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Sequential diagnostic reasoning with independent causes
Marko Tešić (mtesic02@mail.bbk.ac.uk) & Ulrike Hahn (u.hahn@bbk.ac.uk)

Department of Psychological Sciences
Birkbeck, University of London

Malet Street, London, WC1E 7HX, UK

Abstract

In real world contexts of reasoning about evidence, that evi-
dence frequently arrives sequentially. Moreover, we often can-
not anticipate in advance what kinds of evidence we will even-
tually encounter. This raises the question of what we do to our
existing models when we encounter new variables to consider.
The standard normative framework for probabilistic reasoning
yields the same ultimate outcome whether multiple pieces of
evidence are acquired in sequence or all at once, and it is in-
sensitive to the order in which that evidence is acquired. This
equivalence, however, holds only if all potential evidence is
incorporated in a single model from the outset. Hence little is
known about what happens when evidence sets are expanded
incrementally. Here, we examine this contrast formally and re-
port the results of the first study, to date, that examines how
people navigate such expansions.
Keywords: sequential diagnostic reasoning; sequential causal
structure learning; causal Bayesian networks; order effects.

Introduction
Tom wakes up one morning and notices a rash on his skin. He
does not think the rash is a big deal, but after a couple of days
the rash is still present so he decides to see a doctor. Before
he visits a doctor he thinks that the rash is either caused by
a bacterial or a viral infection or, perhaps, both. The doctor
agrees with him that the rash could be caused by a bacterial
and/or a viral infection. However, she additionally informs
Tom that he also has a swelling he didn’t notice, which can
also be caused by a bacterial and/or a viral infection. Fur-
thermore, she tells him that either type of infection is more
likely to cause the swelling than the rash. How do (should)
Tom and the doctor revise their beliefs about multiple inde-
pendent causes given multiple pieces of evidence of different
diagnosticity?

From a normative standpoint, many would argue that the
answer is encoded in the causal Bayesian networks (CBNs):
directed acyclic graphs with nodes representing variables
(causes and effects) and arrows representing probabilistic
and causal relations between the nodes (Pearl, 2009, 1988;
Neapolitan, 2003). Here one would build a 4-node CBN with
2 common effects and 2 independent causes.1 For instance,
the CBN in Figure 1 would model the situation we described
above: C1 = viral infection, C2 = bacterial infection, E1 =
rash, and E2 = swelling.

To fully parameterize CBN from Figure 1, one needs to
specify the following probabilities:

P1pC1q “ c1 , P1pC2q “ c2

P1pE1 | C1,C2q “ α1 , P1pE1 | C1, C2q “ β1

C1

E1 E2

C2

Figure 1: CBN with 2 independent causes and 2 common
effects.

P1pE1 |  C1,C2q “ γ1 , P1pE1 |  C1, C2q “ δ1 (1)
P1pE2 | C1,C2q “ α2 , P1pE2 | C1, C2q “ β2

P1pE2 |  C1,C2q “ γ2 , P1pE2 |  C1, C2q “ δ2

P1pC1q and P1pC2q are usually referred to as the prior prob-
ability of the two causes and the remaining probabilities as
being part of the conditional probabilities tables (CPTs) for
the two effects. The doctor then could use this CBN to up-
date her beliefs about the probability that Tom has a viral
infection after learning that Tom has a rash by calculating
P1pC1 | E1q. After additionally learning that Tom also has
swelling the doctor could further update her probability of
Tom having a viral infection by calculating P1pC1 | E1,E2q

(similarly for the bacterial infection).
However, it is somewhat accidental that Tom first noticed

the rash and not the swelling. He could have plausibly first
seen the swelling and gone to the doctor and then noticed
the rash. Would the CBN calculation be different in this sce-
nario? It depends. If the rash and the swelling are not equally
diagnostic of the two causes as is suggested by the example,
then it is possible that P1pC1 | E1q ‰ P1pC1 | E2q, in which
case the doctor’s degrees of belief about a viral infection af-
ter first learning that Tom has swelling would not be equal
to those where she first leaned about the rash. However, after
learning the second effect the order in which the effect appear
no longer matters: that is, P1pC1 | E1,E2q is always equal to
P1pC1 | E2,E1).

It is then empirically interesting to investigate whether
people are sensitive to these different orders of effects and
whether they update the causes differently depending on the
order in which the effects appear. Studies on sequential di-

1Hayes, Hawkins, Newell, Pasqualino, and Rehder (2014) have used
a dynamic CBN to model these kinds of situations. However, in this
paper we employ static CBNs as there are no significant differences
in the formalism in this case.
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agnostic reasoning have sought to tackle exactly these is-
sues (see Meder & Mayrhofer, 2017b; Hogarth & Einhorn,
1992). They presented participants with a sequence of effects
and asked them to reason from multiple effects to causes ei-
ther with each effect they learned (step-by-step procedure)
or after they learned about the whole sequence of effects
(end-of-sequence procedure) (see Hogarth & Einhorn, 1992;
Rebitschek, Bocklisch, Scholz, Krems, & Jahn, 2015). Their
studies were primarily interested in investigating primacy
effects (most of the evidential weight is given to the first
piece of evidence) and recency effects (most of the eviden-
tial weight is given to the most recent pieces of evidence).
Meder and Mayrhofer (2017a) investigated sequential diag-
nostic reasoning by providing participants with verbal in-
formation regarding the strengths of the causes instead of
a more quantitative information (like the CPTs) and found
that participants are remarkably accurate in their judgements.
However, all these studies investigated only situations where
the causes were mutually exclusive and exhaustive causes
(which would be modeled as one node for all causes). Hayes
et al. (2014) investigated a scenario where two symptoms
could be produced by two independent causes. However,
in their study both effects had exactly the same diagnostic-
ity (i.e. the same CPT) and for that reason there are no order
effects, i.e. it does not matter whether we learn first E1 or E2,
P1pC1 | E1q “ P1pC1 | E2q.

One of the goals of this paper is to empirically investigate
people’s ability to reason diagnostically from multiple effects
with different diagnosticities (CPTs) to multiple independent
causes. More specifically, we aim to test how people’s judge-
ments compare to the normative answer from CBNs such as
the one in Figure 1 by manipulating the way in which multi-
ple pieces of the evidence of different diagnosticity are pre-
sented (in a particular order or at the same time) and the way
judgements about the causes are elicited from the participants
(step-by-step (SbS) or all-at-once (AaO)).

Another interesting issue emerges when reasoning with in-
dependent causes. Not only can we learn the evidence se-
quentially, but we can sequentially learn about new variables
that may influence our beliefs about the causes. In technical
parlance, we may need to expand the algebra. Consider Tom
from our example. Initially Tom only knew about his rash
and, based on that knowledge, he updated his probabilities of
the two causes. Unlike the doctor, Tom did not even know
that the two types of infection could also cause swelling. It
is only after he visited his doctor that he learned about the
another potential effect and the occurrence of that effect. At
the time he only knew about the rash he updated the proba-
bilities of the two causes on the basis of a CBN model with
only three nodes: two independent causes and one common
effect while the doctor always had in mind the CBN from Fig-
ure 1. Despite operating with two different CBNs, both Tom
and the doctor would arrive at the same probabilities (assum-
ing the same priors and CPTs for the effect) at this first step.
The next step is, however, crucial. After learning about the

swelling, the doctor would simply learn the new piece of evi-
dence and update the probabilities of the causes based on the
CBNs from Figure 1. Tom, by contrast, might do one of two
things: (1) forget about his original 3-node network and cre-
ate a new 4-node one like the one in Figure 1 in which case he
would arrive at the same estimates as the doctor; or (2) take
his (and doctors) previous estimates of the two causes based
on only one piece of evidence and take them as new priors in
his new 3-node network with the second piece of evidence as
a common effect (see Figure 2). In the latter case he would be
‘splitting’ the CBNs from Figure 1 into two 3-node networks.

C1 E1 C2

C˚1 E2 C˚2

Figure 2: ‘Split’ CBN from E1 to E2

P1pC1q “ e1 , P1pC2q “ e2

P2pC˚1 q “ P1pC1 | E1q , P2pC˚2 q “ P1pC2 | E1q

P1pE1 | C1,C2q “ α1 , P1pE1 | C1, C2q “ β1

P1pE1 |  C1,C2q “ γ1 , P1pE1 |  C1, C2q “ δ1 (2)
P2pE2 | C˚1 ,C

˚
2 q “ α2 , P2pE2 | C˚1 , C˚2 q “ β2

P2pE2 |  C˚1 ,C
˚
2 q “ γ2 , P2pE2 |  C˚1 , C˚2 q “ δ2

Eq. (2) specify the priors and the CPTs of the two net-
works. Although one might intuitively think that Tom will
arrive at the same probabilities as the doctor even in the case
where he models the situation as in Figure 2, that turns out to
be true only under very specific conditions, some of which
may violate common assumptions in causal Bayesian rea-
soning (see Appendix A). Less technically, this is because
once one learns evidence (E1) and updates the probabilities
of the two causes (C1 and C2) in a common-effect CBN, the
two previously independent causes become dependent: al-
though P1pC1 | C2q “ P1pC1q, generally P1pC1 | C2,E1q ‰

P1pC1 | E1q. This dependency is preserved in the full CBN
network in Figure 1 even before one learns the second piece
of evidence (E2) and again updates the probabilities of the
two causes. However, in the lower 3-node CBN in Figure 2
the dependency is lost since it is assumed that C˚1 and C˚2 are
independent before observing E2. Therefore, the final prob-
ability estimates of the two causes, i.e. their estimates after
learning both pieces of evidence, will most likely diverge on
the two different modeling strategies. More specifically, the
final estimates of the two causes will always be higher accord-
ing to the ‘split’ CBN in Figure 2 than those according to the
full one in Figure 1 precisely because the full one accounts
for the above-mentioned dependency and the ‘split’ one does
not. Moreover, when the diagnosticity of the two pieces of
evidence is different (as is the case in this study), the height
of the final estimates in the ‘split’ CBN will depend on the or-
der the evidence is observed: learning E1 then E2 will result
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in the final estimates of the causes that are different to those
that result from learning E2 then E1 (as previously mentioned,
whether we learn E1 first then E2 or vice versa does not affect
the final probability estimates of the causes in the full CBN).
It is also worth pointing out that this divergence only happens
when the causes are independent. If the causes are mutually
exclusive and exhaustive, one can safely ‘split’ the full net-
work into multiple ones without worrying about ending up
with different estimates (see Appendix B).

To the best of our knowledge no study has yet investigated
sequential diagnostic reasoning with sequentially learning the
algebra. In the literature mentioned above participants were
presented with all the variables and the causal/probabilistic
information related to them before they started making judge-
ments about the causes. Even in such contexts, it is worth
looking at order effects because it has long been recognized
that order effects may be particularly diagnostic with re-
spect to the processes underlying the formation of a judg-
ment. Specifically, there is a long literature concerned
with order effects in contexts such as impression formation
(Anderson, 1965) or numerical estimation (Jacowitz & Kah-
neman, 1995). However, our concerns in this paper go be-
yond this. We are interested in examining how reasoners
fare in probabilistic reasoning contexts where they are faced
with entirely new variables. This issue has, to the best of
our knowledge, not been explored. In many scientific and ev-
eryday situations we must make judgements about potential
causes given effects without being aware of other potential
effects that could also inform our judgements. The main aim
of this study was to examine how people reason with multiple
pieces of evidence when they successively learn not just that
some piece of evidence obtains, but also that there is another
potential piece of evidence not known before. We compared
participants’ estimates to both the full network’s predictions
(Figure 1) and the ‘split’ networks’ predictions (Figure 2).

Experiment overview
In the present experiment we investigated the influ-
ence of manipulating algebra and evidence learning on
probabilistic judgements of the two independent causes.
Participants were prompted to reason with either the full
4-node model (Figure 1) from the outset or they learned
in stages that there is another possible effect of the two
causes. Further, participants either observed the effects
in one of the two sequences or they observed both effects
at once. The prior probabilities of the cases and CPTs
of the effects were the same in all conditions: PpC1q “

PpC2q “ 0.15; PpE1 | C1,C2q “ 0.99, PpE1 | C1, C2q “

PpE1 |  C1,C2q “ 0.7, PpE1 |  C1, C2q “ 0;
PpE2 | C1,C2q “ 0.6, PpE2 | C1, C2q “ PpE2 |  C1,C2q “

0.2, PpE2 |  C1, C2q “ 0. For simplicity the priors of the
causes were the same and the CPTs of the effects reflected
different diagnosticities of the two effects.

Methods
Participants and design
A total of 271 participants (NMALE = 101, MAGE = 32.1 years;
one participant identified as neither male nor female) were
recruited from Prolific Academic (www.prolific.ac). All
participants were native English speakers who gave informed
consent and were paid £1.25 for partaking in the present
study, which took on average 13.9 minutes to complete. Par-
ticipants were randomly assigned to one of the 2 (algebra:
full or sequential) ˆ 3 (evidence learning: all-at-once (AaO),
step-by-step from E1 to E2 (SbS1), or step-by-step from E2 to
E1 (SbS2)) = 6 between-participants groups (one group with
44 participants, 3 groups with 45 participants, and 2 groups
with 46 participants).

Materials
All participants were given the same cover story wherein rain
(C1) and a lawn sprinkler (C2) (two binary and independent
variables) could cause a wet lawn (E1) and/or a wet exterior
house wall (E2) (a version of the cover story can be found in
Pearl, 1988). The participants in AaO condition completed an
online inference questionnaire comprising of 10 comprehen-
sion questions (2 about the priors of the causes and 8 about
the CPTs) and 2 test questions (one relating to PpC1 | E1,E2q

and one to PpC2 | E1,E2q). Everyone else completed the same
10 comprehension questions and 4 test questions (relating to
PpC1 | Eiq, PpC2 | Eiq, PpC1 | Ei,Ejq, and PpC2 | Ei,Ejq).

Procedure
In the full algebra condition, the participants were initially
presented with a causal cover story (both in a textual and a
visual form) which explained the relations between variables
and probabilistic information relating to the priors of both
causes (priors were textually communicated as a percentage
chance). They were then asked 2 priors comprehension ques-
tions. Following that, participants were told the CPTs of
the two pieces of evidence (also textually communicated as
a percentage chance) and subsequently asked 8 comprehen-
sion questions regarding the CPTs (in a random order). Af-
ter completing the comprehension questions, participants in
the AaO condition learned that both pieces of evidence oc-
curred and were prompted to answer 2 test questions (one for
each cause) presented in the same order. Participants in the
SbS conditions first learned about one piece of evidence and
answered 2 test questions relating to the 2 causes and then
learned that the second piece of evidence occurred and asked
final 2 questions. When answering the test questions partici-
pants were reminded of the priors of the causes and the CPTs
of each piece of evidence, as well as their previous estimates
of the two causes (in the SbS conditions).

Participants in the sequential algebra condition were ini-
tially told a cover story (both in a textual and a visual form)
including only two causes and one effect. As in the full al-
gebra condition, they were told the priors of the causes (per-
centage chance) and asked 2 priors comprehension questions.
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In contrast to the full algebra contention, they were then told
CPTs (percentage chance) regarding only one piece of evi-
dence and completed 4 comprehension questions related to
CPTs (in both the AaO and the SbS conditions). This was
followed by 2 test questions relating to the probability of the
causes given that one piece of evidence was observed (only
in the SbS conditions). Participants then additionally learned
that there is another piece of evidence potentially relevant to
the probability estimates of the two causes. They learned the
CPTs for the second piece of evidence and completed 4 com-
prehension questions followed by 2 test questions prompt-
ing them to estimate their confidence in the causes happen-
ing given the additional piece of evidence obtained. Again,
participants were reminded of the priors of the causes, CPTs
(but only for the current piece of evidence), and their previ-
ous estimates of the two causes (in the SbS conditions). In
the AaO, after completing the first 4 comprehension ques-
tions participants were not told that the evidence obtained.
Rather, they went on to learn that there is another potentially
relevant piece of evidence, completed additional 4 compre-
hension questions, and subsequently told that both pieces of
evidence obtained. After that, participants were reminded of
the priors, CPTs (for the both pieces of evidence) and com-
pleted 2 test questions regarding the probabilities of the two
causes.

In all conditions the test questions prompted participants to
provide percentage confidence (0–100%) of Ci given one or
two effects. For example, after learning that E1 occurred, they
were asked (in SbS1 condition) a diagnostic reasoning ques-
tions: “How confident are you that it rained overnight now
that you know that the lawn is wet?” After additionally learn-
ing E2 occurred they were asked: “How confident are you that
it rained overnight now that you know that both the lawn and
the house wall are wet?” (the full algebra condition) or “How
confident are you that it rained overnight now that you know
that the house wall is also wet?” (the sequential algebra con-
dition). All participants provided explanations for each an-
swer to the test questions.

Results
All the participants’ responses to the test questions are plot-
ted in Figure 3. To test the effect of the algebra and the ev-
idence learning conditions on participants estimates on the
test questions, we built a linear mixed effects model using
the lme4 package (Bates, Mächler, Bolker, & Walker, 2014).
The model had two fixed effects, Algebra and Evidence learn-
ing, with a random intercept for each participant (there was
no random slope for participant since algebra and evidence
learning conditions vary between participants). We found a
main effect of Evidence learning but no main effect of Alge-
bra (see Table 1). We also found no interaction between Al-
gebra or Evidence learning. However, likelihood ratio tests
showed that including the predictors in the model does not
improve model fit compared to just having an intercept as a
predictor (χ2p3q “ 6.11, p “ 0.11). That is, the data grand

mean fits the data no worse than the model which includes
both predictors.

Table 1: Linear mixed effect model results

A=Algebra; EL=Evidence learning

Estimate 95% CI t-value p
A -6.51 [-17.76, 4.73] -1.13 0.26
EL -0.53 [-1.03, -0.03] -2.1 0.04*
Aˆ EL 3.28 [-17.76, 4.73] 1.29 0.2

A finer grained analyses on the data within each group
showed a significant difference between PpC1 |Eiq and PpC1 |

Ei,Ejq in the full algebra SbS1 condition (tp44q “´4.04, p“
0.0002); in the full algebra SbS2 condition both between
PpC1 | Eiq and PpC1 | Ei,Ejq (tp45q “ ´4.87pă 0.0001) and
PpC2 | Eiq and PpC2 | Ei,Ejq (tp45q “ ´2.98, p “ 0.005); as
well as in the sequential algebra SbS2 condition between
PpC1 | Eiq and PpC1 | Ei,Ejq (tp45q “´5.57, pă 0.0001) and
between PpC2 | Eiq and PpC2 | Ei,Ejq (tp45q “ ´6.13, p ă
0.0001). No significant differences in the sequential SbS1
condition.

Further analyses showed that none of the PpC1 | Ei,Ejq and
PpC2 |Ei,Ejq are significantly different across the levels of the
evidential learning condition whereas some PpC2 | Eiq are:
in the full algebra condition PpC2 | Eiq in SbS2 and SbS1
are statistically different, tp89q “ ´2.09, p “ 0.04, as well
as PpC2 | Eiq in the sequential algebra condition SbS2 and
SbS1 tp88.5q “ ´2.51, p “ 0.014, with those in SbS1 hav-
ing higher means. Combining these results from those above
regarding participants estimates withing each group suggests
that (i) people are sensitive to the different orders the pieces
of evidence of different diagonsticity were presented and (ii)
that their estimates go against both the full CBN and the
‘split’ CBNs (qualitative) predictions since the differences
PpC1 | Ei,Ejq´PpC1 | Eiq and PpC2 | Ei,Ejq´PpC2 | Eiq are
larger in SbS2 condition than in SbS1 condition whereas the
full CBN and the ‘split’ CBN predict exactly the opposite (see
Figure 3).

A closer look at the data distributions in Figure 3 reveals
the driving force of the results; namely, that participants’ re-
sponses are highly clustered. Three clustering points (‘20%’,
‘60%’, and ‘70%’) seem to correspond to the probability val-
ues one finds in the CPTs for the effects. One clustering point
corresponds to the priors of the causes (‘15%’). The largest
clustering point seems to be around the ‘50%’ mark. Table 3
shows a frequency of responses around (˘2%) the clustering
points. The data captured in Table 3 amounts to « 67% of all
data.

Finally, to assess the fit of each model to the data, we calcu-
lated mean squared errors (MSEs) for each model across the
two algebra conditions.2 Given the above-mentioned cluster-

2Note that the ‘split’ CBN does not have a unique prediction for AaO
condition (see Figure 3). In calculating the MSE for that model we
included the prediction that has the lower MSE.
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ing around particularly the ‘50%’ mark, we additionally cal-
culated the MSEs for a simple model that included the cor-
rect priors (same as in both the full CBN and the ‘split’ CBN
modeling), but has 50% as a response to all test questions.
The results are presented in Table 2.

Table 2: MSEs for the full CBN, ‘split’ CBN, and ‘50%’
model in the full and sequential algebra conditions

Full algebra Sequential algebra
Full CBN 621.18 536.94
‘Split’ CBN 778.93 701.97
‘50%’ model 573.73 496.65

The best fitting model of the three was the simple ‘50%’
model, further confirming the clustering effect around the
‘50%’ mark and the results of the linear mixed effect model.
The full CBN model was a better fit than the ‘split’ CBN
model of both the full algebra condition data and sequential
algebra condition data. All three models fit better the sequen-
tial algebra condition data than the full algebra condition data
suggesting a difference between the two conditions. How-
ever, according to the linear mixed effect model that differ-
ence is not statistically significant.

Discussion
The general goal of the paper was twofold. First, we sought
to explore new avenues in sequential diagnostic reasoning by
investigating peoples causal judgements with multiple inde-
pendent causes and multiple pieces of evidence of different
diagnosticity. To this effect we found that people are sen-
sitive to the order of presentation of the different pieces of
evidence. However, although there was a trend in increasing
the probabilities of the causes after finding out that the second
piece of evidence obtained (in accordance with both the full
and the ‘split’ CBN model), the (qualitative) predictions of
both models regarding the amount of increase in each order
go against the participants’ mean estimates.

Second, we introduced the issue of the novel variables in
sequential reasoning and the practical challenge it presents.
In the first empirical study on this issue, we found that people
update almost identically when they are presented with the
full algebra and when the algebra is expanded sequentially. In
principle, this lack of difference could mean either that people
are very good at this expansion, or that they inappropriately
treat the full model in a sequential, local fashion. The MSE
analysis showed that the full CBN model is a better fit than the
‘split’ CBN model across board supporting the latter option.
However, the significant clustering in our data and the fact
that the ‘50%’ model fitted the data better then either the full
or the ‘split’ CBN model suggest that participants employed
different strategies in answering our test questions. Some
of these seem indicative of well-established errors in human
causal/probabilistic reasoning such as ‘the inversion fallacy’
where people confuse PpA |  Bq with PpB | Aq (Nance &
Morris, 2002) or more recently identified errors such as ‘the

zero-sum fallacy’ where people treat evidence as a zero-sum
game in which alternative independent hypotheses compete
for evidential support which may lead to splitting the prob-
ability space between the hypotheses (Pilditch, Fenton, &
Lagnado, 2019). The prevalence of such errors may mask
other differences that would emerge across those contexts. In
particular, systematic differences may yet be found in more
naturalistic scenarios where there are no explicit numbers for
people to hold on to. This should be pursued in future work.
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Figure 3: Distributions of participants’ responses to the test questions. Error bars are 95% confidence intervals.

Appendix A
We adopt the following convention: a“ 1´a.

Theorem 1. P1pC1 | E1,E2q “ P2pC˚1 | E2q if and only if (i)
α1 δ1 “ β1 γ1 or (ii) α2 “ β2 and γ2 “ δ2.

Proof.

P1pC1 | E1,E2q “
P1pC1,E1,E2q

P1pE1,E2q

“
P1pC1q

ř

C2
P1pE1 | C1,C2qP1pE2 | C1,C2qP1pC2q

ř

C1,C2
P1pE1 |C1,C2qP1pE2 |C1,C2qP1pC1qP1pC2q

“
A1

A1`A2

A1 :“ c1 pα2 α1 c2`β2 β1 c2q

A2 :“ c1 pγ2 γ1 c2`δ2 δ1 c2q

P2pC˚1 | E2q “
P2pC˚1 ,E2q

P2pE2q

“
P2pC˚1 q

ř

C2
P2pE2 | C˚1 ,C

˚
2 qP1pC˚2 q

ř

C˚
1 ,C˚

2
P2pE2 |C˚1 ,C

˚
2 qP2pC˚1 qP2pC˚2 q

“
P1pC1 | E1q

ř

C2
P1pE2 | C1,C2qP1pC2 | E1q

ř

C1,C2
P1pE2 |C1,C2qP1pC1 | E1qP1pC2 | E1q

“
B1

B1`B2

B1 :“ c1 pα1 c2`β1 c2q¨

¨ rα2 c2 pα1 c1` γ1 c1q`β2 c2 pβ1 c1`δ1 c1qs

B2 :“ c1 pγ1 c2`δ1 c2q¨

¨ rγ2 c2 pα1 c1` γ1 c1q`δ2 c2 pβ1 c1`δ1 c1qs

Let ∆1 :“ P1pC1 | E1,E2q´P2pC˚1 | E2q. Then

∆1 “
A1 pB1`B2q´B1 pA1`A2q

pA1`A2qpB1`B2q

“
A1 B1`A1 B2´A1 B1´A2 B1

P1pE1,E2qP2pE2q
“

A1 B2´A2 B1

P1pE1,E2qP2pE2q

“
c1 c1 c2 c2 pα1 δ1´β1 γ1q rG1`G2s

P1pE1,E2qP2pE2q
¨

G1 :“ pγ2´δ2qc1 pα2 α1 c2`β2 β1 c2q

G2 :“ pα2´β2qc1 pγ2 γ1 c2`δ2 δ1 c2q

�
Using a similar proof strategy one can show that: (a)

P1pC2 | E1,E2q “ P2pC˚2 | E2q if and only if α1 δ1 “ β1 γ1 or
(ii) α2 “ γ2 and β2 “ δ2; (b) P1pC1 | E1,E2q “ P3pC˚1 | E1q if
and only if (i) α2 δ2“ β2 γ2 or (ii) α1“ β1 and γ1“ δ1; and (c)
P1pC2 | E1,E2q “ P3pC˚2 | E1q if and only if (i) α2 δ2 “ β2 γ2
or (ii) α1 “ γ1 and β1 “ δ1 (proofs omitted).

It follows then that P1pC1 | E1,E2q“P2pC˚1 |E2q“ P3pC˚1 |
E1q if (1) α1 δ1 “ β1 γ1 and α2 δ2 “ β2 γ2, or (2) α1 “
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Table 3: Frequency of participants’ reposes around five focal points

Full algebra Sequential algebra
PpC1 | Eiq PpC2 | Ejq PpC1 | Ei,Ejq PpC2 | Ei,Ejq PpC1 | Eiq PpC2 | Ejq PpC1 | Ei,Ejq PpC2 | Ei,Ejq

AaO
‘15%’ 0 2 3 3
‘20%’ 2 6 2 0
‘50%’ 14 13 11 14
‘60%’ 4 3 2 5
‘70%’ 3 3 5 5
SbS1
‘15%’ 5 3 0 1 1 2 0 1
‘20%’ 0 3 0 2 0 0 5 5
‘50%’ 15 19 14 14 23 22 13 18
‘60%’ 3 0 4 3 3 1 9 7
‘70%’ 8 4 5 4 5 6 3 6
SbS2
‘15%’ 4 9 4 7 3 4 1 1
‘20%’ 10 11 2 4 9 9 0 1
‘50%’ 15 12 12 13 17 20 13 17
‘60%’ 2 3 3 3 5 4 1 0
‘70%’ 5 3 10 4 0 0 15 12

β1 and γ1 “ δ1, or (3) α2 “ β2 and γ2 “ δ2. Similarly,
P1pC2 | E1,E2q “ P2pC˚2 | E2q “ P3pC˚2 | E1q if (1) α1 δ1 “

β1 γ1 and α2 δ2 “ β2 γ2, or (2) α1 “ γ1 and β1 “ δ1, or (3)
α2 “ γ2 and β2 “ δ2. Therefore, the order is not important
and one can decompose a full CBN in smaller ones while pre-
serving the same probability distributions if (1) α1 δ1 “ β1 γ1
and α2 δ2 “ β2 γ2; or (2) α1 “ β1, γ1 “ δ1, α2 “ γ2, and
β2 “ δ2; or (3) α2 “ β2, γ2 “ δ2, α1 “ γ1, and β1 “ δ1; or
(4) α1 “ β1 “ γ1 “ δ1; or (5) α2 “ β2 “ γ2 “ δ2. (4) and (5)
make E1 and E2 respectively fully undiagnostic with respect
to C1 and C2, which violates the faithfulness condition (see
Neapolitan, 2003). (1) implies that C1 and C2 are condition-
ally independent given E1 and that they are also conditionally
independent given E2, that is, learning E1 makes C1 and C2
independent and learning E1 makes C1 and C2 independent.
(2) and (3) both entail (1) and are more specific versions of
(1).

Appendix B
Here we show that there are no order effects when the causes
are mutually exclusive and exhaustive, i.e. when PpC1,C2q “

0 and PpC1q`PpC2q “ 1. We model mutually exclusive and
exhaustive causes with one node, C, that has two values: C1
and C2.

E1 C E2

Figure 4: CBN with mutually exclusive and exhaustive causes

P4pC “ C1q “ c , P4pC “ C2q “ c

P4pE1 | C1q “ α1 , P4pE1 | C2q “ β1 (3)
P4pE2 | C1q “ α2 , P4pE2 | C2q “ β2

Splitting the CBN from Figure 4 we get two CBNs:

P5pC “ C1q “ c , P5pC “ C2q “ c

C E1

C˚ E2

Figure 5: ‘Split’ CBN from E1 to E2

P5pC˚ “ C˚1 q “ P4pC1 | E1q , P5pC˚ “ C˚2 q “ P4pC2 | E1q

P5pE1 | C1q “ α1 , P5pE1 | C2q “ β1 (4)
P5pE2 | C˚1 q “ α2 , P5pE2 | C˚2 q “ β2

Theorem 2. P4pC1 | E1,E2q “ P5pC˚1 | E2q when
P4,5pC

p˚q

1 ,Cp˚q2 q “ 0 and P4,5pC
p˚q

1 q`P4,5pC
p˚q

2 q “ 1.

Proof.

P4pC1 | E1,E2q “
P4pC1qP4pE1 | C1qP4pE2 | C1q
ř

C P4pCqP4pE1 |CqP4pE2 |Cq

“
cα1 α2

cα1 α2` cβ1 β2

P5pC˚1 | E2q “
P5pC˚1 qP5pE2 | C˚1 q

ř

C˚ P5pC˚qP5pE2 |C˚q

“
P4pC | E1qP4pE2 | Cq

ř

C P4pC| E1qP4pE2 |Cq

“
J α2

J α2`p1´ Jqβ2

J :“
cα1

cα1` cβ1

Let ∆2 :“ P4pC1 | E1,E2q´P5pC˚1 | E2q. Then

∆2 “
cα1 α2 β2

”

1´ cα1`cβ1
cα1`cβ1

ı

pcα1 α2` cβ1 β2qpJ α2`p1´ Jqβ2q
“ 0

�
Since P4pC2 | E1,E2q “ 1´ P4pC1 | E1,E2q and P5pC˚2 |

E2q “ 1 ´ P5pC˚1 | E2q, then given Theorem 2 it also
true that P4pC2 | E1,E2q “ P5pC˚2 | E2q. Similarly we get
that P4pC1 | E1,E2q´P6pC˚1 | E1q “ 0 and P4pC2 | E1,E2q´

P6pC˚2 | E1q “ 0 (proofs omitted).
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