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Abstract

Two Paths Diverged: Exploring Trajectories, Protocols, and Dynamic Phases

by

Todd Robert Gingrich

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Phillip L. Geissler, Chair

Using tools of statistical mechanics, it is routine to average over the distribution of
microscopic configurations to obtain equilibrium free energies. These free energies teach us
about the most likely molecular arrangements and the probability of observing deviations
from the norm. Frequently, it is necessary to interrogate the probability not just of static
arrangements, but of dynamical events, in which case analogous statistical mechanical tools
may be applied to study the distribution of molecular trajectories. Numerical study of these
trajectory spaces requires algorithms which efficiently sample the possible trajectories. We
study in detail one such Monte Carlo algorithm, transition path sampling, and use a non-
equilibrium statistical mechanical perspective to illuminate why the algorithm cannot easily
be adapted to study some problems involving long-timescale dynamics. Algorithmically
generating highly-correlated trajectories, a necessity for transition path sampling, grows
exponentially more challenging for longer trajectories unless the dynamics is strongly-guided
by the “noise history,” the sequence of random numbers representing the noise terms in the
stochastic dynamics. Langevin dynamics of Weeks-Chandler-Andersen (WCA) particles in
two dimensions lacks this strong noise guidance, so it is challenging to use transition path
sampling to study rare dynamical events in long trajectories of WCA particles. The spin flip
dynamics of a two-dimensional Ising model, on the other hand, can be guided by the noise
history to achieve efficient path sampling. For systems that can be efficiently sampled with
path sampling, we show that it is possible to simultaneously sample both the paths and the
(potentially vast) space of non-equilibrium protocols to efficiently learn how rate constants
vary with protocols and to identify low-dissipation protocols.

When high-dimensional molecular dynamics can be coarse-grained and represented by
a simplified dynamics on a low-dimensional state space, the trajectory space may also be
analytically studied using methods of large deviation theory. We review these methods and
introduce a simple class of dynamical models whose dynamical fluctuations we compute
exactly. The simplest such model is an asymmetric random walker on a one-dimensional
ring with a single heterogeneous link connecting two sites of the ring. We derive conditions
for the existence of a dynamic phase transition, which separates two dynamical phases—one
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localized and the other delocalized. The presence of distinct classes trajectories results in
profoundly non-Gaussian fluctuations in dynamical quantities. We discuss the implications
of such large dynamical fluctuations in the context of simple stochastic models for biological
growth.
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Chapter 1

Introduction

1.1 Trajectory Spaces

Every introductory chemistry student studies the interplay between thermodynamics and
kinetics. It is customary to first impress upon students that nature minimizes free energy.
By balancing energetic and entropic considerations, we can predict which reactions will occur,
how much heat they will generate, whether a protein will fold, and countless other properties.
Eventually, we are all confronted by experiments which disagree with such thermodynamic
analysis, at which point we are taught to blame “kinetic effects.” Equivalently, we might say
the system is out of equilibrium. This thesis is devoted to these non-equilibrium effects. It
concerns methods, analytical and numerical, which calculate the probability of trajectories
in and out of equilibrium.

Equilibrium thermodynamics rests upon an assumption that chaotic chemical dynamics
has reached a particularly simple stationary distribution. This assumption is exception-
ally powerful, when applicable. For example, we can derive relationships between different
macroscopic properties of a large collection of molecules (temperature, pressure, etc.) with-
out requiring any knowledge of the microscopic structure. If we include some knowledge
of these microscopic details, then it is furthermore possible to relate large-scale material
properties to molecular motions using tools of statistical mechanics [26]. It may be hard to
construct the appropriate microscopic models—it is not always clear how to appropriately
parameterize the model—but the conceptual framework is straightforward. As Feynman
famously noted, once the Boltzmann distribution is built up, the rest is a slide down from
the summit [45].

But what can we understand when a physical system has not converged to a Boltzmann
steady state? We can ignore dynamics for equilibrium statistical mechanics, but the dy-
namical details are crucial to non-equilibrium processes. This conundrum is ubiquitous and
important. Natural and synthetic microscopic systems routinely carry out processes which
are not in equilibrium due to time-varying external fields or spatially-dependent gradients.
We could, for example, want to understand molecular motors in a cell, which operate far from
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equilibrium due to the continual influx of chemical fuel [99]. Alternatively, imagine a mate-
rial scientist trying to grow crystals in exotic patterns by introducing chemical components
and electromagnetic fields in well-timed intervals [106]. Under these conditions, the proba-
bility of a molecular arrangement cannot be expressed solely in terms of a time-independent
energy function. Instead, the likelihood of observing any configuration must depend on the
entire dynamical history. In the absence of an equilibrium steady state, we must model the
dynamics with a differential equation that captures the time evolution. By analyzing the
space of trajectories, we can ultimately address the kinetics of non-equilibrium systems.

Unfortunately, simulating molecular trajectories in a physically meaningful way is not
simple since chemical systems contain a large number of interacting quantum mechanical
particles. In this thesis, we focus on situations for which the principal challenge stems, not
from the quantum mechanical nature of matter, but rather from the high-dimensionality of
the classical phase space. Thus we will make the significant assumption that the processes
of interest are classical in nature, in which case the positions and momenta of particles
are propagated by Hamiltonian mechanics. By neglecting quantum effects, we limit our-
selves to processes which do not make or break chemical bonds. Despite this limitation, a
surprising number of chemistry problems can be addressed, i.e., there is a long, successful
history of classical models describing the non-covalent interactions between collections of
many molecules [5, 6, 109, 98].

Imagine, for example, that we want to understand how a salt crystal dissolves in a
glass of stirred water. This simple situation is impossibly hard to handle explicitly. No
computer can propagate classical dynamics of 1023 water molecules. Even if we explicitly
simulate a manageable subsystem, what are we to do with a trajectory of many thousands of
particles? The trajectory is so high-dimensional that it is not clear how to extract meaningful
information. Typically we are not so interested in the wiggling and jiggling of every molecule.
We would rather know about some statistical properties of the trajectory, say the typical time
it takes for the crystal to dissolve. The state of the salt could be classified as either crystalline
or dissolved and we could seek the typical time required to transition between the two
macroscopic, or coarse-grained, states. The inverse of this timescale is a phenomenological
rate constant describing the dynamics of macrostates [25].

Reducing complex dynamics to phenomenological rate constants can be viewed as a form
of dimensionality reduction. We average over many high dimensional trajectories to extract
a low dimensional object, a rate constant. There are, of course, many dimensionality re-
duction techniques popular in the fields of computer science and statistics, but we want to
also utilize what we know from physics. Namely, Hamilton’s equations give a physical model
for dynamics in the full-dimensional space, and ideally we should use this dynamics before
projecting the trajectories down to a lower-dimensional space. The alternative requires con-
cocting an effective dynamics without the benefit of classical mechanics. This philosophy of
prioritizing the molecular dynamics underscored the creation of a method known as transi-
tion path sampling (TPS), which uses Monte Carlo (MC) techniques to sample trajectories
evolving in the full classical phase space [20, 32, 33]. By averaging over the statistical en-
semble of trajectories, we can characterize particular features of the trajectories: the typical



CHAPTER 1. INTRODUCTION 3

time for a reaction to occur, the propensity of the trajectories to loop around cycles, or the
likelihood that nanoparticles will assemble into useful macroscopic structures. Path sam-
pling methods can extract these features in a uniquely efficient manner by harvesting rare
trajectories which exemplify the critical dynamical behaviors, i.e., trajectories illustrating
reactions, cycles, or particle assembly, respectively. Let us elaborate upon this connection
between rare trajectories and reaction rates in the specific context of nanoparticle assembly.

1.2 Rare Events, Reaction Rates, and a Search for

Optimal Protocols

Modern experimental methods provide a remarkable ability to manipulate matter on the
molecular scale. Using one such technology, colloidal nanoparticles are coated with com-
plementary strands of DNA to sensitively modulate the attractions between particles in
solution [51]. Application of equilibrium theory has contributed to an improving capabil-
ity to control the macroscopic structures that form when many of these particles interact
with each other [41, 89, 116]. Early experiments with DNA-coated particles controlled the
crystallization of colloids, directing them toward face-centered cubic or body-centered cubic
lattices [15, 93, 95]. These methods have been extended to, e.g., generate colloidal clus-
ters [85] and even to design self-replicating colloidal chains [76].

Two extensions of this experimental program demand a consideration of non-equilibrium
effects. Firstly, as targeted structures grow in size and complexity, the final structures become
pathway-dependent due to kinetic traps [37]. The energy and time scales for a large cluster
of particles to meaningfully rearrange become sufficiently large that it is not reasonable to
assume that the dynamics is in a quasi-equilibrium. Rather, a particle’s future positioning
is intimately linked to its dynamical history. This history-dependence is a hallmark of a
non-equilibrium process. Secondly, there are active efforts to construct dynamic machines
with DNA nanotechnology [84, 104, 123]. Much like biological machines inside a cell, these
synthetic machines could be driven by ATP or some other form of accessible chemical energy.
By consuming energy, it is possible for these machines to generate cycles in phase space,
meaning, e.g., that a motor can rotate clockwise more than counterclockwise. Such cycles
cannot be designed in an equilibrium system [101].

Motivated by the challenges presented by non-equilibrium dynamics, the first half of this
thesis addresses computational methods to design protocols which guide trajectories toward
desired dynamical outcomes. The probability that a trajectory is steered toward a desired
target depends sensitively on a huge set of control parameters (temperature, pressure, the
choice of DNA sequences, salt concentrations, etc.), and the space of possible controls is
typically much too vast to experimentally search. A central goal of this thesis is to evaluate
numerical approaches which could identify the fruitful regions of parameter space. In effect,
we would like to be able to understand how the assembly rate depends on the protocol.

Designing optimal protocols is, of course, a common engineering goal which arises in
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other contexts. When we piece together resistors, capacitors, and operational amplifiers to
build an analog circuit, we are designing an out-of-equilibrium system. What is so different
about the chemical design problems? A core difference is that it is generally unclear how to
decompose complex molecular dynamics into cleanly-separated subunits, of the sort provided
by the lumped components of analog electronics. In the world of electronics, we control the
interactions between separate well-characterized subsystems, say by soldering a resistor to
a capacitor. A test tube of diffusing DNA-coated colloids affords less of an opportunity to
isolate subsystems—all colloids have the potential to chemically associate with the others.
There has been recent progress in extending engineering approaches to biomolecular design
by working with specialized units whose molecular features can be abstracted away, i.e., a
molecular unit can be treated as a lego brick which always binds to its mated neighbors. We
pursue a complementary line of inquiry. When we lack the luxury of specialized subunits
which interact strongly and simply, can we nevertheless design macroscopic properties? The
essential feature of our study is the explicit numerical propagation of microscopic models.
Given a model for dynamics, we focus on methods to explore the effect of different protocols
on the behavior of trajectories.

Whether in or out of equilibrium, it is straightforward to simulate classical trajectories
and compare the outcome generated from different protocols. It might seem that we should
just try simulations with all possible protocols and see which one works best, for example,
which protocol causes nanoparticles to assemble into a target structure. This direct strategy
is doomed in all but the simplest cases. We typically cannot even enumerate all protocols,
much less simulate trajectories using each one. Furthermore, there is a timescale problem.
In particular, an assembly of nanoparticles that might take fractions of a second to occur in
a test tube, takes much more time for a computer to simulate. Thus even “good” parameters
which lead to rapid assembly on experimental timescales might not result in rapid assembly
on the timescale that computers simulate. On those shorter timescales, assembly is an
exceptionally rare event.

When the transformation from unassembled to assembled structures is a Poisson process,
we can actually learn about the assembly rate from trajectories which are much shorter
than the typical assembly event. These short trajectories offer a route to calculating rate
constants which is far more computationally efficient than waiting for the typical assembly
time [21]. More specifically, we obtain the rate by quantifying the likelihood that a short
trajectory will exhibit assembly. Transition path sampling, an importance sampling in the
space of trajectories, highlights these rare transitions so their probability can be measured.
If protocols are sampled in concert, we can also compare the relative rates of assembly
under different protocols. Chapters 2 and 3 develop, analyze, and discuss these methods for
sampling trajectories and protocols.
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1.3 Dynamic Fluctuations

In many dynamical systems it is important to characterize rather than control trajectories.
The need for dynamical characterization is especially significant in biophysical contexts,
where stochasticity of dynamics is often underappreciated. As an example, a frequently
displayed animation of kinesin depicts regular unidirectional steps which transport cargo
along a microtubule [79]. Notably, the cargo is never shown to take a backward step and
the time between steps is uncannily uniform. This type of regular motion is common in
our everyday macroscopic lives, but it inappropriately represents the molecular scales. A
more nuanced model must capture fluctuations away from the average behavior. Many
dynamical properties are merely renormalized by the incorporation of fluctuations. For
instance, allowing kinesin to take occasional backward steps will slow its effective transport
velocity. The second half of this thesis addresses how fluctuations can have a more dramatic,
qualitative effect.

In particular, we focus on the distribution of time-additive dynamical observables. These
observables, which can be as simple as a count of the total number of steps taken by a
kinesin molecule, convey coarse-grained features of the dynamics while ignoring the finer
particularities of any given trajectory. In many contexts, it is known that these dynamic
order parameters exhibit broad distributions characteristic of trajectory spaces which have
different classes of trajectories that yield distinct dynamical behavior [56, 114, 115, 121].
TPS methods have been applied to glass-forming chemical systems to isolate such classes
of trajectories, thereby illustrating a dynamic phase transition that divides two dynamic
phases [64, 72]. Demonstrations of dynamic phase transitions can be made rigorous using
formal methods of large deviation theory [112], which we review in Chapter 4. We use these
methods in Chapter 5 to analyze dynamical fluctuations in simple non-equilibrium models,
showing that dynamic phase transitions can emerge from very innocuous models.

1.4 Outline

This thesis is organized into four self-contained chapters which address ways to sample rare
trajectories, manipulate phenomenological rate constants, and compute dynamical fluctu-
ations. Chapters 2 and 3 discuss numerical methods for sampling paths and protocols,
respectively. Chapters 4 and 5 are more analytical in nature. These chapters review formal
methods for analyzing rare Markovian trajectories generated by master equations and intro-
duce a new solvable model that exhibits a dynamic phase transition. Before advancing to
the main text, let us embed each of the chapters more firmly in the context of prior work,
starting with trajectory sampling.

Numerical sampling of rare trajectories is useful to understand both reactions rates [21]
and dynamic phase transitions [56, 64, 114, 115, 121]. When we know a low-dimensional
coordinate along which the trajectories of interest proceed, methods like Transition Inter-
face Sampling [42, 90] or Forward Flux Sampling [1] may be employed to great benefit.
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Unfortunately it is generally difficult to identify such a “reaction coordinate,” and there
are well-documented challenges when an inappropriate coordinate is selected [20, 33]. In
contrast, TPS requires no prior knowledge of reaction pathways. While TPS has been an
invaluable tool for many problems in physics and chemistry [20, 53, 64], the method has its
own shortcomings. The algorithm becomes profoundly inefficient when the timescale of the
sampled trajectories grows too long [23, 59]. Chapter 2 explains the source of this inefficiency
and illustrates a way around the problem when simulating the dynamics of an Ising model.
We use what we learn about effective sampling of paths in Chapter 3, where we discuss
the concurrent sampling of trajectories and protocols. We show that sampling the protocol
space gives a convenient and computationally efficient way to quantitatively determine how
rate constants depend on experimental protocols. Notably, this methodology applies equally
well to protocols in and out of equilibrium, but out-of-equilibrium processes must consume
energy that is dissipated to the environment. We show that the same framework naturally
lets us study the protocol-dependence of this dissipative cost.

In the second half of the thesis we discuss analytical methods to compute the probability
of rare dynamical fluctuations. The formal large deviations framework is well-established,
and Chapter 4 serves as a review of these methods. We use this formalism in the final
chapter, where we investigate the impact of dynamical disorder on single-body dynamics.
The well-known phenomena of Anderson localization addresses how disorder in a potential
energy surface can force an electron to localize. We consider a different type of disorder in
a classical setting. Suppose a set of N states are connected in a ring and a single particle
can hope clockwise or counterclockwise in Markovian manner with some rate constants.
Introducing a unique set of transition rates between one pair of nearest neighbors is sufficient
to introduce a localization/delocalization transition which markedly affects the probability
of rare trajectories on the ring. In Chapter 5, we introduce this model and solve for the
fluctuations in two dynamic order parameters, demonstrating the existence of a dynamic
phase transition. While dynamic phase transitions are known in many more complicated
many-body systems [49, 64, 75], our work emphasizes that dynamic phases can also emerge in
much simpler systems. Since dynamic phase transitions can be expected even in very simple
models, we close by noting how intuition from the model may inform our understanding of
large dynamical fluctuations in biological contexts.
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Chapter 2

Sampling Paths

2.1 Introduction

Recent advances in non-equilibrium statistical mechanics have given fresh perspectives on
computational procedures applied to fluctuating molecular systems. The Jarzynski work rela-
tion and the Crooks fluctuation theorem, for instance, provide routes to compute equilibrium
quantities from non-equilibrium measurements [29, 69, 81, 91, 94, 96]. Here, we demonstrate
that traditional Metropolis-Hastings Markov Chain Monte Carlo (MCMC) can be similarly
viewed as a procedure to extract equilibrium sampling from generically non-equilibrium pro-
cesses. Monte Carlo trial moves drive a system away from the steady state distribution, and
an entropy production can be assigned to these driven transformations. This interpretation
provides an elegant way to understand challenges encountered in MCMC sampling, one that
is especially revealing for MCMC sampling of trajectories. Path sampling methods suffer
routinely from profound inefficiency when trajectories of interest become long. From a non-
equilibrium perspective on MCMC, we provide simple and quantitative ways to understand
the inefficiency.

Importance sampling of trajectories has enabled studies of a myriad of dynamical pro-
cesses in physics and chemistry [2, 3, 20, 53, 64, 66]. In particular, reaction rates and mech-
anisms can be found by transition path sampling (TPS), which examines the subensemble
of trajectories that complete a reaction [21]. The practicality of TPS depends intimately
on the design of the Monte Carlo (MC) move set. Namely, the moves must generate cor-
related trajectories so that a trial trajectory is likely to exhibit similar dynamical behavior
as the previously sampled trajectory. Chaotic divergence and microscopic reversibility of
equilibrium dynamics informs the construction of two such moves, the so-called “shooting”
and “shifting” moves [21]. These methods generate correlated trajectories by propagating
alternative histories from highly correlated initial configurations. For sufficiently short tra-
jectories, the imposed correlation at one time serves to strongly correlate the trajectories at
all times. Long trajectories, however, are problematic: trial trajectories either lose all useful

This chapter has been submitted to The Journal of Chemical Physics.
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correlation with the reference path, or else they coincide so closely with the reference that
changes are impractically small [59]. In both cases the efficiencies of shooting and shifting
moves plummet as trajectories grow longer. Sampling trajectories that involve slow molec-
ular rearrangements and diffusive processes stands to benefit significantly from alternative
methods of generating correlated trajectories.

We consider three different ways to guide long trajectories: introducing auxiliary forces;
selecting among series of short trial segments, as in Steered Transition Path Sampling
(STePS) [60]; and advancing stochastic integrators with correlated random numbers (which
we refer to as “noise guidance”) [30, 110]. Of the three, only noise guidance yields an
MC entropy production which is subextensive in the trajectory length. The other schemes,
which accumulate extensive entropy production, cannot efficiently extend to sampling of long
trajectories. Strong noise guidance is not, however, a panacea; correlated noises need not
imply correlated trajectories. We illustrate this point by considering Glauber dynamics of a
two-dimensional Ising model and Langevin dynamics of a two-dimensional Weeks-Chandler-
Andersen (WCA) fluid. Only when microscopic degrees of freedom have a small number of
discrete possibilities, as in the lattice dynamics, is it possible to generate correlated long-
timescale trajectories by tuning the noise.

The structure of the chapter is as follows. First we introduce and discuss the perspective
of MC moves as non-equilibrium processes which produce entropy, detailing the consequences
of constraints analogous to fluctuation theorems and the second law of thermodynamics.
Next we review transition path sampling in stochastic dynamics and demonstrate the chal-
lenge posed by long trajectories in the context of trajectory sampling of a one-dimensional
random walker. We then analyze alternative strategies to correlate long trajectories of a
one-dimensional single particle system and of a two-dimensional Ising model. Finally, we
explore how strongly noise guidance correlates trajectories in example systems, and then
conclude.

2.2 Markov Chain Monte Carlo Entropy Production

We start by discussing a very general perspective on traditional Metropolis-Hastings MCMC
sampling [63, 87]. Consider the problem of sampling a configuration, x, according to proba-
bility distribution P (x). For example, x could be a vector of the coordinates and momenta
of N hard spheres, the state of spins in an Ising model, or all coordinates of a classical tra-
jectory. The Metropolis-Hastings algorithm generates a Markov chain, which can be thought
of as a dynamics through configuration space with the steady-state distribution P (x). This
dynamics obeys detailed balance but is not necessarily physical.

One typically splits each Monte Carlo move into two steps. First, a change from x to
a new state x̃ is proposed according to a generation probability, Pgen[x → x̃]. Throughout
this chapter we will refer to x as a reference and x̃ as the trial. This trial is conditionally
accepted with probability

Paccept[x→ x̃] = min
[
1, e−ω

]
, (2.1)



CHAPTER 2. SAMPLING PATHS 9

where

ω = ln
P (x)Pgen[x→ x̃]

P (x̃)Pgen[x̃→ x]
. (2.2)

Together, these two steps ensure detailed balance, guaranteeing that the equilibrium dis-
tribution P (x) is stationary under the MC protocol. Lacking the conditional acceptance
step, such an MC procedure would generally drive a system away from its equilibrium dis-
tribution. We find it instructive to view this notional process as a genuine non-equilibrium
transformation, one that would generate nonzero entropy in most cases. In the formalism
of stochastic thermodynamics, the resulting entropy production corresponds precisely to the
quantity ω defined in Eq. (2.2) [102].

The MC acceptance step effectively filters realizations of this non-equilibrium process,
with a bias towards low values of ω. By construction, the bias exactly negates the tendency of
trial move generation to drive a system out of equilibrium. From this perspective, the coun-
tervailing tendencies of proposal and acceptance are akin to the operation of a Maxwellian
demon, which by contrast filters realizations of equilibrium dynamics with a bias that creates
a non-equilibrium state.

Viewing the procedure in the language of entropy production distributions reveals an
important asymmetry of P (ω). Following the more general demonstration of an entropy
production fluctuation theorem [31], note that

P (ω) =

∫
dx dx̃ P (x)Pgen(x→ x̃)δ(ω − ω(x, x̃))

=

∫
dx dx̃ eω(x,x̃)P (x̃)Pgen(x̃→ x)δ(ω + ω(x̃,x))

= eωP (−ω), (2.3)

with ω(x, x̃) representing the entropy produced by a proposal move from x to x̃ and δ
denoting the Dirac delta function. We are more likely to propose moves with positive entropy
production than we are to choose their negative counterparts. The straightforward corollary,
〈ω〉 ≥ 0, is by analogy a statement of the second law, and the equality is satisfied if and
only if P (ω) = δ(ω). A further consequence of Eq. 2.3 relates the MC acceptance rate to the
probability of attempting a move with a negative value of ω, which we call p<. Specifically,

〈Paccept〉 =

∫
dω P (ω) min

[
1, e−ω

]
= 2p<, (2.4)

which has been noted in the related context of replica exchange Monte Carlo [95]. As 〈ω〉
increases, p<, and therefore 〈Paccept〉, tends to decrease. We will see that 〈ω〉 scales with the
number of driven degrees of freedom, such that Monte Carlo sampling of chain molecules or
of long trajectories becomes especially challenging.

We focus below on the sampling of dynamical pathways (rather than individual configura-
tions). In this case ω is an “entropy production” only by analogy, since the “non-equilibrium
transformations” effected by MC trial moves occur in the more abstract space of trajectories.
Lessons from Eq. (2.3) are nevertheless illuminating in the context of this abstract space.
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2.3 Transition Path Sampling with Stochastic

Dynamics

Trajectory Space and Trajectory Subensembles

Let us now specialize to the sampling of discrete-time stochastic trajectories with a fixed
number of steps, tobs. The probability of observing a trajectory, x(t) ≡ {x0,x1, . . . ,xtobs

},
can be written as

P0[x(t)] ∝ ρinit(x0)

tobs−1∏
t=0

p(xt → xt+1), (2.5)

where ρinit is a distribution for the initial time point, frequently an equilibrium or steady state
distribution. The probability of each time propagation step is denoted p(xt → xt+1), the
form of which depends on details of the stochastic dynamics. We refer to this propagation as
the natural dynamics. Representative trajectories can be generated by sampling the initial
state and propagating natural dynamics.

In many contexts, it is useful to study a biased trajectory ensemble constructed to high-
light particular rare events. Common examples include the reactive subensemble,

Preactive[x(t)] ∝ P0[x(t)]hA(x0)hB(xtobs
), (2.6)

and the so-called tilted ensemble,

Ptilted[x(t), s] ∝ P0[x(t)]e−sK[x(t)]. (2.7)

In the former case, hA and hB are indicator functions which constrain the endpoints of
the trajectory to fall in regions of phase space corresponding to reactants and products of a
chemical reaction or other barrier crossing process [21]. In the latter case, K[x(t)] is an order
parameter reporting on dynamical properties of the trajectory (e.g. the current [36], activ-
ity [64, 75], or entropy production [74, 86, 103]) and s sets the strength of bias [50]. These
biased ensembles highlight classes of trajectories only rarely sampled by the natural dynam-
ics. To effectively sample them, a Markov chain of correlated trajectories is constructed.
The correlations between subsequent steps of the Markov chain ensure that newly-generated
trajectories are likely to share the rare features that made the prior trajectory a good rep-
resentative of the biased ensemble.

Sampling with Shooting Moves

One of the most general and effective methods for generating a trial trajectory is the shooting
move, which is particularly well-suited to sampling equilibrium dynamics [21]. The move
proceeds as follows. A discrete time, tshoot, between 0 and tobs is uniformly selected and
designated the shooting time. The state of the system at tshoot, perhaps slightly modified,
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is then propagated forward and backward in time with natural dynamics to yield a trial
trajectory, x̃(t). The probability of generating this trial takes the form

Pgen[x̃(t)] ∝ρinit(x0)pgen (xtshoot
→ x̃tshoot

)×
tshoot−1∏
t=0

p̄(xt+1 → xt)

tobs−1∏
t=tshoot

p(xt → xt+1), (2.8)

where p̄ is the transition probability for time-reversed dynamics and pgen is the probability of
the perturbation at the shooting time. In the language of Section 2.2, the entropy produced
by this trial move is given by

ω = ln
ρinit(x0)hA(x0)hB(xtobs

)pgen(xtshoot
→ x̃tshoot

)

ρinit(x̃0)hA(x̃0)hB(x̃tobs
)pgen(x̃tshoot

→ xtshoot
)

+

tshoot−1∑
t=0

ln
p(xt → xt+1)p̄(x̃t+1 → x̃t)

p̄(xt+1 → xt)p(x̃t → x̃t+1)
.

(2.9)
For long trial trajectories to be accepted by the MCMC scheme, ω must be small. However,
when p and p̄ are not equal (as is the case in driven processes), the sum in Eq. (2.9) has
order tobs nonvanishing terms 1. Consequently, 〈ω〉 scales linearly with tobs, and P (ω) adopts
the long-time form

P (ω) ∼ exp [−tobsI(ω/tobs)] , (2.10)

with large deviation rate function I(ω/tobs). From this asymptotic expression for the entropy
produced by a TPS move, one might generally expect that the corresponding acceptance rate
decreases exponentially as tobs grows long.

This extensive growth of 〈ω〉 with time has an important and general exception, namely
the case of microscopically reversible dynamics. Under those conditions, the sum in Eq. (2.9)
vanishes and the only entropy production is contributed from the endpoints of the trajectory
(e.g., hA and hB). Since this entropy production is subextensive in time, long trajectories
appear no more difficult to sample than short ones. The acceptability of trial trajectories,
however, is also subject to biases like those expressed in Eqs. (2.6) and (2.7). Because long
trajectories typically decorrelate strongly from one another, the rare, biased qualities of a
reference trajectory (e.g., reactivity or inactivity) are recapitulated in the trial path with a
probability that also decays with tobs.

We conclude that the challenges for efficiently sampling long trajectories are twofold. The
TPS move must produce entropy that is subextensive in observation time or the method will
not scale to long trajectories. Additionally, one must preserve strong correlations between
x(t) and x̃(t), so that rare properties of interest are retained in the trial trajectory. In the
next section we show that these two goals are often conflicting. In particular, we examine
three general schemes for engineering correlations between reference and trial trajectories
in shooting-like moves. Two of the schemes fail to exhibit subextensive entropy production

1Since tshoot is uniformly selected between 0 and tobs, tshoot is of order tobs. Furthermore, while neigh-
boring terms in the sum may be correlated, there will still be order tobs independent terms for sufficiently
long tobs.
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scaling while the remaining scheme can only maintain strong trajectory correlations in special
cases.

2.4 Guided Dynamics of a 1d Random Walker

We explore the three methods for trial trajectory generation in the specific context of a
one-dimensional discrete-time random walker with equation of motion

xt+1 = xt + ξt, (2.11)

where at the tth timestep, the noise ξt is drawn from the normal distribution with zero mean
and variance σ2. As a simple illustration focusing on the effects of entropy production,
suppose we want to sample the unbiased trajectory distribution

P0[x(t)] ∝ δ(x0) exp

[
−

tobs−1∑
t=0

(xt+1 − xt)2

2σ2

]
, (2.12)

where the initial position is set to zero without loss of generality 2. To construct a reference
trajectory x(t), we draw a value for ξt at each timestep and propagate the walker’s position
according to Eq. (2.11). A trial trajectory is then generated by evolving dynamics from the
same initial configuration (with a different realization of the noise or perhaps even a different
equation of motion).

We imagine that it is desirable for the trial trajectory to retain a significant correlation
with the reference path. This goal is motivated by the challenges of sampling biased en-
sembles as discussed above, but for the sake of simplicity we do not include such a bias
here. To ensure this correlation, we employ shooting moves that differ from the conventional
procedure described in Section 2.3. Specifically, we implement and scrutinize three distinct
ways to engineer correlation over long times: (a) adding artificial forces that pull the trial
trajectory closer to the reference, (b) preferentially selecting among sets of otherwise unbi-
ased short path segments, or (c) using correlated histories of noises. We assess the influence
of these three biasing methods on the MCMC efficiency by characterizing the distribution
P (ω).

Guiding Forces

We first consider effecting correlations with guiding forces, i.e., artificial contributions to the
effective potential that tend to lead the trial trajectory toward the reference. This strategy
is equivalent to using steered molecular dynamics [67] to generate new trajectories. The trial
trajectory x̃(t) is grown with the equation of motion

x̃t+1 = x̃t + ξ̃t + k(xt − x̃t). (2.13)
2Typically TPS procedures concurrently sample the initial configuration, but that complication is not

necessary for our illustration.
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We denote ξ̃t as the trial trajectory noise at timestep t, also drawn from a Gaussian with
mean zero and variance σ2. The linear spring constant k adjusts the strength of correlation
between reference and trial trajectories. The probability that this guided dynamics generates
a particular trial from the reference is given by

Pgen[x(t)→ x̃(t)] ∝ exp

[
−

tobs−1∑
t=0

(x̃t+1 − x̃t − k(xt − x̃t))2

2σ2

]
. (2.14)

The entropy production associated with the trial move depends also on the probability of
generating the reverse TPS move, growing the reference trajectory with extra forces pulling
it close to the trial. It is straightforward to compute ω from Eq. (2.2),

ω = − k

σ2

tobs−1∑
t=0

(xt − x̃t)(xt+1 + x̃t+1 − xt − x̃t). (2.15)

In this approach, ω can be physically interpreted as the difference between two work values:
that expended by the artificial force to guide the trial trajectory, versus the work that
would be required to conversely guide the reference. The resulting distribution of entropy
production, obtained from numerical sampling, is shown in in Fig. 2.1(a).

Since ω is given by a sum over all tobs timesteps, P (ω) adopts a large deviation form
as in Eq. (2.10), and 〈ω〉 ∝ tobs. These scaling properties are demonstrated numerically in
Fig. 2.2(a) and analytically in Appendix A. In the appendix we re-express ω in terms of the
ξ and ξ̃ variables, which can be integrated over to yield

〈ω〉 =
2

(k − 2)2

[
(2− k) ktobs − 1 + (k − 1)2tobs

]
. (2.16)

Indeed, for 0 < k < 2, this expression gives the anticipated long time scaling with tobs,

〈ω〉 ∼ 2ktobs

2− k
. (2.17)

As seen in Fig. 2.1(a), the negative-ω tail of P (ω), which gives rise to MCMC acceptances,
becomes correspondingly small for large tobs.

Guiding Choices

In both Sections 2.3 and 2.4 we showed that time-extensive entropy production arises gener-
ically when we do not use natural (forward) dynamics to generate a trajectory. Dynamical
biases can alternatively be achieved by preferentially selecting among different examples
of natural dynamics. At a high level, conventional TPS [21] is just such an approach, con-
structing biased trajectory ensembles through selection rather than artificial forces. Can this
strategy be used effectively to impose resemblance between reference and trial trajectories?
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Figure 2.1: Three guidance schemes for generating a trial trajectory that maintains proxim-
ity to a reference trajectory. For the specific case of a one-dimensional random walker, upper
panels illustrate the consequences of (a) artificial corralling forces (b) preferential selection of
short trial branches and (c) correlated noise histories. Bottom panels show the corresponding
distributions of trajectory space entropy production ω. The intensity of red shading reflects
the probability that trial moves are rejected. For cases (a) and (b), the average entropy pro-
duction is nonzero and grows with trajectory length tobs. With an appropriately designed
noise guidance scheme (c), symmetric selection of noise variables results in identically zero
entropy production for all trajectory lengths.

We consider a scheme very similar in spirit to the STePS algorithm [60]. Like configurational-
bias MC sampling of a polymer [46], the STePS procedure generates a long trajectory by
piecing together short segments, as illustrated in Fig. 2.1(b). To generate a new segment,
one starts at the end of the previous segment and samples a collection of short, unbiased
trajectories according to the natural dynamics, which we will refer to as branches. One of
these branches is selected as the next segment of the trial trajectory, with a preference for
branches that stay close to the reference trajectory. (Proximity could be judged in different
ways, e.g., through Euclidean distance in the full phase space, or with respect to an order
parameter). Though each branch is grown with natural dynamics, the added segment is
biased. To show that this bias affects acceptance rates in the same manner as the guiding
forces bias, we compute the entropy produced by a TPS move.

Starting at the initial condition of the reference trajectory, we grow n branches of length
τ according to

x
(α)
t+1 = x

(α)
t + ξ

(α)
t , (2.18)

where α is an index over the n independent samples of the natural dynamics. Of these n
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Figure 2.2: Entropy production statistics for trial moves with guiding forces (a) and guiding
choices (b), as discussed in Sections 2.4 and 2.4 of the main text. Results in (a) are shown for
k = 0.1; black curves indicate the long-time behavior determined analytically in Appendix A.
Results in (b) are shown for n = 3, τ = 10 and with f(x) = e−|x|. In both panels, different
colors indicate different trajectory lengths, ascending from left to right: tobs = 30 (red), 50
(orange), 100 (yellow), 200 (green), 500 (cyan), and 1000 (purple).

possibilities for the ith segment of the trial trajectory, we select branch α with probability

Pselect(α) =
f(|x(0)

iτ − x
(α)
iτ |)∑n

γ=1 f(|x(0)
iτ − x

(γ)
iτ |)

, (2.19)

where f is a weighting function with a maximum when its argument is zero, for example
a Gaussian centered on zero. The reference trajectory is indicated by a superscript (0).
Starting from the end of the chosen branch, the growth procedure is repeated with n new
branches of length τ .

While each time propagation step uses segments of unbiased natural dynamics, the se-
lection of preferred branches exerts a bias which ultimately leads to a nonvanishing entropy
production,

ω = −
tobs/τ∑
i=1

ln

∑
γ 6=0 f(|x(γ)

iτ − x
(0)
iτ |)∑

γ 6=αi f(|x(γ)
iτ − x

(αi)
iτ |)

, (2.20)

where αi is the index of the selected branch for the ith segment. The calculation of this
entropy production requires generation of the backwards TPS move, in which the (0) branch
is always selected.

In the preceding section we discussed that the entropy produced by guiding forces could
be thought of in terms of a work performed by the bias. From that perspective, this guiding
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choices scheme trades work for information. We bias the dynamics not by applying explicit
forces but instead by selecting the preferred branches based on information about the like-
lihood that a branch stays close to the reference. In particular, ω is a difference between
the Shannon information associated with selecting the set of trial branches which produced
the trajectory x̃(t) and the information associated with selecting the reference branches in a
reverse TPS move. As with biasing forces, the trajectory space entropy production exhibits
large deviation scaling with 〈ω〉 ∝ tobs. Numerical demonstrations of this scaling are pro-
vided in Fig. 2.2(b). Consequently, acceptance probabilities drop precipitously in the long
time limit.

Guiding Noises

As a third scheme for engineering path correlation, we consider generating a trial trajectory
with natural dynamics but with biased noises. Rather than trying to corral trajectories
to proceed along similar paths, one may impose much simpler correlations between their
underlying noise histories [30]. Consider a TPS trial move which consists of re-propagating
dynamics from the initial timestep using new noises ξ̃ that differ only slightly from the old
noises ξ,

ξ̃t = αξt +
√

1− α2ηt, (2.21)

where ηi is sampled from a Gaussian distribution with zero mean and variance σ2. In
Section (2.4), the symbol α was used as an index, but here we redefined α to be the parameter
controlling noise correlations. Guiding Gaussian noise variables in this manner has been
referred to as a Brownian tube proposal move [110]. Unlike the prior two kinds of moves,
the Brownian tube proposal produces strictly vanishing entropy production ω for all trials
regardless of trajectory length. The cancellation results from some algebra after writing the
path weights and generation probabilities in terms of the noise variables,

P (ξ)Pgen(ξ → ξ̃)

P (ξ̃)Pgen(ξ̃ → ξ)
=

exp
[
− ξ2

2σ2

]
exp

[
− (ξ̃−αξ)2

2(1−α2)σ2

]
exp

[
− ξ̃2

2σ2

]
exp

[
− (ξ−αξ̃)2

2(1−α2)σ2

] = 1, (2.22)

where ξ is a vector detailing noises at all times.
The vanishing entropy production is achieved by independently sampling the noise vari-

ables. In the previously discussed approaches, the bias applied to any one noise variable
depended on how far astray the trial trajectory had drifted from its reference up to that
point in time. Such history-dependent biasing coupled the sampling of one noise variable to
all of the previous noises, ultimately giving rise to the nonvanishing ω (see Appendix A for
an explicit demonstration). By sampling all noises independently, we can perturb the ξ vari-
ables in a symmetric manner. For noises drawn from a Gaussian distribution, this symmetric
perturbation was given in Eq. (2.21), but the strategy of symmetrically sampling indepen-
dent noises generalizes to other choices of stochastic dynamics. For example, Hartmann has
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applied these methods with uniform random variable noises to Monte Carlo dynamics in the
form of Wolff dynamics of a two-dimensional Ising model [62].

Using correlated noise histories to sample Monte Carlo trajectories avoids the time-
extensive bias that arose from guiding paths in configuration space, but this merit comes
at a cost. If the reactive or tilted ensembles are to be sampled, it is important that the
guidance scheme produces highly correlated trajectories. That is to say, the x coordinates,
not just the ξ coordinates, must be correlated. When will similar noise histories produce
similar trajectories? In the remainder of the chapter we address this question in the context
of two dynamical systems, one on-lattice and the other off-lattice.

2.5 Efficacy of Noise Guidance

In the preceding section we noted that sampling trajectories with noise-guided shooting
moves avoids a time-extensive MC entropy production. However, we seek correlated tra-
jectories, not just correlated noises. When trajectories with correlated noises synchronize,
efficient path sampling of long trajectories can be achieved. But under what conditions
should such synchronization be expected? We investigate this question by studying lattice
dynamics of a two-dimensional Ising model and off-lattice dynamics of a WCA fluid, also in
two dimensions. We show that synchronization can be achieved with a suitable treatment
of Ising dynamics. This success does not extend to our example of off-lattice dynamics.

Ising Dynamics

Let us first consider a two-dimensional Ising model consisting of N spins. The ith spin,
denoted σi, takes the value ±1. The lattice evolves, at inverse temperature β, under single
spin-flip Glauber dynamics with Hamiltonian

H = −h
∑
i

σi − J
∑
〈ij〉

σiσj. (2.23)

The spins interact in the usual Ising manner; they couple to nearest neighbors with coupling
constant J and to an external field h. Each spin-flip trial move requires us to choose two
random numbers uniformly from [0, 1). One random number, ξsite, determines which site will
be flipped. The other random number, ξacc, determines whether to accept or reject the flip.
Given ξsite and ξacc, the spin-flip move is deterministic:

1. Choose spin i = ceiling(ξsiteN) to act on.

2. Construct a trial state by flipping spin i.

3. Compute the energy difference, ∆E, between the original configuration and the trial.

4. Accept the spin flip if ξacc < (1 + exp(β∆E))−1.
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Figure 2.3: Correlations between a reference trajectory and a trial trajectory generated by
the noise guidance method described in Section 2.5 using εdir = εsite = 10−3 and εacc = 0.1.
The two trajectories begin with identical initial conditions and evolve through 100 sweeps of
push up/push down Monte Carlo steps at βJ = 0.3, h = 0. Final configurations of reference
and trial trajectories are shown in (a) and (b), respectively. The site-wise overlap between
these two configurations is depicted in (c), where black indicates spin alignment and white
indicates anti-alignment.

By carrying out tobs sequential MC sweeps, each consisting of N spin flip moves, we construct
an Ising trajectory, σ(t). The effective unit of time is thus taken to be a MC sweep.

Now consider a noise-guided trial TPS move designed to generate a trajectory σ̃(t) which
is correlated with σ(t). At every MC step we alter ξsite and ξacc to some trial values, ξ̃site and
ξ̃acc. There is significant freedom in doing so, while producing zero entropy 3, and we analyze
one particular choice. We focus first on updating the noise that chooses which spin to flip.
With probability 1 − εsite we reuse the old noise, i.e., ξ̃site = ξsite. Otherwise, we uniformly
draw a new value of ξ̃site from the unit interval. The tunable parameter εsite controls the
correlation between noise histories of the reference and trial trajectory. We update the noises
that control conditional acceptance, ξacc, in an analogous manner. Another parameter, εacc,
is the probability of drawing new noise for ξ̃acc.

Starting with the initial configuration of σ(t), we construct σ̃(t) by performing spin
flips with the new trial noise history. The trial and reference trajectories start in identical
configurations, but we expect the correlation to decay as MC time advances. To monitor
the similarity between reference and trial, we study the site-wise product between σ and σ̃
as illustrated in Fig. 2.3. The average of this product over all spins,

σ · σ̃ =
1

N

N∑
i=1

σiσ̃i (2.24)

3We want symmetric proposal probabilities, p(ξ → ξ′) = p(ξ′ → ξ).
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Figure 2.4: Average overlap between reference and trial trajectories of a 40 × 40 two-
dimensional Ising model with βJ = 0.3. Results are shown in (a) for ordinary Glauber spin
flip dynamics, and in (b) for the modified directional dynamics described in Section 2.5. Two
trajectories with identical initial conditions and different-but-correlated noise histories (solid
lines) maintain a nonzero steady state overlap at long times only for the case of push up/push
down dynamics. The same steady state values are obtained when the two trajectories evolve
from very different initial conditions (dashed lines) generated by independently assigning each
spin at random. Different colors indicate different values of the noise guidance parameter
εacc. Ensemble-averaged results are shown for εsite = εdir = 0.001, with averages performed
over 500 independent pairs of trajectories.

is a measure of correlation between σ and σ̃. Decorrelated configurations return a value of
zero while identical configurations return one. Fig. 2.4(a) shows that the correlation between
σ(t) and σ̃(t) decays to zero at long times. The rate of this decay is tuned by εacc and εsite,
the parameters controlling the extent of noise correlation. At long times 〈σ · σ̃〉 eventually
approaches zero, even with the strongest noise guidance. The corresponding “uncorrelated”
configurations, however, bear a subtler resemblance. Some regions are significantly corre-
lated, while others are significantly anti-correlated, averaging to give σ · σ̃ ≈ 0.

Motivated by this subtler resemblance, we introduce a minor alteration in the implemen-
tation of Glauber spin-flip dynamics. Below we detail this modification and show that it
does in fact enable the preservation of correlation between trajectories over very long times.
As observed in the context of damage spreading, different choices of Ising model Monte Carlo
dynamics can result in identical equilibrium states yet different dynamical properties [65, 83].
The effectiveness of correlated noises in guiding trajectories is, in effect, one such dynamical
property.

In particular, we replace step 2 of the spin-flip move to include a directionality. We
introduce another random number, ξdir ∈ [0, 1), used to decide the trial state. If ξdir < 0.5,
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the trial state is a down spin; otherwise it is up. Whereas the conventional trial move effects
an attempted spin flip, this trial move can be viewed as an attempt to push the spin either
up or down, depending on the state of ξdir. As with the other noise variables, correlations
between ξdir and ξ̃dir are tuned by the probability εdir of resampling the noise.

The addition of directionality to the spin-flip dynamics results in moves which are trivially
ineffectual. For example, half of the spin moves attempt to “push up” a spin which is
already up. These moot moves are absent from the traditional implementation of single-
spin-flip Glauber dynamics, which attempts a spin flip at every step of MC time. In every
other respect, the two schemes generate Markov chains with identical statistics. They can
therefore be made identical by excising moot moves, or, equivalently on average, by scaling
time by a factor of two.

As Fig. 2.4(b) illustrates, the push up/push down implementation of single-spin-flip
Glauber dynamics allows the trial trajectories, σ̃(t) to remain tunably close to σ(t) for
long times. By incorporating information about spin change directionality into the noise
history, the noises signal not just how likely a spin is to change, but in what direction it will
change. Appropriately chosen ε parameters can create trajectories which remain tunably
close to each other for arbitrarily long times. When averaged over the whole lattice, steady
state correlation is maintained, but the correlations are not spatially homogeneous. As MC
time progresses, the regions in which two trajectories are highly correlated move throughout
the lattice, ensuring ergodic exploration of the trajectory space.

For push up/push down dynamics, noise guidance does not merely preserve correlations
that existed at time zero. We find that correlated noise histories can in fact induce synchro-
nization between trajectories. To illustrate this synchronization effect, we have characterized
the correlation between trajectories that share similar noise histories only intermittently. As
shown in Fig. 2.5, such paths acquire similarity during periods of strong noise guidance.
This similarity degrades during periods without noise guidance, but can be recovered by
re-introducing guidance, regardless of how significantly correlations have decayed. Indeed,
even very different initial configurations, propagated with correlated noises, become more
similar with time, their ensemble-averaged correlation 〈σ · σ̃〉 converging to the same value
as for trajectories that are identical at time zero.

A nonzero steady state value of 〈σ · σ̃〉 is the quantitative signature of synchronization.
The origins of this finite asymptotic correlation are transparent in the limit of weak coupling,
βJ = 0. With the additional simplification h = 0, each attempted spin flip is accepted with
probability 1/2 based on the value of ξacc, regardless of the states of neighboring spins. In
this case the steady state overlap can be calculated analytically. To do so, we derive an
equation of motion for the probability p(τ) that a given spin has identical values in the
reference and trial trajectories after τ MC steps. Note that τ differs from time t by a factor
of N . The long-time, steady-state limit of this time evolution, pss = limτ→∞ p(τ) , yields
〈σ · σ̃〉ss = 2pss − 1. In Appendix B, we tabulate the various ways that a selected spin
can become identical in reference and trial trajectories after a single timestep. From this
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Figure 2.5: Correlation between reference and trial trajectories of a 40 × 40 Ising model
with βJ = 0.3. Plotted lines are averages over 500 independent pairs of trajectories that
evolve by push up/push down dynamics. Noise histories of each pair are generated in a
correlated manner with εsite = εdir = 10−3 during the intervals t = 25− 50 and t = 150− 200
(the shaded regions); noise guidance is absent at all other times. The site-wise correlation
between an example trajectory pair (with εacc = 10−3) is shown above the graph, with time
advancing from left to right and adjacent configurations separated by 25 MC sweeps.

enumeration, and the corresponding probabilities, we find

p(τ + 1) =
N − 1

N
p(τ)− εdir

4N

(
1− εsite +

εsite
N

)(
1− εacc

2

)
+

1

2N

(
1− εacc

2

)(
1− εsite +

εsite
N

)
p(τ) +

1

2N
. (2.25)

The various terms of Eq. 2.25 describe the different ways that a single MC move can
impact the state of an arbitrarily chosen spin in trial and reference trajectories. Since each
move of our MC dynamics acts on a single site of the lattice, some moves do not involve
the tagged spin at all, but instead some other lattice site; the first term in Eq. 2.25 reflects
this possibility. The second term accounts for the decrease in overlap when reference and
trial trajectories accept a spin-flip at the same site but in opposite directions. The third
term results from the constructive action of correlated noises on the tagged spin, either
maintaining existing correlation or inducing synchronization, as detailed in Appendix B.
The final term accounts for random alignment of the tagged spin despite uncorrelated noise
variables, a possibility particular to degrees of freedom with a limited number of discrete
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Figure 2.6: Steady state correlations between reference and trial trajectories of a 40 × 40
Ising model, as a function of noise guidance strength. Results are shown for push up/push
down dynamics with εdir = 0.001. The high-temperature limit Eq. 2.26 is shown in (a).
Finite temperature behavior (b) was obtained by sampling 4 × 104 pairs of trajectories for
340 MC sweeps each, with βJ = 0.4.

states. Equating p(τ) and p(τ + 1) gives the steady state probability,

pss =
1− εdir

2

(
1− εacc

2

) (
1− εsite + εsite

N

)
2−

(
1− εacc

2

) (
1− εsite + εsite

N

) . (2.26)

Analytically calculating steady-state overlap at finite temperature is not straightforward.
Numerical results, shown for βJ = 0.4 in Fig. 2.6, indicate that the dependence of overlap
on strengths of noise perturbation is generically similar to the βJ = 0 case analyzed above.
Increasing βJ from zero does, however, slow the rate of convergence to the steady state,
while decreasing the degree of steady state correlation. For all coupling strengths we have
examined, 〈σσ̃〉ss can be made arbitrarily close to unity by decreasing the various ε pa-
rameters. This level of control ensures that one can generate trial trajectories which are
correlated with a reference for all times, an essential capability for efficient path sampling of
long trajectories.

WCA Dynamics

The success we have achieved in synchronizing Ising dynamics with noise guidance should not
be expected for complex dynamical systems in general. We demonstrate this limitation for
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Figure 2.7: Divergence between reference and trial trajectories of a two-dimensional WCA
fluid with Brownian tube noise guidance of strength α. Average distance between the two
trajectories, as defined in Eq. 2.27, is shown for a system of 400 particles with mass m and
diameter σ, in a square box with side length 24 σ (i.e., density ρσ2 = 0.694). Underdamped
Langevin dynamics was propagated with inverse temperature β = 0.2 and friction coefficient
γ = 0.1 using a timestep of 0.005 τ , where τ =

√
mσ2/ε and ε is the Lennard-Jones

interaction energy scale [107]. Data are averaged over 500 independent trial trajectories.

the specific case of a two-dimensional WCA fluid [122] evolving by underdamped Langevin
dynamics. The purely repulsive particles are propagated using an integration scheme that
requires generating a collection of Gaussian random variables [9, 108]. These noises are
guided by a Brownian tube proposal, Eq. 2.21. The similarity between trial and reference
noise histories is controlled by a parameter α that ranges from zero (no noise guidance) to
one (complete noise guidance).

Starting from identical initial configurations, we propagate dynamics with correlated
noise histories and monitor the difference between trial and reference as

〈|x− x̃|〉 =
1

N

N∑
i=1

∣∣x(i) − x̃(i)
∣∣ , (2.27)

where x(i) and x̃(i) are the positions of particle i in the reference and trial and |·| is the two-
dimensional Euclidean distance. At short times, the difference between trial and reference
trajectories is small, but this difference grows exponentially, a hallmark of chaotic dynamics.
Even with exceptionally strong noise guidance, trajectories cannot be held arbitrarily close
to each other for long times, as shown in Fig. 2.7.

Why are we unable to guide the evolution of WCA particles as effectively as we guided
Ising dynamics? A principal difference between the two systems is the likelihood of sponta-
neous local recurrences. In either case, trajectories with similar initial conditions but different
noise histories wander away from one another in a global sense, eventually exploring very
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different regions of configuration space. Correlating their noise histories generally acts to
defer, but not defeat, this divergence. In the case of Ising dynamics, however, a given small
block of adjacent spins will occasionally align spontaneously in two trajectories with rea-
sonable probability. Following such a spontaneous, local recurrence, correlated noises again
work to hold trajectories close. Global spontaneous recurrence of a large number of spins
is, of course, highly improbable, but the noise guidance seems to “lock in” local correlations
every time they spontaneously reoccur.

2.6 Conclusion

Transition path sampling has proven useful for a variety of equilibrium, as well as non-
equilibrium, problems in chemical dynamics. The problem of sampling long trajectories,
particularly those with multiple intermediates, has hindered a variety of extensions and
applications of the methodology. We have outlined a modern physical perspective from
which to assess and address these challenges. We have demonstrated and discussed successful
trajectory guidance in the case of Monte Carlo dynamics of an Ising model. Substantial
difficulties remain for systems with continuous degrees of freedom.

Our results suggest that effective noise guidance of long trajectories requires a nonnegli-
gible probability of spontaneous local recurrence, i.e., a significant chance that reference and
trial trajectories transiently align within small regions of space. Such synchronization could
be particularly helpful for sampling reactive trajectories that traverse metastable intermedi-
ate states, for example the coarsening or assembly of colloidal systems as they organize on
progressively larger scales. In such cases, trial trajectories in the course of path sampling
should maintain correlations with the reference while passing through the intermediates, not
just at the endpoints. Even without identifying metastable configurations, correlated noises
could be applied during some intervals but not others. A tendency to synchronize would en-
able trial trajectories to explore widely during unguided periods, but to be reined in globally
by intermittent guidance.

We anticipate that these noise-guidance methods will be effective for other lattice systems
as well, but their usefulness could depend sensitively on the exact manner in which the noise
influences dynamics. In particular, without incorporating directionality into proposed spin
changes, we were not able to guide long Ising trajectories. Furthermore, Ising dynamics
can exhibit spontaneous recurrence, i.e., transient local alignment between two trajectories
regardless of their noise histories. Because small blocks of Ising spins can adopt only a modest
number of configurations, such random local synchronization occurs with an appreciable
probability. The probability of recurrence will likely be lower for models with a larger
collection of possible local configurations, e.g., a Potts model or an Ising model with more
neighbors. We thus expect that the application of noise-guided path sampling could face
substantial challenges for long trajectories of these more intricate lattice models.
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Chapter 3

Sampling Protocols

3.1 Introduction

In biology, chemistry, and materials science there is a widespread ambition to rationally
engineer molecular systems. The common adage that structure determines function suggests
that in order to design a molecular system with a particular functionality, our big challenge
is to determine an appropriate structure. Unfortunately, even when we know the “right”
structure, we do not necessarily know how to make it. In practice, coaxing molecules to
assemble into a designed pattern is no less challenging than coming up with the design in
the first place. As a tangible example, crystals with photonic bandgaps are understood
theoretically but remain challenging to fabricate using either photolithography or colloidal
self-assembly [92].

If we consider equilibrium experimental protocols, then the design problem is indepen-
dent of molecular dynamics—we must engineer molecular interactions such that the desired
structure is a minimum of free energy. However, free energy minimization is not an appli-
cable design principle when we manipulate matter in a non-equilibrium manner. Frequently
these non-equilibrium protocols happen out of experimental necessity, e.g., laser tweezers
heat a medium, so they cannot be used in an equilibrium process [82]. Other times, we
purposefully want to drive a system far from equilibrium to access molecular configurations
that would be very uncommon in equilibrium. A temperature quench to form a glass is one
example. Fig. 3.1 illustrates a second example, assembling a structure out of two types of
colloidal particles, identical except that they are driven in opposite directions by an applied
field [118]. In that example, the phase space of possible configurations can be partitioned
into regions according to the mixing of the two types of colloids: one region is well-mixed,
another forms crisp vertical stripes. Without the driving, a typical equilibrium trajectory
primarily visits configurations in the well-mixed region. Subject to an appropriate periodic
field, a trajectory that begins well-mixed, is strongly steered toward the vertical stripe re-
gion of phase space. This chapter addresses how we might identify the protocols which most
strongly steer collective dynamics toward desired products.
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Figure 3.1: In equilibrium systems, the molecular configurations visited by a trajectory
depend on designing interactions between particles. If we drive those same particles with
out-of-equilibrium protocols, they can visit corners of phase space which are very atypical of
equilibrium dynamics. By specifying only the desired final region of phase space, are there
smart ways to discover the protocols which most effectively steer the dynamics toward the
target? Inset images depict two-dimensional WCA particles evolving under a protocol which
periodically pushes red and blue particles in opposite directions. For appropriate amplitudes
and frequencies of driving, the particles tend to align in stripes.

To guide trajectories through phase space, we want to search the vast space of possible
protocols, which are generically non-equilibrium. At face value this aim may seem a pre-
posterous proposition. We can never try all possible protocols! A similar complaint could
be raised, however, about sampling microscopic configurations in an Ising model or a hard
sphere fluid: we could never enumerate all the microstates. In that context, we know that
Monte Carlo sampling is immensely effective. While we never try all the possibilities, we can
learn from representative sampling over the microstates. Can an analogous approach teach
us about protocol spaces too vast to enumerate?

Suppose we want to sample protocols, with a preferential bias towards protocols that
generate trajectories with particular properties, e.g., trajectories which are especially likely
to evolve from mixed to striped configurations. The effort of scanning all the possible
protocols scales horribly with the number of tunable parameters, so we consider a route
to explore the space with a random walker (see Fig. 3.2). By simultaneously sampling the
space of trajectories and protocols, we show that such a protocol search is possible, and, for
certain systems, very advantageous. The efficacy of the methodology depends on the ability
to efficiently sample trajectory spaces, so the limitations described in Chapter 2 must be
considered. For that reason, we confine our study of protocol sampling to two models whose
paths can be successfully sampled: a one-dimensional barrier crossing and two-dimensional
Ising dynamics.
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Figure 3.2: Suppose a protocol depends on two parameters, ε and Ω, as in the double well
example introduced in Section 3.2. Scanning all possible protocols grows exponentially in
the number of parameters. Alternatively, the space could be explored according to a random
walk in protocol space. If we construct an appropriate dynamics for the random walker,
effort can be focused on the protocols which are most significant.

3.2 Direct Sampling of Protocols: One-Dimensional

Barrier Crossing

The conceptual problem of protocol sampling is straightforwardly illustrated in a one-
dimensional toy model. Consider a particle of mass m, whose position r evolves according
to an underdamped Langevin equation with friction coefficient γ,

mr̈ = −∇V (r, t)− γṙ +
√

2γkBTξ(t). (3.1)

The equation can be used to model the stochastic dynamics of a colloid in a liquid bath
at temperature T when subjected to a time-dependent potential energy V (r, t). As usual,
kB is the Boltzmann constant. The Langevin equation describes the effective motion of the
single particle without explicitly representing the state of the bath. Rather than retaining
many bath degrees of freedom, their effect is captured through a friction of the medium and
a random force given by the white noise ξ with unit variance. We focus on dynamics in
a quartic, double-well potential with an additional small perturbation, which is periodic in
time. Specifically,

V (r, t) =
a

4
r4 − b

2
r2 + ε sin(Ωt)r, (3.2)

where the positive constants a and b control the barrier height and the strength and pe-
riodicity of the external perturbation is determined by ε and Ω. If we set a = 1 and
b = 9 to generate a 20kBT barrier, then transitions from the left well (region A, defined by
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r < −
√
b/3a) to right well (region B, defined by r >

√
b/3a) are rare events, and tran-

sitions from A to B are described by a first-order rate constant kAB. Suppose we set the

V(r,t)=U(r)+ϵsin(Ωt)r
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r

Figure 3.3: We investigate barrier crossing rates for a one-dimensional Langevin equation,
assisted by a periodic external perturbation. We define the “A” and “B” regions for reactants
and products, shaded red and blue, by the inflection points in the double well.

perturbation strength, ε, to the modest value of 2kBT . What frequencies Ω will amplify the
transition rate kAB? When the bath only weakly dampens the inertial motion of the tracked
particle, it is physically obvious that driving at the resonant frequency of a well,

√
2b/m,

will facilitate transitions to the other side, but it is instructive to see how this answer can be
found by different computational approaches. We start with the straightforward parameter
scan, corresponding to Fig. 3.2(a).

Numerical Integration

To compute transition rates, we could simulate stochastic dynamics with different choices
for ε and Ω. This simulation requires us to discretely propagate the particle according to
the Langevin equation. We use an integrator, introduced by Manuel Athènes and Gilles
Adjanor, which naturally treats forward and reversed dynamics in a symmetric manner [9].
As in the leapfrog integrator for molecular dynamics, we assign momenta at “half timesteps”
for conceptual convenience. Each timestep requires the selection of two Gaussian random
numbers, ξ+

i+ 1
4

and ξ+
i+ 3

4

, which occur at quarter timesteps (the superscript + indicates that

these noises propagate dynamics forward). We modify the integrator slightly to include a

timestep rescaling factor, c =
√

2
γ∆t

tanh γ∆t
2

, that recovers, for all possible timesteps ∆t,
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the exact mean-squared displacement of a freely diffusing particle [107] 1.
Denoting the position and momenta at timestep i as ri and pi, respectively, we propagate

the trajectory according to

pi+ 1
2

=
[
pie
−γ∆t/2 + ξ+

i+ 1
4

]
+ fi

c∆t

2

ri+1 = ri + pi+ 1
2

c∆t

m

pi+1 =

[
pi+ 1

2
+ fi+1

c∆t

2

]
e−γ∆t/2 + ξ+

i+ 3
4

. (3.3)

The noises are each drawn from the distribution

P (ξ) =
β√

2π (1− e−γ∆t)m
e
− ξ2β

2(1−e−γ∆t)m , (3.4)

where β = (kBT )−1. Brute force calculations of the transition rate for various choices of ε and
Ω are accessible by counting the number of transitions per unit time observed over the course
of many long trajectories. Representative trajectories, shown in Fig. 3.4, illustrate that
transition rates are amplified for driving frequencies near the resonant frequency (Ω0 ≈ 4.24
for m = 1, b = 9). When the barrier height is 20kBT,m = 1, γ = 1, and no driving field
is applied, a typical trajectory transitions from region A to B once every 109 units of time.
Obtaining a good estimate of such a small rate requires at least 1012 integration steps with
a timestep of ∆t = 0.01, a steep computational cost to observe ten transition events. In the
next section, we show how a transition path sampling approach extracts relative transition
rates (comparing the rate of one choice of Ω to another Ω′) with much less computational
effort.

3.3 Protocol Sampling in a TPS Framework

Brute force rate calculations directly measure the rarity of transitions, but most of the com-
putational effort is expended in generating non-transitioning dynamics. For our purposes, it
is wasteful to simulate details of the long waiting periods between transitions, so we make use
of a shortcut to computing the transition rate. Provided the transitions are rare, each tran-
sition is independent of the previous crossing event, so the elapsed time between subsequent
transitions, τ , is Poisson-distributed,

P (τ) = ke−kτ , (3.5)

with rate constant k [70]. The brute force calculation estimates k by computing the average
time between transitions, 〈τ〉. But because the waiting time distribution is Poissonian 2, it

1The Athènes integrator would set c = 1. For small timesteps in the underdamped limit, c = 1 −
O(γ2∆t2), so the Athènes integrator is effectively equivalent to the time-rescaled form used here.

2To be careful we must put some timescale restrictions on the assertion of Poisson statistics. At very
short times, subsequent events can be correlated. See Reference [25] for a more thorough discussion.
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Figure 3.4: Representative trajectories for a variety of protocols. Trajectories are propa-
gated as described in the text with ∆t = 0.01, β = 1, a = 1, b = 9, γ = 1,m = 1.

is also possible to extract k by measuring the probability to observe an anomalously quick
transition. In effect, we can skip the long waiting periods and focus our efforts on the
transitions.

Instead of simulating very long trajectories, we restrict our attention to an ensemble
of short trajectories of length tobs with a constraint that the trajectories must transition
from A to B. This collection of trajectories is the reactive ensemble discussed in Chapter 2,
Eq. (2.6). Let the time required for a particle to climb up and over the barrier be tcross.
We choose an observation time long enough that a particle has time to climb up and over
the barrier, but short enough that we exclude most of the waiting time between transitions:
tcross < tobs << k−1. This biased trajectory ensemble is sampled as discussed in Chapter 2
using correlated noise histories. Briefly, we start from a seed trajectory which transits from A
to B and propose trial trajectories using shooting moves with correlated noise histories. Trials
are accepted only if they exhibit a transition. Technical details are included in Appendix C.
This Monte Carlo sampling of trajectory space yields a representative collection of possible



CHAPTER 3. SAMPLING PROTOCOLS 31

transition routes, as plotted in Fig. 3.5(a). In this one-dimensional example, transition paths
differ most noticeably by the time of the transition, but in many body systems multiple
crossing mechanisms can be sampled [52].

We obtain the transition rate constant by quantifying the small probability that an
unbiased trajectory of length tobs will exhibit a transition. This probability can be computed
as a free energy calculation in trajectory space, the “reversible work” to constrain trajectories
to start in A and end in B [21]. We extract the relative transition rates between different
protocols even more simply. Consider the extended ensemble,

Pextended[r(t),Ω] ∝ P0[r(t)|Ω]hA(r0)hB(rtobs
), (3.6)

analogous to Eq. (3.6), but now sampling both trajectories and protocols. As in Chapter 2,
hA and hB are indicator functions which identify whether or not the particle is in regions
A and B, respectively. P0[r(t)|Ω] is the probability that trajectory r(t) is generated by
propagating Eqs. (3.3) with driving frequency Ω, given an initial Boltzmann distribution in
the equilibrium state with Ω = 0 (equivalently ε = 0). This extended ensemble is sampled
as in ordinary TPS but with an additional MC move that attempts changes to Ω (details
in Appendix C). Fig. 3.5(b) shows that the protocols with the highest transition rates are
visited most frequently by the MCMC process.

In fact, the Markov chain samples protocols in proportion to the frequency-dependent
transition rate, k(Ω),

P (Ω) ≡
∫
Dr(t) Pextended[r(t),Ω] ∝ k(Ω). (3.7)

To demonstrate this feature, we first note that the MC moves altering Ω naturally sample
the marginal distribution found by averaging over the trajectories,

P (Ω) ∝ 〈hA(r0)hB(rtobs
)〉Ω , (3.8)

The notation 〈·〉Ω represents an average over trajectories of length tobs with driving frequency
Ω, so the quantity 〈hA(r0)hB(rtobs

)〉Ω is the probability of observing a transition in time tobs,
driven at frequency Ω. This transition probability is simply related to the rate constant via
the Poisson distribution for the time until the next transition event. Namely, the probability
of observing a transition in time tobs is provided by

〈hA(r0)hB(rtobs
)〉Ω =

∫ tobs

0

dt k(Ω)e−k(Ω)t = 1− e−k(Ω)tobs
k(Ω)tobs<<1∼ k(Ω)tobs, (3.9)

where we have used the fact that tobs is much smaller than the typical transition time k−1.
Therefore, the relative probability of sampling Ω and Ω′ in the extended ensemble is given
by

P (Ω)

P (Ω′)

ktobs<<1∼ k(Ω)

k(Ω′)
. (3.10)
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Figure 3.5: Extended ensemble path sampling performs a MCMC dynamics through the
space of paths and protocols. Some TPS moves perturb the trajectory, r(t), with noise-
guidance TPS moves (the parameter α, introduced in Chapter 2 was set to 0.95). Other
TPS moves symmetrically propose a change to the driving frequency, Ω, and generate a new
trajectory with that driving frequency, again with noise guidance. Details of the MCMC
move set are discussed in Appendix C. Fig. (a) shows the sampling of double-well transi-
tions over a 20kBT barrier (∆t = 0.01, β = 1, a = 1, b = 9, γ = 1,m = 1, ε = 2). Fifty
representative trajectories are shown with 50,000 TPS moves between each recorded trajec-
tory. Fig. (b) shows the simultaneous sampling of protocols, with Ω recorded every 100 TPS
moves. Frequencies are visited in proportion to the transition rate for that choice of Ω.
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Using the extended ensemble to sample protocols in proportion to transition rates can
serve two purposes. In high-dimensional protocol spaces, it acts as an exploratory tool.
The Markov chain wanders through the vast space, tending toward parameters with larger
rate constants. When the protocol space has few parameters, the method also provides an
efficient way to quantitatively compare the rate constants of different protocols. For example,
umbrella sampling allows us to compute the relative double well transition rates for various
driving frequencies, shown in Fig. 3.6. The relative transitions rates agree with the brute
force rate calculation, with one notable exception. When the period of external driving is
long compared to tobs, the extended ensemble approach cannot be expected to reproduce the
transition rates since the simulated short trajectories are not driven for a complete period.

3.4 Sampling with a Meta-dynamics on Trajectory

Space

We have argued that in order to efficiently extract rate constants we should sample trajecto-
ries with a short tobs, thereby avoiding the simulation of uninteresting, and computationally
expensive, dynamics leading up to the transition. From a path sampling perspective, the
use of a short observation time is fortunate. In Chapter 2, we saw that long-tobs trajectories
are particularly hard to sample, but that analysis does not apply to short observation times.
Does this mean that path sampling will work efficiently whenever we want to sample tran-
sitions in the extended ensemble? Unfortunately, the answer is a resounding no. To clarify,
we must become more precise in our use of short and long to describe the trajectory lengths.

The lesson of the previous section is indeed that efficiency gains are expected when we
sample a trajectory ensemble with short tobs, where by “short tobs” we mean that ktobs << 1.
We cannot, however, make tobs arbitrarily short; it must be at least as long as the time it
takes to cross the barrier, tcross. Barrier crossings which are rare but fleeting, those processes
with very fast crossing times but slow rate constants, are good candidates for TPS methods;
a small observation time can be chosen which simultaneously satisfies tcross < tobs << k−1.
Slower crossings, e.g., those with many intermediates and those requiring nanoparticles to
diffuse large distances, still typically exhibit a separation of timescales, tcross << k−1. In
principle the extended ensemble approach, with tobs > tcross, applies equally well to those
slower processes, but in practice the value of tobs must be large enough that path sampling
becomes problematic for the reasons described in Chapter 2.

When shooting moves fail to sample paths, there is an alternative method for exploring
trajectory spaces [33]. A transition pathway can be treated like a long polymer, and a
dynamics can be defined such that propagation of the “polymer” samples the trajectory
space. The trajectory meta-dynamics, not to be confused with the metadynamics method
for free energy calculations, is computationally expensive, so it has largely been superseded by
shooting. Nevertheless, when exploring protocol space is the primary goal, the method could
be of practical use because it can simultaneously yield equations of motion for the trajectory
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Figure 3.6: Dependence of the transition rate on the driving frequency as computed by
brute force sampling from long trajectories (black) and extended ensemble path sampling
(blue). At each value of Ω, rate constants are obtained from brute force sampling by counting
the transitions in 5 × 106 trajectories with 1000 units of time each (∆t = 0.01, β = 1, a =
1, b = 9,m = 1, γ = 1, ε = 2). Relative rate constants are computed from extended ensemble
sampling with tobs = 25. By measuring the brute force rate constant for the optimal driving
frequency, Ω∗, the relative rates can be converted into absolute rates. To exhaustively sample
the different driving frequencies, we employed umbrella sampling, biasing the log probability
using 15 evenly spaced harmonic biases with curvature 3.25. 107 TPS moves were performed
in each umbrella using noise guidance with α = 0.95 (see Appendix C for more technical
details). The driving frequency was sampled every 2000 TPS moves, and these biased samples
were stitched together using the Multistate Bennet Acceptance Ratio (MBAR) method [105].
Reported error bars are twice the variance.

and for the protocol. Trajectory meta-dynamics proceeds slowly, like a long polymer diffusing
through a viscous medium, but the meta-dynamics through protocol space can comparatively
fast. When meta-motion of paths and protocols proceeds with separate timescales, the
protocol can locally equilibrate before the trajectory makes an appreciable change. In that
case, protocol sampling can provide a sort of quenched average, comparing relative transition
rates for different protocols, conditioned upon the slowly-evolving transition pathway.
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To construct the meta-dynamics of the trajectory, it is useful to first review the manner
in which polymers sample configuration spaces as they evolve dynamically. Suppose a long
polymer, whose configuration is denoted by x, has a potential energy function Vpolymer(x).
One way to sample the polymer’s equilibrium distribution, P (x) ∝ e−βVpolymer is to propagate
dynamics, thermostated to maintain inverse temperature β, using forces given by the gradi-
ents of the potential energy, −∇V . In this particular example, the temperature, potential
energy, and forces have physical meanings, but more generically we may apply an isomor-
phic dynamical scheme to sample arbitrary probability distributions. We can sample the
extended ensemble in this way, with the effective potential energy for a trajectory/protocol
pair given by the path action 3,

S[r(t), p(t),Ω] = − lnPextended[r(t), p(t),Ω]. (3.11)

This path action can be expressed explicitly in terms of the positions and momenta at every
discrete timestep of the Langevin equation. For our choice of integrator, it is more compactly
expressed in terms of the noises,

S[r(t), p(t),Ω] = Const. + β

(
V (r0) +

p2
0

2m

)
− lnhA(r0)− lnhB(rtobs

)

+
β

2(1− e−γ∆t)m

tobs
∆t
−1∑

i=0

[(
ξi+ 1

4

)2

+
(
ξi+ 3

4

)2
]
. (3.12)

Gradients of the path action with respect to all trajectory/protocol degrees of freedom (r and
p at every timestep as well as Ω) are the forces for the meta-dynamics. To carry out Hamil-
tonian mechanics with these forces, we must also introduce momenta and fictitious masses
for each degree of freedom. Thus the trajectory/protocol system evolves under Hamiltonian

H[r(t), p(t),Ω, πr(t), πp(t), πΩ] = S[r(t), p(t),Ω] +
(πΩ)2

2MΩ

+

tobs
∆t
−1∑

i=0

(
(πri )

2

2Mx

+
(πpi )

2

2Mp

)
, (3.13)

where the conjugate momenta are denoted by π’s and the fictitious masses by M ’s 4. In
practice, this Hamiltonian can be propagated with Verlet or Nosé-Hoover integrator, ther-
mostatted to sample with an inverse temperature of the meta dynamics of βmeta = 1.

Formally, the transition pathway dynamics samples the extended ensemble, so the marginal
distribution P (Ω) that remains after integrating over all paths must be the same as the P (Ω)
distributions we found using shooting moves in Fig. 3.6. Carrying out meta-dynamics on
the trajectories, however, is not an efficient way to explore unique transition paths. We

3Here, the path probability depends on the momenta at every time, p(t), which we had integrated out
in the earlier section.

4The characteristic functions, hA and hB are step functions, so they must be softened to avoid impulsive
forces. This is easily achieved by, e.g., replacing the step function with a Fermi function.
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Figure 3.7: Dependence of the transition rate on the driving frequency as computed by brute
force sampling from long trajectories (black) and using the dynamical scheme for sampling
the extended ensemble (blue). The dynamical sampling scheme does not efficiently sample
the trajectory space, but as discussed in the text, it could allow for exploration when other
path sampling methods fail. To confirm that such dynamical sampling would be statistical
unbiased, the method was used to exhaustively sample double well transitions. The brute
force rate constants are the same as in Fig. 3.6. Relative rate constants are computed from
the extended ensemble sampling with tobs = 50 with a larger timestep, ∆t = 0.1, to aid the
sampling. Obtaining decorrelated samples of the rare values of Ω was challenging, so umbrella
sampling was employed with a variety of locations and strengths of harmonic biases: (a) 40
harmonic biases evenly spaced from Ω = −6 to Ω = 6 with curvature 50, (b) 75 harmonic
biases from Ω = −6 to Ω = 6 with curvature 70, (c) harmonic biases with curvature 2000
placed at Ω = −0.035 and Ω = −0.06, and (d) 10 evenly spaced biases from Ω = −6 to
Ω = 6 with curvature 0.2. Each of the four sets of simulations included replica exchange MC
moves that swapped replicas between neighboring harmonic biases. The values of r(t), p(t),
and Ω were propagated according to the Hamiltonian, Eq. (3.13), using Hybrid Monte Carlo
with a Verlet integrator and an Andersen thermostat for 2 × 109 timesteps of size 0.0005
(resampling of highly correlated momenta, πr, πp, πΩ, every 2×105 steps, all fictitious masses
set to unity). The small timestep was necessary due to stiff coupling between neighboring
Langevin timesteps. The data from all umbrellas was subsampled to take only statistically
independent samples of the driving frequency, and all of the subsampled data was combined
using MBAR. Reported error bars are twice the variance.
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must sample the Hamiltonian in Eq. (3.13) with timesteps small enough that the integra-
tor remains stable. In practice, we find, as others have before, that the requisite timestep
for transition path dynamics results in very slow path space sampling. Despite slow path
sampling, Ω can evolve toward the optimal driving frequency quickly. The speed of Ω dy-
namics indicates that, in this example, exhaustive averaging over paths r(t) is not necessary
to discover optimal protocols. Sampling akin to a quenched protocol average, in which r(t)
stays near its initial transition path, captures the essential protocol-dependence of the tran-
sition rates. More fully sampling the paths will undoubtedly be important to more complex,
higher-dimensional problems, but this dynamical sampling of paths and protocols could still
provide a useful, if slightly uncontrolled, method for identifying protocols which amplified
transition rates.

3.5 Finding Low-dissipation Protocols

In the previous sections, we saw that transition rates in a double well potential could be
amplified by periodic driving, but this non-equilibrium process comes with an energetic
cost. The oscillatory force performs work on the particle, some of which is dissipated to
the environment, and the rate of dissipation depends sensitively on the protocol driving the
non-equilibrium process. Managing this dissipative cost is a crucial design principle in both
physical and algorithmic processes. In physical processes, any excess dissipation indicates
that energy is being wasted to heat the environment. More abstractly, Chapter 2 showed
how Monte Carlo moves can be thought of in the language of non-equilibrium statistical
mechanics, and efficient Monte Carlo moves correspond to protocols that attempt to drive
the Markov chain with nominal dissipation. Here, we show how the extended ensemble TPS
methods can be adapted to incorporate a bias that prefers these low-dissipation protocols.

Our adaptation retains an essential component of extended ensemble protocol sam-
pling—we evaluate the desirability of a protocol based on the behavior of a single trajectory.
When extracting relative rate constants, we preferred values of Ω with large transition rates
by accepting or rejecting altered driving frequencies based on whether or not a new short
trajectory passed from A to B. While comparing two short trajectories, driven at frequencies
Ω and Ω′, is insufficient to decide which driving frequency has a faster transition rate, the
correct decision can be made on average. Just as we could not determine a rate constant
from a single short trajectory, we cannot use a single trajectory to extract the dissipative
cost, an ensemble property that requires us to average over all trajectories. Nevertheless, a
single trajectory dissipation can be defined such that the average dissipation is coincident
with macroscopic notions of dissipation [103]. This single-trajectory dissipation, also known
as the entropy production of the trajectory, is given by

ω[x(t),Λ(t)] = ln
P0[x(t)|Λ(t)]

P0[x̂(t)|Λ̂(t)]
, (3.14)

where the forward and reversed trajectories are x(t) and x̂(t). The protocol Λ(t) and
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reversed-time protocol Λ̂(t) could be a periodic driving as before, or they can denote more
complex time-dependent protocols. We show that by biasing trajectories and protocols based
on the single-trajectory entropy production, we can, in effect, sample a protocol ensemble
which is biased to curtail the average dissipation.

The macroscopic dissipation associated with protocol Λ(t) is given by the average over
the trajectory ensemble,

〈ω〉Λ =

∫
Dx(t) P0[x(t)|Λ(t)]ω[x(t),Λ(t)]. (3.15)

To study the protocols with little dissipation, we therefore choose to investigate the distri-
bution

Pγ[Λ(t)] ∝ e−γ〈ω〉Λ , (3.16)

where γ is a parameter controlling the strength of biasing 5. In the limit that γ becomes
infinite, the probability accumulates at the minimum-dissipation protocol, Λ∗. With finite
γ, protocols which are near optimal retain non-vanishing probability. We will see in the
next section that these protocol ensemble fluctuations teach us which aspects of the protocol
must be controlled most sensitively to reduce dissipation. However, we first need a method to
sample the protocol distribution, Eq. (3.16). The straightforward approach would construct
a Markov chain in Λ-space; 〈ω〉Λ would act like an effective energy for each protocol and
γ an inverse temperature. Unfortunately, we can only compute 〈ω〉Λ by averaging over all
trajectories with fixed Λ. It is tempting to replace the average by the sample mean of n
trajectories,

〈ω〉Λ =

∫
Dx(t)P0[x(t)|Λ(t)]ω [x(t),Λ(t)] ≈

n∑
i=1

ω[xi(t),Λ(t)], (3.17)

where xi(t) is the ith trajectory sampled from P0[x(t)|Λ(t)]. If we make this approximation,
the effective energy in our MC procedure has errors due to finite sampling, and these errors
are exponentiated in Eq. (3.16). This problem of sampling exponential distributions with a
noisy energy function has been considered in several contexts [7, 11, 12, 24, 80]. Inspired
by the “pseudo-marginal approach” [7], we propose that Eq. (3.16) can be sampled as the
marginal distribution of a joint distribution,

Pλ[x(t),Λ(t)] ∝ P0[x(t)|Λ(t)]e−λω[x(t),Λ(t)]. (3.18)

The parameter λ controls the strength of biasing on the single-trajectory dissipation ω, while
γ biased the average dissipation 〈ω〉Λ. Note that Pλ=0 is the same distribution as P0, the
previously-defined distribution of natural dynamics. The joint distribution in Eq. (3.18) can
be sampled without error since the distribution depends on ω, which, unlike 〈ω〉Λ, can be
computed exactly at every MC step.

5Choosing to sample this distribution means we are using a uniform distribution over the protocols as a
prior.



CHAPTER 3. SAMPLING PROTOCOLS 39

In a linear response limit of slow protocols operating over long times, the marginal distri-
bution is simply related to Eq. (3.16). The trajectory can be subdivided into τ independent
segments, and the total entropy production ω[x(t),Λ(t)] is the sum of the entropy produc-
tion of each segment. For sufficiently large τ , we expect the total entropy production of the
trajectory to be Gaussian distributed on central limit theorem grounds, so

P (ω|Λ(t)) ∝ e−(ω−〈ω〉Λ)
2
/(2〈δω2〉

Λ
), (3.19)

where δω ≡ ω − 〈ω〉Λ. For this Gaussian form, the entropy production fluctuation theorem,
Eq. (2.3), requires that 2 〈ω〉Λ = 〈δω2〉Λ 6. Therefore, in the linear response regime, we can
replace an integral over trajectory space by a Gaussian integral over possible single-trajectory
dissipations,

Pλ[Λ(t)] ∝
∫
Dx(t) P0[x(t)|Λ(t)]e−λω[x(t),Λ(t)]

∝
∫
dω P (ω|Λ(t))e−λω

∝
∫
dω e−(ω−〈ω〉Λ)2/(4〈ω〉Λ)e−λω

∝ e−λ(1−λ)〈ω〉Λ . (3.20)

By sampling from the joint distribution we effectively sample protocols in proportion to an
exponential of their average dissipation as in Eq. (3.16) with γ = λ(1 − λ). The argument
holds away from linear response provided P (ω|Λ(t)) is well-approximated by Eq. (3.19) for
values of ω near ω = (1− 2λ) 〈ω〉. Notably, the scheme exerts a maximal bias, γ = 1/4, on
the average dissipation when λ = 1/2. For λ > 1/2, the single-trajectory entropy production
is biased so strongly that typically sampled trajectories have negative entropy production.
Though even if the λ-biasing is strong enough that ω is typically negative, the average
dissipation, 〈ω〉Λ, remains positive.

To understand why γ does not grow monotonically with λ, it is instructive to consider
the case that λ = 1. For that choice of bias, the probability of sampling a trajectory from
Pλ=1[x(t),Λ(t)] equals the probability of sampling its time-reversal using natural dynamics
and a time-reversed protocol,

Pλ=1[x(t),Λ(t)] ∝ P0[x(t)|Λ(t)]e−ω[x(t),Λ(t)] = P0[x̂(t)|Λ̂(t)]. (3.21)

The second equality is a simple rearrangement of Eq. (3.14). Note, also from Eq. (3.14),
that the single-trajectory dissipation can be negative, and the dissipation of a trajectory,
ω[x(t),Λ(t)] is equal and opposite the dissipation of the time-reversed trajectory, ω[x̂(t), ˆΛ(t)].
The dissipation of a typical trajectory, sampled from the λ = 1 ensemble, is therefore op-
posite in sign from the dissipation of a typical trajectory generated with natural dynamics

6This uses the fact that the dissipation distributions for forward and reversed protocols are the same in
the linear response regime.
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and the time-reversed protocol. Since trajectories simulated using natural dynamics must
have positive average dissipation, following from a restatement of the second law, we see
that the λ = 1 ensemble typically produces trajectories with negative dissipation. The λ
bias was introduced to reduce the typical value of ω[x(t),Λ(t)], but this reduction can be
achieved in two different ways: we may alter the protocol such that 〈ω〉Λ decreases or we
may alter the trajectory so it “runs backwards in time” and achieves a negative dissipation.
We seek the first method of reducing ω, but when the λ bias exceeds a strength of 1/2, the
second strategy becomes more important. Thus the strength of the effective bias acting on
〈ω〉Λ decreases as λ increases beyond λ = 1/2. In fact, both Eq. (3.20) and Eq. (3.21) make
it explicit that the λ = 1 ensemble samples the protocols uniformly, without regard to the
average dissipation.

The γ ≤ 1/4 limitation can be overcome by constructing a joint distribution over the
protocols and a set of n trajectories. In particular, we can sample from

Pn,λ [{x(t)}ni=1 ,Λ(t)] ∝
∏
i

P0[xi(t)|Λ(t)]e−
λ
n
ω[xi(t),Λ(t)]. (3.22)

In intuitive terms, while it may be possible to harvest one negative-entropy trajectory, it is
much harder to simultaneously harvest n of them. Marginalizing over the trajectories yields

Pn,λ[Λ(t)] ∝
(∫
Dxi(t) P [xi(t)|Λ(t)]e−

λ
n
ω[xi(t),Λ(t)]

)n
∝
(∫

dω e−(ω−〈ω〉Λ)2/(4〈ω〉Λ)−λω
n

)n
∝
(
e−

λ
n(1−λ

n)〈ω〉Λ
)n

= e−λ(1−λ
n)〈ω〉Λ . (3.23)

The first line again assumes a Gaussian dissipation distribution, which can be justified in a
linear response regime as before 7. By increasing the number of trajectories, n, the average
dissipation can be biased more strongly, with γ = λ

(
1− λ

n

)
. In the limit n → ∞, we

see that λ = γ because the sample mean in Eq. (3.22) converges to the average, but we
have shown that it is not necessary to compute the (expensive) converged averages. By
adjusting λ appropriately, we can effectively bias the mean dissipation by sampling a finite,
and potentially small, number of trajectories.

7 To pass from the second to third line we need only that P (ω|Λ(t)) is well-approximated by Eq. (3.19)
near ω =

(
1− 2λ

n

)
〈ω〉. In the large n limit, we require Gaussian P (ω|Λ(t)) near values of ω which shift closer

to the mean. For any sharply-peaked probability distribution, we can choose a value of n which is sufficiently
large that the small deviations about 〈ω〉Λ appear Gaussian, but we are not guaranteed that the variance is
simply related to the mean by 2 〈ω〉Λ =

〈
δω2

〉
Λ

except in the case of time-symmetric or linear-responding
protocols.
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3.6 Low-dissipation Ising Inversions

Using the protocol sampling framework, we can efficiently interrogate the interplay between
dissipation and control of a non-equilibrium transformation. As a concrete example, we
consider inverting a lattice of Ising spins from a state with all spins pointing up to a state with
all spins pointing down by controlling a time-dependent temperature, T (t), and magnetic
field, h(t). This scenario could be pertinent, e.g., to bit erasure when memory is stored as
the state of a magnetic domain. If we carry out the spin flip infinitely slowly, we can induce
a flip reversibly with no dissipation, but how much energy must be dissipated to cause the
spin inversion in finite time? What is the form of T (t) and h(t) that minimizes dissipation,
and how sensitive is the dissipation to deviations from optimal protocols?

To address these questions, it is customary to seek the optimal, minimum-dissipation
protocol. Such optimal protocols have been computed for single-particle control problems.
For example, we can steer a Brownian particle in a harmonic well by adjusting, as func-
tions of time, either the center or the stiffness of the well. In both the overdamped [100]
and underdamped [57] cases, Euler-Lagrange equations can be analytically solved to obtain
the optimal protocols. If we simultaneously tune the well stiffness and the temperature of
the particle’s environment, it is also possible to analytically solve for the minimum dissipa-
tion paths as geodesics of an inverse diffusion tensor in a linear-response framework [124].
Brownian particles in anharmonic potentials are not easy to handle analytically, but the
problems can be addressed numerically. Interestingly, one such numerical study has shown
that there can be protocols, which differ significantly from the optimal protocol, but which
have nearly identical dissipation [111]. This observation suggests that it could be fruitful
to not only compute the optimal protocols but to also investigate fluctuations around the
optimal protocols.

We present this complementary approach, focusing on the collection of protocols which
have very low, though not exactly optimal, dissipation. As in the previous section, we can
sample a distribution biased by dissipation as well as by hA and hB,

P [σ(t),Λ(t)] ∝ hA(σ0)hB(σtobs
)P0[σ(t)|Λ(t)]e−λω[σ(t),Λ(t)]. (3.24)

P0[σ(t)|Λ(t)] is the probability of generating a trajectory of spins, σ(t), using the protocol
Λ(t) ≡ {T (t), h(t)}. The time-evolution of the two-dimensional, Ising magnet is carried out
with the push up/push down Ising dynamics, introduced in Chapter 2, and implemented
as described in Appendix D. Ferromagnetic nearest-neighbor coupling is set to unity, and
periodic boundary conditions are employed. The constraints, hA and hB, select out those
trajectories which start with all spins aligned upward and end with them all aligned down-
ward after tobs sweeps; this notation is not to be confused with the external magnetic field,
h(t). An effect similar to the action of hA and hB is achieved if constraints are imposed on
the protocols rather than the initial and final configurations of the spins. In this scheme,
we sample the set of protocols which start at low temperature with a positive magnetic field
and end at low temperature with a negated field. In effect, the constraint on the protocols
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imposes the hA and hB constraints on the trajectories. The sampled joint distribution with
protocol constraints can be written as

Pλ[σ(t),Λ(t)] ∝ δ(Λ0 − ΛA)δ(Λtobs
− ΛB)P0[σ(t)|Λ(t)]e−λω[σ(t),Λ(t)], (3.25)

where ΛA and ΛB are the enforced initial and final values of the protocol. The extension to
the case of n Ising trajectories is straightforward, following Eq. (3.22),

Pn,λ[{σ(t)}ni=1 ,Λ(t)] ∝ δ(Λ0 − ΛA)δ(Λtobs
− ΛB)

∏
i

P0[σi(t)|Λ(t)]e−
λ
n
ω[σi(t),Λ(t)]. (3.26)

This extended ensemble can be sampled using Monte Carlo methods, which are detailed
in Appendix D. Briefly, the trajectories are sampled using noise-guided shooting-like TPS
moves forward and backward in time. The protocols are discretized and are defined by their
value at ten evenly spaced times,

(
Λ0,Λtobs/10,Λ2tobs/10, . . .Λtobs

)
. For times itobs/10 < t <

(i+ 1)tobs/10, the temperature and magnetic field are ramped linearly between their values
at time itobs/10 and (i+ 1)tobs/10. Protocols are sampled with MC moves that perturb the
value of one of the eight interior points in the (T, h) plane defining the discretized protocol.
In practice it is not desirable to consider protocols which utilize arbitrarily high temperatures
or fields, so we also constrain the protocols to remain in a bounded region which we take
to be the experimentally-accessible protocols 8. As in low-temperature sampling of rugged
potential energy surfaces, the high-λ sampling could explore the protocol space slowly. We
employ standard replica exchange, swapping between replicas simulated with different values
of λ but the same value of n, to alleviate this problem [46].

Figs. 3.8 and 3.9 show the result of protocol sampling for n = 1 and n = 10, respectively.
Sampling with λ = 0 does not bias the protocols (γ = 0), so the protocols sample the
“experimentally-accessible” protocols uniformly subject to the constraints on the initial and
final points of the protocol. Fig. 3.8 shows that protocols are also sampled uniformly when
n = 1 and λ = 1, a consequence of γ vanishing under those conditions. If λ and n are chosen
such that γ > 0, the protocols are biased toward low values of 〈ω〉Λ. With large n and
large λ, the protocols tend toward the optimal protocol. When the protocols fluctuate in
a basin around the optimal protocol, averaging over protocol fluctuations yields a protocol
which is similar to the optimal protocol, and which would exactly equal the optimal protocol
in the γ → ∞ limit. This average, plotted as a black line in Figs. 3.8 and 3.9, shows
that the low dissipation protocols first heat the spins above the critical temperature, Tc,
then tune the external field to negative values, and finally cool the spins. For finite γ, the
average protocol is influenced by the manner in which we limit protocols to those which are
“experimentally accessible.” An analogy with statistical mechanics is instructive, with Λ
playing the part of a molecular configuration, 〈ω〉Λ an energy function, and γ the inverse
temperature. The typical molecular configurations are influenced by both energetic and
entropic considerations. At low enough temperature, entropy is less important than energy,

8This means we sample a protocol distribution with a prior that is uniform over the experimentally-
accessible protocols, but zero for all inaccessible protocols.
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so the typical configurations are very similar to the minimum energy states. The manner in
which we limit the experimentally-accessible protocol space affects the protocol entropy, but
at high γ, the sampling of protocols is dominated by energetics (that is to say by 〈ω〉Λ).

If the average of the sampled protocols teaches us how to minimize dissipation, then
what do we learn from the fluctuations about this average? These fluctuations teach us
about how susceptible the dissipation is to changes in the protocol. The magnitude of
the protocol fluctuations varies at different stages of the protocol, e.g., fluctuations in the
value of h at time tobs/10 are much greater than at time tobs/2, indicating that to mitigate
dissipation we require stricter control over the protocol at some times than at others. The
source of the large h fluctuations early in the protocol can be understood by inspecting the
protocols which cross the first-order phase transition line running along h = 0 from T = 0
to Tc. While the typical low-dissipation protocol avoids this line, some protocols cross it if
γ is modest (λ = 0.5, n = 1, γ = 0.25, for example). Without exception, these protocols
then re-cross the phase transition line while the protocol is still at a temperature below the
critical temperature. Physically, these protocols involve flipping the magnetic field to point
downward while the spins are still pointed up. As long as the temperature remains below Tc,
it takes some time to nucleate a spin inversion. If h is tuned to positive values again before
that nucleation, then the process is not dissipative—whatever work went into first crossing
the phase transition line is recovered upon re-crossing.

These protocols that cross the phase transition line have low dissipation because the
protocol is carried out in finite time. If the same protocols were performed more slowly, a
spin inversion would have time to nucleate, and the procedure would be very dissipative.
By acting on a small system in finite time, we manage to keep the the system far from
equilibrium while h is temporarily negative. Does the Gaussian dissipation approximation,
made in Eq. (3.20), break down for these far-from-equilibrium protocols? To address this
question, two protocols were selected from the n = 1, λ = 0.5 ensemble, one of which crossed
the phase-transition line, and the dissipation distribution of each protocol was computed
with umbrella sampling. Fig. 3.10 shows that both dissipation distributions are profoundly
non-Gaussian, in contrast to our linear response assumption. The assumption allowed us to
estimate the mean 〈ω〉Λ from the small-ω tails of P (ω|Λ), e.g., relating the mean dissipation
to the behavior of P (ω|Λ) near ω = 0 when n = 1, λ = 0.5 9. The dashed lines, superimposed
on the dissipation distributions in Fig. 3.10, show the estimated Gaussian form, assuming the
linear response restriction 2 〈ω〉Λ = 〈δω2〉Λ, and fit to the small-ω branch of the distribution.
Remarkably, this Gaussian form recovers the location of the dissipation distribution’s peak,
but this most likely value of ω does not equal the mean due to the fat tail at large values
of dissipation. Based on these anecdotes, we anticipate that even when the dissipation
distribution is not Gaussian, the linear response treatment could be practically useful. The
ensemble sampled in Eq. (3.26) is equivalent to the ensemble that would be sampled if
Eq. (3.17) were used to approximately sample the distribution in Eq. (3.16). Thus the

9The integral in Eq. (3.20),
∫
dω e−(ω−〈ω〉Λ)2/(4〈ω〉Λ)e−λω, is dominated by the behavior of P (ω|Λ) around

ω = 0, so the estimate for 〈ω〉Λ depends almost entirely on the trajectories with ω ≈ 0.
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Figure 3.8: Protocols sampled from the joint distribution, Pλ[σ(t),Λ(t)]. Monte Carlo
updates to the protocol are evaluated based on the dissipation of a single Ising trajectory,
biased by λ to have low dissipation. When the effective bias acting on the average dissipation,
γ, is positive, low-dissipation protocols are sampled. Data are shown for a 40 × 40 two-
dimensional Ising lattice with periodic boundary conditions and nearest-neighbor coupling
strength set to unity. Protocols start and end with T = 0.05 and h = ±1. Ising dynamics
was performed as described in Appendix D with εacc = εsite = 0.001. Replicas were simulated
for λ = 0, 0.1, . . . , 0.9, 1, and replica exchange moves were attempted every 100 TPS steps.
The plots show 450 protocols, sampled every 1000 TPS steps after an equilibration period
of 50,000 TPS moves. The mean of the samples is shown in black, with error bars serving
to highlight the standard deviation of this distribution, not the sampling errors.
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Figure 3.9: Protocols sampled from the joint distribution, Pn,λ[{σ(t)}ni=1 ,Λ(t)]. Monte
Carlo updates to the protocol are evaluated based on the sample mean of n = 10 Ising
trajectories, each of which is biased by λ/n to have low dissipation. All sampling parameters
are the same as Fig. 3.8.
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large n limit must be well-behaved. Future work is necessary to understand the relationship
between this limiting behavior and the Gaussian linear response approximations.
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Figure 3.10: Two representative protocols selected from those sampled by the n = 1, λ = 0.5
ensemble, one of which transiently crosses the Ising model’s first order phase transition
line. The dissipation distribution (using a 200 sweep observation time) for both protocols
is profoundly non-Gaussian, with a fat tail at large values of dissipation. Inset figures are
zoomed in around the peak of the distribution. Dissipation distributions were collected
using noise-guided TPS moves with a fixed protocol. Umbrella sampling was employed with
exchange between replicas sampling Pλ[σ(t),Λfixed] with λ = 0, 0.05, 0.1, . . . 1.
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Chapter 4

Large Deviation Methods for Markov
Processes

4.1 Introduction

The preceding chapters discussed simulation methodology designed to investigate rare tra-
jectories in Markov processes. We had in mind Markov processes evolving chaotically in
high-dimensional spaces. Under such conditions, exactly-solvable problems are scarce, so
our focus was on computational sampling. Analytical methods should not be completely
discarded, however. Path sampling is computationally expensive, so it is worthwhile to de-
velop complementary analytical tools and solvable toy models to guide intuition and validate
methods. The final chapter of this thesis introduces a set of non-equilibrium Markov models
for which the rare trajectories can be characterized analytically by the methods of large
deviation theory. Because that analytical work utilizes large deviation methods, this chapter
reviews necessary background material 1.

Drawing heavily from Hugo Touchette’s review [112], this chapter surveys elementary
large deviation methods and their application to trajectory spaces. We introduce the rate
function, or large deviation function (LDF), and discuss its connection to the scaled cumulant
generating function (SCGF) via the Legendre transform. Particular attention is given to the
case that the SCGF possesses a cusp, which gives rise to a first order phase transition. These
general tools can be applied to the thermodynamic limit of any system with many degrees
of freedom, regardless of whether the degrees of freedom are in a physical configuration
space or in trajectory space. We discuss the application to Markovian trajectories and the
titled operators used to isolate rare trajectories. Finally, we demonstrate that an auxiliary
dynamics, which highlights the rare trajectories, can be constructed.

1This chapter is a review of prior work in the field. It is included to make the thesis more self-contained.
The next chapter contains novel work.
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4.2 What is a Rate Function?

A central object of large deviation theory is the large deviation rate function, which quantifies
the probability of fluctuations away from the most likely value of an observable. Free energies
are examples of rate functions, but the concept is more general than the typical use in
equilibrium statistical mechanics. As an example, imagine recording the value of a random
observable many times. The law of large numbers states that the mean of the recorded
values will converge to the expectation value of the observable. The rate function teaches
us about the rate of convergence to this expectation value. More precisely, we can study
the probability distribution for the sample mean after N observations. For finite N , this
probability distribution will have a finite width, but in the N → ∞ limit the law of large
numbers says that the distribution should narrow to a delta function positioned at the
expectation value. The rate of this narrowing with increasing N is described by a rate
function.

As an illustrative example, consider the familiar problem of a sequence of N coin flips.
The sample mean of these flips is an intensive quantity and can be written as

x =
1

N

N∑
i=1

σi, (4.1)

where σi takes the value 1 or 0 for an up or down flip, respectively. The probability of
observing a given value of x is of course given by the binomial distribution

P (x) =
1

2N
N !

(xN)!((1− x)N)!
. (4.2)

When N is large, this exact form of the probability is not necessarily the most useful form
because the factorials become cumbersome. We are sometimes better off dealing with an
asymptotic form of this probability. In the case of this example, the asymptotic form is
simple to derive by Stirling’s approximation. The result is

P (x) ≈ e−NI(x), with I(x) = ln 2 + x lnx+ (1− x) ln(1− x), (4.3)

and the function I(x) is called the rate function. In the N →∞ limit only the values x = x∗

which minimize I(x) retain nonzero probability, but for finite N , the rate function relates the
probability of observing sample mean x to the deviation of I(x) from I(x∗). In other words,
the rate function provides information about the fluctuations away from the expectation
value. For example, a harmonic rate function corresponds to Gaussian statistics. When N
is very large, deviations from x∗ are increasingly unlikely, which is why the rate function is
also commonly known as a large deviation function —the function describes the probability
of large deviations from the mean.

These manipulations for the trivial coin flip problem are not especially deep; the result
was already known by Stirling’s approximation. We have simply extracted the intensive part
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of the exponent,

I(x) = − lim
N→∞

1

N
lnP (x), (4.4)

and given it a special name. To understand the usefulness of this procedure, we must
advance to problems for which the asymptotic form of the probability distribution would
not be known by other means. We will see that one can compute the rate function from
a scaled cumulant generating function for x, thereby providing an alternate route to the
asymptotic form of the probability distribution for x.

4.3 Scaled Cumulant Generating Functions and

Legendre Transforms

Let us introduce the scaled cumulant generating function, whose derivatives yield the cumu-
lants of the random variable x,

ψ(k) = lim
N→∞

1

N
ln
〈
ekNx

〉
, (4.5)

where
〈
ekNx

〉
=
∫
ekNxP (x)dx. Assuming that the asymptotic form of P (x) can be described

by the rate function, the exponential average can be expressed in terms of I(x).

ψ(k) = lim
N→∞

1

N
ln

∫
eN(kx−I(x)) dx. (4.6)

Because we are interested in the large N limit, the integrand is sharply peaked and the
integral can be approximated by Laplace’s method as being roughly equal to the magnitude of
the maximal value of the integrand. This maximal value occurs when kx−I(x) is maximized,
therefore

ψ(k) = lim
N→∞

1

N
ln
〈
eNkx

〉
≈ sup

x
(kx− I(x)) . (4.7)

In sufficiently large systems the approximation by Laplace’s method is so good that this last
relation can be considered an equality. In other words, Eq. (4.7) relates ψ(k) and I(x) by a
Legendre-Fenchel transformation. For our purposes, we will neglect technical details and just
treat ψ(k) and I(x) as Legendre transforms rather than the generalized Legendre-Fenchel
transform. Readers interested in more technical details are directed to [112].

The Legendre transform relation between scaled cumulant generating function ψ(k) and
rate function I(x) is significant because Legendre transforms can be inverted. In fact the
transform is its own inverse.

I(x) = sup
k

(kx− ψ(k)). (4.8)

There is a slight danger in the mathematical sloppiness of this presentation. Namely, the
computation of I(x) as a Legendre transform of ψ(k) requires that ψ(k) be everywhere
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Figure 4.1: Graphical representation of the Legendre transform relationship between a scaled
cumulant generating function and a rate function. Note that this rate function is quadratic
and does not correspond to the coin flip example of the main text. At k = 0 the slope of
ψ(k) is 1/2 so that at x = 1/2 the slope of I(x) is 0. Similarly, at x = 0 the slope of I(x) is
−4 and ψ′(k) = 0 at k = −4.

analytic. The coin flip calculation provides one example of a smooth SCGF,

ψ(k) =
ek
(
k − ln

(
2ek

1+ek

))
− ln

(
2

1+ek

)
1 + ek

. (4.9)

Provided both ψ(k) and I(x) are analytic, recall the graphical connection between a function
and its Legendre transform. The slope of ψ(k) at k is the abscissa of I(x) for which I(x) = k.
Because the inverse is also a Legendre transform, the same relation relates slopes of I(x) to
ψ(k). In Fig. 4.1 we graphically illustrate the relationship with a quadratic rate function 2.

The situation is more complicated if ψ(k) is not analytic. Suppose there is a cusp at k∗

where the left and right derivatives, xl and xr respectively, are not equal. Using Jensen’s
inequality, it can be shown that ψ(k) is convex. Therefore the existence of the cusp implies
that ψ′(k) never attains values between xl and xr. As a consequence, ψ(k) contains no
information about the value of I(x) between xl and xr. Bridging this gap by a straight line
is the familiar Maxwell construction from classical thermodynamics, and the slope of this
line is k∗, the position of the cusp. A cusp in the scaled cumulant generating function must
indicate a bistability in the rate function.

2We retain the notation of the coin flip problem, but the variable x should only be interpreted as the
sample mean of coin flips when I(x) takes the form of Eq. (4.3), which is, of course, not quadratic.
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Figure 4.2: Graphical representation of the Legendre transform relationship for ψ(k) and
I(x) when ψ(k) has a cusp at k = 0. A Legendre transform of ψ(k) gives no information
about I(x) between xl and xr, but the Legendre transform of I(x) yields all of ψ(k). In
particular, the Legendre transform of the solid and dashed lines in the right figure yield the
same ψ(k). The presence of the cusp at k = 0 implies that the slope of I(x) between xl and
xr is zero, in other words the system is at co-existence.

In particular, if that cusp occurs at k = 0, the bistability corresponds to a first order
phase transition at co-existence. This observation is shown graphically in Fig. 4.2. There
are two equally likely values of x in the large N limit. Generally there are many microscopic
states which are consistent with the same value of the macroscopic order parameter, x. For
example, there are many coin flip sequences which share the same sample mean. When
there are two equally likely values of x, it implies that there are two equally likely sets of
microstates 3. These sets are the thermodynamic phases, whose co-existence can be traced
back to the SCGF singularity. In Chapter 5 we identify such a singularity in a trajectory
space SCGF, which corresponds to a dynamic phase transition.

4.4 Continuous-time Markov Processes

The tools of large deviation theory are particularly useful for analyzing continuous-time
Markov processes. For simplicity we consider trajectories which visit a countable number
of possible configurations. Let the vector p be a vector containing the probability of each

3Coin flips do not exhibit such a phase co-existence since ψ(k) is analytic.
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configuration. The time-dependence of p is given by a master equation of the form

∂p

∂t
= Wp. (4.10)

The matrix W is a rate matrix whose off-diagonal matrix element, Wij is the rate for tran-
sitioning from configuration j to configuration i. To ensure conservation of probability,
Wii = −

∑
j Wij [70]. Formally, the time-evolution of probability is provided by a matrix

exponential,
p(t) = eWtp(0). (4.11)

In the long time limit, p(t) approaches a steady state distribution pss which satisfies

pss = eWtpss. (4.12)

Eq. (4.12) can be read as an eigenvalue relation, guaranteeing that zero is an eigenvalue of
W with right eigenvector pss. The associated left eigenvector is a vector of ones.

Representative trajectories generated by rate matrix W can be simulated in a straight-
forward way using the Gillespie algorithm [40, 54, 55]. This algorithm takes an initial
configuration, often sampled from pss, and propagates dynamics in discrete jumps. Suppose
that the trajectory begins in state i at time 0. The probability that the next move hops
to site j is Wji/

∑
k 6=iWki, and the elapsed time before the next hop is chosen stochasti-

cally from an exponential distribution, whose expectation value is −W−1
ii . While hops occur

discretely, time advances continuously.
Direct simulation of trajectories provides a way to determine statistical properties of

the dynamics. To illustrate what is meant by “statistical properties of the dynamics,” let
us start with an example. Consider dynamics around a cycle of three states as depicted
in Fig. 4.3. Let us furthermore choose transition rates such that clockwise hops are faster
than counterclockwise ones. Typical trajectories complete cycles, so such a Markov model
underlies many representations of molecular motors [4, 73, 119, 120]. In the context of
motors, it is physically interesting to quantify the net clockwise current, which could be
related to the work performed by the motor. The clockwise and counterclockwise rates,
kCW and kCCW determine the average current. There are, however, statistical fluctuations,
so the current measured for a single trajectory will not generally equal the mean value.
Deviations, potentially large deviations, teach us about the probability that the motor fails to
function. The most straightforward way to compute such current fluctuations is to generate
many trajectories with the Gillespie algorithm and construct the distribution of observed
currents. Noise-guided path sampling, discussed in Chapter 2, provides a more sophisticated
simulation approach. In the next section we introduce a third option, which bypasses the
need for simulation altogether.

4.5 Distributions of Dynamic Order Parameters

To characterize the statistics of current, we can conceptually separate the trajectory space
into disjoint sets of trajectories, each consisting of all trajectories which share a particu-



CHAPTER 4. LARGE DEVIATION METHODS FOR MARKOV PROCESSES 53

kCCW
kCW

kCW

kCCW

kCCW

kCW

3

21

Figure 4.3: Transition rates for a cycle with three states. When kCW > kCCW the tran-
sitions are necessarily out of equilibrium. Such rates can only be physically maintained by
dissipating energy.

lar value of the current. This clustering of microstates (in this case trajectories) based on
their value of a macrostate (the current) is, of course, the same thing we did in the coin
flip example. There we averaged over all sequences consistent with the order parameter to
obtain the probability of observing different fractions of heads. In the case of trajectories, we
classify the dynamics using several different dynamic order parameters : time-integrated cur-
rent [36], dynamical activity [64, 75], and entropy production [74, 86, 103]. Each dynamical
order parameter highlights one particular aspect of the dynamics. Which order parameter
to investigate depends on the physical problems to be solved. We have already given a
motivation for when studying current statistics may be biophysically relevant. Dynamical
activity, the total number of hops taken by a trajectory, is of interest to the onset of glassy
dynamics. The entropy production, defined to be the logarithm of the ratio of the trajec-
tory’s forward and reversed probabilities, is interesting for its connection to the dissipation
required to drive non-equilibrium processes. This final order parameter will be our primary
focus for the remainder of the thesis.

We will discuss how to compute entropy production statistics, but first, let us briefly ad-
dress the physical interest in the quantity by considering the entropy produced by dynamics
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on the three state model of Fig. 4.3. In particular, setting the rates kCW > kCCW breaks
detailed balance and creates cycles. Such a set of rate constants cannot be maintained by
an isolated physical system, which would thermalize to adopt a collection of rates obeying
detailed balance. The average entropy production gives a bound on the energy which must
be dissipated by other processes, external to the three-state model, in order to maintain
the cycles. It remains an active area of research to understand what, if any, physical inter-
pretation should be assigned to the entire distribution of entropy productions. At the very
least, our analysis of entropy production distributions in Chapters 2 and 3 shows that the
fluctuations away from the average are relevant to algorithmic development.

Formally, we seek the distribution of

Ω[x(t)] = ln
P [x(t)]

P [x̂(t)]
, (4.13)

averaged over the set of all trajectories. Each trajectory, x(t), is a sequence of hops and
waiting times, which occurs with probability P [x(t)]. The time-reversal of the trajectory,
which carries out the same hops in reversed order, is denoted x̂(t). We index the hop number
by α so we can write

P [x(t)] ∝ ρss(x0)
∏
α=0

Wxα+1,xαe
−Rxα (tα+1−tα). (4.14)

The (continuous) time of hop α is denoted tα, and the state of the system at that time is
xα. Ri is the sum of all rates exiting site i. Under the time-reversed dynamics, we denote
the steady-state distribution ρ̂ss and the sum of the rates for leaving site i as R̂i, so the
probability of a time-reversed trajectory is

P [x̂(t)] ∝ ρ̂ss(xfinal)
∏
α=0

Wxα,xα+1e
−R̂xα1

(tα−tα+1), (4.15)

where xfinal is the state after the last hop of the forward trajectory. By comparing the
path probabilities of forward and reversed trajectories, we find that a trajectory has entropy
production

Ω[x(t)] = ln
ρss(x0)

ρss(xf )
+
∑
α=0

ln
Wxα+1,xα

Wxα,xα+1

, (4.16)

where we have made use of the fact that Rxα = R̂xα+1 . The second term of Eq. (4.16) grows
extensively with the trajectory length, while the first term is a surface term—a contribution
just from the initial and final times. We focus only on the time-additive part of the order
parameter, which we rename ω,

ω[x(t)] =
∑
α=0

ln
Wxα+1,xα

Wxα,xα+1

. (4.17)
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In analogy with the discussion of coin flip large deviations, we compute the LDF for ω
by first calculating the generating function,

ψω(λ) = lim
tobs→∞

1

tobs

ln
〈
e−λω

〉
. (4.18)

The bias introduced by λ serves to favor those trajectories with low entropy production.
This generating function differs in sign convention from the true scaled cumulant generating
function (SCGF), so odd cumulants are given by derivatives with respect to negative λ 4.
While it is a minor misuse of language, we will refer to ψ(k), defined as in Eq. (4.18) as the
SCGF for entropy production, remembering that we would have to keep track of minus signs
to obtain cumulants. Following the method of Lebowitz and Spohn [74], it is productive to
define a vector g(t) whose ith component is given by the conditional average

gi(t) ≡
〈
e−λω|in state i at time 0

〉
. (4.19)

The expectation value is an average over all trajectories from time 0 to time t. To convert
g(t) into the SCGF we need only sum over all possible initial states, i.

ψω(λ) = lim
tobs→∞

1

tobs

ln
∑
i

gi(t). (4.20)

We can further simplify this expression if we determine the long-time behavior of g(t). To
do so we consider how g(t) changes as the trajectory is made infinitesimally longer by adding
time to the beginning of the trajectory. The additional sliver of time could involve a hop
from some other state j to i, or it could just involve the trajectory staying in site i for a little
longer. In the event of a hop, the additional contribution to the measurement of e−λω can be
expressed in terms of the entropy produced by a hop from site j to i, ωij ≡ lnWij − lnWji.
In equations, we have

d

dt
gi(t) =

(∑
j 6=i

Wije
−λωijgj(t)

)
+Rigi(t)

=
∑
j 6=i

(
W1−λ

ij Wλ
jigj(t)−Wjigi(t)

)
=
∑
j

W1−λ
ij Wλ

jigj(t)

=
∑
j

Wω(λ)ijgj(t). (4.21)

4Our sign convention, with the negative sign in the exponent, amounts to a reflection of the true scaled
cumulant generating function about λ = 0. We have adopted this sign convention to be consistent with
the already-published work presented in Chapter 5 and the conventions of the s-ensemble work [49]. The
rationale for working with the minus sign in the definition for ψ(λ) is that a Legendre transform of ψ(λ),
thus defined, directly yields a log-probability for x. The Legendre transform of the SCGF (with the positive
sign in the definition) yields an effective potential for x, which could be negated to get the log-probability.
Whatever the sign convention, the mathematics is, of course, equivalent.
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The last line defines a tilted operator Wω(λ). Recall that the matrix exponential of W
propagates the vector of probabilities, p(t). The equation of motion for g(t) takes the same
algebraic form,

g(t) = eWω(λ)tg(0). (4.22)

Let us denote the maximum eigenvalue of Wω(λ) by ν(λ) with the associated right eigenvector
|r(λ)〉. If we abbreviate the vector of ones by 〈1| then Eq. (4.20) can be written as

ψω(λ) = lim
tobs→∞

1

tobs

ln 〈1| eWω(λ)tobs |g〉 = lim
tobs→∞

1

tobs

ln
(
〈1| r(λ)〉 eν(λ)tobs

)
= ν(λ). (4.23)

Since the long-time behavior of the tilted operator is dominated by the largest eigenvalue,
we see that ψω(λ) is given by this maximum eigenvalue.

The SCGF, ψω(λ), is converted to a LDF for the entropy production by a Legendre-
Fenchel transform as discussed in Section 4.3. In the long time limit, the fluctuating entropy
production rate, σ ≡ ω/tobs satisfies the large deviation form

P (σ) ∼ e−tobsI(σ). (4.24)

The rate function I(σ) exhibits bistabilities associated with a first order dynamic phase
transition if and only if ψω(λ) possesses a cusp. Since we have expressed ψω(λ) as a maximum
eigenvalue of a matrix, it follows that ψω(λ) must change smoothly as a function of λ unless
the matrix becomes infinitely large. In the next chapter we will explore that condition in
a few models, showing simple conditions for a dynamic phase transition. While the SCGF
cannot rigorously have singularities for finite state spaces, we will numerically demonstrate
that the mathematical framework remains useful for large but finite state spaces.

4.6 Lebowitz-Spohn Symmetry and the Entropy

Production Fluctuation Theorem

The entropy production fluctuation theorem is a straightforward corollary of the preceding
analysis. Lebowitz and Spohn noted that replacing λ by 1− λ serves to transpose the tilted
operator [74]. A matrix and its transpose share an eigenspectrum and thus have the same
maximal eigenvalue. Consequently, ψω(λ) = ψω(1−λ), or equivalently ψω(λ) is symmetrical
about λ = 1/2. The symmetry in the SCGF has implications on the LDF because I and ψω
are related by Legendre transform 5

I(σ) = sup
λ

[−λσ − ψω(λ)] . (4.25)

If we use Lebowitz and Spohn’s symmetry of ψω(λ), we can rewrite Eq. (4.25) as

I(σ) = −σ + sup
1−λ

[(1− λ)σ − ψω(1− λ)] . (4.26)

5The Legendre transforms are slightly different from Eq. (4.5). Because I flipped the sign on λ in
Eq. (4.18), the minus sign must carry through to the relationship between ψω(λ) and I(σ).
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Figure 4.4: Illustration of the connection between the tilted operator, SCGF, and LDF
for entropy production fluctuations. A cusp in the SCGF, ψω(λ), causes a linear region of
the LDF, which results in large dynamical fluctuations (relative to, for example, a Gaussian
distribution). The plotted SCGF and LDF, from the “ring network” of Chapter 5, The slope
of the dashed lines in the LDF correspond to the λ value of the SCGF cusps.

Now note that 1− λ appears as a dummy variable so the second term can be related to the
entropy production rate function,

sup
1−λ

[(1− λ)σ − ψω(1− λ)] = sup
λ

[λσ − ψω(λ)] = I(−σ). (4.27)

After plugging this relation into Eq. (4.26), we are left with I(σ) = I(−σ) − σ. If we work
with the probability distributions rather than the rate functions, we have

P (ω)

P (−ω)
∼ e−tobs(I(σ)−I(−σ)) = etobsσ = eω. (4.28)

Hence the symmetry of ψω(λ) about λ = 1/2 is equivalent to a statement of the (asymptotic)
entropy production fluctuation theorem.
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4.7 Conditioned Dynamics

Suppose we are not content knowing the probability of rare entropy production fluctuations,
as provided by the LDF. We might also want to know what the trajectories looked like which
yielded the large entropy production fluctuations. We could answer the question by brute
force, generating ordinary dynamics with the Gillespie algorithm, which produces trajectory
x(t) with probability

P0[x(t)] ∝ ρss(x0)
∏
α=0

Wxα+1,xαe
−Rxα (tα+1−tα). (4.29)

This is the exact same expression as Eq. (4.14), but we have now put a subscript 0 on
the path probability as in Eq. (2.5) to indicate the natural dynamics. After collecting
enough samples, we would find some trajectories which exhibited the rare behavior, and we
could focus our analysis on this subensemble. Of course, this straightforward approach is
immensely inefficient if the studied entropy production fluctuations are very rare.

To highlight the trajectories with low entropy production, we can alternatively study
trajectories from a tilted ensemble,

Ptilted[x(t), λ] ∝ P0[x(t)]e−λω[x(t)]. (4.30)

When λ is large, trajectories from this ensemble give insight into the small-ω wings of the
natural dynamics’ entropy production distribution. We could sample the tilted ensemble
using path sampling methods as in Section 3.6. Trajectories could be generated according to
P0[x(t)] using the unbiased Gillespie dynamics, then conditionally accepted so as to sample
Ptilted[x(t), λ]. As discussed in Chapter 2, trajectories grown using natural dynamics differ
from tilted ensemble trajectories in a manner that grows extensively with the trajectory
length, so path sampling will falter for long trajectories.

Here, we demonstrates that it is possible to define an auxiliary dynamics, whose tra-
jectories differ from those of the tilted ensemble in a sub-extensive manner. This auxiliary
dynamics is the effective dynamics which mimics the natural dynamics, conditioned upon
a biased entropy production. This conditioning, known as Doob’s h-transform, has been
recently popularized in the physics literature by Rob Jack, Hugo Touchette, and Raphaël
Chetrite [27, 28, 68]. Here we spell out the main result in simpler, but less general, terms
than has been previously discussed.

In the Section 4.5, we showed that the largest eigenvalue of Wω(λ) teaches us about the
probability of finding trajectories which produce rare amounts of entropy. Furthermore, the
exponential of the tilted operator acted as the propagator in an equation of motion. Can
Wω(λ) be interpreted as the rate matrix that generates the trajectories which accentuate
the rare values of entropy production? The answer is no, but the intuition is nearly correct.
The problem is that the tilted operator is not generally a rate matrix, that is the columns
sum to zero only when λ = 0 or 1. Consequently, when the time-propagator eWω(λ)t acts on a
normalized initial distribution, it does not yield a normalized distribution. By accounting for
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the failure to conserve probability, it is possible to relate the tilted operator to an effective
dynamics, conditioned to favor rare values of entropy production. Specifically, let us consider
an auxiliary dynamics with a λ-dependent rate matrix,W(λ) whose matrix elementsW(λ)ij
are given by

〈i|W(λ)|j〉 =
〈`(λ)|i〉
〈`(λ)|j〉

〈i|Wω(λ)|j〉 − 〈i|j〉ψω(λ), (4.31)

where I have temporarily switched to Dirac notation to avoid a plethora of subscripts. The
bra 〈`(λ)| is the left eigenvector of the tilted operator which corresponds to maximal eigen-
value ψω(λ). It is straightforward to confirm that W is a rate matrix by summing over the
first index. ∑

i

W(λ)ij =
∑
i

〈`(λ)|i〉
〈`(λ)|j〉

〈i|Wω(λ)|j〉 −
∑
i

〈i|j〉ψω(λ)

=
〈`(λ)|Wω(λ)|j〉
〈`(λ)|j〉

− ψω(λ)

= 0. (4.32)

The last line follows because 〈`(λ)| is the left eigenvector of the tilted operator with eigenvalue
ψω(λ).

Since W(λ) is a rate matrix for all values of λ, it generates a probability-conserving
dynamics, but we still must show that this auxiliary dynamics is in some sense equivalent to
conditioning the entropy production. We will do this by explicitly comparing the probability
a trajectory, x(t), is generated by the auxiliary dynamics with its probability in the tilted
ensemble. Notice that the tilted ensemble probability can be simplified from Eqs. (4.29)
and (4.30),

Ptilted[x(t), λ] ∝ e−λω[x(t)]ρss(x0)
∏
α=0

Wxα+1,xαe
−Rxα (tα+1−tα) (4.33)

= ρss(x0)
∏
α=0

(
Wxα+1,xα

)1−λ (Wxα,xα+1

)λ
e−Rxα (tα+1−tα). (4.34)

The probability of generating x(t) using the auxiliary dynamics can be similarly expressed
up to a normalization constant.

Pauxiliary[x(t), λ] ∝ ρaux
ss (x0, λ)

∏
α=0

Wxα+1,xαe
−Rxα (tα+1−tα), (4.35)

where Ri = −W(λ)ii is the sum of all auxiliary rates leaving site i. From the definition of
our auxiliary rates, Eq. (4.31), it is simple to see that

Ri = −Wω(λ)ii + ψω(λ) = −Wii + ψω(λ) = Ri + ψω(λ). (4.36)
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Using this relation, we simplify the probability of generating x(t) with auxiliary dynamics,

Pauxiliary[x(t), λ] ∝ ρaux
ss (x0, λ)

∏
α=0

〈`(λ)|xα+1〉
〈`(λ)|xα〉

(
Wxα+1,xα

)1−λ (Wxα,xα+1

)λ
e−(Rxα+ψω(λ))(tα+1−tα)

= ρaux
ss (x0, λ)e−tfinalψω(λ) 〈`(λ)|xfinal〉

〈`(λ)|x0〉
∏
α=0

(
Wxα+1,xα

)1−λ (Wxα,xα+1

)λ
e−Rxα (tα+1−tα).

(4.37)

We have taken the initial time, t0, to be 0 and have written the time of the final observed
hop as tfinal. The last line results from a telescoping cancellation of almost all terms of
the form

(
〈`(λ)|xα+1〉 e−tα+1ψω(λ)

)
/
(
〈`(λ)|xα〉 e−tαψω(λ)

)
. The ratio of auxiliary and tilted

probabilities,
Pauxiliary[x(t), λ]

Ptilted[x(t), λ]
∝ ρaux

ss (x0, λ) 〈`(λ)|xfinal〉
ρss(x0) 〈`(λ)|x0〉

e−tfinalψω(λ), (4.38)

depends only on the endpoints of the trajectory, x0 and xfinal. Thus while the two ensembles
are not exactly equivalent, they differ only by surface terms. For long trajectories, this means
the auxiliary dynamics is an appropriate mimic of the natural dynamics conditioned upon a
biased entropy production.

Armed with the auxiliary dynamics, it is possible to efficiently sample long trajectories
in the tilted ensemble. The auxiliary dynamics can be used to generate trial trajectories
which are re-weighted according to Ptilted[x(t), λ] in the usual MCMC manner. In Chapter 2
we argued that it is productive to think of these TPS moves as an attempt to produce en-
tropy in the abstract space of trajectories. In that language, generating trial TPS moves
with the auxiliary dynamics produces a sub-extensive amount of entropy in the trajectory
space, thereby avoiding the problems that were discussed in Section 2.4. Unfortunately, we
have seen that constructing the auxiliary dynamics requires knowledge of the maximal left
eigenvector of the tilted operator, which typically cannot be found for problems requiring
path sampling. There is significant interest in using these insights to develop iterative sam-
pling schemes, i.e., guess a form of the eigenvector, sample with that imperfect auxiliary
dynamics, improve the guess, and repeat. However, for many-particle dynamics the tilted
operator acts on a vast state space of all possible static configurations. Any guess for the
eigenvector of this operator requires introducing an effective (and modest-dimensional) basis
set, not unlike the challenges faced by the quantum chemistry community.
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Chapter 5

Dynamic Phases

Large dynamical fluctuations and dynamical heterogeneity are characteristic features of non-
equilibrium chemical and biological systems. Important examples include fluctuations in
currents and transport properties of molecular motors [34], dynamic instability in actin and
microtubule growth [22, 39], dynamical heterogeneity in cell migration [8], and intermittency
in cell growth rates [10]. Large deviation theories and statistical mechanics on the level of
trajectories provide convenient frameworks to characterize the dynamical fluctuations. Of
particular interest to the present work are the emergence of dynamic phases analogous to
the emergence of phases in the conventional statistical mechanics of first order phase transi-
tions [50, 112]. The existence of dynamic phases indicates that the most probable trajectories
naturally cluster into classes with distinct dynamical properties. As in equilibrium statis-
tical mechanics, a very productive perspective on the origins and consequences of dynamic
phase transitions can be gained by scrutinizing the statistics of pertinent order parameters.
A hump or “fat tail” in the wings of such distributions can reveal the presence of a sec-
ond dynamic phase. Importantly, the separation of trajectories into distinct classes can be
made rigorous by demonstrating a singularity in the appropriate scaled cumulant generating
function [112]. Conversely, demonstrating such a singularity implies a broad distribution
for dynamical fluctuations, which can rationalize experimentally observed dynamical hetero-
geneity.

This perspective has been elaborated in several interesting contexts [17, 43], albeit in
most cases for complicated many-body systems that do not permit full analytical solutions
and are thus not entirely transparent. Notable examples include lattice and molecular models
of glasses [19, 64], asymmetric exclusion processes [35] and zero-range processes [61]. It has
recently been shown that similarly complex behavior can emerge in seemingly very simple
systems which do permit an analytical treatment. Specifically, we have shown that a dynamic
phase transition can be demonstrated analytically for a biased random walker on a ring with
a single impurity in the transition rates [115]. The relatively simple analytics of our random
walker model provides an excellent arena for addressing two basic questions about dynamic

Most portions of this chapter have appeared previously in Physical Review E [56, 115].
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phase transitions. Firstly, under what conditions will a dynamic phase transition emerge?
Secondly, are there physical methods for modulating the dynamics to achieve coexistence
between dynamic phases or to induce transitions between them?

To this end, here we investigate the statistics of two dynamical order parameters whose
fluctuations can reveal the phase transition. We analytically construct the joint rate function
for entropy production (Eq. 5.1) and dynamical activity [49] (Eq. 5.2), which is analogous to
a two dimensional free energy surface. The two-dimensional rate function in all cases reveals
two basins, corresponding to two distinct classes of trajectories, one localized and the other
delocalized. However, when one of the order parameters is integrated out, the remaining
marginal distribution does not necessarily reveal the underlying bistability. In particular,
we show regimes for which the dynamical activity statistics is influenced by two dynamic
phases while the fluctuations in entropy production reveal only a single phase.

The dynamic phase transition implies the existence of a rare localized class of trajecto-
ries [115]. We investigate conditions required to induce the transition, thereby causing the
localized trajectories to become typical. In conventional statistical mechanics a rare phase
can be made dominant by adjusting intensive fields like temperature, pressure, or chemical
potential. The statistical mechanics of trajectories is more complicated as the field conjugate
to a dynamical order parameter (the λ or s field throughout this chapter) is time-non-local
and therefore cannot be experimentally tuned in a straightforward way. We construct Markov
matrices which (in the long time limit) are equivalent to the natural dynamics with a λ or s
field [28, 68]. These Markov matrices reveal the physical values of the rate constants which
would place the two dynamic phases at coexistence. In other words, with the computed
set of rate constants, long trajectories switch back and forth equally between localized and
delocalized behavior. Using the Markov matrices that generate effective λ field dynamics, we
also show that λ field biasing cannot induce non-equilibrium currents that violate detailed
balance. These biasing techniques can amplify (or suppress) existing non-equilibrium cur-
rents, but when applied to an equilibrium system the methods simply transform from one
detail balanced dynamics to another.

Finally, we consider the problem of observed heterogeneity in cell growth rates and apply
results from our model system to elucidate this phenomenon. In particular, it has been
observed that a stochastic subpopulation of cells in an E. Coli colony exhibit markedly
reduced growth rates [10]. These cells, labeled persisters, are more likely to survive antibiotic
treatment [77]. Treating our model system as an extremely simplified version of the cell
growth cycle, we argue that the phenomenon of persistence should be a generic consequence
of a class of localized trajectories that is rare in the absence of antibiotics. We show how
treating cells with different strengths of antibiotics in experiments might be equivalent to
effectively tuning a λ field and induce a transition between different dynamical behaviors.
We also note that coexistence in the space of trajectories can facilitate massive dynamical
fluctuations which are evocative of those observed in other biological contexts such as growing
polymers including microtubules [88], actin [47], and bacterial homologs thereof [38, 48, 97],
where trajectories exhibit a stark switching between growing and collapsing behaviors. Our
work clarifies the conditions required for such phase coexistence in trajectories and also
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illuminates the properties of the phase transition.
The structure of the chapter is as follows. In Section 5.1 we review the basic structure

of the large deviation calculations. We then introduce our solvable model system in Section
5.2 and derive the scaled cumulant generating function, the Legendre transform of which
yields the entropy production and activity statistics. Using this result, we discuss in Section
5.3 the nature of a dynamic phase transition and the conditions for which the transition can
be observed by these order parameters. Finally, we address implications of such a dynamic
phase transition. We both identify conditions for dynamical coexistence in which the two
phases contribute equally and discuss the way in which the response of cells to antibiotic
treatment may expose a similar underlying transition.

5.1 Framework

We consider continuous-time Markovian dynamics on a discrete state space. Such a stochas-
tic dynamics is compactly represented by a master equation with rate matrix W whose
off-diagonal elements Wij detail the rates of transition from state j to state i [70]. The prob-
ability distribution of the set of all possible trajectories is well-defined in the steady-state.
We investigate both typical and rare dynamical fluctuations by considering the behavior of
dynamic order parameters.

Time-additive dynamic order parameters are particularly relevant to many experiments
as they report on cumulative dynamical behavior, for example the net current observed
in a finite time experiment. In this chapter we consider two such order parameters, the
entropy production and the dynamical activity. The entropy production of a trajectory
is defined in the stochastic thermodynamics sense as the log ratio of forward and reverse
probabilities [103]. We focus on continuous time hopping processes, in which case the time-
extensive part of the entropy production can be expressed as

ω =
∑
hops

ln
kf

kr

, (5.1)

where kf and kr are the forward and reverse rate constants for each hop. The dynamical
activity, K, simply counts the total number of hops.

K =
∑
hops

1 (5.2)

This accounting of microscopic transitions has been used most predominantly in the study of
glassy dynamics [49]. Whereas the entropy production provides a measure of the dissipation
associated with a trajectory, the dynamical activity indicates how labile the dynamics is.
By considering both order parameters we highlight how the statistics of various observables
may be differently affected by the dynamic phase transition.
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The time-additivity of these order parameters allows their probability distribution to be
described by a large deviation form,

P (σ,K/t) ≈ e−tI(σ,K/t), (5.3)

where I(σ,K/t) is the joint large deviation rate function and σ = ω/t is the entropy produc-
tion rate. The rate function I(σ,K/t) can be computed as the Legendre transform of the
scaled cumulant generating function [74, 112],

ψω,K(λ, s) = lim
t→∞

1

t
ln
〈
e−λω−sK

〉
, (5.4)

where the expectation value is taken over trajectories initialized in the steady state distribu-
tion. This function can in turn be obtained as the maximum eigenvalue of a tilted operator,
Wω,K(λ, s), which is simply related to W [74]. Specifically the matrix elements are given by

Wω,K(λ, s)ij = (1− δij)W1−λ
ij Wλ

jie
−s + δijWij. (5.5)

By solving for the eigenspectrum of Wω,K(λ, s) we can thus compute the long time limit of
P (σ,K/t) via a Legendre transform.

Fig. 5.1 graphically illustrates the relationships between probability distributions for the
dynamic order parameters, rate functions, and scaled cumulant generating functions. In
particular, the singularities in ψω,K(λ, s) generate bistable order parameter distributions.
For the type of ergodic dynamics studied here these bistable distributions tend toward a
strictly concave rate function in the long time limit [113], which is the Legendre transform of
the scaled cumulant generating function with a Maxwell construction. Despite the underlying
bistability of the distribution shown in the Fig. 5.1(d), the marginals of that distribution
need not illustrate a bistability, if the two basins are appropriately aligned. We now shift our
attention to a particular solvable model, whereby computing ψω,K(λ, s) we can determine
conditions for phase transitions in the two order parameters.

5.2 Analytic Solution to 1d Random Walker on a

Ring with a Heterogeneity

We consider dynamics of a single particle on a network of N states arranged in a ring as
depicted in Fig. 5.2. Clockwise rates are given by x and counterclockwise rates by 1 except
for the rates at a single heterogeneous link, which are given by h1 and h2, respectively. A
trajectory on the network corresponds to a sequence of hops from state to state with a
Poisson-distributed waiting time between hops determined by the rate constants x, h1, and
h2. Without loss of generality we focus on the case that x > 1 such that typical trajectories
cycle in the clockwise direction. For generic choices of h1 and h2 the dynamics is out-of-
equilibrium, which can be seen most simply since the probability of clockwise cycles differs
from that of counter-clockwise cycles [101]. Because the network supports only a single
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Figure 5.1: Schematic illustrating the relationships between order parameter probability
distributions collected in a finite time experiment (a, d), rate functions (b, e), and cumulant
generating functions (c, f) in one and two dimensions. The rate function is the concave (for
our sign convention) hull of the finite time distribution and the Legendre transform of the
scaled cumulant generating function. The bimodality of the finite time distribution results
in a so-called tie line in the concave hull, represented as a dashed line in the 1d rate function.
The tie line necessitates a singularity in the scaled cumulant generating function, depicted
as a dot in (c) and as a dashed line in (f). Note that the 1d cumulant generating functions
for activity (entropy production) are given by the λ = 0 (s = 0) slice in (f).
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Figure 5.2: Network of states and the rates for transitioning between the states. For certain
choices of x, h1, and h2 we demonstrate a dynamic phase transition in entropy production
and dynamical activity rates.

cycle, it is one of the simplest models for non-equilibrium dynamics. This simplicity enables
an analytic solution in the limit that the ring grows infinitely large. Because analytically
solvable non-equilibrium models are few, these solutions can provide a useful reference point.

We focus on a large N limit which maintains the discrete nature of the states. This
limit is appropriate for chemical reaction kinetics with transitions among a discrete set of
states [70]. It may also be interesting to consider continuum limits with rates scaled by N .
Such a continuum limit is pertinent to a Brownian particle confined to a ring [58], and has
been discussed in a Freidlin-Wentzell framework without a heterogeneity in the limit of small
noise [44].

Following the framework of Section 5.1, the tilted operator can be written down straight-
forwardly as

Wω,K(λ, s) =


−x− h2 xλe−s . . . h1−λ

1 hλ2e
−s

x1−λe−s −1− x . . . 0
...

...
. . .

...
hλ1h

1−λ
2 e−s 0 . . . −h1 − 1

 . (5.6)

For modest N one can numerically calculate the largest eigenvalue of this matrix to yield
the scaled cumulant generating function ψω,K(λ, s). In the large N limit, however, we can
obtain an analytic form for the limiting behavior using a perturbation theory we recently
outlined [115].

Were it not for the heterogeneous link, there would be a translational symmetry allowing
the tilted operator to be exactly diagonalized via a Fourier transform. For λ and s in
a particular region of the (λ, s) plane, the maximum eigenvalue of the tilted operator in
Eq. (5.6) coincides with this solution for the translationally symmetric network in the large N
limit. ψω,K(λ, s) exhibits a cusp along the boundary of this region. One side of the boundary
corresponds to a maximal right eigenvector of the tilted operator which is delocalized while on
the other side the eigenvector is exponentially localized around the heterogeneous link. The
discontinuity of the slopes of ψω,K(λ, s) when crossing this boundary indicates a dynamic
phase transition between classes of trajectories which are localized and those which are
delocalized. The detailed calculation, provided in Appendix E, reveals that the line of cusps
separating localized from delocalized eigenvectors is given by the logarithm of the roots of a
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quadratic,

s∗(λ) = ln

1 + x− h1 − h2 −
√

(h1 − x− h2 + 1)2 + 4(h2 − 1)(h1 − x)h1h2x
−2(|λ− 1

2 |+ 1
2)

2(h2 − 1)(h1 − x)x−(|λ− 1
2 |+ 1

2)


(5.7)

This equation, corresponding to the purple dashed curve in the schematic of Fig. 5.1(f), is
plotted for particular choices of x, h1, and h2 in Fig. 5.3(a).

Remarkably, the value of ψω,K(λ, s) everywhere can be determined by the solution to
the translationally symmetric network and the form of s∗(λ). This follows since ψω,K(λ, s)
is continuous and the partial derivatives with respect to λ must vanish in the localized
regime 1. The translationally symmetric network solution evaluated along the line of cusps
thus provides the maximum eigenvalue in the localized region giving

ψω,K(λ, s) =

{
x1−λe−s + xλe−s − 1− x, s ≤ s∗

x1−λ∗e−s + xλ
∗
e−s − 1− x, s > s∗,

(5.8)

where s∗ and λ∗ are shorthand for s∗(λ) given in Eq. (5.7) and for the inverse function λ∗(s) 2.
This is our primary analytical result, which enables the computation of the probability
distributions for entropy production and activity rates. To prevent confusion, we note that
the schematic of Fig. 5.1 was meant to depict generic joint distributions for activity and
entropy production and does not illustrate ψω,K(λ, s) for this particular solved model.

5.3 Properties of the Phase Transition

Tilted Operator Eigenvectors

Thus far we have merely asserted that the trajectories have localized and delocalized char-
acter in the two dynamic phases, but here we more formally make the claims by analyzing
the maximal right eigenvectors of the tilted operator. We write the elements of the maxi-
mal eigenvector as (f1, f2, . . . , fN) and note that the eigenvalue equation implies a recursion
relation between neighboring fi’s in the bulk.(

fi
fi+1

)
=

(
ψ+1+x
e−sx1−λ −x2λ−1

1 0

)(
fi+1

fi+2

)
= B

(
fi+1

fi+2

)
,

where we have introduced the transfer matrix B and suppressed the subscripts and arguments
on ψω,K(λ, s). The nth component of the eigenvector can thus be written in terms of the two
eigenvalues of of B, k1 and k2. Specifically,

fn ∝
(
k−1

1

)n
+ εk

(N−n)
2 , (5.9)

1Localized eigenvectors of the tilted operator correspond to localized trajectories, which cannot produce
entropy in the long-time limit. Partial derivatives with respect to λmust then yield a zero entropy production.

2There is not a unique inverse, but the sum x1−λ∗
+ xλ

∗
is the same for either choice of the inverse.
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where k1 > 1 and k2 < 1. The parameter ε serves to match up the boundary conditions
between f1 and fN . When λ < λ∗, the eigenvalues of B can be expressed as k1 = e−γ/N ,
and k2 = x2λ−1eγ/N correct up to second order in 1/N . An expression for γ in terms of the
rate constants, Eq. (E.6), follows from the full calculation of the maximum eigenvalue in
Appendix E. Hence the maximal right eigenvector is found to have components

fn ∝ eγn/N + εdeloce
((2λ−1)N lnx+γ)(N−n)/N , (5.10)

where εdeloc = hλ−1
1 h−λ2 (x1−λ+h2−1)−eγ. The first term in Eq. (5.10) decays slowly over the

entire range of the system, giving the eigenvector a delocalized character. This delocalized
character indicates that trajectories with high rates of entropy production and activity can
be found regularly visiting all of the states of the system.

Under the conditions that s > s∗(λ) the expression for γ diverges, and the delocalized
form for the maximal eigenvector given in Eq. (5.10) must break down 3. We anticipate
a similar functional form for the eigenvectors except with some nonzero κ replacing γ/N .
Indeed, with some tedious algebra it can be shown that the right eigenvectors are given by

fn ∝ eκn + εloce
((2λ−1) lnx+κ)(N−n) (5.11)

with κ = (λ∗−λ) lnx and εloc = hλ−1
1 h−λ2

(
x1−λ∗ + h2 − 1

)
eκ. Unlike the case of the delocal-

ized eigenvector, this solution is strongly localized around the heterogeneous link. Thus the
flat region between the two cusps in ψω(λ) ≡ ψω,K(λ, 0) stems from a class of localized tra-
jectories which are incapable of producing entropy in the long-time limit. The two dynamic
phases can therefore be thought of as the classes of localized and delocalized trajectories,
each of which contributes its own feature to the rate function.

Entropy Production Statistics

We previously reported on the entropy production statistics in the special case that h1 =
h2 [115], but this restriction was lifted in the preceding analysis. Surprisingly, allowing for
distinct values of h1 and h2 can yield a qualitative difference in the entropy production rate
statistics. When h1 and h2 are constrained to be equal, all values of h and x give rise to
singularities in ψω(λ) and therefore a dynamic phase transition with respect to the entropy
production rate. By solving for the conditions when s∗(λ) = 0 in Eq. (5.7) one can obtain
the position of these two cusps in ψω(λ), λ∗ and 1− λ∗.

When h1 and h2 are distinct, however, there are conditions for which s∗(λ) lacks roots.
The fluctuation theorem [74] entails a symmetry in the cumulant generating function ψω(λ)
about λ = 1/2. Because of this symmetry, the marginal case where the dynamic phase
transition disappears occurs when λ∗ = 1/2. Solving for the condition that s∗(1/2) = 0 thus

3Note that the cusp in the scaled cumulant generating function does not result from a simple eigenvalue
crossing nor an avoided crossing as the delocalized vector ceases to be an eigenvector on the wrong side of
the transition.
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gives a critical value of x,

xc =
1

2

(
1 + 2h1 − 2h2 + h2

2 − (h2 − 1)
√

1 + 4h1 − 2h2 + h2
2

)
, (5.12)

so that ψω(λ) will have cusps indicating a dynamic phase transition if and only if x > xc.
Indeed, Fig. 5.3 illustrates that the singularities are no longer present when x drops below
the critical value xc. It is of particular note that the critically does not occur at the trivial
limit x = h1/h2, the condition for which hops across the heterogeneous link produce the
same amount of entropy as hops across any other link.

The existence of a critical value of x can be understood more clearly by examining the
large deviation rate function for the entropy production, I(σ), which is obtained from a
Legendre transform of ψω(λ) . In Fig. 5.4 we plot these rate functions for a variety of values
of x but for the same value of h1 and h2. As x is decreased, the system is biased less strongly
toward clockwise cycles, and the average entropy production rate decreases correspondingly.
However, even when the average entropy production rate is large, the class of localized
trajectories present a way for a trajectory to produce zero entropy. Therefore a broad entropy
production distribution with a hump at σ = 0 is present for large x. When x is decreased
below xc, this shoulder at σ = 0 gets completely engulfed by the natural fluctuations in
entropy production characterizing the dominant (delocalized) class of trajectories. Thus the
disappearance of the dynamic phase transition corresponds to the condition when near-zero
entropy production rates are more likely to be obtained by a delocalized trajectory than
by a localized trajectory. As we shall demonstrate shortly, the lack of the dynamic phase
transition in the entropy production order parameter does not rule out the presence of two
classes of trajectories. A dynamic phase transition can still be recovered by studying the
statistics of dynamical activity.

Dynamical Activity Statistics

The statistics for the dynamical activity can be deduced in the same way by setting λ = 0
in Eq. (5.8). The activity does not satisfy a fluctuation theorem, so there is no symmetry
corresponding to ψω(λ) = ψω(1 − λ). As a consequence, ψK(s) ≡ ψω,K(0, s) has a cusp at
s∗(0) for all values of the rate constants as is clear from the λ = 0 intercepts of Fig. 5.3.

The Legendre transform of ψK(s) gives the rate function for dynamical activity, shown in
Fig. 5.4. Like the case of entropy production, as x is decreased the average activity decreases,
but now the tie line (and correspondingly the dynamic phase transition) persists for all
choices of x. Remarkably, this implies that there is a regime with x < xc where the activity
exhibits a dynamic phase transition but the entropy production does not. Consequently the
entropy production distribution in this parameter regime converges to the distribution found
in a translationally symmetric network, while the distribution for dynamical activity resolves
the impact of the heterogeneity.

To better appreciate the manner in which a dynamic phase transition can be observed
with respect to one order parameter but not another, we Legendre transform ψω,K(λ, s) and
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Figure 5.3: (a) Curve of the cusp in ψω,K(λ, s) given by Eq. (5.7) plotted for h1 = 0.3 and
h2 = 0.2. This curve corresponds to the dashed line in the schematic of Fig. 5.1(f). Below
the curve ψω,K(λ, s) has a delocalized eigenvector. For these parameters xc ≈ 1.163 such
that the x = 1.1 curve does not intersect the s = 0 axis. (b) ψω(λ) for the same conditions.
Cusps are marked with a filled dot at (λ∗, ψω(λ∗)) and (1−λ∗, ψω(1−λ∗)). The shaded area
indicates the region arising from the localized phase.
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Figure 5.4: Entropy production and activity rate functions for h1 = 0.3 and h2 = 0.2 where
xc ≈ 1.163. The insets zoom in on the peaks to illustrate that the entropy production rate
function lacks a second phase (and consequently does not have the dashed tie lines), while
the activity rate function shows two phases even for x < xc. The most likely values of σ and
K/t increase with increasing x.

plot the two dimensional rate functions for activity and entropy production. Figs. 5.5(a) and
(d) show the rate function for the translationally symmetric network with x = 1.5. Note that
the surface is smooth, exhibiting only small fluctuations away from the mean behavior. In
contrast, when the heterogeneous link is introduced a ridge develops along σ = 0. This ridge
corresponds to the class of localized trajectories, all of which have identically zero entropy
production rate in the long time limit. The entropy production and activity rate functions
are marginals of this two dimensional surface, which corresponds to projecting the surface
onto the σ and K/t axes, respectively. For all values of x, the projection onto the K/t
axis results in a broad activity distribution with components from both the localized and
delocalized trajectories. The projection onto the σ axis behaves differently. When x < xc the
class of localized trajectories along the ridge are in line with the most likely contributions
from delocalized trajectories. Consequently the entropy production distribution will not
reveal the localized trajectories since for all possible values of σ there exist more probable
delocalized trajectories which produce that particular entropy production rate.

The calculation offers an important lesson which provides insight for more complicated
dynamical systems. Our analysis has shown that localized and delocalized trajectories can
be clearly separated into two distinct classes. Nevertheless, the underlying transition is
only visible in the distribution for certain order parameters. In more complicated systems,
one can expect many more than two classes of trajectories. Whether or not these classes
constitute a true dynamic phase is intimately related to the symmetries of the dynamic
order parameter being probed. Thus an experimenter simultaneously monitoring current,
activity, and entropy production distributions may consistently observe large deviations in
some order parameters but not in others. We note that similar scenarios can occur in
equilibrium statistical mechanics.
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Figure 5.5: Joint rate functions for the activity and entropy production rates. The transla-
tionally symmetric case with x = 1.5 and no heterogeneity is plotted in (a) and (d). The
influence of a heterogeneous link (h1 = 0.3, h2 = 0.2) is shown in (b) and (e) for x = 1.5
and in (c) and (f) for x = 1.14. In the presence of the heterogeneity, the rate function
develops a set of tie lines to connect two dynamic phases. The localized phase runs along
the σ = 0 ridge (dashed line), enabling fluctuations in K/t but not in σ. The delocalized
phase is centered at the peak of the rate function and enables fluctuations in both K/t and
σ. Whether x exceeds xc determines if localized phase is visible to the entropy production
axis.

5.4 Flows on Decorated Networks

The ring network of Fig. 5.2 can be thought of as a coarse-grained model for cyclic dynamics,
with particular relevance to processes that have heterogeneous rates. We will take this
perspective in Section 5.5 when we consider the ring network as a model for cell cycle
dynamics. It is clear that cyclical processes, like a cell cycle, must have a ring-like nature
since the system returns to its original state. Nevertheless, reduction to a single ring is
a particularly crude coarse-graining. Is the perspective of dynamic phase transitions still
productive when cyclical processes are coarse grained more gently? In particular, what
parts of the analysis change when the dynamical model supports many cycles? To address
this question, we introduce a network we call the triangle network, with a collection of N
triangular motifs around a ring as shown in Fig. 5.6.

The triangle network tilted operator can be numerically constructed for finite N . The top
eigenvalue gives the SCGF for entropy production, ψω(λ), which develops a cusp at λ∗ (and
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Figure 5.6: A large ring decorated with triangles. This “triangle network” supports local
and global cycles unlike the ring network of in Fig. 5.2. Without loss of generality we work
with x > y to drive clockwise cycles.

another at 1 − λ∗ by symmetry) as the network grows large. This cusp, shown in Fig. 5.7
for a variety of parameters, emerges in the large N limit for the same reasons it did in
the the ring network example. Trajectories may be separated into localized and delocalized
dynamic phases based on their propensity to loop around the large cycle. The dynamic
phase transition persists when we decorate the global cycle with local loops, but in contrast
with the previous calculation, the slope of ψω(λ) does not vanish when λ∗ < λ < 1 − λ∗.
This difference can be understood physically since the behavior of ψω(λ) is determined by
the localized phase. The ring network only produces entropy by completing a complete cycle
around the macroscopic ring, so the entropy production rate of localized trajectories had
to vanish. The triangular motifs, however, enable trajectories which are both localized and
entropy-producing.

In the case of the ring network we were able to analytically compute ψω(λ) in the large
N limit using a perturbation theory about the symmetric network. While the nature of the
triangle network’s localized phase is more complicated, insights from the ring network per-
turbation theory can be leveraged. In particular, one can introduce localized and delocalized
forms of the tilted operator maximal right eigenvector. The delocalized eigenvector behaves
as though the triangle network had translational symmetry with no heterogeneous link, and
the other eigenvector is localized around the heterogeneity. This approach is carried out in
Appendix F. It reduces the computation of the SCGF to the solution of a nonlinear system
with two equations and two unknowns. Fig. 5.8 shows that the solution using the ansatz
converges to the numerical SCGF in the large network limit.

The triangle network analysis teaches that most of the ring network insights generalize to
other pseudo-one-dimensional cyclic networks. We therefore expect that cyclic systems with
heterogeneities can exhibit large dynamical fluctuations due to localization/delocalization
transitions, even when the ring network appears to be an radical oversimplification. There is
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Figure 5.7: Scaled cumulant generating functions and average entropy production rates for
the triangle network, depicted in Fig. 5.6. All results are shown for rates x = 20, y = 1, and
b = 0.1. Black solid curves show the exact behavior of the symmetric variant for comparison.
Plots (a) and (b) show results for a variety of network sizes with h = 0.1 for the symmetry-
breaking link, suggesting a singularity in the large-N limit. Plots (c) and (d) show results
for N = 200 with several values for h.
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Figure 5.8: Singularity in the SCGF for the triangle network with rate constants x =
20, y = 1, b = 0.1, and h = 0.1. Circles show numerical results for the largest eigenvalue
of Wω(λ) with N = 3000 triangular motifs. Analytical treatment of the delocalized and
localized phases is provided in the main text.

one minor way in which entropy production fluctuations on the ring are qualitatively different
than on a decorated ring. Because decorations enable nonvanishing entropy production in the
localized phase, they smooth the corner in the entropy production rate function (compare,
for example, the left plot of Fig. 5.4 with Fig. 5.9). The smoothing reflects a distribution for
the number of triangular cycles completed by a localized trajectory.

5.5 Physical Implications of Dynamic Phases

Tuning Rates to Coexistence

We have shown that while typical trajectories on the network are delocalized, there exists
a rare class of localized trajectories, which in certain cases appears as a distinct dynamic
phase. In ordinary statistical mechanics one tunes a Lagrange multiplier like the inverse
temperature, β, to induce a transition between phases. Inducing a dynamic transition cannot
occur in an identical way since the λ field is conjugate to a time-non-local object. In computer
simulations one can place the system in contact with a large bath at a well-defined value
of λ, but this treatment requires that the system is the entire trajectory. While it is not
possible to directly tune the λ field in an experiment, one can use the eigenvectors of the
tilted operator to construct a rate matrix which, in the long-time limit, is equivalent to
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Figure 5.9: Large deviation function I(σ) for the entropy production rate of the network in
Fig. 5.6 with x = 20, y = 1, b = 0.1, and several different values of h. The rate function
envelope was determined by the Legendre-Fenchel transform of ψω(λ), whose two singularities
require the construction of tie lines (dashed curve). Kinetic Monte Carlo simulation [54]
results (107 trajectories with h = 0.025, N = 400, and τ = 250) are shown as red circles in
the inset.

introducing such a λ field [28, 68]. We denote this class of rate matrices for effective λ fields
W(λ) with matrix elements given by

Wij(λ) =
fi(λ)

fj(λ)
[Wω(λ)]ij − δijψω(λ), (5.13)

where fn is the nth component of the right eigenvector determined in the large N limit in
Eqs. (5.10) and (5.11). A derivation of this result was provided in Section 4.7. For simplicity
we limit the analysis to the λ field conjugate to entropy production, but this could of course
be repeated for activity.

A cusp in the maximum eigenvalue of the tilted operator Wω(λ) indicates that the two
dynamic phases will be in coexistence when a λ∗ bias is applied. The tilted operator, however,
is only a rate matrix at λ = 0. For all other values of λ the matrix does not conserve
probability. In contrast, W , is a proper rate matrix and can consequently represent physical
rates which result in long-time dynamics that exactly mimics the long-time behavior of the
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Figure 5.10: The off-diagonal elements ofW(λ) give effective rate constants for clockwise and
counterclockwise transitions rates after the application of a λ bias. In the absence of λ biasing
the transition rates are h1 = 0.3, h2 = 0.2, x = 1.5. Note the strong spatial dependence of
the effective rate constants between λ∗ and 1−λ∗ where the typical trajectories are localized.

original dynamics subject to a λ∗ biasing field. [28, 68]. For our solvable model, we determine
the clockwise and counterclockwise rate constants as a function of position around the ring
which yield an effective λ bias according to Eq. 5.13. These rates are depicted in Fig. 5.10.
When λ = 0 they are just the rate constants of the natural dynamics, but as λ increases
the preference toward low entropy production has two effects. Firstly, the effective clockwise
rates decrease while counterclockwise rates increase to yield slower rates of cycling around
the ring. With fewer completed cycles per unit time, the trajectories achieve a lower rate of
entropy production. Secondly, a strong spatial dependence in the rates arises, particularly
as λ nears λ∗. As long as the clockwise rates exceed the counterclockwise rates at every site
in the ring, typical trajectories will remain delocalized. In the regime λ∗ < λ < 1− λ∗ some
regions of the ring prefer clockwise motion while others prefer counterclockwise. The result is
a localization at the interface of these regions. As made clear in Fig. 5.10, the effective rates
are smoothly tuned by λ, even when passing through the transition. Dynamics evolving
under W(λ∗) is particularly interesting as it will exhibit massive fluctuations in entropy
production rates. Given that states are connected together in a ring topology, this W(λ∗)
gives the physical rate constants which tune the system to dynamical coexistence.

The ring topology is also convenient for demonstrating that λ biasing of detailed balance
systems results in dynamics which also obeys detailed balance. This has previously been
shown to be the case when biasing activity by an s field by other means [68]. We note that
in a network with a cycle loop (like our ring network) the condition of detailed balance is
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satisfied if and only if
N∏
i=1

(
Wi,i+1

Wi+1,i

)
= 1 (5.14)

i.e. if the product of rates for clockwise transitions equals the product of rates for counter-
clockwise transitions [101]. (We have implicitly assumed periodic boundary conventions.)
Constructing similar products for effective dynamics under a λ field (Eq. 5.13), we find that
the effective dynamics obey detailed balanced if and only if

N∏
i=1

(
Wω(λ)i,i+1

Wω(λ)i+1,i

)
= 1. (5.15)

Using the definition of Wω(λ), in Eq. 5.5, Eq. 5.15 can be expressed as(
N∏
i=1

Wi,i+1

Wi+1,i

)1−2λ

= 1 . (5.16)

In other words, provided λ 6= 1/2, the effective dynamics satisfy the condition of detailed bal-
ance if and only if the underlying physical dynamics are detail balanced. The result is simply
extended to networks with multiple cycles using the cycle decomposition theorem [101].

Persister Cells

It has long been observed that a small fraction of a colony of genetically identical bacterial
cells are resistant to antibiotic treatment [16]. One important observation is that bacteria
which are not dividing are not affected by the antibiotic, which suggests that bacteria have an
internal switch allowing rare transitions into non-dividing persister states that could provide
protection from the antibiotic [77]. Several detailed mechanisms have been proposed for
stabilizing the non-dividing persister state of the bacteria [71, 78], though these pathways
have been shown to be not wholly responsible for the appearance of persister cells [117].

We note that the dynamic phase transition of our studied model presents a distinct
stochastic hypothesis to explain the long timescale decay of bacterial population in response
to an antibiotic. The ensemble of bacteria could be thought of as the ensemble of trajectories
evolving in time around the ring, with every completed cycle corresponding to another cell
division. While typical cells cycle rapidly, a rare dynamic phase of localized, non-dividing
cells could be expected to exist solely because of the heterogeneity of rates around a cell
cycle. Provided that antibiotics kill cells which grow rapidly, the localized subensemble of
cells predicted by our calculations could result in an anomalously slow decay in survival
probability. Notably, our model lacks an explicit degree of freedom capable of differentiating
persister and normal states based on a single-time observation since the phases describe
classes of trajectories, not of configurations.



CHAPTER 5. DYNAMIC PHASES 79

æ

æ

æ
æ
æ
æ

æ

æ

æ

æ

æ
æ
ææ
æ

æ

æ

æ

æ

æ

æ

æææææ
æ

æ

æ

æ

æ

æ

æ

ææææææ æ æ æ
æ

æ
æ

0 50 100 150 200 250

-8

-6

-4

-2

0

Observation Time

ln
<
e
-
Λ
Ω
>

æ Λ = 0.003

æ Λ = 0.01

æ Λ = 0.03

æ Λ = 0.3

Figure 5.11: Log survival probability for trajectories killed in proportion to e−λω. Entropy
production for 5 × 106 steady state trajectories of various observation times were collected
with x = 3, h1 = h2 = 0.05, N = 1000. For this choice of rate constants, λ∗ ≈ 0.015. At the
observation time trajectories are killed with a probability tuned by λ, which could act like
the strength of an antibiotic in the case of bacterial cells. Dashed lines are lines with slope
ψ(ts)(λ), which capture the short-time behavior since typical trajectories do not encounter
the heterogeneity at short times. Solid lines have slope ψ(λ) as given by Eqs. (E.1) and
(E.6). As the maximum eigenvalue, ψ(λ) must characterize the long-time behavior.

In Fig. 5.11 we use our model system to extract qualitative estimates of the survival
probability of cells as a function of time in the presence of an antibiotic. In particular,
we kill trajectories in proportion to e−λω, where ω denotes the entropy produced along
the trajectory and λ controls the death rate and is meant to represent the presence of an
antibiotic. At long times, the log probability of surviving trajectories decays according to
ψω(λ), which differs from the initial decay rate if λ > λ∗ and the dynamic phase transition
can be accessed. The decay of survival probability can be expected to change markedly
from single exponential to biexponential behavior at a critical value λ∗. An experimental
realization of such an observation may be accessible in observing the survival probability of
persister cells in response to different classes of antibiotics.

We note that the bi-exponential curves in Fig. 5.11 are similar to those observed exper-
imentally [10] and are attained even without an internal switch that determines the cell’s
type. This demonstration suggests that persister cells may be a generic feature resulting
from inescapable heterogeneity in transition rates, such that removing one pathway impli-
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cated in supporting persisters will just reveal new localized phases centered around different
heterogeneous links.

5.6 Conclusions

We have investigated the properties of a dynamic phase transition in a recently introduced
exactly solvable model. Using methods of large deviation theory we analytically computed
the joint rate function for the dynamical activity and entropy production rates for a single-
particle system evolving on a simple driven kinetic network. The joint rate function demon-
strates two dynamic phases — one localized and the other delocalized — but the marginal
rate functions do not exhibit the underlying transition under all conditions. Specifically,
the marginal rate function corresponding to the entropy production has a critical point be-
yond which there is no dynamic phase coexistence even though the system still supports two
distinct classes of trajectories. We illustrated the rates that position the system in a state
of coexistence between localized and delocalized phases. We also discussed a biophysical
implication of the transition, namely the heterogeneity in the growth rates of bacterial cells
and the phenomena of persistence, arguing that a bistability of dynamic phases can be found
in even the simplest models of a cell cycle which lack an explicit bistability in configuration
space.

Our study of a single-particle system reveals one simple manner in which dynamic phase
transitions can arise. The two dynamic phases are time independent, a characteristic of
the transition shared by some many-particle systems [17], but the model certainly does not
encompass the full range of dynamical complexity intrinsic to interacting nonlinear degrees
of freedom. This work thus does not directly help to clarify, for instance, rare phases related
to the hydrodynamic limit of many-particle dynamics [13, 14, 18]. Nevertheless, our exact
analytical results for a schematic model highlight features that could be important in much
more exotic phenomena, most notably the possibility that dynamic phase transitions can be
visible to some pertinent order parameters yet hidden from others.



81

Appendix A

Entropy Production Statistics for a
One-Dimensional Random Walker
with Guiding Forces

A.1 Mean Entropy Production

Here we analytically characterize the entropy production distribution, P (ω), for shooting
moves generated with guiding forces as discussed in Section 2.4. It is useful to first rewrite
Eq. (2.2) in terms of the noise variables, ξ and ξ̃. For a one-dimensional random walk, the
position xt+1 and the difference between reference and trial trajectory, xt+1 − x̃t+1, can be
compactly expressed in terms of the noises.

xt+1 =
t∑

u=0

ξu (A.1)

xt+1 − x̃t+1 =
t∑

u=0

(1− k)t−u(ξu − ξ̃u). (A.2)

After straightforward algebra it is possible to express ω as

ω =
1

σ2

tobs−1∑
t=0

(
S2
t − Stξ+

t

)
, (A.3)

where for convenience we have defined ξ+
t ≡ ξ̃t + ξt + 2µ, ξ−t ≡ ξ̃t − ξt, and

St ≡
t−1∑
u=0

k(1− k)t−1−uξ−u . (A.4)

The main text presents results for a random walk without drift, i.e., with ξ drawn from a
distribution with mean zero. Here we consider the more general case with nonzero mean µ.



APPENDIX A. ENTROPY PRODUCTION STATISTICS FOR A ONE-DIMENSIONAL
RANDOM WALKER WITH GUIDING FORCES 82

Noting that
〈
ξ+
t ξ

+
u

〉
=
〈
ξ−t ξ

−
u

〉
= 2σ2δtu and

〈
ξ+
t ξ
−
u

〉
= 0, the average entropy production is

found to be

〈ω〉 = 2

tobs−1∑
t=0

t−1∑
u=0

k2(1− k)2(t−1−u). (A.5)

The two geometric series are summed to yield

〈ω〉 =
2

(k − 2)2

[
(2− k) ktobs − 1 + (k − 1)2tobs

]
. (A.6)

When k > 2, 〈ω〉 grows exponentially in tobs. This superlinear scaling results from coupling
between trajectories so strong that the trial trajectory rapidly tends to infinity due to a
numerical instability, much like the instability that arises in conventional molecular dynamics
simulations performed with an excessively large integration timestep. For the useful range
of coupling strength, k < 2, 〈ω〉 ∝ tobs in the long time limit. The marginal k = 2 case is
well-behaved (〈ω〉 = 4tobs (tobs − 1)), but uninteresting for our purposes.

Cumulant Generating Function

The behavior of the higher-order cumulants can be extracted from the cumulant generating
function ln

〈
e−λω

〉
. This average requires integration over all of the Gaussian ξ and ξ̃ variables

at all times, which can be performed inductively. We define φ(λ, f, g, h) as

φ(λ, f, g, h, t) = f

(
1

2σ
√
π

)2t ∫
dξ+

0 . . . dξ
+
t−1dξ

−
0 . . . dξ

−
t−1 exp

[
−(ξ+

t−1)2 − (ξ−t−1)2

4σ2

]
× exp

[
1

σ2

(
λ
(
St−1ξ

+
t−1 − hS2

t−1 + 2gk(1− k)St−1ξ
−
t−1 + gk2(ξ−t−1)2

))]
× exp

[
1

σ2

t−2∑
i=0

(
−(ξ+

i )2 − (ξ−i )2

4
+ λSiξ

+
i − λS2

i

)]
(A.7)

The integral φ is defined such that
〈
e−λω

〉
= φ(λ, 1, 0, 1, tobs). By introducing f, g, and h we

can derive recursion relations as we sequentially integrate out Gaussian noises at the latest
remaining timestep. In particular, integration over ξ−t−1 then ξ+

t−1 returns an integral of the
same form. That is to say φ(λ, fi, gi, hi, t) = φ(λ, fi+1, gi+1, hi+1, t− 1) with

fi+1 =
fi√

1− 4λgik2
(A.8)

gi+1 = λ− hi +
4λg2

i (1− k)2k2

1− 4λg1k2
(A.9)

hi+1 = 1− (1− k)2

(
(λ− hi) +

4λg2
i (1− k)2k2

1− 4λgik2

)
(A.10)
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Iterating the map tobs times corresponds to integrating over all of the 2tobs integrals in
Eq. (A.7). After some algebraic simplification,

ln
〈
e−λω

〉
= −1

2

tobs−1∑
i=0

ln(1− 4λgik
2), (A.11)

where g0 = 0 and

gi+1 = λ− 1 +
(1− k)2gi
1− 4λgik2

. (A.12)

The scaled cumulant generating function is then given by

lim
tobs→∞

1

tobs

ln
〈
e−λω

〉
= −1

2
ln(1− 4λg∗k2), (A.13)

where g∗ is a fixed point of the map given in Eq. (A.12). Specifically it is the lesser of the
two roots of the quadratic equation obtained when gi = gi+1 ≡ g∗ is inserted into Eq. (A.12).
The numerical Legendre transform of this scaled cumulant generating function gives the solid
black curve in Fig. 2.2(a), toward which the results of numerical sampling should converge
for long tobs.
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Appendix B

Ising Model Steady State Correlations

To derive the steady state correlation between reference and trial trajectories, we examine
the time evolution of the probability p(τ) that reference and trial overlap at site i and MC
step τ . Without loss of generality, we focus on a particular site, i = 1. Push up/push down
moves can be grouped into four classes: (i) the reference and trial each act on spin 1, (ii)
the reference acts on spin 1 while the trial acts on a different spin, (iii) the trial acts on spin
1 while the reference acts on a different spin, or (iv) neither reference nor trial acts on spin
1. For each case, we derive a transition matrix which maps the vector (p(τ), 1− p(τ)) to its
state at MC step τ + 1. The full transition matrix for a step of dynamics is the sum of these
transition matrices, weighted by the probability of each case,

T =

(
1− 1

N

(
1 + εsite −

εsite
N

))
I +

1

N

(
εsite −

εsite
N

)
Q

+
1

N

(
εsite −

εsite
N

)
R +

1

N

(
1− εs +

εsite
N

)
S. (B.1)

The transition matrix for case (iv) is the identity matrix, since this case cannot alter the
overlap at site 1. The transition matrices for cases (i), (ii), and (iii) are Q,R, and S,
respectively, the forms of which we now derive.

When reference and trial act on different spins, only one copy of spin 1 (the reference or
the trial) can change its state. When the two copies differ at site i after τ steps, overlap is
induced with probability 1/4 (i.e., the probability that any given move results in a change
of spin state). For initially aligned copies, loss of overlap similarly occurs with probability
1/4. This logic applies equally well to cases (ii) and (iii), so

Q = R =

(
3/4 1/4

1/4 3/4

)
. (B.2)

When both reference and trial act on site 1, we must account for correlated influence on
the two copies. As a result, S depends on εacc and εdir. To enumerate these correlated changes,
we denote states of spin 1 at step τ in the reference and trial as σ1 and σ̃1, respectively. After



APPENDIX B. ISING MODEL STEADY STATE CORRELATIONS 85

σ d a σ′ σ̃ d̃ ã σ̃′ Probability

1 1 * 1 1 1 * 1 p
2

(
1− εdir

2

)
1 1 * 1 1 -1 0 1 εdirp

8

1 1 * 1 -1 1 1 1 1−p
4

(
1− εdir

2

)
1 -1 0 1 1 1 * 1 εdirp

8

1 -1 0 1 1 -1 0 1 p
4

(
1− εdir

2

) (
1− εacc

2

)
1 -1 0 1 -1 1 1 1 1−p

4

(
εdir

2

) (
εacc

2

)
1 -1 1 -1 1 -1 1 -1 p

4

(
1− εdir

2

) (
1− εacc

2

)
1 -1 1 -1 -1 1 0 -1 1−p

4

(
εdir

2

) (
εacc

2

)
1 -1 1 -1 -1 -1 * -1 1−p

4

(
1− εdir

2

)
Table B.1: Enumeration of moves yielding σ′ = σ̃′. Without loss of generality, we only list
the moves which start with σ = 1. The moves starting with σ = −1 are analogous. d is
the direction of a push with 1 meaning up. a indicates whether the move is accepted (1) or
rejected (0). An asterisk indicates that both options yield the same result.

the MC step, these spins are given by σ′1 and σ̃′1. Table B.1 lists the possible transformations
which result in overlapping spins (σ′1 = σ̃′i) after τ + 1 steps. Collecting terms in the table
and making use of the fact that S is a probability-conserving transition matrix, we find

S =
1

2

(
1 +

(
1− εdir

2

) (
1− εacc

2

)
1− εdir

2

(
1− εacc

2

)
1−

(
1− εdir

2

) (
1− εacc

2

)
1 + εdir

2

(
1− εacc

2

)) . (B.3)

Propagation according to the transition matrix T gives the overlap probability after a
single MC step: (

p(τ + 1)

1− p(τ + 1)

)
= T

(
p(τ)

1− p(τ)

)
(B.4)

The first row of this matrix equation reads, after some algebra,

p(τ +1) = p(τ)− p(τ)

N
+
εsite − εsite

N

2N
+

1− εsite + εsite
N

2N

[
1− εdir

2

(
1− εacc

2

)
+
(

1− εacc

2

)
p(τ)

]
.

(B.5)
We are interested in the steady state solution, found by setting p(τ) = p(τ + 1). Multiplying
the equation through by N , followed by algebraic simplification, yields Eq. 2.26 of the main
text.
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Appendix C

Extended Ensemble Double Well
Transition Path Sampling

We sample the extended ensemble over trajectories and protocols from Eq. (3.6) using TPS.
An initial seed is obtained by starting a trajectory at the top of the barrier and propagating
dynamics forward and backward in time. The equations of motion for the discrete forward-
time dynamics are given in the main text. Reverse-time dynamics is generated according
to

pi+ 1
2

=
[
pie
−γ∆t/2 − ξ−

i+ 3
4

]
− fi+1

b∆t

2

ri = ri+1 − pi+ 1
2

b∆t

m

pi =

[
pi+ 1

2
− fi

b∆t

2

]
e−γ∆t/2 − ξ−

i+ 1
4

. (C.1)

Because trajectories can be generated by either forward or reversed trajectories, it is useful to
always keep track of the two forward noises required for each full timestep, ξ+

i+ 1
4

and ξ+
i+ 3

4

, as

well as the two backward noises, ξ−
i+ 1

4

and ξ−
i+ 3

4

. After every simulated forward timestep from

(ri, pi) to (ri+1, pi+1), we compute and store the two reverse noises that result in reversed
dynamics mapping (ri+1, pi+1) to (ri, pi). Similarly, the forward noises are computed and
recorded following every reversed timestep. It is straightforward to show that the ratio of
probabilities of forward and reverse trajectories is given in terms of these noises as

P [x(t)|Ω]

P [x̂(t)|Ω̂]
= exp

−
β

tobs
∆t
−1∑

i=0

(∣∣∣ξ+
i+ 1

4

∣∣∣2 +
∣∣∣ξ+
i+ 3

4

∣∣∣2 − ∣∣∣ξ−
i+ 1

4

∣∣∣2 − ∣∣∣ξ−
i+ 3

4

∣∣∣2)
2m(1− e−γ∆t)

+ β∆E

 , (C.2)
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where we use x(t) to denote a trajectory in phase space, (r(t), p(t)). The difference in energies
at the initial and final times of the trajectory, ∆E = Etobs

−E0, appears because we assume
that the system starts in thermal equilibrium at the beginning of the protocol. We identify
the entropy production as

ω = ln
P [x(t)|Ω]

P [x̂(t)|Ω̂]
= − β

2m(1− e−γ∆t)

tobs
∆t
−1∑

i=0

(∣∣∣ξ+
i+ 1

4

∣∣∣2 +
∣∣∣ξ+
i+ 3

4

∣∣∣2 − ∣∣∣ξ−
i+ 1

4

∣∣∣2 − ∣∣∣ξ−
i+ 3

4

∣∣∣2)+ β∆E.

(C.3)
The extended ensemble sampling proceeds by a series of Monte Carlo moves in trajectory

and protocol space. With equal probability, each TPS step performs one of three possible MC
moves: a forward shot, a reverse shot, or a protocol move (which requires us to simultaneously
update the trajectory). These moves and their acceptance probabilities are described in are
detail in the following sections.

Forward Shot

A timestep between 0 and tobs/∆t is selected uniformly and designated the shooting time.
Starting at the shooting time, each value of ξ+

i+ 1
4

and ξ+
i+ 3

4

is modified to give new values ξ̃+
i+ 1

4

and ξ̃+
i+ 3

4

,

ξ̃+ = αξ+ +
√

1− α2η. (C.4)

The parameter α controls the noise correlations, and η is drawn from the Gaussian distribu-
tion with mean 0 and variance mkBT (1− e−γ∆t). Using these new noises, forward dynamics
is propagated as prescribed by Eqs. (3.3) (and the corresponding reverse noises are stored).
Provided the final timestep ends in region B, the new trajectory is accepted.

Reverse Shot

A random shooting time is selected as in the forward shot, and correlated reverse noises are
generated for all times leading up to the shooting time,

ξ̃− = αξ− +
√

1− α2η. (C.5)

We draw η from the same distribution as in the forward shot. Using the new reverse noises, we
propagate from the shooting time backward in time using Eqs. C.1. For this trial trajectory
to be accepted it must, of course, start in region A, but we also must include a reweighting
factor in the acceptance probability. This reweighting is needed because the trial trajectory,
x̃(t), was generated from a time-reversed protocol while its contribution to the equilibrium
path probability refers to the forward-time protocol. The acceptance for the move can be
written as

Paccept[x(t)→ x̃(t)] = min

[
1,
Pextended[x(t)|Ω]Pgen.[x(t)→ x̃(t)]

Pextended[x̃(t)|Ω]Pgen.[x̃(t)→ x(t)]

]
. (C.6)
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The generation of x̃(t) from x(t) can be viewed as a three-stage procedure. First we take
the time reversal of r(t) to get r̂(t). Then we draw values of η to alter the reverse noises
and convert x̂(t) to ˜̂x(t), a new reverse-time trajectory. Finally, we apply the time-reversal
operator again to get x̃(t). Thus we can rewrite the ratio in Eq. (C.6) as

Pgen.[x(t)→ x̃(t)]

Pgen.[x̃(t)→ x(t)]
=
Pgen.[x(t)→ x̂(t)]Pgen.[x̂(t)→ ˜̂x(t)]Pgen.[˜̂x(t)→ x̃(t)]

Pgen.[x̃(t)→ ˜̂x(t)]Pgen.[˜̂x(t)→ x̂(t)]Pgen.[x̂(t)→ x(t)]

=
Pgen.[x̂(t)→ ˜̂x(t)]

Pgen.[˜̂x(t)→ x̂(t)]

=
Pextended[˜̂x(t)|Ω̂]

Pextended[x̂(t)|Ω̂]
. (C.7)

The first step uses the fact that the time-reversal operator is reversible. The second step is a
consequence of noise-guided reverse dynamics generating unbiased samples from the reversed
protocol ensemble. In other words,

Pextended[x̂(t)|Ω̂]Pgen.[x̂(t)→ ˜̂x(t)]

Pextended[˜̂x(t)|Ω̂]Pgen.[˜̂x(t)→ x̂(t)]
= 1, (C.8)

which follows by the same logic that led to Eq. (2.22). Substituting Eq. (C.7) into Eq. (C.6)
and rewriting the the ratio of forward and reversed trajectories in terms of the entropy
production ω of trajectory x(t) and the entropy production ω̃ of the trial trajectory x̃(t), we
are left with

Paccept[x(t)→ x̃(t)] = min[1, hA(x̃0)eω̃−ω]. (C.9)

Protocol Move

The driving frequency Ω is perturbed by a symmetric Monte Carlo move. A trial frequency,
Ω̃ is chosen by adding to the old Ω a small perturbation, drawn uniformly from the interval
[−δ, δ] for some parameter δ. With this new driving frequency, the initial condition of the
old trajectory, x0, is re-propagated forward with x(t)’s identical noise history. The proposed
change to Ω is accepted if the new trajectory ends in region B,

Paccept[Ω, x(t)→ Ω̃x̃(t)] = min
[
1, hB(x̃tobs/∆t

)
]
. (C.10)

In practice, it is typically necessary to allow Ω to only explore a bounded interval, in which
case the move would also be rejected if Ω̃ lies outside the allowed range. It can also be useful
to restrain Ω to sample near some particular value of frequency, Ωc, by accepting moves with
probability

Paccept[Ω, x(t)→ Ω̃x̃(t)] = min
[
1, hB(x̃tobs/∆t

)e−k(Ω−Ωc)2/2
]
. (C.11)

We call Ωc the center and k the curvature of the “umbrella sampling” bias, which enables
importance sampling, as used to generate Figs. 3.6 and 3.7.
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Appendix D

Path and Protocol Sampling for the
Ising Model

Efficient path sampling of the Ising model was presented in Section 2.5. There, we introduced
a scheme for symmetrically perturbing the random numbers (the “noises”) which are used
to propagate Monte Carlo dynamics. We work with the same push up/push down Glauber
dynamics in this appendix, but we present an alternative way to perturb the noises for TPS
moves. For certain applications, like the Ising spin flips studied in Chapter 3, the TPS moves
detailed here have proven more effective for path sampling.

D.1 Ising Dynamics and Dissipation

Let us first review the push up/push down dynamics. Each step of the dynamics depends
on the state of three noise variables, ξ+

site, ξ
+
dir, and ξ+

acc. The superscript + indicates that
the noises are associated with a “forward-time” MC dynamics, as implicit in Chapter 2.
An explicit distinction is necessary here since we will shortly introduce a corresponding
“reversed-time” MC dynamics. A dynamical step consists of four substeps:

1. Choose spin i = ceiling(ξ+
siteN) to modify.

2. Construct a trial state by setting spin i equal to 1 if ξ+
dir > 0.5 and −1 otherwise.

3. Compute ∆(βE), the difference in reduced energy between the original configuration
and the trial.

4. Accept the spin flip if ξ+
acc < (1 + exp(∆(βE)))−1.

As in Chapter 2, N is the number of lattice sites and β is the inverse temperature. When
each of the noise variables is drawn from a uniform distribution on [0, 1) at every timestep,
the resulting spins evolve under natural dynamics. The temperature T and magnetic field
h can be tuned as functions of time, and their effect naturally enters into the calculation of
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∆(βE). We write P0[σ(t), T (t), h(t)] for the probability distribution generated by natural
dynamics which is subject to the protocol defined by T (t) and h(t), and we sometimes refer
to this as the probability of trajectory σ(t) in the forward direction.

Note that any forward trajectory can be obtained by many different noise histories. To
see this most clearly, consider a single timestep of the forward dynamics. Without loss of
generality, let us assume that ξ+

site lies on [0, 1/N), so we choose to act on spin 1. This noise
could be any value on that interval without affecting the behavior of the trajectory. Similar
logic can be applied to both ξ+

dir and ξ+
acc. For any possible MC step, say a step that pushes

spin 1 up and accepts the spin flip, the probability of carrying out the step is the product of
the sizes of the intervals from which the three ξ+ variables could have been drawn to induce
the outcome. This probability, when multiplied over all steps, yields the total probability
that a trajectory will propagate from its initial to final state.

To compute the dissipation, it is necessary to also define a reverse dynamics, which prop-
agates a trajectory σ(t) backwards in time. This reverse dynamics applies the time-reversed
protocol, but otherwise proceeds via the same four substeps as the forward dynamics: pick
a spin, push the spin up or down, compute the energy change, conditionally accept. At
every timestep, we must compute the probability that a forward move will be exactly un-
done. If the forward move chose spin i, that means the reverse move must also choose spin
i. A forward move that pushes spin i up, however, must be paired with a reverse move
which attempts to push it down. In both of these cases, the probability of the selection in
the forward direction exactly equals the necessary time-reversed selection; the probability of
picking every site is equal and the probability of picking either direction is 1/2. The forward
and reversed probabilities differ, however, since the spin flip in substep 4 will be more likely
to proceed one direction than the other. If ∆(βE) is the entropy produced by a forward
step, then the relative probability of the forward to reverse step will be e−∆(βE). Thus the
dissipation can be computed as

ω = ln
ρss(σ0, T0, h0)

ρss(σtobs
, Ttobs

, htobs
)
−

Ntobs∑
i=1

(
E
(
i
N

)
T
(
i
N

) − E
(
i−1
N

)
T
(
i−1
N

)) . (D.1)

E(t) is the energy of the Ising lattice at time t, where the unit of time is taken to be a MC
sweep consisting of N MC moves. Note that when T (t) and h(t) are constant in time and
ρss is taken to be the Boltzmann distribution, ω = 0.

We have shown how to relate the probability of forward and reverse trajectories in Ising
dynamics, but it is convenient to also introduce a noise history that realizes the reverse-time
trajectories. This noise history, consisting of ξ−site, ξ

−
dir,, and ξ−acc at every MC step, enables

reverse-shooting TPS moves. We give an algorithm for generating these reversed-time noises
that appears slightly complicated, but can be understood simply. Every time a forward
step is taken, a reverse noise is drawn which will undo that step. That way we can carry
out MC dynamics in the reversed-time direction using those reversed-time noises. We can
incorporate the generation of the ξ−’s into every forward MC step as follows:

1. Choose spin i = ceiling(ξ+
siteN) to modify.
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2. Draw ξ−site uniformly from [(i− 1)/N, i/N).

3. Construct a trial state by setting spin i equal to 1 if ξ+
dir > 0.5 and −1 otherwise.

4. If the trial move does not alter the state of spin i, i.e., pushing up a spin that’s already
up or pushing down a spin that’s already down:

(a) Choose ξ−dir = ξ+
dir.

(b) Choose ξ−acc uniformly from [0, 1).

(c) Advance to the next timestep because the move does not alter spin i.

4. Compute ∆(βE), the difference in reduced energy between the original configuration
and the trial.

5. Accept the spin flip if ξ+
acc < (1 + exp(∆(βE)))−1.

6. Select ξ−dir uniformly from [0, 0.5) if spin i ended in the up state. Otherwise select
uniformly from [0.5, 1).

7. If the forward move was an accepted spin flip, uniformly select ξ−acc from [0, (1 +
e−∆(βE))−1). Otherwise select from [(1 + e∆(βE))−1, 1).

The reversed time dynamics follows the same 7 substeps except that each ξ+ is replaced by
the corresponding ξ− and the time reversed protocol is applied.

D.2 Path Sampling

Path sampling is performed by a series of shooting-like moves, which first symmetrically per-
turb the noise history then re-propagate MC dynamics in the forward or reversed direction.
Here we detail the moves and derive the acceptance probabilities necessary to sample the
trajectory space with a dissipation bias,

Pλ[σ(t),Λ(t)] ∝ P0[σ(t)|Λ(t)]e−λω[σ(t),T (t),h(t)] (D.2)

Noise Perturbations

In Chapter 2 we discussed one particular way to perturb the noise history in a symmetric
manner. At every time step, we reused the old value of noise with probability 1 − ε and
otherwise uniformly drew new noise from [0, 1). The parameter ε could be tuned to adjust
the strength of correlations. We call this noise perturbation symmetric because P (ξ → ξ̃) =
P (ξ̃ → ξ), where ξ̃ is the noise variable for a trial MC move as in the main text. Because the
noises sample a uniform distribution, this symmetric generation probability is equivalent to
obeying the principle of detailed balance in noise space,

P (ξ)P (ξ → ξ̃) = P (ξ̃)P (ξ̃ → ξ). (D.3)
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In Chapter 3 we employ a different, but also symmetric, noise perturbation scheme. Before
evolving some forward (backwards) MC dynamics, one of three noise perturbations is applied
with equal probability to alter the forward (backwards) noises starting from a shooting time
and passing to the end (beginning) of the trajectory.

1. All values of ξsite, ξdir, and ξacc are uniformly resampled from the unit interval.

2. At each MC timestep the value of ξsite is uniformly resampled from [0, 1) with proba-
bility εsite.

3. At each MC timestep, the value of ξacc performs a random walk on the unit interval
with periodic boundary conditions. Each attempted step in ξacc is uniformly chosen
from [−εacc, εacc].

These schemes are sufficient to ensure ergodicity in noise space, but by selecting small values
of εsite and εacc, strong noise correlations can be maintained.

Shooting Moves

Shooting moves update all or part of a trajectory by re-evolving dynamics with a noise history
which is highly correlated with the previous trajectory. We retain forward and reverse noise
histories for all trajectories, regardless of whether the trajectory was initially generated
via forward or reversed dynamics. Thus we can slightly perturb the reversed noises when
attempting to re-propagate dynamics in the time-reversed direction, and we can perturb the
forward noises when attempting to re-propagate dynamics in the forward direction.

Forward Shots

A time between 0 and tobs is selected uniformly and designated the shooting time. From this
shooting time, the forward noises are symmetrically perturbed as described above, and the
push up/push down dynamics is propagated until the end of the trajectory to give a trial
trajectory, σ̃(t). It is straightforward to show that to sample the distribution in Eq. (D.2),
the acceptance rate for forward shooting moves must be

Pacc[σ(t)→ σ̃(t)] = min
[
1, e−λ(ω̃−ω)

]
, (D.4)

where ω is the dissipation of the old trajectory and ω̃ is the dissipation of the new.

Reverse Shots

A time between 0 and tobs is selected uniformly and designated the shooting time. From this
shooting time, the reverse noises are symmetrically perturbed as described above, and the
push up/push down dynamics is propagated backwards in time until time 0 to give ˜̂σ(t). The
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time reversal of this trajectory, σ̃(t), is the trial trajectory for the reverse shooting move,
which is accepted with probability

Pacc[σ(t)→ σ̃(t)] = min
[
1, e(1−λ)(ω̃−ω)

]
. (D.5)

Because we generated ˜̂σ(t) from the reverse-time dynamics but we want the probability of
the forward-time trajectory σ̃(t), the acceptance probability acquires an additional factor
of eω̃−ω, which was absent in the forward shooting move acceptance probability, Eq. (D.4).
This extra factor can be derived following the same steps that led to Eq. (C.9).

Crooks Shot

The Crooks shooting move [31] is a forward shooting move which re-propagates dynamics
starting from time 0 but using a different initial condition. A distinct initial condition is
generated with ordinary equilibrium Ising dynamics using the temperature T0 and field h0 of
the initial time. This new initial condition is propagated forward in time using a correlated
noise history, precisely as in a forward shooting move. Resampling the initial condition does
not affect the acceptance probability, so like the forward shooting move, the Crooks shooting
move is accepted with probability

Pacc[σ(t)→ σ̃(t)] = min
[
1, e−λ(ω̃−ω)

]
. (D.6)

D.3 Protocol Sampling

The values at the protocol at the initial and final times are held fixed, but Monte Carlo moves
modify the protocol at all other times to sample the protocol space. To prevent protocols
which ramp the temperature or magnetic field too rapidly, we further constrain the protocols
to those which are piecewise linear with nine linear segments. In other words, we parametrize
the protocol space by its value at ten evenly spaced times from 0 to tobs. We call these times
the control points. The full protocol Λ(t) is obtained by linearly extrapolating between
control points.

A Monte Carlo move uniformly selects one of the eight interior control point (the first
and last control point are fixed) and tries to symmetrically modify either the temperature
or the magnetic field by adding a uniform random number drawn from the interval [−δ, δ],
with δ a parameter affecting the size of jumps in protocol space. If the modification exits the
allowed range of protocols (for example the temperature is made negative), then the move is
rejected. Otherwise the full trial protocol Λ̃(t) is constructed by generating piecewise linear
T and h which pass through the modified control point. We can propose and conditionally
accept the protocol move Λ(t) → Λ̃(t) so as to sample the distribution in Eq. (D.2), but
the acceptance probability will involve computing P0[σ(t)|Λ̃(t)]. In words, this is the prob-
ability of generating the old trajectory, given the new protocol. Typically, this conditional
probability will be very small, so it is more efficient to update the protocol in concert with
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the trajectory, proposing {σ(t),Λ(t)} → {σ̃(t), Λ̃(t)}. The trial protocol is generated as
previously described, and the trial trajectory is obtained with a forward shooting move from
the initial timestep, using the new protocol to propagate dynamics. More explicitly, σ̃0 is
set to σ0 then σ̃(t) is generated using σ(t)’s noise history (or a noise history symmetrically
perturbed about it). With this construction,

Pacc[{σ(t),Λ(t)} → {σ̃(t), Λ̃(t)}] = min
[
1, e−λ(ω̃−ω)

]
. (D.7)
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Appendix E

Ring Network with Heterogeneity
Scaled Cumulant Generating Function

Were it not for the heterogeneous link connecting sites 1 and N , the tilted operator would
have a translational symmetry, making its explicit diagionalization trivial in a Fourier basis.
We construct a 1/N expansion of ψω,K(λ, s) by expanding around around the maximum
eigenvalue of the translationally symmetric network,

ψω,K(λ, s) = x1−λe−s + xλe−s − 1− x+
γe−s(xλ − x1−λ)

N
+ . . . , (E.1)

Recall from the main text that we write the elements of the maximal eigenvector as (f1, f2, . . . fN)
and (

fi

fi+1

)
=

(
ψ+1+x
e−sx1−λ −x2λ−1

1 0

)(
fi+1

fi+2

)
= B

(
fi+1

fi+2

)
. (E.2)

Because of the translational symmetry of the network, the same transition matrix B relates
almost all pairs of neighboring fi’s. The heterogeneous link requires that we also introduce
transfer matrices A1 and A2 given by

A1 =

(
ψ+x+h2

e−sh1−λ
1 hλ2

− xλ

h1−λ
1 hλ2

1 0

)

A2 =

(
ψ+h1+1
e−sx1−λ −hλ1h

1−λ
2

x1−λ

1 0

)
. (E.3)

Because the network is arranged in a ring, propagations around the full loop must map
(f1, f2) onto itself, such that the transfer matrices must satisfy the boundary condition

BN−2A2A1

(
f1

f2

)
=

(
f1

f2

)
, (E.4)
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which requires that BN−2A2A1 posses a unit eigenvalue in the N → ∞ limit. We use
this condition to determine the 1/N expansion coefficient γ as a function of λ and s. Since
ψω,K(λ, s) = ψω,K(1−λ, s) we focus on the case x > 1 and λ < 1/2 without loss of generality.
It is convenient to write B in its eigenbasis after inserting the 1/N expansion of Eq. (E.1)
where only the larger of the two eigenvalues will survive the large N limit,

lim
N→∞

BN−2 =
e−γ

1− x2λ−1

(
1 −x2λ−1

1 −x2λ−1

)
(E.5)

Since we are interested in the large N behavior and there is only a single term of A1

and A2 in the product, we can comfortably neglect the 1/N term in the A matrices. The
condition that BN−2A2A1 has a unit eigenvalue requires

γ = ln

[
x2(1−λ) + (−h1h2 + e2s(h2 − 1)(h1 − x)) + es(h1 + h2 − 1− x)x1−λ

h1−λ
1 hλ2(x1−λ − xλ)

]
(E.6)

Note that γ diverges when the numerator of the argument of the logarithm has a root, in
which case ψω,K(λ, s) departs significantly from the corresponding value in the translationally
symmetric network. The values of λ and s for which γ first diverges provides the line
of cusps given in Eq. (5.7) of the main text. As shown in the main text, the value of
ψω,K(λ, s) everywhere follows. When γ does not diverge, the large N behavior coincides
with the translationally symmetric result. Otherwise the behavior can be determined from
the behavior of that translationally symmetric result along the curve s∗(λ).
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Appendix F

Analytical Treatment of the Triangle
Network

Based on the numerical results for the triangle network, we anticipate that the same structure
of delocalized and localized states will exist in the triangle network. To see this we construct
the delocalized state from the solution to the translationally symmetric network and we
construct the localized state using an ansatz that the eigenvector have bound state character
as in the ring network. With this ansatz the form for ψω(λ) can be reduced to the solution to a
nonlinear system of two equations and two unknowns that can be rapidly solved numerically.

Translationally Symmetric Network

In the case of the triangle network with translationally symmetry, Wω(λ) can be exactly
diagonalized by a discrete Fourier transform. If we number the sites in a zigzag fashion
around the chain such that odd sites fall on the base of the triangles and even sites are at
the points, then the right eigenvector takes the form

|q〉 =
(
1, v, e2qπi/N , ve2qπi/N , e4qπi/N , . . . , ve2qπ(N−1)i/N

)
.

The constant factor v, which must be solved for, accounts for the fact that the odd and even
sites are not identical by symmetry. The q = 0 eigenvalue is simple to compute, yielding the
scaled cumulant generating function for the translationally symmetric triangle network,

ψ4ts
ω (λ) =

1

2

(
− 2− x− y +

√
(x− y)2 + 4(1 + xλy1−λ)(1 + x1−λyλ)

)
. (F.1)

The4 symbol indicates that this function is for the triangle network, and the ts indicates the
translationally symmetric network. Interestingly, the rate b does not appear and therefore
cannot influence the distribution of entropy production rates in this network. This is true
even in the limit that b so large that the most likely pathways tend to flow along the b links
while avoiding the triangular excursions.
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Localized State Ansatz

In the thorough study of the ring network we saw that the introduction of a symmetry-
breaking h link induces a transition between a delocalized and localized state. The delocal-
ized state has a right eigenvector whose components have roughly equal magnitudes all the
way around the ring. Indeed, in the large N limit we saw that this delocalized state converges
to the solution for the translationally symmetric network. In addition to the delocalized state
there is a localized one, whose right eigenvector has components that exponentially decay as
a function of distance from the h link. This was shown formally with transfer matrices for
the ring network, but for the more complicated triangle network we can just introduce this
structure as an ansatz. We therefore anticipate a cusp at some value λ∗ where ψ4ts must
crossover the eigenvalue of a bound state, ψ4b.

Because the rates are chosen to drive net flows clockwise, the exponential decays are
generally not equal in opposite directions from the h link. We can introduce these decays by
the constants c1 and c2 with the ansatz that the right eigenvector of Wω(λ) take the form

v =





c1

v1c1

c2
1

v1c
2
1

...

cN1
v1c

N
1

cN+1
1


+ a



cN+1
2

v2c
N
2

cN2
v2c

N−1
2
...

c2
2

v2c2

c2




(F.2)

The additional constants, v1 and v2, are necessary because even and odd sites are not related
by symmetry. The eigenvalue relation, Wω(λ)v = ψ4b

ω (λ)v, gives a system of N+1 equations
with 6 unknown parameters, a, v1, v2, c1, c2, and ψ4b

ω . In the N → ∞ limit we can neglect
cN1 and cN2 since the c’s are less than one. We choose six of the equations in the eigenvalue
relation to yield a messy, but fully determined, system,

c1ψ
4b = bc2

1 − c1(1 + b+ h) + ac2h+ c1v1

c1v1ψ
4b = c1 − c1v1(1 + x) + c2

1x
λy1−λ

c2
1ψ
4b = bc3

1 + bc1 + c2
1v1 − c2

1(1 + 2b+ y) + c1v1x
1−λyλ

ac2
2ψ
4b = bac2 + bac3

2 + ac2v2 − ac2
2(1 + 2b+ y) + ac2

2v2x
1−λyλ

av2c2ψ
4b = ac2

2 − ac2v2(1 + x) + ac2x
λy1−λ

ac2ψ
4b = bac2

2 + c1h− ac2(b+ h+ y) + ac2v2x
1−λyλ

(F.3)
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It is possible to algebraically solve for ψ4b
ω , v1 and v2 in terms of c1 and c2 alone.

ψ4b
ω =

1

2

(
v2x

1−λyλ + v1 − y − 1 + b (c1 + c2 − 2)− 2h
)

+
1

2

√
(v2x1−λyλ − v1 − y + 1− b (c1 − c2))2 + 4h2 (F.4)

v1 =
1

2
c1 (y − x+ 2b− c1)− b

+
1

2

√
4c1 (1 + c1xλy1−λ) (1 + c1x1−λyλ) + (c1 (y − x+ 2b− c1)− b)2 (F.5)

v2 =
1

2
c2 (y − x+ 2b− c2)− b

+
1

2

√
4c2 (1 + c2xλy1−λ) (1 + c2x1−λyλ) + (c2 (y − x+ 2b− c2)− b)2 (F.6)

By also eliminating a, this leaves a system of two coupled nonlinear equations for c1 and
c2, {

ψ4b
ω v1c1 = c1 − c1v1(x+ 1) + v2

1x
λy1−λ

ψ4b
ω v2c2 = c2

2 − c2v2(x+ 1) + c2x
λy1−λ,

(F.7)

This system can be solved numerically. The resulting values of c1 and c2 give the bound state
scaled cumulant generating function, ψ4b

ω , via Eq. (F.4). As plotted in Fig. 5.8, this localized
branch crosses the translationally symmetric branch at λ∗, demonstrating that the cusp in
ψ for the broken symmetry triangle network emerges for the same mathematical reasons as
in the ring network. Namely, the singularity occurs at a transition between localized and
delocalized eigenvectors.

In this presentation we have just accepted that the delocalized state will converge to
the translationally symmetric solution in the large N limit. This can be confirmed with a
delocalized state ansatz of the same form as Eq. (F.2) but with c1 = exp(γ/N) such that cN1
cannot be neglected. The result of that ansatz is another system of six equations with six
unknowns, whose solution gives the translationally symmetric cumulant generating function.



100

Bibliography

[1] Rosalind J. Allen, Chantal Valeriani, and Pieter Rein ten Wolde. “Forward flux sam-
pling for rare event simulations”. Journal of Physics: Condensed Matter 21, 463102,
2009.

[2] Rosalind J. Allen, Patrick B. Warren, and Pieter Rein Ten Wolde. “Sampling rare
switching events in biochemical networks”. Physical Review Letters 94, 018104, 2005.

[3] Rosalind J. Allen et al. “Homogeneous nucleation under shear in a two-dimensional
Ising model: Cluster growth, coalescence, and breakup”. The Journal of Chemical
Physics 129, 134704, 2008.

[4] Bernhard Altaner, Artur Wachtel, and Jürgen Vollmer. “Fluctuating Currents in
Stochastic Thermodynamics II. Energy Conversion and Nonequilibrium Response in
Kinesin Models”. arXiv preprint arXiv:1504.03648, 2015.

[5] Hans C. Andersen, David Chandler, and John D. Weeks. “Roles of repulsive and
attractive forces in liquids: the equilibrium theory of classical fluids”. Advances in
Chemical Physics 34, 105, 1976.

[6] Hans C. Andersen, John D. Weeks, and David Chandler. “Relationship between the
hard-sphere fluid and fluids with realistic repulsive forces”. Physical Review A 4, 1597,
1971.

[7] Christophe Andrieu and Gareth O. Roberts. “The pseudo-marginal approach for ef-
ficient Monte Carlo computations”. The Annals of Statistics, 697–725, 2009.

[8] Thomas E. Angelini et al. “Glass-like dynamics of collective cell migration”. Proceed-
ings of the National Academy of Sciences 108, 4714–4719, 2011.
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