in scale prevents such models from

simulating individual cells and discrete events. This may be important when studying the

effect of genetic, cellular and microenvironment characteristics on overall tumour behaviour.

Discrete models can translate biological processes into model rules more easily than the

continuum approach but, they can be difficult to study analytically and the computational

costs increases rapidly as the number of cells modeled grows. In general it is difficult to

simulate a tumor greater than 1mm in size using discrete models. For larger scale systems,

such as the one considered here, the continuum model is more appropriate and in particular,

the continuum mixture models are capable of simulating the details of the interactions among

cell species. A combination of these two, known as hybrid continuum-discrete models, are

promising and have the potential to combine the best features of both the models. However,

more work is necessary to make these hybrid models competitive with the continuum models

at large scales and is the subject of ongoing work. For more information about discrete and

continuum models consult [34].

The model presented here is an adaptation of the model presented in [71, 23]. This model

is a diffuse interface continuum model of multispecies tumor growth. In the diffuse interface

approach the sharp interfaces are replaced by narrow transition layers that arise from the

different adhesive forces among the cell species. This approach eliminates the need to enforce

complicated boundary conditions across the tumor/host interface that would have to be

satisfied if the interface were sharp. Additionally, the diffuse interface approach eliminates
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the need to explicitly track the boundary as in the sharp interface case. The diffuse interface

model is related to recently developed multicomponent mixture models [3, 8]. The model is

well posed and involves fourth order nonlinear advection-reaction-diffusion equation of Cahn-

Hillard type for the cell species volume fractions coupled with reaction-diffusion equations

for the substrates. Until recently the numerical simulations of mixture models have been

limited to one-dimension or symmetric tumor configurations [15]. This is due largely to the

complicated governing nonlinear partial differential equations and the fact that some of the

equations that regulate the adhesive forces are unregularized backwards diffusion equations

that may lead to ill-posedness. This is problematic in higher dimensions where the spatial

discretization may lead to false instabilities. In this paper, the approach to deriving the

model is based on energy variation. The energy variation is used to derive the appropriate

diffuse interface equations that account for all the cell species interactions that are modeled.

This model is also thermodynamically consistent and capable of giving a detailed description

of tumor progression. The main focus in this model is on interactions between the species and

it leads to a well-posed fourth order nonlinear partial differential equation that eliminates

the problem of the previous mixture models. This model also accounts for hydrostatic

pressure and the cell velocity is found through a generalized Darcy’s law. It is possible to

account for elastic and viscolastic effects [47, 59] by incorporating the relevant energies in

the system energy and performing energy variation [4]. This is an avenue for possible future

work. We also include the spatiotemporally heterogeneous growth factors supplied by the

microenvironment. Further, we incorporate the nonhomogeneous interstitial fluid fraction

found in the tumor microenvironment.

In previous works [23, 71] the fluid fraction in the system is treated as constant with zero flux.

This is done to greatly simplify the computations and the analysis of the model. However,

there are several reasons the consider a non-constant water fraction. The primary reason is

to make the simulations more consistent with the underlying biology. For example, the water

fraction in the necrotic core of the tumor is generally much higher than in the viable region
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Figure 1.3: In vitro tumor spheroid [11]

and surrounding tissue (see figure 1.3). In the necrotic core the dead cells are degrading

and the extracellular fluid is being released. Further, there are no viable cells in the core

that uptake the water fraction. Thus, to capture the fluid distribution in a solid tumor a

non-constant water fraction is necessary.

Secondly, the interstitial fluid fraction is known to play a crucial role in tumor development

and treatment [46, 35]. The the composition of the fluid in tumor is significantly different

than the fluid in host tissue due to the absence of a well defined lymphatic network. This

unordered structure is produced by the tumors rapid proliferation and results in higher

interstitial fluid pressure and diffusion rates compared to the host tissue. These differences

have important consequences for the treatment of tumors. Approximately 85% of human

cancer involves solid tumors and current therapies depend on the delivery of the agents

to the tumor [58, 73]. However, high fluid pressure inside the tumor and heterogeneous

fluid levels impede the delivery and transport of agents to the viable rim of the tumor. The

concentration of the drug is highest closest to the rim of the tumor but very little of the drug

reaches 90% of the tumor and if any of the cancer cells remain the tumor can eventually

regrow [61, 22]. Therefore, it is important to incorporate the fluid fraction into previous
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tumor models to investigate drug delivery mechanisms.

It is also useful to consider a non-constant water fraction when considering tumor develop-

ment in different tissue types. In particular, once the tumor is advanced enough to metas-

tasize, a secondary tumor will develop at a secondary site that could have a different level

of interstitial fluid than the primary site. For instance, hepatic cancer can metastasize and

migrate to the brain which would have a higher water fraction or it could migrate to bone

which would have a lower water fraction that the original host tissue. It is clear that different

water fractions and densities of the host tissues can impact the growth rates and morpholo-

gies of tumors [54]. A non-constant water fraction provides the necessary framework to begin

exploring these different cases. A particularly important case we can now consider is grow-

ing tumor spheroids in-vitro. Tumor spheroids provide an alternative way to study tumors

that is realistic and biologically meaningful without the complexity and cost of in-vivo whole

organism approaches [2, 44]. We will see that the non-constant water faction model that is

developed here is capable of producing stable tumor spheroids. Thus, the in-vitro case will

give a way to calibrate the model and perform the necessary validation to begin applying

the results in a clinical setting.

The non-constant water fraction model developed in this paper also allows us to extend the

model given in [23]. This extension considers the viable cells of the tumor as a composition of

cells at different stages of differentiation. Tumor cells as well as healthy tissue cells progress

through lineage stages. The existence of cancer stem cells, or the cells capable of initiating

cancer, was first demonstrated in leukemia by showing that transplanting only a certain type

of cell consistently resulted in leukemia in healthy animals [18, 6]. Stem cells have also been

located in the solid tumors of other cancers [16, 13, 30]. A cell lineage is a set of progenitor-

progeny relationships such that progressive changes in cell character occur. The lineage can

be traced back to the self-perpetuating stem cell and ends with the terminally differentiated

cells that either divides slowly compared to its lifespan or doesn’t divide at all. In between,

8



there are committed progenitor cells or transit-amplifying cells. Every population of dividing

cell at a given stage in the lineage has a parameter P that gives the fraction of daughter

cells that remain at the same lineage stage after division. If P = 0.5 then the populations

of the cell lineage would stay the same, this is characteristic of stem cells. If P < 0.5 then

the lineage will eventually die out, this is characteristic of committed progenitor cells.

It has been demonstrated that the growth and division of the stem cells and committed

progenitor cells are controlled by feedback signals [7]. In particular, the control of the

cell population involves feedback loops that determine mitosis rates and the self-renewal

fraction P [72, 38]. For instance, TGF-β factors have been shown to decrease self-renewal

and differentiation rates of stem cells in cancerous and healthy tissues [48]. Other factors,

such as Wnts, Notch, Shh, and FGF upregulate stem and committed progenitor cell renewal

and proliferation rates in healthy and cancerous tissue [39]. The relationship between the

feedback factors and the cell lineages in this model are seen in figure 1.4. Using mathematical

models it was shown that the feedback regulation of the P values by more differentiated cells

explains many tissue behaviors such as regeneration of tissue in response to injury and

insensitivity of tissue size to perturbations in P [41, 43]. Further, these models suggest

that feedback mechanisms are the reason why stem and committed progenitor cell behaviors

emerge in tissue. Thus it is of crucial importance to incorporate these feedback factors and

cell lineages into the modeling of cancer. We will show in chapter 6 that the non-constant

water fraction model extended to include the cancer stem cells and their progeny is capable

of produces tumors that develop necrotic cores and an invasive morphology.

This thesis is organized as follows, in chapter 2 the mixture model is derived where all the

species are assumed to be non-constant. The derivation is similar in nature to the one

presented in [71]. The main contribution in this chapter is the new choice of the energy for

the system that governs the flux and velocity of the species. New terms are introduced to

enforce the water fractions in the host and the viable cells. We also propose a way to model

9



Figure 1.4: A schematic of a cell lineage with positive and negative feedback factors affect-
ing the self-renewal and mitosis rates of cancer stem cells and committed progenitor cells.
Terminally differentiated cells produce soluble factors T that reduce the self-renewal fraction
and mitosis rates of less differentiated cells (e.g. members of TGFb family). Note that the
T factors that act on the committed progenitor and stem cells may be different [21, 72]. Ad-
ditional feedback factors W produced by cancer stem cells (e.g. Wnt) promote self-renewal
and increase mitosis rates of cancer stem cells. The self-renewing promoters may also be
inhibited by other factors WI (e.g. Dkk, SFRPs), which can lead to pattern formation and
spatiotemporally heterogeneous cell distributions.
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the fluid flux out of the necrotic core that produces stable tumors. In chapter 3 we analyze

the behavior of the model for a fixed set of parameters that constitute the base case for the

remainder of the paper. We consider tumor evolution from a symmetric initial condition and

from and non-symmetric initial conditions. In the symmetric case we see the tumor forms

a stable tumor spheroid and the non-symmetric case elongates and develops typical invasive

behaviors. In chapter 4 a parameter study is performed on the model with a symmetric initial

condition. We investigate how the physical and model parameters can impact the growth

of the tumor and the size of the stable spheroids. The parameter regimes that produce an

unstable tumor are also investigated. In chapter 5 is a similar parameter variation performed

on the model with a non-symmetric initial condition. We determine which parameters affect

the growth and morphology of the tumor. Parameters that can stabilize the non-symmetric

tumor or increase the invasiveness of the tumor are given special attention. In chapter 6

the non-constant water fraction model developed here is extended to incorporate the cancer

stem cells in a similar fashion as [23]. We show that this model can produce invasive tumors

that are also capable of developing a necrotic core. In chapter 7 the main contributions of

this work are summarized and future work is discussed.
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Chapter 2

Model Equations

2.1 Mass Conservation Equation

We begin by formulating the mass conservation equations for a general multispecies model

that accounts for the mass/momentum exchange interactions among the different species.

The primary variables in the (N + 1)-species model are, the volume fractions of the cell

species φ0, . . . , φN , the densities of the components ρ0, . . . , ρN , and the component velocities

u0, . . . ,uN .

We assume that the densities are constant and there are no voids in the tissue. This last

condition implies the sum of the volume fractions is 1. Without loss of generality we may

let φ0 be the water component and φN be the host component. The volume fractions are

assumed to be continuous in a domain Ω that contains both the tumor and host.

Now we derive the equation that determines the evolution of the cell species. Let mi be

the mass of cell-species i inside some imaginary surface S and let ji be the flux of the cells

12



through the surface S. The mass mi can be written in terms of the dependent variables as

mi =

∫∫∫
V

φiρidV.

The only way to introduce to increase the mass of the i-species in the surface S is for

additional φi to flux into the surface or for φi to be created inside the region. We know the

surface integral of the flux over the surface S is equal to the rate of cells passing through

the surface S. Thus, the continuity equation reads

dmi

dt
+

∫∫
S

ji · dS = Σi (2.1)

where Σi is the rate that mi is generated inside V . By the divergence theorem we can write

the surface integral as
∫∫

S
ji · dS =

∫∫∫
V
∇ · jidV . Therefore, we have

∫∫∫
V

∂φiρi
∂t

dV +

∫∫∫
V

∇ · jidV = Σi

where Σi =
∫∫∫

V
SidV. Hence the differential form of (2.1) is

∂φiρi
∂t

+∇ · ji = Si.

Next, we suppose the two sources of cell flux are the diffusive flux and the advective flux.

We can write the advective flux as

jadv = uiφiρi

where ui is the velocity of the species. We write the flux term as

ji = Ji + uiφiρi

13



where Ji is the diffusion term. Therefore each cell type can be determined by the following

conservation equation,

ρi

(
∂φi
∂t

+∇ · (uiφi)
)

= −∇ · Ji + Si (2.2)

with the Neumann boundary condition

ω∞ · ∇φi = 0. (2.3)

Here equation (2.2) is on a domain Ω with boundary Σ∞ and ω∞ is the outward normal

vector on the boundary Σ∞. The Ji’s are the fluxes that account the mechanical interactions

among the cell species. Define the density of the mixture as ρ =
∑N

i=0 ρiφi and define the

mass averaged velocity of the mixture as u = 1
ρ

∑N
i=0 ρiφiui. Summing equation (2.2) from

0 to N we see

∂ρ

∂t
+∇ · (uρ) = −

N∑
i=0

∇ · Ji +
N∑
i=0

Si.

So the mass is conserved only if −
∑N

i=0∇ · Ji +
∑N

i=0 Si = 0. Therefore we impose the

condition

N∑
i=0

Ji = 0 (2.4)

N∑
i=0

Si = 0 (2.5)

as a consistency constraint for the fluxes and sources. Note that we could make
∑N

i=0 Ji = C

for some constant C and for simplicity we let C = 0. In the next section we introduce an

energy to motivate our choices for the flux terms and the component velocities.
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2.2 Energy

In order to determine the generalized diffusion terms and the velocities of the components

we follow [71] and consider the energy for the system. The energy we consider focuses on

interactions between the species. We do not consider elastic and viscoelastic effects here.

The diffusion and velocity terms will be chosen to decrease the energy of the system so it

is thermodynamically consistent. That is, the free energy functional derived below is non-

increasing in time which is equivalent to nondecreasing entropy in an isothermal system.

To describe the energy associated with the interactions among the different components we

introduce the Helmholtz free energy of component interactions as in [60]. This is a thermo-

dynamic potential that measures the useful work obtainable from a closed thermodynamic

system at a constant temperature. We define the energy of each component as

Ei = Ui − θsi

where Ui is the energy that results from interaction forces between the ith component and

the other components, si is the entropy of mixing, and θ is the temperature of the system

which is assumed to be constant. Introducing the interaction potential Uij between the ith

and jth conponents, we can write

Ui =
1

2

∑
j 6=i

∫∫
Uij(x− y)φi(x)φj(y)dxdy

and the entropy can be written as

si = −R
∫
φi log

(
1

φi

)
dx

15



where R is a fixed constant [60]. Thus the free energy of adhesion of the ith component is

given by

Ei =

∫∫
1

2

∑
j 6=i

Uij(x− y)φi(x)φj(y)dxdy +Rθ

∫
φi log(φi)dx.

The total energy of the system is E =
∑N

i=0Ei. For simplicity assume that Uij = Uji and

supposed that Uij is radially symmetric and localized (i.e., Uij = ε−dij Uij

(
|x|
εij

)
were d is the

dimension). Thus,

Ei =

∫∫ ∑
j 6=i

ε−dij Uij

(
|x− y|
εij

)
φi(x)φj(y)dxdy +Rθ

∫
φi log(φi)dx.

Let z = x−y
εij

, then the first term is

∫∫ ∑
j 6=i

Uij (|z|)φi(εijz + y)φj(y)dzdy.

Taking the Taylor expansion for φi about εij gives

∫∫ ∑
j 6=i

Uij (|z|)
[
φi(y) + εij∇φi(y) · z +

ε2ij
2
zT∇2φi(y)z

+
ε3ij
6
∇3φi(y)z3 +O(ε4ij))

]
φj(y)dzdy.

Next using the radial symmetry and dropping the O(ε4ij) term we get

∫∫ ∑
j 6=i

Uij (|z|)
[
φi(y) +

ε2ij
2
zT∇2φi(y)z)

]
φj(y)dzdy.
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Let

U0
ij =

∫
Uij(|z|)dz

U1
ij =

∫
Uij(|z|)|z|2dz.

Thus we get

Ei =

∫ ∑
j 6=i

U0
ijφi(y)φj(y) +

ε2ij
2
U1
ij∇2φi(y)φj(y)dy +Rθφi(y) log(φi(y))dy.

Integrating by parts we find,

Ei =

∫ ∑
j 6=i

U0
ijφi(y)φj(y)−

ε2ij
2
U1
ij∇φi(y) · ∇φj(y) +Rθφi(y) log(φi(y))dy.

Now we consider the term Ai =
∑

j 6=i−
ε2ij
2
U1
ij∇φi(y) ·∇φj(y) and define ε̄2ij = ε2ijU

1
ij (we drop

the bar notation). We first consider the A0 term,

A0 = −
N∑
i=1

ε20i
2
∇φ0 · ∇φi = −

N−1∑
i=1

ε20i
2
∇φ0 · ∇φi +

ε20N
2

N−1∑
i=0

∇φ0 · ∇φi

=
N−1∑
i=1

(
ε20N
2
− ε20i

2

)
∇φ0 · ∇φi +

ε20N
2
∇φ0 · ∇φ0

where the second equality is from 1 =
∑N

i=0 φi. Now we let ε0N = ε0 and ε0i = ε0 for

1 ≤ i ≤ N − 1. This choice of epsilons eliminates the non-squared terms. Thus,

A0 =
ε20
2
|∇φ0|2.
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Similarly, for the AN term,

AN = −
N−1∑
i=0

ε2Ni
2
∇φN · ∇φi = −

N−1∑
i=1

ε2Ni
2
∇φN · ∇φi +

ε2N0

2

N∑
i=1

∇φN · ∇φi

=
N−1∑
i=1

(
ε2N0

2
− ε2Ni

2

)
∇φN · ∇φi +

ε2N0

2
∇φN · ∇φN

where the second equality is again from 1 =
∑N

i=0 φi. Now we let εN0 = εN and εNi = εN for

1 ≤ i ≤ N − 1. This choice of epsilons also eliminates the non-squared terms. Thus,

AN =
ε2N
2
|∇φN |2.

For the intermediate terms we calculate,

Ai =
N∑

j=0,j 6=i

−
ε2ij
2
∇φi · ∇φj =

N−1∑
j=0,j 6=i

−
ε2ij
2
∇φi · ∇φj +

N−1∑
j=0

ε2iN
2
∇φi · ∇φj.

Now let εiN = εi0 = εT and εij = 0 for 1 ≤ j ≤ N − 1. Therefore,

Ai =
ε2T
2
∇φi · ∇φT , for 1 ≤ i ≤ N − 1.

The choice of epsilons is equivalent to keeping only the squared terms and considering the

tumor as single component instead of as the sum of different cell species. Note that,

N−1∑
i=1

Ai =
ε2T
2
|∇φT |2.
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With this simplification we obtain the following nonlocal model of the Helmholtz free energy,

E =
N∑
i=0

Ei

where the ith component is given by,

E0 =

∫ (
F0(φ0, . . . , φN) +

ε20
2
|∇φ0|2

)
dx

Ei =

∫ (
Fi(φ0, . . . , φN) +

ε2T
2
∇φi · ∇φT

)
dx, for 1 ≤ i ≤ N − 1

EN =

∫ (
FN(φ0, . . . , φN) +

ε2N
2
|∇φN |2

)
dx.

(2.6)

The first term models the bulk energy of the components due to local interactions while the

gradient terms model longer range interactions.

2.2.1 Model Derivation

Next we take the time derivative of the energy to get

dE

dt
=

N∑
i=0

dEi
dt

=

∫
Ω

(
N∑
i=0

N∑
j=0

∂Fi
∂φj

∂φj
∂t

+ ε20∇φ0 · ∇
∂φ0

∂t

+ ε2T∇φT · ∇
∂φT
∂t

+ ε2N∇φN · ∇
∂φN
∂t

)
dx.

Integrating by parts we get,

dE

dt
=

∫
Ω

((
N∑
i=0

∂Fi
∂φ0

− ε20∇ · ∇φ0

)
∂φ0

∂t
+

N−1∑
j=1

(
N∑
i=0

∂Fi
∂φj
− ε2T∇ · ∇φT

)
∂φj
∂t

+

(
N∑
i=0

∂Fi
∂φN

− ε2N∇ · ∇φN

)
∂φN
∂t

)
dx+

N∑
i=0

∫
∂Ω

(
ε20
∂φ0

∂t
∇φ0 · ω∞

+ ε2T
∂φT
∂t
∇φT · ω∞ + ε2N

∂φN
∂t
∇φN · ω∞

)
ds.
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Note the boundary terms are zero by (2.3). Define

δEi
δφ0

=
∂Fi
∂φ0

− ε20
N
∇ · ∇φ0

δEi
δφj

=
∂Fi
∂φj
− ε2T
N
∇ · ∇φT , 1 ≤ j ≤ N − 1

δEi
δφN

=
∂Fi
∂φN

− ε2N
N
∇ · ∇φN

δE

δφj
=

N∑
i=0

δEi
δφj

.

Thus,

dE

dt
=

N∑
j=0

∫
Ω

δE

δφj

∂φj
∂t

dx.

Using equation (2.2) with Si = 0 we see

dE

dt
= −

N∑
j=0

∫
Ω

δE

δφj

(
1

ρj
∇ · Jj +∇ · (ujφj)

)
dx.

Integrating by parts again,

dE

dt
=

N∑
j=0

(∫
Ω

φj∇
δE

δφj
· uj +∇

(
1

ρj

δE

δφj

)
· Jjdx−

∫
∂Ω

δE

δφj

(
1

ρj
Jj + ujφj

)
· ω∞ds

)
.

Choose the boundary conditions such that the last term is zero. Now we can sum from

0 ≤ j ≤ N over equation (2.2) and see

N∑
j=0

∇ · (ujφj) +
N∑
j=0

1

ρj
∇ · Jj = 0.
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Hence we can introduce a function p̃ such that

N∑
j=0

∫
Ω

∇p̃
(

ujφj +
1

ρj
Jj

)
dx = 0. (2.7)

Therefore adding these terms won’t change the energy. So,

dE

dt
=

N∑
j=0

∫
Ω

φj∇
(
δE

δφj
+ p̃

)
· uj +∇

(
1

ρj

δE

δφj
+

1

ρj
p̃

)
· Jjdx.

Further, we supposed that JN = −
∑N−1

j=0 Jj. Hence we need to add some terms to remove

JN from the above equation. Thus,

dE

dt
=

∫
Ω

N∑
j=0

φj∇
(
δE

δφj
+ p̃

)
· uj

+
N−1∑
j=0

∇
(

1

ρj

δE

δφj
− 1

ρN

δE

δφN
+

(
1

ρj
− 1

ρN

)
p̃

)
· Jjdx.

(2.8)

We will choose uj and Jj to decrease the energy. Now consider the velocity terms and

suppose all the non-liquid and non-dead species move with the same velocity. That is all

species but the dead cells and water move with velocity uj = us for j ≥ 2. Also let φ1 be

the volume fraction for the dead cells. The first term gives

N∑
j=0

∫
Ω

(
φj∇

(
δE

δφj
+ p̃

)
· ujdx

)
=

∫
Ω

φ0∇
(
δE

δφ0

+ p̃

)
· u0dx

+

∫
Ω

φ1∇
(
δE

δφ1

+ p̃

)
· u1dx+

N∑
j=2

∫
Ω

(
φj∇

(
δE

δφj
+ p̃

)
· usdx

)
=

∫
Ω

φ0∇
(
δE

δφ0

+ p̃

)
· u0dx+

∫
Ω

φ1∇
(
δE

δφ1

+ p̃

)
· u1dx

+

∫
Ω

(
N∑
j=2

φj∇
δE

δφj
+ φs∇p̃

)
· usdx
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where we have used the product rule and
∑N

j=2 φj = φs. Define p = δE
δφ0

+ p̃ and set

us =− ks

(
φs∇p̃+

N∑
j=2

φj∇
δE

δφj

)
= −ks

(
φs∇p− φs∇

δE

δφ0

+
N∑
j=2

φj∇
δE

δφj

)
. (2.9)

Now write uj = us + wj for j ≥ 2 where us is the mass averaged velocity of the tumor

cells and the host and wj is the deviation from this velocity. Plugging these definitions in

equation (2.8) above,

dE

dt
=

∫
Ω

φ0∇p · u0dx+

∫
Ω

φ1∇
(
δE

δφ1

− δE

δφ0

+ p

)
· u1dx

+

(
N∑
j=2

φj∇
δE

δφj
− φs

δE

δφ0

+ φs∇p

)
· us +

∫
Ω

N∑
j=2

φj∇
(
δE

δφj
− δE

δφ0

+ p

)
·wj

+
N∑
j=0

∫
Ω

∇
(

1

ρj

δE

δφj
− 1

ρN

δE

δφN
+

(
1

ρj
− 1

ρN

)(
p− δE

δφ0

))
· Jjdx.

(2.10)

Now let

u0 =− k0φ0∇p (2.11)

u1 =− k1φ1∇
(
p+

δE

δφ1

− δE

δφ0

)
(2.12)

wj =− kjφj∇
(
p+

δE

δφj
− δE

δφ0

)
, j ≥ 2 (2.13)

Jj =−Mj∇
(

1

ρj

δE

δφj
− 1

ρN

δE

δφN
+

(
1

ρj
− 1

ρN

)(
p− δE

δφ0

))
. (2.14)

Here Mj is a positive definite matrix representing the diffusive mobility of the jth compo-

nent and ks, kj are nonnegative cell motilities that reflect the response of the average and

individual motions of cells to pressure and interaction forces. Equations (2.13) and (2.9)
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combine to give

uj = −ks

(
φs∇p− φs∇

δE

δφ0

+
N∑
j=2

φj∇
δE

δφj

)
− kjφj∇

(
p+

δE

δφj
− δE

δφ0

)
, j ≥ 2.

(2.15)

Plugging (2.13), (2.9) and (2.14) into (2.10) we see

dE

dt
= −

∫
Ω

1

k0

|u0|2 +
1

k1

|u1|2 +
1

k
|ul|2 +

N∑
j=2

1

kj
|wj|2 +

N∑
j=0

1

Mj

|Jj|2dx.

Hence with our choice of the flux and velocity above we see that the energy of the system

is non-increasing in time and thus our model is consistent with the second law of thermody-

namics.

The energy E has a central role in the model and the numerical simulations. From a biological

prospective the energy gives a way to model the multiple cell species through cell interaction.

This also controls the extent which the tumor and host cells intermix. From the numerical

perspective the energy is a way to keep the structure of the diffuse interface and the cell

fractions realistic.

2.3 Tumor Model

The general model above will now be adapted to a specific model we will analyze. The tumor

is composed of viable tumor cells, dead cells, host and water. The local volume fractions of

the species are denoted by,

φV , φD, φH , φW
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respectively. We define φT = φV + φD and make the simplifying approximation that all the

densities are matched (i.e., ρi = ρ).

We suppose that the tumor cells prefer to adhere to one another rather than the host and we

do not distinguish between adhesive properties of the viable and dead cells. To formulate the

Fi(φ0, . . . , φN) term in equation (2.6) that models the bulk energy we take Fi(φ0, . . . , φN) =

f(φW , φD, φV ) where f(x, y, z) is a sum of interaction potentials. In particular, we use a

polynomial approximation of the local interaction energy

f(φW , φD, φV ) =
1

4
φ2
Tφ

2
H +

αHW
2

φ2
H(φW − φ̄HW )2 +

αVW
2

φ2
V (φW − φ̄VW )2

+
αV itro

2
φ2
Wφ

2
H +

κ

2
(C0 − 1.0)2φ2

W +
αWDH

2
φ2
Wφ

2
Dφ

2
H

+
αVWDH

2
φ2
V φ

2
Wφ

2
Dφ

2
H +

αV
2
φ2
VH(−φV ) +

αW
2
φ2
WH(−φW )

+
αD
2
φ2
DH(−φD) +

αH
2
φ2
HH(−φH).

(2.16)

where φ̄HW , φ̄
V
W are the water levels in the host cells and viable cells respectively. The α

parameters are available to weight the various interaction potentials. Additionally, this

energy can be written just in terms of φV , φW , and φD by using, φH = 1 − φV − φW − φD.

Similar bulk energy terms have also been used to describe multiphase systems and modeling

multicomponent alloys [26], [31], [29], [28], [27].

The first term in the energy gives a well-delineated phase separation between the tumor and

host tissue. The next two terms with the αHW and αVW parameters maintain the water

levels set by φ̄HW and φ̄VW respectively. The necessity of these terms will be seen in section 4.4

when the variations of the model parameters are discussed. We will demonstrate that the

water fraction can produce unphysical behaviors without these parameters. The term with

the αV itro parameter is only necessary when we consider the in vitro case (i.e., φ̄HW = 1.0).

In section 4.2 we show the introduction of this term eliminates the host fraction build up

in the in-vitro case where this behavior is not physical. The αV itro term enforces a phase
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separation between the host and water fractions and since the water fraction is present in

the entire domain the host is phased out. The κ term determines the water diffusion rate

out of the necrotic core of the tumor and will be discussed greater depth in section 2.3.4.

The αWDH term prevents unphysical build up of host in the necrotic core of the tumor and

the αVWHD term prevents the unphysical generation of a phase in an interfacial region. The

last three terms with Heaviside functions compel the volume fractions to remain positive as

the tumor develops. Similar terms have been added in models of composition materials [26],

[31], [29]. We further define ε0 = εT = εN = ε. Thus,

E =
3∑
i=0

Ei =

∫
Ω

f(φW , φD, φV ) +
ε20
2
|∇φ0|2 +

ε2T
2
|∇φT |2 +

ε2N
2
|∇φN |2dx

=

∫
Ω

f(φW , φD, φV ) +
ε2

2

(
|∇φW |2 + |∇φT |2 + |∇φH |2

)
dx

=

∫
Ω

f(φW , φD, φV ) +
ε2

2

(
|∇φW |2 + |∇φT |2 + |∇(φW + φD + φV )|2

)
dx

where we have used φH = 1− φW − φD − φV . Hence we write the energy as

E =

∫
Ω

f(φW , φD, φV ) +
ε2

2

(
|∇φW |2 + |∇φT |2 + |∇(φW + φD + φV )|2

)
dx.

Note that this interaction energy does not depend on the host.

2.3.1 Generalized Diffusion Term

From equation (2.14) have

Ji = −Mi∇
(
δE

δφi
− δE

δφN

)
, 0 ≤ i ≤ N − 1
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and JN = −
∑N−1

i=0 Ji, where Mi > 0 is the motility. Specializing to the tumor case and

taking the motilities Mi = −M̄iφi for 0 ≤ i ≤ 2 where M̄i is constant we see

Ji = −M̄iφi∇
δE

δφi

where we have used that the energy does not depend on φ3. Further,

δE

δφ0

=
δE

δφW
=
∂f(φW , φD, φV )

∂φW
− ε2∇2φV − 2ε2∇2φW − ε2∇2φD

δE

δφ1

=
δE

δφD
=
∂f(φW , φD, φV )

∂φD
− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD

δE

δφ2

=
δE

δφV
=
∂f(φW , φD, φV )

∂φV
− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD.

Hence, the flux term for the components is given by,

J0 = −MWφW∇ν

JD = −MDφD∇δ

JV = −MV φV∇µ

ν =
δE

δφW
=

∂f

∂φW
(φW , φD, φV )− ε2∇2φV − 2ε2∇2φW − ε2∇2φD

δ =
δE

δφD
=

∂f

∂φD
(φW , φD, φV )− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD

µ =
δE

δφV
=

∂f

∂φV
(φW , φD, φV )− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD.

Thus, the flux is a fourth order nonlinear advection-diffusion of Cahn-Hilliard type [10]. The

flux is for the host component is

JH = −
2∑
i=0

Ji = MWφW∇ν +MDφD∇δ +MV φV∇µ.
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2.3.2 Advection

From equations (2.11), (2.12), (2.15) we know the resulting generalized Darcy laws for the

velocity of components are given by

u0 =− k0φ0∇p

u1 =− k1φ1∇
(
p+

δE

δφ1

− δE

δφ0

)
uj =− k

(
φs∇p− φs∇

δE

δφ0

+
N∑
j=2

φj∇
δE

δφj

)
− kjφj∇

(
p+

δE

δφj
− δE

δφ0

)
, j ≥ 2.

(2.17)

Further for 1 ≤ j ≤ 3 we have

u0 =− k0φ0∇p (2.18)

u1 =− k1φ1∇ (p+ δ − ν) (2.19)

u2 =− ks (φs∇p− φs∇ν + φV∇µ)− k2φV∇ (p+ µ− ν) (2.20)

u3 =− ks (φs∇p− φs∇ν + φV∇µ)− k3φH∇ (p− ν) . (2.21)

Here we again use that the energy does not depend on φH . The coefficients k, kj are motilities

that reflect the response of the water and the cells to the pressure gradients. As a further

simplifying assumption we take kj = 0 for j ≥ 1 which is consistent with assuming the

host and tumor cells are tightly packed and march together. Thus the viable cells and host

component have the velocity

us = −ks (φs∇p− φs∇ν + φV∇µ) . (2.22)

Note that ks > 0 may depend on φi for 0 ≤ i ≤ 3 and other variables. This constitutive law

for velocity assumes the tumor can be treated as a viscous, inertialess fluid and models this

flow through a porous medium.
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Now we write the continuity equation for the φi for 0 ≤ i ≤ 3

∂φi
∂t

+∇ · (uiφi) = −∇ · Ji + Si

where ρ is absorbed into the motility constant for J and the source term. Assuming the

source term for the host tissue is 0 (i.e., SH = 0), the continuity equations for 0 ≤ i ≤ 3 can

be summed to yield

0 +∇ · (φsus + φDu1 + φWu0) = −∇ ·
3∑
i=0

Ji +
3∑
i=0

Si.

Thus by equations (2.4) and (2.5),

∇ · (φsus + φDu1 + φWu0) = 0.

This equation with (6.8). (6.3). and (6.4) can be used to solve for the pressure (a linear

elliptic equation for p). This closes the system and it remains to account for the source

terms.

2.3.3 Source/Mass-Exchange

Assume that the viable cells mitosis rate is linearly proportional to the level of oxygen,

glucose, and other survival promoting factors that are modeled as a single concentration

C0. We also assume that the mitosis rate is linearly proportional to amount of water in the

system and water is depleted during mitosis. Death of the cells may occur by apoptosis or

by necrosis if the nutrient levels are too low to support cell viability. After the cells die the

dead cells are converted to water through lysis, a process of cell degradation clearance. The
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source terms are given by,

SV =λMφV φWC0 − λNφVH(C̄0 − C0)− λAφV

SW =− λMφV φWC0 + λlφDH(φ̄D − φD)

SD =λAφV + λNφVH(C̄0 − C0)− λlφDH(φ̄D − φD)

SH =0

(2.23)

where λM , λA, λN denote mitosis, apoptosis, and necrosis rates of the viable cells. C̄0 is the

minimum level of oxygen, glucose, and growth promoting factors required for cell viability

and φ̄D is the minimal level of necrotic dead cells needed to initiate lysis.

Now, everything in the source terms above is a parameter or dependent variable except for

C0. Denote oxygen, glucose, and other growth promoting factors as O. Assume the uptake

of O is negligible in the host domain compared to the uptake by the tumor cells. On the time

scale of cell proliferation the diffusion of O is rapid and the time derivatives and advection

terms can be neglected. Therefore the concentration of O is given by,

0 =∇ · (D0∇C0)− νUOV φVC0 + νPO(C̄AO − C0)Q(φT ). (2.24)

Here D0 is the diffusion coefficient and νUOV is the uptake rate of oxygen by the viable

tumor cells and νPO is the rate that O is supplied to the microenvironment. C̄AO is the

concentration of O in the blood (in vivo) or in the medium (in vitro) far from the tumor.

The function Q(φT ) approximates the characteristic function of the host domain and models

the source of O as being external to the tumor (i.e., the tumor is avascular). More specifically

the function Q can be taken to be,

Q(φT ) =

 0 if φT > 0.01

1 if φT ≤ 0.01
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The uptake of O in the host domain is assumed to be negligible compared to the uptake in

the viable tumor domain. Thus, the PDE for C0 is given the Dirichlet boundary condition

C0 = C̄AO on Σ∞.

2.3.4 Water Diffusion

In order for a symmetric initial tumor seed to grow to a stable tumor spheroid we need

to introduce a way to flux the water out from the center of the tumor. In the constant

water fraction case this was done with lysis to provide a sink for solid materials. For the

non-constant water fraction case considered here, the water fraction is part of the system

and lysing the dead cells produces a build up of water in the necrotic core and the tumor

does not stabilize. Thus, in the non-constant water fraction case we use water diffusion to

flux the water out of the center of the tumor. The nutrient variable includes oxygen, glucose

and other growth promoting factors that are non-polar molecules. Outside the tumor the

nutrient concentration is higher than inside the necrotic core by (1/C̄0−1)%. This difference

establishes an osmotic pressure gradient from the necrotic core to the environment outside

the tumor. Additionally, there will also be a diffusion effect from higher water concentrations

to lower concentrations. This can be seen in the diffusion coefficient necessary to stabilize

the tumor for different water levels in the host. The in vivo case we consider in the next

chapter has the water fraction in the host set to around 20% [55] and a much smaller diffusion

coefficient is needed than in the in vitro case where we assume the tumor is surrounded by

100% water. This can be interpreted as the increased water diffusion gradient is acting

opposite the osmotic pressure gradient. This is modeled in the energy by,

κ

∫
Ω

(C0 − 1)2φ2
Wdx.
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This double well potential has a well at C0 = 1.0 and φW = 0.0. Once the tumor develops a

necrotic core we will see that outside the tumor the C0 level is near 1.0 and inside the tumor

the viable cells uptake the nutrients and the nutrient level is reduced to C̄0. Thus, outside

the tumor this energy term will not contribute to the interaction energy and the water will

not experience any diffusion. As C0 is consumed by the viable cells the nutrient level begins

to fall. To minimize the contribution of this term to the interaction energy the water fraction

decreases to approach its well value of 0.0 and the water will flux out of the center of the

tumor. Thus, as the nutrient level drops inside the tumor the water fraction also begins

to diffuse and the lower the nutrient level the greater the water diffusion. Therefore, as

the nutrient level decreases water begins to diffuse out of the tumor and inside the necrotic

core the water diffusion is the greatest. This diffusion potential is a quantitative way to

incorporate the diffusion effect with the osmotic pressure gradient. The κ perimeter will

determine the magnitude of the diffusion.
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Thus, the full model is given by,

∂tφV =MV∇ · (φV∇µ) + SV −∇ · (φV us)

∂tφW =MW∇ · (φW∇ν) + SW −∇ · (φWuw)

∂tφD =MD∇ · (φD∇δ) + SD −−∇ · (φDu1)

µ =
δE

δφV
=

∂f

∂φV
(φW , φD, φV )− 2ε2∆φV − ε2∆φW − 2ε2∆φD

ν =
δE

δφW
=

∂f

∂φW
(φW , φD, φV )− 2ε2∆φW − ε2∆φV − ε2∆φD

δ =
δE

δφD
=

∂f

∂φD
(φW , φD, φV )− 2ε2∆φV − ε2∆φW − 2ε2∆φD

us =− ks(φs∇p+ φV∇µ− φs∇ν)

u1 =− k1φ1∇ (p+ δ − ν)

uw =− kwφW∇p

0 =∇ · ((ksφ2
s + kwφ

2
W + k1φ

2
D)∇p) + ks∇ · (φsφV∇µ− φ2

s∇ν)

+ k1∇ · (φD∇δ − φD∇ν)

SV =λMφV φWC0 − λNφVH(C̄0 − C0)− λAφV

SW =− λMφV φWC0 + λlφDH(φ̄D − φD)

SD =λNφVH(C̄0 − C0)− λlφDH(φ̄D − φD) + λAφV

0 =D0∇2C0 − C0νUOTφV + νPO(C̄AO − C0)Q(φT ).

2.4 Model Simplification and Nondimensional Equa-

tions

To simplify the model we neglect the effects of apoptosis on the viable cells since the apoptosis

rate the tumor cells should be very small compared to the time scales we consider. We also

assume the dead cells have no mobility and no velocity (i.e., MD = 0,u1 = 0). This implies

32



that the change in the dead cells is only due to the source term. Indeed the movement of

the dead cells should be dominated by the necrosis of the viable cells and the lysis rate.

Following [15] we nondimensionalize the governing equations using the oxygen diffusion

length scale and the mitosis rate of the viable cells time scale in table 2.1. These can

be estimated as l ≈ 200µm and τ ≈ 1 day. The oxygen concentration is measured against

the concentration in the blood or in the medium in the vitro case. The dimensional simplified

model is given by,

∂tφV =MV∇ · (φV∇µ) + SV −∇ · (φV ul)

∂tφW =MW∇ · (φW∇ν) + SW −∇ · (φWuw)

∂tφD =SD

µ =
δE

δφV
=

∂f

∂φV
(φW , φD, φV )− 2ε2∆φV − ε2∆φW − 2ε2∆φD

ν =
δE

δφW
=

∂f

∂φW
(φW , φD, φV )− 2ε2∆φW − ε2∆φV − ε2∆φD

us =− ks(φs∇p+ φV∇µ− φs∇ν)

uw =− kwφW∇p

0 =∇ · ((ksφ2
s + kwφ

2
W )∇p) + ks∇ · (φsφV∇µ− φ2

s∇ν)

SV =λMφV φWC0 − λNφVH(C̄0 − C0)

SW =− λMφV φWC0 + λlφDH(φ̄D − φD)

SD =λNφVH(C̄0 − C0)− λlφDH(φ̄D − φD)

0 =D0∇2C0 − C0νUOTφV + νPO(C̄AO − C0)Q(φT )

with energy

E =

∫
Ω

f(φW , φD, φV ) +
ε2

2

(
|∇φW |2 + |∇φT |2 + |∇(φW + φD + φV )|2

)
dx
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and interaction potential

f(φW , φD, φV ) =
1

4
φ2
Tφ

2
H +

αHW
2

φ2
H(φW − φ̄HW )2 +

αVW
2

φ2
V (φW − φ̄VW )2

+
αV itro

2
φ2
Wφ

2
H +

κ

2
(C0 − 1.0)2φ2

W +
αWDH

2
φ2
Wφ

2
Dφ

2
H

+
αVWDH

2
φ2
V φ

2
Wφ

2
Dφ

2
H +

αV
2
φ2
VH(−φV ) +

αW
2
φ2
WH(−φW )

+
αD
2
φ2
DH(−φD) +

αH
2
φ2
HH(−φH).

(2.25)

To nondimensionalize we set x = Lx′ and t = T t′ where L and T are scaling factors. This

gives the relationship,

∂t =
1

T
∂t′

∇ =
1

L
∇′.

Note that the prime notation will denote a function or operator in the scaled coordinates.
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Plugging the scaled coordinates into the system gives,

∂t′φ
′
V =
T
L2
MV∇′ · (φ′V∇′µ′) + T S ′V −

T
L
∇′ · (φ′V u′s)

∂t′φ
′
W =

T
L2
MW∇′ · (φ′W∇′ν ′) + T S ′W −

T
L
∇′ · (φ′Wu′w)

∂t′φ
′
D =T S ′D

µ′ =
∂f

∂φ′V
(φ′W , φ

′
D, φ

′
V )− 1

L2
2ε2∆′φ′V −

1

L2
ε2∆′φ′W −

1

L2
2ε2∆′φ′D

ν ′ =
∂f

∂φ′W
(φ′W , φ

′
D, φ

′
V )− 1

L2
2ε2∆′φ′W −

1

L2
ε2∆′φ′V −

1

L2
ε2∆′φ′D

u′s =
−ks
L

(φ′s∇′p′ + φ′V∇′µ′ − φ′s∇′ν ′)

u′w =
−kw
L

φ′W∇′p′

0 =
1

L2
∇′ · ((ksφ′s

2
+ kwφ

′
W

2
)∇′p′) +

ks
L2
∇′ · (φ′sφ′V∇′µ′ − φ′s

2∇′ν ′)

S ′V =λMφ
′
V φ
′
WC

′
0 − λnH(C̄ ′0 − C0)φ′V

S ′W =− λMφ′V φ′WC ′0 + λlφ
′
D

S ′D =λnH(C̄ ′0 − C0)φ′V − λlφ′D

0 =
D0

L2
∇′2C ′0 − C ′0νUOTφ′V + νPO(C̄AO − C ′0)Q(φ′T ).

Now we are free to choose T , L, define new parameters, or scale the functions. Let’s rewrite
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the system without the primes.

∂tφV =
T
L2
MV∇ · (φV∇µ) + T SV −

T
L
∇ · (φV us)

∂tφW =
T
L2
MW∇ · (φW∇ν) + T SW −

T
L
∇ · (φWuw)

∂tφD =T SD

µ =
∂f

∂φV
(φW , φD, φV )− 2ε2

L2
∆φV −

ε2

L2
∆φW −

2ε2

L2
∆φD

ν =
∂f

∂φW
(φW , φD, φV )− 2ε2

L2
∆φW −

ε2

L2
∆φV −

ε2

L2
∆φD

us =
−ks
L

(φs∇p+ φV∇µ− φs∇ν)

uw =
−kw
L

φW∇p

0 =
1

L2
∇ · ((ksφs2 + kwφW

2)∇p) +
ks
L2
∇ · (φsφV∇µ− φs2∇ν)

SV =λMφV φWC0 − λnH(C̄0 − C0)φV

SW =− λMφV φWC0 + λlφD

SD =λnH(C̄0 − C0)φV − λlφD

0 =
D0

L2
∇2C0 − C0νUOTφV + νPO(C̄AO − C0)Q(φT ).

Dividing the nutrient equation by C̄AO and νUOT we can define C ′0 = C0/C̄AO to get,

0 =
D0

νUOTL2
∇2C ′0 − C ′0νUOTφV + νPO(1− C ′0)Q(φT ).

From here we can define,

L =
√
D0/νUOT

that is, the length scale is the diffusion scale for the nutrients. Thus, the nutrient equation

becomes,

0 = ∇2C ′0 − C ′0φV + ν ′PO(1− C ′0)Q(φT )
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where and ν ′PO = νPO

νUOT
.

Now let’s look at the source terms,

T SV =T λMφV φWC ′0C̄AO − T λnH(C̄0 − C ′0C̄AO)φV

T SW =− T λMφV φWC ′0C̄AO + T λlφDH(φ̄D − φD)

T SD =T λnH(C̄0 − C ′0C̄AO)φV − T λlφDH(φ̄D − φD).

We can define the time scale as

T =
1

λM C̄AO

that is the time scale is the mitosis rate for the tumor. We can also scale the other rates by

the time factor, λ′n = T λn and λ′l = T λl gives,

T SV =φV φWC
′
0 − λ′nH(C̄0 − C ′0C̄AO)φV

T SW =− φV φWC ′0 + λ′lφDH(φ̄D − φD)

T SD =λ′nH(C̄0 − C ′0C̄AO)φV − λ′lφDH(φ̄D − φD).

Additionally, the coefficients of the diffusion terms in the species equations can be written

as,

M ′
V =

T
L2
MV , M

′
W =

T
L2
MW

and from the µ and ν equations we see

ε′ =
ε

L
.
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Further, we can redefine the velocities as,

u′s =
T
L

us

u′w =
T
L

uw.

Thus, the water velocity equation gives,

L
T

u′w =
−kw
L

φW∇p

u′w =
−kwT
L2

φW∇p.

So we can define p′ = T
L2p. Using this p in the equation for the tumor and host velocity we

get,

u′s = −ks(φs∇p′ +
T
L2
φV∇µ−

T
L2
φl∇ν).

Now we can write T
L2 in terms of ε′ and a new variable γ′ where γ′ = T ε

L3 . Hence,

γ′

ε′
=
T
L2

and

u′s = −ks(φs∇p′ +
γ′

ε′
φV∇µ−

γ′

ε′
φs∇ν).

Finally, using the definition of p′ and γ′

ε′
the pressure equation becomes,

0 = ∇ · ((ksφs2 + kwφW
2)∇p′) + ks

γ′

ε′
∇ · (φsφV∇µ− φs2∇ν).

38



Dropping the primes again the nondimensionalized system is given by,

∂tφV =MV∇ · (φV∇µ) + SV −∇ · (φV us)

∂tφW =MW∇ · (φW∇ν) + SW −∇ · (φWuw)

∂tφD =SD

µ =αVWφV (φW − φ̄VW )2 − αHW (φW − φ̄HW )2φH −
1

2
φ2
TφH +

1

2
φTφ

2
H

− αV itroφ2
WφH − αWDHφ

2
Wφ

2
DφH + αVWDHφV φ

2
Wφ

2
Dφ

2
H

− αVWDHφ
2
V φ

2
Wφ

2
DφH + αV φVH(−φV )− αHφHH(−φH)

− 2ε2∆φV − ε2∆φW − 2ε2∆φD

ν =αVW (φW − φ̄VW )φ2
V + αHW (φW − φ̄HW )φ2

H − αHW (φW − φ̄HW )2φH

+ αV itroφWφ
2
H − αV itroφ2

WφH −
1

2
φ2
TφH − κ(C0 − 1)2φW

+ αWDHφWφ
2
Dφ

2
H − αWDHφ

2
Wφ

2
DφH + αVWDHφ

2
V φWφ

2
Dφ

2
H

− αVWDHφ
2
V φ

2
Wφ

2
DφH + αWφWH(−φW )− αHφHH

− 2ε2∆φD − ε2∆φW − 2ε2∆φV

us =− ks(φs∇p+
γ

ε
φV∇µ−

γ

ε
φs∇ν)

uw =− kwφW∇p

0 =∇ · ((ksφ2
s + kwφ

2
W )∇p) + ks

γ

ε
∇ · (φsφV∇µ− φ2

s∇ν)

SV =φV φWC0 − λNφVH(C̄0 − C0)

SW =− φV φWC0 + λlφDH(φ̄D − φD)

SD =λNφVH(C̄0 − C0)− λlφDH(φ̄D − φD)

0 =∇2C0 − C0φV + νPO(1− C0)Q(φT )

(2.26)

with the following parameters,
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T = 1/(λM C̄AO) Time Scale

L =
√
D0/νUOT Length Scale

M ′
V = MV T /L2 Viable Cell Mobility

M ′
W = MWT /L2 Water Mobility

u′l = ulT /L Living Cell Velocity
u′w = uwT /L Water Velocity
ε′ = ε/L Interface Thickness
λ′n = T λn Necrosis Rate
λ′l = T λl Lysis Rate
D′0 = 1/νUOT Nutrient Diffusion
ν ′PO = νPO/νUOT Nutrient Production
γ′ = T ε/L3 Adhesion Force
p′ = pT /L2 Pressure

Table 2.1: nondimensionalized parameters

2.5 Comparison with Constant Water Fraction Model

We now compare the non-constant water fraction model we derived above with the constant

water fraction model found in [71]. The constant water fraction model is given by,

∂tφV =M∇ · (φV∇µ) + SV −∇ · (φV us)

∂tφD =M∇ · (φD∇µ) + SD −∇ · (φDus)

µ =2φT (2φ2
T − 3φT + 1)− ε2∆φT

SV =λMφVC0 − λNφVH(C̄0 − C0)− λAφV

SD =λAφV + λNφVH(C̄0 − C0)− λlφD

0 =∇2C0 − C0φV + νPO(1− C0)Q(φT )

us =− k(∇p− γ

ε
µ∇φT )

∇ · (k∇p) =
γ

ε
∇ · (kµ∇φT )− ST

uW =− kw∇q

∇ · (kw∇q) =
1

φ̃W
ST
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here φT = φV + φD and ST = SV + SD. Also note the water source term is given by,

SW = −(SV + SD + SH) = −λMφVC0 + λlφD.

The first difference we note is the increase in the number of potentials in the model with

a non-constant water fraction. That is, the non-constant water fraction model has three

potentials (µ, ν, δ) before the simplification and the constant water fraction model has one

(µ). This due to the different model energies. The non-constant water model has the energy

given by (6.1) and the constant water model uses the energy

Ẽ =

∫
Ω

φ2
Tφ

2
H +

ε2

2
|∇φT |2dx.

This energy only enforces the separation between the tumor and the host. Notice that

δẼ
δφV

= δẼ
δφD

and so the dead cell potential is equal to the viable cell potential. For the

non-constant case we see, δE
δφV
6= δE

δφD
6= δE

δφW
necessitating three different potentials.

Another difference is our modeling choice of the dead cells. The constant case assumes

the dead cells have the same mobility coefficient as the viable cells and they both move

with the same velocity. For the non-constant case all the species have independent mobility

rates and we assume the dead cells have zero mobility. This assumes that the dead cells

cannot actively move within the tumor. Indeed, the dead cell movement is dominated by

the necrosis of viable cells and the lysis rate. Without the smoothing effects of the diffusion

terms the dead cell continuity equation becomes unstable with just the velocity and source

terms. To simplify the problem further we assume the dead cells also have no velocity. The

solid velocity is two orders of magnitude smaller than the necrosis and lysis rates so dropping

the dead cell velocity is a suitable approximation. However, we do assume that viable and

host cells move with the same velocity.

Further, the different models also have different velocities and pressures. In the constant
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case the water and solid components have different pressures while in the non-constant case

there is a single bulk pressure for the entire system. This difference is a manifestation of

the water fraction and hence solid fractions being constant in the constant water model. If

we let the source terms be zero (i.e., Si = 0) then water and solid fraction (φ̃s = 1 − φ̃W )

continuity equation read,

0 =
∂φ̃W
∂t

= −∇ · (φ̃WuW )

0 =
∂φ̃s
∂t

= −∇ · (φ̃sus).

Notice that the water fraction and water velocity are independent from the solid fraction

and solid velocity. This gives different Lagrange multipliers for the velocities equations that

result in different pressures for the solid and water velocities similar to equation (2.7). In the

non-constant case, the continuity equations cannot be separated in this fashion. Summing

all volume fractions together we get,

0 =
∂1

∂t
= −∇ · (φWuW + φsus).

Thus, in this case we only introduce one Lagrange multiplier that results in a single bulk

pressure. In the non-constant case we can also see the pressure equation contains the water

potential and the water fraction. In the constant case the water pressure only depends of

the water fraction and the solid pressure depends only on the solid components. This is

consequence of the separability of the solid and water fractions in the constant case.

Another difference between the models is the inclusion of the water fraction in the growth

term and the minimum level of dead cells necessary to initial lysis. The constant model does

not explicitly include the water faction. However, since the water fraction is constant anyway

it can be absorbed into the mitosis rate. The non-constant model includes the water fraction

in the growth term and this assumes that water is up-taken during the mitosis process.
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This also implies that a lower water level would imply slow the growth of the tumor and

without water the tumor would not be able to grow. The non-constant model also included

a assumption on the lysis rate. We assume that there is a minimum fraction of dead cells

necessary to initial lysis. This implies that there is always some concentration of dead cells

in the necrotic core as the tumor evolves. Without this level the entire necrotic core would

convert entirely into water in some cases and this may not be physically realistic. This level

provides a way to model the amount of dead cell that do not entirely degrade in the necrotic

core. In the constant case there can be no buildup of water in the center of the cell as the

water level is constant so this assumption in not needed.

Perhaps the largest difference between the two models in the introduction of the water

diffusion terms in the water potential in the non-constant model. As discussed the section

2.3.4 in order for a symmetric initial tumor seed to grow to a stable tumor spheroid we need

to introduce a way to flux the water out from the center of the tumor. In the constant water

fraction case this was done with the lysis term in the dead cell source term. In section 4.2 we

will see that the lysis rate in the non-constant water fraction model is a sensitive parameter

and increasing lysis rate can affect the level of viable cells in the necrotic core as the viable

cell source term now includes the water fraction. Thus, a new way to flux the water of of the

center of the tumor is necessary and the water diffusion term developed here is an effective

way to achieve the water flux.
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Chapter 3

Numerical Results

3.1 Introduction

In this chapter we consider an avascular in-vivo tumor in two dimensions with symmetric

and non-symmetric initial conditions. We demonstrate the spherical initial condition grows

to stable steady state with a mostly liquid necrotic core. The non-symmetric initial condition

produces an elongated tumor that is typical of behaviors in the preliminary stage of malignant

cancer development. We also show that the development of a non-symmetric tumor is

dependent on the size of the initial non-symmetric tumor seed. As the tumor develops it

smooths out perturbations in the viable cell rim and grows more circular. The closer the

tumor becomes to the stable steady state the less pronounced the inhomogeneity in the

proliferating rim will be and the longer it will take for this instability to elongate the tumor.
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3.2 Spherically Symmetric Initial Condition

In figure 3.1 the evolution of a spherically symmetric initial condition with radius, r =
√

3

to a stable steady state is shown. The simulation is done by solving the system of equations

(2.26) in two dimensions with the parameters given in table 3.1. The problem is solved

on the computational domain [0, 40]× [0, 40] and the one dimensional results are shown by

taking a slice of the two dimensional results in the middle of the grid at y = 20. Further

details on the numerical method are found in section 3.4.

Initially the the tumor is composed only of viable cells (80%) and water (20%) [55]. As

the tumor develops nutrients are uptaken by the viable cells and as the nutrient level drops

below the level needed for viability a necrotic core develops. By time t = 25 (figure 3.1b)

we can see a necrotic core has developed in the center of the tumor and the water in the

core has been exhausted. Additionally, we can see a dip in the water fraction as the tumor

advances and the host is increased. Water peaks appear at the tumor-host interface as the

tumor advances since the tumor cells and the host do not overlap exactly in the interface

and the water fills in this gap.

As the tumor expands, the necrotic core also expands and we can see the dead cell fraction

inside the necrotic core begins to decrease as the dead cells undergo lysis and raise the water

level (figure 3.1c). This increase in the water fraction is then uptaken by the proliferating

cells at the edge of the necrotic core. This behavior coupled with water diffusion creates

a flux of water outward from the center of the tumor. As cellular and water mass is lost

from center of the tumor the viable cells in the proliferating rim are fluxed toward the center

of the tumor. This dynamic eventually leads to a tumor that grows to a stable size when

these two fluxes are in balance. The tumor in this case stabilizes with a radius of r ≈ 4.75

where r is defined by φV (r) = 0.5. This radius is consistent with tumor spheroid observations

[49, 44]. We can also observe that as the tumor approaches the steady state the water fraction
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stabilizes in the host region and the host fraction is no longer raised. After the initial rapid

expansion of the tumor we see a gradual decline in the enlargement rate. This behavior can

be seen in the evolution of radius of the tumor in figure (3.1h).

Another way to see how fast the tumor reaches the steady state is to analyze the volume

plots. In figure (3.2) we can see that for before t = 20 the viable cells rapidly proliferate and

no dead cells are present. We also see a sharp decrease in the water volume as the water

fraction is uptaken by the proliferating cells. After t = 20 the nutrient concentration falls

below the viability level for the viable cells and a necrotic core beings to form. Note that the

water fraction continues to decrease for a short time after the formation of the necrotic core

as the water released by lysis does not overtake the uptake by mitosis until the core is large

enough. The formation of the necrotic core also decreases the volume of the viable cells as

they begin to necrose in the hypoxic region. After time t = 60 the dead cell volume begins

to stabilize as the lysis rate of the dead cells balances the necrosis rate. When the dead cells

begin to accumulate and start to lyse, the water volume increases inside the necrotic core.

The water released by the degraded dead cells begins to accumulate in the necrotic core and

raise the water volume. As the water fraction increases it begins to diffuses out of the core

to the host region. After t = 80 the diffusion rate of the water balances the lysis rate of the

dead cells. The water diffusion from the center of the tumor fluxes the viable cells toward

the center of the tumor and the proliferation rate of the viable cells balances the necrosis

rate and the tumor volume stabilizes.

In the constant water model [71] the tumor stabilizes at t ≈ 10. The non-constant water

model presented here does not approach the steady state radius until t ≈ 50. After t = 50 the

main change in the tumor morphology is the water and dead cell levels reaching equilibrium.

This increase in time is a result of diffusing the water out of the center of the tumor instead

of lysing it out of the system as in the non-constant water model. In the next chapter we

will look at how the different parameters effect the size of the stable tumor and how fast the
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(a) t = 0 (b) t = 25

(c) t = 50 (d) t = 75

(e) t = 100 (f) t = 125

(g) t = 200 (h) radius of the tumor

Figure 3.1: The evolution to a stable tumor spheroid for a spherically symmetric initial
condition with r =

√
3 47



Figure 3.2: Total volume for the different cell species for the symmetric initial condition that
evolves to a stable tumor spheroid

tumor stabilizes.

We observe in figures 3.3a and 3.3b that at the steady state the velocities us, uw and the

fluxes JW , JV are zero at the tumor-host interface. Inside the tumor we see the fluxes of the

viable cells and the water fraction are equal and opposite and thus they are balanced. In the

right half of tumor we see the water fraction fluxing to the right, out of the tumor, and the

viable cells fluxing to the left, into the tumor. In the left half of the tumor we see the flux

has opposite signs implying the opposite direction of the fluxes. Thus, we can see that water

is diffusing out of the tumor and the viable cells are fluxing into the center of the tumor.

Notice the fluxes are greatest for the water fraction and the viable cells at the necrotic core

interface. In figure (3.1g) we see the highest dead cell fraction is at this interface. Therefore,

in this interface more dead cells are lysing and increasing the water fraction which in turn

increases the water flux rate. The water fluxing out of the tumor causes the viable cells to
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flux inwards.

The velocities inside the tumor are opposite signs and are symmetric about the center of the

tumor. In the necrotic core the water has no velocity, it rapidly increases at the necrotic

interface and then linearly decreases to near zero at the tumor-host interface. This shows

that water is flowing against the flux into the viable cells and the rate increases for the water

fraction in the quiescent zone. Inside the necrotic core the water has no velocity and its

movement is influenced entirely by the lysis rate and flux. The solid velocity of the tumor

and host species is nonzero inside the necrotic core (except the very center) since there is

still a small level of viable cells there. The velocity increases until the necrotic interface

when it decreases to a near zero level at the tumor-host interface. This shows the greatest

cell flow occurs at the necrotic interface and the viable cells are flowing against the flux of

the viable cells. Thus, in this case the velocities are acting against the fluxes. In section 4.3

we will see that the direction and magnitude of the velocities is controlled by the parameter

γ and increasing this parameter decreases the radius of the stable tumor. However, the

velocity of the species is two orders of magnitude smaller than the flux so varying γ does not

significantly influence the radius of the stable tumor spheroid.

It is important to note that this steady state is a dynamic one. There is still proliferation

of viable cells near the tumor boundaries, but only enough to balance the loss of cells due

to death and lysis. Lastly, in the steady state the pressure is zero outside the tumor and it

becomes negative inside the proliferating rim and levels out to a constant value inside the

necrotic core. Therefore, the pressure of the system is lowest inside the necrotic core and

highest outside the tumor in the host.

At the steady state, the interface between the necrotic core (φV ≤ 0.03 and φD ≥ 0.25) and

the proliferating rim (φV ≥ 0.6 and φD ≈ 0) is not well delineated for this set of parameters.

The viable cells do not become necrotic instantly, but at the the rate λN . Indeed, there is a

small percentage of viable cells inside the hypoxic region where C0 < C̄0 in the steady state.
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(a) Flux comparison (b) velocity comparison

(c) pressure

Figure 3.3: Flux and velocity comparisons for the stable tumor spheroid at t = 200

MV = 200.0 αVW = 0.5 φ̄HW = 0.2 φ̄D = 0.10 αV = 50.0
MW = 100.0 αWH = 0.5 φ̄VW = 0.2 C̄0 = 0.10 αW = 50.0
γ = −0.1 αWDH = 100.0 kw = 1.0 λl = 0.2 αD = 50.0
ε = 0.05 αVWDH = 50.0 kl = 1.0 λN = 5.0 αH = 50.0

αvitro = 0.0 νPO = 0.5
κ = 0.035

Table 3.1: basecase parameters
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This is consistent with experimental observations. As we will show in section 4.3 increasing

the necrosis rate does decrease the level of viable cells inside the hypoxic region. We can

also observe a quiescent region is seen within the tumor. As the nutrient level get close the

viability level we see a gradual increase in the level of dead cells as the viable cell necrose.

This effect can be better seen in two dimension. In figure (3.4) the dark red edge of the viable

cells is the proliferating rim and the lighter ring inside is the quiescent region. In the dead

cell figure we see the highest dead cell fraction is at the quiescent region and necrotic core

interface. The ring of dead cells outside this interface overlaps with the quiescent region for

the viable cells. The quiescent zone can also be seen in figure (3.4e). The highest growth rate

is seen at the boundary of the proliferating rim and the growth rate decreases further inside

the tumor. These results are consistent with previous models of tumor growth [51, 9, 57].

In figure (3.1g) we can see the tumor density outside the bulk of the tumor is very small

but nonzero. The reflects the fact that the adhesive force is not strong enough to hold all

the proliferating cells together and a very small amount escapes into the host domain. This

behavior is consistent with steady spherical solutions of the Cahn-Hillard equation where

the velocity and source terms are neglected [33]. This behavior is also consistent with the

behavior in the constant water model [71]

3.3 Non-symmetric Initial Condition

We now explore the evolution of a non-symmetric initial tumor. The initial tumor in figure

(A.10a) is a combination of a 2, 3, and 4 mode with a radius of three to create a non-

symmetric initial condition. In particular, the contour of an n-mode of radius 3 is given by

the set {(r, θ)|r = 3+0.5 sin(nθ)} (i.e. the modes are rose curves with the respective number

of petals). Figure (A.10) shows that the initial perturbations on the tumor boundary are

quickly smoothed out as the tumor grows and becomes more circular. The growth sequence
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) tumor cells φT

(e) proliferation rate of the tumor

Figure 3.4: The stable tumor spheroid at t = 200. In figure (a) the quiescent region can be
seen as the lighter ring inside the viable cells and the proliferating rim.
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of the viable cells is seen in figure (A.1) and we can see that once the tumor becomes elliptic

then the growth rate become faster and the tumor elongates by growing at the two end caps

of the ellipse. Interestingly, this is the only place where the tumor is growing (figure (3.5)).

As the tumor develops we see that perpendicular to the growing axis there is a bulb that

stays dormant in the quiescent region. This bulb is the quiescent region that developed in

the initial necrotic core in earlier times, see figure (A.5b).

As the tumor elongates and expands this quiescent region does not grow and is left behind

as the tumor evolves. Further, the growing caps expand and leave a quiescent trail of cells

in their wake (figure (3.7e)). Indeed, the only part of the tumor that is evolving is the end

caps. We can also observe there is a necrotic region behind the advancing tumor end caps.

At approximately t ≈ 280 we see the elongated necrotic core begins to collapse between the

advancing core behind the growing ends and original necrotic core. As the tumor grows,

the elongated the dead cells in the necrotic core are lysed to water and the water is fluxed

out of the system. However, the cells in the quiescent region are not growing fast enough to

balance the inward flux and the core pinches shut. The initial necrotic core does not close as

its more circular shape is more conducive to maintaining a necrotic core since there are more

viable cells in a curved region than a straight section and the proliferation rate is higher

(figure (3.5)). Thus the curved section will produce enough dead cells to maintain the initial

necrotic core. The elongation of the tumor is typical behavior in the preliminary stage of

malignant cancer development. The non-symmetric simulation presented here has a similar

morphology to the two cancer types presented in figure (3.6).

Looking at the water fraction and dead cell fractions in figures (A.2) and (A.3) we see the

initial liquid necrotic core is formed by t = 40. By t = 120 most of the liquid has fluxed out

of the center as the tumor begins to elongate. As the tumor grows we can see the decrease

in the water fraction and an increase dead cells in the wake of the proliferating rim and the

water peaks at the tumor-host interface are also present in this non-symmetric case. In figure
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Figure 3.5: proliferation rate of the tumor

(3.7b) we see the conversion of the viable cells to dead cells to water as the tumor progresses.

In the elongated portion of the tumor we can see the the remnants of the dead cells that

did not undergo lysis and leave a trail behind the progressing tumor. We can also see the

corresponding decrease of the water fraction in the advancing necrotic core as the osmotic

pressure drives the water out of the tumor to create this slight water fraction difference.

We can also observe the different pressure gradients at the different stages of the tumor

progression in figure (A.4). We can see that the pressure is negative where the tumor is

moving inward and positive where the tumor is expanding. Initially, the tumor will shrink

inward as the center has a negative pressure and the proliferating rim will grow outward

where the pressure is positive. From time t = 40 to t = 120 we can observe the positive

pressure where the tumor will expand and a negative pressure in the center indicating the

formation of a necrotic core and the water fluxing out of the system. As the tumor progresses

the positive pressure is greatest where the tumor is advancing and the decrease in the pressure

where the water is fluxed out of the straight section of the tumor and the viable cells pinch
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(a) Histological section showing elongated dark-staining gliomatosis cerebri cells
in a preivascular state [45]

(b) Mammary epithelial tissue structures undergo characteristic changes as tu-
mors progress from benign to invasive. [54]

Figure 3.6: Two in-vivo tumors that have developed morphologies similar to the non-
symmetric simulations.
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) pressure p

(e) proliferation rate of the end cap

Figure 3.7: A closeup of a proliferating end of the non-symmetric tumor at t = 400
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together. Thus, the pressure of the system can gives us an indication of how the tumor will

develop.

We now consider the evolution of the non-symmetric initial tumor with an combination of a

2, 3, and 4 mode with a smaller radius of
√

3 to see how the tumor development is influenced

by the size of the non-symmetric tumor. In figure (A.5) we can see that the tumor appears

to be circular between t = 80 to t = 160 and then the tumor begins to grow like the case

with r = 3. We also saw that the simulation with the larger radius also evolved to a circular

shape before it began to grow in an oblong shape (figure (A.10)). In figure (A.9) we see the

non-symmetric initial conditions with radii r = 3 and r =
√

3 and the overlaid contour of the

circular initial with an equivalent volume. The radii of these corresponding circular initial

conditions are r = 4.0472 and r = 2.3368 for the non-symmetric cases r = 3 and r =
√

3

respectively. The evolutions of the non-symmetric initial conditions are then overlaid with

the contours of the steady state of the circular initial condition. In figure (A.9c) at t = 40

the non-symmetric tumor is close to the circular steady state but it is slightly more oblong.

This difference in the proliferating rim creates the instability that elongates the tumor. In

figure (A.9a) a close up of the equivalent situation is shown at t = 200 with the steady state

of the circular tumor with the smaller initial radius. This tumor is closer to the steady state

than the larger initial condition but, it is slightly oblong along the same axis of growth.

The inhomogeneity in the proliferating rim is much smaller and it takes a longer time for

the instability to develop. Once the tumor begins to elongate the growth rate is the same

as the larger initial condition. This behavior can also be seen in the following figure (3.8).

Note that the circular initial conditions both converge to the same steady state and after the

tumor leaves the steady state regime they develop at same rate, although at different times.

Looking at the graph of the total tumor volume (figure 3.9) we see growth of the tumor

is primarily due to the growth of the viable cells. Between t = 25 and t = 100 the initial

growth rate is slowed when the tumor morphology is similar to the steady state for the
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(a) Total tumor volume (b) Close up of the total tumor volume

Figure 3.8: Total tumor volume for the 234-mode and circular initial conditions with different
radii.

Figure 3.9: Total volume for the different cell species for the non-symmetric initial condition
with r = 3 that develops an invasive morphology
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symmetric tumor. Once the proliferating rim instability is large enough to destabilize the

tumor we see the linear growth rate caused by the steady advancement of the the tumor end

caps beginning at time t = 100. The volume of the dead cells also follow this same behavior.

Once the tumor begins to elongate the dead cells are produced in the wake of the advancing

viable cells. However, the dead cells are slower to accumulate since only ten percent of the

dead cells produced will remain after lysis as opposed to the viable cell levels that remain

at 70% in the quiescent behind the advancing front. The total volume of the water fraction

exhibits the more interesting non-monotonic behavior. Initially the water is uptaken by the

viable cells, but the tumor quickly develops a hypoxic region so the viable cells begin to die

and the lysed cells begin to increase the water volume. As the tumor begins to elongate

at t ≈ 80 the water is fluxed out of the center of the tumor and the water level begins to

fall. The longer the tumor grows the smaller the initial necrotic core becomes and the less

water is present to flux out of the center. This slows the decrease in the water level in the

tumor between t ≈ 120 and t ≈ 240. Beginning at time t ≈ 240 we see the separation

between the initial necrotic core and the core formed behind the advancing end caps (A.1g).

As the tumor continues to grow the dead cells are lysed where the viable cells begin to pinch

together and the overall water level begins to rise.

3.4 Numerical Method

To solve the equations an adaptive finite difference nonlinear multigrid method is used. The

method know as BSAM (Block-Structured Adaptive Multigrid Solver) was developed by

Wise et.al. [69, 70]. This solver, based on the multigrid algorithm the system solves the

system with near optimal complexity. In this approach, this fourth order system is written as

a system of second order equations and an implicit second order Crank-Nicholson algorithm

is used for the time discretization. This allows us to avoid a high order time step constraint
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that would result from an explicit method. This method is known to be stable with ∆t ≈ h.

The spatial derivatives are discretized with a second order central difference scheme. The

nonlinear equations at implicit time levels are solved with a nonlinear multigrid method.

The advection terms are treated with an unwinding WENO scheme developed by Jiang and

Shu in 1996 [36].

Block structured refinement is used to increase local resolution where the gradient of the

volume fractions is large. The volume fraction for the viable cells has a steep gradient at the

tumor-host and the necrotic core interface. Thus, the simulations will have finer resolution

at these critical interfaces. The composite mesh consists of a hierarchy of levels. Each

refinement of the mesh is half the length of the parent mesh and each child mesh sits on top

of the courser parent mesh. The equations are sloved on a computational domain of [0, 40]2

with time step ∆t = .005. The coarsest mesh level uses 64 × 64 grid points and there are

three levels of mesh refinement each doubling the number of grid points. The finest grid has

an effective resolution of 512×512 grid points, see figure (3.10). Due to the mesh adaptivity,

the highest resolution of the image is obtained at a fraction of the cost of using the finest

mesh grid uniformly over the entire domain.
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(a) The three levels of the mesh are presented
here. The coarsest grid is black and the levels are
refined in blue, red, and, green levels respectively
where green is the finest mesh.

(b) The three levels of the mesh refinement are
shown. The first level of the graph is seen away
from the tumor where the grid is sparsest and we
can see that the densest grid overlays the tumor.

Figure 3.10: The three levels of mesh refinement are presented on the viable cells for non-
symmetric case at t = 400
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Chapter 4

Parameter Studies for Spherically

Symmetric Tumors

4.1 Introduction

We now consider how the parameters can affect spherically symmetric in-vivo tumor growth

in two dimensions. It is well known that a compact solid tumor will grow to a diffusion-limited

size that is stable. To produce morphological instabilities, substrate gradients, necrosis, and

inhomogeneous proliferation allow the tumor further growth by exposing more surface area

of the proliferating rim to the nutrients and growth factors [71]. We will examine which

parameters are capable of destabilizing the stable tumor and how sensitive the radius of

the steady state tumor is to a given parameter change. This chapter is divided into three

sections. We consider the cases of parameters that are physical vs model-based and sensitive

vs nonsensitive. Appropriately, there are no model-based parameters that are sensitive.

The first section discusses the parameters that can destabilize the tumor spheroid and have

a significant impact on the radius of the steady state. The seven parameters in this category
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Parameter Meaning Figures

Sensitive λl lysis rate B.1,B.2
Physical κ diffusion rate B.3,B.4

Parameter MV viable cell mobility B.5, B.6, B.8
φ̄HW water level in host B.9,B.10,B.11,B.12
φ̄VW water level in viable cells B.13,B.14, B.15
C̄0 hypoxia level B.18,B.19
νPO nutrient production B.20,B.21

Nonsensitive MW water mobility B.22,B.23
Physical γ adhesion force B.24,B.25, B.26

Parameters λn necrosis rate B.27,B.28

Nonsensitive ε interface thickness B.29,B.30
Model αVW water level in viable cell control B.31,B.32

Parameters αWH water level in host control B.33,B.34
αvitro B.11,B.12
αWDH

αVWDH

αV ,αW ,αD,αH

Table 4.1: Parameters for spherically symmetric tumor growth, definitions and figures

are λl, κ, MV , φ̄HW , φ̄VW , C̄0, and νPO. We will show that the lysis rate λl, the diffusion rate

κ, and the water level in the viable cells φ̄VW have ranges that produce an unstable tumor.

The other parameters, the hypoxia level C̄0, the nutrient production rate νPO, and the water

level in the host φ̄HW can significantly impact the final size of the steady state tumor, but

they produce stable tumors in their parameter regimes. The parameter mobility rate of the

viable cells can produce tumor branching if the value is set too low since small values of this

parameter are capable of producing inhomogeneous thickness in the proliferating rim. It is

important to note that κ, φ̄HW , φ̄VW are new parameters not seen in previous models.

The second section concerns the physical parameters that do not significantly impact the

stable tumor radius and produce stable tumors above a certain threshold. The water mobility

parameter MW can destabilize the tumor if the values are too low, but in higher ranges the

tumor will be stable. The destabilization that occurs if MW is set too low is due to the

decrease in the diffusion parameter in the previous section. The necrosis rate, λn, produces
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stable tumors if it is above a certain threshold and the tumor radius is not significantly

affected. For small values of λn we see that although the tumor radius is affected, the viable

cell fraction becomes too high in the necrotic core. The last parameter γ that measures the

adhesion forces and does not affect the stable tumor radius in the considered range. This is

consistent with previous mixture models.

In the third section the model based parameters that are necessary to tune the behavior of

the system and to provide a computational framework are analyses. These parameters are

given by αVW , αWH , ε, αvitro, αVWDH , αWDH , αV , αW , αD, and αH . The αVW and αWH

parameters are used to enforce the water levels in the respective species. The ε parameter is a

manifestation of the diffuse interface method that we use to numerically solve the system. It

is shown that for a large enough αVW and αWH parameters the stable tumor radius will not

be affected and ε does not significantly affect the tumor radius. The αvitro parameter enforces

a phase separation between the host and water fractions when we are modeling the in-vitro

case (φHW = 1.0). The αWDH parameter prevents unphysical build up of host in the necrotic

core of the tumor and the αVWHD parameter prevents the unphysical generation of a phase

in an interfacial region. The αV , αW , αD, and αH parameters prevent the volume fractions

from becoming negative. Only the first three parameter are studied in this section as the

other parameters are only necessary to prevent unphysical phase generation and varying

them does not influence the development of the tumor.

4.2 Sensitive Physical Parameters

The lysis parameter, λl, controls how fast the dead cells degrade and release their intracellular

fluid. In figure (B.1) we can see that the lower the lysis rate is the larger the radius of the

tumor will be at time 200. We can also observe the lower the lysis rate the higher the

percentage of dead cells at the necrotic core interface as the slower lysis rate allows a greater
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buildup of dead cells before they are converted to water after they necrose. For λl = 0.05 we

see a dip in the water fraction at the necrotic core interface in figure (B.1e). This dip occurs

as the viable cell uptake the water and the dead cells are not dying fast enough to replace

this water. Indeed, this dip in the water fraction is only seen for λl < 0.2. Interestingly, the

larger the lysis rate the smaller the water fraction inside the necrotic core. As we can see in

figure (B.2) for high λl the dead cells are lysed rapidly and the water is fluxed out to balance

the tumor. For smaller lysis rates the dead cells accumulate and the buildup of the water

fraction from the degradation of the dead cells is greater than rate of water diffusion from

the necrotic core. We can see in figure (B.2a) the tumor stabilizes slowly for λl = 0.1 and is

unstable for λ = 0.05. In figure (B.2c) we examine the total tumor volumes for intermediate

lysis rates between 1.0 and 0.05 out to t = 500. We see the rate the tumor stabilizes and

how fast the tumor continues to grows after the formation of the necrotic core will influence

the choice of the lysis parameter. We can see that the different lysis levels form a continuum

of growth rates and it is not always clear how to determine what constitutes a stable tumor.

Additionally, For λl = 1.0 we a smaller steady state tumor that converges to its steady state

by t = 20. This is consistent with the behavior in the constant water model [71]. However,

for larger lysis values the tumor has a higher percentage of viable cells in the necrotic core.

For λl = 1.0 the dead cells are converted to water fast enough to maintain a viable cell

fraction of ≈ 12% within the necrotic core. In the constant water fraction model the water

fraction does not influence the growth rate of the viable cells so the necrotic core contains

no viable cells in that model.

The κ parameter is the rate water diffuses from out of necrotic core. We can see in figure

(B.3) that the larger the parameter the smaller the radius of the tumor. This is due to the

higher the diffusion rate the greater the flux of water out of the center of the tumor and the

more the viable cells flux inwards to stabilizes the tumor. If the diffusion rate is too low then

the water released from the dead cell degradation will accumulate in the necrotic core faster
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than it is fluxed out and the tumor will not stabilize. In figure (B.4a) for κ = 0.005 we see

precisely this behavior for an unstable tumor. We also note that the smaller the parameter

the slower the tumor stabilizes. This behavior is similar to the lysis rate above. How fast the

tumor continues to grows after the formation of the necrotic core will influence the choice

of the diffusion parameter. Further, we can see that the diffusion parameter influences the

amount of liquid and dead cells in the necrotic core. For higher diffusion rates the lower the

water level in the core and the higher the dead cell fraction. For high diffusion levels we can

also see the water fraction in the viable cells dip as it approaches the necrotic core as the

diffusion fluxes the water out.

This diffusion parameter can also be increased to stabilize unstable models. The in vitro

case (φ̄HW = 1.0) is unstable for the base case parameters but we can make the tumor stable

by increasing the parameter κ to 0.10 (see figure (B.12)). This can be interpreted as the

osmotic pressure gradient working against the diffusion gradient. This demonstrates the

principle value of this parameter. The water diffusion term is necessary to produce stable

tumors and as the diffusion rate goes to zero we see the unbounded growth of the tumor.

The viable cell mobility, MV , is a measure of how fast the viable cells can move around the

tumor to minimize the energy. The tumor stabilizes by balancing the flux between water out

of the tumor and the cells in the proliferating rim fluxing back toward the center. In figure

(B.5) we see the greater the cell mobility the smaller the radius of the tumor and the higher

the dead cell fraction in the necrotic core. As the dead cells lyse and the water is fluxed out

of the core the higher viable cell mobility fluxes the cells towards the center of the tumor

faster which increases the fraction of viable cells in the hypoxic region. For small MV the

viable cells do not replace the dead cells fast enough and all the dead cells are converted to

water which raises the water level in the center of the tumor. In effect, the higher the viable

cell mobility the more the water is forced out of the center of the tumor. In figure (B.8b)

we see the increase in water is from the lysis of the dead cells after time t ≈ 20.
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In figure (B.5d) we see that for a high enough viable cell mobility the radius of the steady

state does not decrease by a significant amount. Doubling the viable cell mobility rate

from the base case results in a radius decrease of ≈ 4%. Thus, for a high enough viable

cell mobility this parameter does not significantly impact the steady state tumor radius.

However, we do see a new morphology for small viable cell mobilities. For MV = 25 the

tumor becomes unstable and we see the tumor is no longer circular. The tumor evolution to

a square shape is shown in more detail in figure (B.6). The tumor is circular at time t = 150

and there is a gradual progression to a square shape as the viable cells begin to accumulate

at the corners. We interpret this as the viable cells do not have the mobility to move around

the tumor fast enough to maintain the circular shape. Figure (B.7) show the morphology

for the MV = 25 case carried out to time t = 500. After time 200 we see that the tumor

continues to grow where the viable cells are the thickest and by time t = 300 we see the

viable cells have coalesced at the corners of the square. These buds continue to grow until

they also develop necrotic cores. As the buds continue to grow they begin to thin at head

of the cap as the viable cells are not moving fast enough to maintain a viable cell rim of

uniform thickness. This thinning at the head of the tumor eventually splits the bud into two

new buds at time t = 500. Here we can see that the new buds have already grown enough

to develop additional necrotic cores and this process will repeat itself. Thus, if the viable

cell mobility parameter is set too low then the tumor will be unstable and will develop an

irregular morphology due to an inhomogeneous proliferating rim. These different parameter

regimes will have profound effects on the tumor growth in the non-symmetric case.

The parameter φ̄HW is the fraction of water present with the host fraction. Differing tissues

have different densities and different water levels so this parameter is necessary to model these

different tissue types. Further, the in-vitro case can be considered by setting φ̄HW = 1.0. We

consider the in-vivo cases first. In figure (B.9) we notice that the larger the outside water

fraction the larger the tumor radius and the higher the water level in the necrotic core. This

is due to the water flux depending on the amount of water present. For a higher water level
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Figure 4.1: Structural relations among epithelium (EP), myoepithelium (ME), basement
membrane (BM) and stroma (ST). Human breast sections were double immunostained for
smooth muscle actin (red) and collagen IV (brown). 500X [20]

outside the tumor the greater the water flux into the proliferating viable cells and hence

a higher water level in the necrotic core. Also note that as the water level increases and

the host fraction decreases, the greater the host buildup at the tumor-host interface (figure

(B.9e)). This buildup of host around the expanding tumor is seen in certain experimental

cases. For example, in figure (4.1) we the buildup of breast tissue at the tumor-host interface.

However, this buildup of host may not be realistic for all cell types being studied. It is

possible to adjust the αWH parameter to lessen the buildup of the host at the tumor-host

interface. In figure (B.9f) we see that increasing the parameter from 0.25 to 2.5 results in a

60% decrease in the peak height. However, increasing this parameter produces a 16% increase

in the tumor radius. In figure (B.10) we can see that the lower water fraction produce a

lower tumor growth rate and consequently the necrotic core is developed at a later time.

The figure also shows that the higher the water fraction outside the tumor the larger the

stabilized tumor. However, we can note that varying φ̄HW does not change the stability of
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the tumor.

In the in vitro case we still see the buildup of host tissue at the tumor-host interface. However,

in this instance there should be no host present. To remedy this situation we include the

energy term,

αvitro
2

φ2
Wφ

2
H

with αvitro = 100. This term has the effect of separating the host and water species, but the

water is present in the entire domain so this has the effect of eliminating the buildup of the

host species. In figure (B.11d) we see the difference with and without the extra term in the

energy. It is important to note that the host fraction is not entirely gone with the extra

energy term. The maximum value of the host fraction with the extra energy term is ≈ 10−3.

It is not possible to simply increase the αWH parameter to eliminate the host buildup as

in the in-vivo case. For in-vivo case (φ̄HW < 1.0) the energy term αWH φ̄
2
H(φW − φ̄HW )2 is

a double well potential but, in the in vitro case this term becomes a single well potential

αWH φ̄
2
H(φW − φ̄HW )2 = αWH φ̄

4
H since outside the tumor we have φH +φW = 1. Therefore, any

deviation of the host from 0.0 does not induce the same energy penalty as a deviation in the

in-vivo case. However, in figure (B.12) we can see that for the base case diffusion parameter

the tumor is unstable with the new energy term. This in vitro case can be made to be stable

by increasing the diffusion parameter κ from 0.035 to 0.10. The increase produces a stable

tumor with a similar volume, initial growth rate, and morphology as the simulation without

the in-vitro energy term. Thus, with this energy modification we are able to produce stable

tumor spheroids in the in vitro case.

The parameter φ̄VW is the water fraction level in viable cells. In figure (B.13a) we see that

φ̄VW = 0.5 has distinctly different behavior than the lower water levels. As φ̄VW increases

the viable cells levels decrease, but for smaller viable cell levels the tumor grows to a larger
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radius since the source term for the viable cells is maximized for φV = φW = 0.5 and lower

levels of viable cells uptake less nutrients. We can see the differences in the viable cell water

concentration in figure (B.13b). We can note that the water concentration is less what is

prescribed by the φ̄VW parameter. As the parameter increases the percent difference can be

see in figure (B.13e). The higher the prescribed water level in the viable cells is above the

water level in the host the less that state is preferred by the energy for the system. We can

also see in figure (B.15) the higher the φ̄VW parameter the faster the initial growth rate and

the larger the final tumor volume. The trend holds except for in the φ̄VW = 0.4 and φVW = 0.5

cases. For φ̄VW = 0.4 the growth rate in the same as the φ̄VW = 0.3 case but it is not sustained

as long as there are fewer viable cells after the necrotic core is formed. However, the larger

source term for the viable cells allows the 0.4 case to eventually surpass the volume of the

0.3 case.

In the φ̄VW = 0.5 case we see the volume grows initially at the same rate as φ̄VW = 0.4, but

once the tumor reaches its peak volume at ≈ 45 the tumor begins to shrink. As the tumor

develops we see the tail of viable cell fraction begins to grow further out into the host as

seen in figure (B.14b). The higher the viable cell water parameter is set the longer the viable

cell tail becomes (figure (B.14a)). We note that the nutrient production in the system is

only active when φT < 0.01. and for the φ̄VW = 0.5 case the tails begin to branch from the

bulk of the viable cells for φT > 0.02 due to the higher water level. This higher branching

site inhibits the nutrient production and greatly reduces the nutrient concentration at the

proliferating rim (see figure (B.14c)). As the nutrient level decreases and the tumor mitosis

rate slows. The viable cells necrose and are cleared out of the necrotic core faster than viable

cells can proliferation. Thus, the tumor collapses back to a steady state. This regression

of the tumor is unphysical and an adjustment to the model can be made to produce more

physically realistic results.

All of the parameters here produce stable tumors. The main reason for the aberrant behavior
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in the φ̄VW = 5.0 case is the level of shedded cells inhibit the nutrient production. To prevent

this steady state collapse in this case we change the tumor fraction necessary to cease nutrient

production from 0.01 to 0.03. Thus, we take the production function to be,

Q̃(φT ) =


1.0 if φT < 0.03

0 if φT ≥ 0.03.

Figure (B.16) shows how this new nutrient production term impacts the tumor. We see

similar behavior to MV = 25 case as the proliferation rate is now greater than the viable cell

mobility. For the base case parameter MV = 100 we see buds forming on the corners of the

square as in the MV = 25 case. Increasing the viable cell mobility rate to 200 we no longer

see a square but we can see an elongation process forming as the viable cell rim becomes

thinner on the left side of the tumor. Increasing MV again to 300 produces a spherical

tumor as the viable cells can move fast enough to form a homogeneous rim and stabilize the

tumor. Increasing MV to 400 also shows a stable spherical tumor with a slight decrease in

the radius that is consistent with higher levels of the viable cell mobility parameter. In figure

(B.17) we see that the initial growth rate for φ̄VW = 0.5 case is greater that the φ̄VW = 0.4

case regardless of the change in viable cell mobility rates. Note the tumor stabilizes for the

MV = 300 mobility and for the MV = 100 case we see a sharp increase in the growth rate

of the tumor as the corners of the tumor begin to bud. We also note that for MV = 300 the

tails of the viable cells are still present and the water level inside the viable cells has not

increased. Indeed, increasing the lower bound of the nutrient production term produces a

more reasonable morphology that is consistent with the other viable cell water levels once

the mobility of the viable cell is increased to balance the increased proliferation rate.

The parameter C̄0 sets the hypoxia level, below which, the cells begin to necrose. In figures

(B.18) we can see that a decrease in C̄0 creates a tumor with a larger radius and a thicker

proliferating rim. We can also see the the increase in the tumor radius is mainly due to the
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increase thickness in the viable cells. Indeed, this is the only parameter that does influence

the width of the proliferating rim. Figure (B.19) shows the lower the C̄0 value the longer the

tumor is in its growth state and the later the formation of the necrotic core. This is because

it takes a longer time to uptake the nutrients to the viable level and a lower level of nutrient

can support more viable cells. Further, the lower the viability level the more cells are dying

in the necrotic core which will raise the water level in the core. We can also see that the

higher the viability level the faster the tumor stabilizes. Doubling the necrosis level of the

base case value of C̄0 = 0.10 results in a ≈ 38% increase in the stable tumor radius and

halving the base case value results in a ≈ 25% decrease in the tumor radius (figure (B.18e)).

However, all of these cases result in a stable tumor. As long as the necrosis level is nonzero

the resulting tumor will be stable.

The parameter νPO controls the rate that the surrounding vasculature replaces the nutri-

ents that are uptaken by the tumor. In figure (B.20) we see that the smaller the nutrient

production rate and the smaller the stable tumor radius. For slower nutrient production

rates the slower growth rate. This results in more dead cells in the center of the tumor and

a lower water level in necrotic core. Alternatively, the higher the nutrient production rate

the faster the tumor grows and we see a correspondingly higher water level in the necrotic

core. However, the radius graph in figure (B.20d) shows the radius of the steady state tumor

increases at a slower rate as the production rate increases. Thus, greater the production

rates will not lead to a stable tumor of an arbitrary radius.

This behavior can be seen in the average nutrient concentration in the host (see figure

(B.20e)). Initially there is a drop in the level of nutrients in the host as the tumor ex-

pands and the nutrient concentration levels out once the tumor begins to stabilize. Note

that the nutrient concentration does not return to the initial concentration as the steady

state is dynamic and the viable cells are continually uptaking nutrients. Also observe that

the higher the production rate the higher the average nutrient concentration in the host
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tissue. For νPO = 2.0 the average nutrient concentration is already ≈ 99% and higher val-

ues will asymptotically approach 1.0. Hence increasing the production rate past 2.0 will not

substantially change the nutrient concentration near the host.

We can see in figure (B.21) that the smaller the nutrient production rate the slower the initial

tumor growth since the effective nutrient levels will be lower near the tumor as the uptaken

nutrients are replaced at a slower rate. The slower growth rate produces less dead cells and

uptakes less water. We can also see that all of these nutrient production rates produce a

stable steady state. This parameter is measurable and one which can be easily controlled in

the in-vivo and in-vitro environments to control the steady state tumor radius.

4.3 Nonsensitive Physical Parameters

The first parameter we look at in this section is MW , the mobility of the water fraction.

This variable measures how fast the water fraction can move within the system to minimize

the energy. In figure (B.22) we can see that a larger water mobility results in a lower water

fraction in the necrotic core because the higher the water mobility is the faster the water can

flux out of the necrotic core of the tumor. In figure (B.22b) it is observed that the smaller

the water flux the greater the buildup of water in the necrotic core and larger the core is

(figure B.22c). Although the dead cell volumes don’t vary significantly while varying MW

the buildup of water does change the morphology of the dead cells. This change in the radius

of the core is what causes the decrease of the tumor radius as the water mobility increases.

If the water mobility is low enough then the water will not be able to flux out of the necrotic

core fast enough to prevent the buildup of water in the core and the tumor will not stabilize.

Indeed, for MW = 50 the tumor is no longer stable. In figure (B.22d) we can observe that

for a high enough water mobility the radius does not change significantly which is why we

term this parameter nonsensitive. Doubling the initial water mobility to 400 the radius is
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only decreased by 2%.

In figure (B.23b) we can observe how the different water mobilities impact the tumor de-

velopment. The initial dip in the water volumes is due to the water being uptaken by the

proliferating cells and to balance this decrease, the water fluxes into the tumor. As the water

mobility decreases the initial growth rate of tumor decreases and the more water is uptaken

by the proliferating rim. Once the cells begin die in the hypoxic region and begin to undergo

lysis the water level increases in the necrotic core. The higher mobility the faster this water

in the center can flux out of the tumor. For MW = 50.0 the flux is too slow to prevent

the buildup of water in the core as the intracellular fluid is released by lysing. If this water

mobility rate is set too low then the tumor will be unstable as this rate lowers the water

diffusion parameter into the unstable regime. Thus, the volume fractions are insensitive to

changes in MW once the parameter is set high enough.

The γ parameter measures the adhesion force between the cells and controls the stiffness of

the tumor boundary. The larger values represent a stiffer boundary interface and the stiffer

the interface the less susceptible the morphology is to morphological instability. Thus, for

the symmetric case presented here there should be no significant distinction between the

different adhesion parameters [71]. This is exactly what we see in the figures (B.24) and

(B.25). This behavior is consistent with the constant water model. However, the effect of

the γ parameter is evident in the pressure and velocity terms (figure (B.26)). This adhesion

parameter scales the pressure and velocities inside the tumor. In figure (B.24d) we see

increasing this parameter produce a more slightly more compact tumor. For positive γ the

velocities now move with the fluxes and make the tumor more compact. For negative γ,

the adhesion force is negative and this was chosen in the base case model to counteract

the adhesion introduced by the Cahn-Hillard equation. At any rate changing the gamma

parameter will have less than 1% difference in the stable tumor radius.

The parameter λn controls the rate that the viable cells necrose when they are in the hypoxic

74



region (where the nutrients are below the level needed for viability). The main effect of the

necrosis rate is on the cell distribution in the necrotic core. We divide the analysis into

two cases, λn > 1.0 and λn < 1.0, as this value is the nondimensionalized mitosis rate. For

λn > 1.0 the higher the rate the higher the water level in the core as a greater number of

dead cells are lysed to water before it is fluxed out of the center. The higher necrosis rate

also decreases the number of viable cells in the necrotic core. In the base case with λn = 5.0

the core is approximately 1% viable cells. At five times this rate there are no viable cells in

the core and at 1/5 the rate the viable cells in the core is approximately 10%.

For λn < 1.0 the steady state tumor will stabilize at larger radii as the necrosis rate decreases

but, the level of viable cells will rise in the core of the tumor as well. In figure (B.27e) the

viable cell fraction increases to over half the total species in the core. Note these small

necrosis rates do produce stable tumors (see figure (B.28c)). However, the viable cell level

in the necrotic core is not characteristic of typical tumor spheroid cell distributions that we

model here. It is also interesting to note the behavior of the radius size. In figure (B.27d)

we can see that the necrosis rate λn = 10.0 gives the largest radius size in the regime that

produces viable cell fractions in the necrotic core. For larger necrosis rates the viable cells

die and are lysed out of core at a faster rate and this produces the slight decrease in the

stable radius size. For smaller necrosis rates the viable cells die at a slower rate and the

viable cells flux into the center to raise the viable cell fraction. The viable cell inward flux

produces the decrease in the stable tumor radius. However, if the necrosis rate is too low

then the viable cells will grow in the center of the tumor and expand the radius of the tumor.

In any case, for λn large enough there is no significant impact on the radius of the steady

state radius. Increasing the base value of λn = 5.0 to λn = 25.0 decreases the radius by

≈ 1%. Thus, λn > 1.0 is considered an insensitive parameter.
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4.4 Nonsensitive Model Parameters

The model parameters are ε, αVW , αWH , αvitro, αVWDH , and αWDH . The ε parameter is

a consequence of the diffuse interface model. In classical models the interface between two

species is treated as an infinitely thin dividing surface. The equations are then solved in the

separate domains and the boundary conditions are applied to the interface that is tracked

explicitly. In diffuse-interface models the interface is represented by continuous variations

of the volume fraction. The variations give rise to an interface region of nonzero thickness

that smoothly connect the bulk volumes on either side of the interface. The equations are

solved over the entire domain and no interface tracking is required. The parameters αVW

and αWH are necessary to maintain reasonable water levels in the host and water fractions as

well will see below. The αvitro parameter enforces a phase separation between the host and

water fractions when we are modeling the in-vitro case (φHW = 1.0). The αWDH parameter

prevents unphysical build up of host in the necrotic core of the tumor and the αVWHD

parameter prevents the unphysical generation of a phase in an interfacial region. These

last three parameter are not studied in this section as they are only necessary to prevent

unphysical phase generation and varying them does not influence the development of the

tumor.

The ε parameter controls the interface thickness. The smaller the ε value the thinner the

interface thickness. In figure (B.29a) the viable cell fraction is steeper for the smaller ε. This

increase in steepness corresponds to a decrease in the tumor-host interface (figure B.29e).

Notice that the viable-dead interface thickness does not change for different ε as the gradient

terms in the energy only include the host, viable cell, and water (B.29d). Additionally,

the larger the ε the more shedding can be seen from the tumor (B.29b). This behavior is

consistent with the constant water model in [71]. We can also see that the water peaks at

the tumor-host interface are thinner for smaller epsilons. This is a direct consequence of the

different interface thicknesses.

76



In figures (B.30a) and (B.29f) we see that ε does alter the volume and the radius of the stable

tumor. As noted above the smaller the ε the thinner the interface tumor-host thickness, and

in particular, the steeper the proliferating rim of the tumor. The more viable cells there

are at the boundary of the proliferating rim the faster the tumor growth. For ε = 0.1 the

growth is slower than the ε = 0.05 case and so the accumulation of dead cells will be slower.

In figure (B.29c) we can see that the system can flux out this slower accumulation of water

and remains with a lower water level inside the necrotic core. If figure (B.29a) we can see

that the radial differences between the different epsilons is mainly due to the steepness of

the tumor boundary. In each of these cases the tumor remains stable at the steady state.

Thus, the interface thickness and the shedding of the cells can be controlled with the epsilon

parameter in the range [0.025, 0.1] without affecting the stability of the tumor or a significant

difference in tumor volume or spheroid radius.

The αVW parameter controls the level of the water fraction in the viable cells. Increasing the

parameter holds the water level at the prescribed level of φ̄VW , and consequently, the viable

cells are held at 1.0− φ̄VW . In this case we use the base case value of φVW = 0.2. Decreasing

the parameter allows the water fraction to decrease as it is uptaken by the viable cells (figure

(B.31b)) and increasing the parameter we can see that the water fraction is held closer to

the φ̄VW value. Thus, the radius of the tumor increases as the parameter increases since the

increase in the water fraction allows the tumor to grow faster. Also, decreasing the parameter

decreases the radius since the decrease in of the water fraction in viable region slows the

growth of the tumor as water is needed to proliferate. This parameter also affects the level

of the water peaks at the tumor-host interface. For higher values of αVW the shallower the

depression in the tumor-host interface and the less water is necessary to fill the void.

We can also see that the larger the water fraction in the viable cells the more dead cells are

produced which increases the water fraction in the necrotic core as the cells are lysed. In

figure (B.32) we can see the smaller parameter grows the slowest and the later the necrotic
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core forms. However, this parameter does not significantly impact the radius of the stead

state tumor if the value is set high enough. Increasing αVW by a factor of ten increases

the radius by approximately 4%. The purpose of this model parameter is to maintain a

reasonable water fraction inside the viable cells. As we can see in figure (B.31b) if the value

is too low then all the water will be uptaken by the viable cells and the tumor will not evolve

once the proliferating rim contains no water. The parameter range presented here produces

a stable steady state that does not create a significant difference in the tumor volume. For

non-symmetric tumors parameter values in the low range will have a meaningful impact on

the morphology.

The αWH parameter controls the level of the water fraction in the host. As with the αVW

parameter the higher the parameter the more the water level is held at the prescribed level

(figure (B.33b)). We can see for αWH = 0.025 the water fraction decreases as we move

from the boundary to the tumor interface. For larger values we do not see this dip in the

water level at the tumor boundary. There is also a change in the water peak heights as

the parameter is changes. The higher the αWH parameter the smaller the water peak at

the tumor-host interface. In figure (B.33d) we see the change in the parameter produces a

greater tumor-host overlap which lessens the depression at the interface and less water is

needed to fill this gap. As the water level decreases at the tumor interface this in turn raises

the host fraction at the tumor interface (figure (B.33f)). For αWH = 0.025 we can see a

pronounced increase in the host fraction at the tumor-host interface. On the other hand,

increasing this parameter will prevent the buildup of the host fraction at the interface. This

was demonstrated in the in-vivo case for φ̄HW = 0.9 (figure (B.9f)). The buildup of the host

decreased by 60% using αWH = 2.5. In figure (B.34) we can see that this dip in the water

level outside the tumor is greatest as the tumor is expanding and the water level takes much

longer to recover. We can also see that the αWH parameter does not have a significant effect

on the tumor radius. Increasing the parameter by a factor of ten decreases the radius by

≈ 1.7%. This model parameter maintains a reasonable water level outside of the tumor and
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Parameter Initial Value Variations

Sensitive λl 0.2 0.05, 0.1, 0.5, 1.0
Physical κ 0.035 0.005, 0.015, 0.025, 0.045

Parameters MV 100 25, 50, 200
φ̄HW 0.2 0.4, 0.6, 0.8, 1.0
φ̄VW 0.20 0.1, 0.3, 0.4, 0.5
C̄0 0.10 0.05, 0.20
νPO 0.5 0.1, 0.25, 1.0, 2.0

Nonsensitive MW 200 50, 100, 400
Physical γ −0.1 −0.5, 0.0, 0.1, 0.5

Parameters λn 5.0 0.1, 0.5, 1.0, 25.0

Nonsensitive ε 0.05 0.025, 0.1
Model αVW 0.25 0.025, 2.5

Parameters αWH 0.25 0.025, 2.5
αvitro 0.0 100.0
αWDH 100.0
αVWDH 50.0

αV ,αW ,αD,αH 50.0

Table 4.2: Parameters for spherically symmetric tumor growth, base case values and variation
ranges

the parameter range presented here produce a stable steady state that do not produce a

significant change in the tumor volume.

4.5 Conclusion

In this chapter we performed a one-at-a-time parameter study on the non-constant water

fraction model with a symmetric initial condition. This model is capable of producing a wide

range of different stable tumor variations. All seven of the sensitive physical parameters are

capable of changing the radius of the stable tumor and adjusting the water level and dead

cell ratio in the necrotic core. The width of the proliferation rim can be controlled with the

C̄0 parameter. We also saw parameter regimes that destabilize the tumor for λl, κ, and MV .

The κ parameter provides the mechanism necessary to stabilized the tumor. As this param-
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eter decreases the tumor becomes larger and larger until it is unstable as the water cannot

flux out of the necrotic core faster than the water is released by the dead cell degradation.

For the unstable λl and κ cases the necrotic core becomes mostly liquid and the accumulation

of the water fraction expands the proliferating rim. The κ parameter can be adjusted to flux

the water out of the core to create a stable tumor.

We also see affirmation that the additional terms we added to the system energy are indeed

necessary to the model. Setting the parameters αVW and αWH at reasonable levels holds the

water fractions at the prescribed levels in their respective species. If the αVW parameter is

set too low then the water fraction is uptaken by the viable cells and the development of the

tumor is inhibited. Further the water fraction is not maintain in the viable cells. If αWH

is set too low then the prescribed water level is not maintained in the host region while the

host fraction builds up at the tumor-host interface.

Further, the φ̄HW , φ̄
V
W parameters demonstrate the motivation for developing this model. In

different components of the tumor there should be different concentrations of water. For

instance, as have seen, the water fraction should be larger in the necrotic core than in the

viable cells. In addition, different tumor and host species may maintain different water

levels. This is especially important for considering secondary tumors that have metastasized

from different tissues as indicated earlier [54]. The simulations above demonstrate that all of

these different cases can now be explored. In particular, the in-vitro case can be simulated

in conjunction with the in-vivo case.

It is also worth noting that seven of the parameters (αVW , αWH , λn, MW , MV , κ, and γ) are

nonsensitive as long as they are set large enough. Therefore, the model can tolerate a higher

degree of uncertainty in the measurements of these parameters, if they are measurable at

all. The five parameters (φ̄HW , φ̄VW , C̄0, νPO, λl) are measurable and νPO is a controllable

the parameter. This model also gives a way to measure low viable cell mobility rates by

comparing the degree of tumor branching between the in-vivo and in-silico morphologies.

80



We can adjust the φ̄HW , φ̄VW parameters in the in-vivo case by suspending the initial tumor

seed in gels of various densities including the in-vitro case (φ̄HW = 1.0) where the initial

tumor is placed in a nutrient rich bath. This gives us a clear path to model calibration and

validation which will help further refine the model for practical applications.
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Chapter 5

Parameter Studies for

Non-Symmetric Tumors

5.1 Introduction

In this chapter we consider how the parameters can affect the development of a tumor

with a non-symmetric initial shape in two dimensions. The initial non-symmetric initial

condition viable cell distribution provides the instabilities necessary to destabilize the tumor

and produce the elongation seen in the base case in section 3.3. We will examine which

parameter choices influence the development and growth rate of the tumor. In particular,

which parameter regimes produce stable tumor spheroids and which parameters can influence

the morphology of the unstable tumor will be studied. The parameters are divided into four

categories, physical vs model parameters and sensitive vs nonsensitive parameters. The four

sections in this chapters discuss the parameters in each of these categories.

The first section considers the parameters that measure the physical properties of the system

and can significantly impact the growth and morphology of the tumor. The seven parameters
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in this category are λl, κ, MV , φ̄HW , φ̄VW , C̄0, and νPO. Note that these are also the parameters

physical and sensitive parameters for symmetric case. The lysis and diffusion rates are

capable of influencing the growth rates of the tumor and the parameter regimes that produce

unstable tumors in the symmetric case produce large tumors with liquid necrotic cores. The

νPO parameter can increase the growth rate of the tumor for large values and if the value

is too low the tumor will converge to a stable spheroid. Similarly, for low values of C0 the

tumor will grow larger and for high values the tumor will be collapse to a steady state.

The φVW parameter can also influence the tumor growth rate and, as in the symmetric case,

increasing the water fraction level in the viable cells increases the growth of the tumor until

φVW = 0.5 when the shedding of the viable cells inhibits the nutrient production. Adjusting

C̄0 we see a new morphology emerge. The φHW parameter also influences the growth rate

of the tumor for the in-vivo cases. In the in-vitro case we see it is possible to produce

stable tumor spheroids by increasing the diffusion rate and for smaller diffusion rates it

is possible to produce tumor fragmentation. The parameter that has the greatest effect

on the morphology on the tumor is the mobility of the viable cells, MV . Lower values of

this parameter encourages more branching of the tumor. The low viable cell mobility rate

exaggerates the initial inhomogeneity of the proliferating rim while higher levels of this

parameter produce stable tumor spheroids.

The second section discusses the physical parameters that do not significantly affect the

growth or morphology of the tumor. These parameters are MW , λn, and γ. The water

mobility given by MW can increase the size of the central necrotic core of the tumor if the

value is too low since this would also decrease the diffusion parameter. The necrosis rate

does not influence the growth of the tumor if the rate is set high enough. For lower rates, the

development of the tumor is slowed but the viable cells begin to make up a larger fraction

of the necrotic core. The last parameter γ measures the adhesion forces between the cells

and does not have a noticeable effect on tumor volume or development. Note that these are

also the physical and nonsensitive parameters for symmetric case.
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The third section considers the model parameters that significantly impact the tumor de-

velopment. For the symmetric case, there are no parameters that fall into this category.

However, we will see that the model parameter ε can influence the growth of the tumor with

a non-symmetric initial condition. This parameter measures the thickness of the tumor-

host interface and is a consequence of the diffuse interface method that is used to solve the

system. A thinner tumor-host interface implies that the tumor interface is steeper and the

steeper the interface the more viable cells are at the boundary of the proliferating rim. This

increases the growth rate at the tumor boundary and amplifies the initial non-symmetry of

the viable rim. Setting ε = 0.025 produces a morphology similar to the MV = 50 case and

for ε = 0.1 the growth rate is low enough that the tumor stabilizes. Thus, this parameter is

capable of altering the morphology and growth rate of the tumor.

The fourth section considers the model based parameters that do not have a significant

influence on the tumor progression. The parameters in this category are αVW αWH , αvitro,

αVWDH , αWDH , αV , αW , αD, and αH . These parameters are necessary to tune the behavior

of the system and enforce the water levels in the respective species. The αWH parameter

controls the water level in the host and does not affect the growth or morphology of the

tumor in the range presented here. Further, this parameter can be used to control the

amount of buildup in host fraction at the tumor-host interface. The αVW controls the water

level in the viable cells and this parameter does not affect the tumor if the level is set high

enough. For low values, the the water fraction is decreased and the growth of the tumor

is impeded. These parameters are also nonsensitive in the symmetric case although one

has to be more vigilant of the αVW value to ensure biophysical tumor development. As in

the symmetric case, the αvitro parameter enforces a phase separation between the host and

water fractions when we are modeling the in-vitro case (φHW = 1.0). The αWDH parameter

prevents unphysical build up of host in the necrotic core of the tumor and the αVWHD

parameter prevents the unphysical generation of a phase in an interfacial region. The αV ,

αW , αD, and αH parameters prevent the volume fractions from becoming negative. Only the
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first two parameter are studied in this section as the other parameters are only necessary to

prevent unphysical phase generation and varying them does not influence the development

of the tumor.

5.2 Sensitive Physical Parameters

The first parameter we consider is λl, the lysis parameter. This parameter controls the

rate the dead cells degrade and their water content is released back into the system. In

figure (C.1) we can see that the higher the lysis rate the smaller and more compact the

elongated tumor. For lower lysis rates the tumor is larger with wider necrotic cores and for

λl = 0.05 the tumor no longer has the characteristic shape of the elongated tumor in the base

case. Instead the tumor is near circular and contains one large necrotic core as the water

accumulates. In the λl = 1.0 case, the central necrotic core is barely discernible, the viable

cell end caps are narrowed, and the necrotic cores behind the advancing end caps contain

approximately 10% viable cells. Similar to the symmetric case, the higher lysis rate increases

the water level in the necrotic core faster and creates a larger flux of water from the center.

This allows more viable cells to flux into the center of the tumor. Decreasing the lysis rate

increases the width of the end caps and increases the diameter of the central necrotic core as

more dead cells can buildup before being lysed. The increasing end cap widths and central

necrotic core size can be see in figure (C.3). For λl = 0.1 we can see the raised water level

in the central necrotic core compared to the λl = 0.2 case and for λl = 0.05 we see the same

behavior in the water fraction as in the symmetric case (figure B.1). We also observe the

lower the lysis rate the higher the percentage of dead cells at the necrotic core interface as

a slower lysis rate results in less dead cells being converted to water after they initially die.

Further, there is an associated dip in the water fraction at the necrotic core interface for

λl = 0.05 (figure (C.1j)). This dip occurs as the viable cell uptake the water fraction and the
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Parameter Meaning Figures

Sensitive λl lysis rate C.1,C.2,C.3,
C.4, C.5

Physical κ diffusion rate C.6,C.7,C.8,
C.9,C.10

Parameters MV viable cell mobility C.11,C.12,C.13,
C.14,C.15,C.16

φ̄HW water level in host C.17,C.18,C.19,
C.20,C.21,C.22,
C.23,C.24,C.25,
C.26,C.27,C.28,
C.29

φ̄VW water level in viable cells C.30,C.31,C.32,
C.33,C.34,C.35,
C.36,C.37,C.38

C̄0 hypoxia level C.39,C.40,C.41
νPO nutrient production C.42,C.43,C.44,

C.45

Nonsensitive MW water mobility C.46,C.47,C.48,
C.49

Physical γ adhesion force C.50,C.51,C.52,
C.53

Parameters λn necrosis rate C.54,C.55,C.56,
C.57

Sensitive ε interface thickness C.58,C.59,C.60,
C.61,C.62

Model
Parameters

Nonsensitive αVW water level in viable cell control C.63,C.64,C.65
Model αWH water level in host control C.66,C.67,C.68
Parameters αvitro C.24,C.25,C.26,

C.27,C.28,C.29
αWDH

αVWDH

αV ,αW ,αD,αH

Table 5.1: Parameters for non-symmetric tumor growth, definitions and figures
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dead cells are not dying fast enough to replace the water. In figure (C.2e) we can see that

the large necrotic core in this case is mainly due to an increase in the liquid fraction. For

smaller lysis rates the dead cells begin to accumulate and the lysis rate is not high enough

to convert the dead cells to water and flux the water out of the system. To see how varying

the lysis parameter between λl = 0.05 and λl = 0.1 results in the compact shape we can

examine figure (C.4). Between 0.1 and 0.08 the length of the tumor is not greatly effected

and the change occurs in the width of the central necrotic core. For λl = 0.07 the tumor

begins to shorten as the pinched ends between the cores begin to widen. In the range 0.06

and 0.05 the tumor length no longer decreases, but the central core grows larger. The central

core is not able to stabilize and thus the viable cells to not close together in the wake of the

proliferating end caps. These cases correspond to the unstable cases for the symmetric case

(figure B.2). In figure (C.5) we see that for λl > 0.2 the volume progressions are similar

and they are attracted to the steady state for similar times. For λl = 0.1 the total volume

is slowed by the proximity to the steady state for a longer time, but the overall volume is

always larger than the base case. For λl = 0.05 the tumor is no longer attracted to a steady

state as the tumor is not stable in the symmetric case for this lysis rate. In figure (C.5) we

see the growth rate in this case is approximately constant. The lysis rates that are larger

than the base case value of 0.2 initially increase the water volume as the dead cells are lysed.

The water is then fluxed out of the tumor and the gradual increase in the water volume

results from the lysing of the newly created dead cells as the tumor expands. For λl = 0.1

the slower buildup of the water volume is evident as the release of the water is slower. The

λl = 0.05 case shows the continual increase of the water volume as the liquid core builds.

The parameter, κ, is the rate the water will diffuse from lower concentrations of nutrients

to higher concentrations. In figure (C.6) we see that as the diffusion rate decreases the

morphology of the tumor is not significantly affected until κ = 0.015 when we can see a

substantial increase in the size of the central necrotic core and the necrotic cores behind the

proliferating end caps. For κ = 0.005 we see the tumor no longer has the characteristic shape
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of the base case tumor. In this case the symmetric tumor is also unstable for the diffusion

parameter κ = 0.005 and so the non-symmetric tumor is not able to from an central necrotic

core before it expands. Instead the tumor expands from its initial configuration into the oval

shape seen here. We can also see for higher κ values the water level inside the tumor is lower

as the greater diffusion rate fluxes the water out of the center of the tumor. For κ = 0.025

we see the water begin to buildup in the necrotic cores and for κ = 0.005 we see the center of

the tumor is almost entirely liquid as the diffusion rate is too low to flux out the accumulated

water. In figure (C.7) we see the higher the diffusion rate the higher the dead cell fraction

in the necrotic cores. This is consistent with the behavior in the symmetric case. For the

κ = 0.005 case we see the low levels of dead cells in the center and an increase of the dead cell

level near the growing ends of the tumor. We can see how the different diffusion rates impact

the overall tumor development in figure (C.8). The larger the diffusion rate the shorter the

tumor and the narrower the central necrotic core. The higher diffusion rates produced tumor

of smaller radii in the symmetric case and thus the smaller the central necrotic core when the

tumor first progresses. If the diffusion rate is too low then we see the oval shape produced

by the κ = 0.005 case that results from the unstable central core.

Figure (C.9) shows the contours of the intermediate diffusion rates. As the parameter de-

creases the tumor decreases in length as the width of the central necrotic core expands. For

κ = 0.009 we see the viable cells no longer neck down as the central necrotic core increases.

Figure (C.10) shows thats the total volume progression for the diffusion parameters between

0.025 ≤ κ ≤ 0.045 does not significantly change. For κ = 0.015 we see that although the

initial growth rate is larger in this case it takes longer to escape the steady state regime.

When κ = 0.005 we see the tumor exhibits linear continuous growth. However, this param-

eter does not influence the proliferation rate of the viable cells. The reason for the apparent

change in the growth rates is the buildup of water in the necrotic cores. We see the total

water volume progression is similar for the three highest values of κ and the difference in

water fraction levels in the necrotic core is the reason for the difference in the tumor volumes.
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For κ = 0.015 we can see a much larger accumulation of water in the central necrotic core

before it begins to diffuse outward. Once the tumor begins to elongate the necrotic cores

formed behind the advancing end caps have increased water levels. For κ = 0.005 we see the

continual buildup of water in the core pushes the proliferating rim outward and increases

the volume of the tumor. Therefore we can see that this diffusion parameter influences the

final size and shape of the tumor and controls the water level inside the tumor.

The MV parameter measures how fast the viable cells can move to minimize the energy of

the system. Figure (C.11) shows the impact this parameter has. Doubling the base case

parameter we see the tumor has converged to its stable circular shape. Using half the base

case value of 100 we see the tumor is no longer growing symmetrically. Note that this shape

is similar to the morphology for the ε = 0.025 case (figure (C.58c)). If the parameter is

decreased by half again then we can see the tumor has now developed six different branches.

The water fraction for this case shows the tumor grown has five necrotic cores with liquid

centers. In figure (C.12) we see there are in fact ten necrotic cores present for the lowest

viable cell mobility. The contours in figure (C.13) shows just how different all of these

morphologies are.

The evolution for the MV = 25 case is shown in figure (C.14). By time t = 50 we see that

viable cells are not able move around the necrotic core fast enough to maintain a proliferating

rim around the entire core as in the base case. By time t = 100 the viable cell have grown

and the places where the viable cells were thickest remain. Since the viable cells are too

slow to even out around the tumor we now see two gaps in the proliferating rim. As the

tumor evolves we see the three end caps growing in size and by time t = 200 the left and

bottom branches have separated into two new buds and the right branch has developed a

necrotic core. By time t = 300 the right branch has separated into two new buds. As the

necrotic core develops behind an advancing end cap the tumor begins to thin in the center

of the rim as the viable cells are not moving fast enough to maintain a viable cell rim of
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uniform thickness. This creates the initial splitting of the cap of the tumor. Once the bud

is split the sides begin to grow and form new buds. The new buds form necrotic cores as

they advance and the process begins again. The figure for t = 300 shows the remnants of

the central necrotic core that produced the three buds and the necrotic cores that formed

the next series of buds.

However, there is a large difference between the MV = 50 and the MV = 25 case. The

intermediate cases are considered in figure (C.15). The smaller the mobility rate the more

budding we see and the more elongated the end caps are. For MV = 30 the mobility is

high enough where we do not see a third branch form on the right side of the tumor and

for MV = 45 we do not see any branching on the advancing end caps at time t = 300. In

figure (C.16) we see the stabilization of the MV = 200 case and for the MV = 50 case we

see the tumor volume escapes the steady state regime faster than the base case. For the

MV = 25 case there is no steady state attraction and the tumor grows nonlinearly. The

dividing end caps that develop as the tumor grows for this case expose more proliferating

cells to the nutrients and produce this accelerated growth rate. In figure (C.16b) the water

volume for the MV = 200 case shows the water uptake during the initial phase and the water

is produced as the dead cell lyse. The perturbations present in the water volume remind

us that this steady state is a dynamic one. For MV = 50 we see a faster increase in the

water volume as the faster growing tumor produces more dead cells that increase the water

level. For the MV = 25 case a much more erratic pattern emerges. This is the result of the

increase uptake of the water fraction when the end caps bud and an increase in the water

volume where the necrotic cells begin to lyse.

The parameter φ̄HW is the amount of water in the host fraction. We first consider the in

vivo case with φ̄HW < 1.0. We can see in figure (C.17) that the greatest increase in tumor

length occurs after increasing the host-water fraction from 0.2 to 0.4. Further increases in

the parameter result in a larger central necrotic core and wider advancing necrotic cores.
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We also see higher water levels in the necrotic cores as the host-water fraction increases.

This increase in growth is due to the greater flux of water into the cell as the rate of flux

depends on the water level. If the host-water fraction impacts the tumor growth rate then

the tumors should be more elongated for higher φ̄HW values. However, in figure (C.19)) we see

the tumor are all roughly the same length for φ̄HW > 0.2. This discrepancy can be answered

by examining the total volume plots in figure (C.20). We see the initial growth rates and

the growth rates after escaping the steady state regime are greater for larger water-host

fractions. What varies between parameter choices is the time spent near the steady state

regime. The tumor with φ̄HW = 0.4 water level has the shortest delay before elongating while

φ̄HW = 0.8 level produces the longest delay. At time t = 150 the volume of the tumor with

φ̄HW = 0.8 level is below the volume of the tumor with parameters φ̄HW = 0.4 and φ̄HW = 0.6

despite its larger growth rate. At time t = 300 the φ̄HW = 0.8 volume level has caught up to

φ̄HW = 0.6 tumor volume. Larger domains with longer runs will produce tumors with more

disparate sizes.

Varying the φ̄HW parameter in the in vivo case produces significantly varied tumor progres-

sions, most notably in the growth rates of the tumor and developmental delays in the steady

state regime. Nevertheless, the difference in growth rates is not enough to produce a different

morphology. Figure (C.18) shows the decrease in the host fraction for different values of the

parameter and, as in the symmetric case, we see the buildup of the host around the tumor

as the host fraction decreases. Figure (C.17h) shows the corresponding decrease in the water

fraction around the proliferating rim of the tumor where the host builds up. Similar to the

symmetric case, the αWH parameter can be increased to reduce this encapsulation behav-

ior of the host. Figure (C.21) shows that increasing the parameter αWH from 0.25 to 2.5

eliminates the buildup of host around the tumor and the water fraction no longer decreases

at the tumor-host interface. However, we do see a change in the size of the tumor. Figure

(C.22) shows that the tumor is shorter in length but the necrotic core is wider. Looking

at the volume plot in figure (C.23) we see that the initial growth rate is the same for both
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parameters but it takes longer for the higher parameter to enter the steady state regime and

longer to leave it. During this time the tumor with the αWH = 2.5 parameter is forming the

central necrotic core and the longer the tumor is in the steady state regime the larger central

core will be as seen in figure (C.22). When the tumor with the larger parameter leaves

the steady state regime the tumors grow at the same rate. This is the same behavior seen

in the αWH parameter variation (figure (C.68)) only the increased growth rate produces a

more exaggerated effect on the central necrotic core formation. Thus, we see it is possible to

model tumors surrounded by different water fraction levels in the host region in the in-vivo

case. Further, the encapsulation behavior of the host fraction as the tumor develops can be

controlled by adjusting the model parameters.

For the in-vitro case we add the term,

αvitro
2

φ2
Wφ

2
H

to the energy and set αvitro = 100.0. As in the symmetric case, this term has the effect

of eliminating the host fraction in the entire domain and avoiding the buildup of the host

tissue at the tumor-host interface. In figure (C.24) we two cases for the development for the

in-vitro case. For high enough diffusion rates (κ = 0.1 and κ = 0.075) the tumor stabilizes

to spheroid and the higher the diffusion rate the smaller the radius of the tumor. For the

κ = 0.05 and κ = 0.035 cases we see the tumor progress in a similar fashion to the in-vivo

case where the tumor elongates and the growth is determined by two advancing end caps.

However, unlike the in-vivo case we see the quiescent region of the viable cells buckles inward

to the necrotic core. We can also see there is a dip in the water fraction where the viable

cells are buckling. This decrease in the water fraction is due to the buildup of the dead cells

as seen in figure (C.25). The difference in in-vitro tumor progression for different diffusion

rates can also be seen in figure (C.26).
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One of the assumptions of the model is that there is a minimum level of dead cells needed

to initiate lysis. Therefore if a region of the domain was ever contained in necrotic core then

the minimal level of dead cells needed for lysis will remain. Once the viable cells begin to

buckle inward the dead cells left in the necrotic core become exposed. The dead cell fractions

for the κ = 0.05 and κ = 0.035 cases show how large the necrotic core was before the viable

cells entered the quiescent zone. Figure (C.29) show the evolution for the κ = 0.035 case

for longer times. As the quiescent viable cell region begins to buckle we see the rim begins

to thin and decrease in density. By time t = 480 the viable cells have merged in the middle

of tumor. The water fraction shows that necrotic core developed by time t = 380 does not

decrease as the tumor’s elongated portion collapses toward the center. As we will see below

for the φ̄VW = 0.5 case, the necrotic core remnants inhibit the nutrient production/delivery

near the viable cells (figure (C.28)). Hence the further the viable cells bend into the necrotic

core of the tumor and the less nutrient they receive. Eventually as the viable cells enter the

hypoxic region, the viable cells necrose, and the tumor will split as seen in t = 480. The

tumor progression in this case is characteristic of tumor fragmentation and metastasis. In

figure (C.27) we see the stabilization for the higher diffusion rates and for the lower rates

we see the decrease in the water fraction beginning at t = 380. Therefore, depending on the

diffusion parameter, we can produce compact tumors or locally invasive behavior.

The parameter φ̄VW determines amount of water present in the viable cell region. In figure

(C.30) we can see that this parameter has a profound effect on the development of the tumor.

In the φ̄VW = 0.1 case we see that the proliferation rate is low enough that the tumor is not

able to escape the steady state regime. Higher parameter values greatly increases the length

of the tumor and the width of the advancing necrotic cores. However, we see that increasing

the parameter to φ̄VW = 0.5 produces a shorter and thinner tumor. As seen the the symmetric

case, this is due to the increase in shedding caused by increasing the water fraction level

in the viable cells. Figure (C.30) shows the amount of viable cell shedding produced by

different φ̄VW parameters. We note that the greater the prescribed water fraction level, the
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further the cells spread from the bulk of the tumor and the larger the viable cell fraction we

see outside the tumor.

Setting φ̄VW = 0.5 sheds enough viable cells to inhibit the nutrient production. Although the

φ̄VW = 0.4 parameter also sheds a considerable amount of viable cells, figure (C.32) shows

that in this case the nutrient production is relatively unaffected. Figure (C.33) shows the

difference in the size and morphology of the tumors for the different parameter choices.

Note that the larger the φ̄VW parameter the larger and wider viable cell end cap. This

is consistent with an increase in the proliferation rate. For the φ̄VW = 0.5 case the lower

nutrient concentration in the bulk of the tumor decreases in the growth rate and produces a

smaller central necrotic core and a shorter and thinner elongated tumor. Also note that the

φ̄VW = 0.5 case does not grow along the same path as the tumors in the other cases. Indeed,

the lower portion of the tumor curves to the left and the upper portion curves to the right as

the tumor evolves. This deviation is an edge effect produced by the shedding of the viable

cells. This is also the effect that elongates the advancing end caps towards the boundary in

the φ̄VW = 0.4 case. Figure (C.30) shows the range of the shedded cells that extend beyond

the computational grid for these two cases. Figure (C.31) shows the differences in the viable

cell water fraction for different choices of φ̄VW . Similar to the symmetric case, the viable cell

water level in not precisely what is prescribed by the parameter. The difference between

the prescribed water level and the level maintained in the model is the same as the levels

attained in the symmetric case (B.13e).

The total volume in figure (C.34) shows the difference in the growth rates for different

parameter choices. We see the φ̄VW = 0.1 case collapses to the steady state case immediately.

Next, the larger the φ̄VW parameter, the larger the initial growth rate, the less time is spent in

the steady state regime, and the greater the growth rate once the tumor begins to elongate.

We can also see the curious behavior of the volumes for the φ̄VW = 0.5 case. At approximately

t = 110 we see the dead cell and viable cell volumes begin to oscillate and although the
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total volume of the tumor also oscillates, the amplitude of these variations is less than

the individual cell species. These oscillations can also be observed in the water volume

for this case. Figure (C.34c) show a closeup of these oscillations for the volumes that are

appropriately vertically shifted so they overlap. In this close up we can observe that the

viable cell peaks and the dead cell peaks are inverted and water peaks are located at nodes

of the viable cell and dead cell oscillations. The oscillations here are due to the growth and

death cycles in the elongated portion of the tumor. At a local minimum for the viable cell

volume the viable cells grow as the dead cells undergo lysis. The dead cells begin to lyse

and the water is fluxed out center of the tumor. This causes the viable cells flux into the

hypoxic region and the necrosis rate overtakes the growth rate of the viable cells. Thus, total

volume of the viable cells decreases as the volume of the dead cells increases. The steady

overall increase of the tumor volume is due to the advancing end caps. Note the offset peaks

of the water fraction volume and the decrease in amplitude is due to the competing actions

of the uptake by the viable cells and addition of water to the system from lysis. Although

this growth and death cycle is shared by all tumor systems it is more exaggerated here due

to the slower growth rate and the unstable shape of the tumor.

The main issue with the φ̄VW = 0.5 case is impact of the shedding cells on the nutrient

production. To alleviate this we can change the tumor fraction necessary to prevent the

nutrient production. We increase the production threshold from 0.01 to 0.03 and set,

Q(φT ) =


1.0 if φT < 0.03

0 if φT ≥ 0.03.

With this new function we can see the morphology of the tumor for the φ̄VW = 0.5 case in

figure (C.35). We see that the increase in the threshold level allows the nutrients to reach the

proliferating rim of the tumor and the increase in the growth rate is enough to destabilize

the tumor from the typical elongations in the base case. The evolution of this tumor in figure
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(C.36) is consistent with the behavior seen when the viable cell mobility, MV , is decreased

to 25. The non-symmetry of the initial condition and the increased growth rate produce the

instability necessary to produce this morphology. At time t = 60 we can see that the viable

cells are proliferating faster than they can migrate around the necrotic core. As the tumor

continue to evolve a new gap in the proliferating rim appears. At time t = 120 the sides

of the proliferating end caps are growing faster than the center and by time t = 150 four

new buds are formed as the original end caps split. Figure (C.37) shows the tumor contours

for the other values of φ̄VW at time t = 150. We see that the φ̄VW = 0.4 case has a similar

morphology as the φ̄VW = 0.5 case except the slower growth rate has delayed the development

and the other two cases do not have a proliferation rate high enough to change the elongated

morphology. Figure (C.38) shows a more ordered volume progression with the higher water

levels correspond to larger growth rates and overall volume of the tumor.

The C̄0 parameter is the level of nutrients necessary to maintain cell viability. That is, the

concentration of nutrients necessary for the viable cells to thrive, below which, the cells begin

to necrose. In figure (C.39) we see that decreasing the hypoxia level increases the length and

width of the tumor. A smaller C̄0 level allows the tumor to remain the growth phase for a

longer period of time before the necrotic core develops. The lower hypoxia level also allow

a proliferating rim along the length of the tumor which increases the over all width of the

tumor. For C̄0 = 0.20 we see that the tumor was unable to develop. The higher hypoxia

level puts the initial viable cells in the quiescence zone and the tumor cannot progress. Also

note that in this case the tumor is not circular at t = 400 as the viable cells are arrested in

the quiescence zone. The decrease in the viable cell fraction also decreases the viable cell

mobility and the cells are unable to move into a circular morphology by t = 400. In figure

(C.40) we see the necrotic cores for the base case and C̄0 = 0.05 are roughly the same size

and the increase in the tumor volume is due to the increase in the width of the viable cell

rim. This behavior is consistent with the symmetric case.
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In figure (C.41) the total volume of the C̄0 = 0.05 case is still slowed by the attraction to the

steady state, but in this case the steady state is the symmetric tumor with C̄0 = 0.05 which

has a larger volume. The total volume for the C̄0 = 0.20 actually decreases from the initial

volume as the initial tumor is already under the hypoxia level. We can also see that the total

water volume increases as the dead cells lyse. For the C̄0 = 0.05 case we can see the total

water volume decreases as the greater growth rate uptakes more water. The greater growth

rate produces more dead cells and the released water increases the water volume to a greater

level than the base case. We can see that this parameter has a significant influence on the

morphology of the tumor. Decreasing the C̄0 parameter produces thicker tumors and wider

proliferating end caps. Increasing the C̄0 parameter shrinks the tumor and can prevent the

progression entirely if the hypoxia level is too high to support proliferating cells.

The parameter νPO is the rate that the surrounding vasculature replenishes the nutrients that

are uptaken by the viable cells. Figure (C.42) shows that increasing this parameter results

in an increase in tumor length and viable cap width and for larger parameters there is no

pinching together of the elongated portion of the viable cells. Decreasing the parameter slows

the growth of the tumor and if the parameter is too low the tumor does not grow fast enough

to escape the steady state. Further, we can see the larger the νPO parameter the larger the

necrotic cores behind the advancing end caps and the greater the water concentrations in

the cores as more dead cells are lysed for larger growth rates. Figure (C.43) shows that for

νPO = 2.0 the necrotic cores are large enough to have a decrease in the dead cell fraction in

the center as they lyse and raise the water level. Additionally, the contours in figure (C.44)

show that the the larger the production rate the larger the central necrotic core and the

larger the proliferating end caps are. We can also see the increase in the tumor length begins

to slow as the νPO parameter increases. This is similar to the behavior seen in the symmetric

case where the increase in the radius slows as νPO is increased. That is, the radius vs νPO

plot is concave down (B.20d). This behavior is also seen in figure (C.45), the volume change

is greater when νPO is doubled from 0.25 to 0.5 than when νPO is doubled from 1.0 to 2.0.
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The total volume growth is larger for greater production rates, but the tumors all leave

the steady state regime at approximately the same time. For νPO = 0.25 we see a much

slower growth rate and the volume escapes the steady state regime at a much later time. For

νPO = 0.1 the tumor grows too slowly to escape the steady state regime and the total water

volume shows an initial increase as the cells die and are lysed, then once the water is fluxed

out of the system the tumor remains at this steady state. For the other parameter variations

we see the same water volume progression as the base case except it is more exaggerated by

the increased growth rate. Thus, this parameter does not significantly alter the morphology

of the tumor if the rate is high enough. However, it does have a evident influence on the

volume and size of the tumor and if the parameter is set too low then the tumor will not

develop and will tend to a symmetric steady state.

5.3 Nonsensitive Physical Parameters

The first parameter we consider in this section is MW , the mobility of the water fraction.

This parameter measures how fast the water can move in the system to minimize the energy.

In figure (C.46) we see that the higher the water mobility the faster it is fluxed out of the

center of the tumor. For MW = 100 we can see the higher water levels in the central core

and in the core behind the advancing end caps. For MW = 50 the water level in the necrotic

core much higher and the water level is lower in the viable cell region. The decrease in the

water mobility slows the water movement enough that it will not flux into the viable cell

region fast enough to maintain the water level. The slower mobility rate also decreases the

diffusion rate out of the necrotic sections of the tumor which accounts for the water fraction

buildup in these areas. Also note that the higher the mobility rate the higher the dead cell

fractions in the necrotic core (figure (C.47)). This is consistent with the symmetric case.

For high mobility rates the water is fluxed out of the core and allows more dead cells to
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accumulate in the necrotic core. For lower mobility rates the water is not evacuated from

the cores fast enough to provide room for the dead cells to buildup and consequently the

cores grow wider as the tumor progresses.

In figure (C.48) we see that the lower the water mobility rate the less elongated the tumor

is but the wider the necrotic cores are. We saw above that the lower mobility rate results

in a smaller water fraction in the viable cells and thus the growth is impeded. The buildup

of water and dead cells in the necrotic cores accounts for the wider cores. The contours and

the figure (C.49) show that for high enough MW there is not a significant difference in the

tumor volume or progression. However, as in the symmetric case, if the value is too low then

we see a significant delay in the tumor progression and overall volume. In the water volume

graph we can see the delayed and exaggerated water movement. For the case MW = 50 we

see a large dip in the initial growth phase as the viable cells uptake the water and recovery

as the dead cells begin to lyse and the slow decline as the water is fluxed out of the center of

the tumor. Therefore, for larger enough values of MW there is not a significant change in the

morphology of the tumor or its volume. Hence, this parameter is classified as non-sensitive.

The γ parameter measures the adhesion force between the cells and controls the stiffness of

the tumor boundary. In figure (C.50) there is no immediate difference between the variations.

In figure (C.51) we see the pressure has been scaled by γ as in the symmetric case. In figure

(C.52) we see the effect of parameter. The larger the γ value the more compact the tumor

is and the smaller the γ value the more elongated the tumor and in figure (C.53) we see the

smaller the γ the faster the tumor escapes the well of the steady state regime. Once the

tumors begin to grow past the steady state they all progress at the same rate. The same

behavior is also present in the volume of the water fraction. Therefore, the γ parameter

influences how long it takes the for the tumor to grow beyond the steady state volume.

However, it is evident that the morphology of the tumor is not affected and although the

progression of the tumor is changed the difference is not significant despite its effect on the
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sign and magnitude of the pressure.

The parameter λn is the rate the viable cells necrose once they are in the hypoxic region.

In figure (C.54) we see that all the variations have a similar morphologies. For the higher

necrosis rate the main difference is the length of the tumor. The higher necrosis rate kills

the viable cells faster which lyses the dead cells and fluxes the water out of the necrotic core

faster than the base case which results in slightly narrower tumor. For slower rates there

are slivers of viable cells that extend down the length of the tumor to the central necrotic

core. We can also observe that the quiescent cells do not pinch together as the dead cells

no longer die fast enough to produce this collapse in the elongated portion of the tumor.

We can also see that the viable cell levels in the necrotic portion of the tumor are larger

for smaller necrosis rates. This is consistent with the behavior in the symmetric case. The

increase in the viable cell fraction also increases the width of the growing end caps. This is

can be seen in figure (C.55) where the slower the necrosis rate produces a lower dead cell

fraction in the necrotic region.

Figure (C.56) shows the same differences in tumor length that were observed for the radii

for the symmetric case (B.27d). The longest tumor is seen for λn = 5.0 and the other values

decrease the tumor length. For larger necrosis rates the viable cells die and are lysed out

of the core at a faster rate. This produces the slight decrease in the tumor length and a

narrower advancing necrotic core. For smaller necrosis rates the viable cells die at a slower

rate and the viable cells flux into the center to raise the viable cell fraction. The viable cell

inward flux produces the decrease in the tumor length and the increase in the width of the

necrotic core. However, if the necrosis rate is too low then the viable cells will grow in the

center of the tumor and expand the radius of the necrotic cores. This also slows the progress

of the tumor. Figure (C.57) shows similar growth of the tumor and the water volume for

different necrosis rates. We can observe that the higher the necrosis rate the sooner the dead

cells are converted to water and the largest value does flux the water out of the necrotic
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core faster that the base case. For lower values it takes longer for lysis to initiate and the

eventual buildup of water in the central necrotic core is slower to flux out of the center.

However, we can see that there is no significant difference in the progression of the tumor or

the morphology for the different necrosis rates λn > 1.0.

5.4 Sensitive Model Parameters

In this section we consider the only sensitive model parameter, ε. This parameter controls

the interface thickness and the smaller the parameter the thinner the interface thickness.

In figure (C.58) we can see in the viable cell and host species, that the smaller the ε the

more rapid the transition between species. Additionally, as was seen in the symmetric case,

the epsilon parameter controls the amount of viable cells that shed into the host region.

Figure (C.61) shows the minimal shedding present in the ε = 0.025 case and the more diffuse

shedding found in the ε = 0.1 case. As mentioned in Chapter 3 this behavior is consistent

with steady spherical solutions of the Cahn-Hillard equation where the velocity and source

terms are neglected [33].

Further, in the water fraction we can see that the larger the parameter the wider the water

peaks at the interface (figure (C.58)). This is consistent with the behavior seen in the

symmetric case. However, in the symmetric case this parameter was nonsensitive. For the

symmetric case the difference in the radii and the tumor volumes for different ε was due to

the steepness of the viable cells. In the non-symmetric case this change in steepness is what

causes the radically different tumor morphologies. The steeper the tumor is the viable cells

will be in the boundary of the proliferating rim and the more gradual in interface transition

is the lower the proliferation rate in the viable rim. In figure (C.62) we see for ε = 0.1 the

tumor does not grow fast enough to escape the steady state and stabilizes to the circular

shape we see in the symmetric case. For the ε = 0.025 case the growth rate is large enough
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to escape the steady state regime in roughly half the time as the base case and the initial

non-symmetry of the viable cells becomes more pronounced as the tumor progresses.

In figure (C.59) we see the evolution of the tumor for ε = 0.025. In addition to growing faster

than the base case we see the tumor curving to the left as it develops. Figure (C.60) shows

the viable cell development for early times. We can see that the largest divot in the initial

condition, found on the left side of the tumor, remains as the tumor evolves and smaller

perturbations are smoothed out. By time t = 100 this divot is more pronounced and the

remaining proliferating cells are angled to the left. As the tumor progresses this deviation

to the left becomes more pronounced.

In figure (C.62) we can see the increase of the water volume for the ε = 0.1 case as the

tumor quickly converges to the steady state. For ε = 0.025 the water volume has a greater

dip as the increased growth rate uptakes water more rapidly. At t = 300 the water fraction

begins to decrease as the viable cell end caps elongate and more water is absorbed. In the

symmetric case the ε parameter does not greatly influence the steady state of the tumor.

The differences in the radius and volume occur due to the steepness of the proliferating

rim. In the symmetric case there is no viable cell inhomogeneity to cause instability. In the

non-symmetric case the steepness of the tumor produces noticeable different behavior. The

steepness of the tumor corresponds to the growth rate in the proliferating rim which can

enhance any non-uniformity in the viable rim.

5.5 Nonsensitive Model Parameters

The first nonsensitive model parameter we consider is αVW which enforces the prescribed

water level in the viable cells. Similar to the symmetric case, increasing the parameter

holds the water level at φ̄VW = 0.2. If αVW is set too low the water is allowed decrease as
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it is uptaken by the viable cells. As in the symmetric case, increasing the parameter to

αVW = 2.5 does not increase the growth of the tumor by a significant amount. However,

decreasing the parameter to αVW = 0.025 does cause a significant delay in the evolution of

the tumor (see figure (C.64)). In the symmetric case the tumor does not grow as large as

the non-symmetric case and therefore the decrease in the water fraction does not cause as

much of a delay. In figure (C.63) we see the smaller the parameter the greater the viable

cell fraction in the end caps and the lower the corresponding water fraction. We can also see

the smaller the parameter the larger the water peaks are in the tumor-host interface. This

behavior is consistent with the symmetric case.

In figure (C.65) we can see that if αVW is greater than the base case value of 0.25 then

the evolution of the tumor and water volume are similar. If the parameter is smaller than

the base case parameter we can see a noticeable slower increase in the total tumor volume

and the water volume does not rebound as the tumor progresses since the water is being

uptaken by the tumor faster than the lysing dead cells can replace it. It is also worth noting

that although this parameter impacts the rate of the tumor development it does not alter

the morphology of the tumor. Thus, if the αVW parameter is set high enough, the tumor

progression is not significantly altered by variations in this parameter.

The next model parameter we consider is αWH . This parameter enforces the prescribed water

level in the host. As in the symmetric case, the lower the parameter the more the water

fraction will drop in the host around the proliferating rim of the viable cells. For larger values

we see less of a decrease in the water fraction around the tumor. There is also a change in the

water peak heights for different parameter choices. The smaller the chosen value the higher

the water peaks at the tumor-host interface. Additionally, the decrease in the water level in

the host causes an increase in the host fraction around the tumor (figure (C.66)). Depending

on the stiffness of the host we see that this host buildup at the tumor-host interface can be

controlled with this parameter. In figure (C.67) we see the interesting phenomenon that the
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base case parameter produces a slightly longer tumor. In the volume plot for the symmetric

case (B.34) we can see the base case parameter produces the largest tumor volume while

the tumor is in the initial growth stage. When the growth rate begins to slow as the tumor

stabilizes, the smaller parameter produces a larger volume. This same behavior can be seen

in the non-symmetric case (figure (C.68)). During the initial stage of growth when the

tumor development is close to circular, the smaller parameter value produces the largest

tumor. After the tumor elongates, the base case tumor volume overtakes the volume of the

smaller parameter. We can also see that the dip in the total amount of water in the system

is much greater for the smaller parameter and it take longer to recover. For the parameter

αWH we see that there is no significant change in the tumor volume in the range presented

here. We also see that the development of the tumor is not affected by this parameter.

5.6 Conclusion

In this chapter we performed a one-at-a-time parameter study on the non-constant water

fraction model with a non-symmetric initial condition. All seven of the sensitive physical

parameters can influence the growth rate and the size of the tumor. In the non-symmetric

case we now see the model parameter ε is capable of affecting the growth and morphology of

the tumor. Additionally, the parameters φHW , MV are two physical parameters that are also

capable of changing the morphology of the developing tumor. Therefore, the model able to

capture a wide range of tumor behavior by considering a range of parameters.

The capacity of the model to produce different morphologies is particularly important.

The φ̄VW , C̄0, νPO parameters are capable of producing stable tumors for certain parame-

ter regimes. Thus, tumors in stable parameter regime are not sensitive to the initial shape

of the tumor. In the in-vitro case we are also able to produce stable tumor spheroids with

high enough water diffusion rates. Most of the stable tumors in seen in the symmetric case
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Parameter Initial Value Variations

Sensitive λl 0.2 0.05, 0.1, 0.5, 1.0
Physical κ 0.035 0.005, 0.015, 0.025, 0.045

Parameters MV 100 25, 50, 200
φ̄HW 0.2 0.4, 0.6, 0.8, 1.0
φ̄VW 0.2 0.1, 0.3, 0.4, 0.5
C̄0 0.10 0.05, 0.20
νPO 0.5 0.1, 0.25, 1.0, 2.0

Nonsensitive MW 200 50, 100, 400
Physical γ −0.1 −0.5, 0.0, 0.1, 0.5

Parameters λn 5.0 0.1, 0.5, 1.0, 25.0

Sensitive ε 0.05 0.025, 0.1
Model

Parameters

Nonsensitive αVW 0.25 0.025, 2.5
Model αWH 0.25 0.025, 2.5

Parameters αvitro 0.0 100.0
αWDH 100.0
αVWDH 50.0

αV ,αW ,αD,αH 50.0

Table 5.2: Parameters for non-symmetric tumor growth, base case values and variation
ranges
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produce unstable tumors for non-symmetric initial conditions due to morphological instabil-

ities. Therefore, outside of the parameter regimes that produce stable compact tumors for

the non-symmetric case it could be difficult to produce stable tumor spheroids. The in-vitro

simulations also showed that for low water diffusion levels the tumors undergo elongation

and fragmentation. This is an important step for tumor invasion and metastasis that has

clinical significance. Hence this model could be a valuable tool in predicting the factors

involved in tumor fragmentation.

We also see further confirmation that the additional terms we added to the energy of the

system are necessary. The value of 0.25 that are chosen for the αVW and αWH parameters is

enough to keep the water fractions at the prescribed level for their respective species. If the

αVW is set too low the tumor growth becomes greatly impeded and the water level in the

viable cells is not maintained. Similarly, if αWH is set too low the water fraction decreases

around the tumor-host interface and the host builds up and encapsulates the tumor. Hence,

the new model parameters provide a way to maintain the water level in the host and viable

cells. It is not necessary to maintain the water level inside the necrotic core since the water

released by cell lysis balances out the water diffusion from high concentrations of nutrients

to low concentrations.
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Chapter 6

Cancer Stem Cells

6.1 Introduction

In this section we extend the model given in [23] to incorporate cancer stem cells and their

progeny. In previous chapters we did not distinguish between types of viable cells. However,

the viable cells are known to be composed of different cell types that are related by a set of

progenitor-progeny relationships such that progressive changes in cell character occur. This

progenitor-progeny relationship, know as the cell lineage, begins with the self-perpetuating

stem cells and ends with the terminally differentiated cells that either divides slowly com-

pared to its lifespan or don’t divide at all. It has been demonstrated that the growth and

division of the stem cells are controlled by feedback signals [7]. In particular, the control

of the cell population involves feedback loops that determine mitosis and self-renewal rates

[72, 38]. Therefore, to provide a more realistic description of the viable cells we need to

account for this heterogeneity of the viable cells and incorporate the cell lineage into the

non-constant water fraction model.
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6.2 Model Extension

The general model developed in chapter one will now be adapted to the lineage model. The

cell lineage is composed of cancer stem cells (SC), committed progenitor cells (CP), terminal

cells (TC). The local volume fractions of the cells species including host (H) and water (W)

are,

φW , φD, φSC , φCP , φTC , φH .

We will simplify the model and consider only two types of viable tumor cells, terminal

cells and non-terminal cells. The non-terminal cells contain the stem cells and committed

progenitor cells and for simplicity we refer to the non-terminal cells as stem cells even though

the CP cells will dominate the non-terminal cell compartment. Therefore, the mitosis rate

of this combined population is taken to be the mitosis rate of the CP cells. That is, the stem

cell species will have a mitosis rate on the order of one day and the terminal cells divide at

a much slower rate. Note that we now have, φV = φSC + φTC . The same energy considered

in chapter one will be restated here,

E =

∫
Ω

f(φW , φD, φV ) +
ε2

2

(
|∇φW |2 + |∇φT |2 + |∇(φW + φD + φV )|2

)
dx

where,

f(φW , φD, φV ) =
1

4
φ2
Tφ

2
H +

αHW
2

φ2
H(φW − φ̄HW )2 +

αVW
2

φ2
V (φW − φ̄VW )2

+
αV itro

2
φ2
Wφ

2
H +

κ

2
(C0 − 1.0)2φ2

W +
αWDH

2
φ2
Wφ

2
Dφ

2
H

+
αVWDH

2
φ2
V φ

2
Wφ

2
Dφ

2
H +

αV
2
φ2
VH(−φV ) +

αW
2
φ2
WH(−φW )

+
αD
2
φ2
DH(−φD) +

αH
2
φ2
HH(−φH).

(6.1)
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6.2.1 Generalized Diffusion Term

From equation (2.14) have

Ji = −Mi∇
(
δE

δφi
− δE

δφ4

)
, 0 ≤ i ≤ 3

and J4 = −
∑3

i=0 Ji, where Mi > 0 is the motility. Specializing to the cell lineage case

(φ0 = φW , φ1 = φD, φ2 = φSC , φ3 = φTC , φ4 = φH) and taking the motilities Mi = −M̄iφi

for 0 ≤ i ≤ 3 where M̄i is constant. Thus, we see

Ji = −M̄iφi∇
δE

δφi

where we have used that the energy does not depend on φ4. Further,

δE

δφ0

=
δE

δφW
=
∂f(φW , φD, φV )

∂φW
− ε2∇2φV − 2ε2∇2φW − ε2∇2φD

δE

δφ1

=
δE

δφD
=
∂f(φW , φD, φV )

∂φD
− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD

δE

δφ2

=
δE

δφV
=
∂f(φW , φD, φV )

∂φV
− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD

δE

δφ3

=
δE

δφV
=
∂f(φW , φD, φV )

∂φV
− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD.
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Hence, the flux term for the components is given by,

JW = −MWφW∇ν

JD = −MDφD∇δ

JCS = −MSCφSC∇µ

JTC = −MTCφTC∇µ

ν =
δE

δφW
=

∂f

∂φW
(φW , φD, φV )− ε2∇2φV − 2ε2∇2φW − ε2∇2φD

δ =
δE

δφD
=

∂f

∂φD
(φW , φD, φV )− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD

µ =
δE

δφV
=

∂f

∂φV
(φW , φD, φV )− 2ε2∇2φV − ε2∇2φW − 2ε2∇2φD

We assume that both species of the viable cells move with the same rate and let MSC =

MTC = MV . This gives JV = JSC + JTC = −MV φV∇µ, the same generalized diffusion term

seen in chapter one. Thus, the flux is again a fourth order nonlinear advection-diffusion of

Cahn-Hilliard type [10]. The flux is for the host component is

JH = −
2∑
i=0

Ji = MWφW∇ν +MDφD∇δ +MV φV∇µ.

6.2.2 Advection

From (2.13) we know the resulting generalized Darcy laws for the velocity of components are

given by

u0 =− k0φ0∇p

u1 =− k1φ1∇
(
p+

δE

δφ1

− δE

δφ0

)
uj =− k

(
φs∇p− φs∇

δE

δφ0

+
N∑
j=2

φj∇
δE

δφj

)
− kjφj∇

(
p+

δE

δφj
− δE

δφ0

)
, j ≥ 2.

(6.2)
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For the lineage model (φ0 = φW , φ1 = φD, φ2 = φSC , φ3 = φTC , φ4 = φH) we have

u0 =− k0φ0∇p (6.3)

u1 =− k1φ1∇ (p+ δ − ν) (6.4)

u2 =− ks (φs∇p− φs∇ν + φV∇µ)− k2φV∇ (p+ µ− ν) (6.5)

u3 =− ks (φs∇p− φs∇ν + φV∇µ)− k3φV∇ (p+ µ− ν) (6.6)

u4 =− ks (φs∇p− φs∇ν + φV∇µ)− k4φH∇ (p− ν) . (6.7)

Here we again use that the energy does not depend on φH . The coefficients k, kj are motilities

that reflect the response of the water and cells to the pressure gradients. As a further

simplifying assumption we take kj = 0 for j ≥ 1 which is consistent with assuming the host

and tumor cells are tightly packed and that they march together. Thus each tumor and host

component has the velocity

us = −ks (φs∇p− φs∇ν + φV∇µ) . (6.8)

Note that k > 0 may depend on φi for 0 ≤ i ≤ 4 and other variables. This constitutive law

for velocity assumes the tumor can be treated as a viscous, inertialess fluid and models this

flow through a porous medium.

Now we write the continuity equation for the φi for 0 ≤ i ≤ 4

∂φi
∂t

+∇ · (uiφi) = −∇ · Ji + Si

where ρ is absorbed into the motility constant for J and the source term. Assuming the

source term for the host tissue is 0 (i.e., SH = 0), the continuity equations for 0 ≤ i ≤ 4 can
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be summed to yield

0 +∇ · (φsus + φDu1 + φWu0) = −∇ ·
3∑
i=0

Ji +
3∑
i=0

Si.

Thus by equations (2.4) and (2.5),

∇ · (φsus + φDu1 + φWu0) = 0.

This equation with (6.8). (6.3). and (6.4) can be used to solve for the pressure (a linear

elliptic equation for p). This closes the system and it remains to account for the source

terms.

6.2.3 Source/Mass-Exchange

Assume that the fraction of SC that self-renew is P0 and the SC, and TC mitosis rates are

linearly proportional to the level of oxygen, glucose, and other survival promoting factors

that are modeled as a single concentration C0. Also note that the differentiation rates of SC

is given by (1 − P0). Death of the cells may occur by apoptosis or necrosis if the nutrient

levels are too low to support cell viability. The source terms are given by,

SH =0

SSC =λMSC(2P0 − 1)φSCφWC0 − λASCφSC − λNSCH(C̄0 − C0)φSC

STC =2λMSC(1− P0)φWφSCC0 + λMTCφTCφWC0 − λATCφTC

− λHTCH(C̄0 − C0)φTC

(6.9)

where λM , λA, λH denote mitosis, apoptosis, and necrosis rates and C̄0 is the minimum level

of oxygen, glucose, and growth promoting factors required for cell viability. The source term
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for the dead cells is,

SD =λASCφSC + λATCφTC + λNSCH(C̄0 − C0)φSC

+ λNTCH(C̄0 − C0)φTC − λLφDH(φ̄D − φD)

where λL is the lysis rate. Note that the source terms for the viable cells and the water

fraction are given by,

SV =SSC + STC = λMSCφSCφWC0 + λMTCφTCφWC0 − λASCφSC − λATCφTC

− λNSCH(C̄0 − C0)φSC − λNTCH(C̄0 − C0)φTC

SW =− λMSCφSCφWC0 − λMTCφTCφWC0 + λLφDH(φ̄D − φD).

Now everything in the source terms above is a parameter or dependent variable except for

P0, and C0. We consider C0 first. Denote oxygen, glucose, and other growth promoting

factors as O. Assume the uptake of O is negligible in the host domain compared to the

uptake by the tumor cells. On the time scale of cell proliferation the diffusion of O is rapid

and the time derivatives and advection terms can be neglected. Therefore the concentration

of O is given by,

0 =∇ · (D0∇C0)− (νUOSCφSC + νUOTCφTC)C0

+ νPO(C̄AO − C0)Q(φT ).

Here D0 is the diffusion coefficient, νUOSC , νUOTC are the uptake rates of oxygen by SC and

TC respectively. νPO is the rate that O is supplied to the microenvironment. C̄AO is the

concentration of O in the blood (in vivo) or in the medium (in vitro) far from the tumor.

The function Q(φT ) ≈ 1 − φT approximates the characteristic function of the host domain

and thus models the source of O as being external to the tumor (i.e., the tumor is avascular).
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More specifically the function Q can be taken to be,

Q(φT ) =

 1 if φT < 0.01

0 if φT ≥ 0.01

The uptake of O in the host domain is assumed to be negligible compared to the uptake in

the viable tumor domain. Thus, the PDE for C0 is given the Dirichlet boundary condition

C0 = C̄AO on Σ∞.

Next we consider P0. Following [41], we assume that the proliferation and differentiation

of the tumor cells in lineages are regulated by factors in the tumor microenvironment that

feedback on the self-renewal fractions and mitosis rates. TCs produce soluble differentiation

promoters denoted as T that reduce the self-renewal fractions and mitosis rates of SCs.

Examples of possible promoters are TGF-β superfamily members [48]. There is also a self-

renewal promoter W , which increases the self-renewal fraction of SC and an inhibitor of W

denoted WI. Examples of possible W s are Wnts, with the inhibitors Dkk and SFRPs [5].

Other examples of W include Notch, Shh, and FGF. Define the self-renewal fraction of SC

to be [23],

P0 = PMin + (PMax − PMin)
( ξCW

1 + ξCW

)( 1

1 + ΨCT

)
. (6.10)

Here, PMax is the maximal level of self-renewal of SC. Pmin is the minimum level of self-

renewal of the SC cells. The functions CW , and CT are the concentrations of the self-renewal

promoter W and the differentiation promoter T respectively. The parameters ξ and Ψ

quantify the feedback response of the SC to the regulating proteins.

The the mitosis rate λMSC may also depend on the differentiation and self-renewal promoters

in a relation similar to (6.10) although this is not modeled here. As in the case for O we

assume that T diffuses more rapidly than W or WI and the time derivative can be neglected.
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Thus, CT satisfies,

0 = ∇ · (DT∇CT )− (νUTφSC + νDT )CT + νPTφTC (6.11)

where DT is the diffusion coefficient, νDT and νPT are the rates of natural decay, and the

rate of production by the TC respectively and νUT is the uptake rate by SC. These reaction

diffusion equations have the Dirichlet boundary condition CT = 0 on Σ∞ to mimic the

intravasation of CT into the underlying vascular network.

To model the self-renewal promoter W and its inhibitor WI we use the Gierer-Meinhardt-

Turing system of reaction-diffusion equations [1]. Assume that W is the activator and WI

is the inhibitor. Wnt and Wnt producing cells tend to be co-localized in space [67] and we

assume that W diffuses only over a short range while WI is assumed to diffuse over a longer

range, which is consistent with biological data for Wnt and its inhibitors. Also, since Wnt

and Dkk are produced by SCs [67, 37] we assume that this is also the case for W and WI

and that their production rates depend on the levels of oxygen, glucose and O available.

Thus,

∂CW
∂t

= ∇ · (DW∇CW ) + f(CW , CWI)

∂CWI

∂t
= ∇ · (DWI∇CWI) + g(CW , CWI)

(6.12)

here CWI is the concentration of WI and

f(CW , CWI) = νPW
C2
W

CWI

C0φSC − νDWCW + u0C0φV

g(CW , CWI) = νPWIC
2
WC0φSC − νDWICWI .

Here DW and DWI are the diffusion coefficients, νPW , νDW , νPWI , νDWI are the production

are decay rates of W and WI. The parameter u0 is the low-level source of W from all

the viable tumor cells. This is the assumption that W is mainly produced by SC but the
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TC may also produce a small amount of this factor. Finally this system of PDE has the

Neumann boundary condition ω∞ ·∇CW = ω∞ ·∇CWI = 0 on Σ∞. Other choices of boundary

conditions are also possible but the choice has little affect on the tumor progression while

the tumor is sufficiently far from the domain boundary. Also, other model equations besides

the Gierer-Meinhard system could also be used, but the equation should be able to form

patterns.

As before, we assume that neither cell species undergo apoptosis. The viable cells will die

by necrosis before they undergo apoptosis as evasion of apoptosis is a hallmark of cancer

characteristics. We also assume that u1 = 0 and MD = 0 (i.e., the dead cell have no mobility

or velocity). Thus, the movement of the dead cells is dominated by necrosis and dead cell

degradation.

Following the nondimensionalization in section 2.4 we nondimensionalize the system equa-

tions using the oxygen diffusion length scale and the mitosis rate of the CP cells as the time

scale. These can be estimated as l ≈ 200µm and τ ≈ 1 day. The oxygen concentration is

measured against the concentration in the blood or in the medium in the vitro case. The

nondimensionalized equations are presented below.
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∂tφV =MV∇ · (φV∇µ) + SV −∇ · (φV us)

∂tφW =MW∇ · (φW∇ν) + SW −∇ · (φWuw)

∂tφD =SD

∂tφSC =MV∇ · (φSC∇µ) + SSC −∇ · (φSCus)

µ =αVWφV (φW − φ̄VW )2 − αHW (φW − φ̄HW )2φH −
1

2
φ2
TφH +

1

2
φTφ

2
H

− αV itroφ2
WφH − αWDHφ

2
Wφ

2
DφH + αVWDHφV φ

2
Wφ

2
Dφ

2
H

− αVWDHφ
2
V φ

2
Wφ

2
DφH + αV φVH(−φV )− αHφHH(−φH)

− 2ε2∆φV − ε2∆φW − 2ε2∆φD

ν =αVW (φW − φ̄VW )φ2
V + αHW (φW − φ̄HW )φ2

H − αHW (φW − φ̄HW )2φH

+ αV itroφWφ
2
H − αV itroφ2

WφH −
1

2
φ2
TφH − κ(C0 − 1)2φW

+ αWDHφWφ
2
Dφ

2
H − αWDHφ

2
Wφ

2
DφH + αVWDHφ

2
V φWφ

2
Dφ

2
H

− αVWDHφ
2
V φ

2
Wφ

2
DφH + αWφWH(−φW )− αHφHH(−φH)

− 2ε2∆φD − ε2∆φW − 2ε2∆φV

us =− ks(φs∇p+
γ

ε
φV∇µ−

γ

ε
φs∇ν)

uw =− kwφW∇p

0 =∇ · ((ksφ2
s + kwφ

2
W )∇p) + ks

γ

ε
∇ · (φsφV∇µ− φ2

s∇ν)

SV =φV φWC0 + λMTCφTCφWC0 − λNSCφSCH(C̄0 − C0)

− λNTCφTCH(C̄0 − C0)

SW =− φV φWC0 − λMTCφTCφWC0 + λlφDH(φ̄D − φD)

SD =λNSCφSCH(C̄0 − C0) + λNTCφTCH(C̄0 − C0)− λlφDH(φ̄D − φD)

SSC =(2P0 − 1)φSCφWC0 − λNSCφSCH(C̄0 − C0)
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0 =∇2C0 − C0(φSC + νUOTCφTC) + νPO(1− C0)Q(φT )

0 =∇2CT − CT (νUTφSC + νDT ) + νPTφTC

P0 =PMin + (PMax − PMin)

(
ξCW

1 + ξCW

)(
1

1 + ΦCT

)
∂tCW =DW∇2CW +Rf(CW , CWI)

∂tCWI =DWI∇2CWI +Rg(CW , CWI)

f(CW , CWI) =
C2
W

CWI

C0φSC − CW + u0C0φV

g(CW , CWI) =C2
WC0φSC − νDWICWI .

6.3 Base Case

Now we investigate the progression of a two dimensional tumor. The non dimensional pa-

rameters for the simulation are given in table 6.1. The parameters are chosen from experi-

mentation and parameter studies. The mobility of the viable cells is chosen to be MV = 10.0

to encourage tumor branching. The parameters for the self-renewal and feedback responses

are obtained from numerical experiments that require that W and WI form co-localized

patterns. In figure 6.1 the simulations of this model are shown at time t = 200 and in

figures, (D.1), (D.2), (D.3), (D.4), and (D.5) the evolution of the tumor species are shown.

The initial circular tumor develops a morphological instability as stem cell clusters begin

to appear at the viable cell boundary. This prediction of the stem cell arrangement was

confirmed in a recent study [68]. As the tumor begins to expand the stems cells become

more localized in discrete clusters. By time t = 40 a necrotic core has developed and as the

tumor continues to expand additional stem clusters begin to appear between the original

118



formations. The tumor expands in this manner until t = 140 where we begin to see buds

beginning to form at the corners of the the viable cell fraction. At time t = 180 we see the

stem cell clusters at the buds start to split into two new discrete groups. By t = 200 we see

that five buds are growing larger and developing their own necrotic cores. We also notice

the terminal cells are localized next to the stem cells and the concentration of terminal cells

is largest near the stem cell clusters.

The heterogeneous distribution of the stem and terminal cells is due to the Gierer-Meinhardt-

Turning equations (6.12) that lead to pattern formation of W which influences the self-

renewal fraction of SCs. In figure (6.1g) and (6.1h) the concentrations of W and WI are

shown at time t = 200 against the contour of the tumor. As expected the system forms

patterns that have isolated regions of high concentration that are co-localized. The regions

form near the boundary of the tumor because the production of W and WI depend on the

nutrient concentration and the nutrient concentration is the greatest at the boundary. Far

outside the tumor the concentration is uniform at 1 and the interior of the tumor has a

concentration near zero due to the rapid uptake. These prediction of the co-localized of W

and WI near the boundary have also been observed in in-vitro tumors [66, 42].

In the regions where W is large the self-renewal fraction P0 is also large. Thus, near the

boundary of the tumor the self-renewal fraction of the stem cells is higher than the interior

of the tumor as seen in figure (6.1g). Therefore the stem cells near the boundary of the

tumor have a higher mitosis rate than the stem cells near the interior. Hence, more stem

cells are produced near the tumor boundary compared to the interior. This is the mechanism

that produces the instability of the tumor and the eventual bud formation. The negative

feedback factor T also reinforces this behavior of the stem cell clusters. In figure (6.1f) the

stem cell clusters are in the region of lowest CT concentration inside the tumor. Thus, the

gradient of the concentration of T furthers the development of the stem cells and the growth

of the tumor.
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Figure (6.2a) shows that initially the tumor begins to grow as the stem cells uptake water and

nutrients. After time t = 30 we see a slow down in the growth rate when the necrotic core

develops and only the proliferating rim of the cells contribute to the growth. Additionally,

the stem cells begin to differentiate to the slower growing terminal cells. The growth rate of

the stem cells increases as the buds begin to form at the corners of the viable cells. We see

a delayed increase in the growth rate of the terminal cells and dead cells as the buds begin

to form necrotic cores. We see an initial dip in the water fraction volume as the stem cells

expand and uptake water and then a gradual increase as the necrotic expands. Then we see

another decrease as the buds form and uptake water.

We began the tumor simulation from an initial circular distribution of stem cells and water

with 80%, 20% respectively. After time t = 40 viable cell fraction maintains approximately

70% stem cells and approximately 30% terminal cells (figure 6.2b). These percentages can be

altered by adjusting the ξ and Φ parameters. The steady-state values for the concentration

of W and WI are obtained by setting f = g = 0 with C0 = 1 and letting φSC and φTC equal

the initial percentages. Thus we see,

CW (x, 0) = (1.2 + 0.1(rand− 0.5))φT (6.13)

CWI(x, 0) = 1.21φT . (6.14)

The concentrations are multiplied by φT to confine the initial conditions to the initial tumor.

Here rand is a random number that differs at each point in the computational grid and is

uniformly distributed in the unit interval. Lastly, there is no initial condition for CT and C0

since they satisfy quasi-steady diffusion equations.
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) stem cells φSC

(e) terminal cells φTC (f) TGF-β1 concentration CT

(g) wnt concentration CW (h) Dkk concentration CWI

Figure 6.1: Species for the non-constant water model with stem cells at time t = 200. The
contours are given for φV = 0.5 121



Table 6.1: Non-Dimensional Parameters

P0 Source Terms W and WI T Oxygen other

ξ = 50.0 λMTC = 0.1 νDWI = 1.0 νUT = 0.1 νUOTC = 1.0 γ = −0.1
Ψ = 0.01 λL = 0.2 DWI = 25.0 νDT = 0.0 νUOSC = 1.0 ε = 0.05
PMax = 1.0 λNCS = 5.0 DW = 1.0 νPT = 5.0 νPO = 0.5 MV = 10.0
PMin = 0.2 λNTC = 5.0 R = 50.0 D0 = 1.0 MW = 200.0

C0 = 0.10 u0 = 0.2 αVW = 0.25
φ̄D = 0.10 αWH = 0.25

κ = 0.035

(a) Total volume of cell species
(b) stem cell and terminal cell percent-
age of the viable cells

Figure 6.2: Total volume of the species with stem cells included and the stem cell and
terminal cell percentages of the viable cells

6.4 Parameter Variations

In this section we present parameter variations for three of the variables that influence the

growth and morphology of the tumor. In particular, we consider the Φ and ξ parameters that

influence the differentiation rate of the stem cells and the MV parameter that was shown to

encourage branching for low values.

The Φ parameter controls how sensitive the stem cell differentiation rate is to the differ-

entiation promoter T produced by the terminal cells. In other words, Φ is the sensitivity

of the differentiation rate to negative feedback. Figure (D.6) shows that parameter has a

range between 0.1 and 1.0 that drastically alters the morphology of the tumor. Increasing
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Φ by an order of magnitude from 0.01 to 0.1 does not significantly affect the morphology of

the tumor at t = 200. Figure (D.10) shows that although the Φ = 0.01 does produce more

stem cells the difference is minimal. For Φ = 0.01 the stem cell fraction of the viable cells

stabilizes at 70% and for Φ = 0.1 the fraction of stem cells stabilizes at 65%.

The parameter range between 0.1 to 1.0 produces the greatest difference in the tumor growth

and morphology. For Φ = 0.5, the tumor still exhibits the same budding behavior as seen

in figure (D.6), however, in this case, each bud only contains one stem cell cluster. In figure

(D.10a) we see the fewer stem cell clusters in the buds results in a slower stem cell growth

rate. Additionally, figure (D.10b) shows the increase in the terminal cell fraction whcih

accounts for 70% of the viable cells at this point in the tumors progression. Increasing the

parameter to Φ = 1.0, we no longer see any branching of the tumor although there is a slight

pentagon shape for the viable cells. This suggests that the localization of the stem cells still

impacts the tumor shape despite of their decreased level. Indeed the stem cell fraction has

now decreased to 10%. In figure (D.10) we can see that after the initial growth rate of the

tumor we see a decrease in the volume as the stem cells differentiate to terminal cells and

the slower increase in then number of the terminal cells cannot out pace cell death in the

necrotic core and the tumor collapses back to its steady state.

Increasing the parameter Φ once again from 1.0 to 10.0 yields a smaller tumor that is almost

entirely terminal cells. The stem cells are hardly discernible in the figure at about 1%. Note

that for this high negative feedback rate we see the tumor stabilizes at approximately t = 40

with a radius of 3.7. Thus, compared to the model without the cell lineages, this stable tumor

has a much smaller radius and a smaller necrotic core. As the tumor in this case is mainly

composed of terminal cells, the slower mitosis rate of the viable cells results in a smaller

compact tumor.

The parameter ξ measures the sensitivity of the stem cell differentiation factor to the self-

renewal promoter W produced by the stem cells positive feedback. Here we see the counter-
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intuitive behavior that increasing the positive feedback on the growth parameter decreases

the volume of the tumor. Indeed figure (D.11) shows that during the initial growth phase

the higher parameter value produces a slightly larger tumor. Then a sharp increase in the

growth rate is observed when the viable cells begin to bud and produce new branches. The

lower the parameter value the sooner the tumor begin this second growth phase. Although,

if ξ is taken to be too small, most of the stem cells will differentiate and the tumor will

stabilize as in the Φ = 10.0 case. We can see that the higher this self-renewal parameter the

greater the percentage of the viable are stem cells. For ξ = 100 the tumor is approximately

82% stem cells and for ξ = 25 the tumor is approximately 55% stem cells. These stem cell

percentage give an indication why increasing this parameter delays the tumor branching.

Figure (D.8) shows that the smaller the parameter the more localized the stem cell cluster

are. The budding of the tumor occurs because stem cell clusters at the boundary have a

greater proliferation rate than the surrounding viable cells. If the stem cell density is too

high, as in the ξ = 100 case, the budding process will take longer as the surrounding cells

have a similar growth rate. For the ξ = 100 case we do see some early buds and the increase

growth rate of the viable rim has produced a larger necrotic core than the smaller parameters.

In the ξ = 25 case we see the stem cell clusters are much more localized. The initial necrotic

core is smaller that the other case due to the earlier branching and the buds have already

formed a necrotic core.

As mentioned in previous chapters the MV parameter determines how fast the viable cells

are able to more around the proliferating rim of the tumor. In figure (D.9) we see that

increasing the mobility parameter produces a rounder shape. For MV = 25 we no longer

see any branching of the tumor at the corners of the pentagon. For MV = 50 the tumor

becomes rounder and the pentagon shape that occurs for smaller mobility rates is no longer

present. Figure (D.12) we see the parameter MV does not significantly alter the stem cell

percentage of the viable cells. The minor variations occur because the higher mobility rates

decrease the spacing between the stem cell clusters. The figure also shows that tumors are
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stable for the higher mobility rates despite the non circular morphologies.

6.5 Conclusion

We see above that the model above is capable of producing a detailed morphology of a

hierarchically organized tumor that develops necrotic regions. The differing mitosis rates

of the cells species in tandem with the localized stem cell clusters generate morphological

instabilities that produce the budding and branching as the tumor develops. In addition, it

is also possible to produce stable tumor spheroids by increasing the viable cell mobility rate

or the differentiation promoter feedback gain. This is consistent with the results obtained

from the in constant water fraction model [23]. However, in the extension presented here

the tumors also contain a liquid necrotic core.

We also performed selected parameter studies that have clinical significance concerning the

tumor development. In particular, increasing the feedback gain of the stem cell differentiation

to the T factor shrinks and stabilizes the tumor size and morphology, respectively. Thus,

either increasing the stem cell sensitivity or producing more of this factor will reduce the size

of the tumor and decrease it invasive potential. Therapies targeting this negative feedback

pathway are currently underway [12, 14]. Further, increasing the sensitivity of the stem

cells to W factor delays the invasiveness of the tumor. The higher the sensitivity to W , or

the more W there is in the system, the greater the delay until the tumor forms buds and

invades the host tissue. Cancer treatments targeting this signaling pathway are also being

investigated [56, 63].
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Chapter 7

Conclusion

In this thesis we have developed a general mixture model that incorporates a non-constant

water fraction. A novel energy for the system was created that allows for different water

fractions to be considered in the host and viable cell regions. Further, this energy provides

a way to flux the water out of the necrotic region and produce stable tumor spheroids.

This feature of the model will be critical to performing model validation where the model

predictions can be compared with tumor spheroids grown experimentally in-vitro. Also, with

a non-symmetric initial condition we were able to produce an invasive tumor that displayed

behaviors characteristic of a malignant cancer in the preliminary stage of development.

We also performed one-at-a-time parameter variations under the symmetric and non-symmetric

initial conditions. The parameters that can influence the size of the stable tumor and the

growth rate were identified as they are important for experimental purposes. Additionally,

the parameter regimes that can destabilize the tumor in both size and shape were explored

and parameters that had little effect of the tumor progression were identified. Thus, we were

able to capture a wide range of tumor behavior by exploring different parameter regimes.

We also showed that the additional model-based terms that were added to the energy were
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necessary to capture the physically realistic tumor behavior. In particular, we are now able

to model and control to a certain degree the effects of different water fraction levels in the

host and the tumor.

Finally, the non-constant water fraction model was extended to the include cancer stem cells

and their progeny. The model is capable of producing a detailed invasive morphology of a

tumor that also develops a largely liquid necrotic core. It is also capable of forming stable

tumors with heterogeneous cell distributions. A parameter study of the positive and negative

feedback gains for the stem cells show how the morphology of the tumor is dependent on the

sensitivity to these parameters and possible avenues for therapy are seen.

Future directions for this work can proceed in two basic directions. The first way is to in-

corporate additional biophysical processes. Tissue elasticity, angiogenesis, viscolastic effects,

and ECM degradation are not considered and could improve the predictive power of the

model. It is well known that tumor growth produces stress on the surrounding host tissue

and recent studies have shown the importance of growth induced tissue stress in tumor de-

velopment [19, 17]. Thus, the stress produced by the tumor on its surrounding environment

needs to be incorporated into the model to capture the physiological affect the tumor has

on its microenvironment. The second direction this work can proceed is to validate the

model with in-vitro experiments. The stable tumor spheroids predicted by this model can

be compared against tumor spheroids developed in in-vitro cultures to help refine the model

and increase its predictive power. Additionally, this model can also be extended to include

therapy. An extension of this type was done for the cell lineage model in [23]. However, with

the non-constant water fraction model considered here we have a more realistic viable cell

and liquid distributions that will result in more accurate therapy levels and agent uptake

mechanisms. Thus, this model can provide a more accurate way to model drug uptake by the

tumor and the tumor response. Ultimately, the model should help advance the development

of precision medicine.
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(a) t = 0 (b) t = 40 (c) t = 80

(d) t = 120 (e) t = 160 (f) t = 200

(g) t = 240 (h) t = 280 (i) t = 320

(j) t = 360 (k) t = 400

Figure A.1: viable cells φV r = 3
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(a) t = 0 (b) t = 40 (c) t = 80

(d) t = 120 (e) t = 160 (f) t = 200

(g) t = 240 (h) t = 280 (i) t = 320

(j) t = 360 (k) t = 400

Figure A.2: water φW , r = 3
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(a) t = 0 (b) t = 40 (c) t = 80

(d) t = 120 (e) t = 160 (f) t = 200

(g) t = 240 (h) t = 280 (i) t = 320

(j) t = 360 (k) t = 400

Figure A.3: dead cells φD, r = 3
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(a) t = 0 (b) t = 40 (c) t = 80

(d) t = 120 (e) t = 160 (f) t = 200

(g) t = 240 (h) t = 280 (i) t = 320

(j) t = 360 (k) t = 400

Figure A.4: pressure p, r = 3
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(a) t = 0 (b) t = 40 (c) t = 80

(d) t = 120 (e) t = 160 (f) t = 200

(g) t = 240 (h) t = 280 (i) t = 320

(j) t = 360 (k) t = 400

Figure A.5: viable cells φV , r =
√

3
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(a) t = 0 (b) t = 40 (c) t = 80

(d) t = 120 (e) t = 160 (f) t = 200

(g) t = 240 (h) t = 280 (i) t = 320

(j) t = 360 (k) t = 400

Figure A.6: water φW , r =
√

3
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(a) t = 0 (b) t = 40 (c) t = 80

(d) t = 120 (e) t = 160 (f) t = 200

(g) t = 240 (h) t = 280 (i) t = 320

(j) t = 360 (k) t = 400

Figure A.7: dead cells φD, r =
√

3
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(a) t = 0 (b) t = 40 (c) t = 80

(d) t = 120 (e) t = 160 (f) t = 200

(g) t = 240 (h) t = 280 (i) t = 320

(j) t = 360 (k) t = 400

Figure A.8: pressure p, r =
√

3
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(a) t = 0, r = 2.3368 (b) t = 200, r = 2.3368

(c) t = 0, r = 4.0472 (d) t = 40, r = 4.0472

(e) t = 200, r = 2.3368 (closeup)

Figure A.9: In figures (a) and (b) Two non-symmetric initial conditions with different radii
are shown against the contours (φV = 0.5) for circular initial condition with the same volume.
In figures (c) and (d) the evolution of the non-symmetric initial conditions are show against
the contours of the evolved symmetric tumors with the same volumes.
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(a) t = 0 (b) t = 10

(c) t = 20 (d) t = 30

Figure A.10: The early time evolution for the non-symmetric initial condition with r = 3.
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) size of the radius

(e) Tumor for λl = 0.05

Figure B.1: cell types of λl variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

(c) total tumor volumes

Figure B.2: Total volume of λl variations
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) size of the radius

Figure B.3: cell types of κ variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.4: Total volume of κ variations
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) size of the radius

(e) morphology of the tumor for MV = 25

Figure B.5: cell types of MV variations at t = 200
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(a) t = 150 (b) t = 160

(c) t = 170 (d) t = 180

(e) t = 190 (f) t = 200

Figure B.6: tumor evolution for MV = 25
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(a) t = 200 (b) t = 300

(c) t = 400 (d) t = 500

Figure B.7: viable cell evolution for MV = 25
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.8: Total volume of MV variations
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(a) viable cells φV (b) water φW

(c) dead cells φD

(d) size of the radius

(e) host φH (f) φH (solid line), φV (dash line)

Figure B.9: cell types of φHW variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.10: Total volume of φHW variations
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) host φH

Figure B.11: cell types of φ̄HW = 1.0 variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.12: Total volume of φ̄HW = 1.0 variations
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) size of the radius

(e) percentage of the prescribed water level to the
attained water level

Figure B.13: cell types of φVW variations at t = 200
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(a) φV close up (b) evolution of φV for φ̄VW = 5.0 close up

(c) nutrient n

Figure B.14: φVW variations
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.15: Total volume of φVW variations
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(a) MV = 100 (b) MV = 200

(c) MV = 300 (d) MV = 400

Figure B.16: viable cells for φVW = 5.0 with Q̃(φT ) at t = 200
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(a) Total tumor volume for φ̄VW = 0.4, φ̄VW = 0.5
with Q̃(φT ) and different MV

(b) One dimensional cross section of φ̄VW = 0.5
with Q̃(φT ) and MV = 300

Figure B.17: Tumor volume and morphology for new nutrient production
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) nutrient levels

(e) size of the radius (f) width of the viable cell region

Figure B.18: cell types of C̄0 variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.19: Total volume of C̄0 variations
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) size of the radius

(e) average nutrient concentration

Figure B.20: cell types of νPO variations at t = 200

164



(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.21: Total volume of νPO variations
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) size of the radius

Figure B.22: cell types of MW variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.23: Total volume of MW variations
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) size of the radius

Figure B.24: cell types of γ variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.25: Total volume of γ variations
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(a) pressure (b) water velocity uw

(c) viable cell and host velocity us

Figure B.26: pressure and velocities for γ variations at t = 200
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(a) viable cells φV (b) water φW

(c) dead cells φD (d) size of the radius

(e) viable cells for small λn

Figure B.27: cell types of λn variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

(c) Total tumor volume

Figure B.28: Total volume of λn variations
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(a) viable cells φV (b) viable cells φV close-up

(c) water φW (d) dead cells φD

(e) close up of tumor-host interface,
viable cells (solid line), host cells (dashed line)

(f) size of the radius

Figure B.29: cell types of ε variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.30: Total volume of ε variations

174



(a) viable cells φV (b) water φW

(c) dead cells φD
(d) Tumor-Host interface, φT (solid lines), φH
(dashed lines)

(e) size of the radius

Figure B.31: cell types of αVW variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.32: Total volume of αVW variations
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(a) viable cells φV (b) water φW

(c) dead cells φD
(d) Tumor-Host interface, φT (solid lines), φH
(dashed lines)

(e) size of the radius (f) host cells φH

Figure B.33: cell types of αWH variations at t = 200
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure B.34: Total volume of αWH variations
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(a) viable cells φV , λl = 1.0 (b) viable cells φV , λl = 0.5 (c) viable cells φV , λl = 0.2

(d) viable cells φV , λl = 0.1 (e) viable cells φV , λl = 0.05

(f) water φW , λl = 1.0 (g) water φW , λl = 0.5 (h) water φW , λl = 0.2

(i) water φW , λl = 0.1 (j) water φW , λl = 0.05

Figure C.1: water and viable cells of λl variations at t = 400
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(a) dead cells φD, λl = 1.0 (b) dead cells φD, λl = 0.5 (c) dead cells φD, λl = 0.2

(d) dead cells φD, λl = 0.1 (e) dead cells φD, λl = 0.05

Figure C.2: dead cells of λl variations at t = 400
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Figure C.3: Contours of the viable cells at φV = 0.5 for λl variations at t = 400
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Figure C.4: Contours of the viable cells at φV = 0.5 for λl variations at t = 400

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.5: Total volume of λl variations
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(a) viable cells φV , κ = 0.005 (b) viable cells φV , κ = 0.015 (c) viable cells φV , κ = 0.025

(d) viable cells φV , κ = 0.035 (e) viable cells φV , κ = 0.045

(f) water φW , κ = 0.005 (g) water φW , κ = 0.015 (h) water φW , κ = 0.025

(i) water φW , κ = 0.035 (j) water φW , κ = 0.045

Figure C.6: water and viable cells of κ variations at t = 400
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(a) dead cells φD, κ = 0.005 (b) dead cells φD, κ = 0.015 (c) dead cells φD, κ = 0.025

(d) dead cells φD, κ = 0.035 (e) dead cells φD, κ = 0.045

Figure C.7: dead cells of κ variations at t = 400
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Figure C.8: Contours of the viable cells at φV = 0.5 for κ variations at t = 400
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Figure C.9: Contours of the viable cells at φV = 0.5 for κ variations at t = 400

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.10: Total volume of κ variations
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(a) viable cells φV , MV = 200 (b) viable cells φV , MV = 100

(c) viable cells φV , MV = 50 (d) viable cells φV , MV = 25

(e) water φW , MV = 200 (f) water φW , MV = 100

(g) water φW , MV = 50 (h) water φW , MV = 25

Figure C.11: water and viable cells of MV variations at t = 300
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(a) dead cells φD, MV = 200 (b) dead cells φD, MV = 100

(c) dead cells φD, MV = 50 (d) dead cells φD, MV = 25

Figure C.12: dead cells of MV variations at t = 300
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Figure C.13: Contours of the viable cells at φV = 0.5 for MV variations at t = 300
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t=50 t=100 t=150

t=200 t=250 t=300

t=0

Figure C.14: The evolution of the viable cells for MV = 25
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MV=50 MV=45 MV=40

MV=35 MV=30 MV=25

Figure C.15: Comparison of the viable cells for MV between 25 and 50 at t = 300

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.16: Total volume of MV variations
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(a) viable cells φV , φ̄HW = 0.2 (b) viable cells φV , φ̄HW = 0.4

(c) viable cells φV , φ̄HW = 0.6 (d) viable cells φV , φ̄HW = 0.8

(e) water φW , φ̄HW = 0.2 (f) water φW , φ̄HW = 0.4

(g) water φW , φ̄HW = 0.6 (h) water φW , φ̄HW = 0.8

Figure C.17: water and viable cells of φ̄HW variations at t = 300
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(a) dead cells φD, φ̄HW = 0.2 (b) dead cells φD, φ̄HW = 0.4

(c) dead cells φD, φ̄HW = 0.6 (d) dead cells φD, φ̄HW = 0.8

(e) host φH , φ̄HW = 0.2 (f) host φH , φ̄HW = 0.4

(g) host φH , φ̄HW = 0.6 (h) host φH , φ̄HW = 0.8

Figure C.18: dead cells and host of φ̄HW variations at t = 300
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Figure C.19: Contours of the viable cells at φV = 0.5 for φ̄HW variations

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.20: Total volume of φ̄HW variations
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(a) viable cells φV , αWH = 0.25 (b) viable cells φV , αWH = 2.5

(c) water φW , αWH = 0.25 (d) water φW , αWH = 2.5

(e) dead cells φD, αWH = 0.25 (f) dead cells φD, αWH = 2.5

(g) host φH , αWH = 0.25 (h) host φH , αWH = 2.5

Figure C.21: species of the φ̄HW = 0.8 case with αWH = 0.25 and αWH = 2.5 at t = 300
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Figure C.22: Contours of the viable cells at φV = 0.5 for φ̄HW = 0.8 with αWH = 0.25 and
αWH = 2.5 at t = 300

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.23: Total volume of φ̄HW = 0.8 with αWH = 0.25 and αWH = 2.5
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(a) viable cells φV , κ = 0.035 (b) viable cells φV , κ = 0.05

(c) viable cells φV , κ = 0.075 (d) viable cells φV , κ = 0.1

(e) water φW , κ = 0.035 (f) water φW , κ = 0.05

(g) water φW , κ = 0.075 (h) water φW , κ = 0.1

Figure C.24: viable cells and water for the in vitro case (φ̄HW = 1.0) with κ variations at
t = 400

198



(a) dead cells φD, κ = 0.035 (b) dead cells φD, κ = 0.05

(c) dead cells φD, κ = 0.075 (d) dead cells φD, κ = 0.1

Figure C.25: dead cells for the in vitro case (φ̄HW = 1.0) with κ variations at t = 400
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Figure C.26: Contours of the viable cells at φV = 0.5 for φ̄HW = 1.0 with κ = 0.035 and
κ = 0.15 at t = 400

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.27: Total volume of φ̄HW = 1.0 with κ variations
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Figure C.28: nutrient concentration for φ̄HW = 1.0 with κ = 0.035 at t = 400
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(a) viable cells φV , t = 380 (b) viable cells φV , t = 400 (c) viable cells φV , t = 420

(d) viable cells φV , t = 440 (e) viable cells φV , t = 460 (f) viable cells φV , t = 480

(g) water φW , t = 380 (h) water φW , t = 400 (i) water φW , t = 420

(j) water φW , t = 440 (k) water φW , t = 460 (l) water φW , t = 480

Figure C.29: viable cells and water for the vitro κ = 0.035 case
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(a) viable cells φV , φ̄VW = 0.1 (b) viable cells φV , φ̄VW = 0.2 (c) viable cells φV , φ̄VW = 0.3

(d) viable cells φV , φ̄VW = 0.4 (e) viable cells φV , φ̄VW = 0.5

(f) viable cell shedding φ̄VW = 0.1(g) viable cell shedding φ̄VW = 0.2
(h) viable cell shedding φ̄VW =
0.3

(i) viable cell shedding φ̄VW = 0.4(j) viable cell shedding φ̄VW = 0.5

Figure C.30: viable cells of φ̄VW variations and the cell shedding at t = 250
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(a) water φW , φ̄VW = 0.1 (b) water φW , φ̄VW = 0.2 (c) water φW , φ̄VW = 0.3

(d) water φW , φ̄VW = 0.4 (e) water φW , φ̄VW = 0.5

(f) dead cells φD, φ̄VW = 0.1 (g) dead cells φD, φ̄VW = 0.2 (h) dead cells φD, φ̄VW = 0.3

(i) dead cells φD, φ̄VW = 0.4 (j) dead cells φD, φ̄VW = 0.5

Figure C.31: water and dead cells of φ̄VW variations at t = 250
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(a) nutrients C0, φ̄VW = 0.4 (b) nutrients C0, φ̄VW = 0.5

Figure C.32: nutrient levels of φ̄VW = 0.4 and φ̄VW = 0.4 at t = 250

  

Figure C.33: Contours of the viable cells at φV = 0.5 for φ̄VW variations at t = 250
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

(c) total tumor volume closeup

Figure C.34: Total volume of φ̄VW variations
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(a) viable cells φV , φ̄VW = 0.5
(b) viable cell shedding, φ̄VW =
0.5

(c) water φW , φ̄VW = 0.5

(d) dead cells φD, φ̄VW = 0.5 (e) nutrients φD, φ̄VW = 0.5

Figure C.35: φ̄VW = 0.5 at t = 150 with Q(φT ) = 0.03
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t=0 t=30 t=60

t=90 t=120 t=150

Figure C.36: evolution of viable cells for φ̄VW = 5.0 and Q(φT ) = 0.03

208



  

Figure C.37: Contours of the viable cells at φV = 0.5 for φ̄VW variations at t = 150

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.38: Total volume of φ̄VW variations
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(a) viable cells φV , C̄0 = 0.05 (b) viable cells φV , C̄0 = 0.10 (c) viable cells φV , C̄0 = 0.20

(d) water φW , C̄0 = 0.05 (e) water φW , C̄0 = 0.10 (f) water φW , C̄0 = 0.20

(g) dead cells φD, C̄0 = 0.05 (h) dead cells φD, C̄0 = 0.10 (i) dead cells φD, C̄0 = 0.20

(j) nutrient level C0, C̄0 = 0.05 (k) nutrient level C0, C̄0 = 0.10 (l) nutrient level C0, C̄0 = 0.20

Figure C.39: cell types of C̄0 variations at t = 400
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Figure C.40: Contours of the viable cells at φV = 0.5 for C̄0 variations

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.41: Total volume of C̄0 variations
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(a) viable cells φV , νPO = 0.1 (b) viable cells φV , νPO = 0.25 (c) viable cells φV , νPO = 0.5

(d) viable cells φV , νPO = 1.0 (e) viable cells φV , νPO = 2.0

(f) water φW , νPO = 0.1 (g) water φW , νPO = 0.25 (h) water φW , νPO = 0.5

(i) water φW , νPO = 1.0 (j) water φW , νPO = 2.0

Figure C.42: water and viable cells of νPO variations at t = 350
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(a) dead cells φD, νPO = 0.1 (b) dead cells φD, νPO = 0.25 (c) dead cells φD, νPO = 0.5

(d) dead cells φD, νPO = 1.0 (e) dead cells φD, νPO = 2.0

Figure C.43: dead cells of νPO variations at t = 350
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Figure C.44: Contours of the viable cells at φV = 0.5 for νPO variations at t = 350

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.45: Total volume of νPO variations
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(a) viable cells φV , MW = 400 (b) viable cells φV , MW = 200

(c) viable cells φV , MW = 100 (d) viable cells φV , MW = 50

(e) water φW , MW = 400 (f) water φW , MW = 200

(g) water φW , MW = 100 (h) water φW , MW = 50

Figure C.46: water and viable cells of MW variations at t = 400
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(a) dead cells φD, MW = 400 (b) dead cells φD, MW = 200

(c) dead cells φD, MW = 100 (d) dead cells φD, MW = 50

Figure C.47: dead cells of MW variations at t = 400
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Figure C.48: Contours of the viable cells at φV = 0.5 for MW variations

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.49: Total volume of MW variations
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(a) viable cells φV , γ = −0.5 (b) viable cells φV , γ = −0.1 (c) viable cells φV , γ = 0.0

(d) viable cells φV , γ = 0.1 (e) viable cells φV , γ = 0.5

(f) water φW , γ = −0.5 (g) water φW , γ = −0.1 (h) water φW , γ = 0.0

(i) water φW , γ = 0.1 (j) water φW , γ = 0.5

Figure C.50: water and viable cells of γ variations at t = 400
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(a) dead cells φD, γ = −0.5 (b) dead cells φD, γ = −0.1 (c) dead cells φD, γ = 0.0

(d) dead cells φD, γ = 0.1 (e) dead cells φD, γ = 0.5

(f) pressure p, γ = −0.5 (g) pressure p, γ = −0.1 (h) pressure p, γ = 0.0

(i) pressure p, γ = 0.1 (j) pressure p, γ = 0.5

Figure C.51: dead cells and pressure for γ variations at t = 400
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Figure C.52: Contours of the viable cells at φV = 0.5 for γ variations at t = 400

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.53: Total volume of γ variations
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(a) viable cells φV , λn = 25.0 (b) viable cells φV , λn = 5.0

(c) viable cells φV , λn = 1.0 (d) viable cells φV , λn = 0.5

(e) water φW , λn = 25.0 (f) water φW , λn = 5.0

(g) water φW , λn = 1.0 (h) water φW , λn = 0.5

Figure C.54: water and viable cells of λn variations at t = 400
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(a) dead cells φD, λn = 25.0 (b) dead cells φD, λn = 5.0

(c) dead cells φD, λn = 1.0 (d) dead cells φD, λn = 0.5

Figure C.55: dead cells of λn variations at t = 400

222



  

Figure C.56: Contours of the viable cells at φV = 0.5 for λn variations

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.57: Total volume of λn variations
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(a) viable cells φV , ε = 0.1 (b) viable cells φV , ε = 0.05 (c) viable cells φV , ε = 0.025

(d) water φW , ε = 0.1 (e) water φW , ε = 0.05 (f) water φW , ε = 0.025

(g) dead cells φD, ε = 0.1 (h) dead cells φD, ε = 0.05 (i) dead cells φD, ε = 0.025

(j) host φH , ε = 0.1 (k) host φH , ε = 0.05 (l) host φH , ε = 0.025

Figure C.58: cell types of ε variations at t = 350
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(a) contours for ε variation
(b) contour evolution for ε = 0.025, the contours
are shown for every 40 time units. The contour
go from black to blue as the tumor evolves.

Figure C.59: Contours of the viable cells at φV = 0.5 for ε variations for t = 350

(a) t = 0 (b) t = 50 (c) t = 100

Figure C.60: viable cells of ε = 0.025

(a) ε = 0.1 (b) ε = 0.05 (c) ε = 0.025

Figure C.61: viable cells shedding for ε variations at t = 350
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(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.62: Total volume of ε variations
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(a) viable cells φV , αVW = 2.5 (b) viable cells φV , αVW = 0.25(c) viable cells φV , αVW = 0.025

(d) water φW , αVW = 2.5 (e) water φW , αVW = 0.25 (f) water φW , αVW = 0.025

(g) dead cells φD, αVW = 2.5 (h) dead cells φD, αVW = 0.25 (i) dead cells φD, αVW = 0.025

Figure C.63: cell types of αVW variations at t = 400
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Figure C.64: Contours of the viable cells at φV = 0.5 for αVW variations

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.65: Total volume of αVW variations
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(a) viable cells φV , αWH = 2.5 (b) viable cells φV , αWH = 0.25(c) viable cells φV , αWH = 0.025

(d) water φW , αWH = 2.5 (e) water φW , αWH = 0.25 (f) water φW , αWH = 0.025

(g) dead cells φD, αWH = 2.5 (h) dead cells φD, αWH = 0.25 (i) dead cells φD, αWH = 0.025

(j) host φH , αWH = 2.5 (k) host φH , αWH = 0.25 (l) host φH , αWH = 0.025

Figure C.66: cell types of αWH variations at t = 400
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Figure C.67: Contours of the viable cells at φV = 0.5 for αWH variations

(a) φV (dashed line), φD (dash dot line), and φT
(solid line)

(b) water φW

Figure C.68: Total volume of αWH variations
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Appendix D

Symmetric Tumor with Stem Cells

Parameter Study Slides
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(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 140 (i) t = 160

(j) t = 180 (k) t = 200

Figure D.1: viable cells φV for the base case
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(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 140 (i) t = 160

(j) t = 180 (k) t = 200

Figure D.2: water φW for the base case
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(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 140 (i) t = 160

(j) t = 180 (k) t = 200

Figure D.3: dead cells φD for the base case
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(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 140 (i) t = 160

(j) t = 180 (k) t = 200

Figure D.4: stem cells φSC for the base case
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(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

(g) t = 120 (h) t = 140 (i) t = 160

(j) t = 180 (k) t = 200

Figure D.5: terminal cells φTC for the base case
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(a) viable cells φV , Φ = 0.01 (b) viable cells φV , Φ = 0.1 (c) viable cells φV , Φ = 0.5

(d) viable cells φV , Φ = 1.0 (e) viable cells φV , Φ = 10.0

(f) stem cells φSC , Φ = 0.01 (g) stem cells φSC , Φ = 0.1 (h) stem cells φSC , Φ = 0.5

(i) stem cells φSC , Φ = 1.0 (j) stem cells φSC , Φ = 10.0

Figure D.6: viable cells and stems cells for Φ variations at t = 200
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(a) terminal cells φTC , Φ = 0.01 (b) terminal cells φTC , Φ = 0.1 (c) terminal cells φTC , Φ = 0.5

(d) terminal cells φTC , Φ = 1.0 (e) terminal cells φTC , Φ = 10.0

Figure D.7: terminal cells for Φ variations at t = 200
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(a) viable cells φV , ξ = 25 (b) stem cells φSC , ξ = 25 (c) terminal cells φTC , ξ = 25

(d) viable cells φV , ξ = 50 (e) stem cells φSC , ξ = 50 (f) terminal cells φTC , ξ = 50

(g) viable cells φV , ξ = 100 (h) stem cells φSC , ξ = 100 (i) terminal cells φTC , ξ = 100

Figure D.8: viable cell species for ξ variations at t = 200
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(a) viable cells φV , MV = 10 (b) stem cells φSC , MV = 10 (c) terminal cells φTC , MV = 10

(d) viable cells φV , MV = 25 (e) stem cells φSC , MV = 25 (f) terminal cells φTC , MV = 25

(g) viable cells φV , MV = 50 (h) stem cells φSC , MV = 50 (i) terminal cells φTC , MV = 50

Figure D.9: viable cell species for MV variations at t = 200
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(a) Total volume of the viable cell species, φV
(solid), φSC (dashed), φTC (dash-dotted)

(b) stem cell and terminal cell percentage of the
viable cells, φSC (solid), φTC (dashed)

Figure D.10: Φ variations

(a) Total volume of the viable cell species, φV
(solid), φSC (dashed), φTC (dash-dotted)

(b) stem cell and terminal cell percentage of the
viable cells, φSC (solid), φTC (dashed)

Figure D.11: ξ variations
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(a) Total volume of the viable cell species, φV
(solid), φSC (dashed), φTC (dash-dotted)

(b) stem cell and terminal cell percentage of the
viable cells, φSC (solid), φTC (dashed)

Figure D.12: MV variations
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