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Abstract

Machine learning has found unique applications in nuclear medicine from photon detection 

to quantitative image reconstruction. While there have been impressive strides in detector 

development for time-of-flight positron emission tomography, most detectors still make use of 

simple signal processing methods to extract the time and position information from the detector 

signals. Now with the availability of fast waveform digitizers, machine learning techniques have 

been applied to estimate the position and arrival time of high-energy photons. In quantitative 

image reconstruction, machine learning has been used to estimate various corrections factors, 

including scattered events and attenuation images, as well as to reduce statistical noise in 

reconstructed images. Here machine learning either provides a faster alternative to an existing 

time-consuming computation, such as in the case of scatter estimation, or creates a data-driven 

approach to map an implicitly defined function, such as in the case of estimating the attenuation 

map for PET/MR scans. In this article, we will review the abovementioned applications of 

machine learning in nuclear medicine.
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I. INTRODUCTION

NUCLEAR medicine uses radioactive tracers to study biochemical processes in human and 

animals. It has wide applications in clinical practice and biomedical research. Depending 

on the radioisotope that is used, the emitted photons are either detected by single photon 

emission computed tomography (SPECT) or positron emission tomography (PET) scanners. 

Here we focus on PET, although similar techniques are also applicable to SPECT. In PET, 

positron emitters, such as 11C and 18F, are used to tag molecules of interest. After being 

injected into a subject, the radiotracer decays and emits a positron, which annihilates with 

an electron nearby producing two 511 keV photons traveling in opposite directions. By 

detecting the two photons, PET can identify the line of response (LOR) that contains the 

positron annihilation. The total number of coincidence photons recorded in each LOR (after 

accounting for various corrections) is proportional to the line integral of the radiotracer 

distribution. Therefore, PET data can be reconstructed by the inverse of Radon transform, 

such as the filtered backprojection algorithm.

In the past two decades, PET instrumentation has seen tremendous development. The latest 

PET scanners are capable of measuring the time of flight difference of the two photons 

with ~200 ps time resolution (corresponding to a location uncertainty of 3 cm) and thus 

limits the location of the annihilation site to a short line segment. This substantially reduces 

the uncertainty in PET measurements and correspondingly the noise amplification during 

image reconstruction. With the introduction of PET/CT scanners and more recently PET/MR 

scanners, functional images from PET are accompanied by high-resolution anatomical 

images from CT or MRI, which not only improves the clinical workflow, but also increases 

the diagnostic accuracy. During the same period, model-based iterative image reconstruction 

has also been developed to improve image quality and has become main-stream in PET 

applications.

Now, machine learning offers a new wave of opportunities for PET imaging. Machine 

learning has been applied to quantitative image reconstruction to estimate various correction 

factors and to reduce radiation dose. The development of high-speed electronics allows 

direct acquisition of digital waveforms from PET detectors and thus provides opportunities 

of using machine learning to estimate the position, energy, and arrival time of annihilation 

photons. It is worth noting that machine learning approaches neither solve the inverse 

problem, nor a minimization (maximum likelihood) problem, but rather provide results via a 

functional mapping. The accuracy of the mapping highly depends on the complexity of the 

machine learning model, how representative of the training data are, and the effectiveness 

of the training procedure. In this article, we will provide a review of the machine learning 

applications in PET detectors and in quantitative image reconstruction. Section II provides 

some basic background information on PET scanners for readers who are not familiar 

with PET. Section III reviews machine learning applications in PET detectors with a focus 

on the estimation of position and arrival time of incident photons. Section IV reviews 

machine learning applications in quantitative image reconstruction, including the estimation 

of attenuation map from MRI image, estimation of scatter events, image denoising, and 

image reconstruction. Section V provides a summary and future outlook.
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II. AN INTRODUCTION TO PET SCANNERS

PET uses a ring of detectors to detect annihilation photons produced from positron 

annihilations (Fig. 1). Two photons detected within a predefined coincidence timing window 

(about 2–6 ns depending on the size of the field of view and time of flight capabilities 

of the scanner) are considered to be from the same positron annihilation and form a 

coincidence event. PET detectors usually consist of scintillation crystals that convert 511 

keV photons into visible light and photosensors such as a photomultiplier tube (PMT) 

or silicon photomultiplier (SiPM), that convert visible light into an electronic signal. To 

obtain good spatial resolution, the scintillation crystals are often cut into small elements. 

However, to improve the signal-to-noise ratio of PET data, the scintillation crystals need to 

be sufficiently thick in the radial direction in order to efficiently stop and detect the photons. 

Therefore, the scintillators are usually long fingerlike crystals for high spatial resolution and 

high stopping power detectors. The bulky size of the scintillation crystals that are required 

to detect sufficient numbers of 511 keV photons is one of the fundamental reasons that 

PET detectors have lower spatial resolution than CT detectors, which are designed to detect 

photons with energies ranging from 10’s to ~150 keV

Besides identifying the position of annihilation photons, the timing resolution of PET 

detectors plays a critical role in identifying correct annihilation photon pairs. Because PET 

detectors are operated independently, the number of random coincidences (coincidences 

formed by detecting two photons from two independent positron annihilations) between 

any two detectors is proportional to the event rate on each of the two detectors and the 

width of the coincidence timing window. Thus, the better the timing resolution is, the 

tighter the coincidence timing window can be set to reduce random coincidences. Early 

commercial PET scanners using bismuth germanate (BGO) crystals had a timing resolution 

of around 2 ns (FWHM1), while the latest PET scanners have achieved a timing resolution 

approaching 200 ps (FWHM) using lutetium oxyorthosilicate (LSO) crystals [1]. Although 

the coincidence timing window cannot be less than the time for light to travel across the 

object, better timing resolution can more accurately pinpoint the annihilation site along the 

LOR joining the two detectors. Such time-of-flight (TOF) information can be used to reduce 

uncertainty in the data and thus reduce the variance in the reconstructed PET images [2].

Another type of undesired background events are scattered photons. A scatter event is 

formed when one or both 511 keV photons undergo Compton scatter and deviate from 

the original path before reaching the PET detectors. Scatter events do not carry accurate 

position information of the positron annihilation and reduce the contrast of PET images. 

The physics of photon scattering in tissue is well understood. The angular distribution of 

scattered photons is given by the Klein–Nishina formula and the energy ratio before and 

after scattering is given by

E′
Eγ

= 1
1 + Eγ

511keV (1 − cosθ)

1FWHM: full width at half maximum

Gong et al. Page 3

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Eγ is the energy of the incident photon and E′ is the photon energy after scatter. For 

511keV photons, the above equation reduces to

E′
Eγ

= 1
2 − cosθ

Clearly an ideal detector with perfect energy resolution can reject scattered events. Modern 

PET scanners have an energy resolution of around 10% (at 511 keV), which allows efficient 

rejection of large angle scatter, but there are still a significant number of scattered events 

being recorded that need to be corrected for during image reconstruction. A typical clinical 

PET scan has, very roughly, a 1:1:1 ratio between true coincidences, scattered events, and 

random events.

In addition to reducing image contrast, Compton scattering causes photon loss along the 

original LOR in the form of photon attenuation. Because two coincidence photons are 

attenuated independently along opposite directions of the same LOR, the overall attenuation 

effect is independent of the positron annihilation position in the LOR and thus can be 

easily measured using an external source. The ability to accurately correct for photon 

attenuation makes PET a fully quantitative imaging modality. For standalone PET scanners, 

attenuation factors are measured using a rotating positron source outside the patient. With 

the introduction of PET/CT scanners, the attenuation map is typically computed from CT 

images using bilinear scaling with consideration of the x-ray energy. The conversion formula 

for the attenuation coefficient at voxel j is [3]

μj = 9.6e−5 HUj + 1000 if HUj < Tℎresℎold ,
a HUj + b if HUj > Tℎresℎold .

where HUj is the Hounsfield units (HU) units of voxel j in the CT image. a, b and Threshold 

are values depending on the energy of the x-ray and are given in [3]. The attenuation factors 

can then be calculated by

aii = e−∑j lijμj

where lij denotes the interaction length of LOR i with voxel j.

Recently, PET/MR scanners have been introduced. Compared with x-ray CT, MRI does 

not involve any ionizing radiation and also provides better soft tissue contrast. In addition, 

MR images acquired simultaneously with PET scan can also aid in motion correction 

and partial volume correction for PET imaging. However, MR images are unrelated to 

photon attenuation and there is no simple expression that can convert an MR image to 

the corresponding attenuation map. This is one of the areas where machine learning has 

been extensively studied to find the unknown transformation between an MR image and the 

attenuation map of a patient.
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All the aforementioned corrections aim at reducing bias in quantitation PET imaging. 

Another aspect to improve the quantitative accuracy is to reduce the noise in PET 

images. One solution is to improve the photon detection efficiency of PET scanners 

by using more scintillation crystals and better geometric coverage. As an example, the 

EXPLORER consortium has recently built a 2-m long PET scanner that increase the photon 

detection efficiency by nearly 40-fold for total-body imaging [4, 5]. Another avenue to 

reduce noise is through image reconstruction and image processing. Model-based iterative 

image reconstruction methods with regularization have been developed and adopted by 

manufacturers [6]. Machine learning also finds natural applications in this area given its 

success in natural image denoising. In the following sections, we will discuss machine 

learning applications in PET detector and image reconstruction in detail.

III. MACHINE LEARNING IN PET DETECTORS

The role of the detectors used in a PET system is, first and most importantly, to absorb the 

high energy 511 keV annihilation photons with high efficiency (> 90% total absorption), and 

second to provide accurate measures of (1) the detection time (σ ∼ 100 − 200 picoseconds), 

(2) the energy deposited by the absorbed photon (σ ∼ 10 − 20keV at 511 keV), and (3) the 

location where the 511 keV photon was absorbed in the detector (σ ∼ 3 mm for clinical 

scanners, ~ 1 mm for preclinical scanners). These are all critical parameters that largely 

influence the performance of the PET system, including sensitivity, spatial resolution, time-

of-flight reconstruction, and scatter and random coincidence rejection.

The vast majority of detectors used in PET imaging systems are based on scintillation 

detection, where the 511 keV photon is absorbed in a high-density scintillating crystal (e.g. 

L(Y)SO, BGO, LaBr3, etc.) that produces a short burst of light with a rise time of a few 

nanoseconds or less, and a decay time of approximately 10 – 1000 ns depending on the 

scintillator composition. The scintillation light propagates through the scintillator crystal and 

is collected by a fast photodetector (i.e. SiPM, PMT). Dedicated front-end electronics are 

used to digitize and decode the photodetector signals, including computing the total charge 

collected by each photodetector, the arrival time of the scintillation light estimated from the 

rising edge of the signal, and in some cases measuring quantities related to the pulse shape 

such as the exponential rise and decay times. Many PET systems make use of dedicated 

ASICs and FPGA logic for decoding the photodetector signals into discrete values [7, 8].

There are three common scintillator detector designs used in PET, all of which have been 

employed in commercial and research PET systems (Figure 2). First and most intuitive is the 

1:1 coupling configuration, where long fingerlike scintillator crystals (e.g. ∼ 4 × 4 × 20 mm
typical for modern clinical PET systems) are coupled to individual photodetector elements 

(e.g. SiPMs) (Figure 2a) [9]. This approach provides good light collection and trivial 

estimation of the position-ofinteraction, but since the crystal size is limited by the size 

of the photodetector, achieving detector spatial resolution better than ~4 mm is challenging. 

A way to overcome this is through optical multiplexing, where the light exiting the back of 

the scintillator crystals is allowed to spread through a light guide and is collected by multiple 

photodetectors (Figure 2b) [10]. In this way, the light exiting each crystal acts as a point 

source forming a cone-like distribution of light on the photodetector arrangement, which can 
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be relatively easily discriminated from the adjacent crystals using analytical methods such 

as center-of-gravity to parameterize the light distribution [11]. This optical multiplexing 

approach reduces the number of photodetectors needed to resolve a large crystal array, 

even up to ~40-fold reduction [12], and allows the use of much small scintillator crystals 

for superior spatial resolution compared to what is realistically achieved with 1:1 coupling 

(Figure 2c). However, the use of light sharing across multiple photodetectors typically 

results in light losses that degrades energy and timing resolution, and may limit the ability 

to resolve edge crystals in the array. Lastly, instead of pixelated crystals, a continuous 

monolithic scintillator crystal (e.g. 50 × 50 × 20 mm) can be used and read-out with an array 

of photodetector elements coupled to one crystal face (Figure 2d) [13, 14]. Similar to 

the light sharing approach, monolithic detectors rely on measuring the spatial distribution 

of the collected scintillation light to estimate the position-of-interaction, but with the 

ability for arbitrary localization precision. This approach presents a number of potential 

advantages, such as higher sensitivity and intrinsic measurement of the depth-of-interaction 

in the scintillator for better spatial resolution capabilities, however, the relationship between 

position-of-interaction and the measured light distribution can be highly non-linear mainly 

at the crystal edges, making position estimation difficult especially for thick (i.e. ~20 

mm) monolithic crystals. Additionally, these detectors typically require complicated and 

time-consuming calibration procedures that present challenges in scaling to a complete PET 

system compared to pixelated detectors.

It is understood from this that the spatial and temporal properties of the scintillation light 

collected by the photodetectors carries all the information describing the 511 keV photon’s 

position-, energy-, and time-of-interaction in the detector. Unfortunately, the number of 

scintillation photons produced in response to the 511 keV photon absorption (i.e. the 

scintillator conversion efficiency) is generally quite low; with L(Y)SO for example, the 

most commonly used scintillator in PET, approximately 30,000 photons are produced in the 

visible wavelength range [15], of which approximately 10 – 30% are ultimately converted 

by the photodetector after losses in the crystal and the photodetector conversion efficiency. 

Therefore, the choice of signal processing and estimation algorithms used to extract these 

parameters from the photodetector signals represents a crucial component of the detector 

performance and that of the PET system. It is not surprising, given the statistics-limited 

nature of scintillation combined with the multiple random processes involved in photon 

detection and light transport in the crystal, that machine learning methods have been pursued 

for many of the signal processing and estimation tasks used in PET detectors.

A. Position (x, y, z):
The most prevalent use of machine learning in PET detectors has been in estimating the 

position-of-interaction of the 511 keV photon in the detector. In nearly all detectors used in 

PET imaging systems, (that is, excluding semiconductor detectors such as CZT or TlBr), the 

spatial distribution of the scintillation light as collected by the assembly of photodetectors is 

used to determine the location where the photon was absorbed in the detector. Solving this 

inverse problem then requires fitting the function that maps the scintillation light distribution 

to the position-of-interaction, but this is often challenging given the quanta-limited nature 

of scintillation detection and non-linear light distributions near the edges of the detector. 
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Additionally, effects such as the random number and isotropic directionality of the emitted 

scintillation light, the possibility for multiple reflections of the scintillation light inside the 

detector volume, and the relatively high likelihood of one or more Compton interactions of 

the 511 keV photon in the scintillator volume before photoelectric absorption, make the task 

of solving the inverse problem a difficult statistical task and well-suited for machine learning 

techniques.

In general, with PET scintillation detectors, the total charge collected by each photodetector 

for a photon interaction approximates the number of scintillation photons collected by the 

photodetector, and the vector or matrix containing the set of photodetector outputs is used 

for position discrimination. For practical considerations related to minimizing the number of 

readout channels from each detector, the photodetector signals are sometimes multiplexed, 

for instance row-column summing of the photodetector array outputs. In either case, the 

discretized detector readout is well-suited and readily used as the input for several machine 

learning algorithms [16], including library approaches such as k-nearest neighbors (kNN) 

[17], regression methods such as support vector machines (SVM) [18], or neural network 

approaches such as multilayer perceptron (MLP) or convolutional neural networks (CNN) 

[19]. The overall aim of these machine learning methods is to achieve superior localizing 

performance compared to conventionally used linear methods such as center-of-gravity 

calculation. In the following sections, we review some of the detectors and machine learning 

positioning algorithms that have been described in the literature.

1) Monolithic Detectors: The main challenge in monolithic detectors is solving the 

inverse problem that maps the light distribution to the position-of-interaction in the 

presence of limited-statistics noise and the highly non-linear behavior near the edges of 

the crystal, a problem well suited for machine learning methods. Common to all supervised 

machine learning techniques for monolithic detectors is the requirement for labeled training 

data needed to train the algorithm (i.e. fitting the function that maps the measured 

light distribution to position-of-interaction). This process typically requires irradiating the 

detector with a pencil-beam 511 keV photon source, but more efficient data acquisition 

methods in combination with data clustering techniques have been recently developed as 

discussed in the following section.

a) Positioning estimation:  One of the earliest applications of machine learning in 

PET detectors involved the use of artificial neural networks to estimate 2D (i.e. without 

depth-of-interaction) or 3D position-of-interaction in 10 – 20 mm thick L(Y)SO or BGO 

monolithic crystals read out by an arrangement of SiPMs, APDs, or PMTs [16, 20–24]. 

In these detectors, the charge collected by each photodetector is input to a feed-forward 

multilayer artificial neural network consisting of an input layer containing the set of input 

nodes that each receive one photodetector signal, followed by one or more fully connected 

hidden layers and their activation functions (e.g. sigmoid, tanh, or rectified linear), and 

lastly the output, which can be a regression or classification output that represents the 2D 

or 3D position-of-interaction in the crystal volume. Training data were mainly acquired 

using pencil-beam irradiation at several irradiation angles with respect to the front surface 

of the crystal, and the neuron weights were obtained by either error back-propagation 
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Levenberg-Marquardt or algebraic training, yielding overall similar performance. However, 

Levenberg-Marquardt is often preferred due to its simple architecture that is more readily 

suitable for FPGA implementation. Compared to other estimators such as center-of-gravity 

or fitting methods, the neural network-based approaches, in general, resulted in superior 

detector spatial resolution, mainly due to reduced positioning bias at the edges of the 

detector where linear estimation methods such as Anger logic fail to accurately decode the 

non-linear light distribution.

A similar approach using a gradient tree boosting algorithm [25] has also been described 

for 3D positioning in monolithic detectors [26, 27]. The choice of algorithm here was 

influenced by practical considerations relating to implementing the positioning algorithm 

into the system electronics. Gradient tree boosting algorithms rely only on binary decision 

operations, making them a relatively straightforward and a computationally relaxed 

algorithm for fast event processing and satisfying the memory restrictions of FPGAs.

Lastly, Peng et al have developed a quasi-monolithic detector employing a stack of thin 

scintillator slabs read-out on their lateral sides with SiPMs [28]. The main purpose of using 

a stack of thin monolithic crystals is for unambiguous depth-of-interaction determination 

along with identifying inter-crystal scatter occurring in different crystal layers for improved 

spatial resolution and sensitivity. A CNN approach is used, where the map populated by 

the charge collected from each of the SiPMs is used as the input array to the convolutional 

layer, followed by a classification output that maps the light distribution to a 2D position-of-

interaction in each layer. The CNN approach may be useful here when considering Compton 

interactions across two or more crystal layers, such that the CNN can receive the matrix 

of the photodetector outputs from all layers simultaneously in order to identify the correct 

photon trajectory.

Aside from neural networks, lazy-learning machine learning algorithms such as k-nearest 

neighbors have been investigated for monolithic PET detectors [29–31]. Here, the 

photodetector outputs are stored for a large number of events acquired with the spatially 

defined calibration source, then a test event is assigned to the position-of-interaction that 

contains the most events that are similar to the test event (i.e. minimizing Euclidean distance 

between the photodetector outputs). The library methods can achieve good performance 

similar to neural network methods, but do not require a training operation to fit the 

light distribution mapping function, instead the function is determined purely empirically. 

However, these library approaches necessitate storing a large number of library signals, and 

for each test event, comparing with a large number of signals stored in the library. This is, of 

course, computationally intensive and challenging from a data storage perspective for online 

data processing.

b) Calibration:  Training the machine learning algorithms described previously requires 

the acquisition of events from a 511 keV source with known beam geometry [32, 33]. 

The relationship between the interaction position and the spatial distribution of light is 

typically obtained using a dedicated calibration data acquisition that uses a pencil beam or 

fanbeam source of 511 keV photons to control the interaction location in the scintillator. 
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For 3D position estimation capabilities, additional oblique or side-on irradiation is generally 

required, further complicating the calibration procedures.

One limitation in this method of obtaining training data is the uncertainty in the true or 

first interaction location in the scintillator, limited by the high probability of Compton 

scattering in the scintillator prior to total photoelectric absorption. Obtaining ground-truth 

training data via Monte Carlo simulations may be possible to unambiguously determine all 

positions-of-interaction, however resolving the mismatch between the simulations and the 

true experimental conditions is likely challenging.

2) Pixelated Detectors: With pixelated scintillation PET detectors, analytical linear 

estimation techniques such as Anger logic in combination with a pre-defined look-up-table 

are adequate for positioning, and therefore there has been very few investigations into 

the use of machine learning or other statistical estimators for estimating the crystal-of-

interaction. In fact, the absence of a requirement for a complicated estimation method with 

these detectors likely contributes to the prevalent use of this detector design in commercial 

systems.

However, machine learning can still play an important role in improving the positioning 

accuracy of these common detectors, primarily in the identification of inter-crystal scatter 

events [34]. Inter-crystal scatter is the process by which the 511 keV photon first undergoes 

Compton scattering in one or multiple locations in the monolithic scintillator volume, or 

different crystal elements in a pixelated detector, before undergoing photoelectric absorption 

at a different location or crystal element. In pixelated detectors, the described scattering-

photoelectric cascade may also occur within a single crystal (intra-crystal scatter). Although 

intra-crystal scatter does not lead to crystal misidentification, the resulting ambiguity in the 

depth-of-interaction degrades spatial resolution, and also often degrades energy resolution 

when using long scintillator crystals. Depending on the amount of energy deposited in each 

detector element (i.e. scattering angle), the position-of-interaction can be misidentified away 

from the true line-of-response vector. Additionally, inter-crystal scatter often results in a loss 

of detection sensitivity: by depositing energy in multiple crystals, the event may be rejected 

by the energy window for the crystal to which the event is assigned, even if the full 511 keV 

was deposited throughout the interaction chain. The main challenge in correctly identifying 

and positioning inter-crystal scatter events is the very low light output generated from the 

low angle Compton scattering events and, making the determination of the correct 511 keV 

photon trajectory in the crystal difficult.

A method to identify inter-crystal scatter events using SVM was described for a multi-layer 

DOI detector [35]. The SVM method is used to distinguish multiple peaks in the measured 

light distribution indicative of inter-crystal scatter, from single peaks that represent purely 

photoelectric absorption. The SVM method achieves the best identification performance 

compared to peak searching and principal component analysis methods. The main benefit of 

SVM compared to neural network-based methods, aside from the algorithm simplicity and 

absence of an often time-consuming network training step, is that SVM regression always 

finds the global minimum whereas training multilayer neural networks is more susceptible 
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to stopping at a local minimum [18]. However, the study used only simulated data, making 

obtaining the training data labels trivial; doing so experimentally remains challenging.

A neural network approach for identifying and including characterized inter-crystal 

coincidences in the reconstruction was proposed by Michaud et al for the LabPET scanner 

[36]. During the pre-processing step, the coincidence sorter identifies triplet coincidences 

that likely arise from inter-crystal scatter based on the measured energies and hit positions 

in the detectors. Using Monte Carlo simulated training data, a feed-forward artificial 

neural network is trained to identify the most probably line-of-response from the triplets 

and preserve the true coincidences. This method showed highly promising results, most 

importantly providing a 54% increase in sensitivity with measured data generated from the 

LabPET research PET scanner.

B. Timing

One of the most strongly impacted measures from the low light output in a PET 

detector is the time-of-interaction estimate, since only the first few scintillation photons 

contribute meaningfully to the timing estimate, placing greater pressure on the signal 

processing algorithm used to extract the timing information from the photodetector signals. 

The precision in estimating the time-of-interaction is defined as the timing resolution, 

and determines the time-of-flight (TOF) capabilities and random coincidence rejection 

of the scanner. Similar to position estimation, numerous physical processes contribute 

to timing uncertainty that presents difficulty for the use of analytical models used for 

timing discrimination. These include the generation of scintillation light, variable light 

propagation in the scintillator crystal that is influenced by the detector design and fabrication 

methods, timing jitter introduced by the electrical conversion and charge amplification in 

the photodetector, and random noise sources such as dark noise, optical cross-talk and 

after-pulsing.

In nearly all PET detectors, the time-of-interaction is estimated using simple linear methods 

that measure the time at which the photodetector signal crosses a pre-defined threshold [37]. 

However, these methods condense all the potentially useful timing information contained 

in the detector waveforms into a single linear estimator, not likely an optimal use of the 

information contained in photodetector signals. Since the time-varying photodetector signal 

carries all the information that describes the time-of-interaction in the scintillator, the timing 

discrimination algorithm should ideally be based on digitizing the rising edge of the signals 

and extracting features in the photodetector signals that describe the time-of-interaction 

using a non-linear statistical estimator, a task well suited for a variety of machine learning 

algorithms. A second motivator for the use of supervised machine learning algorithms for 

PET timing estimation comes from a practical standpoint; unlike other estimation tasks 

encountered in radiation detection (e.g. position estimation), it is trivial to experimentally 

obtain ground-truth labeled training data for TOF-PET. Since the two 511 keV annihilation 

photons are produced at the same time, the time-of-flight difference between the photons is 

determined exactly by the speed of light and the difference in distance from the annihilation 

site to each of the detectors in which the photons interact. Ground-truth TOF-labeled 

training data can thus be easily obtained by moving a point source of radiation over a 
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small distance range between a pair of detectors, a range of known time-of-flight differences 

can be achieved.

One of the earliest investigations of machine learning timing discrimination was described 

by Leroux et al [38], who used a multilayer artificial neural network to estimate the time-

of-interaction from the digitized photodetector waveforms. Two detectors were compared, 

an LSO-APD detector and a BGO-APD detector, both tested in coincidence with a fast 

reference detector used to trigger the waveform digitizer. However, the neural network 

timing discriminator provided negligible improved in timing resolution compared to digital 

constant fraction discrimination, possibly because of the low sampling rate used in the study 

(100 MHz).

We recently developed a technique to estimate the time-of-flight difference for a coincident 

511 keV event directly from the digitized waveforms of two LYSO – PMT detectors using 

CNNs (Figure 3) [39]. The main motivation for using CNNs here is their ability to learn 

complex representations of the input data with minimal human engineering [40], and thus is 

suitable for estimating the time-of-interaction from the waveforms that are confounded by 

several complex random processes. Due to the convolution operations applied in the hidden 

layers CNNs also benefit from translational invariance, meaning the output is not biased 

by the exact alignment or synchronization of the waveforms with respect to the digital 

sampling period. However, careful pre-processing and training setup must be ensured to 

avoid over-fitting or fitting to local minima rather than the global minimum.

For each coincident event the digitized waveforms are stored as a 2D vector, where the 

first dimension is the number of detector channels (two in this case, but there is likely no 

limitation in adding more channels, for example waveforms from multiple photodetectors 

common in PET block detectors). The second dimension represents the length of the 

digitized waveform. Since essentially all the timing information is contained in the first 

few nanoseconds of the waveforms, it is not necessary to store the entire waveform for TOF 

estimation, the rising edge is sufficient. Ground-truth labeled training data was acquired by 

stepping a 68Ge point source +/− 7.5 cm about the midpoint between the detectors in 5 mm 

increments.

Timing resolution obtained with the test dataset was compared for CNN timing estimation 

vs. leading edge and constant fraction discrimination implemented on the digitized signals 

in post-processing. We found a significant improvement in coincidence timing resolution 

with CNNs vs. two conventional methods, 20% (231 ps vs. 185 ps) for leading edge and 

23% (242 ps vs. 185 ps) for CFD. We recently extended CNN TOF estimation to detectors 

comprised of 20 mm long BGO crystals coupled to SiPMs, a configuration that has been 

previously investigated for TOF-PET by exploiting the prompt Cerenkov emissions in the 

BGO crystal for improved timing compared to the slow scintillation light [41, 42]. We found 

a similar improvement in timing resolution, achieving a coincidence timing resolution of 371 

ps FWHM and 1136 ps FWTM.

A similar method to extract the time-of-interaction directly from the detector waveforms was 

proposed with a library approach [43]. A waveform library is generated for a range of time-
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of-flight values between coincident detectors in the J-PET system, then the time-of-flight 

for a test event is assigned based on the most similar library waveforms. Again, this library 

approach is attractive due to its implementation simplicity and excellent correspondence 

between the test and library waveforms, but is challenging to implement due to high 

computational demands of comparing the test waveforms with a large number of library 

waveforms.

C. Summary

Table I summarizes the challenges and machine learning methods used in PET detectors. An 

important technology development that has enabled some of the described machine learning 

signal processing algorithms, especially for timing estimation, has been fast, affordable 

waveform digitizers [44]. It is expected that these technologies may be incorporated into the 

system electronics of PET scanners in the future to facilitate the use of machine learning or 

other statistical estimators for position and timing estimation [45, 46]. Another technology 

needed for realistic implementation of machine learning methods in PET detectors is 

their deployment in the front-end electronics (i.e. FPGA) to avoid the pitfalls associated 

with storage and offline processing of the raw digitized waveforms from each of the 

photodetectors, which is especially challenging at high event rates. Fortunately, several of 

the machine learning methodologies described here were already implemented in FPGAs 

and showed possibility for high event rate data processing [26, 38, 47].

One challenge facing the practical use of machine learning methods for PET detector 

signal processing is the need for more efficient and scalable calibration methods. The 

pencil-beam methods are extremely time consuming (sometimes up to several days for a 

single detector), and require a dedicated experimental setup with robotic stages. Recently, 

there have been several methods proposed for improving the practical acquisition of training 

data for monolithic detectors [26, 32, 48–50]. For monolithic detectors, these approaches 

have focused on simplifying or accelerating the training data acquisition, such as using fan-

beam or even uniform irradiation instead of pencil-beam irradiation. These accelerated data 

acquisition techniques are then accompanied by unsupervised data clustering techniques 

such as k-means or self-organizing maps to obtain the training dataset. Spatial resolution is 

generally maintained with these methods, indicating that good quality training data can be 

produced with the data clustering methods.

For timing estimation with CNNs or another similar approach, one concern and possible 

limitation is the need to acquire training data over a range of time-of-flight differences. In 

our initial work with CNN TOF estimation, a stepped point source was used to vary the 

TOF. The practical difficulties in scaling this data acquisition to a larger system containing 

more than two detector modules can easily be appreciated. It would be highly desirable to be 

able to acquire labeled training data using a stationary point source or some other practical 

method. We postulate that it is possible to obtain pseudo-ground-truth labeled TOF training 

data by shifting the digitized waveform pairs either forward or backward in time relative 

to one another using digital post-processing techniques. In this way, we can obtain training 

data with arbitrary TOF labels. This method was recently validated [51], demonstrating that 

nearly identical timing resolution can be obtained with training data acquired with digital 
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TOF offsets compared to using a stepped point source. The further development of practical 

methods for acquiring the training data needed for machine learning algorithms represents a 

crucial component in translating these methods to the system-level.

In the future, we envision the use of machine learning signal processing algorithms that 

simultaneously estimate position-, energy-, and time-of-interaction directly from the set of 

photodetector waveforms. This would not only provide a convenient all-in-one estimator, 

but likely also provide overall better detector performance. Although position, energy, and 

time-of-interaction are treated as independent parameters in the detector signal processing, 

they are in fact not physically independent. Most evident is the dependence of the timing 

estimate on the position-of-interaction and energy deposited by the photon; the position-of-

interaction in the scintillator influences the propagation time of the scintillation light to 

each photodetector, while the energy deposited by the 511 keV photon determines the 

number of scintillation photons and therefore the early photon flux that limits and potentially 

biases the timing estimate. Neural network methods using CNNs have already shown to be 

successful for timing discrimination using digitized waveforms, and it appears plausible that 

this method could be adapted to include the waveforms from multiple photodetectors in the 

CNN input, from which the CNN is able to estimate the position-of-interaction.

IV. MACHINE LEARNING IN QUANTITATIVE IMAGE RECONSTRUCTION

For PET imaging, the measured emission sinogram data y ∈ RM × 1 can be modeled as a 

collection of independent Poisson random variables and its mean y ∈ RM × 1 is related to 

the tracer distribution image x ∈ RL × 1 through an affine transform [52]

y = NAPx + s + r, (3.1)

where P ∈ RM × L is the detection probability matrix, N ∈ RM × M and A ∈ RM × M are 

diagonal matrices containing the LOR efficiency factors and attenuation factors (AFs), 

respectively, s ∈ RM × 1 is the expectation of scattered events, and r ∈ RM × 1 denotes 

the expectation of random events. M is the number of LORs and L is the number of 

image voxels. For quantitative image reconstruction, all the components in (3.1) need to 

be estimated either before the image reconstruction or during the reconstruction process. 

Among them, the detection probability matrix P  is usually pre-computed based on the 

scanner geometry and detector properties. The (i, j)tℎ element, P ij, denoting the probability 

of a photon pair produced in voxel j reaching detector pair i, can be computed either 

analytically using ray-tracing techniques [53], or by Monte Carlo simulations [52] or 

real point source measurements [54]. The LOR efficiency factors Nii model the effect of 

imperfect detector sensitivities and are often estimated using calibration scans of sources 

with known activity distribution [55]. The expectation of random events r can be estimated 

from either the single-event rates or delayed window measurements [56]. In contrast, the 

estimation of the attenuation factors Aii and the expectation of scatter events are more 

challenging, at least in some cases, and will be discussed in more detail below. Furthermore, 

even with everything estimated properly, the reconstructed PET images still suffer high 

noise due to limited number of detected coincidence photons counts, as well as the ill-
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posedness of the detection probability matrix P . Machine learning has provided new ways 

to tackle these problems encountered in PET image reconstruction. A range of studies 

have demonstrated its feasibility and advantages over traditional methods. Below we will 

review the development of machine learning methods for attenuation correction, scatter 

correction, noise reduction, and also integration of deep learning methods in iterative image 

reconstruction [57–59].

A. Attenuation correction

Correction for the object attenuation of annihilation photons is essential for accurate 

estimation of radiotracer concentration using PET because on average less than 10% 

annihilation photon pairs can escape from an adult human body without attenuation. In 

PET/CT, the attenuation map can be easily obtained from the CT image using a bilinear 

scaling transform. However, this is not the case in PET/MR scanners because the MR signal 

is not directly related to the photon attenuation coefficients, and there is no simple transform 

that can convert a MR image into the attenuation map directly.

To address this issue, many methods have been proposed to generate pseudo-CT images 

from MR images based on T1-weighted, Dixon, ultra-short echo time (UTE) or zero 

echo time (ZTE) sequences. One commonly used approach relies on an atlas generated 

from existing patient CT and MR image pairs [60–63]. A pseudo CT is created by non-

rigidly registering the atlas to the patient MR image. With the availability of time-of-flight 

information, joint estimation of the emission and attenuation images is also achievable [64–

68]. Another approach is based on image segmentation: the MR image is segmented into 

different tissue classes with the corresponding attenuation coefficients assigned to produce 

the attenuation map [69–76]. Various machine learning methods have also been proposed, 

including fuzzy-mean clustering [77], random forest [78], and Gaussian mixture regression 

[79]. For more details about these methods, readers are referred to previous review papers 

specifically about MR-based AC [80–84].

One major challenge in generating the attenuation map from an MR image is the 

differentiation between bone and air regions which have similar intensities in most 

MR sequences but vastly different attenuation coefficients for high-energy photons. 

Misclassification between bone and air can introduce large errors in PET images, affecting 

the quantification accuracy and resulting in misdiagnosis. One susceptible region is the nasal 

sinuses due to the proximity of bone and air regions. Bone-air misclassification can result 

in considerable quantification errors in the frontal lobe. This can cause inaccurate diagnosis 

for frontotemporal dementia. Another region is the mastoid part of the temporal bone, the 

mastoid process, which is also mixed with bone and air. Inaccuracy of bone prediction 

for this region can change the apparent cerebellar uptake, which can affect tracer kinetic 

analysis of the entire brain, because the cerebellum is often adopted as the reference region 

in kinetic modeling [85]. In addition to bone-air misclassification for the brain, bone-fat 

mis-classification in pelvic regions can also cause large errors in, or near, bone regions [86, 

87].
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LCNN CT p, CT g

= β1∑
i

CT g
i − CT p

i + β2∑
i

∇xCT g
i − ∇xCT p

i

+ ∇xCT g
i − ∇xCT p

i + ∇xCT g
i − ∇xCT p

i ,

(3.2)

where the first item denotes the pixel-to-pixel difference between the ground truth CT , CTg, 

and the network generated pseudo‐CT , CT p, and the last three items represent the gradient 

difference between CTg and CT p along the x, y and z directions, respectively. β1 and β2 are 

used to adjust the strength of pixel-intensity and pixel-gradient differences. The L1  norm 

is preferred over the L2  norm to preserve more edge details, because in CT images the 

bone region is often thin, and the contrast is high. The network structures employed in 

most of these CNN approaches are based on the U-net structure [97], due to its excellent 

performance for synthetic image generation as first demonstrated in [88]. In [89], the 

segmented region labels were employed as training labels so that the pseudo-CT generation 

is translated to the MR tissue classification problem. In [90], both Dixon and ZTE images 

were used as the network input. In order to efficiently exploiting the input information, 

the convolution modules in deeper layers of the U-net were replaced by group-convolution 

modules, similar to the modules used in ResNeXt [98]. In [90, 94], multiple-contrast MR 

images were used as the network input. Apart from employing MR images as the network 

input, simultaneously reconstructed emission and attenuation images from TOF PET data 

have also been used [93, 96]. Furthermore, there have been studies trying to train a CNN to 

directly map reconstructed images without attenuation correction to images with attenuation 

correction [99–101]. In these cases, no additional anatomical image was utilized. One 

advantage of deep neural networks is the ability to incorporate information from multiple 

sources without any preprocessing. However, finding an efficient network structure for the 

optimal information integration is worth further investigation.

Beyond CNNs, several studies have exploited generative adversarial networks (GANs) [102–

104] for pseudo-CT generation. In GAN, there are two networks trained simultaneously 

[105], one is the generative network G( ⋅ ) and the other is the discriminative network D( ⋅ ). 
The generative network takes the MR image as the network input and outputs the pseudoCT 

image. The discriminative network D( ⋅ ) then determines whether the pseudo-CT generated 

from G( ⋅ ) is fake (0) or real (1), and outputs a value between 0 and 1. During the training 

phase, the generative network G( ⋅ ) tries to generate the pseudoCT image close to the real 

CT image, and the discriminative network attempts to distinguish the pseudo-CT image 

from the real CT image. The whole process can be expressed as an alternating minimax 

optimization of the discriminative loss defined as

LD(MR, CT ) = logD(CT ) + log(1 − D(G(MR))) . (3.3)

Directly training GANs based on the discriminative loss defined in (3.3) is not easy [106] 

and several papers have thus combined the discriminative loss LD(MR, CT ) with the pixel-

intensity and pixel-gradient loss to improve the pseudo-CT image quality [107–109]. In 

[102], a combination of the discriminative loss and the pixel-to-pixel loss LCNN(G(MR), CT )
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defined in (3.2) is used. The improvement of adding the discriminative loss compared 

with using the pixel-to-pixel loss LCNN(G(MR), CT ) has been demonstrated. In [104], apart 

from the GAN for pseudo-CT image generation, another GAN for CT image segmentation 

was introduced to constrain the shape of the generated pseudo-CT. One requirement of 

combining the pixel-to-pixel loss or the segmentation-based loss with the discriminative loss 

is that the MR and CT images should be well registered. This is easy for brain regions, 

where rigid registration is sufficient. For other organs, such as the head and neck region and 

the lung region, accurate registration is more difficult. One solution to avoid the requirement 

of co-registration is using the cycle-consistency adversary network (Cycle-GAN), which 

was originally proposed for the style transfer using un-paired training data [110]. It has 

been demonstrated that pseudo-CT images can be generated for the brain regions based on 

T1-weighted MR images using a Cycle-GAN [103]. Currently the GAN-related approaches 

have only been applied to the brain [102–104] and pelvic regions [102]. More work in other 

body parts, such as the abdominal or head and neck regions, where registration errors are 

relatively large and GAN approaches could potentially have a greater impact, is still to be 

conducted.

B. Scatter correction

Compared with the estimation of random events, estimation of scatter within the patient is 

far more complex and time-consuming because scatter events depend on both the emission 

activity distribution and attenuation map. Usually an initial image reconstruction without 

scatter correction is performed to provide the emission activity distribution for scatter 

estimation. Then another image reconstruction is performed with the estimated scatter 

distribution. The procedure can be repeated several times for a more accurate scatter 

correction.

For the estimation of the scatter mean s, Monte Carlo simulation-based photon tracking 

is considered to be the gold standard, but it is very time-consuming to generate enough 

number of counts to reduce noise in the estimate. The 3D single scatter simulation (SSS) 

approach is widely adopted in commercial scanners due to its fast computational time [111, 

112]. However, SSS assumes only one scatter for each scattered event and there is still 

room for improvement when multiple scatters are considered. In theory, all the information 

required for scatter estimation is contained in the emission data and attenuation factors (AF). 

The latter determines the attenuation map and jointly they determine the emission image. 

Therefore, machine learning provides a suitable tool to find the mapping from the emission 

data and attenuation factors to the expectation of the scatter events.

Fig. 4 shows an example set of 2D sinograms from a patient PET scan, including the 

emission sinogram, the log of attenuation correction factor (ACF = 1/AF), and the scatter 

mean estimated using 3D SSS. The scatter mean sinogram is spatially smooth, and the 

distribution pattern is correlated with the emission data and log(ACF). Machine learning 

approaches can be used to learn the scatter-mean image, by training a mapping function with 

the emission data events and log(ACF) as the input. Once the mapping is learned during 

training, the inference process will take less time compared with current scatter estimation 

process. In addition, the Monte-Carlo-simulated scatter means can be employed as training 
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labels, which is much easier to be obtained compared to other medical imaging tasks as no 

extra patient datasets are needed. The predicted results can be better than the SSS approach 

as the learning process takes multiple scatters into consideration. However, the prediction 

can also fail if the testing data do not lie in the same space as the training data, due to 

abnormal activity distribution or new organ structures.

Currently there are several on-going efforts trying to use deep learning to estimate the 

scatter mean following some success in scatter prediction for x-ray CT [113, 114] . A 

U-net structure was used [97]. The emission sinogram, AF and log(ACF) were employed 

as the network input and the training label comes from the scatter mean estimated by 

the SSS approach. The training loss function was constructed based on the Poisson 

distribution assumption of the scatter events. The trained network can predict the scatter 

mean reasonably well for the brain region, with a normalized mean absolute error rate 

(NMAE2) of 4.17% compared to the SSS method [115]. For the prostate region, due to 

the influence of high uptake from the bladder as well as field-of-view limitations, the 

NMAE error can be as high as 14.11%. The advantage of the deep learning method is 

the computation speed: less than 30s for the CNN predication compared to 3.5 min for 

the SSS computation, for a whole-body PET scan with 5 bed positions. The computational 

advantage will be even greater if the CNN is used to predict the Monte-Carlo-based multiple 

scatter estimation. Apart from employing deep learning to predict the scatter mean, it is also 

feasible to estimate essential components of the scatter model. For example, a 1D Gaussian 

kernel can be applied to convolve the scatter mean estimated from SSS to approximate 

the multiple scatter estimation [116]. This convolution kernel can be replaced by a neural 

network to predict multiple scatter profiles from single scatter profiles as shown in [117]. 

The network input is the single scatter profile and the network output is the multiple scatter 

profile.

In addition to predicting scatter mean in the raw data space, the work in [99] proposed a 

joint correction of attenuation and scatter in the image space using a CNN. The network 

input was the uncorrected image (without attenuation and scatter corrections (NASC)), the 

label was the attenuation and scatter corrected image, and the L2 norm between the network 

output and the training label was chosen as the training objective function. The mean SUV 

differences (mean ±SD) compared with the CT-based attenuation and scatter correction 

were 4.0 ± 15.4%. The large variation of the CNN result was due to an outlier in the test 

subjects with a mean difference of 48.5 ± 10.4%. Another test subject also showed relatively 

large differences (–13.5%) for the tumor uptake. The existence of outliers highlights some 

potential pitfalls of deep learning-based methods. Part of the reason is that as the theory 

has shown, TOF PET data only determines the attenuation factors up to a constant, which 

means TOF PET data alone are not sufficient to determine both the emission activity image 

and attenuation map that are required for scatter estimation. Therefore, it may not be totally 

surprising that a deep CNN cannot perform perfect attenuation and scatter correction from 

2NMAE =
∑i DSEi − SSSi

∑i SSSi
, where DSEi is the network output and SSSi is the training label estimated based on SSS.
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NASC PET images. It also indicates that domain specific knowledge is still helpful in the era 

of deep learning.

Currently the potential of deep learning in scatter correction is still being explored. There 

is no large patient study performed to demonstrate the robustness of the deep learning 

approach for scatter estimation, so further evaluation is needed.

C. Noise reduction (denoising)

Due to limited counts detected and various physical degradation factors, PET images have a 

higher noise level3 compared to CT and MR images. Noise can reduce lesion detectability 

and introduce quantification errors, leading to inaccurate diagnosis/staging of diseases. In 

addition, for longitudinal studies or scans of pediatric populations, it is desirable to reduce 

the dose level of PET scans, which would further increase the noise level. The high noise 

level also prevents PET images from being reconstructed at its highest spatial resolution 

because post-reconstruction filtering is often required to reduce noise. Therefore, reducing 

image noise can allow PET images to be reconstructed at a higher spatial resolution, which 

will be beneficial for many PET applications, such as cancer detection and staging, and 

identification of Tau deposition pattern for tracking the progression of the Alzheimer’s 

disease.

Traditional methods for PET image denoising includes non-local mean method [118, 119], 

HYPR filter [120] and guided image filter [121]. Sparse representation approaches, such 

as dictionary learning, have been shown to improve PET image quality [122, 123]. Apart 

from dictionary learning, the prediction of high-quality image from low-quality image can 

also be treated as a regression problem, and the random forest regression method has also 

been investigated [124]. With the availability of PET/CT and PET/MR scanners, anatomical 

priors can be utilized for PET image denoising [125]. Also, the prior PET scans of the same 

patient can be used to reduce noise in follow-up PET scans [126, 127].

In recent years, deep learning methods have shown great potential for low-level image 

processing tasks, such as super resolution [128, 129] and denoising applications [130]. 

These methods have also been applied to static PET image denoising and demonstrated 

better performance than traditional denoising approaches for various tracers and tasks [131–

143]. For deep learning methods, most networks were trained with shorter-scan PET images 

as the input and longer-scan PET images as the label. Anatomical priors from MR/CT 

images can be used as additional network-input channels to improve PET image quality 

[131, 132, 135, 137, 138]. In [135] multicontrast MR images were employed as the network 

input. Again, this is one advantage of deep learning approaches as no user-defined weighting 

between low-quality PET and anatomical prior images is needed. Since PET images are 

intrinsically 3D, 3D convolutional operations have been proposed for PET images [133, 

136]. To reduce the trainable parameters and memory usage, 2D convolution has also been 

adopted by supplying multiple neighboring axial slices as additional network-input channels 

to utilize the axial information and reduce artefacts [132, 134]. In addition to CNNs, 

3Distribution of PET image noise is neither Gaussian nor Poisson. Only the measured data for each detector bin follow a Poisson 
distribution.
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GANs were also investigated [133, 141, 143]. Apart from the commonly used metrics to 

evaluate image quality shown in most of the studies, e.g. structural similarity index (SSIM), 

peak signal-to-noise ratio (PSNR), contrast-to-noise ratio (CNR), and contrast recovery 

coefficient (CRC) vs. standard deviation (STD), clinical image quality scores and amyloid 

status rated by radiologists were reported in [135]. Apart from denoising in the image 

domain, applications of CNN to pre-processing steps in the sinogram domain have also been 

explored, such as sinogram super-resolution [144] and gap filling [145].

One reason for the success of deep learning in computer vision is the availability of large 

amounts of training data. For medical imaging, acquiring a large number of training pairs 

is not an easy task. With the developments of realistic phantoms, such as BrainWeb [146] 

and XCAT [147], and advanced physics modeling approaches, data augmentation using 

simulated datasets is possible. In [134], phantom data were first exploited to initialize the 

network, and real datasets were employed to fine-tune the last several layers of the network. 

The benefits of this data augmentation approach are shown in Fig. 5. Recently the deep 

image prior framework [148] shows that the noisy image itself can be treated as the training 

label and intrinsic structures of the noisy image can be learned through network parameter 

optimization. No high-quality PET training labels are needed in this process. Following this 

framework, in [136], the MR or CT image from PET/CT or PET/MR scans was used as the 

network input and the noisy PET image itself was employed as the training label to perform 

image denoising.

One unique feature of PET is its intrinsic dynamic-imaging ability, by which tracer 

pharmacokinetic parameters and corresponding physiologic information can be derived 

[149]. In dynamic imaging, the collected coincidence data are divided into various frames 

in time. Based on specific kinetic models [150], parametric images, reflecting metabolism 

rate, receptor binding or perfusion rate, can be derived. Compared to static PET imaging 

with the same scanning time, the image quality of parametric images can be much worse for 

compartmental models due to the ill-posedness of the fitting procedure. There are two ways 

that a CNN can be applied to improve dynamic PET imaging. The first approach is to use a 

neural network to denoise dynamic PET images before the kinetic fitting step, by processing 

either one frame at a time [139] or all frames together [151, 152]. The frame-by-frame 

approach is similar the static PET image denoising, but the variation in tracer distribution 

and noise level among the dynamic PET frames requires special handling. In contrast, 

processing all the frames together can exploit both spatial and temporal information. The 

second approach is to train a network to map dynamic PET images to corresponding 

parametric images directly. Such direct mapping is especially useful for PET data with 

missing time points. For example, in [153] dynamic PET images from a partial scan, along 

with MR images providing cerebral blood flow (CBF) and structure information, were used 

to predict binding potential (BP) images derived from the full 60-min scan. The use of a 

CNN avoids the difficulty of providing an explicit model between the MR information and 

the binding potential. The BP image generated by the network shows better image quality 

than those derived based on the simplified reference tissue model with partial data. However, 

such approaches are difficult to implement to improve the image quality of parametric 

images derived from the full 60-min scan, because of the lack of even longer dynamic PET 

scans. To address this issue, a modified deep image prior framework, which included the 
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kinetic modeling in the training function, was applied to parametric image estimation based 

on the Logan plot [154]. The network input is the CT prior image and the network output is 

the parametric image. The network was trained during the parametric image estimation and 

no high-quality reference image was required in this approach.

In summary, various studies have applied deep learning approaches to static and dynamic 

PET image denoising and show better performance than state-of-the-art methods. Currently 

most of the experiments are based on using 18F-FDG as the tracer, with some studies on 
18F-Florbetaben for amyloid imaging [135], 11C-UCB-J for synaptic density imaging [139], 

and 68Ga-PRGD2 for lung cancer studies [136]. Obviously, patterns of tumor uptake in 

oncology studies is totally different from amyloid imaging in dementia studies. Whether a 

network trained using existing tracers can be applied to PET scans of a new tracer is unclear 

and deserves more study [155]. In addition, recurrent neural networks (RNNs) can also be 

considered for dynamic PET imaging to utilize the temporal information. Another important 

topic for dynamic imaging is the estimation of the blood input function (radiotracer activity 

in the arterial blood as a function of time). Whether we can use the deep learning approach 

to determine the blood input function based on partial data needs further experimental 

validation.

D. Image reconstruction

Apart from image denoising, machine learning methods have also been incorporated in PET 

image reconstruction. Here we only cover deep neural network-based image reconstruction 

methods. For other machine learning approaches, readers are referred to another review 

article in this issue dedicated to image reconstruction [156].

Most existing studies focus on the penalized likelihood reconstruction framework where the 

unknown PET image is estimated by

x = argmaxx > 0L(y ∣ x) − βU(x) . (3.4)

L(y ∣ x) is the log-likelihood function and βU(x) is a penalty function with β being the 

hyperparameter. A neural network can be used either inside the penalty function βU(x) or 

replace it altogether. Because of the additional constraint from the log-likelihood function 

L(y ∣ x), the reconstruction approach is expected to be more robust to the mismatches 

between the training and testing data than the denoising approach.

One class of methods use pre-trained denoising networks. In [157], a denoising CNN 

was pre-trained and the penalty function U(x) was constructed as the L2-norm difference 

between x and the network output. To make the network robust to different noise levels, a 

local linear fitting procedure, similar to the guided image filter [158], was performed during 

each iteration to make the network output match the intermediate penalized reconstruction 

result. The effect of the local linear fitting procedure is similar to fine-tuning the last 

spatial-variant layer of the neural network during each iteration. Another approach is using 

a pre-trained network to represent the PET image and performing a constrained maximum 

likelihood estimation
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x = argmaxxL(y ∣ x), s . t . x = f(α), (3.5)

where f( ⋅ ) denotes the pre-trained network and α is an arbitrary input [58]. This is an 

extension of the linear representation using the kernel method [159]. Compared with the 

kernel method, a deep neural network has a stronger representation power and can take 

advantage of the inter-subject prior information in the training data. During the image 

reconstruction process, the network parameters were fixed and the network input was 

updated. This method was further extended in [160], where a self-attention GAN structure 

[161] was used and an additional constraint on the network input was added to stabilize 

the reconstruction process. The network representation-based reconstruction framework is 

similar to the multi-layer convolutional sparse coding (CSC) framework [162], where the 

filter parameters were fixed and the coefficients were updated.

In an effort to avoid pre-training a network with a large number of training images, Gong 

et al applied the deep image prior framework [148] to PET reconstruction [57]. Through 

representing the PET image by a neural network, the image reconstruction process was 

transferred to a network training process. The training label is the PET sinogram and 

the training objective function was the log-likelihood function of the sinogram data. The 

network was trained from scratch during the image reconstruction process without using any 

other training images. This unsupervised learning framework has also been extended to the 

direct parametric PET reconstruction [163, 164], where acquiring high-quality training data 

is more difficult.

Another class of methods use the novel scheme of unrolling the iterative updates and 

replacing the regularization operation by a neural network [165, 166]. Compared to 

traditional network training, the data-consistency module is involved in the training process. 

During inference, it is similar to the traditional iterative image reconstruction. This unrolled 

neural network approach has been widely used in MR community as the forward and 

backward projections can be easily performed via fast Fourier transform (FFT). For PET, the 

forward and backward projections are computationally intensive, and the total training time 

is much longer than that for a denoising network. In addition, clinical PET data are routinely 

acquired and reconstructed in the fully 3D mode, making the GPU memory a limiting 

factor when there are multiple unrolling modules. More efforts are needed to advance the 

application of unrolled neural networks to PET image reconstruction.

Finally, there are also efforts on training a deep network to perform the end-to-end mapping 

from the sinogram data to the PET image, where the iterative reconstruction process is not 

needed and the inference process is fast [167]. As no PET physical models are involved in 

this mapping, a network with a larger transforming capability is needed in order to learn the 

mapping, thus requiring more training data.

V. SUMMARY AND OUTLOOK

We have seen a dramatic increase in the applications of machine learning in PET imaging in 

the last couple years. As discussed in this review, machine learning has found applications 

in both the front-end detector electronics and back-end image processing aspects of PET 
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imaging. With the availability of digitized waveforms from each of the photodetectors 

and increasing hardware computing power, we expect to see more machine learning based 

solutions to improve the accuracy and sensitivity of photon detection in PET detectors as 

well as to reduce bias and variance in quantitative PET image reconstruction.

With an increasing variety of machine learning methods being proposed, one area that 

requires more attention is task-based evaluation. Some initial work has been performed 

[168], but more studies using large clinical datasets are needed. This is more critical for deep 

learning-based methods than for traditional methods because deep learning-based methods 

are less interpretable, and their generalizability is not guaranteed. One revealing example is 

given in [167], where a deep neural network trained to perform PET image reconstruction 

at one count level failed completely when the count level was changed. Such a dramatic 

breakdown was not seen with traditional iterative reconstruction algorithms. While this 

specific problem might be solved by including more diverse training data, it underscores 

the importance of critically evaluated deep learning-based methods using a large dataset. 

For example, in most existing studies, the images employed during network training are 

from normal anatomy. For abnormal structures, such as broken skulls, which are common 

among traumatic brain injury (TBI) patients, or brain regions after surgery, the robustness 

of network predictions of these special situations requires further investigation. In practice, 

the conditions under which a deep learning method has been evaluated and verified need to 

be specified more clearly than that for the traditional methods and care has to be taken to 

make sure those conditions are satisfied to avoid unexpected results with potentially large 

ramifications for a given patient..
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Fig. 1. 
A PET scanner uses a ring of detectors to detect 511 keV annihilation photons. A 

coincidence event is formed when a pair of photons are recorded within a predefined 

coincidence timing window.
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Fig. 2. 
Common designs of detectors used in modern PET systems. The drawing dimensions 

indicate typical values and are not indicative of all available technology.
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Fig. 3. 
Schematic outline of a representative CNN used to estimate PET time--of--flight from 

digitized waveforms. Only the rising edge of the signal is shown on the left plot.
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Fig. 4. 
A set of 2D sinograms extracted from a 3D PET dataset of a patient scan, (a) The emission 

sinogram, (b) the log(ACF) sinogram, and (c) the estimated scatter sinogram based on the 

3D SSS model. The vertical axis is the radial distance ranging from −35 cm to +35 cm and 

the horizontal axis is the projection angle ranging from 0 to 180 degree. The radiotracer is 
18F-FDG.
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Fig. 5. 
Sagittal view of the clinical lung test data set using different denoising methods. Spine 

regions in the sagittal view are zoomed in for easier visual comparison. First column: EM 

image smoothed by Gaussian denoising; second column: EM images smoothed by NLM 

denoising; third column: EM image denoised by CNN trained from simulated phantom; 

fourth column: EM image denoised by CNN from real data only; fifth column: EM image 

denoised by CNN with fine-tuning. Permission to reuse this figure obtained from Gong et al 

2018.
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