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Abstract 

Transformer-based large language models (LLMs) have 

recently demonstrated exceptional performance in a variety of 

linguistic tasks. The main mechanism through which LLMs 

combine words in a sentence is called “attention heads”: these 

components assign numerical weights linking different words 

in the input to one another, capturing different relationships 

between these words. Some attention heads automatically learn 

to assign weights that accurately encode meaningful linguistic 

features including, importantly, heads that appear specialized 

for identifying particular syntactic dependencies. Are syntactic 

computations in such heads “encapsulated”, i.e., impenetrable 

to the influence of non-syntactic information? Such 

encapsulated computations would be strikingly different from 

those of the human mind, where non-syntactic information 

sources (e.g., semantics) influence parsing from the earliest 

moments of online processing, and where syntax and semantics 

are tightly linked in the mental lexicon. Here, we tested 

whether the activity of syntax-specialized attention heads in 

transformer-based LLMs is modulated by one type of semantic 

information: plausibility. In each of two LLMs (BERT and 

GPT-2), we first identified attention heads specialized for 

various dependency types; in six of the seven cases tested, we 

found that implausible semantic information reduces attention 

between the words that constitute the dependency for which a 

head is specialized. These results demonstrate that, even in 

attention heads that are the best candidates for syntactic 

encapsulation, syntactic information is penetrable to 

semantics. These data are broadly consistent with the 

integration of syntax and semantics in human minds. 

Keywords: Modularity; syntax; semantics; sentence 

processing; artificial neural networks; large language models 

Introduction 

In recent years, transformer-based large language models 

(LLMs) have achieved remarkable performance in a variety 

 
1 Encapsulation is often confused with the notion of domain-

specificity, but these are two different properties. A system can be 

domain-specific⎯that is, exclusively process and output 

representations in a particular domain⎯while still being penetrable 

of language tasks (e.g., Brown et al., 2020; Chang & Bergen, 

2023; Contreras Kallens, Kristensen-McLachlan, & 

Christiansen, 2023; OpenAI, 2022; Piantadosi, 2023; 

Vaswani et al., 2017). The text that LLMs generate, as well 

as their internal representations, indicate that they have 

mastered many (but not all) non-trivial syntactic abstractions 

that underlie the structure of sentences (e.g., Manning et al., 

2020; McCoy et al., 2023; Wilcox, Vani, & Levy, 2021; for 

a review, see: Linzen & Baroni, 2021). To the extent that 

LLMs have human-like syntactic knowledge, they may 

constitute good models of human language processing. 

However, this latter claim depends on whether LLMs, 

beyond “having syntactic knowledge” in the broad sense, also 

align with humans in the finer details of how they represent 

and process syntax (e.g., Arehalli, Dillon, & Linzen, 2022; 

van Schijndel & Linzen, 2021). 

 One of the central properties of human syntactic processing 

is that it is rapidly influenced by external information 

sources, such as semantics or visual referents (McRae, 

Spivey-Knowlton, & Tanenhaus, 1998; Tanenhaus et al., 

1995; Trueswell, Tanenhaus, & Garnsey, 1994). In other 

words, syntax is not encapsulated. Rather than proceeding 

independently of other processes, the parser appears to be 

penetrable to various non-syntactic information sources, and 

it opportunistically uses them as soon as they become 

available (or, at least, as soon as we can measure). The issue 

of encapsulation is fundamental because it is one of the main 

characteristics of cognitive modules1 (Fodor, 1983), and 

whether a processing domain (such as syntax) is modular is a 

basic architectural property of a computing system. 

To demonstrate the distinction between a modular and a 

non-modular syntactic parser, consider a sentence “We met 

the owner of the company that was sold yesterday”. From a 

syntactic point of view⎯ignoring word meaning⎯the 

to external systems that can influence its operations (several systems 

in the human mind appear to behave this way). 
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sentence is structurally ambiguous, because the clause “that 

was sold yesterday” can describe either the owner or the 

company (this may be clearer in the sentence “we met the 

owner of the company that everyone knows”, where the 

clause “that everyone knows” is semantically compatible 

with the owner or the company). However, this ambiguity can 

be resolved using semantic information: owners (animate 

entities) are rarely sold, but companies are often sold. Hence, 

the clause “that was sold yesterday” likely describes the 

company. A parser that is initially encapsulated would be 

unable to use this semantic information in its early processing 

stages to resolve the structural ambiguity (just like in the 

sentence with “that everyone knows”). In contrast, a parser 

that is penetrable from the earliest moments would not 

encounter any ambiguity, immediately determining the 

correct structure. 

 One might argue that syntactic processing in LLMs is 

encapsulated because these models can generate next-word 

predictions that obey the rules of syntax even for nonsense 

sentences that are “devoid of semantics” (e.g., “the colorless 

green ideas that I ate with the chair sleep” rather than sleeps) 

(Gulordava et al., 2018). Similar reasoning has been applied 

to the human mind: given that we can judge the 

grammaticality of such nonsense sentences, the mental parser 

must be encapsulated. However, such conclusions about 

encapsulation do not logically follow: even if a parser were 

penetrable to, e.g., lexico-semantic information, it is 

reasonable to assume that it could still process syntactic 

features in the absence of coherent meaning. In other words, 

a parser being penetrable to semantics does not entail that 

semantics are necessary for its proper operation.  

Moreover, linguistic analysis and behavioral evidence 

from humans suggest that abstract syntactic constructions are 

not devoid of meaning, but rather are associated with abstract 

semantic meaning (e.g., “colorless green ideas sleep 

furiously” has a structure that roughly means “things with a 

specific type of a certain property do something in a 

particular way”) (Goldberg, 1995, 2019; see also Bencini & 

Goldberg, 2000; Casenhiser & Goldberg, 2005; Johnson & 

Goldberg, 2013). Similarly, studies of LLMs suggest that 

their internal representations of phrase-level syntactic 

structure are associated with meaning (Li et al., 2022). In 

addition, the quality of syntactic representations in LLMs is, 

to some extent, reliant on semantics: it deteriorates for 

nonsense sentences, as well as for “Jabberwocky” sentences 

in which content words are replaced with nonwords (Arps et 

al., 2023; Maudslay & Cotterell, 2021). 

Encapsulation in Attention Heads? 

It is not surprising to find syntactic representations that are 

penetrable to non-syntactic information somewhere within 

LLMs—during language processing, different information 

sources must eventually combine and interact with one 

another. But such penetrable representations in one part of a 

LLM might co-exist alongside encapsulated representations 

in other parts. If one were to look for syntactic encapsulation, 

what would be a good place to start?  

 To answer this question, consider the architecture of 

transformer-based LLMs. Like other types of LLMs, 

transformers represent every token (usually, a word) in a 

sentence in a distributed manner across hidden units, and this 

representation is gradually transformed as it passes through 

the model’s layers. The main feature that distinguishes 

transformers from previous LLMs is that the transformation 

of a token’s representation from one layer to the next is 

heavily influenced by components called “attention heads” 

(Vaswani et al., 2017). These heads capture how tokens in a 

text input relate to one another by assigning numerical 

weights from each token to other tokens, directing tokens to 

“attend” to one another. In bidirectional transformers, each 

token can attend to all tokens, both preceding and following 

it, as well as itself; in unidirectional transformers, each token 

can only attend to itself and all preceding tokens but not to 

those following it. Each token’s representation is transformed 

into a “mix” of all the tokens it attends to via a weighted 

linear combination, wherein tokens that are attended to more 

strongly are represented more prominently. Each attention 

head assigns different patterns of weights across tokens, 

producing a distinct “mixed” representation. These 

representations are combined across all attention heads 

within a layer (and further elaborated upon). 

 Thus, the hidden layers themselves are perhaps expected to 

have representations where syntactic information is 

somewhat entangled with non-syntactic (e.g., semantic) 

information: as representations are transformed between a 

given layer n and the next layer n+1, tokens can attend to one 

another in diverse ways across attention heads, such that a 

token’s resulting representation in layer n+1 contains 

information about the representations of many tokens from 

layer n, for myriad reasons, both syntactic and otherwise. In 

contrast, we reasoned that if encapsulated syntactic 

computations existed anywhere within LLMs, the best 

candidates for such computations would be individual 

attention heads: each head learns to assign unique patterns of 

attention weights across tokens, and some such patterns 

might purely target syntactic relationships between tokens 

(but not other types of relationships). 

 Whereas attention heads can, in principle, learn to assign 

weights between tokens based on any feature of the input, 

prior work has demonstrated that, in practice, some heads 

learn to identify human-interpretable features. For instance, 

some heads encode positional information (e.g., attend most 

strongly to the previous token), some widely distribute 

attention over all tokens to create “bag of words” 

representations, some target specific parts of speech, etc. 

(Clark et al., 2019; Raganato & Tiedemann, 2018; Vig & 

Belinkov, 2019; Voita et al., 2019). Critically for our 

purposes, some attention heads appear “specialized” for 

identifying specific types of syntactic dependencies between 

words: one head targets the nominal subject of a verb, 
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another⎯the object of a preposition, etc. (Clark et al., 2019). 

Such heads assign more weight from a dependent to its head 

(or vice versa) than to any other token in a sentence. 

However, these attention heads show the pattern of attention 

described above with less than perfect accuracy (e.g., only in 

77.38% of instances, on average, across the eight 

dependencies that have the most strongly specialized heads; 

Clark et al., 2019). Perhaps, then, such attention heads are 

influenced by factors other than syntax alone. 

Therefore, we tested whether attention heads that are 

specialized for particular syntactic dependencies are 

encapsulated from, or penetrable to, a specific source of non-

syntactic information: semantic plausibility. Would the 

computations of such attention heads be modulated by the 

plausibility of the sentence they are processing? To this end, 

we measured the amount of attention allocated by each head 

to its preferred dependency, across minimal pairs of 

sentences where that dependency was either semantically 

plausible (or likely) or implausible (or unlikely). If these 

heads are encapsulated, the strength of attention to their 

preferred dependency should not vary across these two types 

of sentences. If, however, the heads are penetrable to 

semantic information⎯as we predicted, based on parallels 

with the human mind⎯then attention weights for the 

preferred dependency would be lower in implausible 

compared to plausible sentences.  

Methods 

Model Description 

We analyzed two transformer-based LLMs: the “base” sized 

BERT model (BERT-base-uncased) and the GPT-2 small 

model. Both models have 12 layers each containing 12 

attention heads. The notation (head <layer>-

<head_number>) will be used to indicate a particular head, 

e.g., head 7-9 corresponds to the ninth head in the seventh 

layer of a given model.  

BERT is bidirectional, directing attention from a token to 

both preceding and following words. It is trained on masked 

word prediction (e.g., filling in “The galloping <MASK> fell 

down”) and next sentence prediction. GPT-2 is unidirectional 

(i.e., backward-looking) and trained on next word prediction. 

Identifying “Syntax-Specialized” Attention Heads 

First, for each of 43 dependency types from the Stanford 

Dependencies (De Marneffe, MacCartney, & Manning, 

2006), we searched for specialized attentions heads that 

accurately encoded that dependency. Our search procedure is 

a modified version of the one from Clark et al. (2019), who 

identified such heads in BERT. We extended the approach to 

GPT-2, where such heads have not been previously 

identified.  

 
2 Measure (1) is identical to Clark et al. (2019), but measure (2) 

differs: for head→dependent, Clark et al. (2019) computed the 

percentage of instances for which the dependent token received 

We annotated the development set (section 22) of the Penn 

Treebank 2 corpus (Clark et al., 2019; Marcus, Santorini, & 

Marcinkiewicz, 1993) with Stanford dependencies, using the 

Stanford CoreNLP toolbox. For each dependency and for 

each head, specialization was measured in two ways: (1) the 

percentage of instances of the dependency in the corpus for 

which the dependent token directed more attention to the 

head token than to any other token (dependent→head); and 

(2) the percentage of instances of the dependency in the 

corpus for which the head token directed more attention to 

the dependent token than to any other token (head→ 

dependent).2 For the indirect object dependency, we 

identified the specialized attention head using 203 sentences 

featuring the iobj dependency, which were selected from 

various folders of the Penn Treebank. This was necessary 

because there were relatively few instances of the iobj 

dependency in the original corpus used (folder 22). For   

GPT-2, we excluded instances that required forward-facing 

attention (e.g., measuring attention from a dependent to a 

head that comes later in the sentence), because attention in 

GPT-2 is only backward-looking.  

For each dependency, the maximum specialization score 

was selected out of a set of 288 scores (12 layers × 12 heads 

× 2 measures) to identify a single head of interest for that 

dependency. However, note that some dependencies in the 

corpus could be identified with some accuracy by merely 

attending to tokens at a fixed distance (e.g., the object of a 

preposition is often two tokens to the right of the preposition, 

as in “up a tree”, “on the table”, etc.). Therefore, for each 

dependency type, we found the most common distance 

more attention weight from the head than from any other word in the 

sentence. We modified this measure to make it analogous to 

measure (1) (dependent→head). 

Table 1: Heads specialized for different dependencies 

 

BERT 

Relation Head Direction Spec Base 

dobj 7-9 dep->head 86.47 39.78 (-2) 

nsubj 7-1 dep->head 60.89 46.46 (1) 

pobj 7-10 head->dep 81.95 34.67 (2) 

iobj 6-9 dep->head 77.07 46.34 (-1) 

GPT-2 

Relation Head Direction Spec Base 

dobj 2-8 dep->head 81.6 40.6 (-2) 

nsubj 4-3 head->dep 66.87 48.66 (-1) 

pobj 2-0 dep->head 76.55 34.62 (-2) 

Columns: “spec” = specialization score (%). “base” = baseline 

score (%). Note that the baseline scores are appreciably lower 

than the specialization scores. 
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between tokens in that dependency across the corpus, and 

measured the percentage of instances exhibiting that distance. 

This “baseline” score (termed “fixed offset” in Clark et al., 

2019) needed to be sufficiently below the maximum 

specialization score of a head of interest (based on subjective 

evaluation) for that head to be considered syntax-specialized. 

Main Experiment 

Materials We chose four dependency types for which we 

identified specialized heads (one per dependency) and for 

which we could create minimal sentence pairs for the main 

experiment, as described below. These dependencies are 

direct object (dobj), indirect object (iobj), nominal subject 

(nsubj), and object of a preposition (pobj) (Table 1). 

For each dependency, we constructed 50 minimal pairs of 

sentences such that in one sentence the phrase contained 

within the dependency was semantically plausible in the 

broader context of the sentence, and in the other—

semantically implausible (Table 2). For example, for dobj, a 

plausible sentence would read “the guide showed the visitor 

a sculpture”, and its implausible version would read “the 

guide showed the sculpture a visitor”. All sentences for a 

given dependency had identical structure, and each word 

comprised a single token. For the dobj, nsubj, and iobj 

dependencies, plausibility was manipulated by swapping two 

words in the sentence with the same part of speech. For the 

pobj dependency, plausibility was manipulated by replacing 

the prepositional object with another noun.  

BERT was tested on all 4 dependencies, whereas GPT-2 

was tested on 3 (without iobj) due to (1) structural ambiguity 

at the point of the indirect object, which poses a problem for 

manipulating semantic plausibility for unidirectional models, 

and (2) the same head being identified as specialized for iobj 

and dobj in GPT-2 (perhaps reflecting this ambiguity). In 

addition, sentences for the pobj dependency differed between 

BERT and GPT-2: in BERT, the preposition came several 

tokens after the prepositional object. But because GPT-2 is 

unidirectional and the specialized head we found attended 

from the dependent—the object—to the preposition, this 

preposition had to occur before the object. Thus, pobj 

sentences differed in structure across the two LLMs, but they 

differed minimally in semantic content (BERT: “It was the 

shoreline by the rocks that the waves crashed against.”; 

GPT-2: “The waves crashed against the strongly built 

barrier on the coast.”). For other dependency types, there 

were slight differences in the stimuli across the two LLMs 

due to differences in tokenization: if a critical word was 

treated as a single token by BERT but broken to several 

tokens in GPT-2, it was replaced for the latter model by a 

single-token word. Identical sentences were used for the  dobj 

and iobj dependencies within each model. 

Importantly, each sentence also contained a “lure” word 

that was not part of the critical dependency but, in the 

implausible sentences, was a semantically plausible target for 

that dependency (Table 2). For instance, in the implausible 

sentence “the guide showed the sculpture a visitor”, the word 

“sculpture” is not the direct object (dobj) of the verb in terms 

of syntax, but it is a good semantic candidate for such a 

dependency, because a sculpture is something that would be 

shown by a guide. We designed the sentences in this way to 

create an “attractor” that might direct attention away from the 

syntactic dependency.  

Procedure For a given LLM and dependency type, we fed 

each sentence separately to the model and extracted the 

attention patterns from the head of interest. We analyzed the 

attention weights between critical words in our stimuli, 

contrasting the plausible and implausible sentences. Because 

attention weights are bounded in [0,1], we logit-transformed 

them prior to linear, mixed-effects modeling. Data for each 

dependency type and LLM were analyzed separately, and 

statistical results were Bonferroni corrected for multiple 

comparisons for each LLM across dependency types. 

In the main analysis, we modeled attention strength 

between words in the critical dependency (either from the 

head to the dependent, or from the dependent to the head, 

depending on the identified attention head; see Table 1). The 

model included two fixed effects: plausibility (plausible vs. 

implausible) and, as a covariate, log-frequency for the word 

in the critical dependency that differed between two 

sentences in a pair (from the SUBTLEXUS corpus; Brysbaert 

& New, 2009). The model also included a random intercept 

by sentence pair, unless it did not converge (and was reduced 

to a fixed-effects model). We predicted that, compared to 

plausible sentences, implausible sentences would show lower 

attention to the syntactically correct target in the critical 

dependency. 

In a secondary analysis, we analyzed attention strength 

Table 2: Example sentence pairs in the main experiment, for BERT 

 

Type Plausible / likely Implausible / unlikely 

dobj The guide showed the visitor a sculpture. The guide showed the sculpture a visitor. 

nsubj The surfer at the beach rescued a swimmer. The beach at the surfer rescued a swimmer. 
pobj It was the ladder in the tree that the cat climbed up. It was the simplicity in the tree that the cat climbed up. 
iobj The guide showed the visitor a sculpture. The guide showed the sculpture a visitor. 

Words in bold constitute the critical dependency. Attention is directed from the underlined word to the other bolded word. 

Words in red are “lures”. 
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involving the “lure” word: either from the attention-directing 

word to the lure (for pobj in BERT, and nsubj in GPT-2), or 

from an attention-directing lure to the attention-receiving 

word in the syntactically correct dependency (for dobj, iobj, 

and nsubj in BERT; and dobj and pobj in GPT-2). We 

predicted that, compared to plausible sentences, implausible 

sentences would show higher attention to/from the 

syntactically incorrect lure. We corrected for multiple 

comparisons in the same manner as for the main analysis. 

Results 

Consistent with our prediction, attention strength between 

words in a critical dependency was modulated by whether the 

sentence was plausible or not, demonstrating an influence of 

semantics on the computations of syntax-specialized 

attention heads. In BERT, attention strength between critical 

words was significantly lower in the implausible condition 

than in the plausible condition for three out of four 

dependencies (dobj: t(49.60)=3.64, p=0.0007; nsubj: 

t(48.92)=5.01, p<10-4; pobj: t(48.42)=8.60, p<10-4), with the 

exception of iobj (t(49.44)=-1.37, p=0.18) (Fig. 1). Attention 

directed to/from lure words showed the opposite pattern and 

was significantly higher in the implausible condition than in 

the plausible condition for nsubj (t(97)= -9.09, p<10-4) and 

pobj (t(49.00)=-5.60, p<10-4), but not for dobj (t(48.31)=                    

-0.74, p=0.47) or iobj (t(49.22)=-1.23, p=0.22). Mixed effects 

models were used in BERT for all analyses except for the lure 

analysis of nsubj (for which a fixed-effects model was used).  

Similarly, in the main analysis for GPT-2, attention 

strength between critical words was significantly lower in the 

implausible condition than in the plausible condition for all 

three dependencies tested (dobj: t(49.86)=6.35, p<10-4; nsubj: 

t(48.75)= 3.73, p=0.0005;  pobj: t(49.10)=2.88, p=0.0059). 

Attention directed to/from lure words was significantly 

higher in the implausible condition for dobj (t(50.06)=-4.05, 

p=0.00018) and nsubj (t(48.91)=-11.58, p<10-4), but not for 

pobj (t(49.00)=-1.85, p=0.071). All models were mixed-effects. 

Discussion 

This study found that syntax-specialized attention heads in 

BERT and GPT-2 are influenced by semantic plausibility 

information: even in heads that appear to have a strong 

preference for a particular syntactic dependency, the attention 

strength between words in that dependency becomes weaker 

in implausible (vs. plausible) sentences. This pattern was 

observed in all cases but one (the iobj dependency in BERT). 

Moreover, in some cases, the implausible sentences show 

increased attention between words that, syntactically, do not 

constitute the preferred dependency, but are nonetheless 

semantically plausible candidates for that dependency. These 

findings demonstrate that the syntactic computations in these 

attention heads are not encapsulated: they can be modulated 

by plausibility information. Such non-encapsulation is 

functionally similar to the human mind, in which syntactic 

parsing is similarly penetrable to semantics from the earliest 

moments of processing. Therefore, our findings lend further 

support to the use of LLMs as plausible cognitive models.   

This study presents a strong test for the encapsulation of 

syntax in LLMs. First, we tested attention heads that appear 

to be strongly specialized for specific syntactic dependencies 

(although they do not identify their preferred dependency in 

100% of the cases; Table 1). Given that attention heads link 

words in a sentence to one another (via attention weights), 

they are an a-priori likely site for “purely” syntactic 

computations. Of course, we do not exclude the possibility 

that syntactic encapsulation might exist elsewhere in LLMs 

(e.g., in other attention heads, for other dependency types, or 

in the hidden units). Still, if there is syntactic encapsulation 

anywhere within LLMs, then the attention heads we 

identified are arguably the best candidates for carrying out 

such computations. We provide compelling evidence that 

their computations are instead penetrable. 

Second, many of our stimuli contained no temporary 

syntactic ambiguity: BERT, being bidirectional, has access to 

all words in a sentence, and all 4 dependencies we tested used 

 
 

Figure 1: attention strengths between words in a critical dependency, extracted from “syntax-specialized” attention heads. 

Each dot shows data from one sentence, with bars showing averages and error bars⎯standard errors. Data are shown for 

BERT (top) and GPT-2 (bottom), comparing plausible (blue) and implausible (red) sentences. Bright bars show attention 

for the critical, syntactically correct dependency (“crit”), and dark bars show attention to/from semantic lures.  
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materials whose overall structure is unambiguous; for GPT-

2, which is only left-looking, the dependent in dobj sentences 

was the last word (so the entire structure is available at that 

point), and in pobj sentences the partial context prior to the 

critical words (e.g., “the cat climbed up the ladder”) is 

unambiguous.3 Because there is no need for syntactic 

disambiguation, there is in principle no need to rely on 

semantic information to parse the sentence’s structure. This 

contrasts with studies of syntactic encapsulation in humans, 

where the materials are temporarily ambiguous and thus 

reliance on non-syntactic information confers an advantage 

(Trueswell et al., 1994; Tanenhaus et al., 1995; but see Sikos, 

Duffield, & Kim, 2016). And yet, despite the sufficiency of 

the syntactic cues for determining sentence structure, the 

attention heads were still influenced by semantic information. 

This suggests that penetrability is not optionally triggered 

when needed, but is rather inherent to the functionality of 

these attention heads. In some cases, semantic information 

might even override syntactic information, leading attention 

heads to incorrectly represent dependencies. For instance, in 

implausible sentences, dobj-specialized heads in both LLMs 

assign more attention to the lure than to the syntactically 

correct direct object (compare the red bars in Fig. 1). 

In human language processing, the question of syntactic 

encapsulation concerned timing: not whether semantic 

information can influence syntactic analysis (it does, because 

different information sources must interact at some point), 

but rather how soon. Namely, non-encapsulated syntactic 

mechanisms are those that are penetrable immediately, from 

the very first moments of processing. However, unlike 

humans, transformers process all words in parallel rather than 

incrementally. Does this mean that our results do not really 

address the critical aspect of encapsulation, i.e., timing? We 

do not think so: the analysis of the unidirectional GPT-2 

found plausibility effects at the word that constitutes a critical 

dependency, a site where any words beyond that dependency 

are unavailable. This is akin to reading time studies with 

human participants that report immediate effects at a critical 

word⎯rather than later, at a spillover region⎯as evidence 

for the early influence of non-syntactic information (e.g., 

Trueswell et al., 1994). 

The results for our analyses are also consistent with noisy 

channel processing accounts of human language 

comprehension. Such accounts acknowledge that signals sent 

over a communication channel are susceptible to corruption 

due to noise, and therefore the signal perceived by the 

comprehender is not necessarily identical to the signal 

intended by the producer. Hence, comprehension involves 

inferences about intended messages (Gibson, Bergen, & 

Piantadosi, 2013; Levy et al., 2009). Given an implausible 

sentence ("The guide showed the sculpture a visitor”), a 

 
3 For nsubj, a fragment like “the surfer at the beach rescued…” is 

temporarily ambiguous between an active transitive construction 

(“…the swimmer.”) and the beginning of a reduced relative clause  

rational comprehender might “mentally correct” the sentence 

into a more semantically plausible alternative (e.g., “the 

guide showed the visitor a sculpture”; Gibson et al., 2013; 

Poppels & Levy, 2016; Ryskin et al., 2018). The results from 

our main analysis demonstrate that, in implausible sentences, 

the attention patterns of “syntax-specialized” attention heads 

might reflect such a process of searching for a plausible 

meaning: these heads assign less weight to their preferred 

dependencies than they do in plausible sentences; and, in 

some cases, they assign more weight to/from lure words that 

are semantically plausible (but syntactically incorrect) targets 

for that dependency.  

Whereas we interpret our results in terms of plausibility 

effects, in our sentence materials plausibility is confounded 

with predictability: during training, LLMs are likely to see 

words occupying plausible dependencies (like the critical 

dependencies in our plausible condition), but might only 

infrequently be exposed to words occupying implausible 

dependencies (like in our implausible condition). If LLMs 

have less experience with, e.g., “showed” and “visitor” being 

in a direct object dependency compared to “showed” and 

“sculpture”, this difference in exposure could explain our 

results. This explanation can be tested via an additional 

condition in which sentences are plausible but surprising due 

to low frequency but plausible critical words (e.g., “the guide 

showed the visitor a cyanotype”). If our current results reflect 

plausibility rather than predictability alone, then attention 

weights for the critical dependencies should be predicted by 

plausibility over and above measures of word predictability. 

Why might syntax-specialized attention heads in 

transformer-based LLMs be penetrable to semantic 

information? One reason is that encapsulated systems are 

mostly advantageous in domains that are unambiguous, 

where a system’s expertise can operate without external 

interference. In contrast, informational domains that are 

pervasively ambiguous⎯such as syntax⎯benefit from the 

penetrability of external information sources to aid analysis 

on a first pass and resolve indeterminacies without the need 

for re-processing (Trueswell et al., 1994). Given that (1) 

LLMs are trained to predict words in language, (2) such 

prediction can be optimized when using syntactic 

information, and (3) syntactic information is often 

ambiguous, LLMs might automatically learn to represent and 

process syntax in a non-encapsulated manner. In this sense, a 

fundamental computational property of their attention heads 

shows functional similarities to the human mind. 
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