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Abstract

Early Detection of Business Rule Violations

by

Isaac A. Mackey

The rise of automated systems and sensor networks in virtually all areas of industry

and social life means many technologies produce streams of events rich with information.

These technologies demand algorithms for evaluating queries on streams, coordinating

systems that communicate with events, and monitoring streams with respect to specified

constraints. In monitoring, constraints that define correct behavior, e.g., business goals,

legal requirements, resource limitations, or safety and security concerns are specified in

a formal language; then, an event stream is analyzed at runtime to determine if the

constraints are satisfied or violated. To make monitoring effective, it is important to

detect constraint violations at the earliest possible time, which we call the early violation

detection problem.

We study early violation detection for a class of constraints called rules that restrict

time gaps between events and compare events’ data contents. We show that (1) the

general problem of early violation detection for an arbitrary set of rules is unsolvable and

(2) early violation detection is possible for various subclasses of rules. For (1), we show

early violation detection is closely related to the problem of finite satisfiability (whether

or not a given set of rules can be satisfied by a finite event stream) and prove that

finite satisfiability for a set of rules is undecidable with a reduction from the empty-tape

Turing machine halting problem, which implies that early violation detection is unsolvable

in general. For (2), we study restricted classes of rules. A recent proof of Kamp’s

Theorem provides a translation algorithm for “dataless” rules through translation to

linear temporal logic. yielding formulas hyper-exponential in the size of the input rule.
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We present translation algorithms for two subclasses of dataless rules, improving the

output size from hyper-exponential to single- and double-exponential, respectively. For

rules with data, we first present a technique that calculates deadlines from time gaps

between events, then use deadlines for early violation detection for individual rules. We

extend these algorithms to monitor an acyclic set of rules by applying a chase process

and satisfiability testing. We also report the performance of an implementation of these

algorithms. Finally, we consider acyclic sets of rules with aggregation functions over

time windows, combining the chase and satisfiability techniques with an encoding of

aggregation functions in Presburger arithmetic.

vii



Contents

Curriculum Vitae v

Abstract vi

1 Introduction 1

2 Preliminaries 7
2.1 Events and Workflow Enactments . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 An Opportunity for Early Violation Detection . . . . . . . . . . . . . . . 12

3 Rules without Data 15
3.1 Monitoring with Finite State Machines . . . . . . . . . . . . . . . . . . . 16
3.2 Dataless Enactments and Linear Temporal Logic . . . . . . . . . . . . . . 18
3.3 Recursive Translation of Acyclic Constraints . . . . . . . . . . . . . . . . 21
3.4 All-Order Translation of Singly-Linked Rules . . . . . . . . . . . . . . . . 38
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Rules with Data 51
4.1 Algorithms for Individual Rules . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Algorithms for an Acyclic Set of Rules . . . . . . . . . . . . . . . . . . . 62
4.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Rules with Aggregation 85
5.1 Time Windows for Aggregation Functions . . . . . . . . . . . . . . . . . 86
5.2 DatalogZ Generation of Aggregation Events . . . . . . . . . . . . . . . . 90
5.3 Chasing Rules with Aggregation . . . . . . . . . . . . . . . . . . . . . . . 97
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



6 The Impossibility of Early Violation Detection 109
6.1 Early Violation Detection Solves Finite Satisfiability . . . . . . . . . . . . 110
6.2 Datalog+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Datalog+ with One Integer Attribute . . . . . . . . . . . . . . . . . . . . 129
6.4 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion 134

Bibliography 136

ix



Chapter 1

Introduction

Events are unorchestrated and asynchronous messages that carry information in soft-

ware systems. They can communicate the states of devices, signal updates for ongoing or

completed processes, and exchange data with external systems. They are a fundamen-

tal component in workflow management systems, cyber-physical operations, Internet-of-

Things devices, decision support systems, etc., which are ubiquitous in modern society

and are still growing in scale and importance. Event-based systems produce time-ordered

sequences of events, i.e., event streams, which demand processing to produce useful infor-

mation about the underlying systems for human operators. Thus, efficient and effective

techniques for processing event streams are an open problem for research and a focus of

research communities (e.g., [1]).

Workflow management systems are a class of event-based systems that automate

business processes, such as order fulfillment and customer service, by organizing the

activities of multiple participants (e.g., people and software services) into a coherent

workflow. By enacting workflows, workflow management systems produce event streams

that serve as a record of the system’s execution. One use of these streams is to identify

exceptional situations, such as violations of organizational policies, regulations, service-

level agreements, or other constraints. These constraints on workflows are collectively
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Introduction Chapter 1

referred to as (business) rules. For example, a rule may specify that: Every purchase

order must be approved by a manager before the order is fulfilled, or Every customer

service request must be resolved within 24 hours. Failure to comply with these rules can

result in financial loss, legal liability, or in the worst case, physical harm.

In the last two decades, static verification (e.g., model checking) has been applied

to enforce rule compliance in a variety of domains [2, 3]. In this approach, business

processes or enabling software are mapped to a formal model, e.g., a Petri net [4] or finite

state machines [5, 6], then all possible behaviors of the model are checked against rules

in a formal specification language, e.g., linear temporal logic [7]. Unfortunately, static

verification is more difficult to apply when participants are allowed flexible behavior, e.g.,

a provider or client can initiate processes at arbitrary times. Including more flexibility

leads to a massive number of possible enactments, making model checking intractable or

undecidable for expressive classes of rules. The infeasibility of preventing rule violations

with static verification does not indicate a design flaw, rather it follows from the desired

flexibility of target applications.

An alternative approach to static verification is runtime monitoring, where a monitor-

ing mechanism, often a finite state machine or an online algorithm, observes the service’s

execution trace and detects constraint violations incrementally. The construction and

implementation of monitoring mechanisms from formal specifications is now a central

topic in the field of runtime verification [8–10]. In one approach, a monitor is embedded

in application software [11, 12], though this method has disadvantages: changes to rules

require re-engineering and the overhead of checking rules may increase the application’s

time and space usage. An alternative approach is to separate the runtime monitor from

its target application. This separation abstracts system-level details out of the rule spec-

ification and the monitor, meaning rule changes can be implemented quickly. Also, the

monitor can be optimized for the specific task of checking rules, e.g., using specialized

resources or parallelization, without affecting the application.

2
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Merely identifying exceptional situations may not be sufficient to ensure good system

behavior; it is also valuable to identify them at the earliest possible time. This allows

the system maximum time to take corrective action, such as removing resources from the

offending process. In extreme cases for safety-critical systems, late identification could

lead to danger for people or property. To identify the earliest possible violation of an

LTL formula, reference [13] shows that each violating trace has a minimal prefix that

indicates the violation is inevitable; early violation detection can be done by recognizing

these prefixes at runtime using finite state machine monitors [14, 15]. Some of these

techniques have been extended to handle data in events, e.g., for constraints in first-order

linear temporal logic [16,17]. However, these techniques do not address quantitative time

constraints, or combinations of quantitative time constraints with constraints on event

data, both of which are common in business rules [18].

In this dissertation, we focus on early violation detection for a variety of classes of

rules and streams. We start by developing a framework for event streams that carry data

and timestamps from completed activities in workflow enactments. We then define a

language for specifying business rules, with key features for specifying quantitative time

constraints and conditions on event data (Chapter 2), features (or their combination)

that are often missing in existing research on runtime monitoring and compliance for

business rules. Then, we describe what it means for an event stream to satisfy or to

violate a set of rules. Finally, we illustrate what it means to detect violations at the

earliest possible time: for a given set of rule and event stream, a violation is detected at

the earliest possible time t if and only if at all times before t, the stream can be extended

by future events to satisfy the set and all times at and after t, the stream cannot be

extended by future events to satisfy the set. To detect violations at the earliest possible

time is the early violation detection problem.

Given this framework and problem, a fundamental question to address is whether or

3
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not it is possible to automate early violation detection. We show that this is impossi-

ble by showing the related problem of finite satisfiability is computationally undecidable

(Chapter 6). To prove this, we use a modified rule language called Datalog+ and reduce

the empty-tape Turing machine halting problem (known to be undecidable) to determin-

ing finite satisfiability for a set of Datalog+ rules constructed from a Turing machine.

Then, we show finite satisfiability for a set of Datalog+ rules can be reduced to finite

satisfiability for a set of rules in our language. This result indicates that early violation

detection, though desirable, is fundamentally intractable, and thus the problem requires

simplfying assumptions to be solved algorithmically.

To establish feasible cases of early violation detection, we study subproblems where

the sets of rules or event streams have certain restrictions, including when the rules

constrain exclusively event timestamps (and not event data), when only a single rule is

considered, whether or not the set of rules is acyclic, i.e., whether or not the dependencies

between rules in the target set form a graph with a cycle, and how many events per second

are in the stream. For each of these subproblems, we develop or improve techniques for

early violation detection.

Given our focus on quantitative time constraints, a natural subclass of rules we con-

sider are those that only constrain event timestamps and not event data, i.e., dataless

rules; we describe how early violation detection is possible through translation from

dataless rules to LTL formulas to finite state machines and provide two translations that

improve on existing techniques (Chapter 3). For the first translation, we use a graph

representation to characterize “acyclic” and “singly-linked” rules; the tree structure of

acyclic, singly-linked, dataless rules, allows us to translate the time constraints (if any)

on each pair of events in the rule separately, then combine these into a single translation.

Building on this translation, we devise a second translation for arbitrary, singly-linked,

dataless rules by leveraging a decomposition of quantitative time constraints into all their

possible gaps and orderings, which reduces the problem to the acyclic case. The size of
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the output of these two translations is an LTL formula whose size is at most single- or

double-exponential, respectively, in the size of the input rule, both improving on the

hyper-exponential size of the best known translation.

Using constraints on event data, e.g., requiring that the same user who makes a

request also receives approval, allows for more expressive rules, but also makes early

violation detection more difficult because the values of data variables are not known in

advance, and thus finite state machines alone cannot be used to detect violations; to

address this, we also study rules with data variables, developing algorithms based on

assignments to these variable (Chapter 4). We define data structures to track potential

violations and present algorithms to update these data incrementally as new events arrive

from the stream. Notably, we use a chase process, a well-known technique in database

systems, to reason about dependencies between rules and potential violations, and a

satisfiability test on linear inequalities to compute “deadlines”, the earliest time at which

a violation is inevitable, that mark permanent violations. To ensure the chase terminates,

we restrict these algorithms to acyclic sets of rules, i.e., sets of rules whose dependencies

form a directed acyclic graph, a common restriction when applying the chase process. To

evaluate the effectiveness of these algorithms, we implemented them in a software runtime

monitor and tested them on a variety of rule sets and event streams to measure their

feasibility, benefits, and limitations. The evaluation shows that early violation detection

can be beneficial by greatly reducing the number of events that must be processed to

identify violating streams, and show that our techniques are feasible for medium-scale

systems, e.g., thousands of events per second.

Fortunately, our techniques for acyclic sets of rules with data variables can be ex-

tended to include aggregation functions, a common features of business rules that aggre-

gate properties of groups of events, without affecting the decidability of early violation

detection. In Chapter 5, we develop a framework for classifying and specifying time

windows on streams and for defining aggregation functions over these windows in our

5
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Rules

Dataless (Chapter 3) with Data

Acyclic Sets of Rules (Chapter 4)

with Aggregation (Chapter 5)

Unrestricted Sets (Chapter 6)

Figure 1.1: Dissertation organization.

rule language. We show that these features, along with the restriction that the target

stream has at most one event per timestamp, still allow early violation detection for

acyclic sets of rules. To integrate aggregation into our existing algorithms, we provide

two approaches. First, we present an encoding of aggregation rules as DatalogZ programs,

providing a means of evaluating rules with aggregation within a Datalog framework. Al-

ternatively, we develop techniques to rewrite aggregation expressions over time windows

as Presburger arithmetic formulas, for which decision procedures exist. This rewriting

allows us to apply a similar chase process and satisfiability testing to acyclic sets of rules

with aggregation functions, enabling early violation detection.

We organize the dissertation according to the various subclasses of rules considered.

First, in Chapter 2, we present definitions of core concepts. Then, the chapters are

organized by the the subclasses of rules or sets of rules they consider, as shown in Fig. 1.1.

Chapter 3 studies early violation detection for dataless rules, Chapter 4 studies rules with

data variables, Chapter 5 adds aggregation functions over time windows, and Chapter 6

considers unrestricted sets of rules.

6



Chapter 2

Preliminaries

In this chapter, we define the concepts used throughout the dissertation. First, in Sec-

tion 2.1, we introduce an event stream model for sequences of events, ordered by times-

tamps and carrying data, called “enactments”. In Section 2.2 we introduce a language for

specifying constraints on enactments, called “business process rules” or “rules” for short.

Rules use Datalog syntax [19], with the addition of (i) syntax for separating an event’s

data from its timestamp, (ii) inequality predicates and arithmetic on event timestamps,

and (iii) existential variables in the rule head, and (iv) multiple atoms in the rule head.

Our interpretation of rules differs from Datalog in that we treat rules as constraints,

not as programs that generate events. We define the semantics of rule satisfaction and

violation, then define what it means to detect violations at the earliest possible time. In

Section 2.3, we illustrate the basic concepts of our approach to violation detection with

an example.

2.1 Events and Workflow Enactments

To describe events, we assume the following pairwise-disjoint, infinite sets:

• E of event names, typically single words in typewriter font with a capitalized first

7
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letter, e.g., Request, Payment, ...

• A of attribute names, typically single, italicized, lowercase words, e.g., user, ...

• I of enactment identifiers, or simply id’s, to identify the enactment to which an

event belongs,

• A data domain D of uninterpreted constants, with the equality (=) and non-equality

predicate ( 6=), and

• Discrete timestamps. Without loss of generality, we use the natural numbers N as

timestamps, with the standard addition operation (+) and equality, non-equality,

and inequalities predicates (=, 6=, <, . . . ) as well as the integers Z for related

technical development.

We study early violation detection in the context of monitoring event streams gener-

ated by enactments of workflows. In a workflow, activities are atomic units of work, e.g.,

a Request arrives and is processed. We treat the completion of an activity as an event

with no duration.

Definition. An event type E(a1, . . . , an), where n > 0, has an event name E from E

and a fixed set of attributes a1, . . . , an, each from A. An event type is dataless if it has

no attributes, i.e., n = 0. An event (instance) of an event type E(a1, ..., an) is a named

tuple E(c1, ..., cn)@t where ci is a value from D for each attribute ai and t is a timestamp

from N.

For a given workflow, its schema is a set of event types for its component activities,

each with the activity’s name and data attributes. We assume that the schema is fixed

and known to the monitor a priori. Events are generated by the completion of the

activities in a workflow, so each event carries with an enactment identifier from I.

Definition. An enactment of a workflow is a finite set η of events, such that (i) each

event has the same enactment id, (ii) η has exactly one special event of type START

8
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that marks its beginning and at most one END event that marks its completion, (iii) the

timestamp of the START event is less than that of all other events in η, and (iv) the

timestamp of the END event, if it occurs, is greater than that of all other events in η.

Workflow enactments are updated by the completion of new events, grouped by times-

tamp: a batch for an enactment η is a finite set ∆ of events such that (i) all events in ∆

have the same timestamp, denoted as ts∆, greater than the timestamps of all events in

η, (ii) for each event e in ∆, the id of e is the id of η, (iii) ∆ has a START event or η has

a START event, but not both, and (vi) if an END event is in η, no events are in ∆.

2.2 Rules

We express constraints in a language first introduced in [20], named here (business

process) rules, or simply rules. The rule language It uses a Datalog-like syntax, but unlike

Datalog, the rule syntax separates an event’s data from its timestamp, allows multiple

atoms and existential variables in the rule head, and gap atoms with inequalities on

time variables. First, we provide the rule syntax, then we define what it means for an

enactment to satisfy or violate a rule or set of rules.

We start with atomic formulas. We use the existing sets from the previous section

and define the following infinite set, disjoint from the others: V of variables, typically

lowercase letters, e.g., a, b, c, x, y, z, . . . . We use the notation x̄ to denote vectors of

variables. An event atom is an expression “A(v1, ..., vn)@x” where A(c1, ...,cn) is an

event type, v1, ..., vn, x are variables in V or constants in D or N. If x is a variable, x is a

timestamp variable. Additionally, constant addition is allowed on timestamps, i.e., v + c

is a valid term for a timestamp, with variable v and constant c ∈ Z. When an event type

E is dataless, the event atom is written as E@x instead of E()@x. A gap atom (inspired

by [21]) is an expression “x±ε θ y” where x, y are timestamp variables, ε (the gap) is a

constant in Z, and θ∈{<,6,>, >,=} is an equality or inequality predicate. The set of

9
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variables in a set of atoms ϕ is denoted var(ϕ). An event atom E(. . . )@x expresses that

an instance of E happens at time x, e.g., Request(u)@x denotes a Request for some user

u at time x.

A gap atom x6n y means x+n6 y, i.e., x+n no later than time y. Similarly, x>n y

means x+n> y, i.e., x+n is no earlier than time y. Some gap atoms do not impose an

ordering: when n> 0, x>n y indicates y is at most n time units after x and potentially

simultaneous with or before x. Note that for each positive n∈N, x>n y does not imply

x> y.

Example 2.1 : Consider the set of atoms “Request(u)@x, Schedule(u)@y, x64 y, x>6 y”.

Intuitively, it selects a Request event and a Schedule event from the same enactment

by the same user u that follows the Request by four, five, or six timestamps.

Definition. A rule is an expression “ϕ→ψ” where the body ϕ and the head ψ are

finite, possibly empty, sets of event and gap atoms such that the body is closed: each

variable in ϕ occurs in some event atom in ϕ, and the head is closed with respect to the

head and body: each variable in ψ occurs in some event atom in ϕ∪ψ. Furthermore, if

the body of a rule ϕ → ψ has no atoms, the rule is written true → ψ, with the natural

semantics.

Example 2.2 : The following rule r0 requires for each pair of Request and subsequent

Schedule events from the same user u, there is a subsequent Payment no later than three

days after the Schedule by that user:

r0 : Request(u)@x, Schedule@y, x 60 y → Payment(u)@z, y 60 z, y >3 z

Rule satisfaction is defined with respect to “assignments” from values in the event

stream, which come from D and N, to rule variables. An assignment is a mapping from

rule variables to values in D ∪ N. An assignment is complete if it is a total mapping for

the variables in a given set of atoms. An assignment β extends an assignment α if α ⊆ β.

10
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An enactment η satisfies an event atom A(v1, ..., vn)@x for the event A(c1, ...,cn) with

an assignment µ if (1) µ is defined for v1, ..., vn, x, and (2) A(µ(v1), . . . , µ(vn))@µ(x) is

an event in η. Satisfaction for gap atoms is defined naturally. A set of atoms is called a

constraint: two constraints φ and φ′ are equivalent if for each enactment η and assignment

σ, η |= φ[σ] iff η |= φ′[σ]. An enactment η satisfies a set of atoms φ with an assignment

µ if η satisfies every atom in φ with µ.

We can now define the central notions of how an enactment satisfies or violates a

rule or a set of rules. Informally, this is done by matching assignments for the body

variables with those for the head variables. Let r : ϕ→ψ be a rule and η an enactment.

Then, η satisfies ϕ→ψ if for every assignment µ such that η satisfies ϕ with µ, there is

an assignment β that extends µ such that η satisfies ψ with β. Alternatively, η has a

potential violation of a rule ϕ→ψ with witness µ if η satisfies ϕ with µ and there is no

assignment β that extends µ such that η satisfies ψ with β.

A potential violation becomes inevitable, or permanent, when it cannot be resolved

in any possible future of the current enactment. The enactment η has a (permanent),

violation of a rule r with a witness µ if it has a potential violation with µ and for every

sequence ∆1, ...,∆n of batches of (future) events (∆i is a batch for η ∪ (∪j<i∆j) for each

16i6n), there is no assignment β that extends µ such that η ∪ (∪ni=1∆i) satisfies ψ with

β. Finally, the enactment η has a (permanent) violation of a rule r if it has a (permanent)

violation of r with some assignment µ.

Example 2.3 : Consider the rule r0 in Example 2.2 and an enactment with exactly

two events: Request(Alice)@10 and Schedule(Alice)@12. The assignment α : {u 7→

Alice, x 7→ 10, y 7→ 12} satisfies r0’s body and indicates a potential violation of r0 at

times 12, 13, and 14, because a Payment event is required by the rule head but has

not happened. Assuming no more events happen, the assignment is the witness of a

permanent violation at time 16 for the enactment, because no Payment event can happen

11
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after time 15 to match α.

We further extend the notion of violation to a set of rules; notably such violations

may not have a witness. An enactment η has a potential violation of a set of rules R

if there is some rule r ∈ R that has a potential violation for η. An enactment η has a

(permanent) violation of a set of rules R if there is a potential violation of R in η and

for every sequence ∆1, ...,∆n of batches of future events, η ∪ (∪ni=1∆i) has a potential

violation of some r ∈ R.

2.3 An Opportunity for Early Violation Detection

We illustrate the problem of detecting violations of a single rule and motivate an

approach that calculates the earliest time a violation is inevitable, called a “deadline”. We

use an example workflow enactment from an Infrastructure-as-a-Service (IaaS) provider

that offers commodity machines for cloud computing rental. The service is managed by a

workflow with the following activities (in the typewriter font): the user makes a Request

for a machine through an account and the provider grants Approval to the user. Then,

the user can Reserve a machine for their account, make a Payment with their account

and Launch the machine. The completion of each activity generates an event; events for

the same rental service instance form an enactment. Event of the same type have the

same attributes, and thus can be organized in a relational database. Fig. 4.1 shows a

database S9 at time 9, with eight events from two enactments with ids π1 and π2 . For

example, the first row of the Request table shows a Request event with enactment id π1

from user Alice with account a3 at time 1.

The IaaS provider monitors its enactment against specified rules; these may mea-

sure service availability, quality, etc.; for example, a requirement r1 states “when a

user’s Request is approved within 7 days and the machine is Reserved within 7 days of

Approval by the same account as the request, the user should make a Payment for the

12
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Request
ID user account ts

π
1

Alice a3 1
π1 Alice a4 3
π2 Bob b6 7

Approval
ID user ts

π
1

Alice 6

Reserve
ID user account ts

π
1

Alice a4 8
π1 Alice a3 9

Payment
ID user account ts

π
1

Alice a3 8
π1 Alice a4 9

Launch
ID user account ts

Figure 2.1: Database S9 with events from two enactments π1 and π2.

machine through that account within 3 days of Approval and Launch it within 7 days of

Reserve and 4 days of Payment.” Note that events are generated by both the provider

and the user. We write this requirement as a rule:

r1 : Request(u, a)@x, Approval(u)@y, x6y6x+7, Reserve(u, a)@z, y6z6 y+7

→ Payment(u, a)@w, Launch(u, a)@v, y6w6y+3, z6v6z+7, v6w + 4

The core requirement for detecting a violation of this rule is checking whether each

assignment for the body variables u, a, x, y, z satisfying ϕ has a matching assignment for

the head variables u, a, w, v satisfying ψ. In order to detect violations incrementally, we

store assignments that satisfy subsets of the rule body or head. For example, assignment

µ10 is generated by the body events Request(π1 , [Alice, a4])@3, Approval(π1 , [Alice])@6,

and Reserve(π1 , [Alice, a4])@8. Then, µ10 : {id 7→ π1, u 7→ Alice, a 7→ a4, x 7→ 3, y 7→ 6,

z 7→ 8} makes ϕ true.

ψ has six variables u, a, y, z, w, v, but the Payment and Launch events only supply

values for the four “event variables” u, a, w, v. We consider assignments for ψ in the

same manner as for ϕ but ignoring y and z. The Payment events at times 8 and 9

(Fig. 4.1) create assignments β1: [π1 ,Alice, a3, 8,−] and β2: [π1 ,Alice, a4, 9,−].

We aim to detect violations at the earliest possible time. In Fig. 2.2, three events cre-

ate a potential violation µ10 . The violation is certain when the end of the enactment π1

arrives, after which no more events π1 can happen, and thus there will be no more assign-

ments to match µ10 . However, given the rule’s constraints y6w6y+3 and z6v6z+7, and

µ10(y)=6 and µ10(z)=8, to satisfy the rule w.r.t. µ10, there must be an assignment extend-

ing µ that satisfies ψ; i.e., two events Payment(π1, [Alice, a4], t1) and Launch(π1, [Alice, a4], t2)

with timestamp constraints 66t166+3=9, 86t268+7=15, and t26t1+4 must happen.

13
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Then, the violation is inevitable at time 8 if no Payment event arrives with a timestamp

for w to extend µ10 . Furthermore, 8 is also the earliest time this violation is permanent;

before then, a Payment event can arrive.

9 15x=3 y=6 z=8

ID u a x y z
µ10 π1 Alice a4 3 6 8

y6w69 (=y + 3)

z6v615 (=z + 7)

min(9,15)=9 is the latest time
to extend µ10, the earliest time
µ10 is inevitable

Request(Alice, a4)@3
Approval(Alice)@6

Reserve(Alice, a4)@8

Figure 2.2: Deadline for extending potential violation, body assignment µ10

Fig. 2.3 shows the result of a Payment event at time 9. This creates the assignment

β2, leading to a new deadline calculation for the potential extension of µ10 by β2.

13 15z=8w=9

ID u a w z
β2

π1 Alice a4 9 −
v613 (=w + 4)

z6v615 (=z + 7)

min(13,15)=13 is the latest
time to extend µ10 with β2,

Payment(Alice, a4)@9

Figure 2.3: Deadline for extending β2 as match for µ10

With the above technical definitions and illustration of the problem, we can now state

the main focus of this dissertation: Given a rule or a set of rules, monitor a workflow

enactment for violations of the rule or set of rules, respectively, as the enactment is

updated with new events.
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Chapter 3

Rules without Data

In this chapter, we develop techniques for automatically generating monitors to detect

violations of rule without data. This approach involves two steps, translating: (1) dataless

rules to formulas in linear temporal logic (LTL) on finite traces, and (2) LTL formulas

to finite state machines. Since algorithms exist for step (2) [22–24], we focus on step

(1), i.e., mapping rules to equivalent LTL formulas. Then, a finite state machine can

process an enactment incrementally and report whether or not the enactment is a prefix

in the machine’s language. Kamp’s Theorem [25] implies that each dataless rule has an

equivalent LTL formula. A recent proof of Kamp’s Theorem [26] provides key pieces of

a translation algorithm, though it produces formulas hyper-exponential in the size of the

input rule. We present and establish the correctness of two translation techniques for

“singly-linked”, dataless rules. In the first, we use a graph representation for a recursive

translation of “acyclic”, singly-linked, dataless rules. In the second translation, we use

ordering constraints on timestamp variables resembling those in [26] to translate singly-

linked, dataless rules. The second translation covers a larger class of rules, but produces

larger LTL formulas. Finally, we provide bounds for the size of formulas produced by

our techniques and show that they are smaller than those produced by the translation

in [26].
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The organization of this chapter is as follows: Section 3.1 motivates our approach

to violation detection for dataless rules with an example. Section 3.2 presents the LTL

language used for translation and the notion of equivalence between LTL formulas and

dataless rules. Section 3.3 presents our translation techniques first for gap atoms, then

for singly-linked, acyclic rules, and proves their correctness. Section 3.4 extends them to

arbitrary singly-linked rules. Finally, Section 3.5 compares the size of formulas produced

by our translation with a translation derived from Kamp’s Theorem and covers related

work.

3.1 Monitoring with Finite State Machines

First we motivate our approach by showing how a finite state machine can monitor

an enactment for a given rule.

Example 3.1 : Consider an Infrastructure-as-a-Service (IaaS) provider that rents com-

modity servers to clients as a service. The service is performed by processes (in the

typewriter font), some initiated by clients, others by the service provider, including the

following: a client may Request access by providing a description of their desired ma-

chine(s) and the provider uses the Schedule process to reserve a specific machine. The

completion of a process generates an event of the same name, along with a timestamp.

The service includes a business rule PromptSchedule to ensure service quality:

If a Request arrives, a Schedule instance must be completed on the same day

or in the next three days.

This rule can be specified as:

Request@x → Schedule@y, x 6 y, y 6 x+ 3

where @x and @y indicate time instants Request and Schedule were performed, respec-

16



Rules without Data Chapter 3

1start 2 3 4 5

{}, {S}, {R, S}

{R}
{S}, {R, S}

{}, {R} {}, {R}

{S}, {R, S}

{}, {R}

{S}, {R, S}

{}, {R}, {S}, {R, S}

Figure 3.1: A finite state machine for the PromptSchedule rule

tively.

The finite state machine in Fig. 3.1 monitors this rule. The machine transitions once

per day, changing state based on the events observed in the enactment in the previous

day. The machine’s alphabet is the powerset of the rule’s event types: Request (R) and

Schedule (S). The start state (node 1) is accepting because initially no Request requiring

a subsequent Schedule has been observed. The machine moves from state 1 to state

2 when Request takes place without a simultaneous Schedule. From state 2, for each

subsequent day that Schedule doesn’t occur, the machine progresses through states 3 and

4, implicitly counting the number of days since the unmatched Request. Although the

rule has not been permanently violated in states 2, 3, or 4, these states are not accepting

because no matching Schedule event has been observed; the distinction between an

enactment permanently or temporarily violating a rule is necessary for reasoning about

when to report violations. If a matching Schedule event occurs from states 3 and 4, all

recent (within 3 days) Request events are matched and the machine moves to state 1. If

the machine is in state 4 and the following day fails to contain a Schedule, the machine

enters the sink state 5, as the enactment has violated PromptSchedule.

In the subsequent technical development of this chapter, we translate dataless rules

to LTL with past operators for finite traces. LTL can be converted into finite state

machines using existing algorithms [22, 23], which can be used for violation detection.

Accordingly, violation detection requires simply transitioning a finite state machine—
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a much simplified task. To proactively avoid violations, it is sufficient to check the

reachability of accepting states from the current state. To monitor a given set of rules,

one constructs a product machine using the machine from each rule. Summarizing the

above discussions, Our central technical problem is the following: Given a dataless rule

for an enactment, construct an equivalent LTL formula.

3.2 Dataless Enactments and Linear Temporal Logic

The section describes how the enactments can be mapped to LTL traces. First, we

introduce the model of events without data. Then, we review the syntax and semantics

of a past- and future-time linear temporal logic on finite traces. Finally, we discuss

the notion of equivalence between dataless rules and LTL formulas needed to state the

correctness of a translation.

We focus on time gaps between events, ignoring other data: each event is represented

only by its name and a timestamp. Thus, an enactment can be faithfully represented by

a set of unary relations over the domain of timestamps.

Example 3.2 : Timestamps in our model are given as the number of days into the year

2023 in Fig. 3.2. For example, the date 2023-01-04 receives the timestamp 4, 2023-02-04

the timestamp 35. The initial Request events in the dataless enactment have timestamps

1, 6, 25, and 30, and the initial Schedule events have timestamps 3, 4, 8 and 42, etc.

Fig. 3.3 is the initial segment of the trace of the enactment in Fig. 3.2.

Example 3.3 : Recall that for dataless events, e.g., Request, we write event atoms

without parentheses: Request instead of Request(). The set of atoms φ: “Request@x,

Schedule@y, x60 y, x>3 y” selects two events: a Request and a matching Schedule

between 0 and 3 days after the Request. Consider the enactment η in Fig. 3.2. For

this enactment, we have two assignments for the variables in φ: σ1 : {x 7→ 1, y 7→ 3}
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Request

iid #machines timestamp ...

000 5 2023-01-01

001 5 2023-01-06

002 10 2023-01-25

003 5 2023-01-30

...

Schedule

iid machine timestamp ...

100 445 2023-01-03

101 446 2023-01-04

102 447 2023-01-06

103 447 2023-02-11

...

Compute

iid machine timestamp ...

400 445 2023-01-05

401 445 2023-01-18

...

Payment

iid amount timestamp ...

500 $150 2023-01-15

501 $155 2023-01-30

...

Figure 3.2: Events with data generated by four activities.

i 0 1 2 3 4 5 6 ...

πη[i] Request Schedule Schedule Compute Request, Schedule ...

Figure 3.3: Trace πη of the enactment in Fig. 3.2

.

and σ2 : {x 7→ 1, y 7→ 6}. Given the rule semantics, η |= φ[σ1] because 1∈ η(Request),

3∈ η(Schedule), 160 3, and 1>3 3. However, η 6|= φ[σ2] because 1 + 3 6> 6 and 6 6∈

η(Schedule).

Example 3.4 : The following rule r0 requires each pair of Request and subsequent

Schedule events to be followed within 3 days by Payment:

r0 : Request@x, Schedule@y, x 60 y,→ Payment@z, y 60 z, y >3 z

The enactment η in Example 3.2 does not satisfy r0: for the Request instance at time 1

19



Rules without Data Chapter 3

(iid 000) and the Schedule instance at time 3 (iid 100), corresponding to the rule body

assignment σ1(x 7→ 1, y 7→ 3), there is no Payment instance with timestamp between 3

and 6, i.e., no matching assignment for the rule head.

Given a set of rules R, the discussions in Section 3.1 suggest determining if an en-

actment satisfies R using finite state machines derived from LTL for finite traces. We

define below the LTL operators used in our translation. We treat each activity p in S as

a propositional variable. LTL formulas for S are defined recursively as follows:

φ := p | true | false | ¬φ | φ ∧ φ | Xφ | X−1φ | Fφ | Pφ

where p∈S, true and false are Boolean constants, and ¬ (not) and ∧ (and) are Boolean

operators. The standard Boolean abbreviations ∨ (or) and → (implies) are used as well.

The temporal operators X (next) and F (future) are common in future-time LTL [7], while

P (past) and X−1 (yesterday) (sometimes written as Y [27]) are common in past-time

LTL [28]. The following notion is used for convenience: Xk (k ∈Z) means k consecutive

X operators when k > 0, k consecutive X−1 operators when k < 0, and 0 instances of the

X operator when k= 0.

LTL formulas are satisfied by “traces” defined as follows. An interpretation is a

mapping from a set of propositions S to {true, false}. A trace π is a (finite) sequence of

interpretations, with length len(π), and for 06 i 6 len(π)−1, i is a (time) instant in π

and π[i] denotes the ith interpretation in π. For an instant i such that 0 6 i 6 len(π)−1,

and an LTL formula φ for S, we say π satisfies φ at i, denoted π, i |= φ, if one of the

following is true (the cases for Boolean constants and operators are standard and thus

omitted):

• π, i |= p if π[i](p) = true,

• π, i |= Xφ if i < len(π)−1 and π, i+ 1 |= φ,
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• π, i |= X−1φ if i > 0 and π, i−1 |= φ,

• π, i |= Fφ if ∃j, i6 j6 len(π)−1 and π, j |= φ, and

• π, i |= Pφ if ∃j, 06 j6 i and π, j |= φ

The standard LTL abbreviation G (global) is used as well. Intuitively, the semantics

indicate that π satisfies Xkφ or X−kφ at an instant i if φ is satisfied at the kth following

(resp., preceding) instant from i, and π satisfies Fφ (or Pφ) at an instant i if φ is satisfied

at i or an upcoming (resp., previous) instant.

Enactments are closely related to finite traces. Given an enactment η, let κ be the

largest timestamp in η and 0 if η is empty. The following mapping converts enactments

to and from traces: let η be an enactment with event type S. The trace πη is the sequence

πη[0] · · · πη[κ] where for each i∈ [0..κ] and each p∈S, πη[i](p) = true if i∈ η(p), and false

otherwise. Conversely, for each trace π, the enactment ηπ is defined as follows: for each

i∈ [0...len(π)− 1] and each p∈S, i∈ ηπ(p) if π[i](p) = true.

Based on the above enactment-trace mapping, we conveniently use the notation η, i |=

φ to mean πη, i |= φ and can state the main technical problem:

Given a set R of rules for event types S, is there an LTL formula φ over S such that

for each enactment η of S, η |= R iff η, 0 |= φ?

3.3 Recursive Translation of Acyclic Constraints

In this section, we develop techniques to translate dataless subclasses of constraints

and rules into equivalent LTL formulas and establish the main technical result of the

chapter (Theorem 3.5). First, we describe a mechanism for mapping gap atoms over

two variables to LTL operators. Then we use a graph representation of constraints to

define and translate connected, acyclic constraints. We state a key lemma (Lemma 3.2)

concerning the correctness of this translation, which associates a satisfying assignment for
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a constraint with an instant in the trace when the constraint’s translation is satisfied. We

then translate arbitrary acyclic constraints and establish its correctness as another lemma

(Lemma 3.4). Finally, we provide a translation function for the subclass of singly-linked,

acyclic, dataless rules using the previous results, and state its correctness (Theorem 3.5).

Example 3.5 : Consider the constraint Rental that captures the typical behavior of

the IaaS service:

Request@x, Schedule@y, Compute@z, Terminate@w,

x61 y, x>10 y, y>5 z, z60w

Intuitively, Rental selects timestamps x, y, z, and w for Request, Schedule, Compute,

and Terminate events, resp., that satisfy the following three conditions:

(i) Schedule occurs at least one day but no more than 10 days after Request,

(ii) Compute occurs no later than 5 days after Schedule, and

(iii) Compute occurs before or simultaneously with Terminate.

These conditions are observed in a trace as follows: Condition (i) is observed in a trace

if the proposition Request holds at an instant x and the proposition Schedule holds at

instants x+1, x+2, . . . , or x+10. We rewrite the latter using next LTL operators (X) as:

X Schedule, X2 Schedule, . . . , or X10Schedule to hold at x. Using Boolean operators

produces a translation of condition (i): “Request ∧
∨

16j610X
jSchedule”.

Condition (ii) is observed if Schedule holds at some instant y and Compute holds

at or before y+5. We rewrite the second statement with next and past LTL opera-

tors: X5P Compute holds at y. Thus, a translation of condition (ii) is: “Schedule ∧

X5P Compute”.

Condition (iii) is observed if Compute holds at z and Terminate holds at z or a

future instant. Rewriting the latter with the future LTL operator, condition (iii) is

present when Compute and F Terminate hold at z. Thus, a translation of condition (iii)
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is “Compute ∧ F Terminate”.

To generalize from these examples we define the following function for LTL formula

construction from gap atoms. We use ≡ to denote equivalence between two sets of gap

atoms; we say φ1 ≡ φ2 for sets φ1 and φ2 if var(φ1) = var(φ2) and for each assignment σ

to var(φ1), φ1[σ] and φ2[σ] are both true or both false.

Definition : For a set of gap atoms φ over two variables x and y, let Gapx,y(φ) be the

following operator combinations:

Gapx,y(φ) =


XnF if φ ≡ {x6n y} for some n ∈ Z

XmP if φ ≡ {x>m y} for some m ∈ Z∨
n6j6m

Xj if φ ≡ {x6n y, x>m y} for some n,m ∈ Z

The Gap function translates the conditions in Example 3.5 as follows: for condi-

tion (i), the proposition Request is used for the atom Request@x. Applying Gapx,y to

{x61 y, x>10 y} produces the operators
∨

16j610X
j, and the proposition corresponding to

variable y, Schedule, is placed after these operators: Request ∧
∨

16j610X
j Schedule.

The following lemma shows that each constraint with two variables is equivalent to

some constraint with at most two gap atoms, i.e., the input required for the Gap function.

Lemma 3.1 : Let φ be a set of gap atoms over two variables. Without loss of generality,

let var(φ) = {x, y}. Then φ is equivalent to a set in one of the following three forms:

• {x6n y}, for some n ∈ Z,

• {x>m y}, for some m ∈ Z, or

• {x6n y, x>m y}, for some n,m ∈ Z.

Proof: First, note that a gap atom with exactly one variable is either a tautology

or a contradiction, thus equivalent to either {x60 x} or {x61 x}. Second, observe that
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for all m∈Z, y6m x iff x>−m y, and y>m x iff x6−m y. These equivalences allow all

gap atoms in φ to be written with x on the left of the predicate and y on the right.

Next, note that for all n,m∈Z with n6m, x6m y implies x6n y, and x>n y implies

x>m y. If φ contains x6n y and x6m y where n6m, then φ is equivalent to φ−{x6n y}.

A similar statement holds for >-atoms. Repeating these eliminations of atoms in φ yields

an equivalent set with at most one 6-atom and at most one >-atom.

Example 3.6 : Let φ4 be x61 y, x63 y, x>4 y, y>1 x. We rewrite all gap atoms with

x on the left of the predicate: x61 y, x63 y, x>4 y, x6−1 y. Since x63 y implies x61 y

and x63 y implies x6−1 y, atoms x61 y and y>1 x can be removed from φ4. Thus, φ4

is equivalent to x63 y, x>4 y.

We now consider how to translate constraints with more than two variables. For two

gap atoms that share exactly one variable, we “join” their LTL translations using their

shared variable.

Example 3.7 : Consider Rental from Example 3.5. Condition (ii): Schedule@y,

Compute@z, y >5 z, is translated by Gap as: Schedule ∧ X5P Compute, and condition

(iii) with atoms Compute@z, Terminate@w, z 60 w yields Compute ∧ F Terminate. The

shared variable z corresponds to the Compute proposition in both translations. Accord-

ingly, the translations can be combined by placing the second formula in the position

in the first formula where Compute appears, combining the duplicated proposition (bars

added for illustration): ψ = Schedule ∧ X5P (Compute ∧F Terminate)

To complete the translation of Rental, we join ψ with a LTL translation of condition

(i). Recall that condition (i) covers atoms Request@x, Schedule@y, x 61 y, x >10 y

and can be translated as:

Request ∧
∨

16j610X
j Schedule

The atoms for conditions (ii) and (iii) and the atoms for condition (i) share the

variable y, which corresponds with the Schedule proposition in both translations. To
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combine the translations, we place ψ at the position in the first formula where Schedule

occurs, then remove the duplicated Schedule proposition:

Request ∧
∨

16j610 X
j(Schedule∧X5P (Compute ∧ F Terminate))

To generalize the joining technique in Example 3.7, we represent constraints with

graphs. Recall that each constraint is a conjunctive formula with event atoms and gap

atoms, i.e., unary and binary predicates on time variables. Thus, atoms can be faithfully

represented by an undirected graph.

Definition : Let φ be a constraint. The graph of φ is an undirected, labeled graph

Gφ = (V,E, L) such that V is the set of variables used in φ, E is the set of pairs (x, y)

such that φ contains a gap atom using both x and y, and L is the mapping from V ∪E

such that

• for each variable x∈V , L(x) = {p | p@x is an event atom in φ}, and

• for each edge (x, y)∈E, L(x, y) = {α | α is a gap atom in φ using x and y}.

Furthermore, φ is acyclic if Gφ is acyclic, connected if Gφ is connected.

x

Request

y

Schedule

z

Compute

w

Terminate
{x 61 y,
x >10 y} {y >5 z} {z 60 w}

Figure 3.4: Graph of Rental

Example 3.8 : The graph of Rental (Fig. 3.4) has nodes {x, y, z, w} labeled with

Request, Schedule, Compute, Terminate, resp., edges (x, y), (y, z), (z, w) labeled with

{x61 y, x>10 y}, {y>5 z}, and {z60w}, resp., and is acyclic and connected.

Definition : Let φ an acyclic, connected constraint with the graph Gφ = (V,E, L). For

each node x∈V , the derived tree of φ at x, denoted T xφ , is the directed tree (V,E ′, L)

rooted at x with nodes V , edges E ′ with the directed version of each edge in E pointing
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away from x, and the label mapping L. For each node y ∈V , T xφ |y denotes the subtree

of T xφ rooted at y. For each node z ∈V , let Ch(z) denote z’s children.

We formulate a translation of connected, acyclic constraints using their derived trees.

Let φ be a connected, acyclic constraint and x a variable used in φ, where T xφ is the

derived tree of φ at x. Intuitively, AcycConn(T xφ , x) denotes a translation of φ. In fact,

for each node y in T xφ , the function AcycConn(T xφ , y) maps T xφ and y to an LTL formula,

using the subtree T xφ |y:

AcycConn(T xφ , y) =


∧

p∈L(y)
p if y is a leaf∧

p∈L(y)
p ∧
∧

z∈Ch(y)
Gapy(L(y, z))AcycConn(T xφ , z) o.w.

All event names in the label of y are used in the conjunction
∧
p∈L(y)p of LTL propo-

sitions. For each child z of y, the gap atoms L(y, z) are translated to Gapy,z(L(y, z)) and

the algorithm makes a recursive call AcycConn(T xφ , z) to translate the subtree rooted at

z with respect to z.

x

Request

y

Schedule

z

Compute

w

Terminate

Gapx,y({
x 61 y,
x >10 y

}) =
∨

16j610 X
j Gapy,z({y >5 z})=X5P Gapz,w({z 60 w})=F

Figure 3.5: The derived tree T xRental with Gap-mapping from edge labels to LTL operators

Example 3.9 : The AcycConn translation of Rental, abbreviated here as φ, is done

using the derived tree T xφ shown in Fig. 3.5. Let φy, φz, φw be the subsets of φ such

that the derived trees T yφy , T
z
φz

,Twφw are the subtrees of T xφ rooted at y, z, w (resp.). We

demonstrate the translation beginning with the leaf node w and moving towards the root

x:

AcycConn(Twφw) = Terminate

AcycConn(T zφz) = Compute ∧ FAcycConn(Twφw) = Compute ∧ F Terminate
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AcycConn(T yφ ) = Schedule ∧ X5PAcycConn(T zφz)

= Schedule ∧ X5P (Compute ∧ F Terminate), and

AcycConn(T xφx) = Request ∧
∨

16j610

Xj (Schedule ∧ X5P(Compute ∧ F Terminate))

The following lemma relates two notions of satisfaction defined in Section 3.2: the

satisfaction of a constraint by an enactment and an assignment, and the satisfaction of

an LTL formula by a trace at an instant.

Let φ be an acyclic, connected constraint where x, y ∈ var(φ). Let atoms(T xφ )

(atoms(T xφ |y)) denote the set of atoms α in φ such that T xφ (resp., T xφ |y) is the tree

derived from α.

Lemma 3.2 : Let η be an enactment, φ a connected, acyclic constraint, x, y variables in

var(φ), and i∈N a timestamp. The following statements are equivalent:

1. There is an assignment σ such that σ(y) = i and η |= atoms(T xφ |y)[σ],

2. η, i |= AcycConn(T xφ , y).

Proof: The proof is accomplished by mathematical induction on the height n of the

subtree T xφ |y. Without loss of generality, let i be a timestamp and L the label function

of T xφ .

Base case: y is a leaf in T xφ .

Since φ is connected, T xφ is connected, and T xφ |y has just the node y. The atoms for T xφ |y

are the event atoms in φ that use y, i.e., atoms(T xφ |y) = { p@y | p∈L(y) }. The AcycConn

translation of T xφ w.r.t. y is AcycConn(T xφ , y) =
∧
p∈L(y) p. To establish the base case, it

suffices to show that

(a) there is an assignment σ such that σ(y) = i and η |= {p@y | p ∈ L(y)}[σ]

iff (b) η, i |=
∧
p∈L(y) p.

To show (a) implies (b), we assume for some assignment σ, σ(y) = i and η |= {p@y | p ∈

L(y)}[σ]. Isolating the satisfaction of each event atom, we have: for each event name p in
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L(y), σ(y)∈ η(p). Under the mapping between enactments and traces (see Section 3.2),

this is equivalent to: for each p∈L(y), η, σ(y) |= p. Combining the event names asso-

ciated with y with conjunction, we have: η, σ(y) |=
∧
p∈L(y) p. Since σ(y) = i, we have

η, i |=
∧
p∈L(y) p.

To show (b) implies (a), we assume η, i |=
∧
p∈L(y) p. It follows that for each p∈L(y),

η, i |= p. Using again the mapping between enactments and traces, this is equivalent to:

for each p∈L(y), i∈ η(p). Let σ be an assignment such that σ(y) = i. For each p∈L(y),

σ(y)∈ η(p), i.e., for each p∈L(y), η |= {p@y}[σ]. Therefore, η |= {p@y | p ∈ L(y)}[σ].

Induction hypothesis: For each node z ∈Ch(y) in T xφ , i.e., each subtree of height at

most n− 1, for each timestamp j ∈ N, the following statements are equivalent:

(1z) There is an assignment σz such that σz(z) = j and η |= atoms(T xφ |z)[σz].

(2z) η, j |= AcycConn(T xφ , z).

Induction step: Let the subtree T xφ |y have height n. We shall show that

(A) There is an assignment σ such that σ(y) = i and η |= atoms(T xφ |y)[σ]

iff (B) η, i |= AcycConn(T xφ , y).

First, we show that (A) implies (B). We begin by assuming there is an assignment σ

such that σ(y) = i and η |= atoms(T xφ |y)[σ].

Claim A: For each child z of y, η, i |= Gapy,z(L(y, z))AcycConn(T xφ , z).

We prove Claim A with three cases of the L(y, z). Since T xφ |z is a subtree of T xφ |y we

have η |= atoms(T xφ |z)[σ]. Letting j=σ(z), (1z) of the inductive hypothesis holds with

the assignment σz. Applying the inductive hypothesis, we have η, j |= AcycConn(T xφ , z).

It remains to establish (B): η, i |= AcycConn(T xφ , y).

Since z and y are nodes in T xφ |y and η |= atoms(T xφ |y)[σ], we immediately have η |=

L(y, z)[σ]. By Lemma 3.1, L(y, z) is equivalent to one of the following three constraints.

Case 1: L(y, z) ≡ {y6m z} for some m∈Z.
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Since η |=L(y, z)[σ], we have η |= (y6m z)[σ], i.e., σ(y)+m6σ(z). Recall that σ(y) = i

and σ(z) = j. We have i+m+k= j for some k ∈N. Replacing j in the inductive hy-

pothesis, we obtain η, i+m+k |= AcycConn(T xφ , z). It means that AcycConn(T xφ , z) is

satisfied by η at some future time of time i+m, i.e., η, i+m |= FAcycConn(T xφ , z).

Adjusting the index of satisfaction by prepending m next operators, we have η, i |=

XmFAcycConn(T xφ , z).

Case 2: L(y, z) ≡ {y>m z} for some m ∈ Z.

Similarly, η |=L(y, z)[σ] implies η |= (y>m z)[σ], and σ(y)+m>σ(z). Since σ(y) = i and

σ(z) = j, we have i+m−k= j for some k ∈N. From the inductive hypothesis, we have

η, i+m−k |= AcycConn(T xφ , z). It is easy to see η satisfies PAcycConn(T xφ , z) at i+m and

prepending m next operators, we have η, i |=XmPAcycConn(T xφ , z).

Case 3: L(y, z) ≡ {y6m z, y>m′ z} for some m,m′ ∈Z.

As before, η |=L(y, z)[σ] implies η |= (y6mz)∧ (y>m′z)[σ], and σ(y)+k=σ(z) for some

m6 k6m′. Since σ(y) = y and σ(z) = j, i+k= j. From the inductive hypothesis, it

follows that η, i+k |= AcycConn(T xφ , z). Since k is constrained between m,m′ we have

η, i |=
∨
m6k6m′ X

k AcycConn(T xφ , z).

By Lemma 3.1 and the above cases, Claim A is proved.

Claim A implies that (C): η, i |=
∧
z∈Ch(y) Gapy,z(L(y, z))AcycConn(T xφ , z).

Earlier we assumed (A) was true, so η |= α[σ] for each event atom α that uses

y. It follows that η |= {p@y | p∈L(y)}[σ]. Using a similar reasoning to that in the

base case, we have (D) η, i |=
∧
p∈L(y) p. Combining (C) and (D), we have η, i |=

(
∧
p∈L(y) p) ∧

∧
z∈Ch(y) Gapy,z(L(y, z))AcycConn(T xφ , z), i.e., η, i |= AcycConn(T xφ , y) (ap-

plying the definition of AcycConn).

Now, we show that (B) implies (A) for the inductive step. First we assume (B):

η, i |= AcycConn(T xφ , y). Expanding AcycConn with its definition, it follows that η, i |=

(
∧
p∈L(y) p)

∧
z∈Ch(y) Gapy,z(L(y, z))AcycConn(T xφ , z).
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We let z be an arbitrary child of y. Then, η, i |= Gapy,z(L(y, z))AcycConn(T xφ , z)

holds.

Claim B: There is some timestamp j such that

(c1) η, j |= AcycConn(T xφ , z), and

(c2) for each assignment σ′ such that σ′(y) = i and σ′(z) = j, η |=L(y, z)[σ′].

We establish Claim B with the following three cases of L(y, z).

Case 1: L(y, z)≡{y6m z} for some m∈Z.

By definition, Gapy,z(L(y, z)) =XmF, and we have η, i |= XmFAcycConn(T xφ , z). The

latter is equivalent to η satisfying FAcycConn(T xφ , z) at time i+m. It follows that

η, i+m+k |= AcycConn(T xφ , z) for some k ∈N. For j= i+m+k, η, j |= AcycConn(T xφ , z).

Since k is nonnegative and L(y, z)≡{y6m z}, η |=L(y, z)[σ′] for all assignments σ′ such

that σ′(y) = i and σ′(z) = j.

Case 2: L(y, z)≡{y>m z} for some m∈Z.

In this case, Gapy,z(L(y, z)) =XmP, and η, i |=XmPAcycConn(T xφ , z). By LTL semantics,

η, i+m |= PAcycConn(T xφ , z), and η, i+m−k |= AcycConn(T xφ , z) for some k ∈N. Letting

j= i+m−k, η, j |= AcycConn(T xφ , z), and i>m j (k is non-negative). Since L(y, z) ≡

{y>m z}, we conclude that η |= L(y, z)[σ′] for all assignments σ′ such that σ′(y) = i and

σ′(z) = j.

Case 3: L(y, z)≡{y6m z, y>m′ z} for some m,m′ ∈Z.

Note that m6m′ must hold, otherwise the constraint L(y, z) is unsatisfiable. By defi-

nition, Gapy,z(L(y, z)) =
∨
m6k6m′ X

k, and η, i |=
∨
m6k6m′ X

kAcycConn(T xφ , z). It follows

that for some k ∈ [m..m′], η, i |= XkAcycConn(T xφ , z), and η, i+k |= AcycConn(T xφ , z).

Let j= i+k. We have i6m j ∧ i>m′ j and η, j |= AcycConn(T xφ , z). Since L(y, z)≡

{y6m z, y>m′ z}, η |= L(y, z)[σ′] for all assignments σ′ such that σ′(y) = i and σ′(z) = j.

This concludes the proof of Claim B.

We now prove (B) implies (A). From (B), we have
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η, i |=
∧
z∈Ch(y) Gapy,z(L(y, z))AcycConn(T xφ , z). For each child z ∈Ch(y), we have η, i |=

Gapy,z(L(y, z))AcycConn(T xφ , z). Applying Claim B, there is a timestamp j such that

η, j |= AcycConn(T xφ , z). By the inductive hypothesis, it follows that (1z) also holds:

there is some assignment σz such that σz(z) = j and η |= atoms(T xφ |z)[σz].

Since T xφ |y is a tree with subtrees T xφ |z’s where z ∈Ch(y), we can combine all assign-

ments σz’s for y’s children z ∈Ch(y) into an assignment σ such that σ(y) = i. Note that

for each child z ∈Ch(y) and each node v in subtree T xφ |z, σ(v) =σz(v).

By (B), η, i |= AcycConn(T xφ , y), where

AcycConn(T xφ , y) = (
∧
p∈L(y)p) ∧

∧
z∈Ch(y) Gapy,z(L(y, z)).

To complete the proof of the lemma, we show η |= atoms(T xφ |y)[σ]. Consider an arbitrary

atom α in atoms(T xφ |y).

Case 1: α is an event atom using y. From identical reasoning as given in the base

case, η |= {p@y|p ∈ L(y)}[σ]. Since σ(y) = i, η |= α[σ].

Case 2: α is a gap atom in the label L(y, z) for some z ∈Ch(y). By construction of

σ, σ(y) = i and σ(z) =σz(z) = j, where j is obtained from Claim B σz from applying the

inductive hypothesis with z. Thus, we have η |= α[σ].

Case 3: α is an event atom or gap atom in atoms(T xφ |z) for some z ∈Ch(y). By the

inductive hypothesis with z we have an assignment σz such that η |= atoms(T xφ |z)[σz].

From the construction of σ, σ and σz agree on all variables v used in atoms(T xφ |z). Thus,

we have η |= atoms(T xφ |z)[σ].

These cases cover all atoms in atoms(T xφ |y). Therefore, η |= atoms(T xφ |y)[σ]. This

establishes (A) is established.

This concludes the proof of Lemma 3.2.

A key observation in proving Lemma 3.2 is that an assignment satisfying a constraint

for a given enactment identifies the instants where subformula of AcycConn, especially

propositions, are true in the enactment’s trace. Note that atoms(T xφ |x) = atoms(T xφ ) =φ
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for each constraint φ and each x∈ var(φ). Then, we have the following corollary.

Corollary 3.3 : Let η be an enactment, φ a connected, acyclic constraint, x a variable

in var(φ), and i∈N a timestamp. The following are equivalent:

1. There is an assignment σ, such that σ(x) = i and η |= φ[σ].

2. η, i |= AcycConn(T xφ , x).

We now use AcycConn to define a function to translate acyclic and possibly discon-

nected constraints. Let φ be an arbitrary acyclic constraint; φ can be partitioned into

k connected constraints φ1, ..., φk. Let xj be a variable in var(φj) for each 16 j6 k; a

translation of each φj is given by AcycConn(T
xj
φj
, xj). For each pair 16 j, l6 k, if j 6= l

the sets var(φj) and var(φk) are disjoint. Thus, assignments to these variables, and the

instants to satisfy AcycConn(T
xj
φj
, xj) and AcycConn(T xlφl , x1) are independent. Accord-

ingly, we combine these translations by choosing one variable, here x1, as an “anchor”,

translating φ1 as AcycConn(T x1
φ1
, x1), then conjuncting this formula with the AcycConn

translations of the other connected constraints, offset by past and future operators.

The translation of φ anchored at x1 is as follows: Acyc(T x1
φ , x1) =

AcycConn(T x1
φ1
, x1) ∧

∧
26j6k

(
PAcycConn(T

xj
φj
, xj)∨ FAcycConn(T

xj
φj
, xj)

)

The translation Acyc(T x1
φ , x1) is anchored at x1 because if η |= φ[σ], the LTL formula

Acyc(T x1
φ , x1) is true at instant σ(x1) in η. This anchoring is crucial in connecting the

satisfaction of constraints and LTL formulas.

The following lemma extends Lemma 3.2 to arbitrary acyclic constraints.

Lemma 3.4 : Let η be an enactment, φ an acyclic constraint, x a variable in φ, and

i∈N a timestamp. The following are equivalent:

1. There is an assignment σ such that η |= φ[σ] and σ(x) = i.
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2. η, i |= Acyc(T xφ , x).

Proof: Let i be a timestamp and φ1, ..., φk be connected constraints that partition

φ. Let xj be a variable in φj for each 16 j6 k. Without loss of generality, assume x = x1.

Assume that for some assignment σ, η |= (φ1∪ ··· ∪φk)[σ] and σ(x1) = i1. Then, η |=φ1[σ]

and σ(x1) = i. Applying Lemma 3.2, with η, φ1, x1, and i1, yields η, i1 |= AcycConn(T x1
φ1
, x1).

Similarly, for each 26 j6 k, η |=φj[σ] and for some ij ∈N, σ(xj) = ij. Applying Lemma 3.2

with η, φj, xj and ij yields η, ij |= AcycConn(T
xj
φj
, xj). Because var(φ1) and var(φj) are

disjoint for each j 6= 1, the instants i1 and ij are independent. Thus, the values i2, ..., ik are

arbitrarily ordered with respect to i1 (and each other), so η, i1 |=PAcycConn(T
xj
φj
, xj) ∨

FAcycConn(T
xj
φj
, xj) for each 26 j6 k. Combining these with conjunction and η, i1 |=

AcycConn(T x1
φ1
, x1) yields η, i |= Acyc(T xφ , x).

For the converse, assume η, i |= Acyc(T xφ , x). By the definition of Acyc, we have

η, i |= AcycConn(T x1
φ1
, x1) ∧

∧
26j6k

(
PAcycConn(T

xj
φj
, xj)∨ FAcycConn(T

xj
φj
, xj)

)
. Then,

η, i |= AcycConn(T x1
φ1
, x1) and by the semantics of the P and F operators, for some

i2, ..., ik, η, ij |= AcycConn(T
xj
φj
, xj). Applying Lemma 3.2 to the above statement for

η, φ1, x1, and i yields η |= φ1[σ1] and σ1(x1) = i for some assignment σ1 and for φi,

xj, and ij for 2 6 j 6 k, Lemma 3.2 yields η, ij |= η |= φi[σi] for some assignment σi.

Because φ1, . . . , φk are pairwise disconnected, var(φ1), . . . , var(φk) are pairwise disjoint.

Then there is an assignment σ such that σ(v) = σj(v) for each v ∈ var(φj). Because

φ = φ1 ∪ · · · ∪ φk, it follows that η |= φ[σ].

Example 3.10 : Consider a constraint paid= {Request@x, Schedule@y, Payment@z,

x63 y} that selects a trio of timestamps to satisfy one gap atom. Note that paid is

acyclic, not connected, and can be partitioned into connected constraints:

ψ1 = {Request@x, Schedule@y, x63 y} and ψ2 = {Payment@z}. For these two con-

straints, AcycConn(T xψ1
, x) = Request∧X3F Schedule and AcycConn(T zψ2

, z) = Payment.

Picking x to anchor the translation yields:
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Acyc(T xpaid, x) = AcycConn(T xψ1
, x)

∧
(
PAcycConn(T zψ2

, z)∨ FAcycConn(T zψ2
, z)
)

= (Request ∧ X3F Schedule) ∧ (P Payment ∨ F Payment)

We now turn to the main technical result of the chapter: translating singly-linked,

acyclic rules.

A dataless rule φ→ψ is singly-linked if φ and ψ share at most one variable. Recall

that an enactment η satisfies a rule φ→ψ if for every assignment σ where η |= φ[σ],

there is some assignment σ′ that extends σ such that η |= ψ[σ′]. When φ and ψ share

one variable, the key idea in translating rules is joining the LTL translations of φ and ψ

at an instant corresponding to their common variable. The following example illustrates

this idea.

Example 3.11 : Consider the constraint Rental in Example 3.5 and a constraint

Billing = {Payment@u, Receipt@v, u60 v, y>7 u}. It is satisfied when a Payment

event is simultaneous with or followed by a Receipt, and the Payment instance is no

later than some time v+7. Note the timestamps in the Billing constraint are limited

by the time Schedule occurs in the Rental constraint.

The rule TimelyPayment is expressed as: Rental→Billing. This rule is singly-

linked and acyclic because the union of its constraints is acyclic and y is the only vari-

able the constraints share. Note that Rental is closed, but Billing is not. However,

Billing′=Billing∪{Schedule@y} is closed. In Fig. 3.6, the graphs of Rental and

of Billing′ are shown, with a dotted line indicating that Billing′ has been extended

with the event atom from the shared variable y.

We translate Rental and Billing′ using the Acyc function anchored at y:

Acyc(T yRental, y) = Schedule∧ ((
∨

−106j6−1

Xj Request)∧X5P(Compute∧F Terminate))

Acyc(T y
Billing′

, y) = Schedule∧X7P(Payment ∧ F Receipt)
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x

Request

y

Schedule
z

Compute

w

Terminate

u

Payment

v

Receipt{x 61 y, x >10 y}

{y >5 z}
{z 60 w}

{u 60 v}
{y>7u}

Figure 3.6: The tree for TimelyPayment built from trees for Rental and Billing,
rooted at y

TimelyPayment expresses the requirement that each assignment that assigns y the

instant i and satisfies Rental for an enactment can be extended to satisfy Billing′.

Using Lemma 3.4, this is equivalent to requiring that each instant i in the enactment’s

trace that satisfies Acyc(T yRental, y) also satisfies Acyc(T y
Billing′

, y). We use implication

to reflect this requirement with respect to the instant i. Because y can be assigned an

arbitrary timestamp, we place the implication in the scope of an LTL global operator.

The translation of TimelyPayment is G(Acyc(T yRental, y)→ Acyc(T y
Billing′

, y))

The translation in Example 3.11 generalizes to a translation function SingAcycToLTL

for singly-linked, acyclic rules, given below:

SingAcycToLTL(φ→ψ) =
G(Acyc(T xφ , x)→Acyc(T xψ′ , x)) If φ and ψ share variable x

G(Acyc(T xφ , x)→
(
PAcyc(T zψ, z) ∨ FAcyc(T zψ, z)

)
)

Otherwise, with z ∈ var(ψ)

Let φ→ ψ be a singly-linked, acyclic rule. In the first case, φ and ψ share a variable

x. Let ψ′ be the union of ψ and the set of event atoms in φ with x. Note that ψ′ is closed.

We obtain translations Acyc(T xφ , x) and Acyc(T xψ′ , x) of φ and ψ′ (resp.) anchored at x.

Then SingAcycToLTL(φ→ ψ) is G(Acyc(T xφ , x)→Acyc(T xψ′ , x)) as shown in the above.

When φ and ψ have no common variables, the lack of a shared variable means the

instant(s) satisfying Acyc(T zψ, z) is independent of the instant(s) satisfying Acyc(T xφ , x),

so Acyc(T zψ, z) can be satisfied anywhere in the trace relative to Acyc(T xφ , x), resulting

in the second formula above.
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The following theorem establishes key properties of SingAcycToLTL.

Theorem 3.5 : Let η be an enactment, φ→ ψ a singly-linked, acyclic rule. The following

are equivalent:

1. η |= φ→ ψ

2. η, 0 |= SingAcycToLTL(φ→ ψ)

and |SingAcycToLTL(φ→ ψ)| is O(2|φ→ψ|
2
).

Also, for a set of rules R, the following statements are equivalent:

3. η |= R

4. η, 0 |=
∧
r∈R SingAcycToLTL(r)

Proof: First, we show that (1) implies (2). Assume η |= φ→ψ. We consider two

cases for the variables in φ and ψ.

Case 1: φ and ψ share some variable x.

From the definition, SingAcycToLTL(φ→ψ) = G(Acyc(T xφ , x) → Acyc(T xψ , x)). To

show η, 0 |= SingAcycToLTL(φ→ψ) it is sufficient to show that for every instant i of the

trace, if η, i |= Acyc(T xφ , x), then η, i |= Acyc(T xψ , x).

Let i be an arbitrary instant of η such that η, i |= Acyc(T xφ , x). By Lemma 3.4, there

is an assignment σ such η |= φ[σ] and σ(x) = i. By assumption η |=φ→ψ, there is some

assignment σ′ that extends σ (i.e., σ′(x) = i) such that η |= ψ[σ′]. Applying Lemma 3.4

again to η |= ψ[σ′] and σ′(x) = i, yields η, i |= Acyc(ψ, x).

Case 2: φ and ψ share no variables.

Let x∈ var(φ) and z ∈ var(ψ). Applying SingAcycToLTL, it suffices to show that

for each instant i where Acyc(T xφ , x) is satisfied, PAcyc(T zψ, z) ∨ FAcyc(T zψ, z) is also

satisfied at i, i.e., Acyc(T zψ, z) is satisfied somewhere in the trace. Let i ∈ N. Assume

η, i |= Acyc(T xφ , x). By Lemma 3.4, there is an assignment σ such that η |= φ[σ] and
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σ(x) = i. From the assumption that η |= φ→ψ, there is an assignment σ′ such that

η |= ψ[σ′] and σ′(z) = j. Applying Lemma 3.4 again, we have η, j |= Acycψ,z. Either i> j

and thus η, i |= PAcycψ,z, or i6 j and η, i |= FAcyc(T zψ, z). In either case, the needed

condition is established.

The converse direction is proved similarly.

For the second equivalence between (3)and (4), note that a set of rules is interpreted

as a conjunction, matching the outermost LTL conjunction in (4).

Size of Translation: Let γ(φ → ψ) be the size of SingAcycToLTL(φ → ψ). We first

address the size of AcycConn for φ and ψ, which is used in Acyc and SingAcycToLTL.

The tree T xφ used in AcycConn rooted at an arbitrary x ∈ var(φ). Let y be a child

of x. By the definition of AcycConn and its function Gap, AcycConn(T xφ , x) contains

AcycConn(T xφ , y) duplicated m − n + 1 times if {x + n 6 y, x + m > y} is in φ for

some gaps n,m and duplicated only once if φ has just one gap for x and y. Then, the

resulting LTL formulas are larger wrt the gaps for x and y when φ contains an 0-gap

lower bound and m-gap upper bound between x and y. Furthermore, because AcycConn

is recursive, the resulting LTL formulas are larger when T xφ has a larger height rather

than a larger breadth. Thus, the largest output of AcycConn(T xφ , x) is when T xφ is a path

graph with root x, where for some positive m, every edge label is {x+0 6 y, x+m > y}.

When |var(φ)| = v, the size U(v) of AcycConn(T xφ , x) is given by the recurrence relation:

U(v) = 1+1+(m−1)+m(m+1)
2

+(m+1) ·U(v−1), with one proposition for the event atom,

one conjunction operator, m − 1 disjunction operators, m
2

(m + 1) next LTL operators,

and (m+1) copies of U(v − 1) (the recursive call). Solving this recurrence has a closed

form:

U(v) =
v−1∑
i=1

i−1∏
j=1

(m+1) +
v−1∑
i=1

(
i−1∏
j=1

(m+1))
m

2
(m+ 1) = (

m

2
(m+ 1) + 1)

v−1∑
i=1

(m+ 1)i+1

which simplifies to U(v) = (m
2

(m+ 1) + 1)( (m+1)v−(m+1)
m2+m

). When m is represented in the
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input |φ| in binary, m 6 2|φ|. Using m 6 2|φ| and v 6 |φ|, we have U(v) 6 ( (2|φ|)
2

((2|φ|) +

3) + 1)( ((2|φ|)+1)|φ|−((2|φ|)+1)

(2|φ|)2+(2|φ|)
). Then, U(v) and |AcycConn(T xφ , x)| are O(2|φ|

2
).

The growth of γ follows directly from the size of AcycConn. The path graph Tφ

is connected, so |Acyc(T xφ , x)| is O(|AcycConn(T xφ |)). Then, whether or not φ and ψ

share a variable, γ(φ → ψ) is O(|Acyc(T xφ , x)| + |Acyc(T zψ, z)|) for some z ∈ var(ψ). It

follows that that γ(φ → ψ) is O(2|φ|
2

+ 2|ψ|
2
). Given that 2|φ|

2
+ 2|ψ|

2
6 2|φ|

2 · 2|ψ|2 and

|φ|2 + |ψ|2 6 (|φ| + |ψ|)2, it follows that γ(φ → ψ) is O(2|φ→ψ|
2
). Thus, this translation

for singly-linked, acyclic rules is single-exponential in the size of the rule.

Proving (1) and (2) are equivalent in Theorem 3.5 relies on the construction in the

proof of Lemma 3.4, which connects a satisfying assignment for a constraint with one

instant in the trace when the constraint’s translation is satisfied. This is achieved by

observing that variables’ assigned values correspond to instants where propositions for

associated event names and the subformulas of the constraint’s translation are satisfied.

Also note that joining constraints using their shared variable ensures assignments to the

left-hand side of a rule are extended by assignments to its right-hand side, that assign

the same timestamp to the shared variable.

3.4 All-Order Translation of Singly-Linked Rules

Now we present a more general translation function, which translates singly-linked,

but not necessarily acyclic, rules. This removes the acyclicity requirement found in the

previous section, though the space complexity of the LTL formula increases. To achieve

this, we decompose constraints into an equivalent disjunction of “primitive” constraints,

and translate each primitive constraint. Finally, we note that this second translation

algorithm that doesn’t produce past-time LTL operators for a subset of singly-linked

rules.

Let V be a finite set of variables. An enumeration of V is an ordered sequence without
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repetition of all elements of V .

Definition : Let φ be a constraint, x1, ..., xn an enumeration s of var(φ). A constraint

p is primitive for φ with respect to s if (i) var(p) = var(φ), (ii) p and φ have the same

event atoms, and (iii) for each i∈ [1..(n−1)], p contains exactly one formula of form

xi+b=xi+1 for an integer b∈ [0..maxgap(φ)] or xi+maxgap(φ)<xi+1, and (iv) p ∧ φ is

satisfiable. Define Prim(φ) as the set of all primitive constraints for φ with respect to

some enumeration of var(φ).

Because constraints are linear inequalities, applying the Fourier-Motzkin elimination

method [29] to the gap atoms of p and φ yields True if and only if p ∧ φ is satisfiable,

i.e., condition (iv).

Example 3.12 : Consider the constraint

φstart = {Request@x, Schedule@y, Compute@z, x+ 2 6 z, y+ 4 > x, y+ 7 > z}

The constraint p= {Request@x, Schedule@y, Compute@z, x+8<y, y+1 = z} is primi-

tive for φstart with respect to the enumeration x, y, z.

Lemma 3.6 : Let φ be a constraint. The following hold:

1. |Prim(φ)| is O(|φ|! · 2|φ|2), i.e., Prim(φ) is finite, and

2. φ ≡
∨

Prim(φ).

where
∨

Prim(φ) is the disjunction of all elements in Prim(φ).

Proof: (1) follows from definition of primitive constraints; there are |var(φ)|! enu-

merations of var(φ). For each gap between the |var(φ)| − 1 pairs of consecutive variables

in an enumeration, there are maxgap(φ) + 2 possible gaps. Then, there are, at most,

(|maxgap(φ)| + 2)(|var(φ)|−1) primitive constraints for each of the |var(φ)|! enumerations.

Note that var(φ) 6 |φ| and maxgap(φ) 6 2|φ|, so |Prim(φ)| 6 |φ|! · (2|φ| + 2)|φ|−1. Then,

|Prim(φ)| is O(|φ|! · 2|φ|2).
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For (2), assume for some assignment σ, η |= φ[σ]. Without loss of generality, there is

an enumeration e of var(φ) and a set of gap atoms bounded by maxgap(φ) + 1 between

consecutive variables in e such that σ satisfies these gap atoms. This enumeration and

set of gaps, along with φ’s event atoms, form a primitive constraint p in Prim(φ) such

that η |= p[σ].

Alternatively, assume
∨

Prim(φ) is satisfied by some assignment σ. Then, there is

some primitive constraint p satisfied by σ. Let g be an arbitrary gap atom in φ with

variables x and y. Note that p fixes the gap between x and y as either exactly an integer

from [0..maxgap(φ)] or at least maxgap(φ)+1. By definition, φ ∧ p is satisfiable, so this

gap is consistent with g. Thus, σ satisfies g. Finally, φ and p contain the same set of

event atoms. Then, η |= φ[σ].

A key observation in the proof of Lemma 3.4 is the assignment identifies timestamps

where subformulas of AcycConn are satisfied, which correspond to timestamps for event

atoms. A second important observation is that if each (non-root) node in T xφ must take a

timestamp greater than or equal to its parent for φ to be satisfied, then AcycConn(T xφ , x)

has no past-time LTL operators, which followed from the definition of the Gap function.

The second observation is used later in a translation without past operators for a subclass

of rules (Theorem 3.12).

Note that Lemma 3.6 allows decomposing all constraints into a finite set of primitive

constraints. Each primitive constraint is acyclic and connected. Then, translating an

arbitrary constraint can use AcycConn applied to each primitive constraint, joining the

resulting LTL formulas with disjunction.

Let φ be a constraint and x an arbitrary variable in var(φ) with T xφ a derived tree.

The following definition for a function ConsToLTL maps φ and x to an LTL formula:

ConsToLTL(φ, x) =
∨
p∈Prim(φ) AcycConn(T xp , x)
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The following property of ConsToLTL characterizes one way it can be applied.

Lemma 3.7 : Let η be an enactment, φ a constraint, x a variable in var(φ), and i ∈ N

a timestamp. The following are equivalent:

1. There is some assignment σ such that η |= φ[σ] and σ(x) = i.

2. η, i |= ConsToLTL(φ, x)

Proof: By Lemma 3.6, a constraint φ is equivalent to a disjunction of its primi-

tive constraints. Using an arbitrary variable x in φ to root the AcycConn translation,

Lemma 3.4 equates the satisfaction of a primitive constraint p containing variable x with

the satisfaction of the LTL formula AcycConn(T xp , x). Finally, ConsToLTL(φ, x) collects

the AcycConn translations of the primitive constraints for φ as a disjunction.

ConsToLTL translates rules that share no variables in the following way: let φ→ψ be

a singly-linked rule whose constraints share no variables. Let y, z be arbitrary variables

in var(φ), var(ψ), respectively. According to the rule semantics, when φ is satisfied by

some assignment σφ with σφ(y) = i for some i ∈ N, there must be an assignment σψ

that satisfies ψ such that σψ(z) = j for some j ∈ N. By Lemma 3.7, this corresponds

to the condition that when ConsToLTL(φ, y) is satisfied at instant i, ConsToLTL(ψ, z)

is satisfied at instant j. Because y is arbitrary variable in φ and is not used in ψ, the

instant j satisfying ConsToLTL(ψ, z) is not necessarily related to i. Then, enforcing

φ → ψ is equivalent to checking that if ConsToLTL(φ, y) is satisfied (somewhere), then

ConsToLTL(ψ, z) is also satisfied (somewhere). It follows that:

Lemma 3.8 : Let η be an enactment, φ→ψ a singly-linked rule with no shared variables,

y a variable in var(φ), and z a variable in var(ψ). The following are equivalent:

1. η |= φ→ψ

2. η, 0 |= FConsToLTL(φ, y)→FConsToLTL(ψ, z)
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Proof: Let σ be an assignment. Assume η |= φ[σ]. By Lemma 3.7 the trace

η satisfies ConsToLTL(φ, y) for some instant i∈N, i.e. η, 0 |=FConsToLTL(φ, y). If

η |=φ→ψ, there must be an assignment σ′ such that σ′(y) = j for some timestamp j ∈N.

Equivalently, by Lemma 3.7, the trace η must satisfy ConsToLTL(ψ, z) at instant j, i.e.

η, 0 |= FConsToLTL(ψ, z).

The converse follows from the same reasoning.

The above translation applies to rules that share no variables. Next we translate

singly-linked rules whose constraints share one variable.

ConsToLTL translates rules whose constraints share one variable as follows: let

φ→ψ be a singly-linked rule whose constraints share the variable y. By Lemma 3.7, if

ConsToLTL(φ, y) and ConsToLTL(ψ, y) are satisfied at the same timestamp i in a trace,

there is a pair of assignments σφ and σψ that satisfy φ and ψ respectively, such that these

assignments agree on y, i.e. σφ(y) =σψ(y) = i. Then, to identify satisfying assignments

for φ and ψ that agree on y, the formulas ConsToLTL(φ, y) and ConsToLTL(ψ, y) are

placed in the same temporal scope.

This motivates translating a singly-linked rule φ→ψ with common variable y to an

LTL formula ConsToLTL(φ, y)→ConsToLTL(ψ, y). The global operator G ensures the

LTL formula covers all timestamps y can take.

Theorem 3.9 : Let η be an enactment and φ→ψ a singly-linked rule with a shared

variable y. The following are equivalent:

1. η |= φ→ψ

2. η, 0 |= G(ConsToLTL(φ, y)→ConsToLTL(ψ, y))

Proof: Let i∈N be a timestamp and σ be an assignment such that σ(y) = i. As-

suming η |= φ[σ], by Lemma 3.7 the trace η satisfies ConsToLTL(φ, y) at instant i. If

η |=φ→ψ, there must be an assignment σ′ such that σ′(y) = i and η |= ψ[σ′]. Ac-

cording to Lemma 3.7, the trace η must satisfy ConsToLTL(ψ, y) at instant i, leading
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to η, i |= ConsToLTL(φ, y)→ConsToLTL(ψ, y). The enclosing G ensures that the above

holds for all such timestamps i.

In the remainder of the section, we develop a translation SingToLTL for the entire

subclass of singly-linked rules. We start by looking at a singly-linked rule with a primitive

body. Let p→ψ be a singly-linked rule where p is a primitive constraint. Without loss of

generality, let x1, ..., xn be the enumeration in p. For each subset V ⊆ var(φ), φ|V denotes

the constraint obtained from φ after removing all atoms involving a variable not in V .

Note that p|x1,...,xn = p. For each j ∈ [1..n], define the following function SingToLTL to

map p|xj ,...,xn→ψ to an LTL formula SingToLTL(p|xj ,...,xn→ψ):

• AcycConn(T
xj
p , xj)→ConsToLTL(ψ, xj) if the shared variable is xj

• (
∧

r@xj∈p

r)→ Xb SingToLTL(p|xj+1,...,xn→ψ) if the shared variable is not xj

and p contains xj+b=xj+1

• (
∧

r@xj∈p

r)→ Xb+1G SingToLTL(p|xj+1,...,xn→ψ) if the shared variable is not xj

and p contains xj+b<xj+1

Note that SingToLTL only introduces past-time operators X−1 and P within AcycConn

and ConsToLTL. The SingAcycToLTL translation uses both the future-time LTL oper-

ators, X and F and the past-time operators X−1 and P. Many rules take the form of “if

a condition is observed, then another condition must be observed later”; we call these

future rules, also known as strictly sequential rules [30].

Definition : A singly-linked, dataless rule φ→ψ whose constraints share exactly one

variable y is a future rule if ψ implies y6 z for all z ∈ var(ψ).

Such rules only reference events matching the rule head whose timestamps are greater

than those for the body. This new function SingToLTL avoids the past-time operators

X−1 and P for “future” singly-linked rules. This observation is crucial in establishing

Theorem 3.11. We prove that SingToLTL produces a correct translation in Lemma 3.10.
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We use the following refined notion of satisfaction: Let σ be an assignment. An enactment

η satisfies φ→ψ for σ if η |= φ[σ] implies the existence of an assignment σ′ such that

η |= ψ[σ′] and both σ, σ′ agree on var(φ).

Lemma 3.10 : Let η be an enactment, φ→ψ a singly-linked rule with φ, ψ sharing the

variable xk (k ∈ [1..n]), p a primitive constraint for φ with respect to the enumeration

x1, ..., xn, j an integer with j ∈ [1..k], and i a timestamp in η. The following are equivalent:

1. η |= p|xj ,...,xn→ψ for each assignment that assigns i to xj

2. η, i |= SingToLTL(p|xj ,...,xn→ψ)

Proof: The proof is performed by induction on j with the base case of j= k. The

base case corresponds to the first case in the definition for SingToLTL and follows from

similar reasoning as Theorem 3.9. The inductive steps holds by the following reasoning:

Let p|xj ,...,xn be a constraint {rj@xj, xj+b=xj+1, ...}. Assume the event atom rj@xj is

satisfied by η and an assignment that maps xj to i, checking p|xj ,...,xn→ψ for assignments

that extend [xj 7→ i] reduces to checking p|xj+1,...,xn→ψ for assignments that map xj+1

to i+b, because the event atom rj@xj and equality xj+b=xj+1 complete the initial

portion {rj@xj, xj+b=xj+1} in p|xj ,...,xn . The operators Xb prefix the translation of

p|xj+1,...,xn→ψ at instant i+b. Similarly, when p contains xj+b<xj+1 and the event

atom rj@xj is satisfied by η with an assignment that maps xj to i, checking p|xj ,...,xn→ψ

for assignments that extend [xj 7→ i] reduces to checking p|xj+1,...,xn→ψ for assignments

that map xj+1 to some timestamp>i+b. The operators Xb+1G to prefix the translation

of |pxj+1,...,xn→ψ at all instants later than i+b.

We now present the following theorem stating the equivalence of a singly-linked,

dataless rule and its translation using primitive constraints in Theorem 3.9.

Theorem 3.11 : Let η be an enactment and φ→ ψ a singly-linked, dataless rule. The

following are equivalent:
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1. η |= φ→ ψ

2. η, 0 |=
∧
p∈Prim(φ) G SingToLTL(p→ψ)

and |
∧
p∈Prim(φ) G SingToLTL(p→ψ)| is O(|φ|! · 2|φ|3 · |φ|+ |φ|! · |ψ|! · 2|ψ|4+|φ|2).

Proof: The constraint φ is equivalent to the disjunction of Prim(φ) by Lemma 3.6;

thus checking φ→ψ can be accomplished by checking p→φ for each p∈Prim(φ). By

Lemma 3.10, SingToLTL(p→ψ) holds at instant i if and only if p→ψ is satisfied for each

assignment that assigns timestamp i to the first variable in p. Finally, p→ψ is enforced

for all assignments, by enforcing SingToLTL(p→ψ) at all instants in η with G.

Now we show that this translation of future rules does not contain any past LTL

operators.

Theorem 3.12 : Let φ→ψ be a future, singly-linked rule. Then, the LTL formula∧
p∈Prim(φ)G SingToLTL(p→ψ) contains no X−1 nor P operators.

Proof: Consider the definition of SingToLTL function and let xk be the shared

variable in φ→ψ. First, for a primitive constraint p of φ, the translation function

SingToLTL(p→ ψ) unrolls p until it reaches xk, inserting only X and G, i.e. only future

LTL operators.

Second, SingToLTL translates the portion of p starting at xk as AcycConn(p|xk,...,xn , xk),

where xk is the smallest variable in p|xk,...,xn . Similarly, the head of the rule is translated

as ConsToLTL(ψ, xk), which applies AcycConn to each element of Prim(ψ) and xk. The

property of being a future rule implies that xk is the smallest variable in ψ, i.e., xk is the

smallest variable in each constraint in Prim(ψ). By virtue of its construction, AcycConn

inserts only X and F when translating a primitive constraint from its smallest variable.

Thus, SingToLTL(p→ψ) has no X−1 nor P, i.e. no past-time, operators.

Size of Translation: Finally, we establish the size of
∧
p∈Prim(φ) G SingToLTL(p→ψ).

For each primitive constraint p of φ, SingToLTL unfolds p: p has |var(φ)| variables,
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so unfolding yields at most (|maxgap(φ)| + 1) · (|var(φ)| − 1) next operators, at most

|var(φ)| − 1 global operators, propositions, conjunction, and implication operators each.

SingToLTL also inserts ConsToLTL(ψ) at the variable shared with p: applying |Prim(ψ)|

from Lemma 3.6 with the size of AcycConn established in the proof of Theorem 3.5, it

follows that |ConsToLTL(ψ)| is O(|ψ|! · (2|ψ|)4). Note that var(φ) 6 |φ| and maxgap(φ) 6

2|φ|, and similarly for ψ. Then, |SingToLTL(p→ψ)| is O(2|φ| · |φ|+ |ψ|! · 2|ψ|4). Applying

Lemma 3.6 capture the conjunction of all p in Prim(φ), the SingToLTL translation of

φ → ψ is O(|φ|! · 2|φ|
3 · |φ| + |φ|! · |ψ|! · 2|ψ|

4+|φ|2). In summary, this translation for

singly-linked, dataless rules is double-exponential in the size of the rule.

This concludes our the translation of singly-linked, dataless rules. Next, we compare

the results of this translation and that of the previous section with a translation based

on Kamp’s Theorem, showing that both translations lower the complexity of the size of

the resulting LTL formula.

3.5 Related Work

The technical problem concerning translation of (super)classes of rules into LTL is

not new and has been discussed variously [31–33], and in particular by Kamp [25], who

shows: Given any first-order monadic logic of order formula with one free variable, there

is a temporal logic [LTL] formula which is equivalent over Dedekind-complete chains. The

natural numbers are a Dedekind-complete chain and the free variable is interpreted as

the first timestamp in a trace, so this result indicates the expressive equivalence of first-

order logic with monadic predicates and ordering < (FOMLO) and LTL with past-time

operators over the natural numbers. Dataless rules uses event types with no attributes,

thus these event types constitute monadic predicates over the the natural numbers, and

gap atoms can be expressed with ordering relations. Additionally, each rule has the

form ∀x̄.ȳ.(φ(x̄, ȳ)→ ∃z̄.ψ(ȳ, z̄)), and a set of rules is interpreted as a conjunction, thus
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dataless rules use the same vocabulary as FOMLO. Thus, the following holds by Kamp’s

Theorem:

Theorem 3.13 : [25] Every set of dataless rules has an equivalent LTL formula.

Rabinovich [26] presents a concise proof of Kamp’s Theorem which provides key

pieces of an FOMLO-to-LTL translation algorithm. The algorithm applies recursively

to FOMLO formulas, with the help of a set of auxiliary formulas that impose total

orderings on the variables in the FOMLO formula. This technique is similar to our

translation in Section 3.4, which imposes total orderings on variables. However, in the

translation algorithm in [26], FOMLO negation triggers an exponential increase in the size

of the result for each quantifier alternation. This yields LTL formulas with size hyper-

exponential (greater than any exponential function) in the size of the input FOMLO

formula. In comparison, our translations produce equivalent LTL formulas that are

single- and double-exponential in the size of the input. Thus, our translations improve

the size complexity of the resulting LTL formulas, which is important for the size of the

resulting automata for runtime monitoring.

Section 3.1 describes the use of finite state machines to detect violations. Many tech-

niques already exist for monitoring event streams against formal specifications, especially

properties like relative ordering, e.g., those easily expressible by LTL or automata. de-

clare [34] is the most common formalism for expressing business rules in the business

process management community and has semantics grounded in future-time LTL. Refer-

ence [35] exhibits runtime monitors for declare constraints with a translation through

LTL to finite state automata. For general software systems, [36] tracks assignments to

subformula of properties for monitoring first-order past LTL properties. A limitation of

these works is that past- and future-time LTL, declare, and Linear Dynamic Logic

(LDL) lack an immediate representation of quantitative time constraints, e.g., A must

occur within 5 days of B and C must occur within 2 days of B and within 3 days of A,
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which must be carefully encoded in automata as the number of quantitative relationships

grows. More study is needed to understand which quantitative time constraints can be

expressed in these existing non-quantitative languages; this chapter is a step in that di-

rection. Alternatively, LTL and LDL have disjunction and negation operators; it is not

clear what expressivity these operators would add to rules.

declare is extended with quantitative time constraints between pairs of activi-

ties [37,38]. Reference [37] provides monitoring algorithms derived from Abductive Logic

Programming. The size of the auxiliary storage used by the resulting monitors is un-

bounded with respect to the size of the execution trace; trace-length independence, where

memory usage is bounded regardless of the target trace, is a desirable property of run-

time monitors [17]. In our approach, the size of the monitor (a finite state machine)

for a given set of rules is fixed. References [38] and [39] monitor timed declare con-

straints by translating them to Metric Temporal Logic, which has a translation to timed

automata, and event calculus, respectively. Our translation from rules to untimed LTL

allows for monitoring by deterministic finite automata, a simpler model of computation

than timed automata. Additionally, declare constraints are built from binary rela-

tionships between activities, while rules can express pre- and post-conditions with an

arbitrary number of event and gap atoms.

Some temporal logics with quantitative operators have been studied as specifica-

tion languages for monitoring general software systems. Reference [40] employs formula

rewriting to track satisfaction for Mission-time Linear Temporal Logic. Reference [41] em-

ploys formula rewriting to monitor the subclass of Metric Temporal Logic with bounded

future formulas, i.e., all temporal modalities have a deadline, which is not a restriction

of our rules. Reference [42] constructs deterministic automata for the past-time subset

of Metric Temporal Logic where all temporal modalities have upper and lower natural

number bounds. Rules can reference the indefinite past and future of an enactment with

respect to each timestamp, so they do not have these restrictions. More generally, it is
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not clear which quantitative time features are best suited for specifying business rules.

There are many more approaches to enforcing constraints on streams of events that

are not based on runtime monitoring. Simple Temporal Networks (STNs) [43] use net-

works of events where edges represent relative time constraints. STNs can be extended to

Conditional Simple Temporal Networks with Uncertainty (CSTNUs) with the conditional

constraints using some propositional variables and uncertainty as ranges for timestamps.

References [44–46], and study workflows subject to constraint networks for controllabil-

ity: determining if the workflow can be enacted to satisfy the network regardless of the

duration of the uncontrollable gaps between events. [47] checks controllability for the

the Guard Stage Milestone language extended with time constraints. The controllability

problem is different from our problem: controllability decides the potential for constraint

satisfaction at design-time, while our approach decides the observed satisfaction of con-

straints at runtime. Additionally, static verification techniques and controllability both

assume a process model or models for the service exist; this chapter assumes no pro-

cess model, only a set of event types being completed, which affords more flexibility in

choosing which events to monitor.

3.6 Chapter Summary

This chapter studies the early violation detection problem for dataless rules. We

describe an approach based on translating quantitative constraints to finite state ma-

chines. We present two translations from rules to LTL formulas, one for singly-linked,

acyclic, dataless rules with the correctness and single-exponential size of the translation

established, and one for singly-linked, dataless rules with the correctness and double-

exponential size of the translation established.

Several related problems deserve more research. First, exploring the semantics of time

in formal specification languages as well as industry standards may improve constraint
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specification. Allowing explicit timestamps (e.g., rules with timestamps) or implicit

timestamps (e.g., LTL), past constraints or future constraints, and discrete or continu-

ous time, lead to different suitabilities for applications and may incur different complexity

for violation detection. Also, it may be possible to translate dataless rules directly to au-

tomata of smaller size or to demonstrate that certain sizes of automata are optimal, while

translating larger classes of dataless rules may enable violation detection wider classes

of applications. Finally, referencing data in rules is critical for matching information

between events; the subsequent chapters of this dissertation study rules with data.
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Rules with Data

In this chapter, we address the problem of detecting violations for rules with data. Adding

data variables over a data domain expands the types of properties rules can express, such

as matching the user of a Payment event with the user who made the Request. First,

we consider the problem for an individual rule, developing a technique for calculating

the earliest time a violation is inevitable (the “deadline”) and use this time for detecting

violations of individual rules. Then, we observe that interactions within a set of rules

creates situations where an enactment may violate a set of rules though no individual

rule is violated, which is trivial in the absence of data but non-trivial with data, so we

extend our algorithms to handle a set of rules by simulating the effects of rule interaction

using a chase process. To ensure chase termination, the chapter’s results for multi-rule

violation detection are limited to “acyclic” sets of rules. We also present two optimiza-

tions to reduce computational overhead of the violation detection algorithms. Finally,

we evaluate the feasibility of our techniques to determine where our approach is benefi-

cial; we implement the individual rule and multi-rule algorithms and characterize their

performance on a variety of enactments and rule sets.

This chapter is organized as follows. Section 4.1 presents the Deadline algorithm for

computing deadlines, then the data structures and Update, Update-E, Build, and Detect
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algorithms for storing relevant event data and detecting violations. Section 4.2 extends

these techniques to acyclic sets of rules with the Chase and Detect-Multi algorithms.

Section 4.3 presents two optimization techniques for Update and Update-E. Section 4.4

provides key findings of evaluations of an implementation of the algorithms. Finally,

Sections 4.5 and 4.6 discuss related work and conclude the chapter.

4.1 Algorithms for Individual Rules

In this section, we develop key techniques for early violation detection for individual

rules. First, we define the concept of deadlines and present an algorithm to calculate

deadlines. We then define data structures to store variable assignments and present algo-

rithms to create new assignments from arriving events, and to merge and match existing

assignments. Finally, we detail how violations are detected using these algorithms.

We aim to detect violations at the earliest possible time. Since an enactment is an

accumulation of events with increasing timestamps, it may be that a complete body

assignment derived from the current enactment can only be extended at or before a

specific future time called a deadline. We now formulate the notion of a deadline below.

Definition : Let Θ be a set of gap atoms over variables x1, ..., xn and µ an assignment

for variables xi’s. We use defµ for the variables µ assigns a value; µ(Θ) the gap atoms

obtained by replacing each variable x∈defµ with µ(x), and max(µ) = max{µ(x) |x ∈

defµ}. A timestamp τ ∈N is the deadline for Θ, x1, ..., xn, µ if (1) τ>max(µ), and (2)

either µ(Θ) is unsatisfiable and τ= max(µ) or conditions (i) and (ii) both hold: (i) for

each complete extension µ′ of µ such that µ′(x)>τ for each x /∈defµ, µ′(Θ) is false, and

(ii) there is a complete extension µ′′ of µ such that µ′′(Θ) is true.

Example 4.1 : For the example enactment introduced in Section 2.3 and rule r1 in

Fig. 4.2, the body assignment µ10 is created at time 8, where µ10(x)=3, µ10(y)=6, and

52



Rules with Data Chapter 4

Request

ID user account ts

π
1

Alice a3 1

π1 Alice a4 3

π
2

Bob b6 7

Approval

ID user ts

π
1

Alice 6

Reserve

ID user account ts

π
1

Alice a4 8

π1 Alice a3 9

Payment

ID user account ts

π
1

Alice a3 8

π1 Alice a4 9

Launch

ID user account ts

Figure 4.1: Database S9 with events from two enactments π1 and π2.

r1 : Request(u, a)@x, Approval(u)@y, x6y6x+7, Reserve(u, a)@z, y6z6 y+7

→ Payment(u, a)@w, Launch(u, a)@v, y6w6y+3, z6v6z+7, v6w + 4

Figure 4.2: Rule r1

µ10(z)=8. As shown in Fig. 2.2, applying µ10 to the head atoms yields upper bounds

w6 9 (=y+3) and v6 15 (=z+7). These bounds show that extensions of µ10 must have

a Payment event whose time variable w is no later than time 9. Thus, the time 9 is a

deadline for µ10 : the latest time µ10 can be extended w.r.t. w, and the earliest time µ10

could be recognized as a witness of a violation. Fortunately, a Payment event happened

at time 9, which satisfies w6 9. However, v remains unresolved and thus the subsequent

deadline to extend µ10 is the latest time to observe a value for v: v6 13 (=w+4) and

v6 15 (=z+7), so the deadline to extend µ10 is changed to 13.

We compute deadlines with function Deadline (Alg. 1). Deadline determines for each

xi the least τi such that µ(Θ)→xi6τi, and the deadline τ is the least of τi’s. First, if µ(Θ)

is unsatisfiable, µ is a violation at the time of its creation, i.e., at its largest timestamp.

Otherwise, an array UpperBd is initialized with constants (Lines 3-5), then tightened with

the initial bounds and the gap atoms in Θ: a gap atom u± k6 v indicates UpperBd(v)∓ k

is an upper bound for u. For each gap atom u± k6 v for which UpperBd(v) is defined,

we update UpperBd(u) as max(UpperBd(v)∓ k,UpperBd(u)) (Lines 7-9).

The Deadline function (Alg. 1) can compute deadlines for complete body assignments

and for complete body assignments with matching partial head assignments. For a com-

plete body assignment µ and a partial head assignment β, we compute the latest time

µ∪ β can be extended. This time is, in fact, the earliest time µ becomes a witness for a

violation. In the following lemma, we state a property of deadlines for a complete body
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Algorithm 1 Deadline(Θ, x1, ..., xn, µ)

Input: A set of gap atoms Θ over time variables x1, ..., xn and an assignment µ
Output: A timestamp τ

1: if If µ(Θ) is unsatisfiable then return τ := max(µ);
/∗ max(µ) is the largest timestamp µ assigns to x1, ..., xn∗/

2: end if
3: Rewrite each atom in µ(Θ) in the form u± k6 v;

/∗ u, v either a time variable or in N, k∈Z ∗/
4: Let UpperBd be a map from x1, ..., xn to {∞};
5: for each u± k6 v in µ(Θ) with v ∈N and u∈{x1, ..., xn} do
6: UpperBd(u) := v∓ k ;
7: end for
8: for |Θ| iterations do
9: for each gap atom u± k6 v in µ(Θ) do

10: if UpperBd(v) is finite and UpperBd(u)± k >UpperBd(v)> 0 then
11: UpperBd(u) := UpperBd(v)∓ k ;
12: end if
13: end for
14: end for
15: return τ := min{UpperBd(xi) | 16i6n}

assignment and partial head assignment.

Lemma 4.1 : Let r: ϕ→ψ be a rule, ϕg, ψg the gap atoms in ϕ, ψ (resp.), µ a (body)

assignment such that µ(ϕg) is true, β an incomplete head assignment matching µ such

that β(µ(ψg)) is satisfiable, and U the variables in ψg undefined by β. Let

τ =Deadline(ψg, var(ϕg ∪ψg), µ∪ β). The following hold:

1. If τ ∈N, then there is a head assignment β′ matching µ∪ β such that min(β′(U))6 τ

and β′(ψg) is true,

2. If τ ∈N, then for all complete head assignments β′ matching µ∪ β such that

max(β′(U))>τ , β′(ψg) is false, and

3. If τ = ∞, then for all timestamps n in N, there is a head assignment β′ matching

µ∪ β such that max(β′(U))>n and β′(ψg) is true.

Proof: To show (1), assume there is no complete head assignment β′ extending

µ∪ β such that min(β′(U))6 τ and β′(ψg) is true. Then, (µ ∪ β)(ψ) ∧ (z = τ) is not

satisfiable. Then, there is a gap atom in µ ∪ β(ψ) that provides an upper bound for z

below τ . Then, τ is not the minimum of the upper bounds in UpperBd. Thus Algorithm 1
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on µ ∪ β and ψ should not output τ . This is a contradiction. To show (2), assume some

complete head assignment β′ extends µ∪ β such that min(β′(U))>τ and β′(ψg) is true.

Then, (µ∪β)(ψ)∧ (z = τ ′) is satisfiable for some z in var(ψ). Then, µ(ψ) does not imply

zi 6 τ for all variables zi. Thus Algorithm 1 on µ∪β and ψ should not output τ . This is

a contradiction. To show (3), assume τ =∞. Algorithm 1 only produces ∞ when µ(ψ)

is satisfiable and for some variable zi and for all n ∈ N, µ(ψ) 6→ (zi 6 n) Then, for all

timestamps n in N, there is some complete assignment that extends µ, satisfies ψ, and

uses some n′ larger than n. Finally, µ can be extended arbitrary far in the future.

The discussions in Section 2.3 suggest maintaining partial and complete assignments

for rule variables. We define three tabular data structures: bar for body assignments,

har for head assignments, and extr (extensions), to track pairings of body and head

assignments. bar and har consist of the following columns: (i) one column for the

assignment identifier (Aid) from I, (ii) one column for the enactment identifier (id) from

I, (iii) one column in bar for each variable in ϕ and one column in har for each event

variable in ψ (resp.) (a variable in the head ψ is an event variable if it occurs in an event

atom in ψ.) to hold a value from D or a timestamp, and (iv) one column for gap atoms

in ϕ and ψ (resp.) simplified with the assigned values as possible. Additionally, bar has

one more column (v) match? indicating with yes or no the presence or absence, resp., of

a complete head assignment matching the complete body assignment. For convenience,

we refer to rows in these two tables as assignments. extr has three columns: (i) one

column for a body Aid from bar, (ii) one column for a head Aid from har that extends

the row’s body assignment, and (iii) one column for the deadline, calculated using the

row’s assignments and the head gap atoms as inputs for Deadline.

For each enactment η, bar(η) and har(η) store all assignments that can be generated

from set of events in η and satisfy ϕ and ψ (resp.). Specifically, for a rule r:ϕ→ψ and an

enactment η, bar(η) contains every assignment µ such that for a non-empty subset P of

the event atoms in ϕ, µ is defined for the variables in P , µ(P )⊆ η, and for each gap atom
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Aid ID u a x y z

µ
1

π
1

Alice a3 1 - -
µ
2

π
1

Alice a4 3 - -
µ
3

π
1

Alice - - 6 -
µ4 π1 Alice a3 1 6 - µ1 + µ3

µ5 π1 Alice a4 3 6 - µ2 + µ3

µ6 π2 Bob b6 7 - -
µ
7

π
1

Alice a4 - - 8

µ
8

π
1

Alice a4 3 - 8 µ
2
+ µ

7

µ
9

π
1

Alice a4 - 6 8 µ
3
+ µ

7

µ
10

π
1

Alice a4 3 6 8 µ
2
+ µ

9

µ
11

π
1

Alice a3 - - 9

µ
12

π
1

Alice a3 1 - 9 µ
1
+ µ

11

µ
13

π
1

Alice a3 - 6 9 µ
3
+ µ

11

µ14 π1 Alice a3 1 6 9 µ4 + µ12

Aid ID u a x y z

µ
15

π
1

Alice - - 10 -
µ
16

π
1

Alice a4 3 10 - µ
2
+ µ

15

µ
17

π
2

Bob - - 10 -
µ
18

π
2

Bob b6 7 10 - µ
6
+ µ

17

(b) New body assignments added at time 10

(a) All body assignments at time 9

Figure 4.3: Assignments for the rule body ϕ and events S9 , events S9∪{e1, e2}
g whose variables appear in P , η satisfies g with µ. har(η) is similar, using ψ instead

of ϕ. Fig. 4.4(a) shows the assignments inserted into bar table at time 10 (those from

Fig. 4.3(b)) with columns for gap atoms and the possibility of matching. extr(η) stores

each pair of assignments from bar(η) and har(η), resp., such that the body assignment

can be extended by the head assignment only at or before the row’s deadline, i.e., some

unknown variable in the body and head assignments is constrained by a gap atom in the

body or head to be at or before the deadline.

Example 4.2 : Given the events up to time 9 in Fig. 4.1, suppose two events happen at

time 10, e1:Approval(π1, [Alice], 10) and e2:Approval(π2, [Bob], 10). Event e1 generates

an assignment µ16 : [π1,Alice, -, -, 10, -], which combines with µ2 into µ16 . Event e2 yields

new assignments µ17 and µ18 . Fig. 4.3(b) lists four assignments generated by e1 and e2.

Aid u a x y z gap atoms match?

µ
10

Alice a4 3 6 8 - No

µ11 Alice a3 - - 9 x6y6x+7, No
y696y+7

µ12 Alice a3 1 - 9 16y68, No
y696y+7

µ13 Alice a3 - 6 9 x666x+7 No

µ
14

Alice a3 1 6 9 - No

(a) Some assignments in bar(π1) (Fig.4.3(a)) at ts = 9

Aid u a w v gap atoms

β1 Alice a3 8 - v612

β2 Alice a4 9 - v613

β3 Alice a3 - 12 86w
β
4

Alice a3 8 10 -

(b) Some assignments in har(π1) (Fig.4.3(b)) at ts = 10

Figure 4.4: Body and Head Table Examples

We next present the Update algorithm to create and combine assignments with a

batch of events, as shown in Example 4.2. This algorithm maintains ba and ha incre-
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body Aid head Aid deadline

µ10 - 9

µ10 β2 13

µ14 - 9

µ
14

β1 12

µ
14

β3 12

µ
14

β4 -

Figure 4.5: Extensions of µ10 and µ14 in extr(π1) at ts = 13

Algorithm 2 Update(Θ,∆, T (η))

Input: A set of atoms Θ, a batch ∆ for an enactment η, a table T (η) (T is bar or har)
Output: The updated table T (η ∪∆) for η ∪∆

1: Γ := T (η) ;
2: for each event e ∈ ∆ do
3: for each event atom γ in Θ with the same name as e do
4: Create an assignment µ such that µ(γ) = e ;
5: if µ(Θ) is satisfiable then
6: Add to Γ the row s = 〈a, e.id, µ(v1), ..., µ(vn),b, (no)〉,

where a is a fresh assignment identifier, v1, ..., vn are the event variables
in Θ, and b the gap atoms in Θ, evaluated and simplified with µ;

7: end if
8: end for
9: end for

10: while Γ changes do
11: for each pair of unique and consistent rows µ1 and µ2 in T do
12: µ :=merge(µ1, µ2) ; /∗ consistent, merge explained in the text ∗/
13: if µ(Θ) is satisfiable then
14: Add to Γ the row: s = 〈a, µ1.id,max(t1, t2), µ(v1), ..., µ(vn),b, (no)〉

where a is a fresh assignment identifier and
b is the union of gap atoms in µ1, µ2, evaluated with µ ;

15: end if
16: end for
17: end while
18: output Γ

mentally without accessing the corresponding enactment directly; this is important since

enactments may be very large.

We now outline the behavior of Update. Given atoms Θ (here, the body or head

of a rule), a batch ∆, and either bar or har for an enactment η, First, the events in

∆ and Θ are used to generate assignments, which are added to the table if they are

consistent with Θ’s gap atoms, (and thus extendible to complete assignments). Then,

the while loop searches for pairs of consistent, partial assignments; two assignments are

consistent if they agree on the variables for which they are both defined, e.g., in Fig. 4.3

µ1 and µ2 agree on u but not on a, so they are not consistent. For each pair of consistent

assignments, a new assignment is created by combining their variable mappings and gap
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atoms and a deadline is computed. For example, assignment µ5 in Fig. 4.3 is the merge

of µ2 and µ3. If the new assignment is consistent with Θ, it is added to the table. The

while loop considers only pairs of assignments pre-existing in Γ or ∆, i.e., it doesn’t

introduce new data values; this ensures that while loop terminates.

Example 4.3 : For the enactment and rule in Section 2.3, consider the enactment’s event

Request(π1, [Alice, a3], 1) and the rule’s atom Request(user u, account a)@x. The map-

ping [id 7→π1, u 7→Alice, v 7→ a3, x 7→ 1] maps the atom to this event; the assignment cor-

responding to this mapping is added to bar as µ1 in Fig. 4.3(a). For the same example in

Section 2.3 and Fig. 4.3(a), assignments µ2 : [π1,Alice, a4, 3,−,−, {36y610, y6z6y+7}]

and µ3 : [π1,Alice,−,−, 6,−, {x666x+7, 66z613}] are in bar(π1) at ts = 9 and agree

on u. Their combination merge(µ2, µ3) satisfies x6 66x+7 and 36y610, so a row cor-

responding to merge(µ2, µ3) is added to bar as µ5.

The following lemma states that Update refreshes the body and head tables by adding

exactly the new assignments that can be derived from η ∪∆.

Lemma 4.2 : Let r:ϕ→ψ be a rule, η an enactment, and ∆ a batch for η. Update(ϕ,∆,bar(η))

computes bar(η ∪∆) and Update(ψ,∆,har(η)) computes har(η ∪∆).

Proof: We show this for bar(η ∪∆); adapting this argument for ha is trivial. We

start by assuming bar(η) contains every assignment µ such that for a non-empty subset

P of the event atoms in ϕ, µ is defined for the variables in P , µ(P )⊆ η, and for each gap

atom g whose variables appear in P , η satisfies g with µ. Let µ be an assignment such

that for a non-empty subset P of the event atoms in ϕ, µ is defined for the variables in

P , µ(P )⊆ η ∪∆, and for each gap atom g whose variables appear in P , η ∪∆ satisfies g

with µ. We now show that µ is inserted in bar(η ∪∆) by Update(ϕ,∆,bar(η)).

Because µ(P )⊆ η ∪∆, the D and T values in µ are derived from some set of events

C in η and some set of events D in ∆. We assume that C is non-empty; otherwise, µ is

already in bar(η) by the starting assumption. Additionally, by the starting assumption,
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Algorithm 3 Update-E(∆,extr(η),bar(η ∪∆),har(η ∪∆))

Input: A batch ∆, un-updated table extr(η),
updated tables bar(η ∪∆) and har(η ∪∆) for an enactment η

Output: The updated table extr(η ∪∆)

1: Γ := extr(η) ;
2: for each complete body assignment µ in bar(η ∪∆) do
3: if max(µ) = ts∆ then Add 〈µ, -,Deadline(ψ, var(ψ), µ)〉 to Γ ;
4: end if
5: end for
6: for each assignment γ in har(η ∪∆) do
7: if max(γ) = ts∆ then
8: for each row 〈µ, β, d〉 in Γ do
9: if γ extends µ∪β and γ(µ(ψ)) is satisfiable then

10: Add 〈µ, γ,Deadline(ψ, var(ψ), µ ∪ γ)〉 to Γ ;
11: if γ is complete then Update bar(η ∪∆) to indicate µ has a match ;
12: end if
13: end if
14: end for
15: end if
16: end for
17: output Γ ; /∗ = extr(η ∪∆) ∗/

bar(η) contains an assignment µC derived from C. Then, we can show µ is created by

merging µC with some assignment µD for D. The double for loop of Update generates

an assignment for each event d in D and event atoms in ϕ with the same event type as d.

Next, these assignments merge with each other in the while loop; because µ(P ) ⊆ η ∪∆

and P ’s gap atoms are consistent with µ, µD is consistent with P and created by the

while loop, then added to bar(η ∪∆). Alternatively, consider any assignment µ that is

not in bar(η ∪∆) after Algorithm 2. Then, no subset of events in η ∪∆ can create µ or

µ is inconsistent with ϕ and will not pass the checks for consistency with Θ = ϕ.

The ext table pairs body assignments with head assignments; it is updated by

Update-E (Alg. 3). When a batch arrives, Update-E (Alg. 3) adds new complete body

assignments to ext (Lines 2-3), and then adds pairs using head assignments (Lines 4-8),

computing a deadline for each pair (Line 8). Line 9 checks if there is a match between

complete body and some head assignment, updating ba if so. An example is shown in

Fig. 4.5 for the complete assignments in Fig. 4.4.

For all complete body assignments, ext stores each head assignment that extends it

and indicates the latest time the head assignment can be further extended. The following
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lemma characterizes the conditions and time whereby a violation can be detected using

ext.

Lemma 4.3 : Let r:ϕ→ψ be a rule, η an enactment, τ a timestamp, and µ a complete

body assignment for r. Then, µ is a witness of a violation of r in η at τ iff no rows in

extr(η) at τ pairs µ with a complete head assignment or with a deadline for µ greater

than τ .

Proof: Let τ be the largest timestamp in η. At time τ , by the definition of ext,

extr(η) contains all pairs for µ and head assignments from har(η), so if µ is unmatched

in bar(η), there is no assignment with min(β) 6 τ that extends µ and satisfies ψ.

Alternatively, let τ be the largest deadline for µ in extr(η); then, by Lemma 4.1, for all

rows with µ and β in extr(η), for all complete head assignments β′ that extend µ ∪ β,

such that max(β′(U)) > τ , β′(ψ) is inconsistent. Thus, no future (i.e., with a value

greater than τ) complete head assignment can extend µ and satisfy ψ. Then, µ will

never be extended by a complete head assignment that satisfies ψ, so µ is a witness for

a violation for η.

Example 4.4 : In Section 2.3, µ10 satisfies ϕ and must be extended no later than 9. Then,

the deadline for matching the unpaired µ10 in extr(η69) is 9. At time 9, a Payment event

creates β2 (Fig. 4.4), and µ10 and β2 are inserted into extr(η69) with deadline 13 because

β2(w) = 9 and ψ contains v 6 w + 4. Assuming no matching Launch event arrives, µ10

can be reported as a violation at time 13.

We now present the algorithm Detect (Algorithm 4) that detects violations. These

are unmatched body assignments in ext (1) whose largest deadline is less than or equal

to the current time or (2) whose enactments have ended.

Finally, we state that Detect yields all violations of rules at the earliest possible time.

Theorem 4.4 : Let r: ϕ→ψ be a rule, η an enactment, and ∆ a batch. Then, µ is a

witness of a violation in η ∪∆ iff Detect(Delta,extr(η ∪∆)) contains µ.
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Algorithm 4 Detect(∆,extr(η ∪∆))

Input: A batch ∆, the table extr(η ∪∆)
Output: A set of assignments indicating rule violations

1: Violations := {};
2: for each complete body assignment µ in extr(η ∪∆) do
3: if µ is not extended by some complete head assignment then
4: if ∆ contains an END event e with e.id = µ.id then
5: Add µ to Violations ;
6: end if
7: Let τ be the maximum deadline for the rows in extr(η ∪∆) with µ;
8: if ts∆ > τ then
9: Add µ to Violations ;

10: end if
11: end if
12: end for
13: output Violations ;

Proof: We show this by proving both directions of the equivalence. First, assume µ

is a violation in η ∪∆. By definition, for all extensions E of η ∪∆, there is no complete

head assignment β that extends µ such that E satisfies ψ with β. There are two cases

of η ∪∆, depending on whether µ is complete in η ∪∆. η ∪∆ may contain an END

event and will have no later events, in which case, η.END is in ∆. Because µ has no

complete matching head assignment for any extension, it is not extended by a complete

head assignment in extr(η ∪∆). Then, µ will be added to Violations. Otherwise, by

Lemma 4.3, µ is complete and in all rows in extr(η ∪∆), it appears with a deadline of,

at most, ts∆. Then, the condition ts∆ > τ is satisfied, and µ is be added to Violations.

Conversely, assume µ is in Detect(∆,extr(η ∪∆)). Then, µ is added to Violations

somewhere in Detect with inputs ∆ and extr(η ∪∆). Violations is extended only within

the for loop in Detect, which iterates over complete body assignments, so µ is a complete

assignment in extr(η ∪∆). The algorithm also checks whether µ is extended by a com-

plete head assignment, so µ is not extended by any complete head assignment. Then,

there are two cases for µ to be added to Violations: either (1) ∆ contains η.END or (2)

ts∆ is greater than or equal to all deadlines for rows with µ in extr(η ∪∆). If (1) holds,

then µ is a violation because η ∪∆ will have no later events, so no future complete head

assignment will be created for η ∪∆, so no future complete head assignment matching µ

61



Rules with Data Chapter 4

will satisfy ψ. Then, µ is a witness of a violation in η ∪∆. If (2) holds, by Lemma:4.3,

so no future complete head assignment matching µ will satisfy ψ. Then, µ is a witness

of a violation in η ∪∆. In either case, µ is a witness of a violation in η ∪∆.

Theorem 4.4 indicates that our techniques reports violations at the earliest possible

time. This concludes the data structures and algorithms for individual rules.

4.2 Algorithms for an Acyclic Set of Rules

In this section, we present an algorithm to detect violations of a given set of rules. We

first demonstrate how conflicts between rules can lead to violations that the algorithm for

individual rules in the previous section cannot detect early. A key step in the algorithm

here is the “chase” process, which generates expected events to aid reasoning about rule

violations by instantiating head event atoms for unmatched complete body assignments.

The chase process requires augment data structures and extended update algorithms.

An obstacle here is that the chase process may sometimes not terminate. We define a

subclass of “acyclic” sets of rules that guarantees termination of the chase process, and

restrict our results to acyclic sets of rules.

Recall that in the case of multiple rules, the notion of rule violation states that an

enactment η constitutes a violation of a set of rules R if in each (complete) extension of η,

there is a violation for some rule in R. Notably, unlike the single-rule case, the presence

of a violation may not imply that any particular rule is violated or a witness exists, only

that some rule is or will violated in all extensions of the enactment. This demands a

different approach to detecting violations, as we cannot simply apply single-rule violation

detection to each rule separately. The following example illustrates how reasoning about

individual rules may not reveal a violation of a rule set.
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Example 4.5 : Consider the following two rules:

R1 : Request@x→ Schedule@y, x+ 1 6 y 6 x+ 2

R2 : Request@x, Schedule@y, x+ 2 = y → Payment@z, x = z

and the enactment η = {Request@10, Payment@11}. We assume no other events with

timestamps less than 12 will be added to η. Considering R1 alone, the earliest time to

detect a violation of R1 in η is 12 because we have y 6 10 + 2 = 12 in R1 for x 7→ 10.

Considering R2 alone, that there is no violation of R2 because there is no Schedule event

in η. However, to satisfy R1 with the mapping x 7→10, there must be a Schedule event

at time 11 or 12; otherwise, there is a violation of R1 at time 12. Given that η has no

Schedule event at time 11, the Schedule event must be at time 12 to satisfy R1. Then,

to satisfy R2 for the mapping x 7→10, y 7→12, there must be a Payment event at time 10,

which is not in η. Then, all extensions of η violate either R1 or R2, so η violates {R1, R2}

at time 11. This violation is inevitable at time 11, despite the fact that considering R1

and R2 individually deduces a deadline of 12 for a violation.

To detect violations for sets of rules, we observe that the head events required to

avoid violations may satisfy a rule body in the future, which may trigger rules to require

other head events. To formalize this reasoning, we use a technique for reasoning about

constraints on relational databases: a chase [48]. In our setting, the chase generates

“expected” events: events that are expected to occur to avoid violations. This happens

when a rule’s body is satisfied and no corresponding head assignment exists. Then,

the rule is applied by instantiating the head’s existential variables with “marked nulls”,

placeholders for unknown time instants or values, marked to distinguish different values

and time instants. These marked nulls then ground the head event atoms to create

expected events, which are then processed as if they were “real” events in the enactment.

Example 4.6 : Continuing with Example 4.5, we apply a chase process to η and {R1, R2}.
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Applying R1 to Request@10 yields an expected event Schedule@y1 with marked null

y1 and constraints 116 y1 6 12. Assuming y1 = 12 and applying R2 to Schedule@y1

yields an expected event Payment@z1 with marked null z1 and constraint z1 = 10, i.e.,

Payment@10 is expected if y1 = 12. Note that applying R1 generates an expected event,

which is then used to apply R2. Given 116 y1 6 12 and the current time 11 for η, we

conclude y1 = 12 . The necessary Payment event is not in η, so η violates {R1, R2} at

time 11.

We adapt the data structures and algorithms from the previous section to support

the chase. Recall that the algorithms for individual rules used three tables for a rule

r: bar for body assignments, har for head assignments, and extr (extensions) to track

pairings of body and head assignments. For the multi-rule case, these tables are used

with two changes. First, bar is augmented with an additional column named Chased

(using values yes and no). to indicate if an assignment has been chased and thus should

not be chased again. The columns of the har and extr tables are unchanged. Second,

these three tables may have marked nulls to represent unknown time instants or values

generated by the chase. To denote the inputs and outputs of the chase, we define an

assignment database DR(η) that consists of the following tables: for each rule r in R,

bar(η) (with the additional Chased column), har(η), and extr(η).

For an enactment η and a set of rules R, the chase takes as inputs DR(η) and a

batch ∆, and produces as the output the updated assignment database DR(η ∪∆) (if

it terminates). The chase may not terminate, an issue we discuss after presenting the

algorithm.

The chase shown as Algorithm 5. It computes an extended assignment database for

the enactment η ∪∆ and rules R given a batch ∆ of new events for η, rules R, and the

assignment database DR(η). First, the algorithm checks for unmatched complete body

assignments; if not, the algorithm terminates on Line 1 with the assignment database
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Algorithm 5 Chase(∆, DR(η))

Input: A batch ∆ of events for η, rules R,
the assignment database DR(η),

Output: the assignment database DR(η ∪∆)

1: if DR(η) contains no unmatched complete body assignments then
2: return DR(η)
3: end if
4: Let ExpectedEvents := ∆
5: while ExpectedEvents is not empty do
6: Update all bar(η),har(η) tables using Update and ExpectedEvents as the batch
7: Update all extr(η) tables using Update-E and ExpectedEvents as the batch
8: Let ExpectedEvents := ∅
9: for each complete, unchased body assignment µ∈DR(η) do

10: if µ has no ground matching head assignment for a rule r then
11: Let h be a mapping from each existential variable in head(r) to a fresh marked null
12: for each event atom a in head(r) do
13: Let β be the gap atoms in head(r)
14: Add (a, (µ ∪ h)(β)) to ExpectedEvents
15: end for
16: end if
17: Modify the Chased column of µ to yes
18: end for
19: end while
20: return DR(η)

unchanged. The assignment database is updated on Lines 3-4 as in the single-rule case

with the batch ∆. We use the same update algorithms as in the single-rule case, though

Update is modified to account for the Chased column in the body table (initialized to

no for new assignments) and Update-E is modified to treat marked nulls timestamps

as unresolved variables in deadline calculation and to only mark body assignments as

matched with ground head assignments. Then, the algorithm chases the unmatched

complete body assignments on Lines 7-12. Each such assignment µ for a rule r is chased

by creating a mapping h from the existential variables to fresh marked nulls on Line

8. Then, for each event atom α in the head of r, the algorithm creates an expected

event with h applied to α and the gap atoms in the head of r on Lines 9-11. On Line

12, the row for µ in bar(η) is modified to prevent µ from being chased again. Because

expected events may generate more expected events, the while loop is only exited if

no new expected events are created from the last group of unmatched, complete body

assignments.
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There is an issue with the chase’s termination; in general, it may not terminate, as

marked nulls can create more marked nulls, ad infinitum. As a trivial example, consider

the rule R : A@x → A@y, x + 1 = y; the chase will generate an infinite number of

expected events. We enforce chase termination by considering only “acyclic” sets of rules.

Intuitively, acyclicity requires that a marked null cannot create another marked null for

the same attribute in an event schema. We use the following definition of acyclicity,

derived from the weak acyclicity property in [49]that ensures that chase termination.

Definition : Let R be a set of rules, the graph GR = (V,E) is defined as follows.

• V is a set of vertices (P, a) where P is an event name and a is an attribute of P ,

• E is a set of edges For every rule φ(x̄) → ψ(x̄, ȳ) in R, we call each x in x̄ a

propagated variable. For each propagated variable x, for each occurrence of x in

φ(x̄) in position (P, a), do two things:

1. for each occurrence of x in ψ(x̄, ȳ) at position (Q, b), add an edge from (P, a)

to (Q, b) (for some event name Q and attribute b),

2. for each occurrence of an existentially quantified variable y in ψ(x̄, ȳ), for each

occurrence of y in ψ(x̄, ȳ) at position (S, c) (event name S with attribute c),

add a special edge from (P, a) to (S, c)

A set of rules R is acyclic if GR has no cycle containing at least one special edge.

We now discuss a property of Chase and the assignment database it produces. Recall

that the chase generates expected events when it encounters an unmatched, complete

body assignment µ for a rule r. For µ to be satisfied, a ground version of each expected

event must eventually appear; otherwise, r is not satisfied with respect to µ. If r is chased

with µ yielding expected events E, then each grounding of an assignment database DR(η)

with no violations for R has a match for µ; this match indicates there is a grounding for

each expected event in E. We formalize this in the following lemma.
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Lemma 4.5 : Let R be a set of rules, η an enactment, and DR(η) the chased assign-

ment database. Then, there is an assignment h to the marked nulls in DR(η) such that

h(DR(η)) has no violations if and only if there is a set of ground events H such that

η ∪H satisfies R.

Proof: We prove the lemma by showing both directions of the equivalence. First,

assume there is an assignment h to the marked nulls in DR(η) such that h(DR(η)) has

no violations. Let E be the set of expected events created by Chase(DR(η)). Because

all marked nulls in DR(η) are assigned by h, H = h(E) is a set of ground events. Let

µ be a complete body assignment in DR(η) for some rule r. If µ is matched by a head

assignment, it is was not chased. Otherwise, chasing µ created some head assignment β

in DR(η) and some expected events E ′ ⊆ β(head(r)) in E. Because h grounds DR(η),

h grounds β and thus E ′. Then, η ∪ h(E ′) satisfies r with respect to µ with the match

h(β). This holds for all complete body assignments in DR(η), so η ∪ h(E) satisfies R.

Next, assume there is a set of ground events H such that η ∪H satisfies R. Let µ

be a complete body assignment in DR(η) for some rule r. If µ is matched by a head

assignment β in DR(η), it is not a violation. Otherwise, µ is chased to create some head

assignment β in DR(η) with marked nulls. Because η ∪H satisfies R, η ∪H satisfies

r with respect to µ; let γ be the head assignment in η ∪H that matches µ. Then, γ

grounds the marked nulls in β. Thus, γ is a ground head assignment in DR(η) for r and

µ. Let h map each marked null in DR(η) created by chasing some µ to the values in a

head assignment that matches µ in η ∪H. Then h grounds each assignment created by

chasing µ. Then, h(DR(η)) has no violations.

We now discuss the violation detection algorithm for acyclic sets of rules. We define

a new algorithm Detect-Multi Recall that Detect (Algorithm 4) creates a formula ts∆ > τ

with the current time ts∆ and the assignment’s largest deadline τ , then tests this formula’s

satisfiability to determine if the enactment has a violation. Detect-Multi uses a more
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Algorithm 6 Build(DR(η))

Input: An assignment database DR(η), a time instant t
Output: a formula Θ

1: Θ := true
2: for each complete body assignment µ in DR(η) with gaps gµ and rule r do
3: if µ has no complete matching head assignment then
4: Add ¬gµ to Θ
5: end if
6: if µ has complete matching head assignments β1, . . . , βn where (µ, βi, gi, ti) are the rows with µ in extr(η)

then
7: Add gµ → (g1 ∨ · · · ∨ gn) to Θ
8: end if
9: end for

10: for each marked null timestamp x do
11: Add x > t to Θ
12: end for
13: return Θ

complex formula than Detect; it uses the Build algorithm (Algorithm 6) to produce a

formula Θ from the assignment database for the current enactment η and R such that

Θ is unsatisfiable if and only if η violates R. Then, we apply satisfiability testing to Θ;

in practice, this is done by calling a SAT solver. In the multi-rule case, there may not

be a witness for the violation, as would be reported in Detect. Instead, if the formula is

unsatisfiable, Detect-Multi simply reports η as violating R, otherwise, not violating.

Build (Algorithm 6) starts with the assignment database DR(η) and a time instant

t, meant to be the current time. A formula Θ is initialized as true on Line 1, as no

indication of violations has been found yet. The for loop on Line 2 iterates over the

complete body assignments µ in DR(η) with (unresolved) gaps gµ. There are two cases

of the extension table for µ. In the first case, covered by Line 3, µ has no complete

matching head assignments. Recall that gµ contains the assumptions made about µ’s

variables required for µ to satisfy the rule body. Accordingly, if these assumptions are

not true, µ does not represent a valid assignment in η; we check if these assumptions can

be avoided by adding ¬gµ to Θ in Line 4, thus testing if their negation is satisfiable. In the

second case, covered by Line 5, µ has one or more complete matching head assignments

in its extension table. Let (µ, β1, g1, t1), . . . , (µ, βn, gn, tn) be the rows matching µ in its

extension table, where βi is a matching head assignment, gi is the set of gaps for βi, and
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ti the deadline for extending βi. Note that µ is a witness for a violation if every gi is

unsatisfiable and each deadline ti is less than or equal to the current time t. For the same

reasoning as the first case, matching µ is necessary only when gµ is true. Additionally,

only one matching βi is needed, so only one corresponding sets of gaps gi is needed when

gµ is satisfied. Thus, gµ → (g1 ∨ · · · ∨ gn) is added to Θ in Line 6. Finally, the algorithm

adds the requirement that each marked null timestamp x is greater than t, the current

time, to Θ in Lines 7-8, as marked nulls represent unknown time instants, thus they must

be in the future.

Example 4.7 : Consider again the rules from Example 4.5:

R1 : Request@x→ Schedule@y, x+ 1 6 y 6 x+ 2

R2 : Request@x, Schedule@y, x+ 2 = y → Payment@z, x = z

and the enactment η = {Request@10, Payment@11} with current time 11. We build Θ

for the corresponding assignment table D{R1,R2}(η). The R1 body assignment x 7→ 10

with no gaps has a matching head assignment y 7→ y1 with gaps y1 = 11∨ y1 = 12, so we

add True→ (y1=11 ∨ y1=12) to Θ. The R2 body assignment x 7→ 10, y 7→ y1 with gaps

12 = y1 has a matching head assignment z1 7→ 10 with gap z1 = 10. Accordingly, we

enforce z1 = 10 only if y1 = 12, so we add (y1 = 12)→ (z1 = 10) to Θ. Finally, the current

time is time instant 11 and the assignments have marked nulls y1 and z1, so we add y1 > 11

and z1 > 11 to Θ. In summary, Build produces (True → (y1=11 ∨ y1=12)) ∧ (y1=12 →

z1=10)∧ (y1>11)∧ (z1>11). Note that this formula is unsatisfiable because z1 = 10 and

z1 > 11 are contradictory.

Now we can describe an algorithm Detect-Multi to detect violations of acyclic sets

of rules. Specifically, Detect-Multi takes as input the assignment database DR(η) for an

acyclic set of rules R and an enactment η, as well as a batch ∆ of events for η. Detect-Multi

computes the updated assignment tableDR(η ∪∆) with Update and Update-E to integrate
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the batch ∆ into DR(η). Then, Detect-Multi applies the Chase to compute the expected

events and Update and Update-E to extract the corresponding assignments, integrating

them into DR(η). Once the assignment table DR(η) is updated, Build compute a formula

Θ from DR(η) and checks its satisfiability. If Θ is unsatisfiable, then Detect-Multi reports

a violation.

It is desirable to establish that this method of detecting violations is sound and

complete; we do so in Theorem 4.6. The crux of the theorem comes from showing that

Build’s formula Θ mirrors the conditions for a violation. Build gathers these conditions

using complete body assignments and matching head assignments, which have marked

nulls for unresolved variables. Accordingly, there is a viable choice of timestamps and

values for the marked nulls and unresolved variables in Θ if and only if there is some

extension of the current enactment with no violations. We establish Theorem 4.6 by

showing that Θ is unsatisfiable if and only if η violate R.

Theorem 4.6 : Let R be an acyclic set of rules and η an enactment. Then, Build(DR(η))

is unsatisfiable iff η violates R.

Proof: First, we show that if Build(DR(η)) is satisfiable, then η doesn’t violate

R, i.e., there is an extension of η that satisfies R. Let Θ be the formula returned by

Build(DR(η)). We assume Θ is satisfiable; let h be a satisfying assignment for Θ. Note

that the variables in Θ are the marked nulls in DR(η); we use this satisfying assignment

to show h(DR(η)) is a ground assignment database with no violations of R. Let µ be an

arbitrary, complete body assignment in DR(η) for some rule r ∈ R. We show that h(µ)

does not witness a violation of r in h(DR(η)). Let gµ be the gap for µ’s body and g1, . . . , gn

the gaps in head assignments β1, . . . , βn extending µ in extr(η). Then, gµ → (g1∨· · ·∨gn)

is a clause in Θ, Because h satisfies Θ, some gi is consistent with h; then, the head

assignment βi can be extended with h to a complete head assignment matching µ in

h(DR(η)). Alternatively, it may be that µ has no matching head assignment in extr(η);
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then, ¬gµ is a clause in Θ. Because h satisfies Θ, h satisfies ¬gµ, so the conditions that

ground µ are not satisfied in h(DR(η)). Then, µ is not a witness of r in h(DR(η)). We

have shown an arbitrary complete body assignment in h(DR(η)) is not a witness; then,

DR(η) is an assignment database with no violations of R. Applying Lemma 4.5, there is

a set of events H derived from h such that η∪H that satisfies R. By the construction of

Θ, h maps each marked null timestamp to a timestamp greater than the current time, so

each event in H is in the future of the current time, making H a batch of future events

for η. Then, η ∪H is an extension of η that satisfies R, so η doesn’t violate R.

Alternatively, assume that Θ is unsatisfiable. Then, there is no satisfying assignment

that satisfies Θ. Equivalently, for each assignment h for Θ, h does not satisfy Θ. Let h be

an arbitrary assignment for Θ. Because h does not satisfy Θ, one of the following holds:

(1) h assigns some marked null timestamp a value less than the current time, (2) h does

not satisfy some clause ¬gµ → in Θ for some complete body assignment µ of some r ∈ R

in η, or (3) h does not satisfy some clause gµ → (g1 ∨ · · · ∨ gn) in Θ for some complete

body assignment µ of some r ∈ R in η. In the first case, some timestamp in h is in the

past of the current time, so h cannot lead to an extension of η. Alternatively, we show

that if (2) or (3) holds, h(DR(η)) does not satisfy R. If (2) holds, for some complete

body assignment µ in h(DR(η)), ¬gµ is not satisfied; then, µ is a ground complete body

assignment with no head assignment matching µ. Because DR(η) has been chased, µ

having no matching head assignment indicates µ(head(r)) is inconsistent. Then, µ is a

witness of a violation in h(DR(η)), If (3) holds, for some complete body assignment µ

in η, h(gµ) is true and h(g1 ∨ · · · ∨ gn) is false. Then, no head assignment matching µ

in η can be extended to a complete head assignment in h(DR(η)), so µ is a witness of a

violation. In both cases, h(DR(η)) has a violation. Then, for all assignments h to the

marked nulls in DR(η), h(DR(η)) has a violation. By Lemma 4.5, there is no set of events

H derived from h such that η ∪H that satisfies R. Then, there is no extension of η that

satisfies R. Then, η violates R.
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From Theorem 4.6, we see that our techniques reports violations at the earliest pos-

sible time. This concludes the data structures and algorithms for sets of rules.

4.3 Optimizations

While the algorithms presented in Section 4.1 report violations correctly, their time

and space complexities can be improved. We present two optimizations: one to remove

useless assignments using a similar reasoning to deadline calculation and one to avoid

repeated computation by tracking which data is new. We report their improvement of

relevant algorithms as a factor of the log size |L|, the batch size |∆|, the number of active

enactments as approximated by |∆|, and the number of event atoms in the rule body or

head e.

Expiring partial assignments: Early violation detection motivates a similar tech-

nique for discarding useless assignments. Assignments in ba and ha are expired (i.e.,

useless) if (1) they can no longer be extended because their timestamps and unresolved

gap atoms are inconsistent with all possible future assignments, or (2) they are derived

from an enactment that has ended. It is much desired to remove expired assignments,

and thus reduce the sizes of ba and ha. Calculating expiration times resembles deadline

calculation; in fact, the Deadline function is reused. To incorporate expiration time, we

augment ba and ha (resp.) with an expiration column as new tables bae and hae,

requiring that incomplete assignments in bae and hae be extendable by future events

to complete assignments. To maintain this property, Deadline calculates its expiration

time for each incomplete assignment with respect to its unresolved gap atoms. Removing

expired assignments reduces the size of the bae and hae tables from O(|L|e) to O(|∆|e),

which benefits the algorithms in Section 4.1 by reducing the number of computations in

Update from O(|L|2e) to O(|∆|2e), and that in Update-E from O(|L|e) to O(|∆|e). It also

improves Update-E by decreasing the number of assignments checked for insertion into
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ext (Lines 2 and 4), from O(|L|e) to O(|∆|e).

Semi-naive merge of assignments: We can also decrease the number of compu-

tations in the Update algorithm by tracking which data generated by the most recent

batch. The while loop (Lines 7-10) in Update tests pairs of assignments to merge. For

each batch ∆, we only need to try pairs that have at least one assignment added from

events in ∆, because all other pairs of assignments were considered before ∆ arrived. To

make Update to reflect this, we use a queue Γnew to hold new assignments generated at

Line 6. We exchange the for loop in Update (Lines 8-10) to a doubly nested for loop that

iterates through each assignment µn in Γnew (outer loop) and each row µo in Γ (inner

loop), adding the new assignment to the queue Γnew, moving µn from Γnew to Γ after

processing µn. This resembles “semi-naive” evaluation of Datalog programs [48] and re-

duces the search for matching assignments from considering O(|L|2e|) pairs to only pairs

involving some new data: O(|L|e|∆|e) pairs.

4.4 Evaluation

To assess the advantages and performance of our approach, we conducted evaluations

on two types of monitors: a single-rule monitor and a multi-rule monitor. These monitors

were constructed using the algorithms outlined in Sections 4.1 and 4.2, respectively,

along with optimizations described in Section 4.3. This section focuses on addressing

the following key questions: (1) How early can violations be detected, and (2) What

are the feasible dimensions of logs and rules for monitoring? We find that single and

multi-rule monitoring is effective for logs from medium-sized applications, that is, those

with thousands of events per second and hundreds of concurrent users or processes. We

also report multi-rule monitoring remains feasible for complex rules, as a function of the

number and size of rules, as long as degree of overlap between rules is not too high.

How early violations are detected is crucial as it indicates the percentage of events
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observed between the first violation and the end of the enactment. Knowing this helps in

understanding how much of the enactment’s execution occurs while it is still in violation

which is particularly important for applications that can halt or mitigate violating enact-

ments. In Section 4.4.2, we study the earliness of violation detection for the single-rule

monitor, reporting the average percentage of events observed in violating enactments

before and after their first reported violation, for both normal-length enactments (≈10

events per enactment) and large enactments (≈100 events per enactment).

Another critical aspect of evaluation is the feasibility of monitoring with respect

to the log and rule properties. Software monitors need time to process each batch of

events. When the average batch processing time surpasses the batch arrival rate, the

monitor accumulates a backlog of events and does not report violations in real-time. In

Section 4.4.3, we evaluate the effect of the batch size and enactment concurrency which

approximate the scale and complexity of source systems. The batch size represents the

rate of event generation and concurrency is the average number of active enactments

over all timestamps. Additionally, different applications may apply different sets of rules.

The multi-rule algorithm becomes crucial when rules interact with each other. Hence, we

investigate the effects of varying the “overlap” within sets of rules. In Section 4.4.4, we

report that multi-rule monitoring is feasible for sets of rules with up to four medium-sized

rules and an average overlap per rule pair of up to one event atom.

4.4.1 Generating Logs, Rules, and Experimental Setup

Violation detection may be applied to a service system to monitor multiple enactments

simultaneously. A log is a sequence of events from multiple enactments, ordered by their

timestamps and distinguished by their enactment ids. Because we define rule violation

as occurring within individual enactments and events from different enactments can be

distinguished by their ids, the algorithm development in Sections 4.1 through 4.3 focuses

on when to detect violations, rather than filtering events by enactment and applying
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separate monitors to each enactment. There are approaches for separating events from

different enactments in a log algorithmically, e.g., trace slicing [50], which filters event

data into different monitors based on the enactment data and the rule being applied.

Such techniques are orthogonal to our work, and could be used in conjunction with our

algorithms to improve performance. We do, however, use logs in the empirical evaluation

(Section 4.4), as workflow enactments are often available in an application setting in the

form of logs.

To conduct the evaluations, we generated logs of events by simulating customer sup-

port workflow models with a workflow simulator [51]. The simulator instantiates the

enactment of a workflow with a Start event, then advances the enactment based on

a probability distribution of activity durations and a simulated resource availability.

When an activity is completed, an event with the workflow’s id, the activity’s name,

relevant data attributes, and a timestamp is created. The three workflow models used

by the simulator are Ticket Triage, Support Case Processing, and Trust Case

Processing, shown in Figure 4.6. Each enactment has five activities and gates that

determine the next activity based on some data attribute (e.g., the support level of a

customer). Additionally, each enactment begins with a Start event and ends with an

End event.

Logs are created by interleaving events from multiple enactments. We created nine

logs with 2,000 enactments and 10,000 events each, achieving different batch sizes and

concurrency by changing simulation parameters and post-processing. A portion of one log

with a batch size of ten and four concurrent enactments is shown in Figure 4.7. Sample

logs are available on Github [52].

We generated rules using the workflows’ activities, e.g., ReadCase, SendResponse,

etc., and gap atoms with one- to ten-second gaps, reflecting the typical gaps between

events in enactments. We respect the workflow model’s activity ordering to ensure gap

atoms are satisfiable by some enactments. We use two classes of rules: “small” and

75



Rules with Data Chapter 4

Figure 4.6: Customer support workflows, enacted to generate logs

batch timestamp enactment id event type event data

42

42 µ1 ReadCase { name=Alice, support=1 }
42 µ1 SendResponse { name=Alice }
42 µ2 ReadCase { name=Bob, support=2 }
42 µ1 SendResponse { name=Alice }
42 µ2 SendResponse { name=Bob }
42 µ2 CloseCase { name=Bob, support=2 }
42 µ1 CloseCase { name=Alice, support=1 }
42 µ3 ReadCase { name=David, support=2}
42 µ4 ReadCase { name=Charlie, support=1 }
42 µ4 OrderPayment { name=Charlie }

43

43 µ3 SendResponse { name=David }
43 µ4 SendResponse { name=Charlie }
. . . . . . . . . . . .

Figure 4.7: Portion of a log with support case enactments with ten events per batch

76



Rules with Data Chapter 4

“medium” rules, as shown in Figure 4.8. For small rules, each rule body has one or two

event atoms and no more than one gap, and each rule head has one event and no more

than one gap. For medium rules, each rule body has up to two event atoms and no

more than two gaps and each rule head has up to two event atoms and no more than

two gaps. We also categorize sets of rules by their “overlap”, defined in Section 4.4.4 to

approximate the potential for rule interaction.

Small rules (2 to 4 atoms), overlap of 0.33

r1 : ReadCase(u, i)@x → SendResponse(u)@y, y6x+ 5

r2 : ReadCase(u, i)@x, SendResponse(u)@y, → x+ 106y

r3 : ReadCase(u, i)@x, OrderPayment(u)@y, → y6x+ 3, CloseCase(u, i)@z

Medium rules (5 to 7 atoms), overlap of 0.66

r4 : ReadCase(u, i)@x → SendResponse(u)@y, x+ 3 6 y

CloseCase(u, i)@z, z6x+ 5, z6y + 1

r5 : ReadCase(u, i)@x, SendResponse(u)@y, → CloseCase(u, i)@z, z6x+ 5, z6y + 1

x+ 46y

r6 : ReadCase(u, i)@x, OrderPayment(u)@y, → HostResolution(u)@w, x+ 106w

x+ 10 6 y y6w + 10

Figure 4.8: Sample small and medium-sized rules

Experiments were run on a single machine: a desktop Fedora 20 (Linux) machine with

a 2K MHz, 8-core AMD EPYC 7702 processor with 8GB memory. The implementation

was written in Python 3.9.6. We used the Z3 SMT solver [53] for satisfiability checking

and the Python bindings for Z3 [54]. Notably, in early implementations of the monitor,
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we invoked the Z3 library many times to instantiate each subformula, then combined

these subformula for the satisfiability test with z3.Solver.check. The multiple library

calls resulted in much slower processing, up to 100 times as long as our reported results;

a frugal use of the solver is critical to achieve reasonable performance. The source code

of the monitor and experimental framework is available on Github [52].

4.4.2 Detection Often Occurs Far Before Enactments End

First, we examine how early violations are detected with respect to enactments’

events. The quantification of earliness indicates potential benefits where the earliness

affects the system’s response. For example, the system may choose to halt an enactment

when a violation is detected, allowing the system to reclaim resources or to prevent further

policy violations. We report the average earliness of violation detection for the single-rule

monitor with respect to the enactment’s length. Because the multi-rule monitoring algo-

rithm is an extension of the single-rule algorithm and can detect some violations earlier,

the earliness afforded by multi-rule monitoring is at least as good as that of single-rule

monitoring and may be better in some cases.

We apply the single-rule monitor to logs with normal-length (≈10 events) and large

enactments (≈100 events). For each enactment, we count the observed events after the

first detected violation. Fig. 4.9 shows that, on average, violations are detected at 75% of

event arrival for normal-length enactments and 34% for large ones. As detailed in Section

2.3, this happens when expected head event atoms are pending, but their timestamps are

bounded by body event atoms and some gap atoms. Often, the upper bound timestamp

of a head event atom falls within the enactment’s duration, leading Detect to recognize

its occurrence in real-time. We focus on average earliness for single-rule monitoring, but

the multi-rule approach often detects even earlier, as shown in Section 4.2. Finally, we

note that the average earliness is affected by the gaps in gap atoms; more study is needed

to understand the relationship between gap size and average earliness.
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Normal-length enactments Large enactments

Rule Size % events before first violation % after % events before first violation % after

Small 74.9 25.1 33.5 66.5

Medium 83.7 16.3 69.4 30.6

Figure 4.9: Percentages of events observed before and after the first detected violation
4.4.3 Detection is Feasible for Medium-scale Applications

Next, we study the feasibility of monitoring. We evaluate when the monitor processes

batches in an average of less than one second, the batch arrival rate. The batch size and

the enactment concurrency determine the number of assignments that must be joined

and matched in the Update and Update-E algorithms, the number of expected events

generated by the Chase algorithm, and the number of matches that contribute to the

formula produced by Build, so we expect that increasing these parameters raises the

processing time.

First, we report the average processing time for the single-rule monitor (Section 4.1)

in Figure 4.10. The average processing time is far less than one second for all batch sizes

and enactment lengths, shorter than 0.07 seconds for all small rules and shorter than

0.2 seconds for all medium rules, indicating that the single-rule monitor is feasible for

logs with those properties. These times increase linearly with the batch size, which is

expected for small rules, as the number of possible assignments does not yet suffer the

combinatorial explosion. For medium rules, however, the average processing time also

increases linearly with the batch size; this is unexpected because to make the number of

assignments is exponential in the batch size. This may be due to the increasing number

of gap atoms, as more gap atoms decrease the number of assignments in the body or

head table. This phenomenon requires a more thorough investigation of the effects of

gap atoms on the assignment database.

We also evaluated the feasibility of the multiple-rule monitor. We monitored logs with

normal-length enactments and rule sets with three medium rules with an average overlap

of one event atom. The results in Table 4.1 show the batch processing time increases with
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Enactment Length

Normal Large Normal Large

Batch Size Small Rules Medium Rules

100 4.55×10−4 6.19×10−4 7.74×10−4 1.363×10−3

1,000 4.330×10−3 6.177×10−3 7.534×10−3 1.3509×10−2

10,000 4.2414×10−2 6.0769×10−2 7.4925×10−2 1.35218×10−1

Figure 4.10: Batch Processing Times (seconds) by Batch Size, Rule Size, and Enactment
Length

the batch size and concurrency as expected. Second, the average processing time is 61

second for batches of 100 events and an average enactment concurrency of 100. Beyond

these values, the average processing time exceeds >1 second, shown by parentheses in

the table, but is still 610 seconds.

We note here that our experiments were conducted on a single commodity machine

rather than enterprise-grade hardware; our results suggest that multi-rule monitoring

would be feasible for a wider range of applications, i.e., larger batches and more concur-

rent enactments, if the monitoring is performed with more powerful hardware resources.

Batch Size Conc=10 Conc=50 Conc=100 Conc=500 Conc=1,000

10 0.061 0.046 0.294 (1.253) (3.031)

50 0.195 0.169 0.403 (2.506) (3.269)

100 0.374 0.328 0.553 (2.807) (3.483)

500 (1.256) (1.851) (1.326) (3.347) (5.279)

Table 4.1: Average Batch Processing Time (seconds) by Batch Size and Concurrency

4.4.4 Detection Remains Feasible for Complex Sets of Rules

Another factor affecting the feasibility of monitoring is the size and “overlap” the

sets of rules. The overlap for a set of rules is the number of pairs of event atoms that

share the same name such that one appears in the head of one rule and the other appears

in the body of another rule, divided by the total number of rule pairs. More overlap

between rules increases the number of assignments generated by expected events from

the Chase algorithm, thus increasing the number of assignments to process into the as-

80



Rules with Data Chapter 4

signment database by Update and Update-E. Furthermore, expected events can create

more expected events in the subsequent executions of the Chase algorithm’s while loop,

but this feedback is ultimately limited by the acyclicity of the rule set. Finally, expected

events carry marked nulls, which are added to the formula produced by Build, so more

overlap grows the subformula in the formula that share variables; this may increase the

time to check its satisfiability.

We used logs with batches of one hundred events and an average of one hundred

concurrent enactments, as these values were found to be within the feasible range for

the multi-rule monitor in Section 4.4.3. We generated thirty sets with two to four small

rules, calculating the overlap by summing the overlap for each pair of rules, then dividing

by the number of rule pairs. We place each rule in one of five categories: 0.33, 0.66, 1,

1.33, and 1.66 event atoms, whichever is closest to its average overlap. In Table 4.2, we

report the average batch processing time with any time above the batch arrival rate of

one second shown in parentheses to indicate infeasibility. the overlap grows exponential

as the overlap increases linearly. Furthermore, we see when the average overlap exceeds

1 event atom per rule pair, the processing time exceeds one second, the threshold for

feasibility.

Overlap≈0.33 Overlap≈0.66 Overlap≈1 Overlap≈1.33 Overlap≈1.66

0.048 0.169 0.356 (1.22) (3.17)

Table 4.2: Average Batch Processing Time (seconds) by Average Overlap

We also evaluated the effect of varying the number of rules while keeping a constant

overlap. More rules grows the number of tables and entries in the assignment databases,

as well as the number of expected events generated by the Chase, as each rule’s body

assignment generates expected events. The average overlap for the sets of rules was 0.54,

so we used five rule sets of two, three, four, and five small rules with an overlap of 0.54±
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0.2. We report the average batch processing times in Table 4.3. The batch processing

time increases exponentially with the number of rules; this suggests the number of rules

is similarly critical to the feasibility of monitoring as the overlap, where rule sets with

relatively low overlap can become infeasible when the number of rules exceeds four.

2 rules 3 rules 4 rules 5 rules

0.014 0.099 0.395 (1.582)

Table 4.3: Average Batch Processing Time (seconds) for Overlap≈0.54 by Number of
Rules

In summary, our evaluation quantifies the benefits of early violation detection and

the feasibility of monitoring with respect to the size and complexity of logs and rules.

We identify the algorithms and subroutines that are most affected by these dimensions

and provide explanations for the observed trends. We also identify dimensions of logs

and rules that deserve further investigation, such as the effects of gap size on earliness

and the effects of gap size and number of gaps on processing time. Finally, we note that

these findings are limited to applications with similar characteristics as the sample logs

and rules we used in our evaluation, and thus may not generalize to arbitrary event-based

systems. More work is needed to extend these findings to a wider range of applications,

particularly by testing real-world logs and rules.

4.5 Related Work

We first discuss related work that reasons algorithmically about when a violation is

inevitable. Then, we compare our work with other approaches that monitor constraints

with data values.

A key technique in this work is to detect violations at the earliest possible time. Ref-

erences [55–57] studies violations of constraints in declare language, using an encoding
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of violations’ temporary or permanent status in states of automata. Quantitative time

constraints, such as “for every request followed within five days by a response, a payment

is made within three days of the response and three days of the request”, are important for

applications of runtime monitoring [18], but difficult to encode in automata, as evidenced

by the previous chapter. We identify violations as inevitable or not by partially instan-

tiating constraints with observed timestamps and data values and checking satisfiability

of the resulting constraints. References [58] and [59] also partially initialize constraints

to detect violations, but do not consider interactions between sets of constraints, which

may produce earlier violations as illustrated above.

Another functionality of runtime constraints considered by this chapter is the com-

parison of data values, such as matching the user who makes a request to the user who

receives a response. References [16, 60] monitor constraints in first-order LTL with au-

tomata whose states have relational data stores, though they assume a fixed, finite domain

of data values, which is impractical for large applications. Quantified event automata,

finite-state automata with transitions labeled by quantified first-order formulas, can also

monitor data-dependent constraints [61]. Their approach creates and manages bindings

to variables, but is limited by the same drawbacks as automata-based approaches de-

scribed above. Other work on first-order LTL uses exclusively relational data structures

as auxillary storage for violation detection [36,62–64], though they do not calculate dead-

lines explicitly because they do not use quantitative time constraints. Also relevant is

the technique of trace slicing [50], filtering an enactment into disjoint enactments with

related data, allowing multiple monitors to run in parallel. Our work does not use trace

slicing, but it seems promising for optimization as a pre-processing step to parallelize our

approach.

Other relevant data-centric approaches are those for relational databases and Datalog

rules. Incremental view maintenance for Datalog provides incremental algorithms for

updating the results of views or queries when the underlying database changes; [65]
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maintains Datalog and SQL views without gap constraints nor existential variables and

multiple atoms in the rule head. A key technique in this work comes from the observation

that because we use Datalog-like rules, the possibility of rules triggering other rules can

be simulated by the chase [48], which we adapt for our setting in Section 4.2. Other work

on the chase for Datalog with arithmetic constraints targets problems that don’t apply

to our setting of monitoring an enactment at runtime, including computing certain query

answers [66,67].

4.6 Chapter Summary

This chapter presents techniques for detecting violations of individual rules and sets

of rules with data, extending the class of rules that can be monitored. We showed that

detecting violations at the earliest possible time. can be accomplished by reasoning about

timestamps, simulating rule interaction, and applying satisfiability testing to potential

violations. We also conducted an empirical evaluation of our techniques to show that

they are effective and efficient for small- and medium-sized batches and rules, though

more study is needed to determine their effectiveness and efficiency with enterprise-scale

computing resources. In the next chapter, we explore the use of aggregation functions

over time windows in rules.
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Chapter 5

Rules with Aggregation

This chapter studies for rules with aggregation functions. The high volume of data and

relatedness of events in enactments encourages specification that aggregate properties

of groups of data. For example, a banking application may report an account is sus-

picious for money laundering if the sum of the account’s payments in a 24-hour period

exceeds $50,000, even if no individual transaction exceeds that amount. Such rules call

for monitoring techniques that use aggregation functions. These functions introduces

new challenges of reasoning about functions on multiple events, as well as numeric data.

In this chapter, we develop a syntax and semantics for extending our rules with aggrega-

tion functions. Then, we provide two ways of addressing the challenges of early violation

detection. The first is to rewrite aggregation with DatalogZ programs, which allows us

to use the results of the previous chapter with minimal changes. The second is to adapt

the chase process to reason with aggregation functions.

This chapter is organized as follows: in Section 5.1, we add time windows and ag-

gregation functions over these windows to rule syntax and semantics. In Section 5.2, we

provide DatalogZ programs that generate events with the results of aggregation without

calling the underlying aggregation functions directly. In Section 5.3, we combine the al-

gorithms from the previous chapter to perform early violation detection, by adapting the
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chase process and rewriting aggregation functions in Presburger arithmetic (PA). Finally,

in Sections 5.4 and 5.5 discuss related work and conclude the chapter.

5.1 Time Windows for Aggregation Functions

Now, we present the syntax for rules with aggregation, which uses different types

of windows to collect events and five aggregation functions to aggregate the values of

events in a window. Then, we describe the semantics of rules with aggregation, which

do not just constrain event, but also generate events that hold the results of applying

aggregation functions. Finally, we describe an assumption about target enactments we

make to simplify the problem and a preprocessing step that enables this assumption.

The results in the remainder of this chapter assume that the workflow assumption holds.

Example 5.1 : We illustrate the aggregation model with a banking application where

users deposit money into their accounts. Enactments for this application include events

for users’ deposits and bankers’ approval of users’ activity, with two event types: Deposit,

with user and amount attributes, and Approve, with the user attribute. The user values

come from the data domain D and amount values are positive integers in N.

Consider if the bank requires that over every three-day period: (1) the sum of deposits

must be at most $20 and (2) some deposit is more than $10. These requirements are

specified by the rules r1 and r2, respectively, in Figure 5.1. Rule r1 computes the sum

of all deposits for a user over each three-day window in a new “aggregation event” type

SumDep(sum, start). This event type has two attributes: sum is the sum of the deposits

in the window and start is the first timestamp of the window. The gap atom a′ 6

20 in the rule head requires that the sum a′ is at least $20. Rule r2 aggregates the

maximum deposit for a user over each three-batch window in a new aggregation event

type MaxDep(max, start), where max is the maximum of the deposits in the window and

start is the first timestamp of the window. The gap atom b′ > 10 in the rule head enforces
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the requirement that the maximum b′ is at least $10.

r1 : SumDep(u, a′ = sum(a), s)@(s+ 3), a′ 6 20 ← tumbling(s, s+ 3)

from Deposit(u, a)@z

r2 : MaxDep(u, b′ = max(b), s)@(s+ 3), b′ > 10 ← tumbling(s,s+3)

from Deposit(u, b)@z

Figure 5.1: Two rules r1 and r2 with aggregation functions over two types of sliding
windows

The rule heads contain atoms that name events that hold the results of aggregation

functions and additionally may gap atoms on those events. We allow the aggregation

functions sum (sum), maximum (max), minimum (min), count (count), and count-

unique (countu). The values −∞ and ∞ are the default values for max and min,

respectively; we assume these values not present in the enactment and are used when the

window contains no events. The value 0 ∈ N is the default value for sum, count, and

countu.

The window expression, e.g., tumbling(s, s + 3) in r1, indicates which events are

collected in windows for r1. We use two classes of windows, either moving or triggered,

which are defined by the window expression. Moving windows are either sliding and

tumbling windows; they have a constant length and are evaluated at every timestamp or

at every timestamp that is a multiple of the window length, respectively, regardless of

the enactment’s events. The sliding window is parametrized by its window length L for

some L > 1; it generates a window for the interval of timestamps [1, L], and then, for

each integer i, the interval i through i + L, assuming the enactment extends to i + L.

The tumbling window is defined by a window length L, and includes the window [1, L],
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then the window [kL + 1, kL + L] for every integer k > 1. Fig. 5.2 shows an example

of moving windows. On the top of the figure, Deposit source events appear at each

timestamp. Sliding and tumbling windows are shown as boxes of length 3, with the

window’s aggregation event inside the box.

D(40)@1 D(10)@2 D(10)@3 D(0)@4 D(0)@5 D(15)@6 D(20)@7 D(5)@8 D(0)@9

TumblingSum(60, 1)@3 TumblingSum(15, 3)@5 TumblingSum(25, 5)@7

SlidingSum(60, 1)@3

SlidingSum(20, 2)@4

SlidingSum(10, 3)@5

SlidingSum(15, 4)@6

Figure 5.2: An enacment with Deposit (D) events, tumbling and sliding windows for
window length 3, and aggregation events TumblingSum and SlidingSum

The second class of windows are those with event triggers. For a start-triggered

window of length L, a window [s, s+L] is generated whenever a specified event occurs at

time s. Similarly, for an end-triggered window, a window [e−L, e] is generated whenever a

specified event occurs at time e. Finally, a start-end-triggered window indicates a window

between every pair of start and end events. Consider the enactment and corresponding

windows in Figure 5.3. The start trigger B and the end trigger C events are shown above

the Deposit source events. Windows are shown as boxes, with vertical, dashed Lines

matching each window to its start and end events.

The rule semantics for aggregation expressions are different from the semantics for

non-aggregation expressions: rules with aggregation generate “aggregation events”. To

define these semantics, we refine the event model to distinguish between external or

internal events. External events are generated by an outside source; this is the event

model in the previous chapters. Internal events are generated by the monitoring system,

here for each window of an aggregation rule. For an enactment η and an aggregation
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D(5)@1 D(5)@2 D(1)@3 D(0)@4 D(0)@5 D(5)@6 D(2)@7 D(5)@8

B@1 B@2 C@5 B@6 C@8

BStart-Sum(11,1)@3

BStart-Sum(6,2)@4

BStart-Sum(12,6)@8

CEnd-Sum(1,3)@5 CEnd-Sum(12,6)@8

BStart-CEnd-Sum(11,1)@5

BStart-CEnd-Sum(6,2)@5

BStart-CEnd-Sum(24,1)@8

BStart-CEnd-Sum(12,2)@8

BStart-CEnd-Sum(12,6)@8

Figure 5.3: Triggered windows, triggered by start event B and end event C

rule r, for each window W defined by the window expression in body(r), an internal

aggregation event is generated with the timestamp of the last event in W and the value

of the aggregation function in head(r) applied to data values for the attribute and source

events in W designated by the rule body.

This new presence of aggreagtion functions require reasoning about collections of

events, including overlapping windows. Furthermore, the results of aggregation func-

tions are numeric values; previously we only needed to reason about data values in D

and timestamps. This motivates the development of extension of the chase process and

satisfiability checking to rules with aggregation functions. Thus, the technical problem

addressed by this chapter is: given a set of rules with aggregation functions, report an

enactment’s violations at the earliest possible time.

As a simplifying assumption, we assume that for each event type that acts as a source

for an aggregation rule, there is exactly one event of that type per timestamp. We call

this the workflow assumption, also referred to as the declare assumption in [68] and

the simplicity assumption in [69]. This assumption limits the types of enactments to

which our results apply, but it is needed for the correctness of the DatalogZ programs

89



Rules with Aggregation Chapter 5

in the algorithms in the following section. Additionally, we use a preprocessing step

that modifies an input enactment with at most one event per type per timestamp to

produce an enactment where each event type has exactly one event per timestamp. This

preprocessing step adds an attribute real to each event type. If an event of that type at

a timestamp is present in the input enactment, real is set to 1. Otherwise, a placeholder

event is added with the value 0 for real and 0 for all other attributes. We give an example

of this preprocessing in Fig. 5.4. Our results in the remainder of this chapter assume that

the workflow assumption holds.

timestamp Source events Preprocessed events

1 Deposit(10)@1 Deposit(10, 1)@1

2 Deposit(40)@2 Deposit(40, 1)@2

3 Deposit(0, 0)@3

4 Deposit(10)@4 Deposit(10, 1)@4

5 Deposit(0, 0)@5

Figure 5.4: Preprocessing by adding an attribute real to each event type.

5.2 DatalogZ Generation of Aggregation Events

In this section, we present DatalogZ programs [70] to generate aggregation events.

This variant of Datalog allows integer constants and arithmetic expressions in the head

and body of rules. For consistency with our language, we use the same “@” syntax for the

event’s timestamps. We provide programs for max for sliding, tumbling, start-triggered,

and end-triggered windows; count for sliding windows, and sum for sliding windows.

The other functions and window types are handled with similar programs. This provides a

means of early violation detection for rules with aggregation functions, by rewriting rules
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with aggregation as DatalogZ programs and using these programs to generate aggregation

events, then applying the algorithms in the previous chapter without modification.

The structure of the DatalogZ program is consistent across the different types of

windows: some event incX with an “accumulator” attribute stores the partial result

of the aggregation function over the partial window, up to the current timestamp. To

compute incX, some rules initialize incX with the first source event’s value, then other

rules propagate incX with incX from the previous timestamp and the current source

event’s value. Finally, a rule reports resultX when the window is complete. In these

programs, we simplify the presentation by removing the non-aggregated attributes from

the source (Src) events, and use V for the target attribute.

5.2.1 Sliding window with max function

Let Src be the source event and L + 1 the sliding window size for a rule with the

max function, i.e., the rule has the form of Fig. 5.5.

resultSlidingMax(max(a), s)@(s+ L)← Over sliding(s, s+ L)

From Src(a)@x

Figure 5.5: Rule with the max function and a sliding window of size L+ 1.

An internal event resultSlidingMax is generated for each window, with attributes

value (the maximum value), start and end (of the window), and time (when the result is

produced) for each window [start, end] of length L+ 1. To compute resultSlidingMax

incrementally, we use an internal event incSlidingMax with attributes accumulator,

start, end, and stop, where accumulator holds the maximum value seen from start to

stop, and end attribute is the target window’s last timestamp, i.e., when the result

should be reported. The DatalogZ program (Fig. 5.6) initializes incSlidingMax at each

timestamp T with the start of a sliding window. The source event’s value is stored in
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the accumulator (of −∞ if the source event is not real), and T+L as the window end.

At each timestamp T that is not greater than the window end, if the source event at T

is real, the accumulator’s value at T is compared with the source event’s value at T+1.

Otherwise, the accumulator is passed along. At the window’s end, the accumulator is

reported with resultSlidingMax.

Initialize incSlidingMax

incSlidingMax(V, T, T+L)@T ← Src(V, 1)@T

incSlidingMax(−∞, T, T+L)@T ← Src(V, 0)@T

Propagate incSlidingMax

incSlidingMax(V, S,E)@(T+1) ← incSlidingMax(A,S,E)@T, Src(V, 1)@(T+1), (A<V ), (T+16E)

incSlidingMax(A,S,E)@(T+1) ← incSlidingMax(A,S,E)@T, Src(V, 1)@(T+1), (A>V ), (T+16E)

incSlidingMax(A,S,E)@(T+1) ← incSlidingMax(A,S,E)@T, Src(V, 0)@(T+1), (T+16E)

Report resultSlidingMax

resultSlidingMax(A,S)@E ← incSlidingMax(A,S,E)@T, (T=E)

Figure 5.6: DatalogZ program for max and a sliding window [S,E] of size L

The results of evaluating the DatalogZ program in Fig. 5.7 with a window size 5 is

shown in Fig. 5.7. The source events are shown in the first column. The second column

shows the incSlidingMax events for the first window [1, 5]. The third column shows

the incSlidingMax events for the second window [2, 6]. The fourth column shows the

resultSlidingMax event for the first window [1, 5], which appears when the source event

at timestamp 5 is processed, as well as for the second window [2, 6].

time Source events incSlidingMax events resultSlidingMax events
1 Src(0,0)@1 incSlidingMax(−∞, 1)@1
2 Src(5,1)@2 incSlidingMax(5, 1, 5)@2 incSlidingMax(5, 2, 6)@2
3 Src(0,0)@3 incSlidingMax(5, 1, 5)@3 incSlidingMax(5, 2, 6)@3
4 Src(0,0)@4 incSlidingMax(5, 1, 5)@4 incSlidingMax(5, 2, 6)@4
5 Src(15,1)@5 incSlidingMax(15, 1, 5)@5 incSlidingMax(15, 2, 6)@5 resultSlidingMax(15, 1)@5
6 Src(0,0)@6 incSlidingMax(15, 2, 6)@6 resultSlidingMax(15, 2)@6

Figure 5.7: Evaluating the sliding, max program for window [S,E] of size 5
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5.2.2 Tumbling window with max function

Let Src be the source event and L + 1 the tumbling window size, i.e., the rule has

the form of Fig. 5.8.

resultTumblingMax(max(a), s)@(s+ L)← Over tumbling(s, s+ L)

From Src(a)@x

Figure 5.8: Rule for tumbling window with size L+1 and max function

To compute the corresponding internal event resultTumblingMax incrementally, we

use an internal event incTumblingMax with the same attributes as incSlidingMax. We

use a DatalogZ program (Fig. 5.9) to generate incTumblingMax events, which only differs

from that for the sliding window in that when an window is initialized, the next window

is initialized starting L timestamps later rather than at the next timestamp.

Initialize incTumblingMax

incTumblingMax(V, 0, L)@0 ← Src(V, 1)@0

incTumblingMax(−∞, 0, L)@0 ← Src(V, 0)@0

incTumblingMax(V, T+1, T+1+L)@T ← incTumblingMax(A,S,E)@T, (E=T ), Src(V, 1)@(T+1)

incTumblingMax(−∞, T+1, T+1+L)@T ← incTumblingMax(A,S,E)@T, (E=T ), Src(V, 0)@(T+1)

Propagate incTumblingMax

incTumblingMax(V, S,E)@(T+1) ← incTumblingMax(A,S,E)@T, Src(V )@(T+1), (A<V ), (T+16E)

incTumblingMax(A,S,E)@(T+1) ← incTumblingMax(A,S,E)@T, Src(V )@(T+1), (A>V ), (T+16E)

Report resultTumblingMax

resultTumblingMax(A,S)@E ← incTumblingMax(A,S,E)@T, (T=E)

Figure 5.9: DatalogZ program for max function on tumbling window [S,E] of size L

5.2.3 Start-and end-triggered window for max function

For a start- and end-triggered window [s, e] with the max function, let Src be the

source event, Start the start-trigger event, and End the end-trigger event, i.e., the rule
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has the form of Fig. 5.10.

resultStartEndMax(max(a), s)@e← Over(Start@s, End@e)

From Src(a)@x

Figure 5.10: Rule with the max function, start- and end-triggered window [s, e]

We use a DatalogZ program (Fig. 5.11) to generate incStartEndMax events as follows:

Whenever a start trigger event is observed, an incStartEndMax event is initialized using

the start trigger event’s timestamp T as the window start, placing the source event’s

value in the accumulator. Data in incStartEndMax at a timestamp T is propagated

to the next timestamp T+1 using the source event at timestamp T+1. To do this, if

the source event is real, the accumulator is compared with the value of the source event

at timestamp T+1 and the larger is passed along. If the source event is not real, the

accumulator is passed along. We report resultStartEndMax when End event arrives

using the larger of the accumulator from the previous timestamp’s incStartEndMax and

the source event’s value.

Initialize incStartEndMax

incStartEndMax(V, T )@T ← Src(V, 1)@T, Start@T

incStartEndMax(−∞, T )@T ← Src(V, 0)@T, Start@T

Propagate incStartEndMax

incStartEndMax(V, S)@(T+1) ← incStartEndMax(A,S)@T, Src(V, 1)@(T+1), (A<V )

incStartEndMax(A,S)@(T+1) ← incStartEndMax(A,S)@T, Src(V, 1)@(T+1), (A>V )

incStartEndMax(A,S)@(T+1) ← incStartEndMax(A,S)@T, Src(V, 0)@(T+1)

Report resultStartEndMax

resultStartEndMax(A,S)@E ← incStartEndMax(A,S)@T, End@T

Figure 5.11: DatalogZ program for incStartEndMax and resultStartEndMax events
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5.2.4 Sliding window with sum function

Let Src be the source event and L+1 the window size for a sliding rule with the sum

function, i.e., the rule has the form of Fig. 5.12.

resultSlidingSum(sum(a), s)@(s+ L)← Over sliding(s, s+ L)

From Src(a)@x

Figure 5.12: Rule for sliding window with sum function

To compute resultSlidingSum incrementally, we use an internal event incSlidingSum

with attributes accumulator, start, end, and stop. We use a DatalogZ program (Fig. 5.13)

to generate incSlidingSum events as follows: each timestamp is the start of a sliding

window so for each source event at timestamp T , an incSlidingSum event is initialized

using a source event’s timestamp as the window start, the source event’s value in the

accumulator, and T+L as the window end. Data in incSlidingSum at a timestamp T

is propagated to the next timestamp T+1 using the source event at timestamp T+1. To

do this, the accumulator is added with the value of the source event at timestamp T+1.

The propagation only happens if the next timestamp is no greater than the window end.

When the source timestamp is equal to the window end, the value in the accumulator is

reported with resultSlidingSum.

5.2.5 The DatalogZ Programs Compute Aggregation Events

Given the above DatalogZ programs, we argue they compute the aggregation events

for their respective rules. This is done by showing that the program’s incremental com-

putations correctly compute the corresponding aggregation function over the appropriate

window and that the result is reported at the correct time.

Theorem 5.1 : For each aggregation rule r, there is a DatalogZ program that generates

the aggregation events for r.
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Initialize incSlidingSum

incSlidingSum(V, T, T+L)@T ← Src(V, 1)@T

incSlidingSum(0, T, T+L)@T ← Src(V, 0)@T

Propagate incSlidingSum

incSlidingSum(A+V, S,E)@(T+1) ← incSlidingSum(A,S,E)@T, Src(V, 1)@(T+1), (T+16E)

incSlidingSum(A,S,E)@(T+1) ← incSlidingSum(A,S,E)@T, Src(V, 0)@(T+1), (T+16E)

Report resultSlidingSum

resultSlidingSum(A,S)@E ← incSlidingSum(A,S,E)@T, (T = E)

Figure 5.13: DatalogZ Program incSlidingSum and resultSlidingSum

Proof: We use the above programs as templates and show that each program

generates the aggregation events for a window of size L. We do this by induction on the

value of l.

Base case: L = 1, i.e., the window is a single timestamp. For the max function,

observe that incSlidingMax is initialized with the source event’s value (or a negative

infinity if the source event is not present), for the window with start T and end T . Because

the window is a single timestamp, the end timestamp is equal to the start timestamp.

During propagation, the accumulator is kept the same if the source event is not present,

i.e., Src(∗, 0). If the source event is real, i.e., Src(∗, 1), the accumulator is changed to the

source event’s value if and only if the source event’s value is greater than the accumulator,

e.g., A<V , otherwise the accumulator is kept the same. A similar argument holds for

min.

For count, incSlidingCount is initialized with 1 if the source event is present.

Otherwise, it is initialized with 0. In the propagate rules, the accumulator is updated

with A+ 1 if and only if the source event is present. Otherwise, the accumulator is kept

the same. A similar argument holds for sum and countu.

Inductive step: L > 1. For max, we assume that the program generates the aggre-

gation events for a window of size L−1. This is only possible if incSlidingMax holds
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the maximum value of the first L−1 source events of the window. The propagation rule

compares the latest source event in in the window with the value in the accumulator. If

the source event is greater than the accumulator, then the accumulator is updated with

the source event’s value. Otherwise, the accumulator is not updated. A similar argument

holds for min.

For count, we assume that the program generates the aggregation events for a

window of size L−1. This is only possible if incSlidingCount holds the count of the

first L−1 source events of the window. The propagation rule increments the accumulator

if the latest source event in the window is not a placeholder. Otherwise, the accumulator

keeps the same value. A similar argument holds for sum and countu.

5.3 Chasing Rules with Aggregation

In this section, we describe how to apply the chase directly to rules with aggre-

gation. We present techniques to extend the algorithms of the previous sections with

aggregation functions, which requires reasoning about arithmetic functions applied to a

numeric domain and time windows that include future events. First, we describe when

to generate “expected” source events to fill an open time window. Then, we rewrite

aggregation functions as Presburger arithmetic (PA) constraints on a given window of

source events. Finally, we include these constraints in the satisfiability test that detects

violations. These techniques, along with the algorithms from the previous chapter, is

sufficient for early violation detection of acyclic sets of rules with aggregation.

5.3.1 Assignments and Expected Events for Rules with Aggregation

The fundamental problem of violation detection remains to match body assignments

with head assignments, though assignment creation may now use values derived from

aggregation functions applied to a window of source events. We illustrate this with a
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running example, using the same assignment data structures bar, har, and extr for each

rule r from the previous chapter.

timestamp Alice’s events Bob’s events

1 Deposit(Alice, 9)@1 Deposit(Bob, 3)@1

2 Deposit(Alice, 6)@2 Deposit(Bob, 5)@2

Approve(Alice, 20)@2

Figure 5.14: An example enactment η for two users

r1 : SumDep(u, a′ = sum(a), s)@(s+ 3), a′ 6 20 ← tumbling(s, s+ 3)

from Deposit(u, a)@z

r2 : MaxDep(u, b′ = max(b), s)@(s+ 3), b′ > 10 ← tumbling(s,s+3)

from Deposit(u, b)@z

r3 : Approve(u, c)@(x− 1) ← SumDep(u, c)@x, c > 18

Figure 5.15: Three rules, two with aggregation

Example 5.2 : Consider the enactment η in Figure 5.14. and the rules in Figure 5.15.

Rule r1 aggregates the total amount of deposits per three-day period and requires this

total to be under $20. Rule r2 aggregates the maximum deposit amount per three-day

period and require this maximum to be at least $10. Rule r3 requires that users’ three-day

deposit totals are approved when the total is at least $18.

For these rules, Update creates assignments for variables u, a′, s, a, and z in r1, to

v, b′, t, b, and z in r2, and to u, c, and x in r3, by matching event instances with event

atoms. From the event Deposit(Alice, 9)@1 and the body event atom Deposit(u, a)@z,

the partial assignment α1 = {u 7→ Alice, a 7→ 9, z 7→ 1} is created, which is Row 1 of the

table in Fig. 5.16 From event Deposit(Alice, 6)@2 and the same event atom, we create
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the partial assignment α2 = {u 7→ Alice, a 7→ 6, z 7→ 2} (Row 2). Fig. 5.16 shows some

assignments in bar0(η) at time 2.

bar1(η)

id u a z constraints match? chased?

µ1 Alice 9 1 - no no

µ2 Alice 6 2 - no no

µ3 Bob 3 1 - no no

µ4 Bob 5 2 - no no

Figure 5.16: The bar table for r1 and η at time 2

Now, we describe how “expected” events are added to the enactment through a

chase process. This is similar to the chase in the previous chapter, but in this setting,

more expected events may be created, one event for each future source event in the

corresponding window. That is, when the window is “open” with respect to the current

time, i.e., its start timestamp is in the past or present and its end timestamp is in the

future, one expected source event (with marked nulls) are added to the enactment for

each of the open window’s future timestamps. Then, the relevant aggregation function

is applied to the source events’ values, creating an aggregation event. The expected

source events have marked nulls for their data values, so the aggregation function may

be applied to both known values and marked nulls. Example 5.3 illustrates extending a

window with expected source events, then generating an aggregation event with a rule.

Example 5.3 : Continuing with the enactment in Example 5.2, at time 2, the window

(1, 4) is open for aggregation rules r1 and r2. We add expected Deposit events for

Alice and Bob at time 3 with null values a3 and b3, resp., this is shown in Fig. 5.17.

Given values for all source events in the window (1, 4) for r1 and r2, r1 yields the body
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Deposit(Alice, 9)@1 Deposit(Alice, 6)@2 Deposit(Alice, a3)@3

Deposit(Bob, 3)@1 Deposit(Bob, 5)@2 Deposit(Bob, b3)@3

Expected events with marked nulls

Figure 5.17: Adding expected source events to an open window (1, 3)

assignment αa in Fig. 5.18. This produces the head assignment βa = {s 7→ 1, u 7→

Alice, a′ 7→ a′a} with the constraints a′a = sum(9, 6, a3) and a′a 6 20 in Fig. 5.19. and

the expected event SumDep(Alice, a′a)@3. Rewriting sum in PA, we have the constraint

(a′a = 9 + 6 + a3) ∧ (a′a 6 20). For Bob, we have similar body assignment αa and head

assignment βa.

id u s constraints match? chased?

αa Alice 1 - no no

αb Bob 1 - no no

Figure 5.18: Complete assignments in ba for r1 and η at time 2
id u a′ s constraints

βa Alice a′a 1 (a′a = 9 + 6 + 3) ∧ (a′a 6 20)

βb Bob a′b 1 (a′b = 6 + 5 + 5) ∧ (a′b 6 20)

Figure 5.19: Complete assignments in ha for r1 and η at time 2

For the body assignment γa for r2, we get the head assignment δa = {s 7→ 1, u 7→

Alice, b′ 7→ b′a} and the expected event MaxDep(Alice, b′a)@3 Rewriting max in PA, we

obtain that δa has constraint ((b′a > 9)∧(b′a > 6)∧(b′a > a3))∧((b′a = 9)∨(b′a = 6)∨(b′a =

a3))∧ (b′a > 10). For Bob, we have similar head assignments γb and δb. This leads to the

bar2(η) and har2(η) entries in Figures 5.20 and 5.21 at time 2.

5.3.2 Rewriting Aggregation Atoms

When an open window includes expected source events, the aggregation function’s

result depends their unknown values. These unknown values are represented by marked

nulls, and even if their exact values are unknown, the marked nulls may be constrained

by the rule’s gap atoms or the chase process, leading to violations. To reason with
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id u s constraints match? chased?

γa Alice 1 - no no

γb Bob 1 - no no

Figure 5.20: Complete assignments in ba for r2 and η at time 2
id u b′ s constraints

δa Alice b′a 1 ((b′a > 9) ∧ (b′a > 6) ∧ (b′a > a3)) ∧ ((b′a = 9) ∨ (b′b = 6) ∨ (b′a = a3)) ∧ (b′a > 10)

δb Bob b′b 1 ((b′b > 3) ∧ (b′b > 5) ∧ (b′b > b3)) ∧ ((b′b = 3) ∨ (b′b = 5) ∨ (b′b = b3)) ∧ (b′b > 10)

Figure 5.21: Complete assignments in har table for r2 and η at time 2

these constraints, we rewrite each aggregation atom over a given window in Presburger

arithmetic in the chase step. We illustate this rewriting, then state that this rewriting

preserves the semantics of the aggregation function in Lemma 5.2.

Example 5.4 : Continuing the running example, after introducing the expected event

Deposit(Alice)(a3)@3, the corresponding body assignment is chased to produce the ag-

gregation event SumDep(Alice)(a′a)@3 with constraint (a′a = 9 + 6 + a3)∧ (a′a 6 20). This

generates the complete assignment ω1 = {u 7→ Alice, x 7→ 3} for the body of r3, where

a3 in the Deposit event may be 12. We chase r3 with ω3, propagating the assumption

that a3 = 12, to produce the head assignment τ1 = {u 7→ Alice, x 7→ 3} and an expected

event Approve(Alice, ca)@3, along with constraints (a′a = 9 + 6 + a3)∧ (a′a 6 20)∧ (a3 =

12) ∧ (ca = a′a).

For Bob’s events, the same process for a complete assignment ω2 produces the head

assignment τ2 = {u 7→ Bob, x 7→ 3} and an expected event Approve(Bob, cb)@3, along

with constraints (b′b = 3 + 5 + b3) ∧ (b′b 6 20) ∧ (b3 = 12) ∧ (cb = a′b).

id u s constraints matched chased

ωa Alice 3 ca = a′a no no

ωb Bob 3 cb = a′b no no

Figure 5.22: Complete assignment in bar table for r3 and η at time 2

Now we describe the rewriting of aggregation atoms. We assume that the aggregation

atom a has a window W of L source events. We define a function Rewrite(W,a) (Fig 5.24)
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id u c s constraints

τa Alice ca 1 (a′a = 9 + 6 + a3) ∧ (a′a 6 20) ∧ (ca = a′a)

τb Bob cb 1 (a′b = 3 + 5 + b3) ∧ (a′b 6 20) ∧ (cb = a′b)

Figure 5.23: Complete assignment in har table for r3 and η at time 2

that rewrites a in PA. Lemma 5.2 states that Rewrite(W,a) is equivalent to a with respect

to the window W .

Lemma 5.2 : LetW = {Src(a1, r1)@t1, Src(a2, t2)@t2, . . . , Src(aL, rL)@tL} be a window

of L source events, where ai is the value of the aggregation attribute in the i-th source

event and ri is the value of the real attribute in the i-th source event. Let a be an

aggregation atom with a window W . Then, the aggregation function on W yielding a is

equivalent to Rewrite(a,W ).

fun(a, w) Rewrite(a, W )

sum(a,W ) ≡ (a = a1 + a2 + · · ·+ aL)

max(b,W ) ≡ (
∨

16i6L
ai = b) ∧ (

∧
16i6L

ai 6 a)

min(c,W ) ≡ (
∨

16i6L
ai = c) ∧ (

∧
16i6L

ai > c)

count(d,W ) ≡ (0 6 d 6 L) ∧
∨

A⊆{1,...,L},|A|=d
((
∧

j∈A
rj 6=0) ∧ (

∧
j 6∈A,16j6L

rj=0))

countu(e, s, e) ≡ (0 6 u 6 L) ∧
∨

A⊆{1,...,L},|A|=u
(
∧

j∈A
(rj 6=0 ∧

∧
k∈A,k 6=j

(aj 6= ak))

∧(
∧

j∈{1,...,L}−A
(rj=0) ∨ ∃ l ∈ A.aj = al))

Figure 5.24: Rewrite for each aggregation function using Presburger arithmetic

Proof: In Fig 5.24, the sum function is rewritten as the sum of the source event’s

values. The max and min functions are rewritten as a disjunction of the source event’s

values, requiring that the maximum or minimum value is (1) greater than or equal to

(resp., less than or equal to) all source values and (2) equal to some source value. The

count function creates a disjunction over all subsets A of size d of the source events,

requiring that A’s source values are not placeholders and all other source values are
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placeholders, i.e., their real values are equal to zero; the disjunction is true when d is

equal to the number of source events in A. The countu function operates in the same

manner as count, but requires that the source values for non-placeholder events in A

are unique.

Now we describe how the rewriting of aggregation rules is used along with the ex-

tension of open windows to rewrite aggregation atoms during the chase as Chase-Agg

(Algorithm 7). The algorithm for aggregation rules differs from that for non-aggregation

rules by Lines 4 through 10. Line 4 identifies when a window defined by an aggregation

rule is open and incomplete, meaning not all of its source events have been received.

Line 5 adds future source events for the window to the set of expected events with fresh,

marked nulls for data values. Lines 6, 7, and 8 compute a complete head assignment

from these events for any applicable rule and window, rewriting the aggregation function

in the rule head as a set of PA constraints. Line 9 adds the aggregation event to the set

of expected events. This new assignment and the aggregation events are then used to

update the assignments in the assigment database.

The chase may not terminate for some sets of rules and enactments, as marked nulls

may create more marked nulls when rules are applied, and this may continue indefinitely.

This poses a problem for using the chase as a subroutine in a violation detection algo-

rithm. To ensure the chase terminates, we place a sufficient condition on the rules such

that a marked null created by chasing the rules cannot create another marked null for

the same attribute and event type. This restriction is a sufficient condition for termina-

tion of the chase for tuple-generating dependencies (Theorem 3.9 in [49]). Accordingly,

we consider only acyclic sets of rules with aggregation, with the following definition of

acyclic, adapted from [49], that extends the definition of acyclic used in Chapter 4.

Let R be a set of rules: the graph GR = (V,E) is defined as follows.

• V is a set of vertices (P, a) where P is an event name and a is an attribute of

103



Rules with Aggregation Chapter 5

Algorithm 7 Chase-Agg(∆, DR(η))

Input: A batch ∆ of events for η, rules R,
the assignment database for R

Output: the chased assignment database DRη for η

1: if no bar(η) contains no unmatched, complete body assignments for any r then return DR(η)
2: end if
3: while the chase is not finished do
4: Let ExpectedEvents := ∅
5: if ts∆ is in W for some window W for r ∈ R and W is not complete then
6: Add the source events that complete W to ExpectedEvents
7: for each aggregation rule r do
8: for each body assignment µ corresponding to window W of r do
9: Create an assignment µ′ for head(r) with the window with constraints Rewrite(W , a)

10: Add all atoms in µ′(head(r)) to ExpectedEvents
11: end for
12: end for
13: end if
14: for each complete, unchased body assignment µ∈bar(η) with no ground matching head assignment for a

rule r do
15: if r is not an aggregation rule then
16: Create an assignment µ′ for head(r) with fresh, marked nulls for each existential variable
17: end if
18: Instantiate head(r) with µ′

19: Add all atoms to ExpectedEvents
20: Change the Chased column of µ to “yes”
21: end for
22: if ExpectedEvents is empty then
23: exit the while loop
24: end if
25: Update all bar(η),har(η) tables using Update and ExpectedEvents as the batch of new events
26: Update all extr(η) tables using Update-E and ExpectedEvents as the batch of new events
27: end while
28: return DR(η)

P . We call each (P, a) a position. For an aggregation atom P with a term, e.g.,

u′ = sum(u), we add the vertex (P, u) and the vertex (P, u′) to V .

• E is a set of edges where for every rule ψ(x̄, ȳ) ← φ(x̄) in R, we call each x in x̄

a propagated variable. For each propagated variable x, for each occurrence of x in

φ(x̄) in position (P, a), do two things:

1. for each occurrence of x in ψ(x̄, ȳ) at position (Q, b), add an edge from (P, a)

to (Q, b), and

2. for each existentially quantified variable y in ψ(x̄, ȳ), for each occurrence of y

in ψ(x̄, ȳ) at position (S, c), add a special edge from (P, a) to (S, c).
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We say R is acyclic if GR has no cycle containing a special edge. Note again that this

is a different definition of acyclic than the one used in Chapter 3, but an generalization

of the definition used in Chapter 4.

5.3.3 Detecting Violations via Satisfiability Testing

The assignment database for an enactment can determine if an acyclic set of rules

is violated using the Build algorithm from the previous chapter (Algorithm 6). The

algorithm creates a PA constraint that is satisfiable if and only if the enactment has a

violation. We demonstrate how this satisfiability test works in the presence of PA formula

for the running example.

Example 5.5 : Applying Build to the assignment database for Alice at time 2 uses

assignments αa for r1 and γa for r2. a constraint Θ is initialized to true. Then, from αa

and its match βa, true → (a′a = 9 + 6 + a3) ∧ (a′a 6 20) is added to Θ. From γa and

its match δa, true → ((b′a > 9) ∧ (b′a > 6) ∧ (b′a > a3)) ∧((b′a = 9) ∨ (b′b = 6) ∨ (b′a =

a3)) ∧ (b′a > 10). From ωa, there are no complete, ground, matching head assignments,

so we add ¬((a′a = 9 + 6 + a3) ∧ (a′a 6 20) ∧ (ca = 12)).

This formula Θ is not satisfiable; Θ contains 9 + 6 + a3 = a′a 6 20, which implies

a3 6 5, yet Θ also contains a3 > 10, leaving no possible value for a3. Accordingly, any

Deposit event in η for Alice at time 3 will create a violation at time 3, and this is known

at time 2. Then, Alice’s events in η is reported as a violation at time 2.

Applying Build to the assignment database for Bob at time 3, a constraint Θ is

initialized to true. From αb and its only match βb, we have true→ (a′b = 3+5+b3)∧(a′b 6

20). From γb and its only match δb, we have true→ ((b′b > 3)∧(b′b > 5)∧(b′b > b3))∧((b′b =

3) ∨ (b′b = 5) ∨ (b′b = b3)) ∧ (b′b > 10). From ωb, there are no complete, ground, matching

head assignments, so we add ¬((a′b = 3 + 5 + b3) ∧ (a′b 6 20) ∧ (b3 = 12)). Now Θ is

satisfiable, with the assignment b3 = 11, a′b = 20, b′b = 11, and cb = 11, so there is no
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violation of R at time 2 for Bob’s events.

The Build algorithm (Algorithm 7) starts with the assignment database DR(η) and

a time instant t0 (the current time), Line 1 initializes Θ as true, as the enactment η

is not violating by default. Then, for each complete body assignment µ in DR(η) with

constraints cµ, there are two cases of the extension table for µ. In the first case (Line

3), µ has no complete, matching head assignment. Recall that cµ are assumptions made

about marked nulls that create µ if true. Accordingly, µ will not be a violation only if

they are not necessary, i.e., their negation is satisfiable. We test for this case by adding

¬cµ to Θ in Line 4. In the second case of the extension table for µ (Line 5), µ has

one or more complete matching head assignments. Let (µ, µi, ci), . . . , (µ, µn, cn) be the

rows matching µ in the relevant extension table. Note that µ is a violation every ci is

unsatisfiable when cµ is true. Thus, cµ → (c1∨ · · · ∨ cn) is added to Θ on Line 6. Finally,

Lines 7 and 8 add the requirement that unresolved timestamp variables and marked nulls

time instants are greater than the current time. Generalizing this example, we state a

theorem that indicates how the assignment database detects violations.

Theorem 5.3 : Let R be an acyclic set of rules with aggregation and η an enactment.

Then, Build(DR(η)) is unsatisfiable if and only if η violates R.

Theorem 5.3 follows from Theorem 4.6 in the previous chapter and Lemma 5.2, which

indicates that the rewriting of aggregation atoms by Rewrite preserves preserves con-

straints on the atoms’ free variables imposed by the aggregation functions and time

window. Then, the satisfiability of the output of Build faithfully indicates the presence

of a violation. This satisfiability test remains decidable with PA formulas [71]. Accord-

ingly, from Theorem 5.3, the output of Build is unsatisfiable exactly when the enactment

violates the set of rules.

We have shown that for rules with aggregation, an assignment database is maintained

with the Update, Update-E, and Chase-Agg algorithms and violations can be detected by
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applying Build to the assignment database, and reporting the satisfiability of Build’s

output. Thus, violations of an acyclic set of rules with aggreagtion are detected at the

earliest possible time.

5.4 Related Work

Prior research on reasoning about aggregation in stream processing includes Datalog

languages with aggregation, SQL-like stream queries, as well as temporal logics with

aggregation, especially combined with first-order logic.

Some Datalog-like languages includes aggregation, often with restrictions on the

monotonicity of event creation. whereas we do not require monotonicity of aggrega-

tion functions, because the generation of aggregation events is fixed by each window and

the workflow assumption. Reference [72] uses Datalog with monotonic aggregation func-

tions. Streamlog [30] uses Datalog with negation and arithmetic, but only for “strictly

sequential” rules, i.e., the timestamp of head is greater every timestamp in the body.

Reference [73] uses Datalog with negation and sets allowed as terms, but it is unclear

how the max and min functions are computed; in Section 5.2, we show how these ag-

gregation functions can be computed within Datalog. Dedalus [74] uses Datalog with

negation, aggregation, and construct for disjunction called choice, but does not allow

different time variables in the body of a rule, limiting the expressiveness of the language,

and does not provide algorithms for rule evaluation. Finally, [75] uses Datalog with LTL

operators and aggregation functions, with algorithms for rule evaluation. The main dif-

ference with our work is that we compare explicit time variables, with each other through

inequalities, while the LTL operators in [75] make time implicit and difficult to compare

due to scoping issues.

Also relevant are SQL-like stream queries, which are continually reevaluated with in-

coming data [76,77]. These queries use SQL-like syntax, with special syntax for windows,
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though their focus is query evaluation, i.e., the efficient computation of query results over

the existing enactment, rather than early violation detection, which requires reasoning

about the future of the enactment.

5.5 Chapter Summary

This chapter presents a syntax and semantics for time windows and aggregation

functions in rules; this increases the expressiveness of rules, as it allows constraints on

aggregate, quantitative values over time and multiple events. Then, we enable early vio-

lation detection for rules with aggregation in two ways: by rewriting them into DatalogZ

programs, which allows for generating aggregation events within the Datalog framework,

and by extending the Build algorithm to handle aggregation functions by rewriting them

in Presburger arithmetic. This shows that early violation detection remains possible for

rules with aggregation.
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Chapter 6

The Impossibility of Early Violation

Detection

In this chapter, we show that it is undecidable whether or not a given set of rules is

finitely satisfiable, i.e., whether or not there is a finite instance that satisfies it. This

result indicates that early violation detection is impossible in general. Combined with

Chapters 4 and 5, this indicates that acyclicity for a set of rules forms a tight boundary

for solving early violation detection.

The chapter is organized as follows: Section 6.1 defines finite satisfiability and states

the main result. Section 6.2 introduces a rule language Datalog+ for technical devel-

opment and reduces the empty-tape halting problem for Turing machines to the finite

satisfiability of Datalog+. In Sections 6.4, and 6.2, we show that finite satisfiability for a

set of Datalog+ rules reduces to finite satisfiability for a set of rules, completing the proof

of the main result. Finally, in Sections 6.5 and 6.6 discuss related work and conclude the

chapter.
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Empty-tape Turing Machine Halting Problem

Finite Satisfiability for Datalog+

Finite Satisfiability for Datalog+ with One Integer Attribute

Finite Satisfiability for Rules

Early Violation Detection

Section 6.2

Section 6.3

Section 6.4

Section 6.1

Figure 6.1: Structure of reductions

6.1 Early Violation Detection Solves Finite Satisfiability

In this section, we present the chapter’s main result. We first give the necessary

definitions for instances and finite satisfiability. We then state the main theorem and

outline its proof. Finally, we present a corollary related to early violation detection.

Because we are interested in finite satisfiability of a set of rules, rather than the

online early violation detection problem, we do not use enactments as the objects of rule

satisfaction; instead, we say a set of rules is satisfied by an “instance”. For a set S of

event types, an instance of S is a mapping from each event type T in S to a possibly-

infinite set of events of type T . For an instance I and an event type E, the table I.E is

the set of events, also called tuples, of type E in I. An instance satisfies a rule or set of

rules with the same semantics as satisfaction for enactments in Chapter 2. A set of rules

is finitely satisfiable if there is a finite instance that satisfies each rule in the set. The

finite satisfiability problem is to decide whether a given set of rules is finitely satisfiable.
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r1 : true→ Request(Alice)@x

r2 : Request(u)@y → Approve(u)@y+1

r3 : Approve(v)@y → Request(v)@y+1

Figure 6.2: Set of rules that is not finitely satisfiable

Example 6.1 : Not every set of rules is finitely satisfiable; consider the set of rules in

Fig 6.2. Let I be an arbitrary instance satisfying {r1, r2, r3}. Because r1 has no atoms in

the body, I must contain the event Request(Alice, x) for some x ∈ N; without loss of gen-

erality, we assume x = 1. Then, satisfying r1 requires I contain Request(Alice, 1). Apply-

ing r2 to Request(Alice, 1), I contains Approve(Alice, 2). Applying r3 to Approve(Alice, 2),

I contains Request(Alice, 3). Then, applying r2 to Request(Alice, 3) indicates I contains

Approve(Alice, 4). Continuing in this manner, I contains Request(Alice, 2n + 1) and

Approve(Alice, 2n+ 2) for all n ∈ N. In summary, the rule r1 has no atoms in the body.

This forces the instance to contain the event in the head of r1. that comes from applying

r2 and r3. That event initiates the infinite chain of events. Thus, I is infinite; because I

is arbitrary, this shows no finite instance can satisfy {r1, r2, r3}.

Given these definitions, we can now state the main result of this chapter in Theo-

rem 6.1.

Theorem 6.1 : Finite satisfiability for a set of rules is undecidable.

The remainder of this chapter is devoted to proving this theorem. We place this

result in the context of early violation detection. Finite satisfiability for a set of rules

is a special case of early violation detection in which the enactment is empty, as the

empty enactment should be reported as a violation if and only if the set of rules is not

finitely satisfiable. Then, an algorithm that decides if a violation exists also decides finite

satisfiability. This leads to the following corollary of Theorem 6.1.

Corollary 6.2 : Early violation detection for a set of rules is impossible.
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Our proof of Theorem 6.1 is structured as follows: in Section 6.2, we introduce a

language called Datalog+ and show that the empty-tape halting problem reduces to finite

satisfiability for a set of Datalog+ rules. Then, in Section 6.4, we show that there is a

mapping between Datalog+ and rules that extends the undecidability result for Datalog+

to finite satisfiability for rules.

6.2 Datalog+

In this section, we give definitions for the central notions of the reduction, including

Datalog+, the model of Turing machines and the empty-tape halting problem. Then,

we construct a reduction from the empty-tape halting problem to finite satisfiability for

Datalog+ rules.

For the technical development in the proof of Theorem 6.1, we define a new rule

language called Datalog+. Datalog+ has the same syntax and semantics as our rule

language, except that it does not use the timestamp “@” syntax and each event type

may have an arbitrary number of integer attributes, instead of only data attributes.

Timestamp attributes take values from N, with the standard ordering <, addition +,

equality =, and non-equality 6= predicates. An example of the syntax of Datalog+ is

shown in Fig 6.3.

r1 : true→ Request(Alice, x)

r2 : Request(u, y)→ Approve(u, y+1)

r3 : Approve(v, y)→ Request(v, y+1)

Figure 6.3: Set of Datalog+ rules that is not finitely satisfiable

A set of Datalog+ rules is satisfied by an instance, with the same notion of finite

satisfiability, as defined for a set of rules. Given this definition, we state the following

theorem, proven in the remainder of this section.
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Theorem 6.3 : Finite satisfiability for a set of Datalog+ rules is undecidable.

In Example 6.1, the event in the head of r1 can be thought of as the input to a

computation and chasing the rules r2 and r3 as an algorithm for the computation. In

this view, whether or not the computation halts corresponds to whether or not the set of

events required to satisfy the set of rules is finite or infinite. This suggests that the halting

problem for Turing machine is reducible to the finite satisfiability problem for Datalog+.

To show this, we present the Turing machine as a formal model of computation, then

show how to encode a Turing machine as a set of Datalog+ rules in a way that matches

its halting behavior to the finite satisfiability problem.

6.2.1 Turing Machines and the Empty-Tape Halting Problem

We use a standard definition of Turing machines and their computations [78]. A

deterministic Turing machine M is a 5-tuple (Σ, Q, q0, F , δ,) where

1. Σ is a non-empty set of tape symbols, one of which is the blank symbol ,

2. Q is a non-empty set of states, with q0 ∈ Q as the starting state and F ⊆ Q as a set

of halting states, and

3. δ is a partial transition function from Q× Σ to Q× Σ× {L,R, stay}.

Note that no input alphabet is defined because we consider only computations where

the input is empty. The behavior of a Turing machine is characterized as a sequence

of configurations of the machine, snapshots of the machine’s state and tape contents,

recorded between each transition. For the Turing machine M , a configuration of M is a

triple (w, j, s) where

• w is the tape contents, a finite word in the language (Σ− { })∗,

• j is the position of the read-head, such that 16j6|w| + 1, indicating that the ma-

chine’s read-head is reading the j-th symbol from the left in the non-blank portion
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of the tape

• s is the state of the machine, i.e., a state in Q

Given any configuration C, the subsequent configuration is determined only by C and

the machine’s transition function, which maps each pair of a state and a tape symbol to

a unique triple of a state, a tape symbol, and a direction. This makes our class of Turing

machines deterministic. This definition only allows the machine to replace blank symbols

with symbols from the tape alphabet to the right of the read-head’s starting position,

i.e., in one direction. This makes it a one-way Turing machine.

We consider only computations that start with the empty-tape configuration, i.e., with

one symbol on the tape, the read-head at position 1 on the tape reading the symbol,

and the machine in the start state q0. The empty-tape halting problem asks: does a

given deterministic one-way Turing machine halt after beginning with the empty-tape

configuration? This problem is known to be undecidable [79].

6.2.2 Constructing a Set of Datalog+ Rules for the Empty-Tape Halting

Problem

We now encode the empty-tape halting problem for an arbitrary Turing machine

as a set of Datalog+ rules. The encoding is based on the idea that a Turing machine

computation is a sequence of configurations. We represent each configuration as a block

of rows in a table, one block per configuration. We use the following tables:

• Config encodes each of M ’s configurations, starting with the empty-tape configu-

ration,

• Next helps link successive configuration blocks in Config, so that only successive

configurations that are valid according to M ’s transition function are allowed,

• Error captures other conditions that Config and Next must satisfy to represent a
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valid computation of M , such as each configuration only having one machine state,

with rules that trigger non-finite satisfiability if the computation is invalid.

Because the Config table stores each configuration in the empty-tape computation of

M , it has an infinite number of rows if and only if the machine has an infinite computation

on the empty tape. Additionally, M is deterministic, so the instance of Config, Next,

and Error that satisfies Rules(M) is unique given M . Then, Rules(M) is finitely

satisfiable if and only if M has a halting computation on the empty tape.

Transition Relation

read state write nextState dir

q0 q1 q2 q3 q4

/0, R

1/0, R 0/1, L 1/1, stay

0/1, stay

/1, L/1, L

1/1, L

q0 0 q3 R

0 q1 1 q1 L

0 q2 1 q4 stay

q3 1 q2 L

...

Table 6.1: Transitions for the Turing Machine M

Example 6.2 : Figure 6.1 shows the transition relation for a running example Turing

machine M , along with a finite state machine diagram for M . In the transition relation

for M , the first row indicates that when a symbol is read and the machine is in state q0,

the following configuration is achieved by writing a 0 symbol to the tape, changing the

machine’s state to q1, and moving the read-head one tape cell to the right. The second

row indicates that when a symbol is read and the machine is in state q1, the machine

writes a 1 symbol to the tape, maintains the state q1, and moves the read-head one tape

cell to the left.
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The Config event type holds the machine’s tape contents and read-head position. It

uses three attributes: index, tape, and state. The index is an integer attribute is unique

for each row and organizes the configurations, with blocks of rows with consecutive

indices encode an individual configurations. Finally, tape is a data attribute to hold tape

symbols, and state is a data attribute to hold machine states.

Next Config

index next index tape state

configuration C1
. . .

q0

0 2 0 #

1 3 1 q0

2 5 2 #

configuration C2
0 . . .

q3

3 6 3 0

4 7 4 q3

5 8 5 #

configuration C3
0 1 . . .

q2

6 9 6 0 q2

7 10 7 1

8 11 8 #

. . . ...

Figure 6.4: Four successive configurations of M in the Config and Next tables

Example 6.3 : Consider the Table 6.4, the row with index 1 represents the initial empty-

tape configuration of a machine M , shown as configuration C1. The tape column holds

the tape’s contents, initially the string , and the read-head position, 1, and (starting)

state q0 is indicated by the row where the state column is not blank; as M is in state q0 at

the start of the computation. The following configuration, C2, produced when M writes

116



The Impossibility of Early Violation Detection Chapter 6

Initialization Rules

true → Config(0,#, )

true → Config(1, ,q0)

true → Config(2,#, )

true → Next(0,1)

true → Next(1,3)

Figure 6.5: The Initialization Rules for M

0 to the tape, moves right, and changes from state q0 to q3, is shown in the rows of Config

with indices 3 and 4. The rows with indices 6 and 7 represent the next configuration,

C3, when M writes 1 to the tape, moves left, and changes from state q3 to q2.

The Next table indicates how consecutive configurations in a Turing machine com-

putation are arranged in the Config table. An tuple (i, j) in the Next table means

information at index i in Config is propagated to index j in Config for the subsequent

configuration, assuming one exists. For the first three configurations shown in the Config

table above, the Next table is shown in Table 6.4. Note that the arithmetic difference

between the two columns can grow, because the length of the non-blank portion of the

tape grows by one from the first configuration to the second.

The initialization rules (Fig. 6.5) require that the Config table has the initial empty-

tape configuration, i.e., a configuration with an empty tape and a read-head index of 1,

and that the Next table indicates the indices of the second configuration. Because the

body of these rules is vacuously true, these tuples appear in all instances that satisfy

Rules(M).

The following rules in Rules(M) encode the progression the Config and Next tables

with respect to the machine’s transition function. These include “normal” transitions

to the right or left, where the machine’s transition function is applied, and “extending”

117



The Impossibility of Early Violation Detection Chapter 6

transitions to the right, when the machine advances into the blank portion of the tape

and the tape’s length is extended by one. Additionally, there is the “stay” rule, which

encodes the machine’s transition function when the machine does not move the read-

head, and the “copy” rule shows how the Config and Next tables map one configuration

to the next. Finally, they also include an “error” transition rule, which triggers an error

if the machine transitions to the left when the read-head is at the leftmost tape cell.

The normal left transition rule encodes the leftward transition of the read-head. For

each of the machine’s transitions δ(a, s) = (b, s′, L), the machine changes state from s to

s′ when reading tape symbol a, write a tape symbol b to the tape cell below the read

head, and move the read head to the left. This rule applies when the Next table indicates

that the row with index x−1 in Config corresponds to the row with index y−1 in Config

in the machine’s following configuration and the row with index x in Config has state

s and is reading tape symbol a. The rule’s head ensures that the row with index y in

Config has state s′ and writes tape symbol b to the tape cell below the read head, and

the Next table is updated with rows Next(x, y), Next(x+1, y+1), and Next(x+2, y+2).

The rule is:

Config(x−1, c, ), Config(x, a, s), Config(x+ 1, c′, ),

Next(x−1, y−1)→ Config(y−1, c, ), Config(y, b, ), Config(y + 1, c′, s′),

Next(x, y), Next(x+ 1, y + 1), Next(x+ 2, y + 2)

(6.1)

The normal right transition rule encodes the rightwards motion of the read head when

the read head is not on the rightmost cell of the tape, using the same format as the left

118



The Impossibility of Early Violation Detection Chapter 6

transition rule for each transition δ(a, s) = (b, s′, R),

Config(x−1, c, ), Config(x, a, s), Config(x+ 1, c′, ),

Next(x−1, y−1)→ Config(y−1, c, ), Config(y, b, ), Config(y + 1, c′, s′),

Next(x, y), Next(x+ 1, y + 1), Next(x+ 2, y + 2)

(6.2)

The extending right transition rule encodes the rightwards motion of the read head

when the read head is on the rightmost cell of the tape. The machine performs a state

change, writes a symbol to the tape cell below the read head, and moves the right,

creating a new blank symbol in the read head’s new position:

Config(x−1, c, ), Config(x, a, s), Config(x+ 1,#, ),

Next(x−1, y−1)→ Config(y−1, c, ), Config(y, b, ), Config(y + 1, , s′),

Config(y + 2,#, ), Next(x, y), Next(x+ 1, y + 1), Next(x+ 2, y + 3)

(6.3)

The stay transition rule encodes the lack of movement of the read head for a stay

transition, which initiates a state change and writes a symbol to the tape cell below the

read head, leaving the position of the read head unchanged. For each transition rule

δ(a, s) = (b, s′, stay), the rule is:

Config(x−1, c, ), Config(x, a, s), Config(x+ 1, c′, ),

Next(x−1, y−1)→ Config(y−1, c, ), Config(y, b, s′), Config(y + 1, c′, ),

Next(x, y), Next(x+ 1, y + 1), Next(x+ 2, y + 2)

(6.4)

The copy rule prompts non-halting configurations in Config table to be copied into

higher indices according to the Next table:

Config(x−1, c′, ), Config(x, c, ), Config(x+ 1, c′′, ), Next(x, y)

→ Config(y, c, ), Next(x+ 1, y + 1)
(6.5)
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Finally, Error rules in Rules(M) indicate when the tables fail to represent a halting

computation of M . This may be because the instance does not obey the transition func-

tion or the initial configuration, or because the Config or Next tables have inconsistent

data. The Error event type has a single attribute and is “thrown” when an inconsis-

tency is detected by creating a tuple in the Error table, which is then propagated by the

propagate error rule. to fill the Error table with an infinite number of tuples:

Error(x)→ Error(x+ 1) (6.6)

The erring left transition rule encodes the impossibility of the read-head moving left

when the read head is on the leftmost cell of the tape. Attempting to move to the left

indicates the Turing machine is not performing a (valid) computation and inserts a row

into the Error table, which is then propagated infinitely:

Config(x−1,#, ), Config(x, a, s), Next(x−1, y−1)→ Error(0) (6.7)

The same index, different symbols error rule prevents one index in the Config table

from being mapped to two distinct tape symbols. Each index corresponds to one tape

cell in one configuration of a machine, thus the tape symbol must be unique. For each

pair of unique tape symbols a and b in the machine’s tape alphabet, we have the rule:

Config(x, a, s), Config(x, b, s′)→ Error(0) (6.8)

The same index, different states rule enforces that each index x in the Config table

is mapped to at most one state. For each pair of unique states s and s′, we have the rule:

Config(x, a, s), Config(x, b, s′)→ Error(0) (6.9)

In summary, given an arbitrary Turing machine M , the set Rules(M) includes:
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1. The initialization rules, and

2. Rules 6.1 through 6.4 for each of the machine’s δ transitions,

3. Rules 6.5 through 6.9

6.2.3 The Construction is a Reduction

We now prove that Rules(M) is finitely satisfiable if and only if M has a halting

computation on the initial empty-tape. We first prove the forward direction, that ifM has

a halting computation on the initial empty-tape, then Rules(M) is finitely satisfiable.

Then, we prove the reverse direction.

Claim A: If M has a halting computation on the initial empty-tape, Rules(M) is

finitely satisfiable.

Proof: Assume M has a halting computation on the empty-tape. Then, there is a

finite computation S of M such that S(0) is the initial blank-tape configuration and the

last configuration of S has a halting state. We construct an instance db(S) with event

types Config, Next, and Error.

For each configuration S(i) in S, we include tuples in db(S).Config and db(S).Next

using the following mapping from configurations to tuples:

Let db(S).Config include the tuples in Table 6.2 to represent S(0).

db(S).Config

index tape state

0 #

1 q0

2 #

Table 6.2: Tuples in db(S).Config From Initial Configuration
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Similarly, let db(S).Next include the tuples in Table 6.3 to represent the transition

from S(0) to S(1).

db(S).Next

index next

0 2

1 3

Table 6.3: Tuples in db(S).Next From Initial Configuration

Let S(i).tape[j] be the symbol on the jth position of the tape in S(i). Let |S(i)| be the

length of the non-blank portion of the tape in the configuration S(i). If S(i) is mapped

to the tuples in Tables 6.4 and 6.5 and these tuples are included in db(S), then S(i+ 1)

(if it exists) is mapped to the tuples in Tables 6.6 and 6.7 and those tuples are included

in db(S).

To see the instance db(S) is finite, consider the following: the computation S is halt-

ing, so the number of configurations in S is finite. Each configuration S(i) is mapped

to |S(i)| + 2 tuples, so the db(S).Config and db(S).Next tables each have a finite num-

ber of tuples. We do not add any tuples in db(S).Error, so db(S).Error is empty by

construction. Each table in db(S) is finite, so db(S) is finite.

Now we show db(S) satisfies Rules(M). We do this by showing db(S) satisfies each

rule in Rules(M). The construction of db(S) directly includes the tuples required by the

initial configuration rules as the tuples mapped from S(0). For the normal transition left

rule, assume db(S) satisfies the body of the rule with tuples Next(x, y), Config(x−1, c, ),

Config(x, a, s), and Config(x+ 1, c′, ).

Because the indices in the Config events are consecutive, they are created by some

configuration S(i) in S. Because the transition rule requires that the state s is not
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db(S).Config

index tape state

j #

j + 1 S(i).tape[1] q0

j + 2 S(i).tape[2] q0

... ... ...

j + |S(i)|+ |S(i+ 1)|+ 1 #

Table 6.4: Tuples in db(S).Config from S(i)

db(S).Next

index next

j + |S(i)|+ 1 j + |S(i)|+ |S(i+ 1)|+ 2

j + |S(i)|+ 2 j + |S(i)|+ |S(i+ 1)|+ 3

... ...

Table 6.5: Tuples in db(S).Next from S(i)

halting, there is a configuration S(i+ 1) following S(i). Because S(i) and S(i+ 1) obey

the Turing machine’s transition function, S(i + 1) will have symbol c is at index y−1,

symbol b at index y, and symbol c′ at index y + 1 on its tape, and the read-head of

the machine will be at index y−1 with state s′. Additionally, S(i) maps to a tuple in

Config with index x so in db(s), Next contains the tuple (x−1, y−1). Then, S(i + 1) is

mapped to the tuples Config(y−1, c, s′), Config(y, b, ), and Config(y + 1, c′, ), as well

as Next(x + 1, y + 1), Next(x, y), and Next(x + 2, y + 2) in db(S). Then, db(S) contain

the tuples expected by the head of the rule for the assumed tuples.

For the erring transition left rule: Because S is a valid computation in M , there are
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db(S).Config

index tape state

j + |S(i)|+ 1 #

j + |S(i)|+ 2 S(i+ 1).tape[1]

... ... ...

j + |S(i)|+ |S(i+ 1)|+ 2 #

Table 6.6: Tuples in db(S).Config from S(i+ 1)

db(S).Next

index next

j + |S(i)|+ 1 j + |S(i)|+ |S(i+ 1)|+ 2

j + |S(i)|+ 2 j + |S(i)|+ |S(i+ 1)|+ 3

... ...

j + |S(i)|+ |S(i+ 1)|+ 2 j+|S(i)|+|S(i+1)|+|S(i+2)|+3

(+4 if S(i+2) extends the tape)

Table 6.7: Tuples in db(S).Next from S(i+ 1)

no movements of the read-head to the left of the left end of the non-blank tape, so tuples

reflecting such a transition will not be inserted into db(S). Then, the body of this rule

will never be triggered, so this rule is vacuously satisfied.

For the normal transition right right, the reasoning is identical to that of the nor-

mal transition left rule, but with Config(y−1, c1, ) and Config(y + 1, c2, s
′) instead of

Config(y−1, c1, s2) and Config(y + 1, c2, ). For the extending transition right rule, the

reasoning is identical to that of the normal transition right rule, but with Next(x+1, y+2)

and Next(x+ 2, y + 3) instead of Next(x+ 1, y + 1) and Next(x+ 2, y + 2). For the stay
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rule, the reasoning is identical to that of the normal transition right rule, but with

Config(y−1, c1, ) and Config(y, b, s′) instead of Config(y−1, c1, ) and Config(y, b, ).

For the copy rule, assume db(S) satisfies the body of the copy rule with tuples

Next(x, y), Config(x−1, c′′, ), Config(x, c, ), and Config(x + 1, c′′, ). Let S(i) be the

configuration in S that maps to these tuples in db(S). If S(i) creates the tuple in

db(S).Config with x and db(S).Next contains (x−1, y−1), then (x, y) and (x+ 1, y + 1)

are corresponding tape positions in S(i) and S(i + 1). Because S(i) and S(i + 1) are

consecutive configurations in S, c will appear at tape position y in S(i + 1). By con-

struction, db(S) will contain the tuples Config(y, c) and Next(x + 1, y + 1). Then the

tables db(S).Config and db(S).Next will contain the tuples expected by the rule for these

tuples.

Now we show the instance db(S) satisfies the rules regarding the Error table. Because

no tuple is added to the Error table in the construction of db(S), the propagate error

rule is vacuously satisfied.

For the erring transition left rule, S is a valid computation in M , so there are no

transitions to the left of the left end of the non-blank tape, so the body of this rule is

never triggered, so this rule is vacuously satisfied.

For the same index, different symbols error rule, In the construction of db(S), each

index used in db(S).Config corresponds to one non-blank tape cell in exactly one config-

uration in S or to the left-end and respectively right-end blank tape cell in consecutive

configurations in S. Then, for each index in db(S).Config associated with a non-blank

symbol, there is exactly one tape cell that generates a tuple with that index, so the tape

symbol will be unique. In the case that the index is associated with a blank symbol from

the left-end and right-end of the tape in consecutive configurations, the tape symbol is

the blank symbol, so the tape symbol associated with the index is unique.

For the same index, different states error rule, in the construction of db(S), each index
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used in db(S).Config corresponds to one non-blank tape cell in exactly one configuration

in S or to the left-end and respectively right-end blank tape cell in consecutive config-

urations in S. Then, for each index in db(S).Config associated with a state, there is

exactly one tape cell that generates a tuple with that index, meaning the tape symbol

will be unique. In the case that the index is associated with a blank symbol from the

left-end and right-end of the tape in consecutive configurations, the state symbol is the

blank symbol, so the state associated with the index is unique.

The above cases show that db(S) satisfies every rule in Rules(M). This, along with

the fact that db(S) is finite, shows there is a finite instance satisfying Rules(M). This

concludes the proof of the ⇐ direction.

Now we show if Rules(M) is finitely satisfiable, then M has a halting computation

on the empty-tape. We do this by constructing a computation S in M from a finite

instance I satisfying Rules(M).

Claim B: If Rules(M) is finitely satisfiable, M has a halting computation on the

initial empty-tape.

Proof: Assume Rules(M) is finitely satisfiable. Then, there is a finite instance I

that satisfies Rules(M). Because I satisfies Error(x) → Error(x + 1) and I is finite,

no error rules are not triggered by I. Then, the table I.Error is empty. Then, the same

index, different symbols and same index, different states rules are not triggered by I.

Then, every index in I.Config is paired with at most one state and at most one tape

symbol.

In the following, we show I encodes a halting computation of M by showing consec-

utive sets of tuples in I correspond to consecutive configurations in a computation in

M .

Let tm be a mapping from sets of consecutive tuples in I to configurations of M . For

each set of consecutive tuples in I.Config with indices [i, i+k] such that indices i−1 and

i+ k + 1 have # in the tape column and no other indices in [i, i+ k] have # in the tape
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column, let tm(i, i+ k) be the configuration of M such that

• the tape contents are the sequence of symbols in the tape column, ordered by the

indices

• the read-head position is the position on the tape (relative to i) of the state symbol

that is not “-” in the state column

• the machine state is the state symbol that is not “-” in the state column

Now we show that I is a valid computation in M . Let tm(i, j) be a configuration

of M that does not have a halting state and I contain Next(i, j) and Next(i+ 1, j + 1).

We show that for some k > j, tm(i, j) and tm(j, k) are consecutive configurations in a

computation of M and I contains Next(j, k) and Next(j + 1, k + 1). Let i + w be the

position of the machine’s state in tuples with indices in the range [i, j]. There are two

cases of i+ w.

Case 1: i + w = i + 1, i.e., the tuple in I.Config with index i + 1 has a machine

state. Because tm(i, j) is not halting, there is a configuration of M following tm(i, j).

Then, one of the transition rules applies with x = i+ 1 and I contains Next(i+ 1, j+ 1),

Next(i + 2, j + 2), and Next(i + 3, j + 3) (or Next(i + 3, j + 4) in the case that the

extending right transition rule applies). Then, the copy rule can be applied with index

pairs (x = i + 3, y = j + 3). Then, the copy rule can be applied with index pairs

(x = i + 4, y = j + 4), . . . , (x = j−1, y = k) for some k because if the copy rule applies

with i + 2, the copy rule requires that Next(i + 3, j + 3) be present, which will trigger

the copy rule with i+ 4 unless a non-“-” state appears. In this case, the machine’s state

for tm(i, j) is at index i+ 1, so the next non-“-” state for not until at least j + 1. Then,

the copy rule copes all tuples with indices in the range [i + 3, j] in Config, along with

Next(j, k) and Next(j + 1, k + 1) for some k.

Case 2: i + w > i + 1, i.e., the tuple in I.Config with index i + 1 does not have a

machine state. Then, the copy rule applies to tuples with (x, y) values: (x = i + 1, y =
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j+1), (x = i+2, y = j+2), ...(x = i+w−2, y = j+w−2), because each time the copy rule

applies with some (x = a, y = b), the copy rule requires the presence of Next(a+1, b+1).

This ensures the copy rule is triggered for the value a+ 1 unless a non-“-” state appears

in the tuple with index a + 2. In this case, the next non-“-’ ’state is in the tuple with

index i+ w. Then the Next table must have the row Next(i+ w−1, j + w−1). Because

the tuple with index i + w contains a state and I contains Next(i + w−1, j + w−1), a

transition rule can be applied.

There is a configuration of M following tm(i, j). Then one of the transition rules is

triggered with x = i+w, ensuring the tuples with indices i+w−1, i+w, and i+w+1, are

mapped to the appropriate symbols and state in tuples with indices j+w+ 1, j+w+ 2,

and j+w+3 in Config. Finally, applying the transition rule with x = i+w requires the

instance to have Next(i+w, j+w) and Next(i+w+1, j+w+1), and Next(i+w+2, j+w+2)

(or Next(i+ w + 2, j + w + 3), if the extending right transition rule applies). Then, the

copy rule applies with x = i+w+ 2, x = i+w+ 3, . . . , x = j +w−1, because when the

copy rule applies with x, the tuple Next(x+ 1, y+ 1) must be present, ensuring that the

copy rule is triggered with x + 1 unless a non-“ ” state appears. In this case, the first

non-“-” state is no earlier than the tuple in Config with index j + w.

Given that I encodes a computation of M , we show that this computation is finite and

halting. For sake of contradiction, assume that M does not have a halting computation

on the empty-tape. We show that this implies I is infinite, which contradicts the fact

that I is finite.

BecauseM does not have a halting computation on the empty-tape, there is an infinite

monotonically increasing sequence K of indices in I.Config such that tm(k(i), k(i + 1))

is a configuration in a computation of M on the empty-tape and I contains Next(k(i +

1), k(i + 2)) and Next(k(i + 1) + 1, k(i + 2) + 1). We prove this by strong induction on

the index i.
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Base Case: Let k(1) = 0, k(2) = 2. Because I satisfies Rules(M), the Config table

in I satisfies the Initialization rule. Then, tm(0, 2) corresponds to the initial configuration

to M on the empty-tape and I contains Next(0, 2) and Next(1, 3).

Inductive Hypothesis: Assume there are some indices k(i), k(i+1) such that tm(k(i),

k(i + 1)) is a configuration in a computation of M on the empty-tape and I contains

Next(k(i+ 1), k(i+ 2)) and Next(k(i+ 1) + 1, k(i+ 2) + 1).

With the assumption that tm(k(i), k(i + 1)) does not have a halting state, we know

there is some k′ such that tm(k(i + 1), k′) follows tm(k(i), k(i + 1)) and I contains

Next(k(i + 1), k′) and Next(k(i + 1) + 1, k′ + 1). Let k(i + 2) = k′. Then, I has a tuple

for each element of the infinite monotonically increasing sequence K, so I is infinite.

This contradicts the assumption that I is finite. Then, we conclude M has a halting

computation on the empty-tape. This concludes the proof of the ⇒ direction.

This concludes both directions of logical implication. Theorem 6.3 follows from the

undecidability of the empty-tape halting problem [79] and this reduction from the empty-

tape halting problem is reduced to the finite satisfiability problem for rules. In the next

section, the encoding is shown to hold when Datalog+ is limited to only one integer

attribute.

6.3 Datalog+ with One Integer Attribute

It is natural to ask whether the undecidability result holds for events with one in-

teger attribute, as an increasing number of integer attributes suggests an increase in

the scale or complexity of enactments and sets of rules. In this section, we show that

finite satisfiability for Datalog+ rules with exactly one integer attribute is undecidable,

by showing all events in the encoding Rules(M) can be simulated with events with one

integer attribute. Then, the proof of Theorem 6.1 holds with this restriction.
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Theorem 6.4 : Finite satisfiability for a set of Datalog+ rules with one integer attribute

is undecidable.

Proof: Given Theorem 6.3, it is sufficient to show Theorem 6.4 by showing that

Config, Next, and Error can be simulated with event types with one integer attribute.

The simulation works as follows: let X(a1, . . . , an) be an event types with n attributes

Then, we can create n new event types X1, X2, . . . , Xn, each with one integer attribute.

The integer attribute of Xi is ai; note that a data attribute ai in X can be simulated by

an integer attribute in Xi, as the integers have the same cardinality as the data domain,

as well as the equality and non-equality predicates. The second attribute of each Xi is a

new data attribute join, which is used to join the Xi’s to simulate the X event type. We

show how each of the four event types in Rules(M) is simulated by this encoding.

Recall that the Config event type has three attributes: index, tape, and state. Then,

we can simulate Config events using the following three event types with the new at-

tribute join: C1(index, join), C2(tape, join), and C3(state, join). Then, each event atom

Config(x, t, s) in a rule in Rules(M) is replaced with C1(x, i), C2(t, i), C3(s, i), where

i is a fresh variable in each replacement of a Config atom. Similarly, Next(index, next)

can be simulated with event types Next1(index, join) and Next2(next, join). For rules

with more than one Config or Next atom, we use different variables i1, i2, . . . for the

join attribute for each replacement and include non-equality atoms between these join

variables. For example, the copy rule:

Config(x−1, c′, ), Config(x, c, ), Config(x+ 1, c′′, ), Next(x, y)

→ Config(y, c, ), Next(x+ 1, y + 1)
(6.10)
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becomes

Config1(x−1, i1), Config2(c′, i1), Config3( , i1),

Config1(x, i2), Config2(c, i2), Config3( , i2),

Config1(x+1, i3), Config2(c′′, i3), Config3( , i3),

Next1(x, i4), Next2(y, i4)

→ Config1(y, i5), Config2(c, i5), Config3( , i5),

Next1(x+1, i6), Next2(y+1, i6)

(6.11)

Finally, note that the Error event type already has one integer attribute and no data

attributes, so it is trivial to simulate.

Given a Turing machine M , we can construct a set of rules using the new event types.

Because the new event types simulate the original tuples in Rules(M), the proof of

Theorem 6.3 applies.

6.4 Proof of Theorem 6.1

It remains to be shown that the undecidability of finite satisfiability for Datalog+ indi-

cates the same result for the original rule language, completing the proof of Theorem 6.1.

The previous section proves undecidability for Datalog+ with one integer attribute, so

it is sufficient to show that there is a mapping from this language to the original rule

language that preserves finite satisfiability. We show this mapping exists in Lemma 6.5.

Lemma 6.5 : Let R be a set of rules in Datalog+ with one integer attribute. There is a

set R′ of constraints rule that is finitely satisfiable if and only if R is finitely satisfiable.

Proof: Without loss of generality, let E(d1, . . . , dn, t) be an event type in R, where

t is the integer attribute. Note that this event type generates events with exactly one

timestamp. Then, there is an equivalent event type E(d1, . . . , dn) for rules as events for E
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have a timestamp, e.g., E(Alice)@10, and event atoms for E have a timestamp variable,

e.g., E(x, y, z)@t. Thus, E(d1, . . . , dn, t) in Datalog+ and E(d1, . . . , dn) in rules generate

identical events and have identical event atoms, modulo timestamp syntax. Then, to

build R′, replace each event atom E(a1, . . . , an, t) in R with E(a1, . . . , an)@t, producing

a rule that is satisfied by the same instances as R. Thus, R is finitely satisfiable if and

only if R′ is finitely satisfiable.

Then, the undecidability of finite satisfiability for a set of Datalog+ rules with one

integer attribute implies the same result for a set of rules.

6.5 Related Work

Finite satisfiability for first-order formulas, a superclass of rules, is undecidable, which

can also be proven by reduction from the halting problem for empty-tape Turing machines

[80]. A problem on bounding the depth of recursion for Datalog programs is also shown

to be undecidable by reduction from Turing machines [81]. Reference [82] indicates

undecidability of finite satisfiability for source-to-target tuple-generating dependencies,

a class of formulas similar to rules where a partition exists between event types that

appear in the body and event types that appear in the head. Deciding finite satisfiability

for rules is similar to deciding the implication problem for constrained tuple-generating

dependencies, for which chase techniques have been applied [83,84].

6.6 Chapter Summary

In this chapter, we showed that the general problem of early violation detection for

a set of rules is impossible, given the undecidability of finite satisfiability. It remains to

be seen if finite satisfiability for rules with additional restrictions, such as using fewer

data attributes, is still unsolvable. The chained encoding of the Turing machine tape
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and successive potentially-infinite configurations suggests a similar reduction with only

unary event types is not possible.
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Chapter 7

Conclusion

Driven by the demand for efficient and effective monitoring of event streams, we investi-

gate early violation detection for business rules. Enforcing these constraints at runtime,

rather than at design-time, allows enables the enforcement of business rules in event-

based systems, while avoiding intractable design-time analysis. In this dissertation, we

show that early violation detection for sets of rules is unsolvable in general, indicating

that more research is needed to identify tractable cases. We also contribute algorithms

to solve restricted cases of the early violation detection problem, relying on techniques

from business process management, automated reasoning, and database systems. We

study the translation of dataless rules to LTL formulas, improving the output size of the

best known translation for two subclasses of rules. We consider the problem for individ-

ual rules and acyclic sets of rules with data, applying a chase process and satisfiability

testing, then add aggregation functions on time windows to the rule language. These

techniques are novel in their application to early violation detection, especially in the

context of quantitative time constraints and incremental monitoring of event streams.

More work is needed to understand violation detection problems. This includes the

study of richer classes of temporal constraints, beyond the gap constraints considered in

this dissertation. Additionally, rules lack some features common in natural language and
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compliance regulations that may be useful in modeling real-world constraints, e.g., nega-

tion for modeling the absence of events and disjunction for modeling choice or multiple

possibilities. More work is needed to determine how these features affect the complexity

of the early violation detection problem.

Also, our techniques consider only perfect data and whether or not a violation is

certain. Realistic event streams may also contain some noise and uncertainty, so reporting

violations probabilistically and relaxing assumptions about the event stream’s quality,

e.g., allowing out-of-order events, deserve further study. Finally, the undecidability proof

suggests that the border between solvable and unsolvable problems can be made sharper

with respect to the number and type of event attributes. In summary, our insights

improve the understanding of the early violation detection problem and may guide the

design of rule monitors for event-based systems, but more work is needed to understand

the full range of effective early violation detection.
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