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I. INTRODUCTION 

A. Economic Incentives 

The gas centrifuge or ultracentrifuge is a device 

which separates the isotopes of uranium by the action of 

5 a centrifugal force field so~e 10 times greater than gravity. 

Ultracentrifuges of various types were investigated exten-

sively during the Second World War as a possible means 

of separating uranium isotopes for nucle•r weapons. With 

the decision to employ the gaseous diffusion process as 

the sole supplier of enriched uranium, interest in the 

centrifuge isotope separation method diminished considerably 

in the United States. Because of the large investment in 

the eqtiipment and technology of the gaseous diffusion 

process, American planning for future enriched uranium 

requirements for nuclear reactors does not seriously considet 

the gas centrifuge as a competitor. 

However, the rapid growth of nuclear reactor capacity 

in Western Europe and Japan, which do not have large 

gaseous diffusion capabilities, has generated considerable 

intere~t in the gas centrifuge as the principal means df 

producing slightly enriched uranium for the nuclear power 

industry. Perhaps the most attractive feature of the gas 

centrifuge process to these couritries is the relatively 

low electric power requirements. The three American gaseous 

diffusion plants, when operated at full load, consume as 

much power as one third of the electrical generating capacity 

df the West German Federal Republic. Preliminary estimates 



suggest that the cost of electricity in the gas centrifuge 

process contributes ~10% to the cost of separative work, 

compared to nearly 50% in the gaseous diffusion proces~. 

2 

The cost of electricity in Europe is higher than in the 

United States, so that an isotope separ~tion method less 

prodig~l of electric power is highly desirable. In addition, 

gas centrifuge plants can be operated economically on a 

much smaller scale than the size of an optimum gaseous 

diffuiion f~cility. 

Ori the other hand, scale-up of a gas centrifuge plant 

is not simply a matter of increasing the size of individuai 

separating units, since the performance and mechanical 

reliability of a gas centrifuge are critically dependent 

upon its .size. Isotope separation plants satisfying European 

demands .for enriched uranium would require very large numbers 

of indi~idual centrifuges, perhaps as many as several million, 

each operating at rotational speeds greater than 50,000 RPM. 

Questions of reliability and life-time, which s~gnificantly 

affect ~roduct cost, can only be answered by plant-scale 

demonstration of the process. However, the gas centrifuge 

process is s~fficieritly promising to have prompted the 

.. , 

British, Dutch and West German governments to form a company ~ 

to bring the process to the stage of commercial. exploitation (1,2). 

B. Scope of the Review 

There are many aspects to the use of the gas centrifuge 

for separating the isotopes of uranium. In the present 

review, the economic and technological questions touched 

I 
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upon above will not be explored further. Additional discussion 

of the economic and political considerations may be found 

in refs. 3-8. Engineering aspects, such as rotor des~gn, 

mechanical stabil~ty, and mat~rial selection are treated 

in refs. 9-16. 

The present review is restricted to an analysis of 

the performance of the gas centrifuge, based primarily 

upon the equations of diffusion and hydrodynamics which 

govern the phenomena occurring in the device. In addition, 

only a particular type of gas centrifuge will be discussed. 

During the Manhattan Project, three types of centrifbge~ 

w~re investigated: the evaporative, concurrent, and counter-

current modifications. Only the last of these is seriously 

considered for large scale application, primarily bec~use 

the flow pattern in this mode of operation acts to multiply 

the simple process effect many times. High separation 

factors can be achieved in a single unit, or in effect~ 

a single countercurrent centrifuge behaves like a miniature 

isotope separation cascade. 

Distinction must be made between two methods of establishing 

the countercurrent flow in the spinning·rotor or "bowl" 

of the centrifuge. These methods are illustrated in Figs. 

1 and 2. In the 13eams device (17) (shown in Fig. 1), the 

counter~urrent is established by streams introduced at 

opposite ends and different radial positio.ns. Reyfux and 

flow are maintained by pumps outside the device, so that 

t~e ~ountercurrent is said to be external. 

Figure 2 shows the ZGJ centrifuge of Groth (9). 
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In this configura~ion, countercurrent flow is due to 

thermal ccinvection set ~p by maint~iri~ng the top cover 
. . 

of the rotdr at a slightly higher temperature than the 

bottom eover~ This type of countercurrertt centrifuge is 

called a t~ermally drive~ or internal countercurrent 

~evice. The feed to the ~entrifuge enters the bowl from 

a small tube on the axis. To avoid mixing of streams of 

different compositions {which ·is anathema in all isotope 

separat~o~ methods), the axial locat~on of the feed point 

is chosen so that the feed composition is the same as the 

composition in the device established by the combined 

ceritrifugal and axial circulation processes. In the 

thermally driven centrifuge, the magnitude of the 

circulating flow (represented by the.sum of the "up" 

and "down" flows) can be adjusted independently of the 

feel flow rate or throughput. This ability to select 

the "reflux ratio" by simply adjusting internal temperatures 
e 

represents a degree of flJxibility not available in the 

centrifuge of F~g. 1~ where reflu~ing is performed by an 

external pump. Only the thermally driven centrifuge is 

presently under consideration for large scale separation 

of ur~nium isotopes, and only this type will be discussed 

_here. 

The gas centrifuge may be analyzed in two distinct 

steps: {1) the hydrodynamic analysis seeks to determine 

the nat~re and magnitude of the gas flow within the 

4 

rotor. (2) The separative analysis determines the manner in 

.... , 



which the.centrifug• ·perfo~ms as .an isotope separator. 

Although the separative propertie~ are dependent upon 

the hydrodynamics of the device, c6nsiderable progress 

5 

can be made by analyzing the separative behavior under the 

a~sumption that the flow patterns are known. Such a procedure 

delineates the features of the hydrodynamics which are essential 

to the understanding of the isotope separating capability 

of the centrifuge. The hydrodynamic analysis considers 

the behavior of a single component worki~g gas, while the 

separative analysis explicitly regards the fluid as a two 

component isotopic mixture. In this review, the separative 

behavior is considered in Sec. II and the hydrodynamics 

in Sec. III. 

C. Separative Prop~~ties of a Centrifuge 

The two parameters which are obtained from the separative 

analysis are the separation fact~r (or simple process 

factor) a and the separative power 6U of a single centrifuge. 

These two properties are related to the design features 

of the centrifuge, the physico-chemical properties of the 

process gas (uranium hexafloride), the flow pattern, and 

controllable variables such as the throughput and the cut. 

The importance of the separation factdr and the 

separative power can best be appreciated by regarding a 

single centrifuge as a black box, or separating unit, 

·which possesses a small number of formal properties by 

which its efficiency as an isotope separator can be gauged. 

Fig. 1 ~bows such a separating unit. Each unit receives a 
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feed of composition xF ~nd flow rate (or throughput) L 

and delivers a product stream (or heads stre~m) 6f composition 

Xp and flow rate p and a waste (or. tails) stream of composition ·~ 

xw and flow rate W. The cut of the separating unit is 

defined by: 

e = P /L (1) 

A material balance over the separating unit on the desired 

isotope (the one referred to by th~ design~tion of isotope 

fraciion x) yields: 

(2) 

The s~parat~on factor is ~efined by: 

a = (3) 

When detin~d by Eq. (3), the separation factor is ind~penderit 

of composition but may depend up~n the throughput L a~d 

the cut e. A large value of a is desirable, but is not 

the only important characteristic of the separating unit. 

For example, a p~rticular device may produce a large separation 

factor only at very small throughput. In order to process 

a certain amount of feed material, a large number of 

separating units may be required even though a is large. 

Conseqtiently, a separating unit which exhibits a relatively 

modest separation factor but does so at a reasonably large 



flow rate may be moYe desirabLe from the point of view 

of casc~d~ design. 

Quantitatively, the dependence bf the efficiency 

of a separating un~t on the combined effects of throughput 

and enrichment is characterized by the separative power of 

the unit. To describe t~is feature of the ~eparating unit, 

the work. which the device does on the fluid it processes 

is viewed as increasing the "value" of the material. The 

value of a unit amount of material of isotopic composition 

xis denoted by V(x), which is termed the value function. 

The separative power of the unit is defined as the increase 

in the value of the streams leaving the unit over the feed 

stream. A "value balance" can be made in a manner analogous 

to a material balance. For the separating unit shown in 

Fig. 3, this balance yields: 

(4) 

Both the separative power oU and the form of the 
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value function V(x) can be determined by a single requirement: 

that oU be independent.of isotopic composition of the 

strea~s entering and leaving the unit. Subsequent analysis 

is considerably simplified (and yet remains sufficiently 

accurate for our purposes) if only "close separation" 

processes are co~sidered. By close separation we mean that 

the elementary effect of each separating unit is quite 

small, or that the compositions of all streams entering 



and leaving the unit ~iffer but little from each other. 

This condition·~ fulfilled if the separation factor ct 

is close to unity. Under the close separation restraint,. 

the value functions V(xp) and V(xW) may be obtained from 

Taylor series expansions about the feed composition: 

Use of Eqs. (2) and (5) (plus the analog of Eq. (5) for 

V (xw)) in Eq. (4) yields: 

·. 1 . 2(d2V) oU = -18(1-e)(x -x ) -
· 2 P W dx2 

(6) 

In the close separation case, the defining equation for 

the separation factor, Eq. (3), may be simplified by 

neglecting a-1 compared to unity: 

(7) 

Since the compositions of all three streams enteiing or 

leaving the unit are close to ea~h other, it is immaterial 

whether xF, xW' or xp is used as the composition variable 

on the right hand side of Eq. (7). It has been denoted 

simply by x. 

Combining the precedirtg two equations results in: 

· 1 ,2 2(d
2v) oU • 2e(1-e) (a-1) L[x(l-x) 1 -

2 
· 

' dx 
(8) 

8 
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In order to satisfy th~ require~ent that 6U be composition 

independent we must set 

1 (9) 
[x(l-x)] 2 ·· 

Eq. (9) can be integrated directly. With the auxiliary 

specifications V(O.S) = (dV/dx)O.S = 0 (which are chosen 

for convenience and. do not affect the basic properties of 

the value function), integration yields: 

V(x) • (2x-1)1n(l~x) (10) 

The concentration-independent separative power of a single 

separating unit is thus seen to be: 

1 2 
6U = I9(l-9)(a-l) L (11) 

D. The Ideal Cascade 

A large scale isotope separations plant consists of a 

large number of separating units arranged in the form of 

an ideal (or no-mixing) cascade. An ideal cascade is 

sketched in Fig. 4. To differentiate the process streams 

entering •nd leaving the cascade from those pertaining to 

a single separating unit, the flow rates in Fig. 4 are 

written in script and the isotope fractions are denoted 

by x .. 

The properties of an ideal cascade (iriespective of the 

nature of the separating units of which it is composed) 

9 



are described in the book by Cohen (18). The height of 

the c~~cade (from the waste end to the product end) is 

proportional to the number of stages required to effect 

the desired separation. Provided that the separation 

factbr is independent of c~mposition and close to unity 

(the close separa~ion approximation}~ the total number of 

stag~s in the cascade is: 

number 
of stages 

(12) 

A ~tage may be represented by a horizontal line in the 

diagram of Fig. 4. The width of the cascade at any stage 

is a measure of the number of separating uriits at that 

particular point. All separating units in a given stage 

receive the same feed and produce the same heads and tails 

streams. The total area contained ~ithin the diagram of 

Fig. 4 is propdrtional to the total number of separating 

10 

units in the cascade. It can be shown that the total interstage 

flow rate in a close separation, ideal cascade whose separating 

units o~erate at a. cut 6 is given by1 

J -
2 u (13) 

2 
(a-1) e(l-e) 

where, by analogy to Eq. (4), U is the separative capacity 

of the entire cascade: 

(14) 

1 
Footnotes are collected at the end. 
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Divi~ion oi Eq. (11) into Eq. (13) shows that J/L, which 

is the number of sepaiating uriits in the cascade, is: 

number of 
~i~a~ating· • J/L ~ ~/~U 
units 'J;' 

Between them• a and ~U determine'all of ~he pioperties 

(15) 

of the cas'cade. If U is regaided as a des~gn SFecification 

of the cascade, 6U fixes the numb~r of unit~ reqtiired by 

Eq. (15). The se~aratioh fact~r ~ ~~termines the number 

of stages by Eq. (12). The taper of the cascade is also 

determined by these two properties of the lndi~idual 

separatin~ units • 

. It is desirable that both a and 6U be large. The 

larger 6U, the smaller the number of units in the cascade, 

which is obviously advantageous. If a is large, the cascade 

shown in Fig. 4 is short and squat, since the number of 

stages required for the overall separation is small. Each 

stage cbnsists of a large number of separating units in 

parallel and much of the recycling between stages which is 

necessary for small-a cascades is avoided. Problems of 

cascade operation are reduced to the extent that separating 

units can be arranged in parallel rather than in series. 

However, minimization of the number of separating units 

in the cascade is the dominant consideration, and if a 

choice must be made, it is preferable to design for 

maximum 6U rather than maximum a. 

11 



12 

II. SEP.RATIVE PROPERTIES OF THE GAS CENTRIFUGE 
. . 

This se~tion is coneerned with the theoretical 

descripti~n of the mann~r in which a thermally driven 

gas centrifuge produees a separation of the components of 

a binary isotopic gas mixture. The object is to determine 

th~ sepa~ation factor a and the separati~e power 8U of 

the machine~ with particular emphasis given to the dependence 

of these properties on controllabl~ parameters such as 

internal flow rate~ throughput, and the cut. 

The basic conservation equations in a one component 

system are those of mass (overall continuity), momentum, 

and· energy. In Sec. III, these equaiions are utilized 

to describe the fluid velocity field in the gas contained 

in the centrifuge. In the present analysis, the fluid 

~elocity, denoted bj t~~ vector ~, is assumed known. 

A. Species Continuity Equation 

In fluids comprised of two components (in the present 

case, different isotopes), an additional conservation relation 

is applicable; the "species continuity equation" describes 

2 conservation of one of the two components of the mixture. 

In a mixture of components A and B, the continuity equation 

for species A is (19): 

acA 
.at+ V'·_!iA = O (16) 

3 where CA is the molar con~entration of component A(moles/cm ) , 

V' is the gradient operator, and !A is the vector molar flux 

II' ,.,i 



. 2 
of component A in moles/em -sec. !A consists of two parts: 

a diffusive (or separative) term :!_A which describes the flux 

of A relative to the average velocity of the mixture and a 

convective (or non-separative). term which describes the 

flux of A due sim~ly to the bulk motion of the fluid: 

(17) 

where y i• the vector velocity of the bulk fluid. 3 

Substituting (16) into (17) yields1 

(18) 

In the case of .the gas centrifuge, two components of 

;!_A are important: the contribution Jim) due to ordinary 

moiecular diffusion·, and a term :!_ip) describing transport 

13 

due t6 a pressure gradient. The ordinary diffusion component 

defines the molecular diffusion coefficieht by Fick's law: 

.JA
(m) - cnn 

- vXA (19) 

2 where D is the binary diffusion coefficient in em /sec and 

C is the total molar concentration of the mixture: 

C = CA + CB (20) 



/ 

The mole fracti&n of apecies A is given by: 

(21) 

B. Elementary Kinetic Theory of Molecular Difftision 

Consider a binary mixture in which there exists a 

concenti•tion gradient in the z-direction but no bulk 

fluid flow. As shown in Fig. 5, the riet flux of A across 

a particular plane perpendicular to z may be regarded as 

the difference between the kinetic theory fluxes from 

regions a mean free path distant from the plane. 

From kinetic theory, the rate at which molecules of 

A cross a unit area anywhere in the fluid is l/4(nAvA), 

where nA is the molecular density of A and vA is the mean 

speed of the molecules of A according to the Maxwell-

Boltzmann distribution: 

(22) 

where k is the Boltzmarin constant and mA is the mass of a 

molecule of A. With respect to the above diagram, the 

molecular flux crossirig the plane in the +z direction is: 

where nA has been written as Avogadro's numb~r time~ 

the molar concentration. A is the mean free path of 

14 
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,:nnlecules of A in th.e mixture.,. given by: 

A = 1 
2 rra n 

1 
= (23) 

where a i~ the diameter of the molecules (assumed the same 

for A and B, since only ~sotopic mixtures are considered 

here). 

Similarly, the molecular flux in the -z direction is: 

-\) = 
A 

The ae~ molecular flux areasiug the plane at z is the 

+ -difference VA - VA. Dividing this difference by avogadro's 

number to give the molar flux in the +z direction yields: 

J (m) = 
At. 

+ -
VA - V .A 

= -

Comparing this equation to the z-component of Eq. (19) for 

the present case (C=constant) shows that: 

Using the kinetic theory exp·ressions for v A and A yields: 

3/2 
CD = 1. 

(24) 

15 
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Altno'ugh ,dei.ived by-.~ .:very simpl.ified' model_,. Eq. (24) 

correctly pr.edi.c ts th:e 'tu3/2 power dependence of D upOn 

absolute temperature. and the inverse'variation of D with 

total concentrati.onC. This latter characteristic is 

especially important.in the gas centrifuge, where the total 

concentration (or prefls.ure)· varies by. a factor of nearly 

1000 acrOss t~e radius~ 

·:·· 

..... 
{ . 

.'.' 

. ~ . 
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c. Equi1ibrium Distribution in a C~ntrifuaal Force Field 

Consider the eq~ilibrium situation shown in Fig. 6 

of a fluid mixture spinning at angular velocity n rad/sec 

in a cylindrical tube of radius r 2 . There is no bulk 

fluid mot~on and the temperature is everywhete T • The 
0 

centrifugal fore~ o~ a molecule of species A at radial 

distance r from the axis is:· 

F = r 
(25) 

16 

wh~re V~ is the tangential velocity, rn, at r. The potential 

energy of the particle relative to the position on the 

axis is the integral of the force: 

E (r) = -JrF (r')dr' = 
P r . 

.· 0 

·1 2 
-- m (rn) 

2 A • 
(26) 

Since the physical system is one of thermodynamic equilibrium 

at a ~ortstant temperature T
0

, the ratio of the probability of 

finding a partic1e of A at a location r to the probability 

of finding one on the axis is given by the Boltzmann 

factor (20): 

e xp[ - E P ( r) I k T 
0 

] 

Or, s~rice the probability of f~nding the particle at r is 

proportional to the concentration of A at r, the thermo-

dynamic argument yields the equilibrium radial concentration 

4 profile •. 
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where MA=NavmA is the molecular weight of species A and 

R=N k is th• gas constant. CA(O) is the concentration av .. · 

of A on the axis. Similarly, for species B: 

The sum of (27) ~nd (28) gives the total contentration. 

17 

(2 7) 

(28) 

Using (27), (28), tn· (20) and substituting in the definition 

of the mole fraction of Eq. (2n.) gives the. radial concentration 

profile in mole fraction units: 

2 where a is: 

2 
a = 

Because of the centrifugal force field, the light 

(29) 

(30) 

isotop~ (A) concentrates on the axis while the heavy isotope 

is enriched on the p•riphery. The equilibrium separation 

factor Of the light isotope for a centrifuge of outer 

radius r 2 is given by: 



Or, using Eq. (29) .for xA(r 2 ): 

2 2 a r 2 a = e. 
0 

(31) 

The equilib~ium sep~ration factor fo~ uranium isotopes 

(MB~MA•3) at a peripheral spe•d (nr 2 ) of 300 m/sec and 

300°K is 1.055. Thus, the basic simple process difference, 
·.. . . 

a
0
-l, for the centrifuge is 0.055, which is more than an 

18 

order of ~agnitude gre•tet than the simple process difference 

for an ideal diffusion membrane, which is a. -1 = (M /M ) 1 / 2 - 1 = o B A 

0.0043. 

The equilibrtu~ separation factor of Eq. (31) is not 

obtained in an a>ctual .centrifuge. The pr-evious development 

appli~d to • situation in which there was no flow. In 

a real machine, there must be some internal flow at least 

to supply feed and remove waste and product. Some aspects 

of th• internal flow tend to degrade the separation 

factor~ but in th• ther~al~1 driven countercurrent 

machine, the flow actually improves ~he enrichment by 

multiplying the simple process factor - the real centrifuge 

acts like a little ~ascade. 

In order to d~scribe the concentration distributiori 

and enrichment in a real centrifuge, the species conservati6n 

equation, Eq. (18), must be applied to the device. To 

do this, we still need to provide a description of the 

pressure diffusion term, J(p) to complete the definition 
-A ' 

of the flux ~A· This is accomplished by considering the 
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equil~brium (no flow) tas~ just discussed. 

D. Pr•ssure Diffusi~n Flu~ 

~ The m~le fraction profile established i~ the spinning 

fluid~ E(~ (29), is a Btrictly th~rmodynamic relation 

and so does not depend upon the actual mechanism by which 

it was set up. How•ver, we may regard it as a balance 

between the o~posirtg mechanisms of ordinary molecular diffusion 

and pressure dif£usion. In the equilibrium case, this 

balance takes the form: 

J = 0 Az 

J = J· {m). (g•) 
Ar Ar + JAr = 0 

where r and z refer to the radial and axial coordinates 

in th• spinning fluid. 

component of Eq. (19): 

J (m) = -en(. 9x A) 
Ar · dr. 

Since J{m) is given by the r
Ar 

(32) 

(33) 

and xA{r) is given by Eq. (2.9;), combination of Eqs. (29), 

(32), and (33) yields: 

'•· 

(34) 

Since there is no external force on the particles in the 



\ 

z-di r~c t_ion, 

J(p) = 0 
Az 

(35) 

Ev~n though Eq. (34) was derived for the c•se of an 

equil~brium situati6n, it i~ vali~ even wheri there is fluid 

i
. 5 mot on· , and Eqs. (34) and (35) ,provide .the description 

of pressure diffusion needed to apply Eq. (18) to the 

gas centrifuge. 

E. Fu~da~ental Partial Differential Equation of the 

Countercurrent Gas Centrifuge 

The vector fluid velocity~ y, in th~ centrifuge of 

Fig. 2 e6nsists of ~adi~lJazimut~al and a~ial components 
I . 

u, v, and w. As will be shown in Sec. III, the radial 

component is zero, the aximuthal component is approxima~ely 
. I 

eq~al to the solid body rotational speed rn, and the axial 

component is a function of radial position alone. Axial 

£luid motion is generated inside the spinning rotor by 

two means: 

(~) The tDp cover plate bf the centrifuge is made somewhat 

hotter (by about 20°C) than the bottom plate. This temp-

erature difference induces a natural ciruclation flow 

into the otherwise purely rotational motion of the gas. 

As shown by the ~rrow~ in the sketch, the flow is touriter

current in nature. The fluid moves downwa~d near the axis 

and rises along the wall at the periphery. Except near 

the ends, this axial flow is a function of radial position 

20 
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only, and ia denotad by the funct~on w(r). If axial distance 

is measured fro.m the top end, w(r) is positive for radial 

locations. near the axis and negative near the periphery. 

The magnitude of the axial circulation is controlled by the 

temperature difference between the end plates, and the 

shape to the vrofile is determined largely by the design 

of the rotor internals (e.g., the design of the scoops to 

remove pr6duct and waste and internal baffles, if any). 

(b) The primary therm•lly-induced natural circulation 

flow described in (a) is perturbed by the introduction of 

feed gas on the axis and the withdrawal of waste and product 

fro~ ~ither end of the machine. It will be assumed that 

these external flows are but a small l>erturbation on the 

internal circulation. 

Accepting the above restrictions on the velocity 

components, th• convective term in Eq. (18) is: 

(36) 

The diffusive term in Eq. (18) is: 

+ Clz 
( 37) 

the radial flux components are given by Eqs. (34) and (35) 

(with a partial derivative in the former): 

(38) 



2 . ( ) where a is given by Eq. 30 • 

There is no pressure diffusion in the z-direction, 

and the component of the diffusion flux in this direction 

is due purely to molecular diffusion: 

J . = J (m) 
Az Az 

Noting that by Eq. (24), the product CD is a constant, 

the steady state form of Eq. (18) for the centrifuge 

becomes: 

(39) 

ax 
Cw az = lill 

r 
a dx 2 2 a2x ar (r dr + 2a x(l-x)r ) + (CD) dz 2 (40) 

The subscript A on the mole fractibn has been dropped for 

clarity of notation. C a~d w are functions cif r only. 

Eq. (40) is the fundament~! equation whose solution 

gives the complete concentration field in a countercurrent 

gas centrifuge. No exact solution is obtainable, but a 

very good approximate solution can be obtained by noting 

that although C and w vary substantially with r, the 

variation·of x with r is very small (less than in the 

equilibrium case, where x(r) is given b~ Eq. (29)). 

Because of the countercurrent flow established by the 

internal circulation, x var~es more with z than with r. 

Therefore, we seek a solution for the radially-averaged 

mole fr~~tion x(z) as a function of z. 

nJ 
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We hav~ alluded to the fact that the centrifuge acts 

like. a small cascade, and analysis' of the· device must 

refl~ct this f~atur~. The treatment here differs in this 

respect ftom that presertted by Cohen (18), but is quite 

.similar t~ the studies of Los (21) and Kanagawa and Oyama 

(22). 

In Fig. 7, th~ ~entrifuge has been d~vided at the feed 

point into a stripping section and an enriching section. 

Just as in the analysis of accascade, we take material 

balances on the desired isotope and on both isotopes in 

each section. 

The net flux of the des~red isotope across a cross 

section of the entire centrifuge in the enriching section 

(zF~z~Z) must be equal to the rate at which this isotope 

leaves the device in the product~ which is xPP: 

J
r2 

= 2n N (r)rd~ 
z 

where N is the flux of the desire~ isotope in the +~ z 

direction, given by a combination of Eqs. (17) and (19) 

for th~ particular restrictions of the ~entrifuge: 

N z 
ax = -CD ai + xCw 

(41) 

(42) 
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Inserting (42) into (41), there results: 

r ax dr + . az 

® 

The integral @ is integrated by parts: 

(4 3) 

0 = r Cwxrdr = x(r 2 ) r Cwrdr - t (~:) r Cwr'dr' dr 

ro ro ro 

We now J~fine a flow function,. f(r), by: 

f(t) ... 
J

r 

Cwr'dr' 

so that the integral @ is: 

ax 
f(r) ar dr 

r 
0 

The radial concentration gradient in the last term 

(44) 

(45) 

of Eq. (45) must be estimated. It will alway~ be smaller 

then the gradient in the equilibrium case, which from 

Eq. (29) is: 

(46) 

In the actual case, ax/ar is obtained directly from the 

fundamental equation, Eq. (40), by carefully examining the 
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order of magnitude of the various terms. The variation of 

x with both r and z is small, but it is smaller in the r 

directi~n ~han in the z direction. If ax/az is small, 

2 2 then a x/'az is smaller still~ and the last term in Eq. (40) 

may be neglected in the estimation of -'dx/'dr. (Berman (23) 

has performed the analysis withobt this simplification). 

Simi1arly, the variation of ox/oz with radial position is 

of sli$bt importance compared to the variation of Cw with 

r in the left hand side of Eq. (40). Therefore, 'dx/'az is 

approximated by dx/dz, which by definition, is independent 

of r. Thus, for the purpose of estimating 'ax/'ar, Eq. (40) 

becomes: 

dx 
Cw dz 

(CD) L[r ax . 2- - 2] 
= r or ar + 2a x(l~x)r (4 7) 

In a similai spirit~ the mole fractions appearing in the 

last term of Eq. (47) have been takeri as the radially 

averaged values. Eq. (47) is multiplied by rdr and inte-

gr•ted from r 0 to r. At r=r 0 , the bracketed quantity 

in Eq. (~7), which is proportional to the radial flux, 

is zero. Solving for the radial gradient: 

ox - = or 
-2a2i(l-i)r + 1. !ill ( ddiz.) 

(CD) r 

The flow function of Eq. (44) has been used to obtain 

(48) 

Eq. (48). The first term on the right of Eq. (48) is the 

equilibrium radial concentration gradient, given by Eq. (46) 

·.·: .-· 
. ··:;·..:. .. ·:: 
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The last .term represents a degradation of the gradient 

due to the internal flow in the device. 
\ 

Eq. (48) is now substituted into Eq. (45) to give: 

J
r2 

rf(r)dr 1 
- (CD) 

( 4 9) 

~here x(r
2

) in Eq. (45) has been approximated by the ~verage 

concentration, x. 

In the @ integral, of Eq. (43), 'dx/ 'dz is approximated 

by lx/dz and removed from the integral: 

®= (50) 

Using Eqs. (49) and (50) for the @ and @ integrals. 

Eq. (43) becomes: 

x- (1-x) - <~D> . 

(51) 

which is an ordinary differential equation deacribing the 

variation of the radially-averaged mol~ fraction, x, with 
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' ·. . . . -

axial p.()sition z.. It ma}' be w~itten in a more compact· 

.form by .• coll'~cting :the 1>:.~acketed. coefficients as constants 

and omitting the ~ar over ~: 

. ' 

i·::~·= x,(l~-x)- yJl(~P-x) .. 
/ 
·;' 
I 

where: 

... · n - z/ z 

and 

l .··, . ·· .. · 2 2J' 1 .. · ' . ,' 

y = 28. r 2 . F ( l; ) t d r; . 

cr, 

+' J;[F(~)]2 f. 
(21TCDr

2
)· 

the· fl~~ functio~ i~tegr,als in (.56) and (55) have been 
·- - . . ,_. . . ·. -· . ·. . ' 

. written in terms ,of the dimensionless radial position 

r; = rlr 2 · 

and (J is. rolrz. 

. (52) 

(53) 

(54) 

(55) 

( 5,6) 

I.n terms of ,r; (and ~ultipl:i.ed by 21r:), the fl.aw function is: 

(57) 

The t o t a 1 p r o d u c t flow r ~ t e , P , i s · r e 1 a t e d t o t he 
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flow fun~tion by the f~llowing argument •. Material balances 

formul~ted for the other isotope are similar to.Eqs. (41) 

and (4Z) except that xp is replaced by 1-xp and x by 1-x. 

Adding the equations for the two isotopes yields: 

p = 21T 
.Jr2 

Cwrdr 

or, in teims of the"flow function: 

P = F(l) (58) 

Eq. (58) was used in transforming Eq. (51) to Eq. (52). 

Eq. (52) is th~ basic tadially-averaged differential 

equati~n for the concentration variation in the enriching 

In the 

strip~in• s~ction (O~n~nF), a similar deiivation produces 

,the equation: 

1 dx 
g* dn = x(l-x) - y*W(x-xw) (59) 

where xW and W are the waste composition and flow rate, 

respectively. The co~f£icients g* and y* are of the Bame 

form as Eqs. (54) and (55) except that the flow function 

therein is b~sed Upon the axial velocity profi~e in the 

stripping section: 

F* ((;) 

t 

= 2••: Jcw*''dt' 
cr 

(60) 
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The waste flow rate is giveti by: 

W = -F*(l) (61) 

The ilow function F*(~), and hence the coefficients 

g* and y*, .differ from the analagous parameters in the 

enriching se~tion because of the difference in the axial 

velocity w(r) in the two sections. These ~wo are slightly 

different for the reasons described in (b) of Sec. liE. 

If there were no feed or withdrawal from the centrifuge 

(i.e., total reflux), a flow profile w (r) would be 
TR 

~stablis~ed by the temperature difference between the 

co•er plates. As shown in Fig~ 2, the feed is introduced 

on the axis s6mewha~e in between the ends of the centrifuge. 

The feed joins the downward flow in the core. Part of the 

flow added at the feed point is removed at the product end, 

but the rest remains with the circulatory flow and moves 

upward toward the waste end. The last vestige of feed gas 

is removed at the top and the main circulating flow moves 

29 

down to the feed point to again pick up feed. The perturbation 

of the axial velocity profile and the flow function due to 

the feed are shown in Fig. 8. (w is zero at r=ro and r 2 

because of the solid boundaries, where we have assumed the 

"no slip" condition to apply.) 

A~ suggested by Fig. 8, we assume that the perturbati~n 

in the·total reflux profile, wtr(r) is slight. It cannot 

be vanishingly small, however, for the flow function of 

Eq. (57) at ~=1 must be equal to P in the enriching section 



'/.) 

(Eq. (58)) and -w in the stripping section. However, 

except $t 7,;=1, we do not ·need to carr~ the distinction 

betweem w~R and w or wTR and ~*. In particular the flow 

function · F ( r,;) in Eqs. (.54) and (55) can be adequately 

calculated from any of the velocity profiles in the sketch 

without altering the values of the integrals appreciably. 

30 

The net effect of this approximation is that the coefficients 

g and y in the enriching section are the same as the 

coefficients g* ~nd y* in the stripping section, or the 

asterisks in Eq. {59) m~y be omitted. 

Th• *pproximation just discus~ed is valid provided 

that the external flow rates P and W are small compared to 

the •agnitude of the internal flow. Th~ magnitude of the 

interrial flow is measured by the integral of the axial 

velocity profile without regard to the sign of w(r), 

or a flow rate M is defined by: 

' 2 Jl 
M = 21Tr 2 .• Cjwjr,;dz; 

a 

which is the sum of the concentration-weighted areas of 

(62) 

the poaitive and negative portion of the w(r) curve of Fig. 8. 

M is controlled solely by the temperature difference 

between ~he cover plates. If L is the throughput (feed) 

of the centrifuge, then the requirement that the external 

flow ex~rt a negl~gible influence on the thermal circulation 

is equivalent to requiring that the reflux ratio, L/M, 

be much smaller than unity. Berman (23) and Ouwerkerk 

and Los·(24) have included the effect of non-negligible 
/ 



feed rate in the centrifuge calculatiods. The ~et effect 

is a redtiction in separ~tive power. 

31 

The-internal flow rate M has another u~eful application. 

It serves as a scale fac~or for the integrals in Eqs. (54) 

and (55)~ The flow p~ttern efficiency is d~fined by: 

4rr F(t)tdtr 
E = 

. Jl [F(I;) ]2 F 
(63) 

cr 

and a flo~ nu~ber is defined by: 

(64) 

Because of the scaling by the. internal flow magnitude, 

M, the factors E and Nf are independent of both the throughput 

L and th~ intern~! flow magnitude, M. In terms of these 

factors, the coefficients g and y of Eqs. (54) and (55) 

may be written as: 

( 65) 

(66) 



' 
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G. Enriehment ~t Total Refltix 

When there is no feed added to or waste and product 

withdrawn from the centrifuge, the last terms in Eqs. (52) 

and (59) vanish. If, in addition, we con~ine attention 

to the case of low enrich~ent, x<<l (which merely simplifies 

the mathematics btit does not affect the main features of 

the final results), the enrichment equations for both sections 

are identic~! and ~ay be written as: 

dx = gx dn 
(67) 

which is valid from n=O to n=l. Integration of (67) over 

these li~its yi~lds: 

( 68). 

Now, the separa~ion factor of any separating unit is defined 

by the ~atio of the pzoduct arid waste abundance ratios 

accordihg to Eq. (3). In the case of x<<l corisidered here, 

a=xp/xW' so that Eq. (68) is the separation factor at total 

reflux: 

= eg (69) 

Since the ratio g is a function only of the internal 

flow rate ;M (by Eq. (66), aTR varies with M in the manner 

sketched in Fig. 9. 

As M+O, g+O and the left hand term in the denominator 

J, 



'::-.. 

~f Eq. (66), i(J dominant~ This t:erm; if it :ls followed 

back through. th.e derivat1o.n, rep·resents axial molecular 

diffusion. Th.e limit aTR+l as M:....o simply states that 

if no internal circ\llation is established; no axial 

enrich~ent can be ~ttained. At small M, axial enrichmerit 

is severaly restricted. by back diffusion in the z direction. 

Similarly, g+O as M+co and the right hand term in the 

denominator 

"I· ........ 
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of Eq. (66).is much larger than the a~ial diffusion term. 

In this limit, the axial enrichment is reduced by the 

very large circulati~n currents which are implied by large 

M. In the limit, the strong circulatory flow simply 

uniformly mixes up the entire contents of the centrifuge. 

The maximum enrichment at total reflux occurs at 

an internal flow ra~e given by: 
i 

(this optimum M is obtained by setting~= 0). 

When M=M , Eqs. (66) and (69) give: 
0 

(71) 

This is a very instructive equation. Compare it to 

the equilibrium separation factor of Eq. (31). Whereas 

the equilibrium case represents an enrichment in the 

radial direction (r=O compared to r=r
2
), Eq. (71) is an 

enrichment factor for the axial direction (z=O compared 

to z=Z). By the establishment of the internal circulation, 

the direction of largest enrichment has been changed 

f~6m radial to axial. Naturally, in an actual centrifuge, 

the product and waste are withdrawn from the ends of the 

machine rather than from the axis and peiiphery. Moreover, 

33 

the axial enrichment is larger than the equilibrium enrichment. 
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2 2 .· 
The term a r

2 
in the exponent of Eq. (71) is the equilibrium 

sepaiation difference, a -1. The flow pattern efficiency 
0 

term (/E) repre.sents a degradation of enrichment due to 

the flow in the device - it must have a value less than 

unity. The last term, the length-to-radi~s ratio, represent~ 

the augmentation of the enrichment due to the countercurrent 
. I 

flow in the cen~rifuge. 

If the following values are assumed (all are typical 

'of actual ~entrifuges):: 

2 2 0.055 a r2 = 

E = 0.7 

Z/r 2 = 7 

we obtain aTR = 1.25, which represents a simple process . ,opt 

differenc~ ~so times greater than can be achieved in the 

gaseous diffusion. process. However~ this very large 

enrichment has only been obtairied with no throughput, 

which is obviously not a practical way of operating an 

isotope separating unit. We must now investigate how a 

non-zero throughput reduces the separation factor, and 

develop a means of optimizing the performance of the 

centrifuge. 

H. Effect of Throughput on Enrichment 

The enrichment attainable by a centrifuge when the 

external flows L, P, and W are not zero is governed by 

Eqs. (52) and (59) (with the primes removed in the latter 



... 

relation). For the.low concentration case (x<<l), these 

equations can be integrated to yi~ld: 

xp = (l+yP)expfg(l+xP)(l-n)] 
x 1 + xPexp[g(l+yP)(l~n)] 

for nF~n~l (enr~chlng sec~ion)~ and: 

exp[g(l-yW)nl-yW 
.1-XW 

for oSn~~F (stripping section). 

(7 2) 

(7 3) 

It is conveni~nt to express the total internal flow 

rate, M, in terms of its optimum value at total reflux 

by the ratio: 

m = M/M 
0 

where M is given by Eq. (70). 
0 

In terms of the reduced internal .flow parameter, 

the coefficients g and X become: 

1 1 (i 2r; )/E[ 21TCDr 2 1m = 
X 12 

1 
(a

2
r

2 l n(L )( 21L] g = 
12 2 . r 2 l+1!12 

(74) 

(7 5) 

(76) 
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Both X artd g are functions of the exp~rimentally co~trollable 

internal flow rate via the parameter m, but are independent 

of the throughput, ~hich appears in Eqs. (72) and (73) 

as the qtiantities P and W. 
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We now join the. enricher and stripper &quations ((72) 

and (73)) at the feed poin~ by inserting x=xF at n= nF 

in both relations. In order to avoid mixing of fluids of r 

different ~omposition, the feed is introduced at the axial 

location where :the common concentration in the stripper and 

enriche~ at the feed point is equ~l to the feed concentrat~on. 

Instead of expressing the extern~! flows as P anl W, it is 

more convenient to use the throughput (or feed rate) L 

and the cut 8. The ratio xp/xF which appears on the left 

of Eq. (72) at n=nF' may be rewritten by use of Eqs. (2) and (3) 

,:::_ 

xp xp a (77) = 
X (1-8) = (a-1)8 XF x 8 + 1 + . p W· 

The second equality.is a result of identifying xp/xW 

with the s&p~~ation factor· a. In terms of th~ cut, yP 

may be written as 8yL, so that at the feed point, Eq. (72) 

becomes: 

a (1+8yL)exp{g(l-nF)(lt8yL)} 

= ~ + (8yL)exp{g(l~nF)(1+8yL)} (7 8) 
1 + (a-1)8 

Similarly, Eq. (73) is: 

exp{gn~[l-(1~8)yL]} - (1-8)yL 
1 + (a-1)8 = 1 - (1-8)~L (79) 

In priricipal, the parameter nF can be eliminat~d between 



Eqs~ (78) and (79), and these two equations may be regarded 

as a single relation providing the separ~tion factor a 

as a functi~n of the parameters 8, yL, and g. Once the 

centrifu•e ~s design•d and the rotational speed and the 

gaseous feed specified (i.e., UF 6 }, the following parameters 

are f~xed: 

i 

= equilibrium separation difference 

E. = flow pattern efficiency 

geometric factor 

[2TICDr 2 ] = molecular diffusion factor 

The first three ot these factors are dimensionless. The 

diffusion factor has the units of flow rate, and may be 

expressed in moles/sec or kg/yr. 

Hence, g and y are functions only of the internal 

flow para~eter ~ and Eqs. · (78) and (79) are equivalent 

to the relation a(e,L,m). These three itidependent variables 

are controllable parameters of the centrifuge. 8 arid L 

are controlled by valv•~ on the external flow lines and 

m is adjusted by the temperature difference between the end 

plates of the machine. 

The behavior of a with m for the limiting case L=O 

was described in Section IIG. In the general 

case, for a fixed cut, the variation rif a with m exhibits 

a maximum for each value of L, as sketched in Fig. 10. 
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The optimum value· of m is unity .at L=O, but tnoves to larger 

m as L is increased. The ma~ima iri the above curves desciibe 

a as a ftinction of L, which are plotted in Fig. 11. 
opt 

I. Clos•~Separation Appr6ximatio~ for a in the Case 

of Non.-Zero Thr'o·ughput 

The graph.s in the preceding section show that as L 

increases~ the maxi~um attainable ~eparation factor a 

decreases and occurs at increasingly larger values of m. A 

practical centrif~g~ is.operated in a region where m is 

significantly greater than unity (i.e., 2 or 3) so that 

2m < 1 
l+m2 

The product of the remaining fact~rs in Eq. (76) 

are al~o less than unity (in the example .in Sec. IIG, 

this product was 0.23), so that we can seek a solution 

of Eqs. (78) and (79) in the limit as 

g+O (80) 

However, if this limit is directly applied to Eqs .. (78) 

and (79), only the trivial solution a=l r~sults. Therefore, 

we must also requi~e that: 

gyL is not vanishingly small (81) . 

even though g is very small. This combination is satisfied 

if 

yL is large (82) 



Since throughput rates gr•ater than zero reduce a 

below its value at total reflux, the close separation 

approximation can be applied to the left hand s.ide of 

Eq. (78), which becomes: 

l+(a.-1)8 ~ a.[l-(a.-1)8] = [l+(a.-l)][l-(a.~l)8] ~ 

1 + (a.-1)(1-8) ( 8 3) 

Applying condit{ons (80) and (82) to the right hand side 

of Eq. (78), we obtain: 

(1 +aid exp [ g (1-nF) 6yL] 
1 

1 - exp[-g(l-nF)8yL] 
~ 1 + 

8yL 
8y 1 + exp[g(l-nF)8yL} 

the right hand side of (84) follows by asstiming 8yL>>l. 

Equa~ing (83) and (84) yields: 

(a.-1)(1-8) = 
1 - exp[-g(l-nF)8yL] 

8yL 

Applying identical argum•nts to Eq. (79) produces: 

(a.-1)8 
1 - exp[-gnF(l-8)yL] 

= 
(l-8)yL 

Examination of these two equations shows that for 

(84) 

(85) 

(86) 

both .to ~e valid, the arguments in the exponential terms 

must be equal; this can occur only if 
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n = a (87) 
F 

which, .if used in either (85) ·or (86) results in: 

exp(-sJ(1~9)9LJ.} 
[gy(l-8)8L] 

E~. (88} gives a q~ite satisfa~tory description of 

(88) 
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the enrich~ent capability of a centrifuge under the conditions 

m>l~ L>O, a-1 small. Eq. (87) also ~bows that the point 

at which the feed is introdu~ed into the machine is specified 

by the desired cut. 

J. Optimum Separative Power of a Centrifuge 

It has been indicated in rather loose terms that 

centrifuges are usually operated with relatively large 

valries of m, with L of cburse greater than zero, and 

with a S~mple process difference appreciably smaller than 

obtain~ble at total reflux. In this section, these 

conditions are made quantitative. The main question which 

arises is what criteria should be applied to select 6ptimum 

values of ~, L, and e. This que~tion is answered by the 

considerations of Sec~ ID. 

According to Eq. (15), the number of separating units 

in a cas~ade of specified total separative capacity U 

is minimized if the separative power of each unit is 

maximized. Consequently, we determine values of L, m 

and a which maximize 6~. Th~s optimization procedure is 

differertt fr~m that discussed in Sec. IIH. In the latter, 

• 
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8 and L ware fixed and m wa~ chGsen to maxi~ize a. I~ the 

present ca~e, we shall fix .m and choose a and L to ma~imize ~U. 

Optimization of the contr-ollable variablesto give the largest 

separative power is more important_ than adjustments to achieve 

the largesi separatiott·£~ct6r; ~U determines the 

number of centrifuges required in a cascade, whereas a 

merely determines how the fixed number of units is to be 

airanged in the ideal cascade. 

With the restriction of close separatiori (which has 

already been inco~porated into the analysis of a), the 

separat~ve power of any separating unit is given by Eq. (11). 

If Eq. (88) is inserted into Eq. (11), there results: 

~u ~ !(£). {1 - exp[-gy(l-8)81]}
2 

. 2 y · (gy(l~8)8L] 
(89) 

In the limiting case of close separation, both a 

and 6U depend only up~n two contiollable parameters - the 

product 8(1-8)1 and m (which governs g andy). If we 

regard m (and hence g and y) as fixed, the maximum 

separative power occurs when the right hand side of Eq. (89) 

is a maximtim, or when: 

(gy{l-8)81] = 1.25~-fJ!.ZOg ... 
· opt 

(90) 

at which point: 

6U0~t = tco.4t>(~) 
. ~ 

(91) 

.1f.o7"-61f..?,i 7 (. ·•• 



Inserting the expxe•sions for g and y from Eqs. (75) and 

(76).into Eq. (91}: 

.'014? R7> 7)~l 

OUOpt s o.:lE{!<a 2 r~l 2 (2ntnr 2 )( ~ 2 lK::2) (9 2) 

Th~ ~uantity in the curly bracke~s of Eq. (92) is 

shown in th~ Appendix to be the maximum possible separative 

power of any ~ype of centrifuge, 6U . It is thus a max 

standard against which the performance of the thermally 

driven countercurrent variety can be compared. 

The overall efficiency is defined by: 

overall = efficiency 

6U 
opt = 

\SU max 
( 
.. 2 ) 

0.81E ~ 
. l+m · 

(93) 

Th~ overal1 efficiency 6ontain~ three terms, each of which 

is less than unity. 

The cionstant 81% efficiency contribution in Eq. (93) 

stems from the nature of the thermally driven countercurrent 

in the centrifuge considered here. Lo~ (21,24) has shown 

that this lass of ~eparative power is due to the fact 

that the dire~tion of fluid flow changes from axial in the 

middle of the bowl to radial •t the ends of the centrifuge, 

where the internal fl~w changes direction by 180°. The 

net effect is a reduction in the effective length of the 

bow1. This factor is not present iri the externally driven 

centrifuge of Fig. 1, where the flow is in the axial 

direction throughout the entire unit. 

42 
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the second factor in Eq. (93), E, represents a 

degradation of efficiency due to the deviation of th~ 

pattern .of the axial velocity profile from the optimum 

shape. This factor will be considered in more detail 

in Sec. III. 

The last factor in Eq. (93) reflects the effect of 

the magriitude of the intern~! flow upon ~eparative performance. 

The separation factor under conditions that produce 

the maximum separative power is obtaine~ from Eqs. (88} 

and (90): 

. 5 :', q 3'3 ~?:,...,. ,: ~: • ,. 

ex - 1 opt 
1 . -1.25. 

-.e = g..::.-..,....,;~=-=-----
1. 25 

f 
= 0.57g 

or 

(94) 

Similarly, the optimum throughput is obtained from Eq. (90) 

as: 

L = opt (95) 

T~& value of the internal flow parameter which 

maximizes the. separative power is seen from Eq. (92) 

to be m= 00 • Obviously, this is a practically unattainable 

li~it, since the separation factor would be unity by Eq. (94) 

and the throughput rate would be infinite according to 



Eq. (9S). A practical compro~ise is to o~erate in the 

neighbo~hood of m=3, •t which point, 

and 

2 
m 

l+m 2 = 

2m 
i+m2 = 

0.9 

0.6 

At m=3, the separative po•er is 90% of the maximum value, 

yet the enrichment per stage is still 60% of its maximum. 

It will be recalled from the discu~sion of Sec. !IF 
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that one of the requirements of the analysis was that the 

refltix ratio, L/M, he much less than unity. This restriction 

ensured that the throughput did not appreciably alter the 

internal flow established by the natural convection process. 

If this is not true, the overall efficiency is smaller than 

th~t given by Eq. (93), wherein the first factor is less 

than 0.81 (24). The reflux ratio under optimum conditions 

is obtained from Eq. (92) with the use of Eq. (70): 

[L~ptl= [L~pt) ~= 
0 

{96) 

In order to minimize the reflux ratio at the optimum 

separative power, the centrifuge should be long (large 

Z/r 2 ) and the cut should bet (which maximizes 8(1-8)). 

Since the cut enters only in the reflux ratio (and not 

I' I 
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in au tor a t), minimization of the reflux ratio is op op 
. 1 

the only criterion for fixing the cut at 2· This statement 

is valid only in the close separation limit, where the 

approximations used in Sec. II-I result in combining the 

variable& 6 and L into the single parameter 6(1-B)L. 

Bulang et at (25) have ~hown that the optimum cut is less 

1 
than 2 in the general case. 

K. Summary 

A summary of the asaumptions contained in the preceding 

analysis is given below: 

(a) x<<l (i.e., x<~O.OJ) 

(b) a-1 small (i.e., <0.1) 
I 

(c) m large in order to.satisfy conditions (84)-

(82); (m=J is large enough) 

(d) reflux ratio <<1 

(e) the feed is introduced at the position where the 

concentration of the feed point is equal to the 

feed composition~ 

A~sumptions (a)~(c) have been introduced solely for 

calculational convenience and can readily be removed • 
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Analyses similar to that presented here but without assumption 

(d) have been reported by Ouwerkerk and Los (24) and Berman 

(23). Point (e) iS more of a specification than an 
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·assumption; it should never be relaxed. 

Typi~al p~ramet~~s of ~ ga~ cent~ifuge· u~ilizing 

uranium he:Xafloride as a process g~s are showrt in Table 1 . 
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TABLE 1 

TYPICAL PARAMETERS OF A GAS CENTRIFUGE (UF
6

) 

Peripheral velocity~ Ur
2 

= 300m/sec 

Z ,; 66cm8 

a r 2 = 9.3cm 

2 2 a r 2 = 0.055 

E = 0. 7 

. ~4 b 
CD = 2.2xl0 gm/cm-sec @ 300°K 

2TICDr 2 = 400kg UF 6/yr 

m=3 (assumed) 

e = 1 
2 

g=O.l4 

1/y = 40kg/yr 

6U = 2.lkg/yr max 

Overall Efficiency= (0.81)(0.7)(0.9) = 0.51 

oU = l.lkg/yr opt 

L = 1400kg/yr opt 

(l = 1.08 opt 

b Ref. 23 
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III. HYDRODYNAMICS 

A. Features of the Flow Needed for the Separative Analysis 

The perform~nce of a thermally driven countercurrent 

centr~fuge ~hich has been optimized for maximum_separative 

power is governed by Eqs. (92), {94), and (95). All 

parameters in th~se equations are kriown except those which 

depend upon the ~xial velocity p~ofile. 

The dimensionless internal flow parameter, m, depends 

upon both the shape and magnitude of the internal flow, 

misgiven by combination of Eqs. (74), (70), and (64) as
6 : 

. 2t[F(t)]2 ¥}1/2 
m = (97) (27TpDr

2 

The flow pattern efficiency, E of Eq. {63), depends 

only upon the shape of the flow function, but not upon its 

magnitude: 

, 4(!
1

F(t)tdt 
2 

E = ~~--------~-
.Jl[F(1;)]2 

a 

where F{l;) is given by Eq. (57). 

subject ~o the restraint: 

F(cr) = o 

(63) 

The flow function is 

(98) 
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Throughout this review, we have assumed that the internal 

Ill 
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circulation established by natural convection is but 

negligibly perturbed by the introd~ction of feed and with-

drawal of product and,waste. If so, the properties of the 

irtternal flow are those at total reflux, whith supplies 

another restraint on the flow fun~tion: 

F(l) = 0 (99) 

There are two levels of understanding required of the 

hydrodynamics in the centrifuge: knowledge of the axial 

velocity to within an ~ndetermined multiplicative constant 

is su£ficient to fix E; if ih addition, the internal 

circulation parameter m is desired, the multiplicati~e 

factor must be determined. 

B. The OFtimal Flow Function 

The optimal flow function is the one which produces 

a flow pattern efficiency, E, of unity. It can be deduced 

without considering the fluid mechanics of the centrifuie. 

(1) Mathematical Approach 

We first transform Eq. (63) by introducing the 

quantity: 

(100) 

and changing the radial variable to: 

(101) 



Using Eqs. (100) and (101) in Eq. (63) yields: 

•[Jl 2 . 
. o· F*(X)dX . 

E = 1 . J [F*(X)]
2

dX 
0 . 

(102) 

. . . 4 
We have also assu•ed that a <<1, so that the lower limit 

on the integrals is replaced by zero. 

The Schwarz ine~uality (26) ~tates that for two 

functions f(X) and g{X) defined ove~ the interval O~X~l, 

(103) 

where the equality holds only if f and g are proportional. 

If we take f(X) = F*(X) and g(X) = constant, Eq. (lb3) 

becomes: 

~ J1
[F*(X)]

2
dX (104) 

0 . 

and the equality holds only if F*{X) is ~lao a constant 

(since it must be proport1onal to g(X) which is a constant). 

Applying Eq. (104) to Eq. (102) shows that E must always 

be less than or equal to unity, the equality occuring only 

if F*(X) is a constant. If this is true, Eq. (100) requires 

that: 

for E=l (105) 
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(2) Physical Approa~h 

Los and Kistemaker (27) and Bock (28) have derived 

the optimal flow function by the following physical argument. 

The optimal velo~ity profile is the one which maximizes 

the separat~ve power of the centrifuge. In the Appendix, 

it is sh~wn that maximum separative power is attained when 

the radial concentration gradient, 3x/3r, is one hal~ of 

the equilibtium value (see Eq. (A-20)). The actual radial 

concentration profile in the centrifuge is given by Eq. (48). 

If Eq. (A-19) is inserted into the left hand side of Eq. (48), 

2 we see that under optimal conditions, f(r) ~ r , which is 

equivalent to Eq. (105). 

(3) Implications of the Optimal Flow Function 

In terms. of the definition of the flow function 

by Eq. (51), Eq. (lOS) is obtained only if: 

pw = constant (106) 

For a single component gas ~f molecular weight M, Eq. (27) 

shows that the total con~entration v~ries with radial 

position accord~ng to: 

p(~) 

where: 

2 
A 

A2,..2 
= p(O)e "' 

= 

(107) 

(108) 



~·· 

2 2 
is the analog of the group (a r 2 ) used in the separative 

analysis. The second equality in Eq. (108) shows that A 

is the ratio of the p~ripheral speed to the most probable 

molecular speed of ~he Max~ell-Boltzmann distribuiion. 

~ombining Eqs. (108) and (~07} shows that the optimal 

velocity piofile is: 

-A2~2 
= constant x e (109) 

This axial velocity profile is unattainable in practice 
. . . 

becau~e ii is ~f the ~ame sign at ~li radial positions. 

As sketched in Fig. 8, th~ axial velocity must change sign 

at some point.within the centrifuge, because of the counter-

current nature of the flow. Violation of this physical 

requirem~rit is equi~alent to the fact that the optimal flow 

functi~n of Eq. (~05) does not satisfy the restraint of 

Eq. (99), imposed by the condition of total reflux. 

Eq. (109) shows the type of velocity profile most 
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advantageous to the separative performance of a gas centrifuge. 

In the remainder ~f this section, the actual hydrodynamics 

of the cenirifuge ar~ analyzed in order t~ determine how 

closely the optimal flow pattern can be approached. In 

addition, theoretical studies ~hich seek to determine th~ 

magnitude-of the interria~ flow are also reviewed. 

c. Equations of Motion 

(1) General Form 

The complete velocity field inside the spinning 

• 



• 

rotor of th~ g~~ centrifuge (ass~ming the lfuid to be a 

single component ideal gas) is determined by the equations 

of motion. These are ~hown in full on pp. 83, 85, and 319 

of Ref. ·19. In cylindrical coordinates with axial symmetry 

and at steady state, they are: 

overall mass continuity: 

radial momentum: 

p(vr ::r c :~ + vz ::rl . - 1£. + ar · fa [1 ll dr r 

angular momentum: 

axial momentum: 

' I 

a2v r .] 
. 2 

az 

= - ~ + ll - -- r a fl a ( ()z r ar 

a
2
v } __ z + pg 

oz2 

__ z. + av ) 
()r 

(110) 

(111) 

(112) 

(113) 
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where V , v
6

, and V are the compo~ents of the fluid velocity r z . · 

in the radial,· azimuthal, ~n~ axial directions. p and ll 

are the mass density and viscosity of the gas respectively, 

and g i~ the acceleration of gravity (assumed to be in the 

+z direction). The gas pressure is denoted by p. The 

2 term v9/r in the radial momentum equation and the term 

VrV 6/r in Eq. (112) represent the centrifugal and Coriolis 

forces, re~pectiv~ly. These forces arise solely from the 

spinning ~otion of the fluid and are absent in the momentum 

equations iri rectangular coordinates. 

The energy equation is: 

C ( V .. aT + V C)T) 
p v r ar z lz 

where Cv and K are the specific heat at constant volume 

and the ther~al conductivity of the gas, respectively. 

(114) 

The second term on the left hand ~ide of Eq. (114) represents 

the reversible work done on the fluid due to compression 

or expansion. V~scnus dissipation has been neglected. 

· The equation of state of the ideal gas is 

pM = pRT (115) 

where R is the gas conStant and M is the molecular weight. 

:·! :I 
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(1) ·Th~ Eq~~1~~~~tim Sdlution · 

In the. equilibrium case cons:idered in Sec. IIC, 

·there is no internal circulation apd.the velocity components 

reduce to: 

v = Q 
r 

V ·· = Qr . a 

v = 0 z 

and T = T . 
·0 

The equations of ~otion reduce to: 

.. -.:·-:-,}·, 

(116) 

(117) 

(The gravitational ter~ mAY be ~~&lected since it is quit~ 

·small compared to the centrifugal force.) 

•( lE.)' Clr . eq 

. ("'\2 
= 'p a'. r eq 

M 2 .· 
= -.- 0 rp RT . · eq 

0 

Integration of Eq. (118) yields: 

or 

,. ' 

(118) 

(119) 

(120) 

.I' 
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where p(O) arid p(:O) are th.e pressure and density on the axis, 

respectively. Equation (120) is identical to Eq. (107). 

(3) Lirieari~e4 £~uation• of Notion 

_The_ quantiti~s in the equations of motion are 

recast iri terms of the perturbations of the equilibrium 

values due to the internal flow by the transformations: 

v = 0 + u 
r 

ve = Qr + v 

v = 0 + w z 

where u, v, and w are the radial, angular, and axial 

components of the perturbation velocity, and 

p = Peq + p 

p = peq + p 

T =: T + T 
0 

(121) 

(122) 

where p, p, and T represent the perturbation of the state 

of the gas due to the internal circulation. 

Eqs. (121) and (122) are substituted into the complete 

equations of motion and any terms which contain the product 

of two.br more perturbation parameters are neglected. This 

l~near~zation procedure is adequate b.ecause the perturbations 
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due to the internal circulation are small. 

The linearized equations of motion.are: 

overall mass continuity: 

(123) 

radial momentum: 

-prn
2 

- 2p Ov ... - 1£. + pfL[.!. .L.(ru)l + :
2
z.u2.] (124) : eq . ar •. ar r ar J a 

angplar momentum: 

(125) 

axial momentum: 

12.+ ~{~ L(r aw) 2 1 0 a w = - + --dZ ar dZ az
2 (126) 

7 energy: 

2 [1 a ar) a
2

T J ~Peq n ru = K - -··-(r + -·-r ar ar . 2 
dZ 

(127) 

Equation of State: 

.(128) 

Discussion of the boundarY conditions on Eqs. (123) ~ 

(127) will be postpon~d until particular solutlon methods are 



described. So~e solutions do not consider the presence of 

the central feed tube while others do. At total reflux, 

of course, the central feed tube is not essential to the 

operation of the centrifuge. 

In addition to the linearization assumption, another 

feature which is common to all solutions is the neglect 
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of the gravitational term (i.e., the last term in Eq. (113)). 

This may at first seem rather odd, sine~ we have referred 

to the internal circulation ind~ced by unequal plate temp-

eratures as a type of natural con•ection. In thermal 

natu~al. convection problems in ordinary flow situations, 

the ac~eleration of gravity is a crticial feature of the fluid 

behavior. I~ the centrifuge, however, the expansion-

,compression work term o.n the left of· Eq. (127) replaces 

the gravitational term as the mechanism by which small 

temperature inequalities are transformed into fluid motion 

(see Sec. IIIE.l). 

Neglect of the term pg in the axial equation has an 

inter•sting consequence. The system of equations (123) -

(127)-is invariant to a change in the direction of the z

coordinate. Repla~ement of z by -z and w by -w does nut 

change the sign of any of the terms in th~se equations 

(if a gravitational term were retained in Eq. (126), it 

would change sign under such a transformation). Thus the 

system is symmetrical about the midplane at z=Z/2, and it 

should make no difference whether the top plate is heated 



.. 

and the bottom plate i~ cooled (as in Fig. 2) or vice versa. 

This expectation ha~ been confirmed by the experiments 

of Groth (9) . 

D. Long Bowl Solutions 

If the length ~f the rotor, Z, is large compared to 

the radius, the velocity field over a large portion of the 

centrifuge will be nearly independent of Z• Consequently, 
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a class of solutions in which u, ~, and w are either functions 

of radial position only or vary in a simple, prescribed 

manner with z have bee~ sought. By losing contact with 

the specific conditions at the end plates of. the device, 

the restilting solutions can only provide a quantity proportional 

to the axial velocity profile, w(r). Co~sequently, long 

bo~l solutions pro~ide sufficient information to determine 

the flow pattern efficiency, E, but riot enough to compute 

m. We·first discuss the solution methods employed by various 

investigators in the long bowl approximation and summarize 

the results at the end of this section. 

(1) Steenbeck (29) and Parker and Mayo (30) 

The computational work o£'Parker and co-workers 

at the University of Virginia is quite similar in approach 

to the earlier investigation of Steenbeck (30). Parker's 

analysis retained terms in the equations of motion which 

Steenbeck had neglected and introduced the energy equation 

to properly account for non-isothermality. Solutions 

obtained by the two studies agree at low p~ripheral speeds 
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btit•differ at high s~~eds. Only the Univers~ty of Virginia 

work will be outlined. 

St~enbeck and P~tker assume that all of the perturbatiort 
. . 

.quant~ti's in Eqs. (120) and (121) are separable in rand z • 
. ·_ .( 

If fi(r,t) ~eQotes any of these parameters, they take: 

' -kz 
f i ( r ,_ z ) = g i ( r ) .e _ (129) 

where g
1

(r) is the r-dependept part ~f the perturbation 

property, and k is the common eigenvalue (the lowest only), 

to be determined. After elimination of p by use of Eq. (128), 

substitution of Eq. (129) into Eqs. (122) - (127) yields a 

set of five cou~1ed ordinary differential equations for the 

radial ~ortions of the pertu~bation parameter~ (i.e., the 

gi (r) of Eq. (129)), which were solved numerically. The 

boundary conditions were: 

r=O: dv dw dT 
0 at u = = = dr = dr dr 

(130) 

at r=r2 : u = v = w = o, T = T 
0 

(the feed tube was assumed absent). The set of differential 

equations contains the undetermined eigenvalue k, ~hich was 

also determined in the course of the numerical solution. 

The perturbation velocity components, u, v, and w, and the 

fractional departure from isothermality, T/T , were computed 
0 

·• 
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for values 
. 2 

of A from 4 to 25. Only relative values of 

the velocity perturbations could be computed. It was 

found that the angular and axial perturbation velocity. 

components (v and w) were of the same order of magnitude. 

Other perturbation quantities (u, i, and T/T
0

) were several 

orders ofmagnitude smaller than v and w. The decay length 

in the axial ~ire~tion (i.e., the reciprocal of the first 
-1 . 

eigenvalue, or k ) varied from 5000r 2 to 30r 2 over the 

range of A
2 

values investigated. 

The numerical s6lution method became increasingly 
. . . 2 

difficult as larger values of A were attempted. Ging 

(31) has developed an asymptotic solution which avoids 

this difficulty and agrees w•ll with the numerical solution 

2 
at A = 25. 

(2) Soubbaramayer (32) 

The first study of Soubbaramayer *lso ignores 

the details of the effects at the end plates of the centri-

fuge and assumes that the velocity perturbations u, v, and 

w are functions of r only. The pressure perturbation, p, 

is eli~inated from the linearized equations of motion by 

taking the partial derivative of Eq. (123) with respect to 

z and of Eq. (125) with respect to r. The 3~/3z term 

appearing in the former as a result of differentiation 

with respect to z is obtained from Eq. (127). Expressed 

in terms of the dimensionless radial coordinate ~ = r/r 2 , 

the resulting equation is: 
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'(131) 

2 where A is given by Eq. (108) and B is a scale factor with 

unit~ of velocity: 

4 2 
= r2S1 peq (O) . ar 

B ~To az (132) 

The axial temperature gradient, ()T/az, was assumed constant 

(indep~ndent of both r arid z) ~o that the parameter B is also 

a constarit. By dividing Eq. (131) by B, the problem is 

reduced to a third order o~dinary differential equation 

involving the dimensionless axial velocity 

W(l;) = w(I;)/B (133) 

Since B is unknown (and cannot be determined at this level 

of appro~imation) , the solution gives the axial velocity 

profile to within an undetermined multiplicative factor. 

The t~ird order differential equ~tion is supplied with 

th~ following boundary conditions 

W(1) = 0 (by the no-slip condition) 

(134). 
. .. 

(by symmetry, since the 

feed tube was not considered) 



and an iritegral restriction sup~lied by the restraint on 

the flow function expressed by Eq. (99): 

(135) 

Eq. (131) can be -integra~ed ~i~ectly (although ~etails 

of the integration were not given) to yield W(~). The axial 

- 2 
velocity profile is parametric in A • 

(3) Berman (33) 

Berman~s treatment of centrifuge hydrodynamics is 

an attempt to obtain the shape of the axial velocity profile 

without resorting to the extensive numerical computations 

employed by Park~r (30). In keeping with the long bowl 

model, axial velocity is tak~n to be a function of radial 

positions only. The radial and angular comporients u and v 

are assumed zero. 
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In order to sustain an axial velocity profile by Berman's 

method~ a radial temperature gradient is imposed upon the 

system. The feed tube at r=r 0 is taken to be somewhat 

hotter than the rotor wall at r=r 2 • Because of this specification, 

the variation of T with z is neglected. This constitutes 

a significant departure from Soubbaramayer's approach, in 

which the axial temperature gradient could not be set equal 

to zero. 

Berman applies these simplifications to the complete 

set of equations of motion and not to the lineariz~d versions. 



64 

The govetn~rig e~uations reduce to: 

radial momentum: 

a 2 ·.~· 2 ~ = prO = prO ar RT 
(136) 

axial momentum: 

[
1 ·a aw 1 

· ll r ar <r rr>J = *+ pg* (137) 

energy: 

1 a (r at) 0 .r ar ar = (138) 

The.external force parameter~ g* in Eq. (137), does 

not r~present gravity. Rather it is an adjustable driving 

force for providing the countercurrent flow.· In effect, 

it compensates for the features of the flow lost in the 

simplification of Eqs. (110) - (114) to the forms shown 

above. 

Since the temperature is assumed to be a function of 

r only, Eq. (136) shows that: 

a <·.1 ~> = az p ar = a < atnp) = 0 dr dZ (139) 

or the quantity 

(140) 



~ 65 

is a function of z only. Using Eq. (140) and the ideal 

gas law, Eq. (137) can be •ritten as: 

(141) 

where both. G and g* are considered as constants. 

In order to solve Eq •. (141), pis obtained by integration 

of Eq. (136) 

p(r) - p(ro)exp[~2 r r' 
T (r') 

ro 

and T in Eqs. (141). and (142) is determined by direct 

integration of Eq. {138), which yields: 

T (r) 
T 

0 

(142) 

(.143) 

where T
0 

and T2 are the specified temperatures at the feed 

tube and the rotor wall, respectively. The ratio '-r 0 /r 2 

is denoted by cr. Eq. (141) is thus a second order ordinary 

differential equation containing two unspecified .constants, 

G and g*. Combining Eqs. (141) and (142) yi~lds: 

d [. dw] . { 2 . 2 J~· d~' · l[· e: J d~ (~+v) d~ = Bexp A (1-a ) o (T(~')/Tolj 1 + T(<)/To 

(144) 



Radial position is expressed by the quantity: 

2 2 
.r. - ro 

~ =. 
2 2 

r2 - ro 

B is the velocity scale factor: 

2 2 r
2

(l-cr )Gp.(O) 
B = 

4ll 

and £ is a combination of the constants g* and G: 

£ = M ~ 
RT G 

0 

(145) 

(146) 

(14 7) 

In terms of ~' the temperature variation with radial 

positi~n is given by: 

!.ill 
T 

0 

·~ T - T ). =1+.0 ·2 
T 

0 

R.n(~) 
R.ncr 2 (148) 

Solution of Eq. (144) yields only the dimensionless 
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axial velocity W(~) ~ ~(~)/B, which is analagous to Eq. (133). 

The boundary conditions reflecting no-slip at the feed 

tube and rotor wall are: 

W(O) = W(l) = 0 

The integral constraint of Eq. (99) ·is also used. It is: 
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J
l f 2 . 2 

exp A (1-cr ) (149) 

0 

Whereas the Soubbaramayer analysis requires two boundary 

conditions and the integral constraint because the differential 

equation is third order, Berman's differeritial equation is 

only sec~nd order. The integral constraint of Eq. (149) 

is used to eliminate the undetermined parameter E in Eq. (144). 

Berman shows that the solution of Eq. (144) can be 

reduced tb quadrature form; th•t is, to an equation giving 

W(~) explicitly in terms of integrals over the functions 

of~ appearing in Eqs. (144) and (149) •. These integrals 

are complex enough to warrant e~alua~ion by computer, for 

which a program wa~ written (34). Even though numerical 

computation is still required, the calculations are considerably 

simpler than the more complete treatment of Parker (30). 

Examination of Eqs. (144) and (149) indicates that the 

2 solution W(~) should depend upon the parameters A , (T -T 2 )/T , 
0 0 

and cr. In fact, however, the profiles are completely in-

sensitive to the last two parameters, provided that they are 

considerably sm~ller than unity. This behavior had to occur 

for a reasonable solution, for the parameter (T -T 2 )/T 
0 0 

was ~mposed upon the problem solely to generate a counter-

current flow. In an acttial .centrifuge, no attempt is made 

to regulate feed tube and rotor wall temperatures. In 

the next section, it will be shown that the artifice of an 

'I 
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imposed tadial temperatu~e gradient can be dispensed with, 

thus permitting a rather simple hand calculation of the 

velocity profile, the flow function, and the flow pattetn 

efficiency. 

(4) Simplified Berman Calculation 

The sole reason for specifying a radial temperature 

gradient in Berman's analysis was to provide a differential 

equation with enough undetermined parameters to accomodate 

the two bbundary conditioris and the integral 6onstraint. 

If T(t)/T were set equal to unity in Eq. (144), one of 
0 

the parameters would be lost (the last bracketed term in 

Eq. (144) would become l+e:, and the product B(l+e:) would 

become the velocity scale fa~tor). Thus, the function of 

the temperat~re ratio in the last term on the right in Eq. (144) 

is simply to provide a radial dependenc~ to this term. 

Th~ radial variation need not be of the particular form 

given by T(t)/T
0 

of Eq. (148), but can be chosen in an 

arbitrary fashion. 

Therefore, we begin by: (1) setting the temper•ture 

ratio in the exponential term in Eq. (144) equal to unity, 

(2) as'suming cr 2<<1, in the same term, and (3). repl.cing 

T /T{t) in the last term on the right by t itself (any 
0 

function of t would do; t is the simplest). In terms of 

the dimensionless axial velocity W=w/B, Eq. (144) reduces 

to: 



f; 

(150) 

subject. to the same boundary conditions as in Berman's 

case. The unknown constant E is fixed by th~ restraint: 

J
1

eAJ~W(~)dt - 0 (151) 

0 

Eq. (150) may be integrated directly to yield: 

W(~) = Ei [A
2 

q;+v) J - Ei (A
2

v) 

Ei[A2 (l+v)] - Ei(A2v) 

A2~ 
+ x(e "'-1) 

A2 
+ y(e -1) 

~n{~) 
(
l+v)(152) 

~n -
\) 
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addiiiortal ~-independent factrirs which appeared in the course 

of the integrations were incorporated into the velocity 

scale factor B, which cannot be obtained by this method 

in any case. 

Ei(x) is the exp~nential integral: 

Ei(x) 

-oo 

t e 
t 

dt (153) 

The expon~ntial iritegral is tabulated by Jahnke and Ende 

(35), but convenient asymptotic forms are: 

Ei(x) = 0.577 + lnx + .... for small X (154) 

and 

X [1 + 
1 

•• ~ for Ei(x) e 
+ large (155) = X-1 X 

(x-1) 2 
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The parameter y in Eq '· (152} is: 

.· 2 '' 
. A v 
e 

2 - A 'V - 1 
(156) 

which is another constant, and shall be determined instead 
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of £ by substitution of Eq. (152) into Eq. (151). For 
2 ' 

A >~10 (which corresponds to a peripheral speed of ~375 m/sec) 

and v = a1 /(l-a 2) between 10-4 and 10- 2 (which corresponds 

to O.Ol~r0 /r 2 ,o.i), the parameter y is given to a very good 

approximation by: 

2 y= ---,--
2A2-l 

(157) 

The asymptotic expansion of the exponential integral for 

large x was used in obtaining Eq. (157). 

2 
As it stands, Eq. (152) depends upon A and the geo-

metrical factor v. Since only the shape of the axial velocity 

for E>0.5 is important in determining the flow function, 

v can be eliminated by the following considerations: If 

l0- 4<v<l0- 2 , then Ei[A2 (E+v)] ~ Ei(A2 E). If A2 E>~5, the 

exponentiil integral can be appr6ximated by Eq. (155), and 
2 ' ' 

eA E>>l. For the range of v indicated·a.bove, Ei(A2v) may be 

neglected compared t~ the other terms in Eq. (152) and the 

ratio of the logarithms in -the right hand term of Eq. (152) 

may be approximated by unity. Using these approximations, 

Eq. (152) becomes: 

1 
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l + .. (2A2-1) 

[ 2A
2 (1-)~} + 1] (.A 2 ~-l) 2 

- 1 (158) 

For even larger A2 , the following very simple form results: 

W(O (159) 

In terms of the radial variable ~ used in this and in 

the preceding section, the flow function, to within a constant 

factor, is: 

~ . . 

F(") = I eA2 ~'w(~')d"' 
0 

and the flow pattern efficiency (neglecting a 2 compared 

to unity) is: 

E = 

2 J1 F(Od~ 
2 

0 

Il[F(~)]2 .!!f· 
0 

The requisite integrations are readily accomplished. 

(5) Comparison of the Various Long Bowl Solutions 

(160) 

(161) 

In this section, we compare the results of the four 
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long bowl solutions j~st discusse~. 

Fis. 12 shows the density-weighted axial velocity 

profiles for A2=16 and 25. The ordinate is the integrand 

of the flow f~nction {see Eq. (160)). The solid circles 

represent the results of the sim~lified ~erman method, 

computed from Eq. (159). Agreement between all three solution 

methods is quite good. 

Fig. 13 shows the radial position at which the velocity 

profil~s of Fig. 12 cross zero. All of the simplified 

models agree well with Parker's r~sults. In general, as 

the p~ripheral speed is increased, the zero velocity point 

approache~ th~ rotor wall, which means that the return 

upflow is concentrated irt a thin iayer near the periphery. 

Fig. 14 shows a typic~l flow function for A2=10 as 

calculated from Eq. (158) of the simplified Berman model. 

Note that ~his curve ~s quite different from the form 

F(t)~t requ~red by Eq. (lOS) for maximum flow pattern 

efficiency. 

The flow p~ttern efficiericies are plotted on Fig. 15 

for the various long bowl models (the two dashed curves 

result from calculati~ns which will be discussed in the next . 
section). The s~ot calculations on the simplified long 

bowl method~ agr~e satisfactorily with the Parker c~lculation. 

The latter shows a maximum value of E=0.81 at A2=5.4. 

E. Solution~ Which Give Absolut• Flow R~tes 

The solutions discussed in the previous section 

concentrate on the flow pattern near the midplane of the 



centrifuge and disregard the detailed flow effects on the 

end plates. As a result of this approximation, the shape 
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of the axial flow as a functiQn of radius could be accurately 

described, but the magnitude of the flow, which depends 

upon what is happening at the heated and cooled ends, 

could not be determined. 

( 1 ) :Mar tin ( 3 6 ) 

The calculations pxesented by Martin treat the 

flow field in the neighborhood of the end plates but ignore 

the presence of the rotor wall. However, because the 

convective current~ are generated at the end plates, 

knowledge bf the hydrodynamics here permits the absolute 

magnitude bf the flow function at all axial positions to 

be computed. 

A sketch of the count~rcurrent flow in the centrifuge 

is shown in Fig. 16. The flow near the end plates is primarily 

radial in direction and is restricted to a thin "boundary 

layer" on the plates. As the fluid moves in over the top 

plate, some is turned by 90° and provides the axial flow 

which was considered in the previous section. A similar 

phenomenon, but reversed in direction, occurs on the cooled 

bottom plate. 

Martin's analysis starts from the linearized equations 

of motion. Since ~he flow is primarily radial in nature, 

the perturbation components v and w are assumed zero. 

Since the boundary layer on the plate is assumed to be very 



thin, the r*dial component v~ries much more rapidly with 

axial distance z thari with r. Thus, Martin assumes that 

in the equ*tions of •otion, only ter~s which depend upon 

the variation of u with z are important. 

The perturbatLon quantities of Eq. (122) ars restricted 

as follows: 

p = 0 

p = p (z) (162) 

T = T (z) 

Applying the simplifications described above to the radial 

momentum ~quation, Eq. (124) yields: 

- 2 -prn (163) 

The angular momentum equation is not considered in 

Martin's treatment, which immediately introduces an 
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inconsistency. If the angular perturbation velocity component, 

v, is neglecied, Eq. (125) indicates that the term 2peqnu 

(which ar:is~s from the Coriolis force) is also negligible, 

even though this term is of comparable magnitude to the 

right hand side of Eq. (163). 

The energy conservation equation, Eq. (127), becomes: 

(164) 



c&. 

Eq. {164) shows that the.expansion-compression work 

term (the left hand side) is fundamental to the generation 

of the flow irt the device. 

Since p has been neglected, the linearized equation 

of state, Eq. (128), becomes: 

(165) 
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These equations are combined to give a single differential 

equation fo~ the velocity component u as follows: Eq. (163) 

is differenti~ted twice with respect to z. 2- 2 
The d p/dz 

term which results is proportional to d 2¥/dz 2 by Eq. (165). 

2- 2 
Finally, d T/dz is eliminated by use of Eq. (164). The 

resulting fourth order differential equation is: 

0 (166) 

where: 

}lKT 
. 0 

{16 7) 

The general solution to Eq. (166) is: 

u = 

( 168) 

'l 



. 76 

Since we are dealing witlL a boundary layer type of flow 

on tiLe e~d plates, u and all of its derivatives must vanish 

at large z. Therefore, c
1 

and c
3 

are zero. At z=O, the 

no slip condition require• that ~(0)=0, so that c2=o as 

well.· 

The last boundary condition is somewhat less obvious. 

In the centrifuge, the end plates are held at temperatures 

which are 2~T different from each other (see Fig. 16). 

The gas f~r from eithei end plate is assumed to be at a 

constant temperature T • Therefore, at z=O, T=~T. Using 
0 

this condition in Eq. (165) and then in Eq. (163), provides 

the fourth boundary condition as: 

2 . 
rf2 p flT eq 

lJ.T 
0 

(169) 

which, when substituted into Eq. (168), permits c4 to be 

calculated. 

Th• radial v~ldtity profile in the boundary layer on 
·.· ' 

eith~r end. plate is thus given by: 

u = ·····[rn
2

p flT]· . eq.·· ..... -lj>~ ~ 2 . e . sinlj>~ 
· . 21j> JJT. 

' 0 

(170) 

·, 
Th~ p~6file,~~presented byE~. (170) is a damped 

s~nusoi~,i •s illustrated in Fig. 17. (The axial distance 

over.which it differs from zero has been greatly expanded 

for the purpose of illustration.) The "thickness" of the 

-· 
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boundary layer may be take~ as the. w~dth of the first 

lobe of the function, which is rr/<j> (the remaining oscillations 

are rapidly damped out). Th~ maximum radial velocity occurs 

at z'Vrr/4<j>. Expressing p as a function of r by Eq. (120) , eq 

and using the perfect gas law, Eq. (167) may ba rearranged 

to give: 

2 
P2 

(171) 

2 where p 2 is the pressure at the periphery, A is given by 

Eq. (108) and t=r/r
2 • To avoid condensation of the solid 

phase of UF 6 , p 2 must be less than 'Vi atm. Taking p 2=1 atm, 

. -4 -5 
t 2=9.3 em, ~=1.8xl0 poise, K=l.7xlD cal/cm-sec-°K, 

T =300°K, and A2=6.5 (corresponding to a peripheral speed 
0 . 

of 300m/sec), <1> is friund to be 20cm-l at a radial position 

half way between the axis and the periphery. The boundary 

layer thickness here is thus rr/20=0.16 em, which is far 

smaller than any of the other diaensions of the centrifuge. 

The flow on the end plates is clearly of the boundary layer 

type. 

Eq. (170) and Fig. 17 show that at the heated end 

plate (~T positive)~ the radial flow is ~nward and on the 

cooled end plate (~T negative), the flow is outward. The 

solution obviously begins to break down near the corners 

of the centrifuge where the end plates join the cylindrical 

wall of the rotor. Here u begins to change significantly 

with r and gradients of u with r in the equation of motion 
......... 



cannot be neglected. The complete neglect ():f the axial 

velocity component w also causes difficulties. At radial 

positions larger than the zero velocity points shown in 

Figs. 12 and 13, the boundary layer ~s fed by the upflow 

portion of the countercurr~nt. In the core, the boundary 

layer is depleted of fluid by the downflow in the device. 

Thus w is not zero ~n any region of the boundary layer. 

The Martin solution is also in error because of neglect 

of the v~locity com~onent v, which Parker's analysis (30) 

showed to be significant. 

The flow function F(l,;), ma_y be computed directly from 

the radial velocity profile of Eq. (170). Consider a 

cylindrical surface of radius r attached to the upper 

(heated) plate. From Fig. 16, it can be seen that all of 

the inflow across this surface ultimately appears as down-
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flow at axial positions far from the end. The total downflow 

contained ~hich a radius r is, by the defining equation 

Eq~ (57), equal to the flow function. Thus: 

00 

F(t) = 2wrp (r)J·· u(~)dz (172) 
·. eq 

0 

Sinte the density var~ation in the axi~l direction is quite 

small, p = p + p has been approxi~ated by p • Since eq ·. · eq 

~he integral of e-•zsin.z from ze~o to infinity is 1/2., 

insertion of Eq. (170) into Eq. (172) yields: 



(173) 

where: 

-(2nKJ·(··· p;·_ .).l/
4 

2 -A2 1/2 
= ·-2-. 2 , . (A e ) 

Q r
2

}.1KT
0 

(174) 

Because the rotor wall does not appear explicitly in 

Martin's ari~lysis, th• flow function of Eq. (173), like the 

optimum flow function of Eq. (105), d_oes not satisfy the 

restraint 6f Eq. (99). However, the flow pattern effici~ncy 

may be computed by substituting Eq. (173) into Eq. (63): 

4 f ~3/2)A2~2 dJ 
E = (175) 

J
l A2r;,2 

e dr; 

0 

2 
whi~h is a function of A only. The pattern efficiencies 

based upon the Martin profile are plotted in Fig. 15. 

The s~rength of the internal circulation may also be 

deter~ined from the Martin theory by using Eq. (173) in 

Eq. 

27TPDr2 
(176) 

(2) Soubbaramayer (37) 

Soubbaramayer's second approach to the centrifuge 
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Eqs. (123) - (i27), in which the following terms are 

neglected: 

a ·[1 a 11 -ar-r-ar 
a [1 a 

l.l ar r ar 
·a 2w 

l.l--
az2 

(ru~ 

(rv~ 

2 
p Q ru and eq 

[1 a ()T] 
K-- r

r ar ar 

in Eq. (124) 

in Eq. (125) 

in Eq. (126) 

in Eq. (127) 
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In terms of the radial variable t=r/r 2 and the dimensionless 

axial variable 

(177) 

the equations of motion become: 

overall continuity (after using Eq. (120): 

' (178) 

radial and axial momentum (after eliminating p): 

1 a 
- ~ ~ 

(179) 

·-
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where Re is a type of Reynolds number: 

Re = 
zp·· Cr .. 

2
>.nr 2

2 eq (180) 

. 
(note that Eq. (179) reduce~ to Eq. (131) if u and v are 

assumed in~epentent of s, as in Soubbaramayer's long bowl 

analysis.) 

angular momentum: 

1 a2
v 

=-
Re as2 

(181) 

energy.: 

{182) 

The boundary conditions are (by symmetry, only the top half 

of the centrifuge is considered): 

·at z=O: u=v=w=O, T=~T(z;;) (183a) 

~T(z;;) is a specif~ed. te•perature profile along the end plate. 

at z=Z/2: u=v='dw/az=T=O (183b) 

ai r=O: u~v=aw/'dr=O (184a) 

at r=r 2 : u=v=w=O (184b) 



Note that the v boundary corid~tion ~t r=O is not the same 

as Parker 1 s. (Eq. (130)). _ .·· 

A trial funct~on of the following .form is selected: 

(185) 

wher~ ~ is a function of t only and is g~ven by: 

(186) 

The profile of Eq. (185) is of the same damped sinusoidal 

form as was obtained by Martin, Although the coeff{cient 

~is not equivalent to Martin's. (Eq. (171)). 

The trial £tinction given by Eq. (185) is substituted 

for u in Eq~. (178) and (181). Since ~ is very large 

(because Re is large), t~rms containing e-~s are neglected 

and one obtains: 

(187) 

0
1
r2) [d ( 1 2 1 d''')] w = - ~ + g -.. + 2A t - - ~ 

~ 2~ dt t ~ dt 
(188) 
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The te*perature perturbation is obtained by direct integration 

of Eq. (182): 

(189) 
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In their full form (i.e.,·e-ljJs te·rms included), Eqs. (187) 

and (188) satisfy th:e z.;.;O: Boundary conditions. of Eq. (183a). 

Ignoring terms 'containing e-ljJs restricts the solution to 

regions far from the e~da. In particular, the axial velocity 

of Eq. {188) is independent of s (or z), and hence w is a 

long bowl type o~ solution. However, Soubbaramayer claims 

that by keeping the solution general enough to satisfy the 

z boundary conditiori up to this point, the end effects are 

not neglected is in the true 1ons bowl methods. Indeed, the 

solution presented by Soubbaramayer does permit absolute ' 

magnitudes of the axial velocity to be computed. 

The ·funct.ion g(l;) is obtained as the solution to the 

diff.re~tial equation which iesults from substituting Eqs. (187)

(189) into Eq. (179) (the a-dependence in the last two terms 

of Eq. (1~9) ~artcel provided that the form of Eq. (187) 

which includes ~~ljJs is utilized). Only the highest order 

derivative with respect to ~ is retained in the first gnd 

second terms on the right of Eq. (179). The resulting fourth 

order differential equation for g(~) is: 

subject to the boundary conditions: 

g(O) = (d2~) = 0 
d~ 0 

~(l) .. ( ~ t .. 0 

(190) 

(191) 



Eq. (190} wa.s solved numerically for the set of conditions: 

p2 = 30 em Rg 

11T = l0°C (constant 

nr· = 300 m/sec 2 

r2 = 11.5 em 

z = 140 em 

T = 340°K 
0 

with radius) 

2 . 
(these conditions corre~pond to A =5.6). 

The axial veloci~y profile is shown in Fig. 18. Two 

aspects of this curve are significant. First, the zero 

velocity point occurs at ~~0.97, which falls far from the 

curve 6£ Fig. 13 representing the true long bowl solutions. 

Second, the maximum axial velocity is ~10 em/sec, which 
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is indeed small compared to th~ peripheral speed of 30~000 em/sec. 

Th~ flow function corresponding to the velocity profile 

of Fig. 18 is depicted in Fig. 19 along with the Martin 

flow function (Eq. (173)) for the same conditions (i.e., 

K = 2150 kg/hr). The two flow functions disagree by 
M 

nearly two o'rders of magnitude. However, the Soubbaramayer 

flow function is zero at the periphery, as required by the 

restraint of Eq. (99). 

Because the coefficiint of the fourth order derivative 

in Eq. (190) is very small, the last term in Eq. (190) 
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is negligible except for r~gions very near to the wall. 

The~efore, integrals of the flow function required for 

the pattern efficiency E and the internal flow magnitude 

parameter m can be accurately ~omputed u~ing the approx-

imation: 

g(t) ~ - ~ d~(t) t (192) 
0 

from which the axial velocity may be obtained with the aid 

of Eq. (188). 

To this approximation, the flow pattern efficiency for 

LiT=constant 

E 32 
= A4 

is given by: 

[ 
!.A 2 ] 2 1 2 2 

(2A -l)e . +1 
(193) 

which, in common ~ith the long bowl solutions d~scussed 

2 in Sec. IIID, depends only upon A • Eq. (193) is graphed 

on Fig. 15. It does not agree with either the Martin or 

the true long bowl results. 

The internal circulation parameter of Eq. {97) can 
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also be determined from th~ results. For LiT=constant, it is: 

r JLJ. LiT t P2 )
1

'
2 

\ pD T
0 

\·f2ll 
(194) 

(the group ll/PD is the Schmidt number, which is approximately 

0 • 7 5 for· U F 6 ) . E q • ( 19 4) and the Martin res u 1 t , E q . ( 1 7 6 ) , 

are in significant disagreement, both in form and in magnitude. 
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IV. CONCLUSION 

The separative analysis of the thermally driven counter-

current ias centrifuge is well understood. The physical 

properties. of the uranium hexafloride process gas· are reasonably 

well known. Simple analytic forms formulae for the optimum 

separat~ve power, sep•ration factor and throughput are 

available. ·These result• are valid up to peripheral speeds 

of ~300 m/sec, where the close separation approximations 

t~ the separatiori factor (Sec. II-I) and the separative 

~ower (Eq. (11)) begin to fail. At high peripheral speeds, 

the separation factor b•tcimes significantly larger than 

u'tlity. In this case, the a~alysis becomes more complicated 

but in prirttipal poses no difficulties. The separative 

power at large a ha• been discussed by Cohen (18), Ouwerkerk 

and Los (24), and Bulang et al (25). . ~- , 

The simple analysis assumes that the throughput is 

s~all compared to th~ internal ~irculati6n, but this 

restriciion may also be relaxed (24,23). 

The, separative properties of the centrifuge depend upon 

two fluid ~ethanlcal cha~acteristics o~ the device, the 

flow ~at~~rn efficiency E and ~he internal circ~lation 

parameter m. Both of these parameters depend upon double 

integrals of the axial velocity profile. The e£ficiency E 

req~ires knowledge of the shape of the ve1ocity p~ofile. 

In addition, calculation of m is possible'only if the 

ma~nitmh~ ~"d ~h4tH~ uf tlut axial velocity profile are known. 

_ _..._ 
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The long bowl analyse~ (S~c. IIID) provide a satisfactory 

(although -not yet expei~me~taliy ve~ified) prediction of E, 

·2 which ~epends only upon the parameter A • Parker's analysis 

(30} appears ta be the soundest. The two known attempts 

_to obtain ~omplete ~elocity profiles are in substantial 

disagr~ement, and this problem needs further study. 

Experimental investigation of the flow inside a centrifuge 

is essentially impossible, because of the extreme difficulty 

of installing and extracting information from measuring 

devices inside the spinning rotor. Hydrodynamic studies 

will unddubtedly continue to be thedretical. A major theoret-

ical ob•tacle is encountered in the hydrodynamic analysis 

of centrifuges operating at high peripheral speeds. Because 

UF 6 remains gaseous only at pressures less than one atm 

at room temperature, high speeds will restilt in very low 

pressures on the axis. The axial pressure may be so low 

that the gas here is in the free molecule flow regime. If 

so, the hydrodynamic analysis must treat an extraordinarily 

difficult problem ~nvolving rarefied gas dynamics in the 

core coup~ed to continuum fluid mechanics near the periphery. 
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APPENDIX ' 

HYDRODYNAMIC DERIVATION OF THE MAXIMUM SEPARATIVE POWER 

OF A CENTRIFUGE 

The maximum possible separative power of any centrifuge 

has been presented by Cohen (ref. 18, pp. 20-21, 109-110). 

Here we derive the sime quantity by a somewhat different 

~ethod, but one which is more in keeping with the hydro-

dynamic spirit in which the other processes occuring in 

the centrifuge are treated. 

The "value" may be regarded as a local property of 

the flui~, in the same sense as thermodynamic variables 

such as entropy or internal energy. The va1ue of the fluid 

at a particular point, however, is dependent only upon 

isotopic composition by Eq. (10). As for local thermo-

dymamic prop,rties, it is possible to write a conservation 

statement for the value in the moving fluid. The "value 

transport equation'' so obtained is very similar to the 

entrap~ transport equation which plays a fundamental role 

in nonequilibrium thermodynamics. 

A general conservation equation can be derived for 

any intensive property of a moving iluid (ref.38, p. 9). 

When applied to the property we have called the value, it 

takes the form:. 

o(CV) + ~·N = R at -v v (A-1) 
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In Eq • ( A-1 ) , C is the to t a 1. co nc en t rat ion o f t he f 1 u i d , 

V is the valu~ of a unit amou~t of fluid and N is the -v 

vector flux of value. The rate of pro~uction ~f value per 

unit volume of fluid is dertoted by RV. This quantity 

is related to the separative power of the unit by: 

ou 
_Jr2 

=. . 21Trdr 

0 

(A-2) 

Eq. (A~l) is entirely analogous to the common species 

conservation relat_ion, Eq. (16), except that there is no 

production term in the latter (at least not in the case 

of the centrifuge). 

Just as in the transport of matter, the transport of 

value c~n be broken up into a diffusive term !v and a 

convective term: 

N =·J + CvV -v -v 

which i• the value analog of Eq. (17). 

Inserting Eq. (A-3) into Eq. (A-1) ·yields: 

av 
C at + Cv·VV + V·.Iv = RV 

whe~e th• overall mass iontinuity equation: 

ac at+ V•(Cv) = 0 

(A-3) 

(A-4) 

(A-5) 



has been used (we have assumed that the average molecular 

weight of the fluid is everywhere uniform, 'so that total 

mass density p and tot~! molar densit~ C are related by 

the constant average molecular weight). Eq. (A-4) is the 

value analog of Eq. (18). 

We now need to develop an expression for the d~ffusive 

component of the value flux, !..v· The property called value 

does not "diffuse" in the same sense that molecules diffuse 

(according to Fick's law) or heat diffuses (according to 

Fourier's law). Rather, value is transported due to the 
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interdiffus·ion of the two isotopic species in the gas, which 

are denoted by A and B. ·The value flux due to molecular 

transp6rt by diffusion ~ay be expressed by: 

(A-5) 

where !_A and ::!_B are the diffusive components of the matter 

fluxes as employed in Sec. IIA. By analogy to energy transport 

by interdiffusion in multicomponent systems (ref. 19, p. 

566) and entropy transport in a moving fluid (ref. 38, 

Eq. (3-;32)), the quantities VA and VB are identified with 

partial molal values (in the transport of energy, VA artd 

VB are replaced in Eq. (A-5) by the partial molal enthalpies of A and 

B; in the tranaport of entropy, VA artd VB become p~rtial 

molal entropies). The partial molal value is defined as 

follows: Consider a volume of fluid containing nA moles 

of A and nB moles of B. 

of fluid is: 

The total value of this region 
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(A-6) 

mole fraction ·of c.o~p,onen't A:·.·· 

(A~7) 

-- . . 

Like any ~th~r parti•l.•o~al quantity, th~ partial molal 

value of ~omponents A and B are given by~ 

.and 

av · ,. · : . 
. ·. to.t. . · an · ·· A . 

nB 

' ' ' 

(A-8) 

(A-9) 

Inserting Eqs. (A~6) and (A-7)' int.o Eqs. (A-8) and (A-9) 

yields: ' 

(A-10) 

{A-ll) 

. Subs tit.\lting Eqs~ (A-10} and (A;,.;.ll} into Eq. (A..:.5) resu 1 ts 

in: 

(A-12) 



where we have used the fact that .:!.A+!!.B = o· (ref. 19» p. 

501; ref. 38, Eq. (1-11)). The divergence ~f !!.v is: 
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( dV··l 'i/•J + J ·'iJ(dV l dx -A -A dx (A-13) 
A A 

Since the value function depends only upon composition xA' 

the gradient of V or its derivative may be expressed by: 

'i/V = (dV l'i/x 
... dxA A 

(A-14) 

(A-15) 

Substituting Eqs. (A-12) - (A-14) into Eq. (A-4) yields: 

'i/•J ]ldV ) -A dx . A 
(A-16) 

If Eq. (18) is expanded and use made of. the overall continuity 

equation, Eq. (A-5), the bracketed coefficient of dV/dxA in 

Eq. (A-16) is seen to be identically zero. Computing the 

second derivative of the value function from Eq. (~0) 

a~d omitting the aubscript A on the mol~ fraction symbol, 

Eq. (A-16) reduces to: 

L .:!.A•'Vx· 

[x(l;.,.x)] 2 (A-17) 
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in a moving fluid. Eq~ (A-17) is equivalent to the formula 

given by Cohen (Eq. 6.21 of ref. 18) and is identical to 

the formula used by Bock (28). 

The value transport equation can he specialized for 

the centrifuge (any centrifuge, not just the counter current 

type) by inserting the appropriate expression for :!_A. 

Using Eqs. (38) and (39) for the rad~al and axial components 

of :!_A in E'l· (A-16) and rearranging yields: 

2 
Rv[x(l-x)] 

CD 
(A-18) 

We now regard the gradient~ ax/3r and ax/az a~ variables 

2 and the term 2a x(l~x)r as a constant. The left hand side 

of Eq. (A-18) is max~mized with respect to both 3x/3r and 

3x/3z. The maximum occurs at: 

(ax/az) = 0 max Rv 

(3x/3r) 2 
x(l-x)r = -a · max Rv 

(A-20) 

The radial concentration gradient which maximizes the 

separative power per unit volume (Eq. (A-20) is thus one 

half of the equilibrium gradient (Eq. (46)). 

Inserting Eqs. (A~l9) and (A-20) into Eq. (A~l7) yields: 

4 2 
(Rv) = CDa r . max (A-21) 



1~ this v:alue product·ion rate is sustained at all 

points in the centrifuge, E~~ (A-iD) maY be used in Eq. 

' 94 

(A-2) and the latter in~egrated over the entire centrifuge, 

which yields: 

.. · .. 

'\ 

,, 
' 

''. 

(A-22) 
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FOOTNOTES 

1The stages must be interconnec-ted to .avoid mixing of .streams 

of different compositions. For example, for S=l/3, the 

heads strea~~ must be brought forward two stages instead of 

to the next stage as in a cut -1/2 cascade. 

2A species conservation equation may be written for both 

comprinents of a binary mixture. However, the sum of the two 

species conservation equations is equal to the overall 

continuity equation. Thus, only one of the two species 

continuity equations in a binary mixture is independent. 

3 
Becaus~ of the proximity of the molecular weights of the 

i U235F .. d U238F spec es. 
6 

an ··. 
6

, we need not worry about ·the 

distinction between the "mass average" and "mole average" 

velocit~es (19). The momentum equations, being statements 

of Newton's second law, provide the mass average velocity 

-of the fluid. Use of molar units in Eq. (17) implies that 

~in this equation is the mole average velocity. We do 

not corr~~t for this mirior effect. 

4 Another common.example of the distribution of molecular 

species ~n a for~e field is the variatiori of density of air 

with altitude above the earth. In this case, the force is 

-mg and the potential energy is mgz, where z is the height 

above ground. Sinc·e the Boltzmann factor is proportional 

to the density, p(z) = p(O)exp(-Mgz/RT), which is the "law 

of atmospheres". 
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5 . · .. 
This is. anal~gotis to .th~ •ituation c~ncerni~g the fundamental 

..c: 

·'thermodynamic . formula dU ..: TdS. ·+ pdV, which, although.· deri 'ved 
. . 

by conaiderin• a re~ersible prOce~s, is valid for irreversible 

proces~e~ as well~ 

6 Throughout. this ~~~tlon; 'the total conce~tration c will 
_:~. . ' 

be replaced by the 'tot'a;i mas·s density p ( p::::MC). The £1 ow 

funct.iOI,l of Eq. (57) aQ..d the .diffusion factor in the de~ 

no'iD:i~ator of . Eq •. · (9.7) have units of. mass per unit time. 

· · 7hi si~plify~ng .the ~·xpan'sion-compression work term in 
! .•' ••• 

Eq. ,(114):; use ha~ ·b,eeti mad.e ()f .. overall continuity and the . ' . . . ' . ' . . ' . ' 
". . :,(' 

.. fac.~i~t;'hat_.for· •. ,,ll~,,' :l:de~~-:_gas·, · (dp/dT)P = p/T.··. 
·.·.;. 

~-- :-.. . . . ' . ·. : . 
. -·· .·:,·· 

··· ..... 

. i 
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FIGURE CAPTIONS 

1. Gas centrifuge with> ext ern:ally maintained counter..,. 

current. Beams (17), modified for enricher operation. 

2. Thermaily driven eo~ntercurrent centrifuge. Groth (9) 

3. A s~ngle separating· unit 

4. An ideal cascade 

5. Simplified picture of molecuiar transp6rt in a gas 

6. Particle in a spinning fluid 

7. Schematic of a thermally driven gas centrifuge 

8. Perturbation of the axial velocity profile set up by 

natural convecti~n ~ue to introduction of feed and 

withdrawal of product and waste. 

9. Variation of the· separation factor at total reflux 

with the strength of iriternal circulation 

10. Effect of internal circulation on the separation factor 

for different feed flow rates. (8 fixed) 

11. Effect of throughput on the separation factor at the 

12. 

13. 

14. 

15. 

16. 

optimum internal circulation rate. ce fixed) 

Density-weighted axial velocity profiles 

Dimensionless radial position at which W=O 

The flow function for A2 ~10 

Dependence of the flow pattern efficiency on the 

parameter A2 for various solution methods 

Schematic of streamlines in a thermally driven ga~ 

c~ntrifuge, showing regions where the long bowl and 

the Martin solutions apply 
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17. Radial velocity compo.nent. according to the Martin 

analysis. 

18. Axial velo~ity prbfile away ~~om the end plates as 

. calcul~ted by Soubba.ramayer. 

19. Flow functions accotding tb Martin and Soubbaramayer~ 

·.; .·· 
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