
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Conserving Battery Energy through Making Fewer Incorrect File Predictions

Permalink

https://escholarship.org/uc/item/5st644ps

Authors

Yeh, Tsozen
Long, Darrell
Brandt, Scott A

Publication Date

2001-05-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5st644ps
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Conserving Battery Energy through Making Fewer Incorrect File
Predictions

Tsozen Yeh, Darrell D. E. Long and Scott A. Brandt
Jack Baskin School of Engineering
University of California, Santa Cruz

Abstract

Recent increases in CPU performance have outpaced in-
creases in hard drive performance. As a result, disk op-
erations have become more expensive in terms of CPU
cycles spent waiting for disk operations to complete. File
prediction can mitigate this problem by prefetching files
into cache before they are accessed. However, incorrect
prediction is to a certain degree both unavoidable and
costly. Battery is a valuable resource in a mobile com-
puting environment. The utility of mobile computers is
greatly affected the battery life. Incorrect prediction not
only wastes cache space, also consumes battery energy.
Consequently, incorrect prediction is more expensive to
mobile computers than its counterpart to desktop comput-
ers. Last Successor (LS) is a commonly-used predicting
algorithm in practice. We present the Program-based Last
Successor (PLS) file prediction model that identifies rela-
tionships between files through the names of the programs
accessing them. Our simulation results show that PLS
makes 21% fewer incorrect predictions and roughly the
same number of correct predictions as the last-successor
model. Hence, the amount of battery energy wasted on
incorrect prediction could be greatly reduced. We finally
examine the cache hit ratio of applying PLS to the Least
Recently Used (LRU) caching algorithm and show that a
cache using PLS and LRU together can perform better
than a cache up to 40 times larger using LRU alone. This
shows that saving battery energy and increasing perfor-
mance can be reached at the same time.

1 Introduction

Running programs stall if the data they need is not in
memory. As the speed of CPU increases, disk I/O be-
comes more expensive in terms of CPU cycles. File
prefetching is a technique that mitigates the speed differ-
ence originating from the mechanical operation of disk
and the electronic operation of CPU [20] by preloading
files into memory before they are needed. The success

of file prefetching depends on file prediction accuracy –
how accurately an operating system can predict which
files to load into memory. Probability and history of file
access have been widely used to perform file prediction
[3, 8, 12–14, 17], as have hints or help from programs and
compilers [2, 18].

While correct file prediction is useful, incorrect predic-
tion is to a certain degree both unavoidable and costly,
particularly under a mobile environment where battery
energy is considered as a critical resource. An incorrect
prediction is much worse than no prediction at all. Not
only does an incorrectly prefetched file do nothing to re-
duce the stall time of any program, it also wastes valuable
cache space and battery energy of mobile computers. In-
correct prediction can also prolong the time required to
bring needed data into the cache if a cache miss occurs
while the incorrectly predicted data is being transferred
from the disk. Incorrect predictions can lower the over-
all performance of the system and waste battery energy
regardless of the accuracy of correct prediction. There-
fore, reducing the number of incorrect predictions is very
important to the utility of mobile computers.

We propose a new file prediction model, Program-
based Last Successor (PLS), inspired by the observation
that probability and repeated history of file accesses do
not occur for no reason. We contend that the reason is
that programs access more or less the same set of files
in roughly the same order every time they execute, so
consecutive accesses of different files can be more accu-
rately predicted given knowledge about which programs
are accessing them. PLS uses this knowledge to deter-
mine program-specific last-successors for each file to gen-
erate more accurate file predictions. Our results demon-
strate that that PLS generates more accurate file predic-
tions than the other file prediction algorithms examined.
In particular, compared with LS, PLS reduces the num-
ber of incorrect file predictions while maintaining roughly
the same number of correct predictions to provide better
overall file prediction and therefore better overall system
performance. The amount of battery energy wasted on
incorrect prediction could also be reduced accordingly.

1

We compare PLS with LS and Finite Multi-Order Con-
text (FMOC) [12]. Generally speaking, LS has a high pre-
dictive accuracy – our simulation results show that LS
can correctly predict the next file to be accessed about
80% of the time in some cases. FMOC outperformed
LS and other predicting algorithms in a one-month trace
in Kroeger’s study [12] but performs slightly worse than
LS in our simulations. Our experiments demonstrate that
with traces covering as long as 13 months PLS makes
up to 21.48% fewer incorrect predictions than LS, giving
PLS the highest predictive accuracy among all three mod-
els in our comparison. Consequently, compared with LS,
PLS can reduce a large amount of battery energy wasted
on incorrect prediction. We also examine the cache hit ra-
tios of Least Recently Used (LRU) with no file prediction,
and LRU with PLS. We observe that PLS always increases
the cache hit ratio and in the best case, LRU and PLS to-
gether have a better cache hit ratio than a cache 40 times
larger using LRU alone.

Research has shown that appropriately spinning down
the hard disk can greatly save battery energy [4–7, 9, 11,
15,22]. Most of energy-saving algorithms make disk spin-
down decisions based on previous disk access pattern.
Incorrect prediction could mislead these algorithms and
lower their effectiveness by changing the original disk
access pattern generated by running programs. PLS re-
duces many cases of incorrect prediction done by LS,
which leads to a more accurate sequence of disk accesses
closer to what really generated by programs in execution.
In a real environment where file prediction is performed,
energy-saving algorithms will benefit from this accord-
ingly.

2 Related Work
Griffioen and Appleton use probability graphs to predict
future file accesses [8]. The graph tracks file accesses
observed within a certain window after the current ac-
cess. For each file access, the probability of its differ-
ent followers observed within the window is used to make
prefetching decision. Lei and Duchamp use pattern trees
to record past execution activities of each program [14].
They maintain different pattern trees for each different ac-
cessing pattern observed. Vitter, Curewite, and Krishnan
adopt the technique of data compression to predict next
required page [3, 21]. Kroeger and Long predict next file
based on probability of files in contexts of FMOC [12].
Patterson et al. develop TIP to do prediction using hints
provided from modified compilers [18]. Chang and Gib-
son design a tool which can transform UNIX applica-
tion binaries to perform speculative execution and issues
hints [2].

Greenawalt models disk accesses by a Poisson distri-

bution [7]. Krishnan et al. [11] develop a two-stage rent-
to-by algorithm to predict the period between current and
next disk accesses. The first stage generates a small num-
ber of candidate periods, and the second stage chooses
the candidate performing best as if it had been used in the
past. Helmbold et al. [9] adopts a machine learning al-
gorithm to generate certain number of fixed time-out pe-
riods as experts to predict the next time-out. Each expert
is weighted by its current performance, and the weighted
average of all experts is the predicted next time-out.

Douglis et al. [4] describe the undesirable waiting pe-
riod as bump if the spin-up delay exceeds a certain per-
centage of the time that disk stays in spin-down status.
They adaptively adjust the spin-down threshold depend-
ing on if the most recent spin-up delay is viewed as a
bump or not. Li et al. [15] and Douglis et al. [5] demon-
strate that using a shorter threshold in seconds instead of
minutes commonly suggested by manufactures will save
a large amount of energy.

3 LS, FMOC, and PLS Models
We start with a brief discussion of LS and FMOC models,
followed by details of how to implement PLS model.

3.1 LS and FMOC
Given an access to a particular file A, LS predicts that the
next file accessed will be the same one that followed the
last access to file A. Thus if an access to file B followed
the last access to file A, LS predicts that an access to file B

will follow this access to file A. This can be implemented
by storing the successor information in the metadata of
each file. One potential problem with this technique is
that file access patterns rely on the temporal order of pro-
gram execution, and scheduling the same set of programs
in different orders may generate totally different file ac-
cess patterns.

FMOC predicts the next file to be accessed from the
files that have been seen so far in “context” [12]. Each file
seen in a context has a probability indicating the likeli-
hood that it follows that context. FMOC often prefetches
multiple files for each prediction. The “additive accu-
racy” was defined to compare the performance between
FMOC and LS [12]. If the next file accessed is among
those files prefetched, then the predicted probability of
that file is added to the score of FMOC. The final score
is then normalized by the number of events in the simula-
tion trace to obtain the “additive accuracy” [12]. Since LS
only predicts one file at a time, we add one to its score if it
makes a correct prediction. No score is added for a wrong
prediction. The final score is also normalized. Kroeger’s
study showed that using order higher than two resulted in

2

Figure 1: Program-based Last-Successor model

negligible improvements so in this work we only examine
the second order FMOC model (denoted as FMOC2).

3.2 PLS

Lacking a priori knowledge of file access patterns, many
file prediction algorithms use statistical analysis of past
file access patterns to generate predictions about future
access patterns. One problem with this approach is that
executing the same set of programs can produce differ-
ent file access patterns even if the individual programs al-
ways access the same files in the same order. Because it is
the individual programs that access files, probabilities ob-
tained from the past file accesses of the system as a whole
are ultimately unlikely to yield the highest possible pre-
dictive accuracy. In particular, probabilities obtained from
a system-wide history of file accesses will not necessarily
reflect the access order for any individual program or the
future access patterns of the set of running programs.

File reference patterns can describe what has happened
more precisely if they are observed for each individual
program, and better knowledge about past access patterns
leads to better predictions of future access patterns. PLS
incorporates knowledge about the running programs to
generate a better last-successor estimate. More precisely,
PLS records and predicts program-specific last successors
for each file that is accessed.

Suppose a file trace at some time shows pattern AB,
and pattern AC occurring 60% and 40% of the time re-
spectively. A probability-based prediction will prefer pre-
dicting B after A is accessed. If B and C tend to alternate
after A, then LS will do especially poorly. But the reason
that pattern AB and AC occur may be quite different. For
instance, in Figure 1, the file access pattern AB is seen to
be caused by program P1, while the file access pattern AC

is caused by program P2. In other words, what is really
behind the numbers 60% and 40% is the execution of two
different applications, P1 and P2. After we collect this
information (a set of pairs consisting of “program name”
and “successor”) for file A, next time it is accessed we can
predict either B or C depending on P1 or P2 is accessing
A, or provide no prediction if A is accessed by another
program. Of course, if a particular program accesses mul-
tiple different files after each access of a particular file,
then the program-specific last successor will change.

One can argue that the same program may access differ-
ent sets of files each time that it is executed, particularly a
system utility program such as a compiler. While it is true
that compiling different programs will result in different
files being accessed, compiling the same program multi-
ple times will result in many or all of the same files being

Table 1: Metadata of Figure 1 kept under PLS model

file 〈program name, successor〉
A 〈P1, B〉, 〈P2, C〉
B 〈P1, NIL〉
C 〈P2, NIL〉

accessed in the same order. Thus PLS will make correct
predictions for most of these files, even when alternating
compilations between two sets of files. Assume, for ex-
ample, that two programs need to be compiled. The first
program needs files X1, X2, ..., Xm, in that order, and the
second program needs files Y1, Y2, ..., Yn, in that order. If
X1 and Y1 are different files, then we don’t know which
file to predict when the compiler starts running, but as
soon as either X1 or Y1 is accessed we know which file to
prefetch next. If X1 and Y1 are the same, then we prefetch
this file and wait to see whether X2 or Y2 is needed, and
then we can predict the next file after that. Hence we can
predict all files except the first occurrence of Xi 6= Yi (i
≤ min(m, n)) until the access to the next shared file Xj

(which is same as Yj, i < j) comes up.
PLS can also avoid the slow adaption problem in

probability-based prediction models. Probability-based
models always predict the same file until the correspond-
ing probability changes. Like LS, PLS does not rely on
probability so it can respond immediately as file access
patterns change.

Two issues that need to be addressed are how to collect
the metadata in terms of 〈program name, successor〉 for
each file, and how big the metadata needs to be in order
to make accurate predictions. The first issue is simple.
Programs are executed as processes, so we can just store
the program name in the process control block (PCB). For
each running program (say P), we also need to keep track
of the file (say X), which it has most recently accessed.
When P accesses the next file (say Y) after X, we update
the metadata of the X with 〈P, Y〉, and the next time that
P accesses X, PLS can predict that the next file accessed
will be Y.

In the example of Figure 1, when P1 accesses the next
file (say B) after its access to A, we update the metadata
of A with 〈P1, B〉, and next time P1 accesses A, PLS can
predict that the next file accessed will be B. Similarly, A

also keeps 〈P2, C〉 as parts of its metadata. The metadata
of files in Figure 1 is shown in Table 1.

The second issue is not quite as simple as the first. Ide-
ally, for each file we would like to record the name of
every program that has accessed it before, along with the
program-specific successor to the file, so that we know
which file to predict when the same program accesses the
file again. In reality, this may be too expensive for files

3

used by many different programs. Consequently, we may
need to limit the number of 〈program name, successor〉
pairs kept for each file. However, our simulation shows
that the vast of majority of files are accessed by six or
fewer programs and thus metadata storage is not a prob-
lem.

A few terms need to be clarified here. The first is that
when we use the term “program” we mean any running
executable file. Thus a driver program that launches dif-
ferent sub-programs at different times is considered by
PLS to be a different program from the sub-programs,
each of which is also treated independently. The second
is that both “program name” and “file name” include the
entire pathname of the files. This is important because dif-
ferent programs with the same name can access the same
file and different files with the same name can be accessed
by different programs, and these accesses must all be han-
dled correctly.

4 Experimental Results
In the section, we will discuss the trace data we used to
conduct our experiments, and how we compare perfor-
mance of FMOC2, LS, and PLS.

4.1 Simulation Trace and Experimental
Methodology

In examining PLS we used the trace data from DFSTrace
used by the Coda project [10, 16]. These traces were
collected from 33 machines during the period between
February of 1991 and March of 1993. We used data
roughly equal to the second half of the entire trace from
four machines, Barber, Mozart, Dvorak, and Ives. Barber
was a server, Mozart was a desktop workstation, Dvorak
had the highest percentage of write, and Ives hosted the
most users. Table 2 lists the period of trace for each ma-
chine used in our simulation. Research has demonstrated
that the average life of a file is very short [1]. Therefore,
instead of tracking every READ or WRITE event, we track
only the OPEN and EXECVE events in our simulation.

As mentioned above, PLS needs to be able to determine
the name of a program in order to generate its predictions.
Because we cannot obtain the name of any program that
started executing before the beginning of the trace, we ex-
clude all OPEN events initiated by any process id (pid)
which started before the beginning of our trace. Intuitively
this filtering has no effect on the results of our experiments
because the filtering is based only on the time at which the
program began. In a real system such filtering is not nec-
essary because all program names are known.

We score PLS the same way we score LS, by adding
one for each correct prediction and zero for each incorrect

prediction. We normalize the final scores of PLS and LS
by the number of predictions, not by the number of events
as in the FMOC2 model. This is because the first time
that a file is accessed there is no previous successor to
predict and so the failure to make a prediction the first
time cannot be considered incorrect. Since our simulation
trace is very long (between 10 and 13 months), it turns
out that the effect of this compulsory error is negligible
and does not affect the prediction accuracy comparison
among the models.

4.2 Model Comparison

We used the filtered trace data to evaluate FMOC2, LS,
and PLS. Figure 2 shows that PLS has the highest predic-
tive accuracy in all machines. For models predicting one
or more files at a time such as FMOC2, the additive accu-
racy indicates the likelihood that the next file actually ref-
erenced is among those predicted files. However for mod-
els predicting one file each time, like LS and PLS, there is
no difference between the additive accuracy and the reg-
ular predictive accuracy, which represents the percentage
of the time that a prediction model correctly predicts the
next file.

One pitfall in comparing prediction models in terms
of predictive accuracy is that higher predictive accuracy
does not assure the success of a model because the scores
are commonly normalized by the number of predictions
made, which does not include those cases where no pre-
diction was made. Consider two prediction models, A

and B. If A makes 40 correct predictions, 40 incorrect
predictions, and does not make a prediction 20 times out
of a total of 100 file accesses, then A’s predictive accu-
racy is 50%. Suppose B makes only 2 correct predictions,
1 incorrect prediction, and does not make a prediction 97
times. B’s predictive accuracy is 67%, but model B is al-
most useless in practice.

Clearly, in order to examine the real performance of a
prediction model, we need other information besides pre-
dictive accuracy. Thus, we use LS as the baseline to eval-
uate the performance of PLS in three categories. The first
category is the percentage of total predictions (including
correct and incorrect predictions) made by PLS as com-
pared with LS. This percentage should not be to too small,
otherwise PLS may be an unrealistic model just like the
model B above. The second is the percentage of correct
predictions made by PLS as compared with LS. This num-
ber should be as high as possible. The last category is the
percentage of incorrect predictions made by PLS as com-
pared with LS. Ideally this percentage should be less than
100%, indicating that PLS makes fewer incorrect predic-
tions than LS.

4

Table 2: Trace data used

machines used Barber Mozart Dvorak Ives
begin month 4/92 3/92 6/92 6/92
end month 2/93 3/93 3/93 3/93

months covered 11 13 10 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

barber mozart dvorak ives

ad
d

it
iv

e
ac

cu
ra

cy

FMOC2
LS
PLS

Figure 2: Additive accuracy of FMOC2, LS, and PLS

4.3 Category Performance

We can not do the same comparison with FMOC due
to the nature of the FMOC model, as discussed above.
Figure 3 displays the PLS performance normalized by LS
in the three different categories. The columns marked
“total” show that the total number of predictions made
by PLS is about 95% of the number made by LS. This is
close enough to consider PLS to be a practical prediction
algorithm in terms of the number of predictions it makes.
The middle columns marked “correct” are the percent-
ages of correct predictions. The percentage for Barber
from PLS is over 99% of the number from LS, for Ives it
is over 98%, and for both Mozart and Dvorak PLS makes
more correct predications than LS. Percentages from the
middle columns demonstrate that PLS can do roughly
as well as LS in correctly predicting files. Finally, the
columns marked “incorrect” show that PLS indeed makes
about 15% to 22% fewer wrong predictions as compared
with LS, which is a very exciting result. This explains
why the PLS model has the highest prediction accuracy
among all three models in Figure 2.

The reduction of incorrect predictions in PLS is signifi-
cant enough to be worthy of further exploration. Since the
percentage of total predictions made by PLS is about 95%
of LS, and the number of correct predictions is roughly
same as LS, we conclude that PLS must make more no
predictions than LS. We collected the percentage of no
predictions from PLS compared with LS, and the result is
displayed in Figure 4, which confirms this surmise. Figure
4 shows that the number of no predictioins made by PLS

0
10
20
30
40
50
60
70
80
90

100
110

total correct incorrect

%
 o

f l
as

t-s
uc

ce
ss

or
 m

od
el

barber
mozart
dvorak
ives

Figure 3: PLS performance normalized by LS in 3 sepa-
rate categories

is roughly about three to six times more than that made by
LS.

0

1

2

3

4

5

6

7

8

9

10

barber mozart dvorak ives

%
 o

f e
ve

nt
s

w
he

re
 n

o
pr

ed
ic

tio
n

w
as

m

ad
e LS

PLS

Figure 4: No predictions made by LS and PLS

We stated earlier that some events were filtered out of
our trace data due to the requirement that PLS needs to
know the program initiating an event, and we claimed that
the filtering does not affect the validity of our results. To
verify this, we compared the percentage of events filtered
out of original trace data with PLS predictive accuracy
for each machine. Our assumption was that if the filtered
data had affected our results, the effect would be greater
for larger amounts of filtered data. However, the results
in Figure 5 show that the predictive accuracy of PLS (the
back row) is unrelated to the percentage of events filtered
out from the original trace data of each machine (the front
row).

One last note about the number of 〈program name,
successor〉 pairs that a file requires to successfully imple-
ment PLS. Our simulation results show that for Barber,
more than 99% of files are accessed by six or fewer pro-
grams, while more than 99% of files are accessed by five
or fewer programs for the other three machines. Thus the
amount of data stored for each file in PLS is not of con-
cern.

5

barber mozart dvorak ives

0
10
20
30
40
50
60
70
80
90

100

%

events filtered out
PLS predictive accuracy

Figure 5: PLS performance vs. percentage of events fil-
tered out of original trace data

50
55
60
65
70
75
80
85
90
95

100

2
5

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

2
0
0
0

cache size: number of files

c
a

c
h

e
 h

it
 r

a
ti
o

 (
%

)

barber-PLS
barber-LRU
mozart-PLS
mozart-LRU
dvorak-PLS
dvorak-LRU
ives-PLS
ives-LRU

Figure 6: Cache hit ratio of LRU (labelled LRU) and LRU
with PLS (labelled PLS)

In addition to predictive accuracy we also want to know
how PLS performs in terms of cache hit ratio, and addi-
tional experiments were conducted to determine this. We
set the cache size according to the number of files it can
hold for two reasons. The first is that file size is usu-
ally small, so the entire file can often be prefetched into
cache [19]. The second is that in the case of large files,
sequential read is the most common activity. Modern op-
erating systems can already identify sequential read ac-
cesses and techniques such as prefetching the next several
data blocks for sequential read have been implemented.
We simulate cache with different sizes ranging from 25
files to 2000 files, and compare the cache hit ratios be-
tween the LRU caching algorithm with no prediction and
the LRU caching algorithm with PLS. Figure 6 shows that
when using PLS prediction, the cache always performs
better than when using LRU alone, regardless of cache

size, and in some cases even better than a cache up to 40
times larger.

5 Future Work

Several alternatives may improve the performance of PLS
and are worthy of further exploration. For example, files
existing temporarily (such as those in /tmp directory) usu-
ally won’t get the same name next time they are created
again. If so, then they can never be predicted correctly by
PLS and there is no need to store their information. PLS
may also use the preceding file together with the 〈program
name, successor〉 to improve performance.

6 Conclusions

While file prefetching algorithm could improve perfor-
mance, however unavoidable incorrect prediction will
waste valuable battery energy of mobile computers. Re-
ducing the number of files incorrectly predicted is very
important to the utility of mobile computers in terms of
saving both cache space and battery energy. We propose
PLS, a new program-based last successor model. Our sim-
ulations from PLS show good results in predicting files,
especially in eliminating the cases of incorrect prediction.
More than 21% of incorrect predictions can be reduced as
compared with LS in some cases as our results demon-
strate. Hence, the amount of battery energy wasted on
incorrect prediction can be reduced accordingly.

References

[1] Mary Baker, John Hartman, Michael Kupfer, Ken
Shirriff, and John Ousterhout. Measurements of a
Distributed File System. In ACM 13th Symposium
on Operating Systems Principles, 1991.

[2] Fay Chang and Garth Gibson. Automatic I/O Hint
Generation through Speculative Execution. In Third
Symposium on Operating Systems Design and Im-
plementation, 1999.

[3] Kenneth Curewite, P. Krishnan, and Jeffrey Scott
Vitter. Practical Prefetching via Data Compression.
In ACM SIGMOD, 1993.

[4] Fred Douglis, P. Krishnan, and Brian Bershad.
Adaptive disk spin-down policies for mobile com-
puters. In Proceedings of the Second Usenix Sympo-
sium on Mobile and Location-Independent Comput-
ing, 1995.

6

[5] Fred Douglis, P. Krishnan, and Brian Marsh.
Thwarting the power-hungry disk. In Proceedings
of the Usenix Technical Conference, 1994.

[6] Richard Golding, Peter Bosch, and John Wilkes.
Idleness is not a sloth. Technical report, Hewlett-
Packard Laboratories, 1995.

[7] Paul Greenawalt. Modeling power management for
hard disks. In Proceedings of the Conference on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, 1994.

[8] J. Griffioen and R. Appleton. Reducing File Sys-
tem Latency Using a Predictive Approach. In Pro-
ceedings of USENIX summer Technical Conference,
1994.

[9] David P. Helmbold, Darrell D. E. Long, and Bruce
Sherrod. A Dynamic Disk Spin-down Technique for
Mobile Computing. In Proceedings of the Second
Annual International Conference on Mobile Com-
puting and Networking, 1996.

[10] James Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. In ACM Tran-
scations on Computer Systems, 1992.

[11] P. Krishnan, Philip Long, and Jeffrey Scott Vitter.
Adaptive disk spin-down via optiman rent-to-buy
in probabilistic environments. In Proceedings of
the Twelfth International Conference on Machine
Learning (ML95), 1995.

[12] Tom Kroeger and Darrell Long. The Case for Effi-
cient File Access Pattern Modeling. In Proceedings
of the Seventh Workshop on Hot Topics in Operating
Systems, 1999.

[13] Geoffrey H. Kuenning. The Design of the Seer Pre-
dictive Caching System. In Workshop on Mobile
Computing Systems and Applications, IEEE Com-
puter Society, 1994.

[14] Hui Lei and Dan Duchamp. An Analytical Approach
to File Prefetching. In Proceedings of the USENIX
1997 Annual Techical Conference, 1997.

[15] Kester Li, Roger Kumpf andPaul Horton, and
Thomas Anderson. A quantitative analysis of disk
drive power management in portable computers.
In Proceeding of the Usenix Technical Conference,
1994.

[16] L. Mummert and M. Satyanarayanan. Long Term
Distributed File Reference Tracing: Implementation
and Experience. Technical report, CMU, 1994.

[17] Mark Palmer and Stanley B. Zdonik. Fido: A Cache
That Learns to Fetch. In Proceedings of the 17th
International Conference on Very Large Data Base,
1991.

[18] R. Hugo Patterson, Garth A. Gibson, Eka Gint-
ing, Daniel Stodolsky, and Jim Zelenka. Informed
prefetching and caching. In Proceedings of the 15th
Symposium on Operating Systems Principles, 1995.

[19] Drew Roselli, Jacob R. Lorch, and Thomas E. An-
derson. A Comparison of File System Workloads. In
Proceedings of the USENIX Annual Technical Con-
ference, 2000.

[20] Elizabeth Shriver and Christopher Small. Why does
file system prefetching work? In Proceedings of the
1999 USENIX Annual Technical Conference, 1999.

[21] Jeffery Scott Vitter and P. Krishnan. Optimal
Prefetching via Data Compression. In Journal of the
ACM, 1996.

[22] John Wilkes. Predictive power conservation . Tech-
nical report, Hewlett-Packard Laboratories, 1992.

7

