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The Deep Underground Neutrino Experiment (DUNE) is an upcoming neutrino oscillation exper-
iment that is poised to answer key questions about the nature of neutrinos. Lattice QCD has the
ability to make significant impact upon DUNE, beginning with computations of nucleon-neutrino
interactions with weak currents. Nucleon amplitudes involving the axial form factor are part of
the primary signal measurement process for DUNE, and precise calculations from LQCD can
significantly reduce the uncertainty for inputs into Monte Carlo generators. Recent calculations
of the nucleon axial charge have demonstrated that sub-percent precision is possible on this vital
quantity. In these proceedings, we discuss preliminary results for the CalLat collaboration’s cal-
culation of the axial form factor of the nucleon. These computations are performed with Möbius
domain wall valence quarks on HISQ sea quark ensembles generated by the MILC and CalLat
collaborations. The results use a variety of ensembles including several at physical pion mass.
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1. Introduction

Within the next decade, several 𝑂 ($1b) precision neutrino oscillation experiments will be
coming online. These experiments target as of yet unknown parameter values associated with
neutrino flavor oscillation, such as the 𝐶𝑃-violating phase and the neutrino mass hierarchy. In
addition, neutrino oscillation experiments can search for proton decay events and detect neutrinos
from supernova sources.

The Deep Underground Neutrino Experiment (DUNE) [1] plans to measure neutrinos over the
first oscillation maximum, which corresponds to an energy range of 1 − 10 GeV for a baseline of
1300 km. Many interaction topologies come into play in this energy range, with primary neutrino
interaction classes including quasielastic scattering, resonance production, and deep inelastic scat-
tering all in roughly equal proportions. Quantification of the neutrino energy in events requires
good control of cross sections for all of the relevant interaction topologies and sophisticated nuclear
modeling to reconstruct the final statistical distributions and constrain oscillation parameters.

Of the interaction classes seen in neutrino oscillation experiments, quasielastic scattering is
a primary signal measurement process due to its simplicity. Quasielastic scattering dominates
the total cross section at low neutrino energies, making it an important contribution for neutrino
oscillation experiments such as HyperK, which will have neutrino energies strongly peaked in the
quasielastic regime, and DUNE, which probes a large range of neutrino energies. In this interaction
class, a neutrino interacts with a freely propagating nucleon within a nucleus and becomes an
outgoing charged lepton. For these reasons, quasielastic scattering cross section amplitudes have
stringent precision requirements and are a natural target for improving cross section systematics.

Since the neutrinos interact via a weak current, both vector and axial vector matrix elements
are needed to compute the cross sections. Unlike the vector matrix elements, the axial current
contribution cannot be estimated from electron-proton scattering experiments. Constraints on
the axial matrix elements must come from either low statistics experimental measurements on
elementary targets, model-dependent estimations from pion electroproduction, or large nuclear
target neutrino scattering data with nuisance nuclear effects.

The uncertainty of the neutrino cross section amplitudes originating from nucleon form factors
is large enough to be a possible cause of theory-experiment discrepancies. Reanalysis of neutrino
scattering data on elementary targets using the model-independent 𝑧 expansion reveals that the
ubiquitous dipole model parameterization of the form factor underestimates the uncertainty by
nearly an order of magnitude [2]. In the absence of a modern neutrino-deuterium scattering
experiment, the most reasonable approach for quantifying and reducing uncertainties on the axial
form factor is instead to compute nucleon matrix elements using lattice QCD and to feed the results
into nuclear models. Calculations are constructed to access the free nucleon form factor, completely
circumventing the need for nuclear modeling.

2. Simulation Details

The utilized lattice action is the same as used by CalLat to compute 𝑔𝐴 with sub-percent
precision [3–5]: a mixed lattice action with Möbius Domain Wall Fermions (MDWF) in the valence
sector, solved in a sea of Highly-Improved Staggered Quarks (HISQ) [6] and one-loop Symanzik
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improved gauge action background field configurations. The links used in the valence fermion Dirac
operator were smeared with the gradient-flow scheme to a flow-time of 𝑡𝑔 𝑓 /𝑎2 = 1 [7]. We are
computing the axial form factor on approximately 30 ensembles, with seven pion masses ranging
from 130 . 𝑀𝜋 . 400 MeV, four lattice spacings of 0.06 . 𝑎 . 0.15 fm and multiple volumes [8].
In these proceedings, we present preliminary analysis on one ensemble, denoted a12m130, with
𝑎 ≈ 0.12 fm and 𝑀𝜋 ≈ 130 MeV, which was generated by the MILC collaboration [9].

Measurements are performed on 1000 configurations with 32 sources per configuration. The
two-point correlation functions are constructed from propagators with point source quark fields
smeared at both the source and sink so that the correlation function is positive definite. Addi-
tional quark propagators are sequentially solved with fixed source-sink time separations in the range
𝑡/𝑎 ∈ {3, ..., 12}, with sink-source spin polarizations up-up and down-down, for both forward time-
propagating positive parity projectors and backwards time-propagating negative parity projectors.
The three-point correlation functions are constructed from the proper averaging of these four dif-
ferent correlation functions. To reduce the cost of these sequential propagators, we use propagators
from 8 sources to form a single coherent-sequential-sink [10] as described in Ref. [11]. The sink is
projected to zero spatial momentum with the same quark smearing as at the source. We then inject
the current with all spatial momentum for all 16 quark bi-linear currents. In this proceeding, we
focus on the axial current aligned in the 𝑧 direction and the temporal vector current at 0 momentum
(for normalization).

The axial form factor data are plotted as a ratio of a three-point over two-point correlation
function. The two-point functions are denoted 𝐶2pt(𝑡, p) with source-sink time 𝑡 and momentum p,
and three-point functions are denoted 𝐶

3pt
A𝑧

(𝑡, 𝜏, q) with source-sink time 𝑡, current-insertion time
𝜏, insertion momentum transfer q, and source momentum −q. Using these definitions, a correlator
ratio that isolates the axial form factor is

RA𝑧
(𝑡, 𝜏, q) =

𝐶
3pt
A𝑧

(𝑡, 𝜏, q)√︁
𝐶2pt(𝑡 − 𝜏, 0)𝐶2pt(𝜏, q)

√︄
𝐶2pt(𝜏, 0)
𝐶2pt(𝑡, 0)

𝐶2pt(𝑡 − 𝜏, q)
𝐶2pt(𝑡, q)

−−−−−−−−→
𝑡−𝜏,𝜏→∞

1√︁
2𝐸q(𝐸q + 𝑀)

[
−
𝑞2
𝑧

2𝑀
˚̃𝑔𝑃 (𝑄2) + (𝐸q + 𝑀)�̊�𝐴(𝑄2)

]
, (1)

where ˚̃𝑔𝑃 (𝑄2) and �̊�𝐴(𝑄2) are the respective unrenormalized induced pseudo scalar and axial form

factors and 𝑄2 = 2𝑀2(
√︃

1 + q2

𝑀 2 − 1). In particular, for 𝑞𝑧 = 0, the ground state of this ratio
correlator is proportional to the unrenormalized axial form factor up to a computable kinematic
factor.

In this analysis, a Bayesian framework is employed to fit the correlators. The two-point and
three-point correlation functions are fit with sums of exponentials with shared parameters,

𝐶2pt(𝑡, p) =
𝑁∑︁
𝑛

|𝑧p
𝑛 |2𝑒−𝐸

p
𝑛𝑡 , 𝐶

3pt
A𝑧

(𝑡, 𝜏, q) =
𝑁∑︁
𝑚,𝑛

𝑧0
𝑛𝑧

q
𝑚𝐴

q
𝑛𝑚𝑒

−𝐸0
𝑛 (𝑡−𝜏)𝑒−𝐸

q
𝑚𝜏 , (2)

with momentum p and current insertion momentum q.
A tower of 𝑁 exponential contributions is included for each state, with the choice of 𝑁 = 3 for

all correlators. The simultaneous fit includes the 0-momentum temporal vector current in addition
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to the axial current in order to get the vector charge, which provides an extra constraint on the
spectrum of states. With our lattice action, 𝑍𝐴/𝑍𝑉 − 1 ≤ 5 × 10−5 for all ensembles [3] and so the
ratio �̊�𝐴(𝑄2)/�̊�𝑉 is normalized absolutely.

The posterior values for the ground state-to-ground state transitions at various momentum
transfers obtained from the correlation function fit are the desired nucleon axial form factor data.
The form factor parameterization of choice is the 𝑧 expansion [2]

𝑔𝐴(𝑄2) =
∑︁
𝑘=0

𝑎𝑘
[
𝑧(𝑄2)

] 𝑘
. (3)

with a conformal mapping of the form,

𝑧(𝑄2) =
√︁
𝑡𝑐 +𝑄2 − √

𝑡𝑐 − 𝑡0√︁
𝑡𝑐 +𝑄2 + √

𝑡𝑐 − 𝑡0
. (4)

The parameter 𝑡𝑐 is a kinematic cutoff (𝑡𝑐 = 9𝑀2
𝜋 for the axial current) and 𝑡0 is a free parameter

that may be set to improve convergence.
The form in Eq. (4) ensures that |𝑧 | < 1 for quasielastic scattering so that the expansion

parameter 𝑧 that appears in Eq. (3) is guaranteed to be small. The sum in Eq. (3) is in practice
truncated at finite order 𝑘max, so the large-𝑄2 behavior is controlled by including extra parameters
for 𝑘 = 𝑘max + 𝑛 + 1 and enforcing sum rules of the form(

𝜕

𝜕𝑧

)𝑛 𝑘max+4∑︁
𝑘=0

𝑎𝑘 𝑧
𝑘
���
𝑧=1

= 0 (5)

with 𝑛 ∈ {0, 1, 2, 3}. The coefficients 𝑎𝑘 in the form factor fit are given priors

prior
[
𝑎𝑘

|𝑎0 |

]
= 0 ± min

[
5,

25
𝑘

]
(6)

as done in Ref. [2].

3. Results

The ranges of the fit time have been chosen such that the minimum time, 𝑡min, is consistent
across both the two-point and three-point functions: the two-point correlators are fit to the time
range 𝑡 ∈ [𝑡min, 𝑡max,2] and the three-point correlators with source-sink separation 𝑡 to the range
𝜏 ∈ [𝑡min, 𝑡− 𝑡min]. This choice ensures that the minimum time separation between any two operator
insertions is at least 𝑡min/𝑎 timeslices apart. All available three-point data that satisfy these temporal
restrictions are included in the fit. All discrete 3-momenta that satisfy |𝑞𝑥,𝑦 | ≤ 4

√
2 · (2𝜋/𝐿) and

𝑞𝑧 = 0 are simultaneously fit to extract posteriors, which corresponds to four-momentum transfers
up to about 1.06 GeV [8].

The data and posterior fits are combined with the ratio written in Eq. (1), which is plotted in
Fig. 1 for a sub-set of the correlators. This figure includes the lowest 10 momenta with 𝑞𝑧 = 0,
and all of the available three-point data are plotted with their appropriate ratios. The fits to the
correlator data show broad agreement across all ratio values plotted, down to time separations as
small as 𝑡, 𝜏, (𝑡 − 𝜏) = 2𝑎.
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Figure 1: Plot of the ratio in Eq. (1) formed from the raw correlator data. The horizontal axis is the
source-insertion separation time minus half the source-sink separation time to center the data. The gray band
is the posterior value for �̊�𝐴(𝑄2) after a 3-exponential correlator fit, including all 𝑚 → 𝑛 transitions with
0 ≤ 𝑚, 𝑛 < 3. The data used in the fit are shown as filled-in circles and data outside the fit range are shown
as unfilled circles. Different source-sink separations are plotted as different colors, ranging from the shortest
source-sink separation 𝑡/𝑎 = 3 (purple) to the longest source-sink separation with 𝑡/𝑎 = 12 (red). The
posterior curves obtained from an exponential fit is plotted as the colored band, with the color corresponding
to the same source-sink separation as the data. The different panels correspond to different 3-momentum
transfers squared, in units of the minimum lattice momentum 2𝜋/𝐿 squared, for the lowest 10 momenta used
in the analysis. Since the data are preliminary, the units on the vertical axis are omitted.

There are several qualities that suggest large excited-state contaminations at low-momentum
transfers. There is a strong curvature with 𝜏/𝑎 at low momentum transfer, even for the largest
source-sink time separation (red), with a curvature that changes sign. The smallest source-sink time
separations are relatively smaller than the largest source-sink time separations at low momentum,
but the opposite is true at large momenta. The gray band corresponding to the posterior matrix
element connecting ground states of ingoing and outgoing momenta is as much as 2𝜎 from the
ratio central value. These qualities are suggestive of large excited state contaminations in the
low-momentum transfer data, particularly the axial charge.

As the momentum is increased, the agreement between the ground state posterior gray band
and the ratio value of the largest source-sink separation come into agreement. The ratio data for
the largest source-sink separation times fall on top of each other, suggesting that the most harmful
excited state contaminations have decayed away and only the ground state contribution remains.
These two observations give confidence that the excited states are reasonably controlled, and the
posteriors give the axial matrix elements of interest.

The fit to the axial matrix elements is shown in Fig. 2. The green (lighter top) curve is a
5-parameter fit to the scatter points with a 𝑧 expansion parameterization including 4 sum rule
constraints, which gives a good description of the data. The gray (darker lower) curve is a
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2-parameter dipole fit. The precision of the data is particularly good, with roughly constant
uncertainties for all of considered momentum transfers.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Q2/GeV2

G
A

(Q
2
)

a12m130

z(4) expansion fit

Dipole fit

Dipole: MA = 1.026 GeV

PRELIMINARY

Figure 2: Plot of the renormalized axial form factor as a function of 𝑄2. The scatter points are the posteriors
from the form factor obtained after fitting to the correlation functions with their uncertainties. The upper
(green) band is the 𝑧 expansion fit to the scatter points. The lower (gray) band is the dipole fit. The dashed
line is a dipole parameterization with 𝑀𝐴 = 1.026 GeV [12]. Since the data are preliminary, the vertical axis
scale is omitted and the lower axis bound is set to a nonzero value.

The form factor fits in this analysis achieve sub-percent precision on the form factor. In
particular, the axial charge is constrained with a relative precision of 0.6%, slightly better than
CalLat’s axial charge analysis [3–5]. The form factor has a similar absolute precision out to larger
momentum transfers. Taking the axial radius squared as a definitive metric for the axial form factor,
with the definition

𝑟2
𝐴 = − 6

𝑔𝐴(0)
𝑑𝑔𝐴(𝑄2)
𝑑𝑄2

���
𝑄2=0

, (7)

a relative precision of 𝛿𝑟2
𝐴
/𝑟2

𝐴
≈ 0.13 is achieved, more than a factor of 3 more precise than the

radius obtained from neutrino scattering on deuterium [2]. In addition, the axial radius obtained is
smaller than observed in experiments. This points to a slower falloff with 𝑄2 than expected, a trend
that is consistent with other LQCD extractions. This finding indicates that more weight should be
given to larger momentum transfer neutrino interactions, which could change the relative frequency
of quasielastic scattering relative to other interaction topologies.

4. Outlook

Lattice QCD has the potential to make an impact on the neutrino oscillation program by
providing significantly more precise nucleon form factors for weak interaction amplitudes. Existing
analyses of form factor data have the potential to reach percent-level constraints on the form
factors with a full error budget, an order of magnitude more precise than the axial form factor
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constraints obtained from neutrino scattering on elementary targets. With this level of precision,
and barring existing tensions in the vector form factor parameterizations [13], nucleon-level form
factor uncertainties can be made subdominant compared to nuclear modeling uncertainties, enabling
robust inputs with realistic uncertainties for nuclear model calculations.

Excited states in the axial matrix elements have always been a difficulty for nucleon matrix
elements involving an axial current. Incomplete characterization of excited states are believed
to have historically led to extractions of the axial charge that are low compared to experiments.
A significant contamination comes from transitions of the ground state nucleon to excited states,
possibly including multiparticle states involving a nucleon and a pion. Inclusion of many source-
sink time separations down to short times has been shown to be beneficial for control of excited
states, leading to more precise estimates of ground state matrix element information [11]. This
analysis has included at least 8 source-sink separation times over 10 momenta and has demonstrated
reasonable control over a 3-state fit for all momentum combinations.

The axial form factor data on this single ensemble look very promising, with an expected
percent-level precision. Scaling of uncertainties with the momentum transfer is better than expected
when considering 4-momentum transfers squared up to 0.7 GeV2, which use only a small fraction
of the available data. Data for 3-momentum-squared up to 5 times larger than those considered are
available, which would permit constraints on the form factor of 𝑄2 up to a few GeV2. These data
further feed back to better constraints on the ground state spectrum and matrix elements, providing
strong constraints on the axial charge rest-frame spectrum.
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