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Abstract

Magnetohydrodynamic simulations of AM CVn accretion disks

by

Bryance Oyang

This thesis presents our results of global 3D magnetohydrodynamic (MHD) simula-

tions of AM Canum Venaticorum (AM CVn) accretion disks. We discuss our numerical

methods and tools in developing these simulations. We also discuss some of our attempts

and challenges faced when including radiation, and the numerical lessons learned along

the way.

We find that our 3D MHD simulations fail to develop eccentric disks needed to ex-

plain the phenomenon of superhumps, present in the observations of the AM CVn we

modeled. To investigate this, we develop an eccentricity conservation equation and use

it to understand eccentricity evolution in computationally cheaper 2D and 3D alpha disk

simulations. We find that both high alpha values of 0.1 and low scale height of 2.5%

are needed for the growth of eccentricity in our system. The high alpha spreads the

disk to large radii where tidal coupling with spiral waves can grow eccentricity. A low

scale height is needed because we find that vertical pressure forces damp eccentricity. We

also find that the Maxwell stresses in the 3D MHD simulation act to damp eccentricity,

whereas the viscosity in the alpha disk simulations acts to grow eccentricity, a key dif-

ference between the MHD and alpha disk simulations. These findings act as constraints

for future 3D MHD simulations seeking to model these systems more accurately.
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Chapter 1

Introduction

The original goal for this thesis was to run radiation magnetohydrodynamic (MHD) sim-

ulations of an AM Canum Venaticorum (AM CVn) accretion disk with realistic opacities,

temperatures, and equations of state, sourcing the accretion disk’s gas entirely from the

L1 point of the binary system and allowing the system to reach inflow equilibrium. This

proved to be too computationally difficult to do at the present time. Nevertheless, im-

portant lessons were learned from these attempts that may enable future simulations of

this sort to be done, and we present some of these lessons in this thesis.

We instead pivoted to exploring the superhump phenomenon observed most promi-

nently in dwarf nova superoutbursts. This again proved challenging as the MHD simula-

tions did not generate eccentric accretion disks, which are responsible for the superhumps.

To understand the lack of eccentricity growth better, we developed an eccentricity evo-

lution equation and used α disk simulations to survey the parameter space of α and disk

temperature. These works result in a better understanding of why the MHD simulations

fail to generate an eccentric disk and provide important constraints on MHD simulations

if they are to be used to understand and model accretion disks in nature. They also pro-

vide clues for the mechanisms behind the characteristics and generation of superhumps,
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Introduction Chapter 1

which can be elucidated further in future MHD simulations that do produce eccentric

disks.

1.1 Simulating accretion disks

Accretion disks form as a result of the conservation of angular momentum, and are

found throughout nature. Gas with nonzero angular momentum is pulled by gravity

towards the accretor and dissipates energy to form a disk. Through an outward trans-

port of angular momentum, these disks efficiently convert gravitational energy of the

gas into heat and radiation, allowing these disks to be observed, and causing the gas to

spiral inwards towards the accretor. However, the exact nature of the angular momen-

tum transport is not completely well-understood. Ordinary gas molecular viscosity is far

insufficient to provide the angular momentum transport needed to explain the observa-

tions. Shakura & Sunyaev (1973) [1] proposed the famous alpha disk model, in which

the angular momentum transport occurs through a contrived effective viscous stress with

kinematic viscosity ν = αcsH, where α is a parameter, cs is the sound speed, and H

is the disk scale height. Later, Balbus & Hawley (1991) [2] proposed a first-principles

based explanation for the effective viscosity: a weak magnetic field in the disk causes

the magnetorotational instability (MRI), which makes the accretion disk turbulent and

thereby angular momentum is transported through Maxwell and Reynolds stresses.

Due to the nonlinear nature of the MRI turbulence, MHD simulations are needed

to fully model and understand accretion disks. Accretion disks in white dwarf binaries

are good candidates for simulations seeking to study accretion disk physics, due to their

small dynamic range and fast timescales, and good observational constraints. Dwarf nova

outbursts, where the luminosity of the system can rise by a factor of 100 before dropping

back to quiescence, provide estimates for α, with α ∼ 0.1 during outburst and α ∼ 0.01
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Introduction Chapter 1

in quiescence as modeled by the disk instability model (DIM) [3, 4]. The fueling of these

disks is also well understood. The donor star overflows its Roche lobe, transferring mass

via an accretion stream from the inner L1 Lagrange point. The stream carries angular

momentum and hence forms a disk structure around the primary accretor. In recent

years, several global 3D MHD simulations of cataclysmic variable (CV) stars have been

done, first with vertically unstratified models by Ju, Stone, and Zhu (2016, 2017) [5, 6]

and then fully stratified models by Pjanka & Stone (2020) [7].

In this thesis, we choose to simulate AM CVn accretion disks. AM CVns are similar

to CVs, but are helium dominated ultra compact binary stars undergoing mass transfer

through Roche lobe overflow. The primary is a white dwarf, and the secondary is either

a white dwarf or helium star. They have orbital periods from a few minutes to about

an hour. Their ultra compact nature makes them good targets for global 3D MHD

simulations of accretion disks: we can simulate the entire disk from the fueling from the

L1 point down to the primary white dwarf surface due to the small dynamic range, and

their short timescales limit the computational costs.

1.2 Superhumps

Superhumps are a periodicity slightly longer than the orbital period observed in

the lightcurves of SU UMa stars but also AM CVns. They were first discovered in

larger outbursts of SU UMa stars, called superoutbursts [8]. Superoutbursts are typi-

cally brighter and longer lasting than the normal dwarf nova outbursts, and their cause

is less well-understood. The superhumps tend to reach maximum amplitude after the

maximum brightness of the superoutbursts and then decline in amplitude [9]. They have

recently been detected even in quiescence in the Kepler lightcurve of V344 Lyr [10]. Their

lightcurve shape is that of triangular waves, sometimes with two peaks, one larger and

3



Introduction Chapter 1

one smaller, per cycle.

Kato et al. (2009) [11] classifies the period evolution of superhumps during outburst

into three distinct stages: A, B, and C. Superhumps first appear in stage A with a long

constant period, then they transition to stage B with an initially shorter period but a

positive Ṗ , and finally end with stage C with a short stable period. The period usually

changes discontinuously between these stages. Explaining the observational features of

the superhumps should be a goal of global 3D MHD simulations of white dwarf accretors.

The theoretical explanation for these superhumps is that the accretion disk is eccen-

tric. An eccentric accretion disk will undergo prograde apsidal precession. This results

in the secondary returning to the same position relative to the disk periapsis at a slightly

later time than the orbital period, resulting in the superhump period excess. Evidence

of eccentric accretion disks in these systems was first shown in simulations [12]. Later,

Lubow (1991) [13] provided an analytic explanation for the generation of an eccentric

accretion disk in binaries. In this mechanism, the tidal forces produce distortions in the

disk of the form eim(φ−Ωpt). These tidal disturbances then couple with any small seed

eccentricity to launch waves of the form ei(m−1)φ−mΩpt. These waves interact with the

tidal forces to grow the eccentricity exponentially. It is believed that the presence of

the 3:1 orbital resonance within the disk is important for the resonant excitation of the

waves leading to the growth of eccentricity and hence existence of superhumps in these

systems.

1.3 Simulation setup

We choose to model our system after the AM CVn SDSS J190817.07+394036.4 (KIC

004547333) discovered in Fontaine et al. (2011) [14]. We use their binary period of

938.5 s, though Kupfer et al. (2015) [15] determined a different orbital period through
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Introduction Chapter 1

Figure 1.1: Structure of binary system

spectroscopic measurements. The mass ratio of this AM CVn is q = 0.1. This system is

believed to be a high-state system and is observed to have superhumps. A sketch of the

structure of our binary system is shown in Figure 1.1.

We use a spherical simulation domain centered on the primary white dwarf, and

truncate it radially at the L1 point and the primary’s surface. We use a rotating frame

so that the L1 point is stationary on the boundary. The accretion stream is simulated

with a boundary condition at the L1 point to feed both gas and magnetic field into the

simulation domain. The stream self-intersects and forms a torus at the circularization

radius, which slowly spreads through angular momentum transport to form the accretion

disk.

1.4 Permissions and Attributions

1. The content of chapter 3 is the result of a collaboration with Yan-Fei Jiang and

Omer Blaes, and has previously appeared in the Monthly Notices of the Royal

Astronomical Society as Oyang et al. (2021) [16].
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Chapter 2

Numerical methods and challenges

This chapter will discuss the methods and numerical tools employed for the simulations

we ran. These simulations are partial differential equation (PDE) solvers, and though

many codes exist for this purpose, they often do not work out of the box for a particular

problem. Numerical techniques and tricks must usually be employed to make these sim-

ulations possible, but these are rarely discussed in the published literature of simulations

as they would distract from the main scientific content. However, an understanding of

the numerical codes and techniques were vital for resolving the difficulties encountered

in running our simulations, and this chapter will discuss some of these.

The code we used to do our simulations was Athena++ [17]. Though the numerical

methods discussed here are general, our implementation and discussion is with Athena++

in mind.
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2.1 Method overview

The equations we solve in our simulations are

∂tρ+∇ · (ρv) = 0 (2.1a)

∂t(ρv) +∇ ·
(
ρvv − BB

4π

)
= −∇

(
P +

B2

8π

)
− ρ∇Φ + 2ρv ×Ω (2.1b)

∂t

(
1

2
ρv2 +

B2

8π
+ uint

)
+∇ ·

((
1

2
ρv2 + uint + P

)
v +

1

4π
B× (v ×B)

)
= −ρ∇Φ · v (2.1c)

∂tB = ∇× (v ×B) (2.1d)

These can be abstractly represented as

∂tC
j +∇iT

ij = Sj (2.2)

where Cj represents the volume-density of the j-th conserved quantity per volume, T ij

is its associated current in the i-th spatial direction which is itself a function of the C,

and Sj are additional source terms.

The finite-volume method subdivides the simulation domain into cells, each with

a finite volume as the name suggests, and tracks the volume-averaged density of each

conserved quantity within each cell. We give a brief simplified description of the method

here with one conserved quantity with no source terms and a uniform grid, but it can

easily be extended for the general case.

i− 1/2 i+ 1/2

i i+ 1i− 1 Ji−1/2 Ji+1/2

7



Numerical methods and challenges Chapter 2

We can volume integrate the conservation equation ∂tC + ∂xJ = 0, where J is a

function of C, over a cell to get

∂t

∫
cell i

C d3x = Ji−1/2 ∆Ai−1/2 − Ji+1/2 ∆Ai+1/2 (2.3)

where ∆A represents the cell-face areas between cells. This motivates the discretized

update to be

Ci +=
∆t

∆Vi

(
Ji−1/2 ∆Ai−1/2 − Ji+1/2 ∆Ai+1/2

)
(2.4)

where Ci is the volume-averaged C, ∆t is the numerical timestep, and ∆Vi is the ex-

act cell volume. The currents J must be computed suitably from their neighboring C.

Note that the same flux Ji−1/2 ∆Ai−1/2 appears as a positive quantity for Ci but appears

as a negative quantity for Ci−1, and hence will cancel in the numerical volume integra-

tion
∑

i ∆Ci ∆Vi at every timestep. This gives the main advantage of the finite-volume

method: the total volume-integrated amount of the conserved quantity remains constant

in time to machine precision, up to fluxes at the simulation boundaries which depend on

boundary conditions.

In the Gudonov scheme, the currents at cell faces J are found by solving Riemann

problems. For example, to compute Ji−1/2, both Ci−1 and Ci are interpolated to the

(i − 1/2) face, resulting in left and right states Cl, Cr at the interface, a step called

reconstruction. Commonly used reconstruction schemes in Athena++ are the second-

order accurate piecewise-linear and fourth-order accurate piecewise-parabolic [18] meth-

ods (PLM and PPM) which are specially designed to maintain numerical stability. In

practice, Athena++ applies reconstruction to either the primitive or characteristic vari-

ables, rather than the conserved variables. The current Ji−1/2 is taken to be the time-

8
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averaged current at the interface for the solution to the Riemann problem involving

Cl, Cr.

In practice, approximate solutions to the Riemann problem are used with minimal

impact on the overall numerical accuracy with greatly improved computational costs.

Famous classes of approximate Riemann solvers are the Roe solver and the HLL family

of solvers, both implemented in Athena++.

Using more accurate Riemann solvers and reconstruction methods can result in sig-

nificantly less numerical diffusion even if the formal convergence is the same, though at

a greater risk for numerical artifacts.

The magnetic field evolution is done with the constrained-transport (CT) method [19]

in Athena++. Rather than tracking the average volume-density of a conserved quantity

at cell center, Athena++ tracks the average area-density of magnetic flux at face center,

which is just the corresponding component of B. Instead of computing currents J at

cell-faces, electric field components are computed at cell edges, and the numerical curl

∇×E is used to update B. The CT method results in numerically conserving magnetic

fluxes (up to boundary conditions) and hence ∇ · B to machine precision. Simulations

initialized with ∇·B = 0, typically by taking the numerical curl of a vector potential A,

will maintain the divergence free constraint to machine precision.

As is common with hyperbolic partial differential equation solvers, the timestep in

the explicit finite-volume method is limited by the Courant–Friedrichs–Lewy (CFL) con-

dition. Intuitively, this means that the fastest moving wave cannot travel farther than a

single cell in one timestep. For our simulations, the gas is highly supersonic, and the cell

size is smallest in the innermost parts of the disk, so the timestep is usually determined

by the motion of the gas at the innermost radii, or for the magnetically dominated cases,

the fast magnetosonic wave speed in the lower density cells near the innermost radii.

We note that if the typical cell dimension is ∆x, then the CFL condition usually forces

9
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the timestep to scale as ∆t ∼ ∆x while the number of cells in 3D scales as ∼ 1/∆x3.

Hence the computational cost usually scales as ∼ 1/∆x4 in 3D. For our spherical polar

geometry, there is an additional complication that increasing the θ resolution also forces

cell centers near the poles closer together, which can result in an even worse scaling for

the timestep ∆t. This problem can be alleviated with the use of static mesh refinement,

making the polar regions lower resolution since the disk mostly resides near the midplane.

2.2 Source terms

In addition to the fluxes given by the Riemann solver, the hydrodynamic equations

typically also involve additional source terms. The geometric source terms arise whenever

a non-cartesian coordinate system is used, as was done in our simulations. Gravity and

radiation effects must also be implemented numerically. We refer the reader to [20] for a

thorough description of the radiation implementation.

We first describe our implementation of the gravitational source term, which was

designed to conserve total energy including gravitational to machine precision. The

idea is to first use a frame in which the potential Φ is independent of time, which was

accomplished by choosing the frame co-rotating with the binary centered on the primary.

The conservation equation for total energy including gravitational can then be written

∂t(E + ρΦ) +∇ · (JE + ρΦv) = 0 (2.5)

where E = ρv2/2+B2/8π+uint is the MHD total energy and JE is its associated current

(computed numerically by the Riemann solver, also see (2.1c)). Athena++ tracks the

MHD energy E, so our source term must be designed to update this variable. Since (2.5)

is already in conservative form, the finite-volume method can guarantee conservation of

10
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the quantity E+ ρΦ to machine precision provided we compute the divergence ∇· (ρΦv)

using only face-centered values. With the additional identity ∂t(ρΦ) = −Φ∇ · (ρv), this

motivates the following numerical scheme for the i-th cell

Ei += ∆t

(
Φi

[Jρ]i+1/2∆Ai+1/2 − [Jρ]i−1/2∆Ai−1/2

∆V

−
[Jρ]i+1/2Φi+1/2∆Ai+1/2 − [Jρ]i−1/2Φi−1/2∆Ai−1/2

∆V

)
(2.6)

for the energy update for gravity in one-dimension, where [Jρ] means the mass current

returned by the Riemann solver, ∆V is the exact cell volume, and ∆A are the exact face

areas. The extension to multiple dimensions is simply done by including the additional

faces for these two divergence terms.

The geometric source terms are most easily understood in a coordinate basis. The

divergence of a tensor can be written as

∇iT
ij = ∂iT

ij + ΓiikT
kj + ΓjikT

ik (2.7)

=
1

V
∂i(V T

ij) + ΓjikT
ik (2.8)

where V is the determinant of the Jacobian. The first term gives the flux-divergence, and

the second term is named the geometric source term. Intuitively, the geometric source

term accounts for the spatial change of the basis vectors, for example, correcting for the

fact that the r̂ vector at cell-face is not the same as the r̂ vector at cell-center for the θ and

φ faces in spherical polar geometry. The discretized version of the geometric source terms

can be implemented by evaluating T ik using cell-center values and the analytic form that

appears in the divergence part of the fluid equations, and an appropriate approximation

for Γjik. However, modifications were made to this scheme in Athena++ by Ju, Zhu, and

Stone to improve angular momentum conservation, a topic discussed in more detail in

11
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section 2.3

The coriolis term was implemented similarly to the Crank-Nicholson scheme (semi-

implicit) to simultaneously achieve second-order accuracy in time and to numerically

conserve the kinetic energy to machine precision (which the coriolis force does in nature).

We convert the continuous equation into the finite difference one as

∂tv = 2v ×Ω 7→ v(t2)− v(t1)

∆t
= 2

(
v(t1) + v(t2)

2

)
×Ω (2.9)

and solve for v(t2). In our spherical polar coordinates the result is

vr(t2) =
vr(t1)(1 + Ω2∆t2 cos 2θ)− Ω2∆t2vθ(t1) sin 2θ + 2Ω∆tvφ(t1) sin θ

1 + Ω2∆t2
(2.10a)

vθ(t2) =
vθ(t1)(1− Ω2∆t2 cos 2θ)− vr(t1)Ω2∆t2 sin 2θ + 2vφ(t1)Ω∆t cos θ

1 + Ω2∆t2
(2.10b)

vφ(t2) =
vφ(t1)(1− Ω2∆t2)− 2Ω∆tvr(t1) sin θ − 2Ω∆tvθ(t1) cos θ

1 + Ω2∆t2
(2.10c)

with θ evaluated at cell-center.

2.3 Angular momentum conservation in finite-volume

hydrodynamic codes

One of the disadvantages of finite-volume codes is their inability to simultaneously

conserve both linear and angular momentum. We note that the total angular momentum

of a fluid is equal to the angular momentum due to center of mass motion plus the angular

momentum about the center of mass, which we shall call spin. In Figure 2.1, we sketch

a situation in which spin angular momentum can be destroyed by the finite volume

method. The total momentum entering into the cell is zero, so the cell momentum is

12
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unchanged. However, there is a nonzero angular momentum flux entering into the cell,

which should physically result in spin angular momentum within the cell. However, since

the finite volume method only tracks the average momentum in the cell, this spin angular

momentum results in an error of angular momentum conservation.

T yx−

T xy+
T yx+

T xy−

x

y

Figure 2.1: Schematic sketch of a situation in which angular momentum is not con-
served in the finite-volume method. Fluid entering the cell results in net angular
momentum flux inward, but no net change in linear momentum. Advection of angu-
lar momentum from neighboring cells is hence lost.

If the cell in Figure 2.1 has dimensions ∆x×∆y×∆z, then the spin error rate in the

figure due to advection of angular momentum from neighboring cells is

∆x∆y∆z

2
(T yx− − T

xy
− + T yx+ − T

xy
+ ) ∼ ∆x∆y∆z (T yx − T xy) (2.11)

for Lz, assuming the net momentum advected is zero.

We can Taylor expand the T from cell-center to second order, for example

T xy+ ≈ T xy|cc +
∆x

2
∂xT

xy +
1

2

(
∆x

2

)2

∂2
xT

xy (2.12)

and use the fact that at each point in space T xy = T yx to find that our spin error rate in

13
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our cell is

≈ ∆x∆y∆z

8

(
(∆y)2 ∂2

yT − (∆x)2 ∂2
xT
)
∼ ∆x5 (2.13)

The number of cells in a simulation scales as ∼ 1/∆x3 so the total spin error rate in the

entire simulation domain will be ∼ ∆x2 assuming coherence between cells.

A simple solution to reduce the spin error is to increase the grid resolution. However,

this is costly in 3D. As explained earlier in section 2.1, the computational cost in 3D

typically scales with the fourth power of resolution ∼ 1/∆x4, and hence the spin error

should in theory scale inversely with the computational cost to the 1/2 power.

Modifications can be made to the discretized equations of motion to favor angular

momentum conservation over linear momentum conservation. Indeed this is what is done

in Athena++ for the cylindrical and spherical-polar geometries, through a modification

of the geometric source terms (see equation (2.15) of [21] and equations (18, 19) of [17]).

If spin errors were to occur in a single cell, linear momentum ∆p is added onto the fluid

in that cell (trading linear momentum conservation) to attempt to maintain angular

momentum conservation. However, this procedure cannot work for all components of

total angular momentum. As an example, in the case of spherical-polar coordinates,

cell-centered r angular momentum cannot be corrected in a single cell for the situation

where T θφ 6= T φθ simply because r×∆p never has an r component. Though the angular

momentum fluxes at cell faces due to T θφ or T φθ have no r component with reference

to the face-centered r̂ vector, they do have an r component with reference to the cell-

centered r̂ vector, which gives the uncorrectable part.

We can also understand the problem that arises with angular momentum conservation

with a continuum analogy, tracing the derivation of the angular momentum equation from

the momentum equation. Letting pk be the linear momentum per volume and T jk be its
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current through the j-th face, the basic equation for momentum conservation is

∂tp
k +∇jT

jk = 0 (2.14)

The angular momentum equation results by computing r×, or equivalently, multiplying

by ri and antisymmetrizing i↔ k

∂t(r
ipk − rkpi) +∇j(r

iT jk − rkT ji)− T jk∇jr
i + T ji∇jr

k = 0 (2.15)

In cartesian coordinates, we can work out that ∇jr
i = ∂jr

i = δij. Since δij is coordinate

independent, then for any coordinate system we arrive at

∂t(r
ipk − rkpi) +∇j(r

iT jk − rkT ji)− (T ik − T ki) = 0 (2.16)

This would be the angular momentum conservation equation, except for the last term.

The last term is 0 if and only if T ik = T ki; that is, the stress tensor must be symmetrical

for angular momentum to be conserved. This is always true in the continuum for nature 1,

but is not true in general for the analogous quantity (see Equation 2.11 and Figure 2.1)

in finite-volume codes due to the grid size.

This became a practical issue in the case of our radiation MHD simulation named

CVLoop1. In CVLoop1, the accretion disk, or more accurately accretion torus, was

entirely seeded from the accretion stream from the L1 point starting from t = 0. Initially,

the torus built this way behaved normally and circularized within the xy-plane. However,

within about t = 5 binary orbits, the torus began to tilt, acquiring an xy-component of

angular momentum. The evolution after 10 binary orbits is shown in Figure 2.2.

1An interesting fact: the stress tensor derived from translational invariance and Noether’s theorem
is not guaranteed to be symmetrical, but the Belinfante tensor is a modification that can guarantee
symmetry given rotational invariance
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Figure 2.2: CVLoop1: plot of total angular momentum compared with time-integrated
torques over time, showing that the x and y components of angular momentum are not
conserved, but the z component is conserved due to the modification of the geometric
source terms in Athena++. L0, L1, L2 refer to the x, y, z components of total angular
momentum in the simulation. Magnetic torques were negligible, and the result is
robust to the method of calculating torques: total torque: volume integrating all
torques except magnetic; total test torque: volume integrating all torques minus the
magnetic, but the Reynolds is computed as a surface integral at boundaries (

∫
da vrL);

total test2 torque: same as total test torque but also including magnetic torques.
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The cause of the tilt was this uncorrectable spin error, verified by differencing the

angular momentum fluxes from cell-faces with the resultant change of angular momentum

at cell-centers, and seeing that this difference explained the discrepancy in total torques

vs angular momentum evolution. The radiative cooling of the accretion stream caused the

stream to collapse vertically to within two vertical cells, despite the stream being initially

fed at high temperature at the simulation boundary. As a result, any spin errors occuring

within these two cells would constitute a significant fraction of the angular momentum

of the stream, and this occured at the impact point of the stream with the torus. As

the tilt worsened, the spin error also worsened to produce more xy-angular momentum

in the direction that increased the tilt, resulting in a worsening positive feedback loop.

Eventually, the tilt became large enough that the stream could only impact the torus

along the torus’s line of nodes, and the tilt was able to stabilize. We found in numerical

experiments that increasing the vertical resolution of the stream (by forcing a larger

temperature and/or adding additional grid resolution) prevented this tilt from occuring,

as fluid spin that would have been lost to a single cell in the under-resolved case could

be taken up by the momentum of fluid in additional cells with sufficient resolution.

A tilted accretion disk could potentially provide an explanation for negative su-

perhumps, but the mechanism for generating the tilt in CVLoop1 was unfortunately

not physical, instead resulting from numerical errors at the stream-disk impact point.

CVLoop1 is an example of a case in which numerical errors can accumulate and feed-

back to produce a large qualitative change in the results of simulations. Caution should

be exercised in the analysis and interpretation of simulation results, especially as these

simulations are highly nonlinear.
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2.4 Miscellaneous numerical tricks and sources of er-

ror

It is standard in finite-volume hydrodynamic codes to include a density floor: when-

ever the density in a cell drops below the floor value, density is artificially injected into

that cell at the end of the timestep. The purpose of this density floor is to limit the

wavespeeds, as both the hydrodynamic sound speed and MHD wave speeds increase

when density is decreased (∼ 1/
√
ρ). Having wavespeeds that are too high would result

in a vanishing CFL timestep ∆t, preventing the simulation from progressing.

The density floor is not free, however. Besides obviously breaking mass conservation,

we found that in CVLoop1, in addition to the angular momentum conservation prob-

lems described in section 2.3, too large of a density floor also causes additional angular

momentum issues. Since the gas in the regions of space above and below the disk are

constantly pulled by gravity towards the white dwarf, the density floor results in a con-

stant injection of gas mass in these regions. This gas is created at rest in the simulation

frame, but will be created as rotating matter in the non-rotating frame. This caused an

additional discrepancy in the conservation of z-angular momentum in the non-rotating

frame, which was not seen in the simulation frame (Figure 2.3). The solution is to simply

lower the density floor, but this is also costly as it could reduce the CFL timestep and

hence require more computational resources.

Another situation in which the density floor had a non-negligible effect on a simu-

lation was in our radiation MHD simulation named MHDRes. This simulation had a

magnetically dominated disk that was accreting its gas and magnetic field from the L1

point boundary condition. For about 20 binary orbits, the disk behaved normally and was

slowly spreading in radius as expected, but then a sudden large accretion event occurred,

in which mass from the torus rushed inwards towards the white dwarf in a dynamical
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Figure 2.3: CVLoop1: angular momentum is not conserved even for Lz in the non-
rotating frame as a result of the density floor injecting mass. Angular momentum is
plotted with the non-negligible time-integrated torques (blue should match the red).
Lnonrot0, Lnonrot1, Lnonrot2 refer to the x, y, z components of angular momentum in
the non-rotating frame. Though Lz is conserved in the simulation frame due Athena’s
modification of the geometric source term, it is not conserved in the nonrotating frame
due to the density floor. Lx, Ly are not conserved mainly due to spin errors from the
stream impact point.
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time, resulting in a large increase in the thermal energy of the gas and the accompanying

release of radiation. However, when this part of the simulation was rerun with a 10 times

lower density floor, the flare event did not occur. Though we never determined the fun-

damental cause of the flare event, this experience highlights the importance of choosing

a low enough density floor, as even low density gas can significantly affect the large-scale

qualitative behavior of these nonlinear simulations.

We find in many of our simulations that most quantities are usually smooth in space,

but occasionally “bad cells” will appear. A single cell in the simulation domain will

sometimes acquire an unphysically large temperature, velocity, or Alfven speed, despite

its neighbors behaving normally. The numerical cause of this is usually unknown to us,

but it necessitates the use of correction ceilings to prevent these single cells from halting

the simulation, as these cells cause the CFL timestep to become too small.

When the velocity of fluid in a cell exceeds a predefined speed limit, we preserve the

direction of the fluid velocity in that cell but rescale the speed to equal the speed limit.

We also choose to maintain the gas internal energy when doing this, so that the total

energy of the cell is decreased when the speed limit is imposed. When the Alfven speed

exceeds our predefined limit, we can add gas density to that cell until the Alfven speed

equals the limit. This is done rather than modifying the magnetic field in order to keep

the condition ∇ · B = 0. When the temperature exceeds our limit, we simply remove

internal energy from the gas while preserving its kinetic energy.

The fact that these ceilings are activated sparingly and in only single cells hopefully

limits their impact on simulation results, but we cannot guarantee this rigorously.
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2.5 Alternative handling of geometric source terms

The remainder of this chapter is entirely theoretical and unfinished work. It is based

on an idea that may or may not improve the numerical accuracy of general relativistic

simulations through a different way of handling the geometric source terms. Whether

improvements are actually realized remains to be seen with rigorous test problems. Nev-

ertheless, I will record the basic concept here in case it is useful for future reference or

for generating better ideas.

One way of interpreting the purpose of the geometric source terms is that they parallel

transport the Riemann fluxes from cell faces to cell center. This point of view allows us

to use the stress-energy tensor at the faces to compute the geometric terms, rather than

the stress-energy tensor at cell center as is typically done.

We will justify the equivalence of the two approaches. We do this in two dimensions,

where we have two coordinates labeled u and v. Parallel transport of a vector Aµ along

the u-direction is expressed as

∇uA
µ = ∂uA

µ + ΓµuλV
λ = 0 (2.17)

or to first-order in space can be written as

Aµ(u+ ∆u) = Aµ(u)− ΓµuλA
λ∆u = (δµλ − Γµuλ∆u)Aλ(u) (2.18)

Shown in the figure below is an infinitesmal box with dimensions (du1 + du2) by

(dv1 + dv2), hence with a volume of
√
|g|(du1 + du2)(dv1 + dv2).
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(u0, v0)
(u0 − du1, v0) (u0 + du2, v0)

(u0, v0 − dv1)

(u0, v0 + dv2)

increasing u

increasing v

Using (2.18), we can parallel transport the fluxes from the faces to the cell-center,

shown in the following.

B D

A

C

(δµλ − Γµuλ du1)

(∫
B surface

dv
√
|g|T uλ

)
≈ B-flux−

√
|g| du1 (dv1 + dv2)ΓµuλT

uλ (2.19)

22



Numerical methods and challenges Chapter 2

B D

A

C

(δµλ + Γµuλ du2)

(∫
D surface

dv
√
|g| (−T uλ)

)
≈ D-flux−

√
|g| du2 (dv1 + dv2)ΓµuλT

uλ

(2.20)

B D

A

C

(δµλ − Γµvλ dv1)

(∫
A surface

du
√
|g|T vλ

)
≈ A-flux−

√
|g| dv1 (du1 + du2)ΓµvλT

vλ (2.21)
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B D

A

C

(δµλ + Γµvλ dv2)

(∫
C surface

du
√
|g| (−T vλ)

)
≈ C-flux−

√
|g| dv2 (du1 + du2)ΓµvλT

vλ

(2.22)

If we sum the red and blue, we get

BD-fluxes−
√
|g|(du1 + du2)(dv1 + dv2)ΓµuλT

uλ ≈ BD-fluxes−
∫

box

√
|g| du dv ΓµuλT

uλ

(2.23)

Similarly, summing the yellow and green, we get

AC-fluxes−
√
|g|(du1 + du2)(dv1 + dv2)ΓµvλT

vλ ≈ AC-fluxes−
∫

box

√
|g| du dv ΓµvλT

vλ

(2.24)

Adding these all together, we get

ABCD-fluxes−
∫

box

√
|g| du dv ΓµαλT

αλ (2.25)

The first term is the volume integral of the flux-divergence, and the last term is the volume

integral of the geometric term, which justifies the equivalence of using the Riemann fluxes
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to compute the geometric term for an infinitesmal box.

This motivates the following numerical schemes for the geometric term update in one

spatial dimension

T 0µ
∣∣
xcc

+= −∆t
(
Γµ0λT

0λ
)∣∣
xcc

− ∆t

∆V

(
∆A−

[
T 1λ
]
− Γµ1λ(xcc − x−) + ∆A+

[
T 1λ
]

+
Γµ1λ(x+ − xcc)

)
(2.26)

T 0
µ

∣∣
xcc

+= ∆t
(
Γλ0µT

0
λ

)∣∣
xcc

+
∆t

∆V

(
∆A−

[
T 1

λ

]
− Γλ1µ(xcc − x−) + ∆A+

[
T 1

λ

]
+

Γλ1µ(x+ − xcc)
)

(2.27)

Here xcc, x−, x+ refer to the cell-center, lower, and upper coordinates respectively, and

[T ] are the Riemann solver currents at cell faces. Here, ∆A =
∫

cell face

√
|g| d2x and ∆V =∫

cell

√
|g| d3x, the exact areas and volumes for the numerical cells. Numerical experiments

can determine the best choice for the evaluation of the Γ, which can be done at cell-face,

cell-center, using the midpoint, or with the trapezoidal rule e.g. Γ = (Γ|x− + Γ|xcc)/2.

The extension to multiple dimensions is to simply include the corresponding terms for

the additional faces.

For orthonormal cylindrical or spherical coordinates, we may even replace the analo-

gous parallel transport with the exact rotation matrix transforming face-centered basis

vectors to cell-center, so that the parallel transport is accurate to all spatial orders. 2

We note the identity for the geometric term

ΓλµνT
µ
λ =

1

2
T µλ∂νgµλ (2.28)

which vanishes identically if xν is ignorable, which often occurs for the φ-direction of

2This is analogous to the exact evaluation of the path-ordered exp(−
∫

Γ dx) instead of using its
first-order approximation 1− Γ ∆x in (2.18)
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axisymmetric coordinates. In these cases the right-hand side of (2.27) for T 0
φ can also

be taken to be 0.
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Chapter 3

Investigating lack of accretion disk

eccentricity growth in a global 3D

MHD simulation of a superhump

system

We present the results of a 3D global magnetohydrodynamic (MHD) simulation of an

AM CVn system that was aimed at exploring eccentricity growth in the accretion disc

self-consistently from a first principles treatment of the MHD turbulence. No significant

eccentricity growth occurs in the simulation. In order to investigate the reasons why, we

ran 2D alpha disc simulations with alpha values of 0.01, 0.1, and 0.2, and found that only

the latter two exhibit significant eccentricity growth. We present an equation expressing

global eccentricity evolution in terms of contributing forces and use it to analyze the

simulations. As expected, we find that the dominant term contributing to the growth of

eccentricity is the tidal gravity of the companion star. In the 2D simulations, the alpha

viscosity directly contributes to eccentricity growth. In contrast, the overall magnetic
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forces in the 3D simulation damp eccentricity.

We also analyzed the mode-coupling mechanism of Lubow, and confirmed that the

spiral wave excited by the 3:1 resonance was the dominant contributor to eccentricity

growth in the 2D α = 0.1 simulations, but other waves also contribute significantly.

We found that the α = 0.1 and 0.2 simulations had more relative mass at larger radii

compared to the α = 0.01 and 3D MHD simulation, which also had an effective α of

0.01. This suggests that in 3D MHD simulations without sufficient poloidal magnetic

flux, MRI turbulence does not saturate at a high enough α to spread the disc to large

enough radii to reproduce the superhumps observed in real systems.

3.1 Introduction

Cataclysmic variable (CV) systems have long been a major testing ground for accre-

tion disc theory. Fundamental to this theory is the mechanism of angular momentum

transport, with magnetorotational (MRI; Balbus & Hawley [2]) turbulence, spiral waves

excited by the tidal field of the companion star [22], and possibly magnetized outflows

(e.g. Scepi et al. [23]) all playing roles. The time scales of dwarf nova outbursts provide

the strongest constraints on the Shakura & Sunyaev [1] α-parameterization of angular

momentum transport [24, 25], with significantly higher values of α in outburst than in

quiescence. CVs, like many accretion disc systems, also exhibit broadband aperiodic

variability with a linear rms-flux relation [26], indicative of radially propagating stochas-

tic fluctuations in accretion rate [27]. Periodicities are also commonly observed in some

systems that shed light directly on the dynamics of the disc, the strongest being so-called

superhumps (e.g. Patterson et al. [28]): oscillatory variations in brightness with periods

slightly longer than the binary orbital period. Negative superhumps with periods slightly

shorter than the orbital period are also observed (e.g. Smak [29]).
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Early simulation and theoretical work showed that (positive) superhumps are likely

due to an eccentric disc undergoing apsidal precession, with the superhump frequency

being related to the orbital and apsidal precession frequencies by Ωsuperhump = Ωbinary −

ωprecession [30, 12]. The tidal gravity of the donor star can excite eccentricity of the disc

through a mode coupling between spiral waves excited at the 3:1 resonance in the disc and

the tidal potential [13]. Bisikalo et al. and Kaigorodov et al. [31, 32] propose an alternative

explanation in terms of an eccentric wave, and Smak [33, 34] suggests that superhumps

are caused by the accretion stream interacting with a disk with nonaxisymmetric vertical

thickness. Both alternatives do not require the existence of the 3:1 resonance, but they

still ultimately rest on an association with apsidal precession of the disc.

Given this dynamical association, the superhump periods have been used to esti-

mate the mass ratios q of the binary systems [28, 35], but these estimates might neglect

important differences between systems such as effective viscosity, pressure forces, and

mass distribution within the disc which can influence the apsidal precession rate [36, 37].

Many details of superhumps remain inadequately explored in simulations, such as their

period changes during the course of an outburst [11]. However, smoothed particle viscous

hydrodynamics simulations have been successful in producing variations of the global dis-

sipation in the disc that resemble lightcurves of superhumps [38, 36, 39, 40].

Kley et al. [41] performed 2D grid-based fluid simulations with an explicit kinematic

viscosity exploring eccentricity evolution in relation to superhumps. They found that

viscosity plays an important role, with larger viscosity resulting in more rapid eccentricity

growth. Given that the true nature of viscosity is likely MRI turbulence, it would be

interesting to see whether a global 3D MHD simulation treating the angular momentum

transport from first principles can replicate the observed superhump lightcurves and

give insights into the superhump phenomenon. Of additional interest is evidence that

eccentric waves can themselves interact with and dampen MRI turbulence [42].
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Several recent advances have been made in simulating accretion discs in CVs with

MHD. Ju, Stone, & Zhu [5, 6] explored the relative importance of spiral shocks and MRI

turbulence in driving accretion in vertically unstratified global MHD simulations of CVs,

and Pjanka & Stone [7] extended this work to include vertical stratification. Signifi-

cant numerical challenges remain, however, in resolving the scale height for realistic disc

temperatures, achieving realistic Prandtl numbers, and running the simulations for long

enough to achieve inflow equilibrium. These difficulties result in unavoidable idealiza-

tions and approximations. While simulations can inform us about the detailed behavior

of these systems and provide explanations for observed phenomena, observations can

conversely be used to constrain simulations and ensure that approximations made in the

simulations do not result in excessive deviation from reality.

AM Canum Venaticorum (AM CVn) stars are very compact binary star systems with

a short (typically . 1 hour) orbital period in which a white dwarf primary accretes gas

from a helium rich secondary donor star [43]. The small spatial dynamic range and short

dynamical timescales of AM CVns makes them particularly attractive targets for global

numerical simulations seeking to understand the nonlinear physics in accretion discs.

Observationally, the shortest period, persistent high state AM CVns exhibit superhumps

[43]. Motivated by these considerations, we performed a global 3D MHD simulation

of an AM CVn accretion disc modeled after the system SDSS J1908 [14], which has a

binary mass ratio of q = 0.1 and exhibits permanent superhumps. We therefore expected

our simulated disc to also develop an eccentric, slowly precessing disc. However, despite

continuing the simulation for over 200 binary orbits, our disc remains mostly circular,

with no obvious sign of eccentricity growth over time. The lack of eccentricity growth in

MRI simulations of CV discs has also been previously reported in Ju et al. [6], though

there they used a larger binary mass ratio of q = 0.3. The primary goal of this paper

is then to better understand why the 3D MHD simulations do not produce eccentricity
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growth and to provide tools for future simulations wishing to resolve this discrepancy.

This paper is organized as follows: Section 3.2 describes our setup and numerical

methods. Section 3.3 describes general properties of our 3D MHD disc to enable com-

parisons with similar simulations. Section 3.4 aims to explore in detail the eccentricity

growth mechanism and drivers through a comparison of the 3D MHD simulation with

2D alpha disc simulations that do exhibit growing eccentricity. Analysis of the mode-

coupling mechanism of Lubow [13] is also made. Section 3.5 summarizes our main results

and suggests future directions.

3.2 Method

Our 3D MHD simulation is done using the code Athena++ [17] using a spherical

polar grid. We use r, θ, φ to denote the radial, polar angle, and azimuthal angle coordi-

nates respectively. The advantage of using polar coordinates is that smaller radii remain

resolved, and Athena++ is designed to conserve the z-component of angular momentum

in polar coordinates [17], aiding in the long-timescale numerical accuracy. We adopt a

non-inertial rotating frame of reference with the origin at the center of the primary white

dwarf. In these coordinates, the binary companion and tidal potential are stationary in

time.

Because previous numerical work has found that eccentricity grows in 2D simulations

of binary systems, we also run our own 2D α viscosity disc simulations in cylindrical

polar coordinates to act as a basis of comparison for the 3D MHD simulation. The

2D simulations are a tool to better understand why eccentricity grows in these binary

systems, and therefore also to understand why eccentricity does not grow in the 3D MHD

simulation.
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Table 3.1: Simulation units to cgs conversion: multiply by these to get cgs quantities
Quantity Conversion
Distance 4.69× 108 cm
Density 1.00× 10−4 g cm−3

Temperature 5.00× 104 K
Pressure 3.05× 108 dyn cm−2

Velocity 1.75× 106 cm s−1

B field 6.19× 104 G

3.2.1 Units and scaling

Though our current MHD simulations have not yet approached the temperature

regime of real AM CVn systems, an eventual goal of these simulations will be to in-

clude realistic thermodynamics and radiative transport for direct comparison with ob-

servations. To facilitate this goal and to enable comparisons with future simulations,

Table 3.1 summarizes the units used in our simulations here.

We choose our distance unit to be the white dwarf radius, which we take to be

4.69 × 108 cm. Our density unit choice together with distance gives a mass unit. The

temperature unit is chosen roughly according to the effective temperature of the discs

as seen in observations. The pressure unit is chosen such that kB/µmp = 1 so that

P = ρT . The velocity and hence time unit is chosen as the sound speed at one unit of

temperature. The magnetic field unit is chosen such that B2/2 in code units gives the

magnetic pressure in code units.

In the remainder of this paper, numbers without explicit units are given in these

simulation units.

3.2.2 Binary system parameters

We model our binary after the AM CVn discovered in Fontaine et al. [14]. We let

the primary mass be 1.1 M� and the secondary mass be 0.11 M� for a binary mass ratio
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of q = 0.1. We set the binary period to be as measured in Fontaine et al. [14] of 938.5

seconds (though Kupfer et al. [15] determined the period spectroscopically and found it to

be slightly larger at 1085.7 s). In code units, we use a binary separation of a = 32.68 and

assume the binary has zero eccentricity. These give an L1 Lagrange point at a distance

of 23.45 from the white dwarf and a nominal 3:1 resonance at a distance of 15.2. The

L1 point is the location where the gas from the secondary spills over to the primary to

form the accretion disc, and a sphere at that radius is used as the outer boundary of the

simulation domain.

3.2.3 Equations solved

For the 3D model, we solve the ideal MHD equations for a locally isothermal gas in

the rotating frame.

∂tρ+∇ · (ρv) = 0 (3.1a)

∂t(ρv) +∇ · (ρvv −BB + P ∗I) = −2ρΩpz× v − ρ∇Φ (3.1b)

∂B

∂t
−∇× (v ×B) = 0 (3.1c)

P ∗ = ρT +
B2

2
(3.1d)

T =
GM1

R

(
H

R

)2

∝ 1

R
(3.1e)

The temperature at each radius was chosen such that the disc scale height H/R = 0.044

is constant. The potential is given by

Φ = −GM1

r
− GM2

|r−R2|
− 1

2
(Ωpr sin θ)2 +

GM2

R3
2

(R2 · r) (3.1f)

where R2 = 32.68x̂ is the location of the secondary and Ωp is the binary angular velocity.
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For the 2D model, we solve the vertically integrated versions of the 3D equations

with the potential restricted to the midplane. To allow for a parameter exploration of

the angular momentum transport mechanism in 2D, instead of using magnetic fields,

we replace the Maxwell stress tensor with an α viscosity represented by a viscous stress

tensor Π whose components in a Cartesian basis are given as

Πij = ρν

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij∇ · v

)
(3.2a)

The kinematic viscosity ν has a radial dependence provided by a standard α prescription.

ν(R) = αT

√
R3

GM1

(3.2b)

We used three values of α = 0.01, 0.1, 0.2.

The equations are solved using Athena++’s HLLC Riemann solver with second-order

spatial reconstruction and the second-order van Leer time integrator. The gas internal

energy is reset at the end of each timestep to enforce the locally isothermal condition.

A density floor of ρfloor = 10−8 and a gas pressure floor of Pfloor = 10−10 were chosen for

both the 2D and 3D simulations.

3.2.4 Initial and boundary conditions

3D setup

The 3D simulation used a spherical polar grid that spanned (r, θ, φ) ∈ [1, 23.4] ×

[0, π/2] × [0, 2π). The root computational domain was subdivided into 64 × 64 × 128

cells. Two levels of static mesh refinement, resulting in 22 = 4 times the resolution, were

used between θ ∈ [0.7, 2.4]. A logarithmically spaced radial grid was used to maintain

cells’ aspect ratio and to better resolve the regions near the primary white dwarf.
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For our 3D simulation, we wished to build up all the mass in the accretion disc from

the secondary’s gas inflow stream. We inject gas from the binary’s L1 point as a radial

boundary condition. Based on the analytic work of Lubow & Shu [44], a gaussian density

profile was set in the ghost cells centered on the L1 point and the gas is given an inward

radial velocity. Away from the L1 point, we copy the density, azimuthal velocity, and

pressure from the last cell in the computational domain into the ghost cells. In order to

minimize inflow of mass from the boundary, the radial velocity in the ghost cells is copied

from the last cell in the computational domain only if fluid is moving out of the simulation

domain but is set to 0 otherwise. The same is done for the inner radial boundary.

Magnetic field loops were also initially injected from the L1 point. The magnetic

field in the ghost zones of the outer radial boundary is initialized with a vector potential

proportional to the density in the stream. The amplitude is determined to make sure

magnetic pressure in the middle plane of the stream is 5% of the gas pressure. Outside

of the stream, radial magnetic field is copied from the last active zone to the ghost zones

while both the poloidal and azimuthal components are set to be 0. For the inner radial

boundary, we also copy the radial magnetic field component from the last active zone to

the ghost zones and set all the other components in the ghost zones to be 0.

More details of the changes made to the 3D simulation over the course of the simu-

lation are explained in Section 3.3.

2D setup

The 2D simulation used a cylindrical polar grid that spanned (r, φ) ∈ [1, 23.4]×[0, 2π).

The computational domain was subdivided into 256×512 cells, but no additional mesh

refinement is used in 2D. As with the 3D simulation, a logarithmically spaced radial grid

and uniformly spaced azimuthal grid was used.

The 2D simulation was initialized based on data from the 3D simulation to enable
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comparisons of the two. All quantities in the 2D simulation were initialized with symme-

try in φ. We use the 3D quantities at simulation time t = 226 binary orbits. The initial

2D surface density ρ2D was set from the 3D volume density ρ3D as

ρ2D(r) =
1

2π

∫ 2π

0

dφ

∫ π

0

dθ ρ3D(r, θ, φ)r sin θ (3.3)

The vertical integration was done in θ rather than z since the 3D simulation data naturally

lies in a spherical polar grid. This approximation was deemed sufficient since most of the

mass is concentrated near the midplane in the 3D simulation.

The initial radial velocity was set to 0. Both the 2D azimuthal velocity and tem-

perature were set according to the midplane values of the 3D simulation, azimuthally

averaging the former quantity.

In the 2D simulations, we do not use a gas inflow stream. At the radial boundaries, we

copy the density, azimuthal velocity, and pressure from the last cell in the computational

domain into the ghost cells. In order to minimize inflow of mass from the boundary, the

radial velocity in the ghost cells is copied from the last cell in the computational domain

only if fluid is moving out of the simulation domain but is set to 0 otherwise.

3.3 3D MHD simulation: general properties

Though the main focus of this paper is to explore eccentricity growth in numerical

simulations of binary systems, we give a general description of our 3D MHD simulation

here. To enhance the Maxwell stress, we have also tried to add additional magnetic

field loops in the simulation domain directly. When we restart the simulation, we add

additional magnetic fields based on a vector potential, which is only non-zero for 8 < r <

12. The toroidal component of the vector potential is set to be proportional to density
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Figure 3.1: 3D MHD vertically integrated density in radius and time. Times where
artificial changes are manually made to the magnetic field to help the disc spread are
clearly visible as sharp horizontal transitions. At t = 226 binary orbits, the accretion
stream is also turned off to make it easier for eccentricity to grow.

and the amplitude is chosen so that the magnetic pressure of the new magnetic field

component in the disk midplane is about 10 percent of the gas pressure. Notice that we

do not change the existing magnetic field in the simulation and final magnetic field after

the change can still maintain the ∇ ·B = 0 condition numerically.

Figure 3.1 shows a spacetime plot of the vertically integrated density in the second

half of the simulation. The disc mass is accumulated over time from the accretion stream

injected at the L1 outer boundary condition.

In the prior 2D grid-based simulations in Kley et al. [41], eccentricity in their similar

binary system tended to saturate approximately around ∼ 0.1 after a time on the order

of a few hundred binary orbits, depending on their choice of kinematic viscosity, disc

temperature, boundary conditions, and binary mass ratio. But as seen in Figure 3.2,

our 3D MHD disc displays no significant global eccentricity at any point during the

simulation.
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Figure 3.2: 3D MHD globally mass-averaged eccentricity over time. At t = 226 binary
orbits, the accretion stream is turned off and magnetic field is manually added to make
it easier for eccentricity to grow, but eccentricity remains small.

Since previous results such as Lubow (1994) [45] and Kley et al. [41] found that a

constant gas inflow stream from the binary’s L1 point damps eccentricity, and Kley et al.

[41] found that increasing viscosity increases the growth rate of eccentricity, we turned

off the stream after around t = 226 binary orbits and also added additional magnetic

field loops into the disc to determine if these could help induce eccentricity growth in

the 3D MHD simulation. However, still no significant eccentricity develops, and this is

discussed in detail in Section 3.4.

In the remainder of this section, we give a brief description of the state of our 3D

MHD simulation at t = 225 binary orbits right before the stream is turned off to enable

comparisons with past and future binary disc MHD simulations. In particular, Pjanka

et al. [7] have run 3D MHD simulations of a CV also using Athena++, though with a

mass ratio of q = 0.3, lower Mach numbers of 5 and 10 at the inner boundary compared

to our Mach number of 20, and other different numerical details.

We plot the midplane density of the 3D MHD simulation in Figure 3.3. An eccentric
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disc can be described as an off-centered slowly precessing ellipse pattern in the non-

rotating frame, but this is not seen here. Detailed measurements of the eccentricity

growth over time are given in Section 3.4.

Radial profiles of the 3D MHD simulation are plotted in Figure 3.4. The pressure is

computed as the volume-weighted shell average. The effective α is computed as

α =
〈Trφ〉
〈P 〉

(3.4a)

where 〈·〉 denotes shell averaging and Trφ is the stress

Reynolds Trφ = ρvr(vφ −
1

2π

∫ 2π

0

dφ vφ) (3.4b)

magnetic Trφ = −BrBφ (3.4c)

We note that the magnetic stress as measured by α is fairly constant at around 10−2 in

the midplane for most radii of the disc. Magnetic α values of ≈ 10−3 to 10−2 were also

seen in the simulations of Pjanka et al. [7] in the midplane of their disks. Our Ṁ plot

shows large variations in the outer radii of the disc, indicating the outer regions may not

be in inflow equilibrium yet, even after 225 binary orbits. We can estimate the viscous

time in the outer parts of the disc as

tvisc =
1

αΩ(R)

(
R

H

)2

∼ 1000 binary orbits (3.5)

around R = 10 using α ∼ 10−2 which is much longer than our simulation time with

the stream. The large computational cost to evolve a disc for a viscous time presents

a significant challenge for these MHD simulations, even in compact binary AM CVn

systems.
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Figure 3.3: 3D MHD midplane volume density at t = 225 binary orbits. The secondary
donor star is located at (x, y) = (32.68, 0) (outside the simulation domain). The
nominal 3:1 resonance is located at r = 15.2, indicated by white circle.

Vertical profiles as functions of polar angle θ near the binary circularization radius

r = 6 are plotted in Figure 3.5. We defined α as before in Equation (3.4a). We see that

the disc is gas pressure dominated in the midplane, but becomes magnetically dominated

at altitude, consistent with many previous vertically stratified shearing box and global

simulations of MRI turbulence [46, 47, 48]. The magnetic pressure profile rises as we

approach the midplane from altitude but then flattens out in the midplane, suggestive

of magnetic buoyancy. This behavior is also seen in the simulations of Pjanka et al.

[7]. The effective magnetic α shows 2 peaks at altitude away from the midplane, which

coincides with the actual accretion occurring at these altitudes. This is reminiscent of the

surface accretion that sometimes occurs in magnetically dominated high altitude layers

in simulations with net poloidal field [49, 50, 51], although our simulations here do not

have net poloidal field. The two-peaked profile of magnetic stresses is also seen at certain

radii in Pjanka et al. [7] in their Mach 5 simulation.
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Figure 3.4: 3D MHD midplane radial profiles at t = 225 binary orbits, time averaged
over one binary orbit. Negative Ṁ indicates accretion here.
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binary orbits, time averaged over one binary orbit.
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3.4 Comparison of eccentricity evolution between 3D

MHD and 2D simulations

In this section we explore the evolution of eccentricity in our simulations in detail.

As discussed in Section 3.3, for the 3D MHD simulation, magnetic field loops were added

into the disc at t = 226 binary orbits and the stream turned off in order to give it the

best chance for producing eccentricity growth. As detailed in Section 3.2.4, the 2D alpha

disc simulations are initialized using the data from the 3D MHD simulation at t = 226

binary orbits for a comparison and study of the eccentricity growth mechanisms. The

three values of α used for comparison were α = 0.01, 0.1, 0.2. These 2D simulations are

named alpha0.01, alpha0.1, alpha0.2 respectively.

We first present our methodology for analyzing eccentricity growth in simulations.

Then we apply them to the 2D and 3D simulations.

3.4.1 Diagnostics for eccentricity

The Laplace-Runge-Lenz vector is a well-known conserved quantity in the Kepler

problem, where the acceleration is a = −GM1r̂/r
2. Here we define a rescaled Laplace-

Runge-Lenz vector, the eccentricity vector, which has magnitude equal to the eccentricity

and is parallel to the semi-major axis, pointing towards periapsis.

e =
1

GM1

v × (r× v)− r̂ (3.6)

Its time-derivative is given by

de

dt
=

1

GM1

(a× (r× v) + v × (r× a))− dr̂

dt
(3.7)
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In an accretion disc in a binary system, additional forces such as pressure, tidal, and

magnetic would act on fluid elements so that e for fluid elements will not be conserved

in either magnitude or direction.

We construct the fluid analogue of Equation (3.7). The mass and momentum conser-

vation equations solved by Athena++ can be equivalently written as

∂tρ+∇ · (ρv) = 0 (3.8a)

∂tv + v · ∇v = f/ρ (3.8b)

We define the fluid eccentricity field e exactly the same as in Equation (3.6) but

with its symbols replaced by their respective fluid fields. Noting that as field quantities

∂tr̂ = 0 and (v · ∇r)× v = 0, we have using Equation (3.8b)

∂te =
1

GM1

(f/ρ× (r× v) + v × (r× f/ρ))− v · ∇e− v · ∇r̂

Multiplying both sides by ρ and using Equation (3.8a) we get

∂t(ρe) +∇ · (vρe) =
1

GM1

(f × (r× v) + v × (r× f))

− ρv · ∇r̂ (3.9)

which is the fluid version of Equation (3.7). The left-hand side has the usual conservative

form for per-volume fluid quantities, where the second term represents advection by fluid

motion. The right-hand side consists of source terms.

We define the first term on the right-hand side as

C(f) =
1

GM1

(f × (r× v) + v × (r× f)) (3.10)
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and remark that it is a linear function of f . This linearity allows us to split the source

terms for eccentricity evolution into individual parts each contributed by a force of interest

(tidal, pressure, etc). We also remark that as a consequence of the conservation of the

eccentricity vector in the Kepler problem

Ccentral gravity(GM1ρr̂/r
2)− ρv · ∇r̂ = 0 (3.11)

so neither of these terms needs to be computed in the analysis. Eccentricity evolution is

governed solely by those contributions to C due to the remaining forces.

To measure the eccentricity evolution of the fluid in a certain volume in the simulation,

we define the mass-weighted average eccentricity

〈e〉V =

∫
V
ρe dV∫

V
ρ dV

=

∫
V
ρe dV

Mfluid

(3.12)

Its time evolution computed from Equation (3.9) is

∂t〈e〉V =
1

Mfluid

(∫
V

∑
forces

C(f) dV −
∫
∂V

(ρe)(v · dA)

+〈e〉V
∫
∂V

ρ(v · dA)

)
(3.13)

where the summation is taken over all forces except the central gravity.

For both the 2D and 3D simulations, we take the argument of periapsis to be

$ = arctan

(
ey
ex

)
(3.14)

as computed in the non-rotating frame. This should be adequate for the 3D simulation

as our disc is not tilted.
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We define the growth and precession parts of d〈e〉V /dt as related to the components

parallel and perpendicular to 〈e〉V respectively

growth =
d|e|
dt

=

(
e · de

dt

)/√
e · e (3.15a)

prec =
d$

dt
=

(
ex
dey
dt
− ey

dex
dt

)/
(e2
x + e2

y) (3.15b)

where we have written 〈e〉V as e above for brevity. We remark that the right-hand side

of these are linear functions of d〈e〉V /dt and therefore can be split into individual parts

each contributed by a term of interest in Equation (3.13).

3.4.2 Diagnostics for excitation of eccentricity by spiral density

waves

In perturbative treatments of eccentric discs, eccentricity is typically expressed as an

m = 1 perturbation of the form eiφ in the nonrotating frame. For example, velocity

perturbations for an eccentric disc are

δvr = −irΩ(r)e(r)eiφ (3.16a)

δvφ =
1

2
rΩ(r)e(r)eiφ (3.16b)

with e(r) being the eccentricity magnitude and Ω(r) being the angular velocity for a

circular disc.

In the mechanism of Lubow [13] for eccentricity growth, the gravity of the companion

launches spiral density waves of the form ei(m±1)φ−imΩpt in an eccentric disc. These waves

further couple with tidal responses of the form eimφ−imΩpt to grow eccentricity in the form

of Equation (3.16).

46



Lack of eccentricity in MHD simulation of superhump system Chapter 3

In this paper, we have opted to define eccentricity through the Laplace-Runge-Lenz

vector as it allows for a non-perturbative analysis of eccentricity evolution in simulation

data through Equation (3.13), applicable to the nonlinear regime. The downside is that

we lose the perturbative picture in Equation (3.16) with eccentricity as a function of

radius and its relation to spiral waves through mode coupling.

Nevertheless, it is interesting to reconcile Lubow’s wave mechanism with the present

formalism to investigate the role of these spiral waves in simulation data. We work in two

dimensions for simplicity. We can express the tidal contribution to eccentricity evolution

with Equation (3.10), rewritten as

Ctidal =
r

GM1

(2pφaφr̂− (praφ + pφar)φ̂)

= Crr̂ + Cφφ̂ (3.17)

where p = ρv is momentum density, a is the tidal acceleration, and Cr and Cφ are defined

appropriately. For our companion moving in a circular orbit, a can be Fourier expanded

in terms of the nonrotating frame tidal potential as

a = −∇Φ =
∞∑

m=−∞

(
−∂Φm

∂r
r̂− imΦm

r
φ̂

)
eimφ−imΩpt (3.18)

To get the contribution to the global eccentricity growth, we should project Ctidal

onto the normalized average eccentricity vector and normalize by the total fluid mass

47



Lack of eccentricity in MHD simulation of superhump system Chapter 3

Mfluid according to Equations (3.13, 3.15a). The result is

Ctidal · 〈ê〉V
Mfluid

=
ei(φ−$)

Mfluid

(
Cr + iCφ

2

)
+ c.c.

=
1

2GM1Mfluid

∞∑
m=−∞

ei(m+1)φ−imΩpt−i$ (−mΦm(2ipφ + pr)

+irpφ
∂Φm

∂r

)
+ c.c. (3.19)

with c.c. denoting its complex conjugate. The above equation holds exactly in 2D as no

approximations have been made so far. We see that the momentum density p is directly

coupled to the tidal terms Φ to produce eccentricity growth, and therefore is the relevant

quantity for analyzing spiral waves that grow eccentricity.

We can now introduce the approximations of d$/dt = 0 and dMfluid/dt = 0. These

approximations hold if secular changes are slow compared to the orbital period. We

choose our phase such that the companion is aligned with φ = 0 at t = 0, so Φm is

real. We can then integrate in azimuth and over one binary period to get the secular

growth of eccentricity as a function of radius only. Then the Fourier components of p

that survive are those with phase dependence e−i(m+1)φ+imΩpt and its complex conjugate.

For reference, the result is

∫ 2π
Ωp

0

dt

∫ 2π

0

dφ
Ctidal · 〈ê〉V
Mfluid

=
(2π)2

2GM1MfluidΩp

e−i$
∞∑

m=−∞

(−mΦm(2i[pφ] + [pr])

+ir[pφ]
∂Φm

∂r

)
+ c.c. (3.20)
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where [·] indicates only taking the e−i(m+1)φ+imΩpt Fourier component

[f ](r) =

∫ 2π
Ωp

0

Ωp dt

2π

∫ 2π

0

dφ

2π
f(t, r, φ)ei(m+1)φ−imΩpt (3.21)

Note that although we are analyzing eccentric discs, we have chosen to do our φ integra-

tion holding r constant as opposed to integrating around an ellipse, since our simulation

data naturally lies on a polar grid and leads to simpler analysis, without necessitating

additional approximations.

Waves with |m + 1| < |m| propagate inside inner eccentric Lindblad resonances

whereas waves with |m + 1| > |m| propagate outside outer eccentric Lindblad reso-

nances. For our simulation of an AM CVn system, we expect that only the inner ec-

centric Lindblad resonances are relevant and are given approximately by the condition

Ω = mΩp/(m− 2) for m > 0 or equivalently Ω = mΩp/(m+ 2) for m < 0.

3.4.3 Contributors to eccentricity evolution

Figure 3.6 shows the evolution of eccentricity in the 3D MHD simulation after t = 226

binary orbits. Figures 3.8, 3.9, and 3.10 show the evolution of eccentricity in three 2D

simulations with alpha values of α = 0.01, 0.1, 0.2. We use Equations (3.13, 3.15a, 3.15b)

integrated in time to understand the role of the various forces on eccentricity evolution.

We take our integration volume V to be the entire simulation domain in both the 3D

and 2D simulations. On the right-hand side of Equation (3.13), we split the C(f) source

term defined in Equation (3.10) into contributions from the forces affecting the fluid in

each simulation. The last two terms on the right-hand side, involving fluid entering or

leaving the simulation boundaries, are combined into a single term called “boundary”

(green curves in bottom plots) to account for flux terms through the inner and outer

boundary. In all simulations, there is good agreement between the left and right hand
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sides of Equation (3.13), indicated by matching of the solid and dotted curves in the

top plots, validating both the numerical accuracy and our methodology for quantifying

eccentricity sources.

We do not observe significant eccentricity growth in the 3D MHD simulation. The

tidal force initially acts to increase eccentricity (blue curve, bottom left) but its effect is

canceled by the remaining sources. The effect of magnetic fields is to decrease eccentricity.

This is noteworthy as the turbulent magnetic stresses are typically thought of as the

physical mechanism behind the α viscosity, yet here the magnetic stresses act with a

different sign on eccentricity growth compared to the α viscosity in the 2D simulations.

In Figure 3.7, we compute the time-integrated contribution to eccentricity growth of

the individual pieces of the Maxwell stress tensor. Specifically, we zero out all compo-

nents of the Maxwell stress tensor except the indicated component and its symmetric

counterpart, and we compute the force with ∇·T , then use that force in Equation (3.10)

to compute its effect on eccentricity. In particular, we find that the BrBφ acts to increase

eccentricity whereas the BrBθ piece damps eccentricity. The BrBφ piece is responsible

for the outward radial transport of angular momentum whereas the BθBφ piece is respon-

sible for the vertical transport of angular momentum. In the 2D disc simulations, the α

viscosity is responsible for the outward radial transport of angular momentum, and it is

noteworthy that both the BrBφ and α viscosity act to increase eccentricity.

Of the three 2D simulations, significant eccentricity growth (top green curve) is only

observed in the α = 0.1 and 0.2 cases. The larger viscosity simulations have more rapid

eccentricity growth, replicating the result of Kley et al. [41]. The eccentricity growth

is predominantly driven by tidal forces (bottom blue curve) as expected. Lyubarskij,

Postnov & Prokhorov (1994) [52] and Ogilvie (2001) [53] have previously noted that

circular α-discs are unstable to eccentric modes. Here, we find that the viscous force

(bottom red curve) also directly contributes to eccentricity growth, especially in the
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α = 0.2 case where it is half as large as the tidal contribution, but we do not know

whether this is related to the mechanism in the analytic theories. While eccentricity

is still small, the simulation boundaries (bottom green curve) contribute negatively to

eccentricity growth, indicating fluid elements on eccentric orbits leaving the domain and

thus removing eccentricity.

Though both the 3D MHD and 2D hydro simulations are done in a rotating frame, the

argument of periapsis $, also called the eccentric phase here, is measured with respect

to a non-rotating frame centered on the primary.

In the α = 0.1 and 0.2 simulations, we can see that the only two significant contrib-

utors to the precession of the eccentric disc are the tidal and pressure forces. The tidal

force contributes to prograde precession of the disc, while the pressure force usually con-

tributes to retrograde precession of the disc. The effects of varying the disc temperature

and hence the pressure force and disc scale height have been previously explored in other

works, and it is known [54, 37, 41] that typical 2D discs precess in a prograde fashion

for smaller disc scale heights and retrograde for large scale heights where pressure forces

become significant, in agreement with our findings. Observationally, positive superhumps

suggest overall prograde precession of discs, suggesting that discs in nature typically are

not in the regime in which pressure effects on precession dominate over tidal effects.

Also noteworthy is that the α = 0.2 simulation experiences more rapid apsidal pre-

cession as compared to α = 0.1. The effect of larger viscosity resulting in more rapid

apsidal precession has been previously noted in earlier SPH simulations [36]. In our anal-

ysis we find that the direct effect of the viscous force on precession is negligible in both

the α = 0.1, 0.2 simulations (red curves, bottom right plots). Since only the tidal force

acts more strongly to precess the disc prograde in the α = 0.2 simulation, and the tidal

acceleration is the same in both simulations, the cause must be the mass distribution of

the disc. As further explored in Section 3.4.5, α = 0.2 has more mass in the outer regions
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of the disc as compared to the α = 0.1 simulation. This indicates that the precession

rate and hence the superhump frequency should also depend on the mass distribution of

the disc which is affected by the angular momentum transport mechanism.

Since we do not have a significant eccentricity in the 3D MHD simulation, the eccentric

phase $ is not well-defined. The phase plot for $ is instead tracking a small non-wave

eiφ−iΩpt pattern that follows the companion.

3.4.4 Wave analysis of the mode-coupling mechanism

As indicated in the previous section, the tidal force is the dominant contributor to

eccentricity growth in the simulations. In this section, we investigate the tidal effect on

the disc in greater detail through Lubow’s spiral wave mechanism by directly computing

each wave’s contribution to eccentricity growth from simulation data. In Lubow’s theory,

the tidal force acting on a disc with an initially small eccentricity would launch spiral

waves in the disc, primarily driven at eccentric Lindblad resonances. These spiral waves

are then further acted on by tides to generate additional eccentricity in the disc [13].

In Section 3.4.2, we discussed a method for quantifying the role of these waves in our

simulations. We first measured the Fourier components of the momentum densities pr and

pφ from the simulation and then we coupled them to the tidal field with Equation (3.20) to

compute the contribution of each relevant spiral wave to the overall eccentricity growth.

This is done for each radius separately to look for the role of any resonances and to

investigate the spiral nature of these waves.

An important assumption made for the validity of Equation (3.20) is that the ar-

gument of periapsis $ varies little during a single binary orbit. Physically, we are only

interested in eccentricity as defined by an elliptical disc stationary in a nonrotating frame,

and want to ignore any eiφ−iΩbt tidal distortions that would follow and rotate along with
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Figure 3.6: Eccentricity magnitude (left plots) and phase evolution (right plots) in 3D
MHD simulation to compare the left-hand side (“measured”) and right-hand side (“to-
tal source terms”) of Equation (3.13), showing negligible eccentricity growth. Time
integrated contribution of forces to eccentricity evolution are shown in bottom plots,
with the sum of the curves in the bottom plots given in dashed curves in the top plots
(“total source terms” which include boundary effects), based on Equations (3.13,
3.15a, 3.15b). Matching of the dotted and solid lines in the top plots validates the
numerical accuracy of the simulations and the methodology. The tidal force acts to
increase eccentricity (blue curve, bottom left). Interestingly, the magnetic stresses
act to decrease eccentricity (red and purple curves, bottom left). The eccentric phase
$ is measured with respect to a non-rotating frame centered on the primary. The
rapid apsidal precession seen in the phase plots is a result of it tracking a non-wave
pattern that follows the companion rather than the stationary ellipse pattern in the
nonrotating frame needed for superhumps. The pressure force (orange curve, bottom
right) contributes to retrograde apsidal precession. The boundary term (green curves,
bottom plots) indicates the effect of fluid elements leaving the simulation domain as
explained in the text.
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Figure 3.7: The time integrated contribution to eccentricity from the individual pieces
of the Maxwell stress tensor.

the companion. The assumption of a stationary argument of periapsis $ is found to not

be valid when the eccentricity is small (see for example the early times in Figure 3.9),

since a small eccentricity vector can easily precess wildly in angle from comparably small

perturbations. Eccentricity is always small for the 3D MHD and the α = 0.01 simula-

tions, and is small in the early stages of the α = 0.1 and α = 0.2 simulations. Therefore,

the wave analysis is only most useful in the latter stages of the α = 0.1 and α = 0.2

simulations where there is a well-defined eccentricity with slowly precessing argument

of periapsis. Since the tidal field is the same among these simulations, we choose the

α = 0.1 simulation for our main analysis of the wave coupling mechanism.

We use the notation (n, l) to indicate waves of the form einφ−ilΩpt in the non-rotating

frame centered on the primary. Figure 3.11 shows a plot of the real part of the (2, 3)

wave for pr as measured from the simulation. The (2, 3) wave is significant because it is

thought to be the primary wave responsible for eccentricity growth when it is excited by

the 3:1 eccentric Lindblad resonance at r = 15.2.

In Figure 3.12 we compute the time and spatial integral of the right-hand side of
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Figure 3.8: Eccentricity magnitude and phase evolution in 2D simulation with
α = 0.01. See Figure 3.6 for detailed description. The negligible eccentricity makes
the phase $ ill-defined for the right plots.
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Figure 3.9: Eccentricity magnitude and phase evolution in 2D simulation with α = 0.1.
See Figure 3.6 for detailed description. Slower precession is seen compared to the
α = 0.2 simulation.
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Figure 3.10: Eccentricity magnitude and phase evolution in 2D simulation with
α = 0.2. See Figure 3.6 for detailed description. More rapid precession is seen
compared to the α = 0.1 simulation, but it is not driven by the viscous force (red
curve, bottom right).
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Figure 3.11: Real part of the spiral density wave in the radial momentum pr of the
form ei(2φ−3Ωpt) measured from the 2D α = 0.1 simulation at t = 79 binary orbits.
Its eccentric Lindblad resonance is the binary’s 3:1 resonance located at r = 15.2,
indicated by black circle. Though the wave amplitude becomes small at larger radii,
its contribution to the globally averaged eccentricity growth is not negligible there
because the tidal force is also larger (see Figure 3.13 orange curve)

Equation (3.20) over many binary orbits to determine the total long-term secular effect

of each wave on global eccentricity growth. We confirm that the (2, 3) wave (orange

curve) is the dominant contributor to eccentricity growth, but that other waves also

contribute significantly. It is interesting that the (−1, 0) “wave” has the second largest

contribution to eccentricity growth over time.

Figure 3.13 shows the right-hand side of Equation (3.20) plotted as a function of

radius. In the top plot we first confirm that the left-hand side of Equation (3.20) (solid

line), which consists of time-integrating the instantaneous tidal effect on eccentricity

growth, matches the right-hand side (dotted line), which uses the decomposition into

waves and makes the approximations d$/dt = 0 and dMfluid/dt = 0. We also only sum

over the Fourier modes shown in the bottom plot to arrive at the dotted line, which we

found to be the only non-negligible modes. The good agreement between the solid and

dotted line in the top plot validates the numerical accuracy of our simulation and the

approximations made in Equation (3.20).
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Figure 3.12: Time-integrated contribution to eccentricity growth due to spiral waves
coupled with the tidal force, via Lubow’s mechanism. (n, l) indicates spiral waves of
the form einφ−ilΩpt. Largest contribution to eccentricity growth comes from the (2, 3)
wave (orange curve) excited by the 3:1 resonance, but there is significant contribution
from other waves as well.

Several features of these waves are noteworthy. First, the radial oscillations in the

contribution to global eccentricity growth indicates the spiral nature of these waves,

which is also readily seen in Figure 3.11. Spiral waves wind in azimuth as we move

radially, so for roughly half the radii they will have the wrong phase for eccentricity

growth and will instead damp the globally averaged eccentricity. However, in theory,

they should have a consistent phase near their associated Lindblad resonance since the

radial WKB wavenumber approaches 0, and they also have a consistent phase in their

evanescent region on one side of resonance. So we expected the most important wave,

the (2, 3) wave (orange curve), to become evanescent beyond its Lindblad resonance, the

3:1 resonance, at r = 15.2. However, the transition to evanescence is not as expected

since oscillations are still seen beyond the resonance, albeit not through zero. The cause

and implication of this behavior is not clear to us, though it may be related to viscous

or nonlinear effects.
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Figure 3.13: Radial dependence of the contribution to eccentricity growth due to
spiral waves coupled with the tidal force, via Lubow’s mechanism, at t = 79 binary
orbits. In the top plot, “total tidal” (solid line) refers to the total effect of the tidal
force on eccentricity growth (LHS of Equation (3.20)), and the “from waves” (pink
dotted line) is the sum of the curves from the bottom plot only, which only includes
the Fourier modes shown. Bottom plot shows the contributions of each mode to
eccentricity growth (RHS of Equation (3.20)). Black vertical line indicates the binary’s
3:1 resonance. (n, l) indicates spiral waves of the form einφ−ilΩpt. We have multiplied
by an additional factor of r compared to Equation (3.20) so that the radial integral
of these plots with measure dr gives the total eccentricity growth contribution.
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Next, though the amplitude of the (2, 3) spiral wave as seen in Figure 3.11 appears

to be negligible beyond the 3:1 resonance, its contribution to eccentricity growth is not

negligible at larger radii as seen in the orange curve of Figure 3.13. This is because

the contribution to eccentricity growth has an additional coupling with the tidal field Φ

which is also larger for larger radii.

The largest amplitude in radial oscillation of the contribution to eccentricity growth

in Figure 3.13 is the (1, 2) wave (green curve). However, its long-term contribution to

eccentricity growth when integrated over all radii is negative as seen in Figure 3.12, and

is still smaller in absolute value compared to the (2, 3) wave. This is because in the

oscillatory region we get cancellation between neighboring peaks with opposite sign.

Since the analysis of the waves in the 2D α = 0.1 simulation show that the (2, 3)

wave driven by the 3:1 resonance is the most important for eccentricity growth, we wish

to look for this wave in the 3D simulation. As explained earlier in this section, we

cannot compute the wave contribution to eccentricity growth in the 3D MHD simulation

since it does not have a well-defined eccentricity vector to project onto. Instead, we

simply compute the relative amplitudes of the (2, 3) density wave in the 3D and 2D

simulations for comparison. Density was chosen over the momenta pr, pφ used above only

for simplicity. We compute the wave amplitude in the 3D simulation by first vertically

integrating in θ then picking the real part of the (2, 3) Fourier component, resulting in

δρ = Re

[∫ t1

t0

Ωp dt

2π

∫ 2π

0

dφ

2π

∫ π

0

dθ ρe−i2φ+i3Ωptr sin θ

]
(3.22)

with the time integration being over one orbit. We likewise compute the wave amplitude

in the 2D simulation without the θ vertical integration. δρ is then normalized by the

azimuthally averaged density to enable comparisons between simulations and plotted in

Figure 3.14.
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We see that in the inner regions of the disc where r < 12, the amplitude of the (2, 3)

density wave in the 3D simulation (purple curve) decreases over time. This coincides

with the shrinking of the disc as described in Section 3.4.5. As less material reaches the

3:1 resonance over time, the most important wave contributing to eccentricity growth

diminishes in amplitude. We also see evidence for this in Figure 3.6, where the tidal

force initially contributes to eccentricity growth before ceasing to do so. On the other

hand, the 2D simulations show an increase in the amplitude of the (2, 3) density wave

over time. This is caused both by the spreading of the disc over time allowing for more

mass at the 3:1 resonance, and also the increased eccentricity at later time coupling more

strongly to the tides to produce the (2, 3) wave.

3.4.5 Surface density evolution

Figure 3.15 shows the normalized and azimuthally averaged surface density of the

simulations at two different times. The surface densities were normalized by the instan-

taneous total mass in the simulations to enable relative comparisons between them, since

some simulations lose mass more rapidly. We see that only after around 5 binary orbits,

the surface densities of all three 2D simulations look similar to the surface density at

the much later time of around 30 binary orbits. The readjustment of surface density

correlates with the eccentricity growth plots in Figures 3.9, 3.10, where we see an initial

transient behavior within the first 5 binary orbits before entering the exponential growth

part. There is significantly more mass in the outer regions of the disc in the higher

alpha simulations, and eccentricity growth only occurs in these simulations. This agrees

with the result of Kley et al. [41] that the eccentricity growth can only take place after

significant mass is present in the outer regions of the disc.

The 3D MHD simulation initially also has significant surface density at the 3:1 reso-
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Figure 3.14: Comparison of the ei(2φ−3Ωpt) normalized density wave across simulations
at different times: top plot is at 5 binary orbits, bottom plot is at 20 binary orbits.
δρ is the real part of the wave given by Equation (3.22), and 〈ρ〉 is the azimuthally
averaged density. The amplitude increases over time for the higher α 2D simulations,
but has decreased in amplitude for the 3D MHD simulation in r < 12. Vertical black
line indicates the location of its 3:1 eccentric Lindblad resonance. The top and bottom
curves for the 3D MHD simulation are taken at 5 and 20 binary orbits, respectively,
after t = 226 binary orbits to allow comparisons with the 2D simulations.
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nance r = 15.2, comparable to the higher alpha 2D simulations, since the manually added

magnetic field loops act to increase angular momentum transport. However, the surface

density at the resonance then drops and becomes more like the α = 0.01 2D value, and

the effective α due to magnetic stresses in the 3D simulation also declines to ∼ 0.01. We

can see the effect of this in the tidal contribution term in Figure 3.6 (blue curve, bottom

left). The tides initially try to increase eccentricity since there is enough mass near the

3:1 resonance, but as the disc becomes truncated, the tidal contribution diminishes and

the blue curve flattens. In Figure 3.14, the (2, 3) density wave amplitude in the inner

parts of the disc (r . 12) of the 3D simulation (purple curve) also decreases over time.

We additionally ran a 2D simulation restarted from the α = 0.1 simulation data

in order to investigate the tidal truncation phenomenon and its effect on eccentricity

evolution. We axisymmetrized the surface density profile at t = 30 binary orbits and

used it to initialize the restarted simulation. Additionally we turned off the viscosity so

α = 0 in the restarted simulation. The evolution of the surface density profile is plotted

in Figure 3.16. We see that without the large α viscosity keeping the disc spread, the

surface density of the outer parts of the disc rapidly declines within a few binary orbits.

The eccentricity evolution is also seen to be affected by the tidal truncation as seen in

Figure 3.17. Eccentricity initially grows for the restarted simulation (orange curve) since

there is enough density in the outer parts of the disc, but as the disc becomes tidally

truncated, eccentricity then declines.

3.5 Discussion and conclusions

We ran a 3D MHD global simulation of an accretion disc modeled after a real AM

CVn. One of the largest amplitude oscillations present in the real system’s lightcurve is

a superhump frequency, suggesting that it has an eccentric disc. However, after running
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Figure 3.15: Azimuthally averaged surface density radial profiles, normalized by total
mass: top plot is at 5 binary orbits, bottom plot is at 20 binary orbits. The surface
density of the 3D simulation at the 3:1 resonance is comparable to the larger α 2D
simulations shortly after the magnetic field loops are added, but then decreases over
time, coinciding with the diminished tidally driven eccentricity growth (see Figure 3.6).
Tidal truncation by the companion gravity counters the turbulent/viscous spreading
of the disc. Vertical black line indicates the location of the nominal 3:1 resonance.
The top and bottom curves for the 3D MHD simulation are taken at 5 and 20 binary
orbits, respectively, after t = 226 binary orbits to allow comparisons with the 2D
simulations.
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Figure 3.16: Surface density at different times of alpha0 restart simulation. We see
the surface density in outer regions of the disc rapidly decline as a result of the tidal
truncation effect when viscosity isn’t present to spread the disc. Vertical black line
indicates the location of the nominal 3:1 resonance.
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Figure 3.17: Eccentricity growth for alpha0 restart simulation compared with initial
evolution of alpha0.1 simulation. Eccentricity grows initially for the alpha0 restart
simulation but then declines as the disc becomes tidally truncated.
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our simulation for around 200 binary orbits, we see no evidence of significant eccentricity

growth in our simulated disc. It should be cautioned however that our simulation has

not run for a full viscous time and is likely at a much higher temperature compared to

the real system. Running a global simulation of an AM CVn at a realistic temperature

for a viscous time remains a significant computational challenge. Lubow (2010) [55]

used an eccentricity model to show that lowering the disk temperature resulted in faster

eccentricity growth and also confined the eccentricity more in radius since the pressure

forces compete with the resonance by spreading the local eccentricity over the disk.

Since earlier results of Kley et al. [41] found that in 2D simulations, increased vis-

cosity and the absence of an accretion stream helps eccentricity to grow, we artificially

introduced additional magnetic field loops and turned off the accretion stream in our

simulation after t = 226 binary orbits, but we still observed no significant eccentricity

growth. To better understand this shortcoming of our 3D MHD simulation, we ran three

additional 2D simulations with artificial viscosities of α = 0.01, 0.1, 0.2 initialized using

the surface density and velocity profiles of the 3D MHD simulation and compared the

results against the 3D MHD simulation.

Of our three 2D simulations, only the α = 0.1 and α = 0.2 simulations showed

significant eccentricity growth, whereas the α = 0.01 simulation did not, which is similar

to earlier findings of Kley et al. [41] that found that a larger kinematic viscosity leads

to more rapid eccentricity growth. To understand this dependence on viscosity better,

we computed the direct contribution to eccentricity growth of each force present in our

simulations. We found that the dominant driver for eccentricity growth comes from the

companion’s tidal field as expected. However, the viscosity in the two 2D simulations with

α = 0.1, 0.2 also has a significant direct effect to grow eccentricity, especially in the α =

0.2 simulation where its contribution is roughly half of the tidal one. In contrast, however,

in the 3D MHD simulation, the direct effect of the magnetic forces is actually to decrease
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eccentricity. Magnetic forces in MRI turbulence are usually thought of as the underlying

physical mechanism behind the viscous spreading of the disc, which would aid the tidal

growth of eccentricity. But here we find that their direct effect opposes eccentricity

growth, opposite to the direct action of artificial alpha viscosity in 2D simulations. Future

MHD simulations are needed to determine whether this is a general phenomenon of MRI

turbulence or specific to our setup.

Also noteworthy is that the α = 0.2 simulation has a more rapid apsidal precession

rate compared to the α = 0.1 simulation, implicating a longer superhump period for the

former. We computed the contribution of the viscous force on the apsidal precession rate

and found it to be negligible. Instead the difference in precession rates comes from the

tidal force, but since both simulations have the same tidal potential, it is likely that the

cause of the difference is that the α = 0.2 simulation has more disc mass in the outer

radii where the tidal effect is stronger. Hence, a higher alpha seems to result in a longer

superhump period not because of the direct effect of the viscous force on precession but

because of the larger disk resulting from the more efficient angular momentum transport.

In the 2D α = 0.1 simulation that showed significant eccentricity growth, we confirmed

that eccentricity growth driven by the tidal potential occurs through the mode-coupling

mechanism of Lubow [13]. From the simulation, we measured the direct contribution of

each relevant spiral wave as they couple to the tidal potential to produce eccentricity.

We find that the dominant contribution comes from the (2, 3) wave of the form e2iφ−3iΩpt

excited by the 3:1 resonance, consistent with Lubow [13]. However, we also find that

several other waves also contribute a significant amount to the eccentricity evolution. The

radial dependence of the (2, 3) wave’s contributions to eccentricity also shows oscillations

beyond the eccentric Lindblad resonance in the evanescent region. In the 3D MHD

simulation that does not show significant eccentricity growth, the (2, 3) wave’s amplitude

is diminished in comparison to the 2D simulations that do have eccentricity growth.
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Since these spiral waves are thought to be driven by the tidal potential, and the tidal

potential is the same throughout all our simulations, the difference in wave amplitude is

likely due to the different surface density distributions of our discs. We show that after

an initial transient phase, the surface density at outer radii near the 3:1 resonance in the

3D MHD simulation is comparable to that of the α = 0.01 2D simulation that did not

show significant eccentricity growth, whereas the α = 0.1, 0.2 2D simulations that had

eccentricity growth had much more mass at outer radii. The effective α due to magnetic

stresses in our 3D simulation also settles to ∼ 0.01. Additionally, when we initialize a

2D simulation with the surface density of the α = 0.1 simulation but turn off viscosity,

we see that though eccentricity grows initially, mass rapidly falls inward as the disc is

tidally truncated, and eccentricity growth ceases.

Taken together, this could suggest that an effective alpha of α ∼ 0.01, commonly seen

in MHD simulations without a net poloidal field, may not be high enough to spread suf-

ficient mass to larger radii compared to real white dwarf accretors to enable eccentricity

growth, or that the magnetic field is modeled incorrectly if the magnetic stresses are al-

ways completely suppressing eccentricity growth, though future simulations are needed to

explore this further. This shortcoming of MHD simulations has been suggested previously

in the context of dwarf novae [24, 25], although convection may provide a resolution to

this problem in that context [56, 57]. Effective alphas measured in observations of dwarf

nova outbursts give an estimate of α ∼ 0.1 − 0.2. The low effective alpha seen in our

MHD simulation seems to also be the cause for the failure to produce the eccentricity

responsible for one of the larger amplitude periodicities in the lightcurve of some of these

accreting white dwarf systems. It is well known that MRI turbulence with net poloidal

magnetic fields can produce an effective α that is much larger than 1% [58, 59], which

also depends on the amount of poloidal flux in the disk. It will be interesting to explore

the eccentricity of the disk with poloidal magnetic fields, which can either come from the
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white dwarf or the companion, for future MHD simulations.
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Chapter 4

Effects of 3D vertical stratification

on eccentricity evolution for global

MHD simulations

In Oyang et al. (2021) [16], hereafter referred to as Paper I, we ran an MHD simulation

of an accretion disk modeled after a real AM CVn that shows superhumps, suggesting

that the real disk in nature is eccentric. Unexpectedly, our simulation of this AM CVn

did not develop any significant eccentricity. We compared this with 2D simulations of the

same system using an alpha viscosity. In the 2D case eccentricity did develop if α ≥ 0.1,

but no eccentricity developed when α = 0.01. Our MHD simulation also had an effective

α of 0.01. Since it is the tidal force that is responsible for the growth of eccentricity

in these disks, we concluded that the MHD and α = 0.01 2D simulation did not have

enough viscous spreading of the disk to allow the disk to spread to larger radii, where

the larger tidal force can act to grow the eccentricity.

Therefore, our goal in this chapter was to run MHD simulations of these disks with a

larger effective α by increasing the magnetic field strength in the disk for more vigorous
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MRI. Despite reaching an effective α of greater than 0.2 throughout most of the disk, our

new MHD disk still did not develop significant eccentricity, conflicting with the results of

the 2D simulations of Paper I. To investigate this problem further, we used 3D simulations

with an α viscosity to explore a parameter space of α and disk temperature. We found

that the disk temperature also affects the eccentricity evolution, mainly by damping it

through the vertical pressure force. This is a purely 3D effect not observable in the 2D

simulations, and is the result of the misalignment of the disk periapsis and the thinnest

part of the disk. This makes the eccentricity growth problem worse in 3D, as it means

lower temperatures and hence thinner disks are needed for eccentricity to grow, which

will be costly in grid resolution and viscous timescales.

4.1 Method

We use the same numerical setup as in the 3D simulation of Paper I, and refer the

reader to Paper I for extra details. We used the astrophysical MHD code Athena++ [17]

to run our simulations. We chose a spherical-polar grid with logarithmic spacing in the

radial direction so that the cell aspect ratios remain constant with radius and to resolve

the inner radii. Two levels of static mesh refinement were used to increase the resolution

near the midplane regions where the interesting physics occurs. Our simulation frame

of reference was chosen to be co-rotating with the binary and centered on the primary.

This introduces additional tidal forces and the coriolis force, but allows us to numerically

conserve the total energy as the gravitational potential is time-independent.

We use the same units and binary parameters as in Paper I, modeling our AM CVn

after the one discovered in Fontaine et al. (2011) [14]. We have a binary mass ratio of

q = 0.1 and a binary separation of a = 32.68, placing the L1 Lagrange point and our

outer boundary at around r = 23. The inner boundary, representing the white dwarf, is
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at r = 1.

We solve the same equations as in Paper I, using a locally isothermal equation of

state, reproduced below

∂tρ+∇ · (ρv) = 0 (4.1a)

∂t(ρv) +∇ · (ρvv −BB + P ∗I) = −2ρΩpz× v − ρ∇Φ (4.1b)

∂B

∂t
−∇× (v ×B) = 0 (4.1c)

P ∗ = ρT +
B2

2
(4.1d)

T =
GM1

R

(
H

R

)2

∝ 1

R
(4.1e)

The potential is given by

Φ = −GM1

r
− GM2

|r−R2|
− 1

2
(Ωpr sin θ)2 +

GM2

R3
2

(R2 · r) (4.1f)

where R2 = 32.68x̂ is the location of the secondary and Ωp is the binary angular velocity.

For our α disk simulations, we implement the α viscosity with a radially dependent

kinematic viscosity

ν(R) = αT

√
R3

GM1

(4.2a)

and we use an isotropic viscous stress tensor

Πij = ρν

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij∇ · v

)
(4.2b)

The inner boundary was handled by copying the fluid primitive variables from the last

cell in the computational domain into the ghost cells, but the radial velocity vr is set to 0
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if vr > 0 to prevent inflow from the boundaries. The same procedure is done for the outer

boundary away from the L1 point, but with the reversed condition preventing inflow. For

the MHD simulation, the magnetic field is handled at the boundaries by copying Br from

the last cell in the computational domain into the ghost cells and zeroing the remaining

components at the inner and outer boundaries, away from the L1 point. For the L1

point, gas and magnetic field are injected representing the accretion stream resulting

from Roche lobe overflow. The stream is initialized as a Gaussian according to Lubow &

Shu (1975) [44]. Injection of magnetic field by the stream at the L1 point was found to

be necessary to maintain the effective α values within the disk we found were necessary

for eccentricity growth in Paper I.

For our α disk simulations, however, we do not use an accretion stream since we found

that the stream boundary condition can sometimes cause difficulty with our eccentricity

evolution equation, and instead initialize the simulations with a disk in place.

4.2 MHD simulation properties

For comparison with other 3D MHD simulations and with Paper I, in Figure 4.1, we

plot the midplane and vertical profiles of the 3D MHD simulation time-averaged over one

binary orbit. The effective α is computed using the standard

α =
〈Trφ〉
〈P 〉

(4.3a)

where 〈·〉 denotes shell averaging and Trφ is the stress

Reynolds Trφ = ρvr(vφ −
1

2π

∫ 2π

0

dφ vφ) (4.3b)

magnetic Trφ = −BrBφ (4.3c)
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We see that we have achieved high effective α > 0.2 from the Maxwell stress in almost

all regions of the disk by continually injecting high magnetic field from the L1 boundary

with the stream. The Ṁ profile also shows that we have achieved inflow equilibrium in

most of the disk except the innermost and outermost regions. Paper I suggested that

an α > 0.1 would be sufficient for eccentricity to grow, but we still found no significant

eccentricity growth in this newer 3D MHD simulation, discussed further in section 4.3

4.3 Eccentricity evolution

The methodology used here to evaluate eccentricity growth is described in Paper I.

Essentially, we use an eccentricity conservation equation derived in Paper I to measure

the effects of the various forces on the density weighted average eccentricity. Doing this

allows us to identify which forces are important and needed to get eccentricity to grow,

and also which forces are preventing its growth.

Since our present simulations are all in 3D, we make a modification here to extend

the spiral wave analysis from Paper I to take into account vertical stratification. We

make the approximation that the global average eccentricity vector lies in the xy-plane.

Then the 3D analogue for equation (3.19) is

Ctidal · 〈ê〉V
Mfluid

=
1

2GM1Mfluid

∞∑
m=−∞

ei(m+1)φ−imΩpt−i$ (−2pθ sin θ(∂θΦm)− 2impφΦm

+rpθ cos θ(∂rΦm) + pr cos θ(∂θΦm) + irpφ(∂rΦm)− mprΦm

sin θ

)
+ c.c. (4.4)

which we use for our spiral wave analysis.
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Figure 4.1: 3D MHD profiles averaged over one binary orbit around t = 35 binary
orbits. Left: azimuthally averaged midplane profile. Right: azimuthally averaged
vertical profile for r = 6.
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4.3.1 Results

In Figures 4.2, 4.3, 4.4, 4.5, we plot the eccentricity evolution for our 3D α vis-

cosity simulations with parameters α = 0.1, H/R = 0.025; α = 0.1, H/R = 0.05;

α = 0.3, H/R = 0.05; α = 0.3, H/R = 0.025; respectively. We find that the H/R = 0.025

simulations both exhibit eccentricity growth, but the H/R = 0.05 simulations do not.

Just as in the 2D simulations of Paper I, we see that in the cases when the eccentricity

grows, the tidal force is the main contributor to its growth. Also like the 2D simulations,

the α viscosity has a direct effect to grow eccentricity. The viscosity also has the indirect

effect of spreading the disk to larger radii, increasing the tidal effect. For the simulations

that did grow eccentricity, we find that a higher α value results in a faster disk preces-

sion, replicating the 2D findings. The main difference and key finding though is that the

pressure force acts to damp eccentricity, mainly due to its vertical component. The cause

and implications are further discussed in subsection 4.3.2.

In Figure 4.6, we plot the eccentricity evolution for the 3D MHD simulation after

we switch off the accretion stream. The stream and its advection of magnetic field

from the boundary condition was necessary to sustain the magnetic field in the disk to

maintain a high effective α. However, this boundary condition also caused problems

when computing the boundary term for our eccentricity evolution equation, a difficulty

we have yet to resolve. So instead, we temporarily switched off the stream when we

wished to measure the eccentricity evolution source terms for Figure 4.6. When we do

this, we have good agreement between the dotted and solid curves of the upper plots,

and we see that no significant eccentricity has grown over the course of the simulation,

and that the pressure force is strongly damping.

In Figure 4.7, we decompose the tidal term into its action on waves of the form

einφ−ilΩpt labeled by (n, l) for the α = 0.1, H/R = 0.025 simulation. The time-integrated
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Figure 4.2: Eccentricity evolution in α = 0.1, H/R = 0.025. Left: eccentricity magni-
tude (e) evolution. Right: eccentricity phase ($) evolution. Top plots: matching the
dotted and solid curves justifies our methodology and the simulation’s numerical ac-
curacy. Bottom plots: decomposition of eccentricity evolution by contributing forces.
The pressure force (orange) is further divided into the horizontal (hpress: brown) and
vertical components (vpress: purple). In every 3D simulation, the vertical pressure
force acts to damp eccentricity. This is an effect only seen in 3D and is not present in
previous 2D simulations studying eccentricity growth. The fact that the vertical pres-
sure force damps eccentricity places constraints on the allowed H/R in simulations
seeking to explore superhumps.
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Figure 4.3: Eccentricity evolution in α = 0.1, H/R = 0.05. See Figure 4.2 for de-
tailed description. Larger temperature and scale height results in more damping of
eccentricity by the vertical pressure force.
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Figure 4.4: Eccentricity evolution in α = 0.3, H/R = 0.05. See Figure 4.2 for detailed
description. It is interesting to note that in this case the tidal force, which initially
acts to grows eccentricity, eventually ends up acting to damp eccentricity, which is
not seen for other simulations in the parameter space of α vs H/R.
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Figure 4.5: Eccentricity evolution in α = 0.3, H/R = 0.025. See Figure 4.2 for detailed
description.
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Figure 4.6: Eccentricity evolution in 3D MHD simulation after stream is turned off.
See Figure 4.2 for detailed description.
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Figure 4.7: Secular time-integrated tidal contribution to eccentricity growth
decomposed by spiral waves of the form einφ−ilΩpt, labeled as (n, l) in the
α = 0.1, H/R = 0.025 simulation according to equation (4.4). As in the 2D sim-
ulations, the (2, 3) wave (orange) associated with the 3:1 resonance provides the
largest contribution to the tidal excitation. Compare with Figure 3.12 from Paper I.

effect due to the presence of each wave is plotted over time for every binary period. We

see that the (2, 3) wave associated with the 3:1 resonance gives the dominant contribution

to eccentricity growth in 3D, just as it did in the 2D simulations of Paper I. The (1, 2)

(green) wave which damped eccentricity in 2D is no longer doing so in 3D, and instead

the (0, 1) “wave” (red) is damping in 3D. This indicates that the behavior of these waves

can have qualitatively different effects on eccentricity growth or damping between 2D

and 3D.

In Figure 4.8, we plot the contribution of the tidal term to eccentricity growth for

the α = 0.1, H/R = 0.025 simulation at t = 15 binary orbits. Unlike the 2D case

from Paper I, the largest amplitude wave is the (2, 3) wave (orange) associated with

the 3:1 resonance. The (1, 2) wave (green) is also large here, and was largest in the

2D simulations, but when radially integrated is not a dominant contributor to the tidal

effect on eccentricity evolution. The matching of the dotted and solid curves in the top
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plot verifies the decomposition of the tidal term into the tidal coupling with individual

spiral waves, and demonstrates the Lubow mechanism in 3D. The oscillatory behavior

in radius indicates the spiral nature of these waves: the wave will switch from growing

to damping eccentricity as its phase spirals with radius. Its overall radially integrated

effect over time is what matters, though, which was plotted in Figure 4.7.

Miranda & Rafikov (2020) [60] suggested that the angular momentum flux of spiral

waves can be affected by the choice of temperature profile in locally isothermal simu-

lations, and that locally isothermal and adiabatic simulations have different forms of

angular momentum flux for spiral waves. Since our tidal excitation of eccentricity relies

on the Lubow waves, this could suggest that a different choice of temperature profile

might affect our results. To test this, we tried using a slightly modified temperature

profile of T ∝ 1/
√
r, keeping the temperature the same at the 3:1 resonant radius. We

found no change in the qualitative behavior of eccentricity evolution in our four 3D α

simulations, and we plot two of these comparable to the α = 0.1, H/R = 0.025 and

α = 0.1, H/R = 0.05 simulations in Figure 4.9. This suggests that our results on the

qualitative features of eccentricity evolution are robust to the exact wave propagation

form, but it could also be because T ∝ 1/
√
r may not be sufficiently different from our

original T ∝ 1/r. We have also yet to test this on an adiabatic simulation with cooling,

which could also alter the spiral wave propagation even for an aggressive cooling function.

4.3.2 Vertical pressure force damping eccentricity

In each of our 3D simulations, we see that the vertical component of the pressure

force damps eccentricity. This is an effect not observable in the previous 2D simulations

on eccentricity growth, and is purely a result of our 3D vertical stratification. When the

disk temperature is too large, as is the case for the H/R = 0.05 simulations, the vertical
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Figure 4.8: Tidal contribution to eccentricity growth decomposed by spiral waves of
the form einφ−ilΩpt, labeled as (n, l) in the α = 0.1, H/R = 0.025 simulation according
to equation (4.4), orbit averaged at t = 15 binary orbits. Matching of the pink and
teal curves in the top plot justifies our methodology for 3D, assumptions, and the
simulation’s numerical accuracy as the dashed pink curve represents only the sum of
the wave contributions from the bottom plot. Compare with Figure 3.13 from Paper I.
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Figure 4.9: Using a different temperature profile of T ∝ 1/
√
r does not alter the main

conclusions. Here, we show simulations with α = 0.1. On the left, H/R at the 3:1
resonant radius R = 15 is 0.025; on the right, H/R at the 3:1 resonant radius is 0.05;
both with temperature profiles T ∝ 1/

√
r. Eccentricity is still prevented from growing

when the temperature is too high due to vertical pressure forces.
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pressure force is large enough to prevent the eccentricity from growing at all, even in the

α = 0.3 case.

To more definitively characterize the damping effect of the vertical pressure force, we

run a simulation with an initial eccentricity of e = 0.1 and α = 0.3, H/R = 0.05, and

observe the decline of eccentricity driven by the vertical pressure force. In Figure 4.10,

we plot quantities at t = 10 binary orbits and find that the cause of this damping is

the misalignment between the disk periapsis and the thinnest part of the disk (inferred

from the vertical velocity). The cause of the misalignment is currently unknown to us.

As a simplified model, consider the relevant term in the eccentricity source term C (see

equation (10) of Paper I) involving a vertical force fθ, which is ∝ rvθfθr̂. Approximating

fθ, representing the vertical pressure force as roughly constant, then if vθ ∝ sin(φ− φ0),

the azimuthally integrated contribution to eccentricity evolution then points perpendic-

ular to the φ0 direction. When φ0 and $ are misaligned, this can cause the eccentricity

damping, depending on φ0. The antisymmetry above and below the midplane of both vθ

and fθ causes the relevant eccentricity source term to be symmetric about the midplane.

As a comparison, Teyssandier & Ogilvie (2016) [61] had an analytic solution for an

eccentric disk in which the periapsis was exactly aligned with the thinnest part of the

disk. However, Lynch & Ogilvie (2021) [62] found situations in which this misalignment

is possible when dissipation is large, though with the opposite phase relation to what we

have here. If dissipation is also the cause of the misalignment in our simulation, we would

have to lower α to reduce it, but a high enough α is also required to grow eccentricity.

4.4 Discussion and conclusions

Based on the work of Paper I which suggested we need a high enough effective α to

grow eccentricity to see superhumps, we ran another MHD simulation, this time injecting
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Figure 4.10: Damping effect of the vertical pressure force on eccentricity is caused by
the mismatch between the disk periapsis and the thinnest part of the disk, inferred
from the vertical velocity. Left: plots of various quantities at r = 6, with the black
vertical bar marking the local shell-averaged periapsis for r = 6 and green vertical bar
marking global disk periapsis. Gas orbits in the positive φ direction. Vertical velocity
vz = 0 after periapsis passage (bottom left plot), marking the thinnest part of the
disk, and causing eccentricity damping (top left plot). Right: vertical profile of the
local periapsis ($), showing that the eccentric orbits remain aligned vertically in high
density disk regions with no twist.
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more magnetic field from the L1 point to stimulate more vigorous MRI. Despite this,

our MHD simulation still failed to grow eccentricity. By running 3D stratified α disk

simulations, we were able to determine another source of eccentricity damping, which is

the vertical pressure force, not present in previous 2D simulations.

Just as in the 2D simulations from Paper I, we found that higher α values resulted in

faster disk precession rates, mainly driven by the tidal term. This means that it is not the

enhanced viscous force that directly drives precession, but that the viscous force spreads

the disk to larger radii, resulting in a larger tidal precession effect, and this conclusion

is robust from 2D to 3D. A faster disk precession resulting from higher α should be

observable as a larger superhump period excess.

The fact that vertical pressure forces in the H/R = 0.05 simulations are able to

completely quench eccentricity growth even when α = 0.3 provides another constraint

for the MHD simulations. To explore the superhump phenomenon, we simultaneously

require both high enough α to spread the disk to larger radii where the tidal force can act

to grow eccentricity, and low enough vertical pressure forces so that they do not damp

away the eccentricity. Alternatively, if the mismatch between the disk periapsis and the

thinnest part of the disk can be reduced, this can also remove the damping by vertical

pressure forces.
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Chapter 5

Conclusion

In this thesis, we presented our works towards running global 3D MHD simulations of

AM CVn accretion disks. Significant numerical challenges were encountered mainly due

to the computational costs. Nevertheless, progress was made towards improving these

simulations so that hopefully, in the future, we can use these simulations to explain

observational phenomena, such as the superhumps.

We discussed our implementations to achieve better numerical accuracy, and also

some of the details necessary to make these simulations run. We also discussed some

potential angular momentum conservation issues despite the current corrections made in

Athena++’s geometric source terms to remedy some of these, and why some of these

issues currently might only be addressable through increasing the grid resolution.

We attempted to explore the phenomenon of superhumps and eccentric disks through

our 3D MHD simulations, but these simulations did not develop significant eccentrici-

ties, in contrast with nature, indicating improvements must be made. We were able to

determine factors that may be preventing the development of eccentricity, though, by

developing a methodology for studying eccentricity evolution in simulations through a

conservation equation, and exploring eccentricity growth in cheaper 2D and 3D α disk

91



simulations. A high effective α & 0.1 is needed, as well as lower H/R to prevent the

vertical pressure force from damping eccentricity. Furthermore, the Maxwell stresses

themselves in the MHD simulations can act to damp eccentricity, which is opposite of

the α viscosities. In our α disk simulations that did grow eccentricity though, we were

able to directly measure the wave-coupling mechanism for eccentricity growth in these

disks in both 2D and 3D, confirming previous analytic work on this subject.

Though difficulties remain, these works can hopefully give direction for future global

3D MHD simulations of accretion disks. We thank the reader for their interest in these

topics.
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