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RELATIVISTIC AND DIAMAGNETIC CORRECTIONS 
OF ATOMIC g VALUES 

Ingvar P. K. Lindgren 

Lawrence Radiation Laboratory 
University of California 

Berke ley, California 

May 9, 1960 

ABSTRACT 

A review of the theory of Zeeman effect is presented with specific 

attention to relativistic and diamagnetic effects. The single-electron 

problem is solved completely by reduction of the Dirac equation. This 

leads to the Breit...;Margenau correction, which is proportional to the 

kinetic energy of the electron. The many-electron problem is treated 

approximately from the Breit-Dirac equation with a method based on 

Abragam and Van Vleck's investigation of atomic oxygen. The electron­

electron interactions give rise to a correction to the classical Zeeman 

energy, which essentially depends on the electron density and can be 

interpreted as a diamagnetic effect. Formulas are de've loped for the 

matrix elements in the single-electron scheme, and a general expression 

is given for the total g-value correction in the case of equivalent electrons 

and Hun,:t' s -rule ground state. A new two-parameter radial wave function 

for the 4f electron is introduced, which can be fitted well to calculated 

Hartree functions. This wave function has been used to calculate the 

corrections to the g value for thulium, and the result is in excellent agree­

ment with the experimental value. 
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May 9, 1960 

INT~ODUCTION 

The classical expression for the Zeeman effect is Z = f.LB B (L+ZS), 
where f.LB is the Bohr magneton, B the magnetic field, and I. and S 
the total orbital and spin angular momenta in units of 11. The atomic 

g value (g J) is defined by Z = f.LB g J B · J, where J = L + S, and, in the 

case of Russell-Saunders (RS) coupling, this gives rise to the usu.;._l Land'e 

formula. 

Accurate measurements of g values, however, particularly by the method 

of atomic beams, reveal that this simple description is insufficient. The 

Zeeman operator has now to be defined as the linear part of the total 

Hamiltonian, and the deviations between the experimental g values and the 

Lande values have mainly three sources, (a) partial breakdown of the RS 

coupling due to the spin-orbit coupling, (b) the anomalous magnetic moment 

of the electron (Schwinger correction), and (c) relativistic and diamagnetic 

effects. 

We are here concerned only with the last part, and shall start with 

the single-electron. case and use the standard technique of reducing the 

Dirac equation into one for the large components only. 
1 

* Work done under the auspices of the U.S. Atomic Energy Commission. and 

the Swedish Atomic Energy Commission . 

ton leave from the Institute of Physics, University of Upp.sala, Uppsala, 

Sweden"' 
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Single -Electron Case 

The Dirac equation for an electron (with charge -e) in an electro­

magnetic field (A, <j>) is 

E~ = [ -c a · {p + eA) - ~ me 
2 

- e<j> J ~ , ( l) 

where a = ( ~ ~) , ~ = ( ~ _;) , and E and p are the energy and 

momentum operators, respectively. The components of a are the usual 

Pauli spin matrices,and 1 in the beta matrix stands for ( b ~) (Note that 
- e -

we write eA instead of the more COITJmonly used - A, because we assume ' c 
that all quantities are expressed in the same unit system.) Writing ~l 

for the first two components and ~2 for the last two, v.re can separate 

Eq. (l) into 

2 
(E -V+mc )l\1 1 +ca· G>+eA)~2 =0, (2) 

2 
(E - v- me ) ~ 2 + c a · (p + eA) l\1 1 = 0, 

where V = -e <j>. The first of these equations shows that, for a velocity of 

the electron v < < c, ~l is of the order of (v/c) ~2 . If we eliminate ~l 

and neglect t~rms of higher order than v
2
/c

2 
,·we get 

where E' 

(E I - V) ~2 = 

2 = E -me . 

1 a , (i) + eA) ( l 
2m 

But we have 

E':v 
2 

2mc 

(3) 

a . G> + eA) (E' - V) = (E' - V) a'. (p + eA) + i1i'a . \lV 
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and Eq. (3) can be written 

(E' -V)ljl = 
2 {

-
1

- [a . G> + eA] 
2 

2m 

4 
2 2 

m c 

l 
2 2 

4m c 
(E'- V}[ a· (p +eA)] 

2 

(a· vV) a· (p + eA)} .p 2 . 

. E'- V 
S1nce 2 

2 2 
is of the order of v / c , we can replace (E' - V) on the 

me 

right-hand side by 
l 

2m [a · (p + eA) J 2 
and get 

(E' - V) tiJ 2 = { l 
2m 

l 

8 
3 2 

m c 

Now, the relation 

(a . a) (a · "b) = a . 1i + ia . (ax'b) , 

where. a and b commute with a but, are elsewhere arbitrary, gives 

[a· (p+eA)]
2 =p 2 +e(p· A +A· p) +e

2A.2 
+iea · (pxA +Axp). 

But pxA + Axp = - i 1i'V x A = - i1iB and, if the magentic field is uniform, 

A = l/2 B X r and p. A +A. p = 1iB. "I ' where "I = ~ r X p. Then 

l 
2m 

-2 
[ - - - ]2 p -a . (p + eA) . = Zm + fl.B B 

2- 2 
(T + a) + e A 

2m 
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and similarly, since p commutes with T and a , 

1 - - - 4 ·-4 -2 
[a · (p + eA} ] = _P_ + tJ.B B · ( T + a) ..L 

4m
2 

4m
2 

m 

where we have left out terms of second and higher order in the magnetic 

field. We also get 

(a· 'V V) a· (p + eA) = 'VV · (p+ eA) + ia · ['VV x (p + eA)] , 

and the complete Eq. (3) becomes 

-4 -2 

{ 

-2 
(~'- V) ljJ2 = ~ 

· · 2m 
+ tJ.B B · ( T+ a) - P ~ tJ.B B 

8 
3 2 (£ + a) P 2 2 

2m c m c 

a . [ " V x <P + eA)]} <!> 2 , 

{4) 

The first two terms of Eq. (4) form the nonrelativistic Hamiltonian, 

the thi:Jid term is the relativistic mass correction to the classical kinetic 

energy, and the fourth term the corresponding correction to the classical 

Zeeman energy. (Note that the latter correction is relatively twice as 

large as the former.) The fifth term has no simple classical interpretation 

and is difficult to observe experimentally . The term 'V V . A disappears 

if the magnetic field is uniform and V is spherically symmetric. The last 

term of Eq. (4) is the spin-orbit interaction, which, as is seen3 also depends 

on the magnetic field. 

In the following we assume that the magnetic field is uniform and that 

the potential Vis spherically symmetric. We then have 

= } B · ~ ~ ra ;z"l ~ dV rcrr-, 
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and the total correction to the classical Hamiltonian becomes 

0 z - - P· B B 
(I+ a) T z + i 

me 

where T = p 2 
/2m is the kinetic energy operator. 

dV 
r crr-

2 
me 

(5) 

In spherical coordinates (r, B, <j>), with the polar axis (z axis) along the 

magnetic field, Eq. (5) can be written 

oz f.lBB (lz + az) ~ + i f.lB B [azsin
2B-} sin8cos B 

me 

dV 

(O+e-i<j>+a_ei<j>)]rdr2' 
me 

virial theorem, 

of o Z in a state 

where 

=a 
X 

Using the 
+iay "(g ~) and a 

~~:\oz(T) 
characterized by the 

we get for the diagonal element 

quantum numbers (n.£ ms m
1 

) , 

2 
.£ (.£ +1) - 1 + m.£ 

(2.£ -1) (21 +3) 

-m s 

(6) 

The first two terms of Eq. (6) are the relativistic mass correction and the 

last term is the change in the spin-orbit coupling due to the magnetic field. 

The off-diagonal elements of Eq. (5) can be obtained in the following 

way. We are interested only in elements between states of the same ' 

configuration, and we can therefore confine ourselves to singlEi-e lectron 

d n W . 2 elements diagonal in n an ~ . ith the notation of Condon and Shortley 

we have 
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'lT 

( 8(lm1 ) 8 (1m1 ') sin Bcos B sin B dB, 

Jo 

which shows that the operator is diagonal with respect to mj = ms +m 1 " 

Now sinB cosB = - ~ 8 (2, 1) and 

gives 

Therefore, the only nonvanishing off-diagonal elements of Eq" (5) become 

(0__ .. 
2 

me 

The coefficients c
2 

are tabulated in Condon and Shortley (p. 1 79). Using 

the formula given by Gaunt (Condon and Shortley p. 176) we get the 
• 

following general formula for the off -diagonal elements, 

- 1-l-BB 2m ±1 [1(1+1)""m1(m1±1)]1/z.(T) 

2(21-1) (21 +3) mc 2 " 

(7) 
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With the vector-coupling cbefficients and the formulas (6) and (7) one 

can easily get the corresponding elements in the (n i j m .) scheme. The 
J 

diagonal elements become 

m. 
(j+l/2)2 

J j(j + 1) 

_hl 
2 

me 
(8) 

3 
This formula is equivalent to the expressions given by Breit and Margenau, 

and this correction is therefore usually called the Breit-Margenau correction. 

One can also derive this formula from Eq. (6), without calculating any off­

diagonal elements, by using the "diagonal-sum rule" and the fact that OZ 

transforms as a vector, which means that the diagonal elements are 

proportional to m .. 
J 

In the following we use the formulas derived for the (ni m s m 1 ) scheme, 

rather than the Breit-Margenau formula, since the former approach is more 

convenient in applications to many-electron systems. 

Many-Electron Case 

The starting point in the many-electron problem is the extended Dirac 

equation given by Breit, 
4 

which also includes electron-electron interactions, 

The Zeeman Hamiltonian is obta:ined from this equation by the usual replace­

ment of p by eA and taking the linear part in A. The correction to the 

classical Zeeman operator is then given by 

f.LBB 
2 

oz ·I (T. +a.) 
f.LB e Z 

L - 1 
X A. ) + = - 2 T. 2 a.•(\7.-

1 1 1 1 1 r. 1 
me 

i 
8rrEomc 

i 
1 

2 k/i 2 k:/:i 
f.i.Be 

I 1 
xA.) 

f.i.Be 

L 1 
X Ak) -+ 2 

a. (\7. -- + 2 
a. ('Vk --

8rrE: 
0 

me 
1 1 1 

4rr E:
0
mc 

1 

i, k rik i, k rik 

3 kh 

P)J e L [ -1 (Ak p.) -3 -
Ak) (rik 2 2 rik 1 + r ik (r ik 

8'ITE:
0

m c 
i, k 

( 9) 
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The first three terms of Eq. (9) correspopd to the Breit-Margenau 

correction, discussed in the preceding section, and the last two terms 

can be interpreted as a dia;rnagnetic correction. The former depend 

essentially on the kinetic energy of the valence electrons and the latter 

on the electron density in the core. 

In order to calculate the matrix elements of Eq. (9) we shall, in 
5 

principle, follow the approximate treatment given by Abragam and Van Vleck 

in th'¢ir discussion of the Zeeman effect in atomi~ oxygen. This operator 

involves two-electron operators of the type 

kfi 
G = ~ g (i, k), where g(i, k) operates on the coordinates of electron i and 

k. irlferefore, antisymmetric wave functions give rise to integrals of 

exchange type (see Condon and Shortley p. 171). We shall, however, dis­

regard this fact here and use as our basic functions simple products of 

single-electron wave functions (one term). The matrix elements in the 

general case are then obtained in a standard way if the wave functions are 

expressed as linear combinations of s.uch terms. 

We now show that the two-electron operator (9) is approximately 

equivalent to a single-electron operator. The diagonaL,element of G in 

a state A can be written 

··-
l)J~ (r')g(r r') l!Jk (r') l!Ji (r) dt' dr = 

where ljJ. is the single-electron wave function in the state i, and i and k 
1 

J 

run through all states of A. If g{r r') is now an ordinary function of the 

coordinates, this expression is exactly the same as the diagonal element of 

the single-electron opea;ator F ~ 2: f(i), where 
i 

k/i 
f (i) ~ lJJ: (I="'> g(rir') l!Jk (r') d r' 

k 
= 



Here p. (r') 
1 

* - -ljJk (r') ljJk (r') is the electron density from all 

electrons except i. The summation over k must here be confined to 

the single -electron states appearing in the state F is operating on. In 

the following we assume that pi' is-spherically symmetric, and then F 

becomes independent of the state it is operating on, as long as we confine 

ourselves to states within a given configuration (since equivalent electrons 

have identical radial parts). 

In the same way one can also show that the off-diagonal elements 

between states that differ by one single-electron state are the same for 

F and G. Of course, in replacing G by F we drop elements between 

states that differ by two single-electron states. These elements, however, 

are much smaller than the elements of the other types, especially for 

heavy atoms, since the latter involve summations over all electrons. 

These approximations might seem drastic at first sight, but it turns 

out that they have only a small influence on the final result. The exchange 

integrals, for instance, seem largely to cance 1 each other. Actually this 

approach is quite analogous to the Hartree method of self -consistent fields, 

which has been found to be a very good approximation for many~electron 

systems. 

A more general treatment is given by Kembe and Van Vleck
6 

in a 

later article about oxygen. There 1/rik is expanded by means of spherical 

harmonics and the integrals are expressed in the coefficients ck and the 

radial integrals F k and Gk, with the notations of Condon and Shortley. 
7 

Innes and Ufford have made a similar calculation with tensor operators. The 

difference, however, b~tween their results and those of Abragam and Van 

Vleck is --for oxygen·· remarkably small. For heavier atoms this method 

would be extremely complicated and the improvement probably quite 

negligible in most applications. 

We therefore apply the simplified method described above and start 

to' discuss the operator (9) term by term. 

Breit-'Margenau Correction 

The first term of Eq. (9) has the same form as the relativistic mass 

correction in the single-electron case and needs no furhter treatment. 
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The second and third term can be written 

2 kh riJ ] fl.B e L a . . ( v ~ ~ +L o z
2 

= X A 
2 1 1 r. i 

81r E
0

mc i 1 k 

fl.B La+ v. X A. ) = 2 0 1 1 1 1 ' 2mc 1 . 

where 

k 1 i 0 

2 

+ f Lk 
-·· 2 

41T Eo v. Ze l)J: ( i=') e· 
lj;k (;') da-' = 

1 I ;i - 2 I r. 
1 

Ze 
2 

+J 
2 

e 
P. (r,) dT 1 - -

lri --;:, 
1 

r. 
1 

If p. is spherically symmetric, V. becomes eKactly the central potential 
1 1 

used in the Hartree method, and o z
2 

is therefore just a sum of single-

electron spirr·-orbit corre,ctions, derived in the preceding section. 

These two corrections together are called the Breit-Margenau 

correction or, since they both depend on the kinetic energy, the relativistic 

correction. 

Spin-Other-Orbit or .lani:l. Correction 

In the same way we get for the fourth term of (9) 

2 
fl.B e 

= 

k ./. 0 

i 1 

I I 
i k 

a. 
1 

1 

1 
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(where 'il 1 implies d~rivatioh with respect to primed coordinates). 

In the following .we drop the subscript i : 

'il' 
1 

X A' = - 'il X 
A' 

g~ves 

a· p (r'} dr' , 

which is exactly the formula Lamb
8 

derived classically,assuming an 

induced current in the core caused by the electrons in unfilled shells. 

If p is spherically symmetric it follows from the symmetry that 

the integral above is a vector pointing in the direction of r. We now expand 

1/(i;- ?;} in Legendre polynomials: 

00 1 
1 I 

r< 
(cos w) = 1+1 p1 

lr - r' I 
1 

r> 
= 0 

·where r< is the smaller and r> the larger of r and r' and w is the 

angle between "i= and r' . We get 

and 

p("i='}d'T' 

1 
= 2 
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J 4n 
But czos w = P 1 (cos w) and B~ (cos w) P~ 1 (cos w) dn = 0((£ # ,') zi. +1 
If we introduce the radial density p'(r') = 4n r'

2 
p(r'), we get · 

2 
e 

4n Eo 

where 

But 

f ' r' p ( r I ) d 'T I : r Y ( r ) 

lr- r-~1 

r 
= 3 

co 

and W(r) = L f 
4nE

0 
· 

r 

pI (r I) 

r' 

Vx (B X r Y) = y "V X (Bx r) + vY X (B xr) = 2 By - u r X (B X r) 

which gives 

f.LB 
= - --2-

mc 

Orbit-Orbit correction 

. f.! B 2 -L a . [ ~ Y - } 
me 

r 

r- x (:B x r) 
2 

r 

(a . r} 
2 

r 

The last term of Eq. (9} can be written in a similar way:. 

Now 

"V{ cr - r-~) 
lr- -r I I 

p (r') } 

p(r 1 )d7' 1 

= 

d I r . 
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and 

We shall first show that the integral over the expression in the braces is 

zero. Let the polar axis of a spherical coordinate system fall along r 

and let r' have the coordinates (r'8'!4>') and B (B 8<j>, ). Then 

(r- r'} ·A'=} (r ~ r') · (Bxr') = }r. (Bxr') = ~ rr' B sin 8 sin 8' sin (<f>'-<f>). 

l 
When 17 ~ ;• I is expanded in Legendre polynomials P£ (cos 8' )., it is 

easily seen that the integral vanishes if p is spherically symmetric. 

Therefore 

f(r- r'> . A' 

1
- -, 13 r - r 

- _, -
(r- r) p(r') dT 1 A' p(r') 

lr~ r' I 
dT 1 

, 

and the entire correction becomes 

p· dT 1 • 

The integral was evaluated in the preceding section and is equal to 

1 z: Bxr Y (r), where Y (r) is the radial integral defined above. But 
- 1 p · (Bx~) = 1i B · T where f. = fi rxp, and therefore 

f.LB 
2 

me 

We shall refer to the spin-other-orbit and orbit~orbit corrections as the 

diamagnetic correction. Only the former was considered by Lamb since 

he dealt only'with s electrons. 

Obviously, there is no contribution to the Zeeman energy from the 

spin-spin interaction, since the latter is independent of the momentum and 

hence not affected by a magnetic field. 
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If we now add together all the different terms of the operator (9) we 

have discussed above, we obtain the following total correction to the 

classical' Zeeman operator: 

0 z = -1-L B ·B 
+a) T+Y 

2 
me 

- ~- (a· r) 
2 

r 

( 10) 

Only electrons outside closed shells contribute in this summation. Except 

for the radial parts, this operator is exactly the same as in the single­

electron case. We therefore g~t 'the matrix elements in the (n f. ms mi. 

·scheme from Eqs. (6) and (7): 

Here ( sin
2o/ = 2 

2 r 
e J u = 3 

4TT -E"o :r 0 

2m i. ± 1 
= 1-LB B 

Z(Zi. -1)(2.£. +3) 

i. (f. +1 ) - 1 + tl'li. 2 
( Z:11 -1) ( 21 + 3) 

2 
r 1 p1(r 1 ) dr 1 and w 

T 

= 

me·· 
s 

( 11 ) 

l i. ( 1', + 1 ) - mi. (mi. ± 1)_] 1 /2 ( T + ~) 
;me 

( 12) 

is the kinetic energy, y = 1/3 (U+W), 

2 j p (r 
1

), cl'T~ and e p'(r I) is the 
4TT €

0 
r r' 

radial density of all electrons except that one o:we are taking the average for 

( f p1(r 1
) dr 1 

· = Z-1). With these formulas we can calculate the corrections 

for any state that is expressed as a linear combination of single-electron 

states of the same configuration. 
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Comparison between the operators (5) and (10) and the Breit-Margenau 

formula (8) shows that for one electron outside closed shells (or one electron 

hole) the g-value correction can be written 

og - -

3 j (j+1) - £ (£ +1)+3/4 

2j (j + 1) 

(j + 1/2)
2 

j (j + 1) 

+ j (j+l)- £(£+1) + 1/4 

2j (j + 1) 

= 

( 13) 

which is a generalization of the Breit-Margenau formula, also including 

the diamagnetic correction. 

Equivalent Electrons 

The calculations are much simplified if all electrons outside closed 

shells are equivalent (same n and £ ). Then the radial parts of the wave 

function are identical for those electrons which contribute, and Eq. (10) can· 

be written 

oz ;;; -f.L B· B 
TtY 

2 
me 

L (T+ a) + f.LB 13 . 

( 14) 

The first term of (14) is, except for the radial part, identical to the 

classical Zeeman operator. Its contribution to the g -value correction can 

therefore be written 

0 g' =- g 

-where g is the classical g value. One may note that this holds even if the 

coupling is not of the Russell-Saunders type. This term is usually the 

dominating part of (14), and an estimate of the correction can therefore be 

made from this very simple expression. 
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The second term in (14) is very similar to the magnetic his operator 

and can be treated in the same way (see Edmonds 9 p. 118). 

For the Hund' s ~rule ground term (maximum S and largest possible 

L consistent with maximum S), the following general formula for the 

g-value correction has beengiven by Judd and Lindgren
10 

0 g +h 

where 

(T+u) 
2 

me 

h = __ 2 (2.£ - 2n + 1) J L(L+l) [J(J+l)- L,(L+l) + S(S+l)] 1 2 J(J + 1) 

3 
-4 

3n (2.£, -1) (2.£ +3) (2 L-1) 
\ 

[ J(J+1) __ L(L+1)- S(S+l)] [J(J+1) + L(L+1) 

J (J+1) 

+ J(J+l) - L(Lt1) + S(St1) 

3 J(J+l) 

) 

S(S+l)] J + 

( 15) 

Here n is the number of electrons or holes in the unfilled shell, whichever 

is the smaller. This formula is valid for any J in this term. For 

.J = L +.:S it reduces to 

(TtY) 
Og = -g 2 +n 

me 

12.£(.£+1)- 3n (21+1) +2n2 ~5 
6 J ( 2.£ - 1) ( 2.£ + 3) 

( 16) 
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Application to Thulium 

The electronic ground state of thulium has been determined optically 
13 2 . 2 . 

and is, with spectroscopic notations, 4f 6s , F 7 ; 2 
. Since the 

configuration consists of a single hole in completely filled shells, the 

ground state can be expected to be very pure. Futherrnore, the electrostatic 

interaction can mix only states with the same S, L, and J and hence has 

no effect on the g value. The configuration interaction caused by the spin-

orbit coupling can be shown to be quite negligible. Therefore any measurable 

deviation of the g value from the Lande value must be caused by (a) the 

anomalous moment of the electron and (b) relativistic and diamagnetic effects. 

The experimental g value of thulium has been measured with the atomic­

beam technique for the radioactive isotope Trn 170(~294)$;1.14122 ± 0.00015.
11 

The Lande' value including Schwinger correction is 1.14319. The difference, 

0.00197 ± 0.00015, is far beyond the experimental uncertainty. 

Applying formula (13), we get 

+~ 
7 

8 
63 

Here a is the fine -structure· constant, and the radial integrals are expressed 

in atomic units (see Appendix II). 

The radial integrals have been evaluated by use of a pure hydrogenic­

and a modified hydrogenic wave function (see Appendix I). These wave 

functions are adjusted to give, together with the Thomas-Fermi potential 

the experimental value of the spin-orbit coupling constant, which in this 
. -1 

case has been determined optically (s ::: 2506 ern ) . The following values 

are then obtained: 

I.· Hydrogenic wave function: 

(T) == 30.7, (u) == 19.2 and (Y)== 15.9 au 

II. Modified hydrogenic wave function: 

(a) K = 0.40 , 

( T) = 2 4. 7, ( U) = 16 . 5 and ( Y) = 13 . 3. 

(b) K = 0.44 

( T ) = 2 3. 3, (u )= 15 . 6, ( Y) = 12 . 5 . 
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The corrections are summarized in the following table. 

/ 
Lande value 

Wave Functions 

Hydrogenic 

(K : 0 ) 

1.14286 

Schwinger correction! +0.00033 

Breit-Margenau correction -0.00166 

Diamagnetic correction 

Theoretical value 

Experimental value 

-0.00084 

1.14069 

Modified hydrogenic 

K : 0.40 K = 0.44 

1.14286 

-10.00033 

-0.00134 

-0.00070 

1.14115 

1.14122 ± .00015 

1.14286 

-10.00033 

-0.00127 

-0.00066 

1.14126 

It is seen from this table that the hydrogenic wave function gives a 

correction that is significantly too large, whereas the modified wave 

function, which has a shape very close to the Hartree functions, gives 

excellent agreement with the experiment. 

Remarks 

The experimental g value together with the spin-orbit coupling 

parameter can be considered as a measure of the shape of the radial 

wave function. It is seen from the -abo've that for thulium this is a strong 

support of the shape obtained by the self-consistent field (SCF) methpd. 

Therefore, wave functions determined in the way described in Appendix I 

can be expected to be quite reliable in the whole rare earth region. 

Particularly, the values of ( r -
3

) optained from these wave functions should 

be quite accurate, which is of great importance for the determination of 

nuclear moments from hyperfine-structure measurements. 

For thulium the following values of(r-
3
)are obtained: 10.6 aufor 

K = 0.40 and 10.4 au for :K··= .0.44, while a hydrogenic wave function 

(K = O) gives 11.3 au, It should be emphasized that the hydrogenic wave 

function used here has been fitted to the experimental spin-orbit coupl~ng 

by using the Thomas-Fermi potential rather than the very crude formula 
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s = ( 1 7) 

which has been frequently used by spectroscopists. If the effective nuclear 

charge zeff is determined from this formula' the hydrogenic wave function 

gives a g -value correction which is even much larger than in the case shown 

above and consequently in very poor agreement with the experiment. This 

disagreement makes the values of (r -
3

) calculated by means of Eq. (1 7) highly 

questionable. For thulium this would give Zeff = 32.8 and (r-
3
) = 13.1 au 

which is about 25o/o greater than the value obtained with the modified wave 

function above. This means that nuclear moments determined by use of 

Eq. (17) also might suffer from an error of the same order of magnitude. 
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Appendix I 

Analytic Radial1 Wave Functions 

The best radial wave functions that can be obtained at present are the 

SCF wave functions of Hartree or Hartree ~Foch type. For numerical 

calculations it is very convenient to have analyti~.approximations of these 

functions, which also enable us to interpolate and extrapolate between 

exit5ting functions. A suitable form is the Slater -Lbwdin 
12 

approximation, 

which for a function of the 4£ type (single maximum) is 

This is a generalization of the hydrogenic form R{r) = N rn e-ar . With 

three terms in this expansion the agreement with the original function is 

extremely good. For our purpose, however, we prefer to use a two­

parameter wave function, and choose the symmet',i'ic form 

n -ar 1 N n [ -Kn -a(1-K)r+ Kn -a(1+K)r] R(r)=Nr e coshK(ar-n)=z r e e e e . 

. (k1) 

n For this fup.ction the position of the maximum depends crly en a (r = - ) , 
max a 

and the other parameter, K determines essentially the shape. One could 

easily determine both parameters in Eq. (A-1) by interpolation or extra­

polation from existing SCF calculations, but more reliable wave functions 

are probably obtained if one of the parameters i~ determined from the 

experimental spin-orbit coupling constant. Since the shape of the wave 

function differs very little from element to element, we determine K by 

comparing with SCF wave functions and a from the spin-orbit coupling. 

For the calculation of the spin-orbit coupling the Thoma:; -Fermi potential 

is accurate enough. In fact, comparison with SCF calculations shows that 

the Thomas -Fermi potential is a very good approximation for heavy atoms, 

particularly near the nucleus, where the main contribution to the spin­

orbit coupling comes from (see Fig. l). 
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• 

x SCF for W 

• SCF for Hg 

----Thomas - Fermi 

00~--~----._--~----~----~--~----._~~----~~~5 

5 30 
I 

z""!i 
x = 0.8853 r 

Fig. l. Comparison l?etween 
2 

r 
dV 
dr 

from 

Thomas-Fermi and from self-consistent 
fields. 

MU-19766-
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No SCF calculations are available for any rare earth atoms, but 

some have recently been carried out for Pr
3+ and Tm

3+ by Ridley. The 

difference in shape (K value) between the 4f wave functions for these ions 

is very small. Since one would not expect the shape to differ much between 

the ions and the atoms, an ac;curate value of K can be obtained from these 

functions. One can also estimate the K :-value by extrapolating from the 

heavier atoms W and Hg. Figures 2-4 show the four SCF wave functions 

mentioned above and their approximations according to Eq. (A-1). For 

comparison ·the b~st ~ydrogenic- approximations are also given. The most 

reas onalb le value of K for the thulium atom determined in this way is 

about 0.4 or slightly more. One should here keep in mind that all functions 

we want to average are decreasing with r, which means that the part 

nearest the nucleus is most important, while the shape of the long tail is 

uncritical. 

For the wave function (A-1) the following formulas are easily 

verified: 

(subscript hy indicates hydrogenic value with the same value of a) 

where C 
s 

= 

= 

1 
4 

( 
-m 

r tanh-

where D s = 
1 
4 

N2 = (2a)2n+1 

(2n)! 

. m 
(2n-m)! (2a) 

(2n)! 

K(ar -n)) = 

= 

.. 2 
N hy 

c2n+l 



1.5 

C\1 

a:: 1.0 

0.5 

-25-

··· .. 

1.0 

r (atomic units) 

UCRL-9184 

.Pr 3 + ( Z =59) 

Ridley 

Hydrogenic 

Modified 
hyd rogenic ( K = 0.4) 

2.0 

MU-19768 

Fig. 2. Radial wave functions for Pr
3+. 
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Fig. 3. Radial wave functions for Tm
3+ . 
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Fig. 4. Radial wave functions for· W and Hg. 
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a 

2 

r 

2na 2 2 ( n ) - ·h· ( ) + (} +K ) a + 2 Ka r - a tan K ar -0 
r 

2 2 [ 2 a 8. 1 - K .-2K 
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Appendix II 

Atomic Units 

Formulas in atomic physics can be considerably simplified by the 

use of basic units that are directly related to the fundamental constants. 

The most frequently used atomic unit system was introduced by Hartree and 

is based on the following units: 

m , mass of electron 
e 

e , charge of electron 

1i , Planck's constant divided by 2lT 

4lTEO , 4lT times the permittivity of free space 

The dimensions are given in MKSA units in the square brackets. From 

these one can easily get the units of other quantities; e. g., 

unit of length [ ~ : 
4TIEO 1i 

2 

z 
m e 

e 

z 
e 

(first Bohr radius); 

= a. c (a. is fine-structure unit, of velocity [ m/~ 
4lTE01i 

constant, c is velocity of light) ; 

unit of energy [kg rn
2 
js

2
] 

constant); 

unit of magnetic moment 

4 
m e 

e 
2 2 = 2hc Ry (Ry is Rydberg's 

(4lTEO) 1i 

[ 2].-Am .= e1i 
m 

e 
(f!B is Bohr magnet on); 
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unit of permeability [ ~f ;z J 1 l-1o 
( 1-1 0 is = -2-

a 4 7T 

permeability of free space). 

General formulas (with correct dimensionality')are directly transformed 

to atom~c units by replacing me , e, 1'l , a 0 , and 47T Eo by unity, c by 

1/a , 0 by. a.2 , j.LB and he Ry by 1/2 , etc.; e. g., 
47T 

(a) Spin-Orbit coupling 

s = 1 
.112 < l dd.v,r:J. ) = j.14 07T 

2 
'2 .. 2 ·-.. 

m c. .r. 
e .. 

2 2 < 1 dV)-j.LB ---
r dr 

becomes 
1 s - 2 

(b) Magnetic dipole coupling 

j.Lo 
ha =· 

1 
becomes ha = Z 

(c) Electric quadrupole coupling 

.2 
a. /rl1 .dd~r \ ~ j/ in atomic units. 

' 2 1 (1 +1) 
a. gl . 

j (j+l) 
()) 

3 
2 

hb · = e Q 

47T Eo 

Zj- 1 / 1 ) ~ 2 he R 
.2(j+l) \7 - y 

a 2j-1 <a.o ) -- ---r 
ao 2 

2(j+1) r 

becomes hb = Q 
2j -1 

2(j+l) (-f). 
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