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Contactless Suspension of a Silicon Disk

Kenneth E. Pyle1 and Robert T. M’Closkey2

Abstract— A system to suspend a silicon disk between two sets
of stator electrodes is reported. Electrode pairs are used for both
control and sensing by exerting electrostatic forces on the disk
and measuring differential capacitances related to the disk’s
position. The disk is a six degree-of-freedom system, however,
lateral and yaw motion are not measurable by the electrode
arrangement so only the disk’s vertical position, roll, and pitch
are regulated. Two separate control strategies are pursued
–decentralized feedback around the electrode-disk gaps and
feedback around a decoupled coordinate frame related to the
disk’s controllable degrees-of-freedom. Experimental frequency
responses obtained from closed-loop results of the suspended
disk are reported and compared to analytical models.

I. INTRODUCTION

The electrostatic suspension of a thin silicon disk between
two sets of electrodes is reported. This system is under
development to remove substrate coupling when testing
micro-scale resonators. The rigid disk has six degrees-of-
freedom, however, only the vertical and two out-of-plane ro-
tational degrees-of-freedom are observable with the electrode
arrangement shown in Fig. 1. Lateral translational motion is
passively stabilized by fringe field forces since the radius of
the disk matches the outer radius of the electrodes. The same
electrodes exert electrostatic control forces and quantify the
disk position by measuring differential capacitances. Using
the same electrodes for both sensing and control reduces
the voltage amplitude required to suspend the disk so that
electrical arcing is not a concern. This modality produces
significant “feedthrough” from the control signal to the elec-
tronic pickoffs and must be removed from the measurements
prior to implementing the feedback controller.

The dual function of the electrodes is achieved using
transformers in the same manner as that proposed for an elec-
trostatic bearing that supports a gyroscope rotor in [1], [2].
Alternative transduction schemes for the electrostatic suspen-
sion of disks and spheres has been proposed for a variety of
systems including inertial sensors, material handling systems,
and media storage in [3]–[7]. Electrostatic levitation of a
square glass plate and a thin ring have been described in [8]
and [9], respectively, however, separate instruments are used
for control and detection. The disk-electrode arrangement
and electronics herein are similar to those reported in [10],
however, in the present work the disk diameter is equal to the
electrode footprint. Consequently, the lateral position cannot
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be controlled but is passively stabilized by the lateral forces
produced by the fringe field created between the electrodes
and disk. Additional electrodes are used to detect and specify
lateral displacements in [10], however, that system is unable
to hold non-zero disk angles. The three degree-of-freedom
system discussed here is capable of specifying out-of-plane
rotational motion of the disk. Since the same transducers
are used in both studies, the simplified system reported
herein is designed to provide insight into non-idealities in the
transformers, a decoupling procedure that takes into account
differences in the transduction gains, and changes in the
feedthrough as the nominal setpoint of the disk varies. These
insights are intended to improve the modeling and control of
the five degree-of-freedom disk in [10] so that the system can
be miniaturized to suit micro-scale systems.

II. SYSTEM DESCRIPTION

The 7.4 cm diameter, 400µm thick disk is etched from a
silicon wafer and sputtered with aluminum. Two identical
sets of electrodes –a top set and a bottom set –are used to
suspend the disk, as shown in Fig. 1. Each set is patterned
on a glass plate and the plates are oriented parallel to
one another such that the top and bottom electrodes are
mirror images of each other. The electrode sets are arranged
in pie-shaped formations with each set consisting of four
equally sized electrodes having an area of 10.3 cm2. The
electrodes are grouped into four pairs of facing electrodes,
i.e. electrodes Etk and Ebk , k = 1, 2, 3, 4, are grouped
into a pair. Each pair is used for two purposes –to exert
electrostatic control forces on the disk and to measure the
differential electrode-disk capacitances that are used to sense
the disk’s position. This electrode configuration provides
measurements of the vertical and two tilt degrees-of-freedom.
Lateral motion and yaw rotation are not observable and the
disk’s lateral motion is passively stabilized by fringe field
forces since the outer radius of the electrodes matches the
radius of the disk. The gap between the upper and lower
glass plates is set using precision shims and silicon spacers
that are etched from the same wafer as the disk. When the
disk is perfectly centered between the electrodes, the vertical
gap between the disk and each electrode is 134µm. A thin
layer of photoresist coats each of the glass plates to ensure
that the disk never has direct contact with the electrodes.

Transformers are used to pair the top and bottom elec-
trodes, as shown in Fig. 2. One transformer is used per
electrode pair and each of the electrodes within a given
pair is connected to one of its transformer’s primary leads.
The transformers are supplied with a constant amplitude,
25 kHz sinusoidal center tap and the primary inductances



are identical on either side of the center tap. Two additional
transformers are used to supply the center tap currents. The
primary leads of each of these additional transformers are
connected to the center taps of two adjacent “electrode”
transformers so that equal and opposite currents are supplied
to the center taps. This ensures that any positive charge
added to the disk by one electrode set is removed by an
adjacent electrode set. Since the disk is established at ground
potential before any electronics are turned on, supplying
the center taps in this fashion ensures that it remains at
ground potential, even when suspended. By configuring the
transformers in this manner, any deviation between the top
and bottom capacitances within an electrode pair, Ctk and
Cbk , respectively, creates a nonzero voltage drop across the
transformer secondary, vsk . The amplitude of this voltage
drop is proportional to the degree of asymmetry in the
capacitances and is used as a measure of the disk’s vertical
position relative to the centroids of the electrodes within a
given pair. This measurement establishes a convenient null
position of the disk. When the disk is perfectly centered
between the electrodes, the capacitances between the disk
and the top electrodes are equivalent to the capacitances
between the disk and the bottom electrodes (about 77 pF).
This produces identical voltages on the top and bottom
electrodes such that zero voltage drop occurs across the
transformer secondary.

The same transformers used for sensing are also used to
exert electrostatic control forces on the disk by a control
voltage, vck , that is added in parallel to the transformer
secondary via resistor Rc. The control voltage is modulated
to operate at the same 25 kHz frequency as the center tap and
the modulation phase, φck , is set to maximize the voltage
differential created between the top and bottom electrodes
when vck is nonzero. This voltage differential is established
by the fact that a nonzero control voltage creates sinusoidal
voltage components on the top and bottom electrodes that
are in anti-phase with one another. This is in contrast to
the center tap, which produces sinusoidal voltages on both
the top and bottom electrodes that are in-phase with each
other. The net voltages on the electrodes are sinusoidal with
a frequency of 25 kHz and an amplitude based on the super-
position of the the center tap- and control-induced voltages.
The electrostatic forces exerted on the disk are proportional
to the square of the electrode voltages, however, the disk’s
inertia acts as a low-pass filter such that the disk essentially
responds to the mean-square value of the electrode voltages.
Using the same transformers for both sensing and control
presents a significant amount of feedthrough from vck to vsk ,
i.e. even if the disk position remains fixed, an adjustment in
vck changes the amplitude of vsk . Accurate cancellation of
this feedthrough is required in order to suspend the disk.

The plant inputs, uk’s, and outputs, ζk’s, are baseband
signals that are generated and sampled by a digital signal
processor operating at 5 kHz. The DSP is used to implement
the digital feedback controllers, feedforward filter, and co-
ordinate transformation discussed in the following sections.
All modulation of the control signals and demodulation of
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Fig. 1: Exploded view of the disk and electrodes.
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the sense signals is performed using analog electronics. The
demodulation phases are selected such that the demodulation
carrier is in-phase with vsk . Additionally, analog Butterworth
filters are used to smooth the output signals of the DSP
and for anti-aliasing. A schematic of a single input/output
channel of the plant is provided in Fig. 2.

III. SYSTEM MODEL

The disk dynamics are defined according to the general-
ized coordinates q = [x, y, z, θ, ϕ]T where {x, y, z} represent
translations of the disk center of mass relative to the N1,
N2, and N3 axes of the fixed N -frame, respectively, and
θ, ϕ represent an Euler angle sequence about the N1 and B2

axes (see Fig. 3). The inertial N -frame has its origin defined
at the geometric center of the electrode configuration, with
the N1 and N2 axes extending parallel to the electrodes and
the N3 axis piercing the center of the top electrode set. The
disk-fixed B-frame is defined by an origin at the disk’s center
of mass, B1 and B2 axes that lie within the plane of the disk,
and a B3 axis that points normal to the disk. When the disk
configuration is such that q = 0, the N - and B-frames are
coincident. Rotation about the vertical axis is neglected in
the model since it has no impact on the equations of motion
and it is not possible to spin the disk about this axis using
the electrode arrangement shown in Fig. 1.

The disk and electrodes are modeled as parallel plate ca-
pacitors due to the disk-glass plate geometry that constrains
any rotation of the disk to less than 4 mrad. The deflection of
the disk is measured along lines interpolating the geometric



centroids of each electrode within a pair. Using the small
angle approximation, the vertical deflection of the disk from
the origin of the N -frame along the centroid-interpolating
lines is given by

zk = z + (x− x̄k)ϕ+ (ȳk − y)θ k = 1, 2, 3, 4 (1)

where (x̄k, ȳk) is the lateral position of each electrode pair’s
centroid in the N -frame. These vertical displacements are
used to compute the effective disk-electrode gaps of the
parallel plate capacitor model and, in conjunction with the
electrode centroids, to define the position of the effective
electrostatic point forces that act on the disk. Assuming that
the disk is at ground potential, the electrostatic point forces
are oriented normal to the disk with magnitudes given by

Ftk =
ε0εrAe

2(z0 − zk)2
v2tk

Fbk =
ε0εrAe

2(z0 + zk)2
v2bk ,

k = 1, 2, 3, 4 (2)

where Ae represents the electrode area and z0 is the nominal
electrode-disk gap.

Gravitational, squeeze film damping, and fringe field ef-
fects are also considered in the model. The squeeze film
damping forces and moments are proportional to the ver-
tical and angular velocities, respectively, and are computed
from [11]. The net fringe field forces are modeled as linear
springs that passively center the disk within the N1-N2 plane.
These forces, denoted by Fx and Fy in Fig. 3, are assumed to
be proportional to small lateral displacements of the disk and
a spring rate, ks, is estimated so that the lateral modes have a
1 Hz resonance. Computing the generalized forces associated
with q using the small angle approximation yields

mẍ = ϕ

4∑
k=1

Fk − ksx, mÿ = −θ
4∑
k=1

Fk − ksy

mz̈ =

4∑
k=1

Fk −mg − cz ż, Jtθ̈ =

4∑
k=1

(ȳk − y)Fk − cθ θ̇

Jtϕ̈ =

4∑
k=1

(x− x̄k)Fk − cϕϕ̇,

where m and Jt are the disk mass and transverse axis
moment of inertia, respectively, {cz, cθ, cϕ} represent the
squeeze film damping coefficients, and Fk = Ftk −Fbk . The
linearized disk equations of motion can be expressed as a set
of coupled first order differential equations

d

dt

[
q
q̇

]
=

[
q̇

f(q, q̇, wt)

]
(3)

where wt is the state vector that describes the transformer
dynamics. The transformer dynamics have been investigated
in detail in [12], [13] and the equations of motion are given
as

M(q)ẇt = Awt +B1ict +B2vc

vs = Cwt
(4)
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Fig. 3: Side view of the disk and electrodes (not to scale).

where ict is the current source at the transformer center tap,
vc = [vc1 , vc2 , vc3 , vc4 ]

T is the vector of control voltages, and
vs = [vs1 , vs2 , vs3 , vs4 ]

T is the vector of sense voltages. The
electrode-disk capacitances that are a function of the disk
position are contained in the mass matrix, M(q).

The analog modulators/demodulators and Butterworth fil-
ters pictured in Fig. 2 contribute additional states to the plant
model. The input electronics are described by

ẇsm = Asmwsm +Bsmu

vc = CcCsmwsm
(5)

where Cc = diag(cos(ω0t + φc1), ..., cos(ω0t + φc4)) is
the diagonal matrix of sinusoids representing the analog
modulators and (Asm, Bsm, Csm, 0) characterizes the state-
space model for the smoothing filters with state vector wsm.
Similarly, the sensing electronics are characterized by

ẇaa = Aaawaa +BaaCsvs

ζ = Caawaa
(6)

where Cs = diag(cos(ω0t + φs1), ..., cos(ω0t + φs4)) is
the diagonal matrix representing the analog demodulators
and (Aaa, Baa, Caa, 0) describes the state-space representation
for the anti-alias filters with state vector waa. The coupled
plant dynamics are collectively governed by (3)-(6).

A periodic solution of the coupled nonlinear system can
be generated with the disk suspended at its equilibrium
position (q = q̇ = 0). Such a solution exists when the
mean value of all forces and moments acting on the disk
sum to zero and the control input is appropriately chosen to
counteract the gravitational force acting on the disk. Linear
variational equations are computed about this equilibrium
condition by introducing perturbation variables: u = ū+ δu,
wt = w̄t +δwt , and so forth, where the bar notation is used to
define the states at the equilibrium condition. Collecting all
of the perturbation state variables in δ, the linear variational
equations yield a time periodic model represented by

δ̇ = Aδδ +Bδδu

δζ = Cδδ.
(7)



The solution to an initial value problem posed by (7) is given
by

δ(t) = Θ(t, t0)δ(t0) +

∫ t

t0

Θ(t, τ)Bδ(τ)δu(τ)dτ, t ≥ t0

where Θ(t, t0) is the state transition matrix from time t0
to time t associated with (7). The start time specifies the
phase of the time-varying periodic solution, though it is well
documented in [12] that it has negligible effect on the model
when viewed from a frequency domain perspective, thus t0
will be assumed to be zero for the remaining analysis.

A discretized time-invariant model can be developed using
the fact that the sinusoidal carrier operates at a frequency that
is an integer multiple of the DSP sample rate. Viewing the
initial value problem from the lens of successive samples at
the DSP sample rate yields

δ((l + 1)ts) = Θ((l + 1)ts, lts)δ(lts)

+

∫ (l+1)ts

lts

Θ((l + 1)ts, τ)Bδ(τ)δu(τ)dτ,
(8)

where l is the sample index integer. Due to the the zero-order
hold instituted by the DSP, the input variable, δu, is constant
over the integration bounds, so the discrete-time state space
model can be expressed as

δ((l + 1)ts) = Φδ(lts) + Γδu(lts)

δζ = Cδδ(lts)
(9)

where Φ = Θ(ts, 0) and Γ =
∫ ts
0

Θ(ts, τ)Bδ(τ)dτ .
Solving the difference equation in (9) yields the four-

input/four-output plant model illustrated in Fig. 4. Only one
input channel is shown, though the symmetry of the system
makes identifying the remaining transfer functions trivial.
For instance, the diagonal channels will all be identical. The
model contains three unstable eigenvalues with continuous-
time approximations of 1.14, 1.56, and 1.56 Hz. The 1 Hz
notch present in the diagonal and antipodal (the output
channel electrode pair is opposite the input channel electrode
pair) channels is the result of the fringe field springs. A
high degree of feedthrough coupling occurs in the diagonal
channels from using the same electrodes for both sensing
and control. This is evident in the dashed purple and blue
lines of Fig. 4 that represent the transfer functions in the
(1, 1) elements of F and P , respectively. The solid blue
trace that indicates the ζ1/u1 transfer function is computed
by subtracting the dashed purple line from the dashed blue
trace. The analytical feedthrough model is estimated by
removing the states associated with the disk dynamics from
(9). In practice, the feedthrough is mitigated by identifying
a feedforward FIR filter with the disk resting at its bottom
position.

IV. PRELIMINARY CONTROLLER DESIGN

The multivariable feedback loop is provided in Fig. 5,
where r, u, ζ ∈ R4, G is the feedback controller, and F rep-
resents the feedforward FIR filter. SISO feedback controllers
are designed around the diagonal channels of the plant in
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Fig. 4: Analytical frequency responses of the four plant
outputs to input channel u1. The dashed blue trace indicates
the ζ1/u1 transfer function in the absence of feedthrough
cancellation. The effect of the lightly damped lateral modes
is visible in a neighborhood of 1 Hz.

r −+ G u P
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−
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Fig. 5: Closed-loop architecture of the four-input/four-output
plant.

order to control each electrode-disk gap. Based on the model,
proportional controllers will stabilize the system, however,
imperfect cancellation of high frequency feedthrough makes
practical suspension more challenging so the controller gain
is rolled-off at high frequencies. The SISO controllers are of
the form

Gk = 8
200π

s+ 200π
, k = 1, 2, 3, 4 (10)

and analysis of the closed-loop eigenvalues indicates nominal
stability since the real part of each eigenvalue is strictly less
than −4 (ignoring those corresponding to the lateral degrees-
of-freedom, which lie just inside the open left-half plane).
This analysis is repeated for a set of varying fringe field
spring stiffnesses and nominal stability of the closed-loop
system is maintained so long as the spring rate produces a
lateral resonance greater than 0.08 Hz.

Due to the imperfect feedthrough cancellation of the
feedforward filter, unstructured additive perturbations are
considered around F . While conservative, the H∞ norm
of the pertinent transfer function seen from the perspective
of the uncertainty model indicates that perturbations in the
feedforward filter of at least 12% are acceptable for main-
taining closed-loop stability. It is evident in Fig. 4 that the
feedthrough exceeds the magnitude of the transfer functions
related to the physical disk dynamics in the diagonal chan-
nels. Thus, high fidelity feedthrough cancellation is required
for stability and that is reflected in the robustness margins.

The diagonal controller is discretized using Tustin’s
method and implemented by the DSP. Estimates of the
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Fig. 6: Top: Empirical frequency responses of the plant to
a broadband random input at u1. The remaining three input
channels exhibit the same trends. Bottom: Singular values
of the four-input/four-output empirical plant.

open-loop plant model with the feedthrough removed are
obtained from closed-loop measurements of the suspended
disk. Standard spectral estimation techniques are employed
to gather the u/r and ζ/r transfer functions. The empirical
model is generated according to P −F = ζ/r · (u/r)−1 and
is plotted in Fig. 6 for input channel u1. Small differences
between input channels are observed due to inconsistencies
in the transduction gains, however, for brevity, the frequency
responses for the remaining input channels are not plotted.
The empirical data indicates that the analytical model de-
veloped is fairly accurate in predicting the plant dynamics,
especially at low frequencies, however, the lateral modes due
to fringe field forces –estimated at 1 Hz in the analytical
model –do not appear in any of the channels. Deviation
from the expected s−1 roll-off above 10 Hz is the result
of residual feedthrough. The low DC gain and hump near
a couple of Hz in the ζ3/u1 transfer function occur in all
of the antipodal transfer functions and further investigation
of the modeling assumptions are required to understand the
plant dynamics in these input/output channels. The singular
values of the plant are also plotted versus frequency in
Fig. 6 and indicate the dominance of three singular values
for frequencies below 10 Hz. This motivates a decoupling
procedure for a three-input/three-output plant based on a
singular value decomposition of the four-input/four-output
plant model.
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Fig. 7: Closed-loop architecture of the decoupled plant.
The decoupling matrices and feedforward filter are lumped
into P̃ .

V. CONTROL OF THE DECOUPLED PLANT

A decoupling procedure is applied to the four-input/four-
output plant so that the inputs and outputs of the plant in the
new coordinate frame correlate with the disk’s vertical and
tilt degrees-of-freedom. A singular value decomposition of
Re(P ) = UΣV T is computed at a frequency of 0.36 Hz,
where the phases of all channels of the empirical model
are essentially 0◦ or 180◦. The input decoupling matrix,
Du, is taken to be the first three columns of the V matrix
and the output decoupling matrix, Dζ , is the transpose
of the first three columns of U . A new feedforward FIR
filter, F̃ , can be identified in this new coordinate frame
and this filter is lumped into the new plant model, P̃ , such
that P̃ = DζPDu − F̃ . It is important to note that the
decoupling matrices produced by the singular value decom-
position define the three degrees-of-freedom in a different
coordinate frame than that used in the analytical model
derived in Sec. III, nevertheless, alignment of the coordinate
frames is a calibration problem that can be resolved using a
transformation matrix.

Working in the decoupled coordinate frame has two main
benefits: the diagonal channels of the plant are over an
order of magnitude larger than the off-diagonal channels,
simplifying robust control design, and integrators can be used
to position the disk exactly with respect to its vertical and tilt
degrees-of-freedom. In the non-decoupled plant, the closed-
loop system is not asymptotically stable if an integrator is
introduced to each non-zero control element Gk in (10).
This is unsurprising since the disk’s {z, θ, ϕ} configuration
is defined by three points, so an inconsistent specification
can be produced by defining four gaps.

In a similar approach to the previous section, SISO con-
trollers are designed around the diagonal elements of the
plant as illustrated in Fig. 7. The vertical and tilt controllers
are PI controllers with high frequency roll-offs given by

Gz = 8
200π

s+ 200π
+

10

s
, Gθ = 8

200π

s+ 200π
+

5

s
(11)

where Gz is the controller around the vertical degree-of-
freedom and Gθ = Gϕ are the tilt controllers. These three
controllers are collectively grouped in the multivariable con-
troller G̃ = diag(Gz, Gθ, Gϕ). Analysis of the Nyquist plot
of det(I+P̃ G̃) indicates nominal stability of the closed-loop
system. Unstructured multiplicative perturbations at both the
decoupled plant input and output are (separately) considered
using the empirical plant model generated in Sec. IV. The



Fig. 8: Empirical frequency responses of the decoupled plant. The lateral resonance due to strong fringe field forces appears
in the vθ/uz and vθ/uϕ transfer functions near 2.4 Hz.

H∞ norm of the input and output complementary sensitivity
functions provide conservative metrics that indicate that the
closed-loop system is robustly stable to plant uncertainties
of at least 30% of the identified plant gain.

Digital implementation of the decoupled plant controller
yields the empirical frequency response model of P̃ shown
in Fig. 8. This data was also generated from measurements
of closed-loop transfer functions using spectral estimation
techniques. The lateral spring rate appears in the vθ channels
with a resonance of about 2.4 Hz and residual feedthrough
coupling causes the flat magnitude band above 10 Hz in the
diagonal channels. The vϕ/uϕ transfer function, however,
does appear to show improved feedthrough rejection. The
inclusion of integrators in the controller allows similar mod-
els to be generated about various N3-directional setpoints
to provide insight into how the feedthrough changes as the
nominal disk position varies. Differences between such mod-
els indicate that only about an order of magnitude reduction
in the feedthrough can be expected using the transduction
scheme employed herein since improvements in feedthrough
reduction at one setpoint do not correlate with enhanced
feedthrough cancellation at another.

In comparison to the disk in [10] that is not passively
stabilized in the lateral directions, the disk here can be
controlled in the tilt degrees-of-freedom for applications that
require it. In [10], any step input to the tilt channels creates
a change in the lateral position of the disk, but the steady
state angles remain zero. An unstable control law presented
additional challenges in that work, especially since the de-
coupling matrices were developed from the kinematics of the
system. Identification of the “true” decoupling matrices that
depend on transduction inconsistencies between channels in
this system can be extended to that in [10].

VI. CONCLUSION

Electrostatic levitation of a thin disk is achieved via two
separate control strategies: low-pass feedback controllers
around each of the electrode-disk gaps and PI controllers
in a decoupled coordinate frame. This three degree-of-
freedom system is designed to provide insight into the
decoupling procedure and non-idealities in the control and

sensing electronics that can be used in a more complex five
degree-of-freedom disk. Residual feedthrough coupling com-
plicates closed-loop suspension of the disk and an alternative
electrode arrangement that separates control from sensing
electronics will be addressed in future papers.
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