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METHOD Open Access

ROP: dumpster diving in RNA-sequencing
to find the source of 1 trillion reads across
diverse adult human tissues
Serghei Mangul1,2*, Harry Taegyun Yang1, Nicolas Strauli3, Franziska Gruhl4,5, Hagit T. Porath6, Kevin Hsieh1,
Linus Chen7, Timothy Daley8, Stephanie Christenson9, Agata Wesolowska-Andersen10, Roberto Spreafico2,
Cydney Rios10, Celeste Eng11, Andrew D. Smith8, Ryan D. Hernandez12,13,14, Roel A. Ophoff15,16,17,
Jose Rodriguez Santana18, Erez Y. Levanon6, Prescott G. Woodruff9, Esteban Burchard22, Max A. Seibold19,20†,
Sagiv Shifman21†, Eleazar Eskin1,16† and Noah Zaitlen9*†

Abstract

High-throughput RNA-sequencing (RNA-seq) technologies provide an unprecedented opportunity to explore the
individual transcriptome. Unmapped reads are a large and often overlooked output of standard RNA-seq analyses.
Here, we present Read Origin Protocol (ROP), a tool for discovering the source of all reads originating from complex
RNA molecules. We apply ROP to samples across 2630 individuals from 54 diverse human tissues. Our approach can
account for 99.9% of 1 trillion reads of various read length. Additionally, we use ROP to investigate the functional
mechanisms underlying connections between the immune system, microbiome, and disease. ROP is freely available
at https://github.com/smangul1/rop/wiki.

Background
Advances in RNA-sequencing (RNA-seq) technology
have provided an unprecedented opportunity to explore
gene expression across individuals, tissues, and environ-
ments [1–3] by efficiently profiling the RNA sequences
present in a sample of interest [4]. RNA-seq experiments
currently produce tens of millions of short read subse-
quences sampled from the complete set of RNA tran-
scripts that are provided to the sequencing platform. An
increasing number of bioinformatic protocols are being
developed to analyze reads in order to annotate and
quantify the sample’s transcriptome [5–7]. When a refer-
ence genome sequence or, preferably, a transcriptome of
the sample is available, mapping-based RNA-seq analysis
protocols align the RNA-seq reads to the reference

sequences, identify novel transcripts, and quantify the
abundance of expressed transcripts.
Unmapped reads, the reads that fail to map to the hu-

man reference, are a large and often overlooked output
of standard RNA-seq analyses. Even in carefully exe-
cuted experiments, the unmapped reads can comprise a
substantial fraction of the complete set of reads
produced; for example, approximately 9–20% of reads
remain unmapped in recent large human RNA-seq pro-
jects [8–10]. Unmapped reads can arise due to technical
sequencing artifacts that were produced by low quality
and error prone copies of the nascent RNA sequence be-
ing sampled [11]. A recent study by Baruzzo et al. [12]
suggests that at least 10% of the reads simulated from
human references remain unmapped across 14 contem-
porary state-of-the art RNA aligners. This rate may be
due to shortcomings of the aligner’s efficient yet heuris-
tic algorithms [13]. Reads can also remain unmapped
due to unknown transcripts [14], recombined B and T
cell receptor sequences [15, 16], A-to-G mismatches
from A-to-I RNA editing [17], trans-splicing [18], gene
fusion [19], circular RNAs [20], and the presence of
non-host RNA sequences [21] (e.g. bacterial, fungal, and
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viral organisms). Unmapped reads represent a rich re-
source for the study of B and T cell receptor repertoires
and the human microbiome system—without incurring
the expense of additional targeted sequencing. Studies of
B and T cell repertoires produce results key to under-
standing the response of adaptive immunity during
health and disease.
In this work, we report the development of a compre-

hensive method that can characterize the origin of un-
mapped reads obtained by RNA-seq experiments.
Analyzing unmapped reads can inform future develop-
ment of read mapping methods, provide access to add-
itional biological information, and resolve the irksome
puzzle of the origin of unmapped reads. We developed
the Read Origin Protocol (ROP), a multi-step approach
that leverages accurate alignment methods for both host
and microbial sequences. The ROP tool contains a com-
bination of novel algorithms and existing tools focused
on specific categories of unmapped reads [15, 21–24].
The comprehensive analytic nature of the ROP tool pre-
vents biases that can otherwise arise when using stand-
ard targeted analyses. ROP offers a flexible interface to
customize the computational tools used in the protocol.
Instructions on how to customize the tools are provided
as part of the ROP tutorial.

Results and Discussion
ROP: a computational protocol to explain unmapped reads
in RNA-seq
Mapping-based RNA-seq analysis protocols overlook
reads that fail to map onto the human reference
sequences (i.e. unmapped reads). We designed a ROP
that identifies the origin of both mapped and unmapped
reads (Fig. 1). The protocol first identifies human reads
by using a standard high-throughput mapping algorithm
to map them onto a reference genome and transcrip-
tome [25]. We used TopHat v. 2.0.12 with ENSEMBL
GRCh37 transcriptome and hg19 build, but many other
mapping tools are available and have recently been
reviewed [12]. After alignment, reads are grouped into
genomic (e.g. CDS, UTRs, introns) and repetitive (e.g.
SINEs, LINEs, LTRs) categories. The rest of the ROP
protocol characterizes the remaining unmapped reads,
which failed to map to the human reference sequences.
The ROP protocol effectively processes the unmapped

reads in seven steps. The pairing information of the un-
mapped reads is disregarded and each read from the pair
is counted separately. First, we apply a quality control
step to exclude low-quality reads, low-complexity reads,
and reads that match ribosomal DNA (rDNA) complete
repeating unit among the unmapped reads (FASTQC
[26], SEQCLEAN [https://sourceforge.net/projects/seq
clean/]). Next, we employ Megablast [27], a more sensi-
tive alignment method, to search for human reads

missed due to heuristics implemented for computational
speed in conventional aligners and reads with additional
mismatches. These reads typically include those with
mismatches and short gaps relative to the reference set,
but they can also include perfectly matched reads.
Hyper-editing pipelines recognize reads with excessive
(“hyper”) editing, which are usually rejected by standard
alignment methods due to many A-to-G mismatches
[17]. We use a database of repeat sequences to identify
lost repeat reads among the unmapped reads. Megablast,
and similar sensitive alignment methods, are not de-
signed to identify “non-co-linear” (NCL) RNA [22] reads
from circular RNAs (circRNAs), gene fusions, and trans-
splicing events, which combine a sequence from distant

Fig. 1 Schematic of the ROP. Human reads are identified by
mapping all reads onto the reference sequences using a standard
high-throughput mapping algorithm. ROP protocol categorizes
mapped reads into categories of genomic (red colors) and repetitive
(green colors) reads. Unmapped reads that fail to map are extracted
and further filtered to exclude low-quality reads, low-complexity
reads, and reads from ribosomal DNA (rDNA) (grey color). ROP
protocol is able to identify unmapped reads aligned to human
references with use of a more sensitive alignment tool (lost human
reads: red color), unmapped reads aligned to human references with
excessive (“hyper”) editing (hyper-edited RNAs: cyan color),
unmapped reads aligned to the repeat sequences (lost repeat
elements: green color), unmapped reads spanning sequences from
distant loci (non-co-linear: orange color), unmapped reads spanning
antigen receptor gene rearrangement in the variable domain (V(D)J
recombination of B cell receptor and T cell receptor: violet color),
and unmapped reads aligned to the microbial reference genomes
and marker genes (microbial reads: blue color)
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elements. Similarly, reads from B cell receptor (BCR)
and T cell receptor (TCR) loci, which are subject to
recombination and somatic hyper-mutation (SHM), re-
quire specifically designed methods. For this case, we
use IgBlast [28]. The remaining reads that did not map
to any known human sequence are potentially microbial
in origin. We use microbial genomes and phylogenetic
marker genes to identify microbial reads and assign
them to corresponding taxa [29]. Microbial reads can be
introduced by contamination or natural microbiome
content in the sample, such as viral, bacterial, fungi, or
other microbial species [30].
Taken together, ROP considers six classes of un-

mapped reads: (1) lost human reads; (2) hyper-edited
reads; (3) lost repeat elements; (4) reads from NCL
RNAs; (5) reads from the recombination of BCR and
TCR segments (i.e. variable (diversity) joining [V(D)J] re-
combination); and (6) microbial reads. Previously pro-
posed individual methods do examine some of these
classes [15, 21–24]. However, we find that performing a
sequential analysis, in the order described above, is crit-
ical for minimizing misclassification of reads due to
homologous sequences between the different classes.
Given short read length, a read may be mapped to mul-
tiple ROP categories with the same score. For example,
viral genomes contain regions homologous to human se-
quences (viral DNA present in human genome) [31].
This may cause human reads to be mapped onto a viral
genome. We therefore filter human reads before map-
ping reads onto viral genomes in order to be maximally
conservative when assigning reads to microbial species.
Furthermore, as shown in the “Results” section below,
only a comprehensive analysis allows comparison across
these classes. Complete details of ROP, including all
parameters and thresholds used, are provided in the
Additional file 1: Supplementary Methods.

Validation of accuracy of ROP’s read assignments
To demonstrate the accuracy of ROP’s read assignment,
we simulated RNA-seq data as a mixture of transcrip-
tomic, repeat, immune, and microbial reads (Additional
file 1: Supplementary Methods). We first map the RNA-
seq reads using TopHat2 (v2.1.1) aligner. TopHat2 was
able to map 75.1% of transcriptomic reads. In addition to
transcriptomic reads, it mapped 59.9% of repeat reads and
80.7% of immune reads (Additional file 2: Table S1a). We
consider categorizing repeat and immune reads as human
reads by TopHat2 or lost human reads by ROP as correct
assignment, due to the presence of repeat sequences and
immune genes in the human genome. Running ROP on
unmapped reads identified additional 23.4% of transcrip-
tomic reads; additional 39.2% of repeat reads; additional
12.3% of immune reads; and 100% of microbial reads.
Altering the order of steps executed by ROP analysis

resulted in 3.0% of repeat reads and 0.01% of transcrip-
tomic reads to be reclassified as microbial (Additional
file 2: Table S1b–d). Immune reads spanning V(D)J re-
combinations may not sufficiently overlap V and J genes
for a reliable identification and 7.7% of those reads were
missed by the ROP protocol.
In additional to simulated data, we have used TCRB-

seq data prepared from three samples of kidney renal
clear cell carcinoma (KIRC) by Li et al. [32] to demon-
strate the assignment accuracy of immune reads. We
downloaded matching RNA-seq samples from the TCGA
portal. In total, we obtained 301 million 2 × 50-bp reads
from three RNA-seq samples. We considered the recom-
binations of V and J genes obtained from TCRB-seq as
the total immune repertoire. On average, ROP is able to
capture 4.3% of total immune repertoire. All T cell re-
ceptor recombinations detected by ROP were confirmed
by TCRB-seq (Additional file 2: Table S2). Complete de-
tails of simulated and real data, including all parameters
and reference databases used, are provided in Additional
file 1: Supplementary Methods, and the raw reads are
available at https://smangul1.github.io/recycle.RNA.seq/.

The ROP protocol is able to account for 99.9% of all reads
To test ROP, we applied it to 1 trillion RNA-seq reads
across 54 tissues from 2630 individuals. The data were
combined from three studies: (1) in-house RNA-seq data
(n = 86) from the peripheral blood, nasal, and large air-
way epithelium of asthmatic and control individuals
(S1); (2) multi-tissue RNA-seq data from Genotype-Tis-
sue Expression (GTEx v6) from 53 human body sites
[33] (n = 8555) (S2); and (3) randomly selected RNA-
seq samples from the Sequence Read Archive (SRA)
(n = 2000) (S3). The 2000 SRA RNA-seq samples are
listed in Additional file 3: Table S3. Unless otherwise
noted, we reported the percentage of reads averaged
across three datasets.
RNA-seq data obtained from the three sources repre-

sent a large collection of tissue types and read diversity.
We selected these three sources to most accurately
model the precision and broad applicability of ROP. The
in-house RNA-seq data were collected from 53 asth-
matic individuals and 33 control individuals. RNA-seq li-
braries were prepared from total RNA with two types of
RNA enrichment methods: (1) poly(A) enrichment li-
braries, applied to RNA from peripheral blood and nasal
epithelium (n = 38); and (2) ribo-depletion libraries, ap-
plied to RNA from large airway epithelium (n = 49). The
GTEx dataset was derived from 38 solid organ tissues,
11 brain subregions, whole blood, and three cell lines
across 544 individuals. Randomly selected SRA RNA-seq
samples included samples from whole blood, brain, vari-
ous cell lines, muscle, and placenta. Length of reads
from in-house data was 100 bp, read length in GTEx
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data was 76 bp, read length in SRA data was in the
range of 36–100 bp. In total, 1 trillion reads (97 Tbp)
derived from 10,641 samples were available for ROP
(Additional file 1: Supplementary Methods and
Additional file 2: Table S4). For counting purposes, the
pairing information of the reads is disregarded and each
read from a pair is counted separately.
We used standard read mapping procedures to obtain

mapped and unmapped reads from all three data
sources. Read mapping for GTEx data was performed by
the GTEx consortium using TopHat2 [25]. Following
the GTEx consortium practice, we used TopHat2 to
map reads from in-house and SRA studies. ROP proto-
col allows user to map the reads with their RNA-seq
aligner of choice. High-throughput mapping using
TopHat2 [25] recovered 83.1% of all reads from three
studies (Fig. 2a), with the smallest fraction of reads
mapped in the SRA study (79% mapped reads). From
the unmapped reads, we first excluded low-quality/low-
complexity reads and reads mapping to the rDNA re-
peating unit, which together accounted for 7.0% and
2.4% of all reads, respectively (Fig. 2b). We were then
able to align unmapped reads to human reference
sequences (5.7% of all reads, Fig. 2c) and identify “hyper-
edited” reads (0.1% of all reads Fig. 2d). We then refer-
enced repeat sequences (0.2% of all reads, Fig. 2d), reads
identified as NCL RNAs (circRNAs, gene fusion, or
trans-splicing) (0.3% of all reads, Fig. 2e), and reads
mapped to recombined BCRs and TCRs (0.02% off all
reads, Fig. 2f ). The remaining reads were mapped to the
microbial sequences (1.4% off all reads, Fig. 2g). Follow-
ing the seven steps of ROP, the origins of 99.9% of reads
were identified. The genomic profile of unmapped reads
for each dataset is separately reported in Additional file 2:
Table S5. Uncategorized reads from SRA samples are
freely available at https://smangul1.github.io/recycle.RNA.
seq/. This resource allows the bioinformatics commu-
nity to further increase the number of reads with known
origin.

The ROP protocol identifies lost human reads
Some human reads may remain unmapped due to the
heuristic nature of high-throughput aligners [12, 13]. As
shown by Baruzzo et al., even the best performing RNA-
seq aligners fail to map at least 10% of reads simulated
from the human references. We used the slower and more
sensitive Megablast aligner on this subset of unmapped
reads. This method allows us to filter an additional 5.7%
of human reads. One-fourth of the lost human reads are
within the TopHat2 threshold (edit distance ≤ 2). Other
reads missed by contained additional mismatches and/or
short gaps (Additional file 4: Figure S1).
Using both mapped and unmapped reads across the

studies, we classified on average 7.5% of the RNA-seq

reads as repetitive sequences originated from various re-
peat classes and families (Additional file 4: Figure S2).
We observe Alu elements to have 33% relative abun-
dance, which was the highest among all the repeat
classes. Among DNA repeats, hAT-Charlie was the most
abundant element with 50% relative abundance
(Additional file 4: Figure S3). Among SVA retrotranspo-
sons, SVA-D was the most abundant element with 50%
relative abundance (Additional file 4: Figure S4). Con-
sistent with repEnrich [34], when using in-house data,

Fig. 2 Genomic profile of unmapped reads across 10,641 samples
and 54 tissues. Percentage of unmapped reads for each category is
calculated as a fraction from the total number of reads. Bars of the
plot are not scaled. Human reads (black color) are mapped to the
reference genome and transcriptome via TopHat2. Unmapped reads
are profiled using the seven steps of ROP protocol, described below.
(1) Low quality/low-complexity (light brown) and reads matching
rDNA repeating unit (dark brown) were excluded. (2) ROP identifies lost
human reads (red color) from unmapped reads using a more sensitive
alignment. (3) Hyper-edited reads are captured by hyper-editing the
pipeline proposed in [17]. (4) ROP identifies lost repeat sequences
(green color) by mapping unmapped reads onto the reference repeat
sequences. (5) Reads arising from trans-spicing, gene fusion, and circRNA
events (orange color) are captured by a TopHat-Fusion and
CIRCexplorer2 tools. (6) IgBlast is used to identify reads spanning
B and T cell receptor gene rearrangement in the variable
domain (V(D)J recombinations) (violet color). (7) Microbial reads
(blue color) are captured by mapping reads onto the microbial
reference genomes
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we observe the differences in proportions of L1 and Alu
elements between poly(A) and ribo-depletion libraries.
Among the repeat reads, poly(A) samples have the highest
fraction of reads mapped to Alu elements and ribo-
depleted samples have the highest fraction mapped to L1
elements (Additional file 4: Figure S5). Among the GTEx
tissues, testis showed significantly higher expression of
SVA F retrotransposons compared to other GTEx tissues
(p = 2.46 × 10− 33) (Additional file 4: Figure S6). Further-
more, we observe high co-expression of Alu elements and
L1 elements across GTEx tissues (R2 = 0.7615) (Additional
file 4: Figure S7).

ROP identifies hyper-edited reads
Using standard read mapping approaches, some human
reads may remain unmapped due to “hyper editing.” An
extremely common post-transcriptional modification of
RNA transcripts in human is adenosine-to-inosine (A-
to-I) RNA editing [35]. We define a read as hyper-edited
if the number of A-to-G mismatches exceeds 5% of its
length. Adenosine deaminases acting on RNA (ADARs)
proteins can modify a genetically encoded A into an
inosine I. I is read by the cellular machinery as a guano-
sine (G), and, in turn, sequencing of I results in G where
the corresponding DNA sequencing reads A. Current
methods to detect A-to-I editing sites identify such A-
to-G mismatches using the alignment of RNA-seq reads
to the genome. Reads with excessive (“hyper”) editing
are usually rejected by standard alignment methods. In
this case, many A-to-G mismatches obscure the genomic
origin of these reads.
We have identified hyper-edited reads by using the

pipeline proposed in Porath et al. [17]. This hyper-
editing pipeline transforms all As into Gs, in both the
unmapped reads and the reference genome. Next, the
pipeline realigns the transformed RNA-seq reads and
the transformed reference genome. The method then re-
covers original sequences and searches for dense clusters
of A-to-G mismatches.
A total of 201,676,069 hyper-edited reads were identi-

fied across all samples from the three studies. As a con-
trol for the detection, we calculated the prevalence of all
six possible nucleotide substitutions and found that
79.9% (201,676,069/252,376,867) of the detected reads
were A-to-G mismatches (Additional file 4: Figure S8).
The in-house RNA-seq samples have an even higher
(96.1%) rate of A-to-G mismatches. This massive over-
representation of mismatches strongly suggests that
these reads resulted from ADAR mediated RNA editing.
In addition, we found that the nucleotide sequence con-
text of the detected editing sites complies with the typ-
ical sequence motif of ADAR targets (Additional file 4:
Figure S9) supports the identification of the sites as true
products of editing by ADAR.

The ROP protocol complements transcriptome profiling
by non-co-linear RNAs
The ROP protocol is able to detect NCL reads via
TopHat-Fusion [36] and CIRCexplorer2 [37] tools from
three classes of events: (1) reads spliced distantly on the
same chromosome supporting trans-splicing events; (2)
reads spliced across different chromosomes supporting
gene fusion events; and (3) reads spliced in a head-to-
tail configuration supporting circRNAs. On average, we
observed 816 trans-splicing events, 7510 fusion events,
and 930 circular events per individual sample supported
by > 1 read. Over 90% of non-co-linear events were
supported by fewer than ten samples (Additional file 4:
Figure S10). We used a liberal threshold, based on num-
ber of reads and individuals, because our interest is the
mapping of all reads. However, a more stringent cut off
is recommended for confident identification of NCL
events, especially in clinical settings.
Based on the in-house RNA-seq data, we observe that

the library preparation technique strongly affects the
capture rate of NCL transcripts. To compare the num-
ber of NCL events, we subsampled unmapped reads to
4,985,914 for each sample, which corresponded to the
sample with the smallest number of unmapped reads
among in-house RNA-seq samples. We observed an
average increase of 92% of circRNAs in samples
prepared by ribo-depletion compared to poly(A) proto-
col (p value = 3 × 10− 12) (Additional file 4: Figure S11).
At the same time, we observed an average 43% decrease
of trans-splicing and fusion events in samples prepared
by ribo-depletion when compared to those prepared
using a poly(A) protocol (p value < 8 × 10− 4) (Additional
file 4: Figure S11). However, because the tissues differed
between protocols (e.g. nasal vs large airway epithelium),
this effect might be due in part to tissue differences in
NCL events. We view the tissue differences effect to be
unlikely. We previously showed that gene expression
profiles of nasal airway tissue largely recapitulate expres-
sion profiles in the large airway epithelium tissue [38].
Furthermore, many NCL events will not be captured

by poly-A selection. Therefore, we expect systematic
differences in NCL abundance between capture
methods. There were no statistically significant differ-
ences (p value > 5 × 10− 3) between NCL events in cases
and in controls. We have compared number of NCL
reads across GTEx tissue and we observe the highest
fraction of NCL reads across pancreas samples with
0.75% of reads classified as NCL reads. While interest-
ing, we caution that this observation could be driven by
both biological and technical artifacts and requires fur-
ther validation. In all other tissue types, ROP classified
approximately 0.3% reads as NCL reads, which corre-
sponds to 160,000 reads per sample (Additional file 4:
Figure S12).
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ROP identifies microbial and immune reads and
differentiates tissue types and disease status
Reads mapped to BCR and TCR loci and unmapped
reads were used to survey the human adaptive immune
repertoires in health and disease. We first used the
mapped reads to extract reads entirely aligned to BCR
and TCR genes. Using IgBlast [28], we identified un-
mapped reads with extensive somatic hyper mutations
(SHM) and reads arising from V(D)J recombination.
After we identified all the reads with human origin, we
detected microbial reads by mapping the remaining
reads onto microbial reference genomes and phylogen-
etic marker genes. Here, the total number of microbial
reads obtained from the sample is used to estimate mi-
crobial load. We use MetaPhlAn2 [29] to assign reads
on microbial marker genes and determine the taxonomic
composition of the microbial communities.
Using in-house RNA-seq data, we compare immuno-

logical and microbial profiles across asthmatics and un-
affected controls for the peripheral blood, nasal and
large airway epithelium tissues. A total of 339 bacterial
taxa were assigned with Metaphlan2 [29] across all stud-
ies and are freely available at https://smangul1.github.io/
recycle.RNA.seq/.
Using Metaphlan2, we detected bacterial reads in all

GTEx tissues except testis, adrenal gland, heart, brain,
and nerve. We also observe no bacteria reads in the fol-
lowing cell lines: EBV-transformed lymphocytes(LCLs),
Cells-Leukemia (CML), and Cells-Transformed fibro-
blasts cell lines. On average, we observe 1.43 ± 0.43
phyla assigned per sample. All samples were dominated
by the phylum Proteobacteria (relative genomic abun-
dance of 73% ± 28%). Other phyla detected included
Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobac-
teria, Fusobacteria, and Firmicutes. Consistent with
previous studies, we observe the nasal epithelium is
dominated by Actinobacteria phyla (particularly the
Propionibacterium genus) [39] and the large airway
epithelium is dominated by Proteobacteria phyla [40]
(Additional file 2: Table S6). As a positive control for
virus detection, we used GTEx samples from EBV-
transformed lymphoblastoid cell lines (LCLs). ROP de-
tected EBV virus across all LCL samples. An example of
a coverage profile of EBV virus for one of the LCL
samples is presented in Additional file 4: Figure S13.
Additionally, we have investigated the amount of micro-
bial reads that originate from the reagents used to
construct the RNA-seq libraries [41]. We investigated
number of reads mapped to Enterobacteria phage
phiX174, which is routinely used as a part of the sequen-
cing protocol. We observe no traces of Enterobacteria
phage phiX174 in 95.6% of the samples. Other samples
contain 1 in 1 million reads mapped to Enterobacteria
phage.

We assess combinatorial diversity of the BCR and TCR
repertoires by examining the recombination of the of V
and J gene segments from the variable region of BCR and
TCR loci. We used per sample alpha diversity (Shannon
entropy) to incorporate the total number of VJ combina-
tions and their relative proportions into a single diversity
metric. We observed a mean alpha diversity of 0.7 among
all the samples for immunoglobulin kappa chain (IGK).
Spleen, minor salivary gland, and small intestine (terminal
ileum) were the most immune diverse tissue, with corre-
sponding IGK alpha diversity of 86.9, 52.05, and 43.96, re-
spectively (Additional file 4: Figures S14 and S15). Across
all the tissues and samples, we obtained a total of 312 VJ
recombinations for IGK chains and 194 VJ recombina-
tions for immunoglobulin lambda (IGL) chains. Inferred
recombinations are freely available at https://smangul1.
github.io/recycle.RNA.seq/.
Joint analysis of unmapped reads offered by the ROP

protocol provides the opportunity to interrogate rela-
tionships between different features; for example, explor-
ing the interactions between the immune system,
microbiome, and gene expression [42]. To explore inter-
actions between the immune system and microbiome,
we compared immune diversity against microbial load
across in-house samples. Microbes trigger immune re-
sponses, eliciting proliferation of antigen-specific lym-
phocytes. This dramatic expansion skews the antigen
receptor repertoire in favor of a few dominant clono-
types and decreases immune diversity [43]. Therefore, we
reasoned that antigen receptor diversity in the presence of
microbial insults should shrink. In line with our expect-
ation, we observed that the combinatorial immune diver-
sity of the IGK locus was negatively correlated with viral
load (Pearson coefficient r = − 0.55, p value = 2.4 × 10− 6),
consistent also for bacteria and eukaryotic pathogens
across BCR and TCR loci (Additional file 4: Figure S16).
Using in-house data, we compared alpha diversity of

asthmatic individuals (n = 9) and healthy controls (n = 10).
The combinatorial profiles of BCRs and TCRs in blood
and large airway tissue provide no differentiation between
case control statuses. Compared to nasal and large air-
ways, blood yields increased number of combinations of
gene segments, with 191 combinations, on average, per
sample for IGK locus (Fig. 3a). Among nasal samples, we
observed decreased alpha diversity for asthmatic individ-
uals relative to healthy controls (p value = 10− 3) (Fig. 3b).
Additionally, we used beta diversity (Sørensen–Dice
index) to measure compositional similarities between
samples, including gain or loss of VJ combinations of IGK
locus. We observed higher beta diversity corresponding to
a lower level of similarity across the nasal samples of asth-
matic individuals in comparison to samples from un-
affected controls (Fig. 3c, p value < 3.7 × 10− 13). Moreover,
nasal samples of unaffected controls are significantly more
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similar than samples from the asthmatic individuals
(Fig. 3c, p value < 2.5 × 10− 9). Recombination profiles of
IGL locus and T cell receptor beta and gamma (TCRB and
TCRG) loci yielded a similar pattern of decreased beta
diversity across nasal samples of asthmatic individuals
(Additional file 4: Figures S17–S19). Together the results
demonstrate the ability of ROP to interrogate additional
features of the immune system without the expense of
additional TCR/BCR sequencing.

The impact of RNA-seq aligners and mapping parameters
on the number of accounted reads
Following Baruzzo et al. [12], we have selected five
RNA-seq aligners that were reported to map a minimum
of 75% of the reads simulated from human transcrip-
tome using recommended parameters (GSNAP [version
2017–09-30], HISAT2 [2.1.0], Novoalign [v3.05.01],
TopHat2 [v2.1.1], and STAR [v2.5.3a]). We use simulated
data, described in the section “Validation of accuracy of
ROP’s read assignments,” comprising transcriptomic,
repeat, immune, and microbial reads, to investigate the
effect of RNA-seq aligner on the number of mapped

reads. On average, 90.9% of simulated transcriptomic
reads are mapped by RNA-seq aligners with default and
tuned parameters. STAR (default and tuned setting) and
Novoalign (tuned settings) are able to map > 99% of
transcriptomic reads. For other categories of simulated
reads, RNA-seq aligners were able to map 47.6% of reads
(Additional file 4: Figure S20a).
We have investigated the effects that choice of RNA-

seq aligner can have on the fraction of reads accounted
by ROP. Overall, ROP increases the number of catego-
rized reads by an average of 39.5% across different RNA-
seq aligners. The best results were achieved by ROP
using STAR (default and tuned setting), Novoalign
(default and tuned settings), and HISAT2 (tuned setting),
which allows ROP to account for > 99.0% of all reads
from RNA-seq mixture (Additional file 4: Figure S20b).
Both STAR and Novoalign perform extensive soft clip-
ping (partial mapping), resulting in alignment of recom-
bined V(D)J sequences, which are not part of the human
genome (Additional file 4: Figure S21). This can partially
explain the increased number of mapped reads produced
by ROP when compared to the results from other tools.

b

c

a

Fig. 3 Combinatorial diversity of IGK locus differentiates disease status. a Heatmap depicting the percentage of RNA-seq samples supporting of
particular VJ combination for whole blood (n = 19), nasal epithelium of healthy controls (n = 10), and asthmatic individuals (n = 9). Each row
corresponds to a V gene and each column corresponds to a J gene. b Alpha diversity of nasal samples is measured using the Shannon entropy
and incorporates total number of VJ combinations and their relative proportions. Nasal epithelium of asthmatic individuals exhibits decreased
combinatorial diversity of IGK locus compared to healthy controls (p value = 1 × 10− 3). c Compositional similarities between the nasal samples in
terms of gain or loss of VJ combinations of IGK locus are measured across paired samples from the same group (Asthma, Controls) and paired
samples from different groups (Asthma vs Controls) using Sørensen–Dice index. Lower level of similarity is observed between nasal samples of
asthmatic individuals compared to unaffected controls (p value < 7.3 × 10− 13). Nasal samples of unaffected controls are more similar to each other
than to the asthmatic individuals (p value < 2.5 × 10− 9)
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Notably, Novoalign with default and tuned settings
mapped 0.6% of microbial reads to the human genome,
which corresponds to false-positive hits (Additional file 4:
Figure S20b).
In addition to simulated data, we randomly selected

ten SRA samples to investigate the effect of RNA-seq
aligner on the number of mapped reads from the real
datasets. On average we observe 91.8% of reads mapped;
the best performance is achieved by HISAT2 and STAR,
which allow mapping of 93.1% and 92.7% of the reads,
respectively (Additional file 4: Figure S22). Based on the
achieved results and reported results in Baruzzo et al.
[12], we recommend using HISAT2 and STAR aligners
to map the RNA-seq reads and prepare unmapped reads.
Novoalign is not recommended for use with ROP proto-
col due to its substantially longer running time, which
makes it computationally infeasible.

Conclusion
Our study is the first that systematically accounts for al-
most all reads, totaling 1 trillion, which are available via
three RNA-seq datasets. We demonstrate the value of
analyzing unmapped reads present in RNA-seq data for
the study of NCL RNA editing, immunological, and
microbiome profiles of a tissue. We developed a new
tool (ROP) that accounts for 99.9% of the reads, a
substantial increase compared to the 82.2% of reads
accounted for using conventional protocols. We found
that the majority of unmapped reads are human in ori-
gin and from diverse sources, including repetitive
elements, A-to-I RNA editing, circRNAs, gene fusions,
trans-splicing, and recombined BCR and TCR se-
quences. In addition to those derived from human RNA,
many reads were microbial in origin and often occurred
in numbers sufficiently large to study the taxonomic
composition of microbial communities in the tissue type
represented by the sample.
We found that both unmapped human reads and reads

with microbial origins are useful for differentiating be-
tween type of tissue and status of disease. For example,
we found that the immune profiles of asthmatic individ-
uals have decreased immune diversity when compared
to those of controls. Further, we used our method to
show that immune diversity is inversely correlated with
microbial load. This case study highlights the potential
for producing novel discoveries, when the information
in RNA-seq data is fully leveraged by incorporating the
analysis of unmapped reads, without need for additional
TCR/BCR or microbiome sequencing. The ROP profile
of unmapped reads output by our method is not limited
to RNA-seq technology and may apply to whole-exome
and whole-genome sequencing. We anticipate that ROP
profiling will have broad future applications in studies
involving different tissue and disease types.

We observed large effects when using different library
preparation protocols on NCL, immunological, and mi-
crobial profiles. For example, the poly(A) protocol better
captures antibody transcripts by enriching for polyade-
nylated transcripts, while ribo-depletion protocols cap-
ture more circRNAs. The results presented here suggest
that selection of a protocol impacts quality of analysis
results and our study may guide the choice of protocol
depending on the features of interest.
The ROP protocol facilitates a simultaneous study of

immune systems and microbial communities and this
novel method advances our understanding of the func-
tional, interrelated mechanisms driving the immune sys-
tem, microbiome, human gene expression, and disease
etiology. We hope that future efforts will provide a
quantitative and qualitative assessment of the immune
and microbial components of disease across various tis-
sues. Recent increase in read length and sequencing effi-
ciency provides opportunity for studying individual
microbial species and full TCR/BCR sequencing.

Methods
In-house RNA-seq data
For poly(A) selected samples (n = 38), we used a subset
of Puerto Rican Islanders recruited as part of the on-
going Genes-environments & Admixture in Latino
Americans study (GALA II) [44–47]. Nasal epithelial
cells were collected from behind the inferior turbinate
with a cytology brush using a nasal illuminator. Whole
blood was collected using PAXgene RNA blood tubes.
RNA was isolated using PAXgene RNA blood extrac-
tion kits. For ribo-depleted samples (n = 49), adults
aged 18–70 years were recruited to undergo research
bronchoscopy. During bronchoscopy airway epithelial
brushings, samples were obtained from third- to fourth-
generation bronchi. RNA was extracted from the epithelial
brushing samples using the Qiagen RNeasy mini-kit.
Poly(A) selected RNA-seq libraries (n = 38) were

constructed using 500 ng of blood and nasal airway epi-
thelial total RNA from nine atopic asthmatics and ten
non-atopic controls. Libraries were constructed and bar-
coded with the Illumina TruSeq RNA Sample Prepar-
ation v2 protocol. Barcoded nasal airway RNA-seq
libraries from each of the 19 individuals were pooled
and sequenced as 2 × 100-bp paired-end reads across
two flow cells of an Illumina HiSeq 2000. Barcoded
blood RNA-seq libraries from each of the 19 participants
were pooled and sequenced as 2 × 100-bp paired-end
reads across four lanes of an Illumina Hiseq 2000 flow
cell. Ribo-depleted RNA-seq libraries (n = 38) were con-
structed using 100 ng of isolated RNA of large airway
epithelium total RNA from 61 samples. Libraries were
constructed and barcoded with the TruSeq Stranded
Total RNA using a Ribo-Zero Human/Mouse/Rat library
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preparation kit, per manufacturer’s protocol. Barcoded
bronchial epithelial RNA-seq libraries were multiplexed
and sequenced as 2 × 100-bp paired-end reads on an
Illumina HiSeq 2500. We excluded 12 samples from fur-
ther analyses due to high ribosomal RNA read counts
(library preparation failure), leaving a total of 49 samples
suitable for further analyses.

GTEx RNA-seq data
We used RNA-seq data from the Genotype-Tissue
Expression study (GTEx Consortium v.6) that corre-
sponds to 8555 samples collected from 544 individuals
from 53 tissues obtained from the Genotype-Tissue
Expression study (GTEx v6). RNA-seq data are from
Illumina HiSeq sequencing of 75-bp paired-end reads.
The data were derived from 38 solid organ tissues, 11
brain subregions, whole blood, and three cell lines of
postmortem donors. The collected samples are from
adults matched for age across males and females. We
downloaded the mapped and unmapped reads in BAM
format from dbGap (http://www.ncbi.nlm.nih.gov/gap).

SRA RNA-seq data
Samples (n = 2000) were randomly selected using SQLite
database from R/Bioconductor package SRAdb (https://
bioconductor.org/packages/release/bioc/html/SRAdb.html).
We used a script from https://github.com/nellore/runs/
blob/master/sra/define_and_get_fields_SRA.R to select run
_accessions from the sra table with platform = “ILLU-
MINA,” library_strategy = “RNA-Seq,” and taxon_id =
9606 (human).

Workflow to categorize mapped reads
We mapped reads onto the human transcriptome
(Ensembl GRCh37) and genome reference (Ensembl
hg19) using TopHat2 (v 2.0.13) with the default parame-
ters. TopHat2 was supplied with a set of known tran-
scripts (as a GTF formatted file, Ensembl GRCh37)
using –G option. The mapped reads of each sample are
stored in a binary format (.bam). ROP (gprofile.py) cate-
gorizes the reads into genomic categories (junction read,
CDS, intron, UTR3, UTR5, introns, inter-genic read,
deep a deep inter-genic read, mitochondrial read, and
multi-mapped read) based on their compatibility with
the features defined by Ensembl (GRCh37) gene annota-
tions. ROP (rprofile.py) categorizes reads into repeat ele-
ments (classes and families) based on their compatibility
with repeat instances defined by RepeatMasker annota-
tion (RepeatMasker v3.3, Repeat Library 20,120,124).
We count the number of reads overlapping V, D, J, and
constant (C) gene segments of BCR and TCR loci using
htseq-count (HTSeq v0.6.1).

Workflow to categorize unmapped reads
We first converted the unmapped reads saved by
TopHat2 from a BAM file into a FASTQ file (using sam-
tools with bam2fq option). The FASTQ file of unmapped
reads contains full read pairs (both ends of a read pair
were unmapped) and discordant read pairs (one read
end was mapped while the other end was unmapped).
We disregarded the pairing information of the un-
mapped reads and categorized unmapped reads using
the protocol’s seven steps. Reads identified at each step
are filtered out.

1. Quality control. Low-quality reads, defined as reads
that have quality < 30 in at least 75% of their base
pairs, were identified by FASTX (v 0.0.13). Low-
complexity reads, defined as reads with sequences of
consecutive repetitive nucleotides, were identified by
SEQCLEAN. As a part of the quality control, we also
excluded unmapped reads mapped onto the rDNA
repeat sequence (HSU13369 Human ribosomal
DNA complete repeating unit) (BLAST+ 2.2.30).
Starting from new release (ROP v1.0.8), low-quality
reads are not filtered out; instead, these reads were
marked as low quality in the read name and passed
to the downstream analysis. An example of ROP
v1.0.8 output is presented for two SRA RNA-seq
samples in Additional file 2: Table S7.

2. Remap to human references. We remapped the
remaining unmapped reads to the human reference
genome (hg19) and transcriptome (known
transcripts, Ensembl GRCh37) using Megablast
(BLAST+ 2.2.30).

3. Hyper-editing detection. We used a hyper-editing
pipeline (HE-pipeline http://levanonlab.ls.biu.ac.il/
resources/zip/hyper_editing_scripts.zip), which is
capable of identifying hyper-edited reads. Before
proceeding, users are advised to prepare the refer-
ence and provide the necessary third-party tools
by following the instructions in the README of
HE-pipeline that is included with the scripts. En-
sure that the output directory is set correctly in
config_file.sh (it is acceptable to use a single out-
put directory) and check that the list of input
files has been prepared correctly. Details on how
to run HE-pipeline are available here: https://
github.com/smangul1/rop/wiki/How-to-run-hyper-
editing-pipeline.

4. Map to repeat sequences. The remaining unmapped
reads were mapped to the reference repeat
sequences using Megablast (BLAST+ 2.2.30). The
reference repeat sequences were downloaded from
Repbase v20.07 (http://www.girinst.org/repbase/).
Human repeat elements (humrep.ref. and
humsub.ref ) were merged into a single reference.

Mangul et al. Genome Biology  (2018) 19:36 Page 9 of 12

http://www.ncbi.nlm.nih.gov/gap
https://bioconductor.org/packages/release/bioc/html/SRAdb.html
https://bioconductor.org/packages/release/bioc/html/SRAdb.html
https://github.com/nellore/runs/blob/master/sra/define_and_get_fields_SRA.R
https://github.com/nellore/runs/blob/master/sra/define_and_get_fields_SRA.R
http://levanonlab.ls.biu.ac.il/resources/zip/hyper_editing_scripts.zip
http://levanonlab.ls.biu.ac.il/resources/zip/hyper_editing_scripts.zip
https://github.com/smangul1/rop/wiki/How-to-run-hyper-editing-pipeline
https://github.com/smangul1/rop/wiki/How-to-run-hyper-editing-pipeline
https://github.com/smangul1/rop/wiki/How-to-run-hyper-editing-pipeline
http://www.girinst.org/repbase


5. NCL RNA profiling. NCL events include three
classes of events: reads supporting trans-splicing
events that are spliced distantly on the same
chromosome; reads supporting gene fusion events
that are spliced across different chromosomes; and
reads supporting circRNAs that are spliced in a
head-to-tail configuration. To distinguish between
these three categories, we use circExplorer2
(v2.0.13). CircExplorer2 relies on TopHat-Fusion
(v2.0.13, bowtie1 v0.12.) and allows simultaneous
monitoring of NCL events in the same run. To
extract trans-spicing and gene fusion events from
the TopHat-Fusion output, we ran a ruby custom
script that is part of the ROP pipeline (NCL.rb).

6. B and T lymphocytes profiling.We used IgBlast
(v. 1.4.0) with a stringent e-value threshold
(e-value < 10− 20) to map the remaining unmapped
reads onto the V(D)J gene segments of the of the
BCR and TCR loci. Gene segments of BCRs and
TCRs were imported from IMGT version: 3.1.17
(International ImMunoGeneTics information
system). The IMGT database contains: V gene
segments; D gene segments; and J gene segments.

7. Microbiome profiling.We used Megablast
(BLAST+ 2.2.30) to align remaining unmapped reads
onto the collection of bacterial, viral, and eukaryotic
reference genomes. Bacterial and viral genomes were
downloaded from NCBI (ftp://ftp.ncbi.nih.gov/).
Genomes of eukaryotic pathogens were downloaded
from EuPathDB (http://eupathdb.org/eupathdb/).
We used MetaPhlAn2 (Metagenomic Phylogenetic
Analysis, v 2.0) to obtain the taxonomic profile of
microbial communities present in the sample.

Reference databases
A detailed description of reference databases used by
ROP is provided in the Supplemental Material.

Comparing diversity across groups
First, we subsampled unmapped reads by only includ-
ing reads corresponding to a sample with the smallest
number of unmapped reads. Diversity within a sample
was assessed using the richness and alpha diversity
indices. Richness was defined as a total number of
distinct events in a sample. We used the Shannon
Index (SI), incorporating richness and evenness com-
ponents, to compute alpha diversity, which is calcu-
lated as follows:

SI ¼ −
X

p� log2 pð Þð Þ

We used beta diversity (Sørensen–Dice index) to
measure compositional similarities between the samples
in terms of gain or loss in events. We calculated the beta

diversity for each combination of the samples and we
produced a matrix of all pairwise sample dissimilarities.
The Sørensen–Dice beta diversity index is measured as
1− 2 J

AþB, where J is the number of shared events, while A
and B are the total number of events for each sample,
respectively.
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