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EPIGRAPH

Wisdom is not a product of schooling but of the lifelong attempt to acquire it.

—Albert Einstein
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ABSTRACT OF THE DISSERTATION

Deciphering the Genetic Code of DNA Methylation

by

Mengchi Wang

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California San Diego, 2019

Professor Wei Wang, Chair
Professor Bing Ren, Co-Chair

DNA methylation plays crucial roles in many biological processes and abnormal DNA

methylation patterns are often observed in diseases. Recent studies have shed light on cis-acting

DNA elements that regulate locus-specific DNA methylation. More importantly, these new

discoveries have shown potentials in clinical application.

In this thesis, I first interrogate the current biological foundation for the cis-acting genetic

code that regulates DNA methylation. This process involves transcription factors, histone modifi-

cations, and DNA secondary structure. In chapter 2, we demonstrate how to find the functional

motifs that regulate DNA methylation. We have analyzed 34 diverse whole-genome bisulfite
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sequencing datasets and have identified 313 identified motifs, including 92 and 221 associated

with methylation (methylation motifs, MMs) and unmethylation (unmethylation motifs, UMs),

respectively. We show that these motifs are associated with local methylation level, and motif

disruption of by mutation leads to significantly altered methylation level of the CpGs in the

neighbor regions. Combined with somatic mutations, these motifs improve the prediction of

cancer subtypes and patient survival.

DNA motif analysis frequently requires intuitive understanding and convenient represen-

tation of motifs. In chapter 3, I review how the motifs are typically represented as position weight

matrices (PWMs) and propose a new wildcard-style consensus sequence representation based

on mutual information theory and Jenson-Shannon Divergence. We name this representation as

sequence Motto and have implemented an efficient algorithm with flexible options for converting

motif PWMs into Motto from nucleotides, amino acids, and customized alphabets. On the other

hand, experimental validation of cis-acting DNA elements benefits from the recent advancement

of CRISPR/Cas9 mediated genetic screening. In chapter 4, I present CRISPY, a lightweight,

robust CRISPR screening pipeline that unifies single-sgRNA and CREST-seq screening protocols

and is capable of profiling peak candidates with existing data of histone modifications, DHS, and

ATAC-seq in human and mouse.

Combined together, our studies have provided new insights on how genetic code regulates

DNA methylation and can be applied to clinical applications. In addition, we provide the tools to

efficiently represent the motifs and evaluate their functions in a high-throughput manner.
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Chapter 1

The biological foundation for genetic code

that regulates methylation

1.1 INTRODUCTION

DNA methylation is the addition of a methyl group on cytosines predominantly at CpG

dinucleotides, which could alter how proteins bind to this region. Where DNA is methylated

leads to different biological functions. For example, hypermethylation in promoters plays

notable roles in gene silencing, whereas DNA methylation at the gene body is involved in

transcription elongation and alternative splicing[1, 2]. DNA methylation also synergizes with

local histone modification during development, somatic cell reprogramming, and tumorigenesis[3,

4]. Therefore, to interpret the function of DNA methylation, we need to understand how DNA

methylation takes place in a locus-specific manner.

Locus-specific DNA methylation or demethylation depends on the recruitment of specific

enzymes such as TET and DNMTs to particular genomic regions[5–7]. DNA methylation is

catalyzed by DNA methyltransferases (DNMTs) by two distinct mechanisms[8]. New methy-

lation is established (or de novo DNA methylation) on both DNA strands by DNMT3A/3B/3L,
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predominantly during embryogenesis. Meanwhile, existing DNA methylation is maintained by

DNMT1 (with help from UHRF1), which recognizes half-methylated DNA strand (hemimethy-

lation) after replication. On the other hand, the removal of the methyl group from cytosines

is promoted by the ten-eleven-translocation enzymes (TET1/2/3), which can oxidize 5mC to

5-hydroxymethylcytosine, and then demethylate to cytosine through various pathways[9].

Emerging evidence has suggested that enzymes like DNMTs and TETs are recruited to

specific genomic regions by certain DNA sequences. Recently, we have published a study that

systematically identified 313 DNA motifs that regulates DNA methylation from 34 whole-genome

methylomes. We show that these motifs are functional and can be applied to improve cancer

prognosis and diagnosis[10]. In this review, we aim to first summarize the underlying mechanisms

where cis-acting genetic code mediates DNA methylation. Further, we review the trend of recent

machine learning models that focus on genetic features of DNA methylation and discuss the

biological insights revealed from these models. Finally, we propose to combine DNA methylation

genetic code and DNA variants in clinical settings, particularly in liquid biopsy and early cancer

diagnosis. We show how this improves the current paradigm where the discovery of biomarkers

has been focused on a handful of genes.

1.2 THE MECHANISMS OF LOCUS-SPECIFIC METHY-

LATION

Overwhelming evidence has shown that DNA methylation exhibit certain genetic patterns,

such as lower GC content, enrichment of short nucleotide combinations (2-6 bp), and longer DNA

motifs[11–21]. Some experiments further report cases that some DNA sequences can dictate

where DNA methylation/demethylation takes place. For example, Lienert et al have identified

methylation-determining regions, which mediates de novo methylation and demethylated. Inter-

estingly, in these regions there are cis-regulatory motifs that can be recognized by DNA-binding
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factors (SP1, CTCF, Rfx); mutating these motifs nullifies the methylation alteration[22]. Stadler

et al. have shown the introducing the CTCF motif site are necessary and sufficient to lower

methylation of local CpGs[23]. Taken together, these reports suggest methylation is encoded

genetically, recognized and mediated by locus-specific protein factors. Here, we review the

emerging mechanisms of locus-specific DNA methylation guided by cis-acting DNA sequences,

through the assistance of a variety of mechanisms, including transcription factors, DNMTs, TETs,

DNA secondary structures, and crosstalk from histone modifications (Figure 1.1).

Figure 1.1: The emerging view of locus-specific DNA methylation and demethylation.

1.2.1 TFs recruit TETs for active demethylation.

Previous reports show TET prefers CpG-rich patterns such as CpG island which spans

several kilobases[24] and can bind CpG-rich DNA sequences[5] in mammalians to maintain stable

demethylation[25]. TET recruitment through locus-specific TF binding has been abundantly

reported. For example, introducing a CTCF binding site at a particular locus leads to TET

recruitment and local DNA demethylation[23]. PPARG binds to the promoter containing its
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binding sequence and recruits TET, resulting in local DNA demethylation[26]. In a more recent

study, Suzuki et al. have designed a method to screen for TFs that can facilitate the demethylation

of DNA in a site-directed manner. In particular, they transduced the target TF under test in

sub-cloned vectors to target cells, and then test the change in methylation status of the CpGs (by

using the HumanMethylation450 methylation array) nearby the TF binding sites (by searching for

known motifs on the genome) with and without the ectopic expression of the TF, and screened for

methylation change. Using this strategy, Suzuki et al. have shown RUNX1 site-specific binding

correlates with demethylation in hematopoietic cells, and have further confirmed recruitment of

DNA demethylation machinery enzymes including TET2, TET3, TDG, and GADD45, using

co-immunoprecipitation[27]. In a separate study, Suzuki et al. scaled-up the same strategy and

confirmed 8 (RUNX3, GATA2, CEBPB, MAFB, NR4A2, MYOD1, CEBPA, and TBX5) out of

15 (plus NANOG, HNF1A, PAX4, Nkx2-5, SOX2, POU5F1, HNF4A) tested TFs can facilitate

demethylation of DNA in a site-directed manner [28].

1.2.2 TFs blocks DNMT3s and prevent de novomethylation

Many transcription factors (TFs) can maintain a low methylation region through blocking

DNMTs. For example, SP1 preferentially binds to CpG-rich promoters, blocking the region

from de novo methylation in mouse[29, 30]. Proteins containing a CXXC domain (CFP1, MLL,

KDM2A/2B, IDAX) can bind to unmethylated CpGs to prevent the region from methylation[31–

33]. Interestingly, DNMT1 has a CXXC domain, which putatively helps it to bind to hemimethy-

lated CpGs[34]; TET1 and TET3 also have a CXXC domain, which has been indicated to

contribute to locus-specific genomic recruitment[35]. However, other studies have shown that the

CXXC domain failed to restrain the activity of Dnmt1 on unmethylated CpG sites [36].
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1.2.3 TFs recruits DNMTs for de novo methylation

Similarly, many TFs have been reported to facilitate DNA methylation through locus-

specific interaction with their binding sites. For example, NR6A1(or GCNF) can silence Oct-3/4

by binding to its promoter and recruit Dnmt3a and Dnmt3b in the mouse, facilitating methyla-

tion[37]. Dnmt3a has been reported to interact with Myc and specifically target the promoter

of p21Cip1, leading to repressed transcription[38]. Dnmt3b has been reported to be recruited

through E2F6 transcriptional repressor leading to germ-line gene silencing in murine somatic

tissues[39].

1.2.4 DNA secondary structure shape DNA methylation

Besides TF-directed locus-specific methylation, DNA secondary structure has also been

reported to shape local DNA-methylation. For example, Clark and Smith showed that VNTR

(variable number tandem repeats) at a non-B DNA structure contributes to the abnormal DNA

methylation in human breast cancers[40]. Mao et al. report G-quadruplex (G4) DNA secondary

structures are associated with hypomethylation at the CpG island in the human genome. Para-

doxically, G4 sites are enriched with DNMT1 binding, but inhibits DNMT1 enzymatic activity,

leading to the inhibition of local CpG methylation [41]. Other studies show a certain group of

G4 structures play roles in both DNA methylation and histone modification[42]. Meanwhile, G4

secondary structures are characterized by strong telomeric repeats, with cis-acting DNA motifs

such as (GGGGCC)(n), TG(4)T(2)G(4)T, and GGGCT(4)GGGC[43–45]. Taken together, the

DNA secondary structure adds another layer for how DNA sequence maintains and alter local

methylation.
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1.2.5 Compound mechanisms

Some aspects of DNA methylation is complicated and involves multiple modes of action

from the same factor. For example, reports have shown SPI1 can mediate both de novo methylation

(by interacting with DNMT3B) and demethylation (by interacting with TET2) in a site-specific

manner[46, 47]. The aforementioned CTCF is another complicated example that employs

multiple modes of action. Some studies show CTCF can promote unmethylation through blocking

DNMTs. For example, Schoenherr et al. showed that mutating CTCF-binding sites resulted in

the recruitment of DNMTs, leading to increased methylation at the imprinting control region of

Igf2/H19 locus in mouse[48]. However, Stadler et al. showed that CTCF binding to target motif

sites actively creates a low methylation region through the presence of TETs[23]. Other studies

showed that CTCF facilitates histone modification and open chromatin, although the causality in

relation to DNA methylation remains unclear[49–51].

1.2.6 Crosstalk to histone modification

The maintenance of DNA methylation also involves intricate crosstalk with histone

modification. For example, studies have established DNA maintenance on Uhrf1, which recruits

Dnmt1 and is essential for ubiquitination of histone H3 at lysine 23 at DNA replication sites,

converting hemimethylated DNA to fully methylated DNA[52]. DNA methylation has also been

linked to H3K9me3 and H3K27me3, where the H3K9 methyltransferase SETDB1 interacts with

DNMT3A and 3B[53, 54]. Interestingly, SETDB1 is not by itself DNA-binding, but form a

repression complex with TRIM28 and zinc finger such as ZNF274 to achieve locus-specificity[54,

55]. Viré et al. showed that the H3K27 methyltransferase EZH2, a component of the polycomb

repressive complex PRC2, can interact with DNMT1, DNMT3A, and DNMT3B. EZH2[56]. A

more recent study by Baubec et al. using genome-wide ChIP-seq and methylome confirmed

that DNMT3A and DNMT3B are localized to methylated CpG-dense regions in mouse stem
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cells. Notably, they found that SETD2-mediated H3K36 methylation interacts with the PWWP

domain of DNMT3B, leading to DNMT3B preferentially binds and methylate the body of actively

transcribed genes[57].

On the other hand, DNA unmethylation can be mediated by TF-mediated co-repression

through H3K4 methylation. Cfp1 has been reported to box recruit of H3K4 methyltransferases to

promote H3K4me3, help to prevent local CpG island from methylation in mouse embryonic stem

cellsbox. However, Cfp1 knockout is insufficient to remove local hypomethylation, suggesting

other factors are involved in this process[31, 58]. In another report, unmethylated H3K4 tails

have been shown to interact with de novo methylation machinery, such as Dnmt3L and Dnmt3a

in mouse[59]. The association between H3K4 methylation and allele-specific DNA methylation

has been shown at imprinted loci as well[60], with guidance from TFs like KDM1B[61].

Combined together, these reports depict a comprehensive landscape where the genetic

code underlies the locus-specific DNA methylation through various mechanisms and machinery.

1.3 THE MODELS: PREDICTION AND REVELATION

The molecular mechanisms described above have laid the foundation for many studies

that use genetic features to predict local DNA methylation. These studies have shed light on

the sequence features of locus-specific methylation and demethylation. Below we review the

development of these studies and evaluate the trend.

Earlier methylation studies typically employ enzymatic fractionation assays. For example,

McrBC digests methylated sequences while many methylation-sensitive restriction endonucleases

remove unmethylated sequences[62]. Due to the limited data coverage and resolution, these

studies tend to focus on the methylation status of CpG islands (CGI). These CpG islands reside at

the promoter of genes and serve important roles during transcription by allowing transcription

factors if unmethylated[63]. To distinguish unmethylated CpG-island (non-CGI) from methylated
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CpG island (CGI), a variety of predictive features have been found with machine learning models.

For example, Yamada et al.[17] showed CG, CT, and CA are the most predictive dinucleotides

features for human CpG island states. Das et al.[13] showed that Alu coverage and the certain

hexamers are the most predictive (with 86% accuracy) among ∼ 100 predefined features (CG

content, dinucleotide counts, trinucleotide counts, etc.). Performance is further improved when

including non-sequence features such as trinucleotide physicochemical properties[14] (i.e., bend-

ability, nucleosome-rigid, and nucleosome-positioning), histone modification[16, 64], and the

methylation states of flanking CpGs[20].

Recent studies take advantage of genome-wide methylation assays, such as 450K array,

RRBS, and WGBS. The expanded coverage of methylomes has profoundly changed the locus-

specific analysis of DNA methylation in several ways. For example, functional motifs have been

found outside of CpG islands, extending into non-coding regions[10, 21]. In addition, genomic

and epigenetic data from multiple cell lines and tissues have been made available by consortium

efforts such as ENCODE[65], ROADMAP[66], TCGA[67], and iHEC[68]. Methylation levels

are compared across multiple tissues, cell lines, and species to establish variability. For example,

Zeng et al [21] have analyzed 50 RRBS + 1 WGBS datasets and established the impact of

DNA variant on local methylation. Wang et al[10] have identified genomic regions and motifs

associated with common and variable methylation across 34 WGBS, validated in 32 450K arrays.

More datasets have also allowed more sophisticated machine learning models, such as neural

network[15, 19, 21], to outperform previously best-performing machine learning models like

SVM and random forests[13, 17, 20, 64]. DNA sequence features have shifted from using

predefined sequences and short kmer combinations (usually 2-5 bp)[13, 16, 17, 20, 64] to using

longer de novo motifs (> 9bp)[10, 11, 15, 21, 69, 70]. These studies revealed novel perspectives

on how certain genetic patterns can play more role in regulating DNA methylation.

However, the most fundamental change in methylation motif studies is from making

predictions to providing biological insights using DNA motifs. For example, many studies of
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discovered de novo motifs have been matched to known TFs to provide a reference of their func-

tions[10, 11, 15, 21, 69, 70]. As a result, while earlier studies have associated hypomethylation

with high GC contents[16, 17], recent studies have further provided an explanation with the

contributing DNA motifs with repeating GC tandems that are matched to known TFs associated

with TET recruitment, such as CTCF, SP family, and WT1[10, 21]. On the other hand, contrary to

the previous believe that methylated regions have aberrant transcription factor binding, some TFs

have also been found to preferentially binds to highly methylated regions. For example, Xuan-lin

et al[70] cross-referenced ChIP-seq of TFs and WGBS to identify over 500 TFBS termed as

MethMotifs. Ngo et al[69] proposed a high throughput pipeline that can find methylated motif and

discovered motifs that have ”dual-modes” where DNA methylation can act in a sequence-specific

context in gene regulations. Whitaker et al. have further provided a computational framework to

identify DNA motifs representing cis-acting elements with the site-specific DNA-binding factors

that establish and maintain epigenomic modifications[11].

Aside from known TFs, the function of the identified motifs can also be validated by

DNA variants. For example, Wang et al.[10] have shown motifs with enriched mQTL and eQTL,

and somatic mutation on the motifs correlates with altered local CpG methylation. Similarly,

Zeng et al [21] have proposed a deep learning framework, CpGenie, to characterize methylation

change from sequence variant, given the neighboring methylation and DNA sequences. Finally,

recent studies have highlighted crosstalk between DNA methylation and histone modification

among these motifs, especially between H3K36me3 and methylation motifs, as well as between

H3K27ac/H3K4me3 and unmethylation motifs[10, 71].

Taken together, we have observed explosive growth of computational models that explain

DNA methylation based on sequence features, in combination with the traditional usage of

physicochemical properties, nearby CpG states, TF occupancies, and histone states. The improved

model performance and revealed genetic-epigenetic association has made clinical application

possible.
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1.4 CLINICAL APPLICATION

DNA methylation is closely linked to development, aging, and cancer[72, 73]. Here,

we evaluate the theoretical basis and preliminary evidence for how to take advantage of these

newly unearthed genetic rules for epigenetic modification. In particular, we discuss the potential

applications in light of the recently popular liquid biopsy for cancer diagnosis and treatment

guidance.

Recently, liquid biopsy has gained great attention and success in early cancer diagnosis

and prognosis[74, 75]. When tumor cells go through apoptosis, ctDNA (circulating tumor DNA)

is released into the plasma. Along with other DNA fragments found in the plasma, they are

collectively termed as ”cfDNA”, or cell-free DNA[74]. Compared to traditional on-site tissue

biopsy, liquid biopsy has several distinct advantages. First, it enables minimally-invasive sampling

from the blood, or other bodily fluids such as saliva, urine, and stool. Because this sampling is

free from the knowledge of target tissue, which happens late in cancer development, liquid biopsy

enables the detection of ctDNA in early pathological stages. Finally, given the short half-life

(< 1hr) of cfDNA, the monitoring is considered ”real-time” , very responsive to environmental

changes and cancer treatment[74, 75].

Successful application of liquid biopsy depends on differentiating the tumorous ctDNA

from the ”normal” cfDNA fragments. The major challenge is that ctDNA is a small fraction

(0.01%−10%) of the total cfDNA[74–76]. Therefore, given the finite sequencing power, tumor

variant detection relies heavily on knowing how to choose the most predictive set of predictors

(or biomarkers), and how to link them to target phenotype. While early research took advantage

of simple traits like the level and fragment length (ctDNA ∼ 140bp, cfDNA ∼ 165bp) in certain

cancer types, recent success came from researching biomarkers to provide more sensitive and

selective assay in cancer diagnosis and personalized treatment[75, 77–79].

The traditional biomarkers for cancer are DNA-based, which are usually discovered
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through cancer-related genetic mutation or variant, including point mutations, copy number

alterations, and structural variation[75]. For example, Guardant Health has provided a DNA-based

cfDNA assay (Guardant360) to provide better treatment outcome for patients with advanced

cancers (such as non-small cell lung cancer). They report sequencing variant detection down to

0.02%−0.04% allelic fraction with > 98% specificity. This is achieved with the help of SNVs

from 73 genes, indels from 23 genes, amplifications from 18 genes, and fusions from 6 genes

(Figure 1.2). These are usually widely reported cancer gatekeeper genes, including KRAS, TP53,

BRCA1/2, and BRAF [80].

Compared to late-stage cancer improvement, early pan-cancer detection is a more desirable

goal and has been the latest focus for many academic groups combining forces with industry

leaders, such as Guardant Health, Grail, Freenome, and CancerSEEK. However, this task is

daunting due to two major challenges: (1) early cancer have lower variant level than in late-stage

patients; (2) the variant origin is unknown. Current strategies for improving variant detection and

locating tissue-of-origin involves combining DNA variants with additional markers. For example,

Snyder et al. have reported cfDNA nucleosome occupancies mapped by transcription factor

sequence motifs correlate well with the nuclear architecture and cell-specific gene expression,

which could be used to inform the tissue-of-origin[81]. Cohen et al. have developed CancerSEEK,

which combines DNA variant with protein biomarkers and have reported both detection and

location of multiple early-stage cancers, with a sensitivity of 69 to 98% (depending on cancer

type) and 99% specificity[82].

Recently, more groups leverage information from the methyl-CpG on cfDNA and exploit

the strong link between methylation and cancer[72, 83]. This is based on the observation that

methylation on the promoter of a tumor suppressor gene allele can result in a similar function

as a genetic alteration[1, 84]. For example, BRCA1, PTEN, HRK, APC, and RASSF1A have

been found methylated in cancer, and some related to prognosis and reflect on the efficacy of

therapy[85–87]. Henriksen et al. have reported a panel of 28 hypermethylation sites for ctDNA
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Figure 1.2: Example DNA-based biomarkers from Guardant360 panel reprinted from [80]

as prognostic markers for pancreatic adenocarcinoma staging[88]. DNA methylation patterns

derived from RRBS have also been used as a predictor for breast cancer dissemination[89]. Other

studies have reported success with DNA methylation cfDNA assay outside plasma for specific

cancer types, such as urine-based assays for prostate cancer[90, 91] and stool-based assays for

colorectal cancers[92]. Guo et al. reported segments of DNA methylation (termed haplotype

blocks) from plasma DNA can aid the deconvolution of heterogeneous tissue samples[93]. A

more recent study by Grail has successfully mapped and identifying tumor origin by cfDNA

methylation in 25 human tissues and cells[94]. Notably, Shen et al [95] have developed an

immunoprecipitation based genome-wide cfDNA methylome screening protocol (cfMeDIP–seq).

They showed sensitive tumor detection and classification among several tumor types, using

differentially methylated regions and CpGs. Overall, current adoption of methylation in cfDNA

focus on either individual genes (particularly at the promoter regions) or differentially methylated

regions, and show improvement in otherwise low-performing cancer types using DNA-only

biomarkers.

Ultimately, given the finite sequencing power and detection limit, the focus is on how

to extract the most phenotypic information from given variants. Recent studies have provided

a new strategy, where mutation on cis-acting DNA elements leads to altered local methylation
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and phenotypic association to cancer. For example, an SNP at the MGMT risks the promoter

methylation in glioblastoma and is predictive of cancer treatment using temozolomide[96]. An

SNP at the CpG site located at the ARPC3 promoter is associated with hypertriglyceridemia in

overweight patients[97]. Three CpG-SNP pair has been reported significant for the prognosis of

breast cancer patients [98]. Multiple studies have reported DNA variants are particularly found in

the CpG island at the promoter of genes related to cancer[99–102]. Zeng et al[21] have reported a

model to accurately quantified how DNA variants can impact local CpG methylation and gene

expression. Recently, we have discovered and characterized 313 DNA motifs that regulate DNA

methylation and unmethylation, and showed that DNA mutation overlapping with these motifs

impact local CpG methylation. Moreover, we have demonstrated that profiling somatic mutations

in cancer patients based on which DNA motifs they overlap, providing a significant performance

improvement over using these somatic mutations alone, both for diagnosis and prognosis [10].

Combined together, these results suggest understanding how DNA-variants change methylation

can improve the re-evaluation of the existing DNA biomarkers, and provide new perspectives on

biomarker discovery.

Chapter 1, in full, is the material as it would appear as ”Deciphering the Genetic Code

of DNA Methylation for Cancer Clinical Application. Mengchi Wang, Vu Ngo, Wei Wang.”

Quantitative Biology, 2019. In submission. The dissertation author was a primary investigator

and author of this paper.
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Chapter 2

Identification of DNA motifs that regulate

DNA methylation

2.1 INTRODUCTION

DNA methylation plays crucial roles in many biological processes and aberrant DNA

methylation patterns are often observed in diseases. There are three DNA methyltransferases

(DNMTs) in human that are responsible for de novo or maintaining methylation of cytosine.

Although these enzymes themselves do not show strong sequence preference in vivo, DNA

methylation is highly locus-specific such as hypo-methylation of active promoters and enhancers.

An urging question is how such a locus-specific DNA methylation pattern is established. One of

the possible mechanisms is that DNA binding proteins or non-coding RNAs recognize specific

DNA motifs and their binding recruits DNMTs to a particular locus to methylate cytosines in

the region. These factors can be specifically active in a cell type or state such that to provide the

cell type- and locus-specificity. Accumulating evidence suggests that protein binding such as

CTCF and other proteins can create low methylated regions in the regulatory sites and introducing

specific nucleotide sequences can establish DNA methylation[22, 23]. These observations
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suggested the importance of the DNA sequence in shaping the methylation state. Several studies

have illustrated the relationship between sequence features and DNA methylation[11–21],but

the DNA motifs recognized by the DNA methylation associated proteins have not been well

characterized. Therefore, cataloging these motifs would pave the way towards understanding the

mechanism of the locus-specificity of DNA methylation.

Cataloging DNA methylation associated motifs requires a comprehensive set of methy-

lomes and whole-genome bisulfite sequencing (WGBS) is a common technology to map DNA

methylation in the entire human genome. The NIH Roadmap Epigenomics Project[103] has

generated WGBS data in 34 cell lines or tissues, which provides an opportunity to discern motifs

associated with DNA methylation. We reasoned that contrasting regions that are commonly

methylated across cells/tissues to those commonly unmethylated would increase the signal-to-

noise ratio to identify the motifs most relevant to DNA methylation. Furthermore, to consider

the impact of cell type and cell state on DNA methylation, we also need to uncover motifs

associated with variable methylation levels across cells/tissues; a caveat is that these motifs can

be confounded by those only related to cell specificity. To this end, we have defined commonly

methylated (unmethylated) regions across the 34 cells (CMR/CUR) as well as variably methylated

(unmethylated) regions (VMR/VUR) that show cell-specific methylation (unmethylation). We

have found the DNA motifs that are discriminative of these regions.

To confirm the association with methylation, we overlapped the motifs with DNMT and

TET ChIP-seq peaks and observed strong enrichment. We also used TCGA (The Cancer Genome

Atlas) dataset to further assess the importance of these motifs in shaping DNA methylation. Inter-

estingly, we found that, if these are somatic mutations occurring in the motifs, the methylation

levels in the nearby CpGs are significantly altered, i.e. perturbation to a MM (UM) motif in a

highly (lowly) methylated region would decrease (increase) the local methylation level. This ob-

servation strongly supports the functionality of the identified motifs in establishing or maintaining

locus-specific DNA methylation. Furthermore, we observed eQTLs (expression quantitative trait
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loci) and mQTLs (methylation quantitative trait loci) are enriched in the found motifs. We also

found that the combination of somatic mutations and the found motifs can significantly improve

the prediction accuracy of cancer type and patient survival than using somatic mutations alone.

This observation also supported the functionality of the DNA methylation associated motifs.

Additional analyses also revealed the potential interplay between DNA methylation and histone

modification as well as their contribution to DNA methylation dynamics.

2.2 MATERIAL AND METHODS

2.2.1 De novo motif discovery

11.5 million CpG sites common across all human 34 methylomes have been collected

from the NIH Roadmap Epigenomics Project[66]. Methylation regions are defined by segments

merged with 2 or more CpGs with a maximal distance of 400 bp apart (i.e. CpGs and only CpGs

within 400bp of each other will be merged into a methylation region) and region methylation

level is defined by the mean CpG beta values. Each region is then assigned mean and standard

deviation of methylation across all 34 tissues and cells. we used a normalized score to measure

the overall methylation level of a methylation region across 34 methylomes in comparison to the

whole genome methylation distribution:

score =
µr−µg

sr

where µr and sr are the mean and standard deviation of the methylation of the region, µg is

the mean of methylation genome-wide. We used the ranking of this score in our analysis to select

the methylation regions, i.e., CMRs are the CpGs with the top 0.5% score and CURs bottom 0.5%

score, while VMRs are defined by the top 20% standard deviation (Figure 2.1 A, B). For common

motifs MM and UM, we perform Epigram contrasting CMRs and CURs. In short, Epigram looks

16



for enriched motifs that best differentiate the foreground from the background sequences. In

both sets of the input sequences, Epigram iterates through all possible k-mers to calculate their

occurrences, enrichment over genomic background and enrichment over shuffled input. These

values are combined to determine the enrichment of k-mers. Position weight matrices (PWMs)

are then generated by first picking a top k-mer and enriched k-mers similar to itself to construct

a seed PWM, which is then extended by adding more enriched k-mers that are a few base pairs

shifted from the original one. The motifs are then further ranked and filtered based on how well

they differentiate the foreground from the background using LASSO (least absolute shrinkage

and selection operator) logistic regression. The final set of motifs is then evaluated by random

forest.

For tissue-specific VMM and VUM, we contrasted top 6000 most methylated and un-

methylated regions in each methylome. In total, we identified 5172 motifs from 35 Epigram

runs (34 methylome + 1 common) with default parameters[11] before curation (Figure 2.1 C).

For each run, Epigram found DNA motifs that discriminate enrichment peaks of the high methy-

lation region under consideration (e.g. CMR) from a background of low methylation region

(e.g. CUR). Importantly, the background has the equal GC content, the number of regions and

sequence lengths as the foreground to avoid inflated prediction results caused by simple features

or unbalanced data set.

2.2.2 Motif curation and defining motif occurrence site

Following our previous study[11], we match motifs to the 1156 known motifs documented

by the HOCOMOCO ChIP-seq consortium[104] using an E-value cutoff of 0.05 with Tom-

tom[105]. Next, we merged the similar motifs to remove redundancy. We calculated a pairwise

motif distance using weighted Jensen-Shannon Divergence:
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Distance =

√
∑

nAli−1
k=0 JSD(M1 (i+ k) ,M2 ( j+ k))3

nAli
+G(nAli,nGap)

G(nAli,nGap) =
gapP∗nGAP2

nAli

where M1, M2 are PWMs of the two motifs, respectively, M(i) represents the ith column

in the matrix, JSD(x,y) is Jensen-Shannon divergence, nAli and nGAP are respectively the lengths

of the aligned sequence and gaps. Gap penalty function G has gapP as weight parameter set at

0.1. To ensure high similarity within the motif cluster, the gap penalty function is set to quadratic

which is more stringent compared to traditional linear function to prevent having excessive gaps

and hangovers. Motifs were hierarchically clustered with UPGMA[106] algorithm and clusters

were chosen using a distance cutoff of 0.1. As a result, we obtained 3226 clusters and selected the

motif closest to the centroid of the cluster to represent all the motifs in that cluster. We combine

the P-value of motifs in the cluster using Fisher’s combined probability test. Enrichment of

each cluster is combined by geometric mean. Each unique motif is named by its group (MM or

UM), combined P-value (log), combined enrichment, number of similar motifs in the cluster,

followed by a short descriptive string. This string is either its best aligned known motif (e.g.

UM 180.0 3.14 0.56 7 known-CTCF) matched by Tomtom described previously, or a consensus

sequence (e.g. MM 10.2 2.16 0.54 1 ATKGCGSCA) determined by a minimal information loss

method[10]. The strongest 313 motifs are filtered by volcano test with combined P < 1e−10

and enrichment > 2 (Figure 2.6). Finally, motif occurrence sites are determined by a P < 1e−5

calculated by FIMO[107].
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2.2.3 Normalized motif occurrence and center-to-edge enrichment at DN-

MTs and TETs ChIP-seq peaks.

DNMTs and TETs occurrences were downloaded from the published studies[27, 108–

110], including the ChIP-seq peaks of TET1 in HuES8 (a human embryonic stem cell line) from

Verma et al.[110], TET2 in HEK293T (a human embryonic kidney cell line) from Suzuki et

al.[27], TET2/TET3 in HEK293T from Deplus et al.[108], and DNMT1/3A/3B in NCCIT (a

human embryonic carcinoma cell line) from Jin et al.[109]. The 5000bp neighbor regions around

the ChIP-seq peaks were included as the background or edge. Normalized motif occurrence was

calculated using the following formula.

NormalizedMoti f Occurrence =
Observed (Moti f Occurrence)
Expected (Moti f Occurrence)

Expected (Moti f Occurrence) =
TotalMoti f OccurrenceLength∗TotalChipSeqPeakNumber

GenomeSize/BinWidth

where Observed (Moti f Occurrence) is the observed occurrence number of a motif in a

100 bp bin, TotalMoti f OccurrenceLength is the total length of genome-wide motif occurrences

defined by FIMO (see the above section), TotalChipSeqPeakNumber is the total number of

ChIP-seq peaks, BinWidth is 100 bp and GenomeSize is the genome size of 3.14E9 bp for the

human genome hg19. We did this calculation for each of the 313 top enriched motifs in each 100

bp bin. We also downloaded 6251 differential CpGs (dCpGs) with P < 0.05 defined by Kemp et

al[111], which were CpGs showing destabilized methylation level when CTCF contains point

mutation or copy number aberrations. Center-to-edge enrichment of motif occurrences in the 500

bp around these reported dCpGs was performed the same as described above. Results are plotted

in Figure 2.2C and 2.7B.
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Further, center-to-edge enrichment was calculated by NormalizedMoti f Occurrence in

the center 100 bp ChIP-seq bin divided by the average of NormalizedMoti f Occurrence at the

bins 2500 bp upstream and downstream. Average enrichment and standard deviation were

calculated across all MMs or UMs, followed by a two-tailed two-sample t-test, with P < 0.01

marked as significant. Results are plotted in Figure 2.2D.

2.2.4 Quantitative trait loci (QTL) enrichment analysis with TCGA

We downloaded the processed data (level 3) of 36 TCGA cancers from the Firebrowse

service (http://firebrowse.org) including patient survival, somatic mutations, 450K methylation

array, and RNA-seq data. All the somatic mutations taken from TCGA were first detected in

Affymetrix Genome-Wide Human SNP Array 6.0, and determined by contrasting variants in

cancer primary tissues with germline tissues, according to the TCGA Consortium[67]. Matrix

eQTL[112] linear model was used to identify mQTL (methylation quantitative trait loci) and

eQTL (expression quantitative trait loci) co-variating with methylation and transcript RNA-seq

level, with 5000 bp distance cutoff from somatic mutation to CpG and transcript TSS, respectively.

We used a conservative P-value cutoff of 0.01 on top of an FDR cutoff of 10% . Then we

calculated the number of mQTL or eQTL out of all somatic mutations in 10 bins of gene body,

i.e., 0-10% , 10-20% , . . . , 90-100% of the mRNA transcript length, defined in Gencode v19[113].

We performed such analysis on all genes and repeated it with the UM and MM occurrence sites

(Figure 2.2A). To determine the significance of QTL enrichment, a chi-square test was carried out

in each of the 10 bins of gene body, with the null hypothesis that mQTL% or eQTL% occurring

at motif sites are the same as the rest of all genes, P < 0.01 are marked as significant.
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2.2.5 Methylation quantitative trait loci (mQTL) enrichment analysis with

three independent datasets

Three human methylome studies with independently called mQTLs were collected, i.e.

human life course study[114], GenCord Cohort study[115] and a Schizophrenia study[116]. We

took the mQTL SNPs identified from the original studies and these can be either somatic or

germline mutations, which were not distinguished in the publication work. In total, there are

around 16,000 to 30,000 identified mQTLs collected from these published studies. We defined an

enrichment score using the following formula.

EnrichmentScore =
Observed (mQT LOccurrence)
Expected (mQT LOccurrence)

Expected (mQT LOccurrence) =
TotalmQT LOccurrence∗TotalMoti f OccurrenceLength

GenomeSize

where Observed (mQT LOccurrence) is the observed occurrences of mQTLs in the occur-

rence sites of the 313 motifs genome-wide, TotalmQT LOccurrence is the total number of mQTLs

identified in each study, TotalMoti f OccurrenceLength is the total length of genome-wide motif

occurrences, and GenomeSize is the genome size of 3.14E9 bp for the human genome hg19. The

occurrences of motifs have been defined by FIMO (see the above section).

We repeated this process in all samples from all three studies and calculated the standard

deviation. Specifically, (1) 5 life stages from birth, childhood, adolescence, pregnancy and middle

age in human life course study (blood samples from 1018 mother-child pairs), (2) 3 tissues from

fibroblasts, LCLs and T-cells in GenCord cohort by Maria el al (204 newborn umbilical cord

samples) and (3) 3 regions from prefrontal cortex, striatum and cerebellum of adult brain regions

in the Schizophrenia study (173 fetal brain samples ranging from 56 to 169 days post-conception).
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Finally, we used a single-tail one-sample t-test to determine the statistical significance (P < 0.01,

Figure 2.8A).

2.2.6 Predicting TCGA cancer type with somatic mutation and motif

For each of the 32 TCGA cancers (in total 7120 patients), we trained two gradient boosting

models[117] (mutation and mutation+motif) to distinguish one specific cancer from the other

cancers. We chose gradient boosting implemented in Scikit-learn[118] and tuned its parameter

based on a recent study[119], which showed that this decision tree based model is robust and

performs well. Note that TCGA has 4 aggregated cancer types (GBMLGG, COADREAD, KIPAN

and STES) that combine individual cancers such as GBMLGG combining GBM and LGG; we

excluded them from the 32 TCGA datasets to avoid inflating the performance due to using the

same patients in both the training and testing sets. In a mutation-only model, the cancer subtype

of each patient was predicted only by somatic mutations as features. Because the input features

are large (1.3 million unique somatic mutations for 7120 patients), we first reduced feature

number. Each feature was assigned a score by the gradient boosting out-of-bag importance and

averaged in 5-fold cross-validation to avoid overfitting. Features with negative importance scores

were removed. The optimal number of features were determined as we observed the best model

performance at around 500 features (Figure 2.9A, upper panel). Top 500 somatic mutations

ranked by the average score were used while assuring equal or better performance compared to

the full model (Figure 2.9A, lower panel).

After feature selection, we obtained 500 selected somatic mutations (from here referred

simply as mutation). We used a series (length 500) of 0s and 1s to indicate which mutations a

patient has. For example, 1,1,0,1, ... indicates patient have the 1st, 2nd and 4th mutation. For a

mutation+motif model, each patient was represented not only by these 500 selected mutations but

also by whether each of the 313 motifs is disrupted by mutations. We used a series (length 313) of

integers to indicate how many mutations (without feature selection) are harbored in the occurrence
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sites for each of the 313 motifs. For example, 10, 20, 0, ... indicates there are 10 mutations in all

the occurrence sites of the first motif, 20 in the second and none in the third. The performances

of the two models were evaluated by auROC and auPRC with 5-fold cross-validations for each

cancer (Figure 2.4A). Feature importance was determined by the default out-of-bag (OOB)

important scores using the mean decrease of Friedman squared error over all cross-validated

predictions in mutation+motif models. We filtered features with importance score > 0.01 within

the enriched 313 motif groups and mutation located in the well-studied driver genes identified by

the IntOGen Consortium[120]. To reduce false positives of selecting predictive features, we only

considered 26 out of 32 TCGA cancers that showed auPRC > 0.3 (Figure 2.4B).

2.2.7 Predicting TCGA patient survival with somatic mutation and motif

All patients in 22 TCGA cancers with patient survival and mutation information were

dichotomized based on 5-year survival to train two gradient boosting models (mutation and

mutation+motif). We used the same 500 mutation features and 813 mutation+motif features from

the diagnosis analysis and cross-validations were performed the same way as described above.

The model performance was evaluated by the log2 hazard ratio and Kaplan-Meier estimator of the

patient 5-year survival rate in the R package survival[121] (Figure 2.4C). Multivariate survival

analysis was performed to show factors significantly (P < 0.05) correlated with patient survival

with 95% confidence interval (Figure 2.4D).

2.2.8 Feedforward loop analysis

We built a network with three types of nodes: motifs, TET1/DNMT3A, coding genes.

We have defined promoters as the region -1000bp and +500bp from the transcription start sites

(TSS) of protein-coding genes (including TET1 and DNMT3A) from Gencode v19, as previously

described. A directed edge is defined if the source node has an occurrence site at the promoter of
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the target nodes. For TET1 and DNMT3A, occurrence site is defined by ChIP-seq data previously

measured in hESC and NCCIT cells, respectively. For motifs, the occurrence site is defined by

FIMO with p < 1e−5. When a coding gene is a target, we first check if the gene is a known

transcription factor, then define its binding site by FIMO with p < 1e− 5. Finally, tracks are

visualized in integrated genome viewer and the methylation track is provided by WGBS of H1

from The Epigenomics Roadmap Project.

2.3 RESULTS

2.3.1 Defining DNA methylation regions and the de novo motif discovery

We aimed to identify DNA motifs associated with DNA methylation and thus started

with searching for methylation regions that have the strongest signals. We collected whole

genome bisulfite sequencing (WGBS) data of 34 human methylomes generated by the NIH

Roadmap Epigenomics Project[122] (Figure 2.1A). We took an approach similar to the Ziller et

al. study[2] and defined 1.55 million methylation regions containing 11.5 million CpG sites in

the 34 methylomes. Because the methylome data is noisy, we only considered regions containing

2 or more CpGs within 400 bp apart, which covers 29.2% of the human genome.

Methylation level is associated with different functions. For example, low methylated re-

gions (LMRs) are important in hematopoiesis and leukemia development[123], DNA methylation

valleys (DMVs) are long hypomethylated regions involved in embryonic development and tissue-

specific regulation[124, 125]; focal hypermethylation and long-range hypomethylation are found

in cancer[126]; variably methylated regions (VMR) are associated with histone modification and

enhancer[127] In this study, we defined three types of methylation regions based on the mean and

standard deviation of the CpG methylation level in each region (Figure 2.1A, B): (1) Top 0.5%

(or 7726) commonly methylated regions (CMR) which have the highest methylation level across

34 methylomes; (2) Top 0.5% (or 7726) commonly unmethylated regions (CUR) with the lowest
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methylation levels; (3) Top 20% (or 309040) variably methylated regions (VMR) with the highest

standard deviation and this percentage is consistent with the previously reported 21.8% to 22.6%

VMRs in the methylome[2, 127]. We are aware that these regions can vary upon the data sets

used to define them. Because the 34 methylomes are derived from diverse cells and tissues, we

argue the derived motifs are still reasonable starting points of revealing DNA binding proteins

recruiting DNA methylation enzymes.

Defining commonly and variably methylated/unmethylated regions allow identification of

motifs that are associated with DNA methylation independent of cell type or cell-type specific.

CMRs and CURs are regions that show consistent methylation pattern across a diversity of 34 cells

and tissues, and therefore they likely harbor motifs associated with methylation/demethylation in

a cell-type independent manner. GREAT[128] analysis showed CMRs are strongly (P < 1e−30)

linked to DNA repair and mitosis and are mostly (68% ) found in introns (Figure 2.6A)[129].

CURs prefer promoters (66% ) associated with (P < 1e−30) cell differentiation, development,

and morphogenesis, indicating the important roles of demethylation in these processes[130,

131](Figure 2.6A). By contrasting CMRs to CURs, we identified 55 CMR and 87 CUR motifs

using a motif finding algorithm Epigram[11] (Figure 2.1A,C). A 5-fold cross-validation using

Epigram[11] successfully discriminated CMRs from CURs using the motifs (AUC = 0.97)

(Figure 2.1C). Note that Epigram balances the GC content, sequence number, and length in the

foreground and background, which avoids identification of trivial sequence motifs (see details in

Methods and ref. [11]. Because these motifs are associated with high or low methylation regions

commonly shared by diverse cell types, it is reasonable to argue that they are important or even

casual for establishing, maintaining or removing DNA methylation.

Similar to TFs whose binding motifs are defined but their activities are specific, the usage

of DNA methylation associated motifs is determined by the cellular state. The VMRs show cell

type-specific methylation patterns, which provides an opportunity to identify motifs active in

particular cell types. We contrasted top 6000 methylated and unmethylated VMRs sorted in each
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cell type and discovered average 63 methylation- and 85 unmethylation-associated motifs in each

methylome, with an average AUC of 0.79 (Figure 2.1C).

Figure 2.1: Defining methylated regions and searching for methylation associated motifs. A.
The strategy of identifying DNA methylation associated motifs. B. WGBS CpG sites are
merged within 400bp regions. Based on average CpG beta values of the region, we defined
commonly methylated (CMR), un-methylated (CUR) and variably methylated regions (VMR).
C. Identification of DNA methylation associated motifs in 34 cells and tissues. Example motifs
are shown on the right (if matched to a known motif, the known motif logo is shown on the top).

In total, 5172 motifs were identified from 35 Epigram runs (1 common + 34 cell-specific).

Because the same or similar motifs could be found in multiple cells, we clustered these motifs

into 3226 unique ones using motif similarity measurement based on Jensen-Shannon divergence

(see Methods). To control false discovery rate (FDR), we further conducted a robust volcano

test[132] with a stringent requirement (P < 1e− 10 and enrichment > 2), resulting in 313

methylation motifs for the follow-up analysis (Figure 2.1A, 2.6B), including 221 unmethylation

motifs (UM) and 92 methylation motifs (MM). Among them, 36 (16.2% ) and 14 (17.1% ) are
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matched to 50 known motifs in the latest version of HOCOMOCO[104]. The matched included

previously confirmed factors to influence methylation levels such as CTCF[23] and PAX5[133]

as well as factors KLF4, SP4, and EGR1 that have been reported to regulate gene expression

by binding to CpG rich promoters[134]. Furthermore, we also found 22 (24% ) top enriched

MMs were matched with the 657 reported methyl-specific motifs[70]. In addition, we have

profiled the binding of 845 known TFs with ChIP-seq experiments documented in the latest

GTRD (Gene Transcription Regulation Database)[135] in the motif occurrence sites (Figure

2.7C). These TFs can collaborate with the MMs/UMs to define the local methylation state.

All motifs, their alignment results, and the TF occupancy profile can be found on our website

(http://wanglab.ucsd.edu/star/MethylMotifs). The majority of the motifs are novel and showed

strong sequence preference. UMs are more similar to each other and have higher GC content (e.g.

CCGCCGCCG) than MMs (Figure 2.6C,D). Note that these motifs were found by Epigram after

sequence balancing which removes GC content bias[11]. While high GC content and CpG-rich

sequences have been associated with hypomethylation in regions such as CG-islands[63] and in

specific cells[136–138], our analysis revealed specific DNA motifs with sophisticated patterns

that may be recognized by proteins or ncRNAs.

2.3.2 Identified motifs are associated with the local DNA methylation de-

viated from the background

We first investigated the DNA methylation levels around the identified motif occurring

sites (determined by FIMO[107] using P < 10e− 5, the same parameters were used for all

the relevant analyses thereinafter). We did observe hypomethylation and hypermethylation in

the neighbor CpGs of the UM and MM motifs, respectively. Several representative examples

are shown in Figure 2.2A. It is obvious that DNA methylation levels around the motif sites

show a sharp ”dip” or ”peak”, suggesting the association is highly locus-specific. Interestingly,

this trend remains the same in different cell types despite that the methylation levels in the
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surrounding regions vary. For example, motif UM 238.2 3.88 0.53 5 (matched to the WT1 motif)

was identified from VMRs in the right ventricle tissues; the methylation level at its occurring

sites decreases in all the cell types although the methylation level ranges from 0.6 to 0.8 in the

surrounding regions (Figure 2.2A). This observation confirms the functionality of individual UM

and MM motifs even though the local environment is overall hyper- or hypo-methylated.

We further examined the impact of these motifs on methylation in the gene coding regions.

UM and MM consistently mark lower and higher local CpG methylation levels in the gene coding

regions (Figure 2.2B). In the Roadmap dataset, we observed a significant impact of UMs or MMs

on DNA methylation level around the transcription start sites (TSS) (Figure 2.2B, left panel).

DNA methylation in the promoters is important for regulating gene expression[139] and thus itself

is likely under active regulation. We observed the same trend in the TCGA DNA methylation

data of 9037 patients from 32 cancers measured by Illumina 450K array[67] (Figure 2.2B, right

panel). On average, CpG methylation decreases from the beta value of 0.81 in the Roadmap

dataset, dominated by normal cell lines and tissues, to 0.59 in the TCGA cancer patients across

20,260 protein-coding genes. This observation is consistent with the global hypomethylation in

cancer cells that have been reported in the literature[124, 130, 140]. However, the MM and UM

occurring bins still showed respectively higher and lower methylation levels than the background.

As an example, UM and MM occurrence sites are characterized by lower and higher methylation

in the gene coding region of TP53 (chr17:7,540,000 - 7,650,000) in both TCGA and Roadmap

data. Collectively, our results on two separate data sets generated by different technologies support

that the identified DNA motifs play critical roles in influencing the local CpG methylation.

2.3.3 Identified motifs are significantly enriched at TETs and DNMTs bind-

ing sites

Locus-specific DNA demethylation or methylation depends on the recruitment of specific

enzymes such as TET[9] and DNMTs[8] to particular genomic regions[5–7]. We reasoned that, if
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Figure 2.2: Identified motifs mark methylation level. A. Example motifs are shown with
average CpG methylation level calculated in 50 bp bins around all motif sites, determined by
FIMO at 1e-5 P-value cutoff. The examples are chosen to minimize bias and include a variety
from both MM and UM, de novo and matched known TFs, common region and sorted variable
regions. Upper panel, from left to right: UM 180.0 3.14 (matched to CTCF); UM 106.1 4.08
(de novo); UM 238.2 3.88 (matched to WT1); lower panel, from left to right: MM 65.9 2.90
(matched to TOPORS); MM 814.4 2.02 (matched to PAX5); MM 206.3 2.16 (de novo). B.
DNA methylation levels in the ROADMAP (left) and TCGA (right) data sets over the gene body.
Each gene body was split into ten equal bins and the Beta values of all CpGs in the same bin
were averaged over all genes. Lower panel shows the correlation between the motif occurrences
and CpG methylation in ROADMAP (WGBS data from H1, mesoderm, and liver) and TCGA
(450K methylation of CpGs averaged in patients from PAAD, LUAD, and BRCA) around TP53
(chr17:7,540,000 - 7,650,000). C. Normalized motif occurrence of UM, MM and known TFs
(excluding matched) from HOCOMOCO[104] at 5000 bp windows centering ChIP-seq peaks of
TET1, DNMT3A and DNMT3B collected from various studies[27, 109, 110]. The lower panel
shows the clustered heatmap of normalized z-score. D. Center-to-edge enrichment of UMs and
MMs in comparison with TF NR6A1 and CTCF, which were reported to recruit DNMT and
TET to specific loci, at the ChIP-seq peaks of DNMTs and TETs.
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the identified motifs are important for recruiting the enzymes, these motifs would be enriched

around the binding sites of the recruited enzymes. To this end, we have collected all the available

ChIP-seq experiments of TET and DNMT enzymes[27, 108–110]. Indeed, at the center of TET1

ChIP-seq peaks in hESC H1 cells[110], the UM sites occur 26.7 times of expected counts (see

details in Methods), whereas MM motifs occur roughly same (1.4 times) as the expected counts

(Figure 2.2C, the first panel from the left). This observation is consistent with the previous

reports that TETs can be recruited to specific locus by DNA binding factors[7, 9]. Interestingly,

the wide distribution of UM around TET peaks compared to MM-DNMT overlap is consistent

with the previously reported role of TET in protecting spanned low-methylation regions termed

methylation canyons against hypermethylation[141]. Furthermore, TET prefers CpG-rich patterns

such as CpG island which spans several kilobases[24] and can bind CpG-rich DNA sequences[5]

in mammalians to maintain stable demethylation[25]; consistently, UMs have significantly higher

GC content than MMs and known motifs (P < 0.05, Figure 2.6C).

We observed different motif occurring patterns around the binding sites of different

DNMT enzymes. DNMT3A and DNMT3B are responsible for de novo methylation[142]. At the

center of DNMT3A ChIP-seq peaks in the human NCCIT cells[109], we observed a peak of the

MM motif occurrence compared to the known and UM motifs (Figure 2.2C). Interestingly, the

MMs are enriched at the shoulder regions of the DNMT3B binding sites but depleted at the center

(Figure 2.2C). Note that only 2.2% of DNMT3A and 3.8% of DNMT3B peaks overlap with each

other[109] (Figure 2.7A). Several studies have demonstrated some distinct roles of DNMT3A and

DNMT3B, showing that DNMT3B preferentially targets gene bodies marked with H3K36me3[57,

143–145]; in fact, H3K36me3 is 4.27 times enriched at the DNMT3B compared to DNMT3A

peaks in gene coding regions (Figure 2.7A). These observations suggest that the MMs are likely

recognized by DNA binding factors involved in actively recruiting DNMT3A, whereas DNMT3B

may be recruited by flanking sequences containing MMs and together with chromatin marks

and/or other factors such as H3K36me3. Interestingly, DNMT1, an enzyme involved in DNA
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methylation maintenance and recognizing hemimethylation[37], shows a different profile from

DNMT3A/B (Figure 2.2C, second panel from the left). This difference may have resulted from

the different mechanisms or factors involved in active and passive DNA methylation.

To further validate if the observed co-occurrence around methylation enzyme is significant,

we also compared the center-to-edge enrichment of UM and MM with TFs known to regulate

DNA methylation (Figure 2.2D, method). Previous studies have reported that introducing a

CTCF binding site at a particular locus leads to local DNA demethylation and enrichment of

TET[23]. NR6A1 has also been confirmed to recruit DNMT to methylate at target genes[37].

Here, we show that at the center of TETs binding sites, UMs are significantly more enriched than

MMs, and have even higher enrichment than CTCF (Figure 2.2D, left panel). Similarly, MMs

are significantly more enriched than UMs at the center of DNMT3A binding sites, surpassing that

of NR6A1 (Figure 2.2D, right panel). The enrichment of MMs and UMs were further compared

with the known TFs such as PAX5, TOPORS, WT1 and PPARG that are most enriched at the TETs

and DNMT3A sites. Furthermore, we downloaded the most confident (P < 0.05) differential

CpGs (dCpGs) defined by Kemp et al[111], i.e. CpGs showing destabilized methylation level

when CTCF contains point mutation or copy number aberrations in several human cancers. The

CTCF’s critical role in affecting the local DNA methylation in these loci was confirmed and we

indeed found that CTCF and UMs were even more enriched at these loci (Figure 2.7B). These

results demonstrated that the identified motifs can be recognized by particular DNA binding

factors that in turn recruit the methylation modifying enzymes in a locus-specific manner. Given

that the majority of MMs (71.4% ) and UMs (83.9% ) are de novo motifs, our findings pave the

way towards identifying particular factors involved in locus-specific methylation regulation.
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2.3.4 Genetic variants at identified DNA motif sites are associated with

altered methylation level

To validate the functionality of the identified motifs, we investigated the enrichment of

quantitative trait loci of expression (eQTL) and methylation (mQTL) at motif occurrence sites.

Note that we only took somatic mutations identified by the TCGA consortium in this analysis.

We analyzed the relationship between somatic mutation and methylation level using the TCGA

data[67] and identified methylation quantitative trait loci (mQTL), which are somatic mutations

correlating with CpG variation within 5000bp. Using Matrix eQTL[112], we identified 26341

mutation-CpG pairs (mQTL), corresponding to 17038 unique mutations and 20043 CpGs, from a

total of 1.3 million somatic mutations in 9037 patients of 32 cancers. We observed an average

11.7% mQTL discovery rate at the motif sites compared to 2.3% in the background (Figure 2.3A,

upper left panel). This enrichment difference is most prominent around the transcription start

site, suggesting that the identified motifs have a stronger impact on methylation at TSS (Figure

2.2B)[96, 146, 147]. Enrichment of mQTL in both MM and UM sites was also found in three

additional human methylome datasets using the reported mQTLs in the original studies[114–116]

(Figure 2.8A), which confirms the generality of this observation. Because DNA methylation

is associated with gene expression[1, 2], it is not surprising that MMs and UMs significantly

overlap with expression quantitative trait loci (eQTL), which are mutations correlated with gene

expression level (Figure 2.3A, right panel).

To investigate the causality between these motifs and DNA methylation level, we analyzed

whether disrupting these motifs would lead to DNA methylation change. We chose to focus on

the possible binding sites of TET1 and DNMT3A containing these motifs because the significant

enrichment of the found motifs in the enzyme-binding regions implies that the active methyla-

tion/demethylation is most likely mediated by DNA binding factors to recruit TET1/DNMT3A.

Despite the ChIP-seq experiment of TET1/DNMT3A was done in one particular cell type, the
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Figure 2.3: Somatic mutation at motif sites co-occur with local methylation alteration. A.
Distribution of quantitative trait loci corresponding to methylation (mQTL) and gene expression
(eQTL) over gene body (see details in Methods). Each gene body is split into ten equal
bins. B. Methylation level change of CpG sites nearby TET1-UM sites (TET1 binding peaks
containing UM motifs) overlapping with somatic mutations. Asterisks indicate P < 0.01
calculated with paired one-tail t-test, pairing foreground observed methylation change to the
corresponding background expected methylation change. Foreground (FG), mQTL at TET1-UM
sites. Background (BG), mQTL at TET1 binding peaks[27, 109, 110]. To ensure the statistical
significance, we only considered the 15 cancers with > 100 CpGs within 5000bp of TET1-UM
sites (see details in Methods). C. An example showing disruption of a UM motif (no match
with known motifs) by a C>T somatic mutation at chr16:68002415 significantly increases the
methylation level of the 4 nearby CpGs in the LUAD patients.
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sequence features, i.e. the motif composition in these regions, do not change and thus the mecha-

nism of the active methylation regulation. The methylation change is decided by which factors

are expressed and active in a specific cell type or state. Disrupting these motifs would lead to

methylation change in the nearby CpGs.

Using the TCGA data, we first identified 5372 CpG sites from 15 cancers within 5000bp of

the TET1 binding peaks that also contain mutations overlapping with UMs in at least one patient.

Because we did not have TET1 ChIP-seq data in the cancer patients, we used the published

data measured in hESC (see Figure 2.2C, D). We compared the methylation change of these

CpGs between patients with and without the mutation in each cancer. 13 out of 15 cancers

showed significant (P < 0.01) increased methylation level of with-mutation compared to the

without-mutation patients (background) (Figure 2.3B, see Methods for details). One example is

given in Figure 2.3C for a UM motif UM 91.0 3.11 0.56 2. This motif is within a TET1 peak

and is disrupted by a C>T somatic mutation at chr16:68002415 on the first exon of SLC12A4 in

one LUAD cancer patient. All 4 CpGs within 500 bp upstream of the mutation showed increased

methylation (beta value increased from 6.2% to 52% , 8.8% to 55% , 6.2% to 44% and 17%

to 56% , respectively). Hypomethylation in the SLC12A4 promoter is related to resistance to

platinum-based chemotherapy in ovarian cancer[148]; the 4 CpGs affected by the mutation are

located in the SLC12A4 promoter, suggesting a mechanism of how the mutation may affect

response to chemotherapy through regulation of local DNA methylation. More examples of

mutation-induced methylation change through disrupting UMs are shown in Figure 2.8B.

Overlapping MM and mutations with DNMT3A peaks only resulted in < 100 CpGs sites in

2 cancers. Although we observed decreased methylation level of DNMT3A-MM overlapping with

mQTL as predicted, the analysis did not have enough statistical power. Because the methylation

was measured by 450K array and mutations were detected and called from Affymetrix Genome-

Wide Human SNP Array 6.0, it is reasonable to expect that more sites can be observed with whole

methylome and whole genome sequencing data.

34



2.3.5 Combining Motifs and somatic mutation Shows Diagnosis and Prog-

nosis Power

DNA methylation has been shown to be predictive for cancer diagnosis and patient

survival prospective[76, 93]. Since we have shown motif disruption is associated with methylation

change, we hypothesized that combining motifs with mutations can improve prediction for cancer

diagnosis and patient survival. To evaluate this, we trained gradient boosting models[117] using

mutation and mutation+motif as features in 32 TCGA cancers from 7120 patients (see Methods

for details). We calculated both auROC and auPRC (a metric for an imbalanced dataset to

avoid inflated evaluation of the performance)[149]. The inclusion of the motifs in the models

resulted in increased auROC and auPRC in all the 32 cancers. On average, auROC increased

from 0.78 to 0.92 and auPRC from 0.45 to 0.56, whereas 26 (for auROC) and 13 (for auPRC)

improvement are statistically significant (P < 0.01) (Figure 2.4A). Notably, several cancers

showed drastic improvement, including ovarian cancer (OV, auPRC from 0.41 to 0.79), thyroid

carcinoma (THCA, auPRC from 0.49 to 0.82), acute myeloid leukemia (LAML, auPRC from

0.6 to 0.88), pheochromocytoma and paraganglioma (PCPG, auPRC 0.49 to 0.75) (Figure 2.9B).

These cancers all have reported aberrant methylome and have methylation associated diagnosis

and therapeutic targets[150–153].

For 26 cancers with auPRC > 0.3, the 67 most predictive features (score > 0.01) de-

termined by the gradient boost estimator are shown in Figure 2.4B (see Methods for details),

including 13 mutations, 20 MMs, and 34 UMs. Only 2 MMs are matched to known motifs

(RXRB and PAX5), whereas 7 UMs to AP2B, BTD, PLAL1, GLIS2, WT1, CNOT3, and GTF3A.

The predictive mutations include those occurring on the cancer driver genes such as BRAF (in

16 cancers), TP53 (in 14 cancers), IDH1 (in 14 cancers), PIK3CA (in 13 cancers) and KRAS

(in 12 cancers). Strikingly, we found numerous MMs and UMs very predictive in multiple

cancers. Notably, MM 814.4 2.02 0.62 8 (PAX5) that has been shown to strongly impact local
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Figure 2.4: Combining motif to mutation improves the prediction of cancer subtype and
patient survival. A. auROC and auPRC for cancer subtype prediction. Classification model
of each cancer built with gradient boosting. Performance evaluated with auROC (area under
the receiver operating characteristic, good for an overall evaluation.) and auPRC (area under
the precision-recall curve, good for an unbalanced dataset where the positive label is scarce).
Label: mutation: using somatic mutations as features. mutation+motif: using both somatic
mutations and collective disruption of motif site as features (See Methods for details). ∗
Adjusted P < 0.05. B. Results of top predictive features (score > 0.01) using gradient boosting
out-of-bag estimation. 26 cancers with auPRC > 0.3 are shown. C. Survival analysis with
gradient boosting with mutation and mutation+motif as models. Left: multivariate survival
analyses for all solid TCGA cancers. Forest plots showing log2 hazard ratio (95% confidence
interval) of the predicted high-risk group by both models. ∗ Adjusted P < 0.05 (blue for the
mutation model and red for the mutation+motif model). Right: Kaplan-Meier survival estimation
(95% confidence interval) in the high-risk group versus low-risk group predicted by both models.
D. Multivariate survival analysis showing factors correlating with patient survival (P < 0.05)
with the log2 hazard ratio (95% confidence interval).
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methylation level (Figure 2.3C) is important in 12 cancers. The 5 UMs predictive in > 10 can-

cers are UM 78.3 2.97 0.58 2 (BTD), UM 13.5 2.17 0.53 2, UM 195.4 2.88 0.56 5 (GTF3A),

UM 35.4 2.56 0.54 3 and UM 61.9 2.40 0.56 4 (Figure 2.4B).

To evaluate the prognosis power of the motifs, we trained two gradient boosting models

(mutation and mutation+motif) to discriminate low-risk from high-risk patients. We evaluated

the performance using the survival hazard ratio of the predicted high-risk group (higher ratio

means better performance). The mutation-only model found 6 out of 22 cancers having significant

(P < 0.05) hazard ratio. In comparison, the mutation+motif model achieved 16 out of 22 cancers

having significant (P < 0.05) hazard ratio (Figure 2.4C, the left panel, see Methods for details).

Kaplan-Meier test showed a better separation of patient survival between the predicted low-risk

and high-risk groups by considering motifs (P = 3.6E − 43 for the mutation-only model and

P = 3.2e−270 for the mutation+motif model, Figure 2.4D, right panel). Multivariate survival

analysis on the full model revealed important factors correlated with patient survival (P < 0.05),

including 6 mutations, 6 MMs and 20 UMs (Figure 2.4D). These results further confirmed the

functionality of the discovered motifs and highlighted the potential for clinical application.

2.3.6 Motifs involved in both DNA methylation and histone modifications

Both DNA methylation and histone modification play important roles in regulating gene

expression and their interplay has been well recognized[3, 4]. In a separate study, we identified

361 histone motifs[71] that are associated with 6 (H3K4me1, H3K4me3, H3K27ac, H3K27me3,

H3K9me3, H3K36me3) histone modifications from 110 diverse human cell types/tissues. By

comparing the 313 methylation motifs with these 361 histone motifs, we found that 56.5% MMs

(52 out of 92) overlap with them (e-value cutoff of 0.05 using Tomtom) (Figure 2.5A). Among

these, 35 MMs are aligned to H3K36me3 motifs as H3K36me3 can recruit DNMT3A/3B through

their PWWP domain[154, 155]. In contrast, 74.2% (164 out of 221) UMs found no match to

histone motifs. 57 UMs are matched to motifs associated with the active promoter or enhancer
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marks: 12 UMs matched to H3K27ac, an active promoter and enhancer mark; another 12 UMs

matched to the promoter mark H3K4me3. As active enhancers and promoters tend to have

low methylation[66], this observation is not unexpected. Interestingly, we observed another 12

UMs matched to the motifs associated with the poised promoter markers H3K4me3+H3K27me3.

Previous studies also suggested the colocalization of H3K4me3 and H3K27me3 marks DNA

hypomethylation in pre-implantation embryos[156].

2.3.7 Regulatory loops on DNA methylation

DNA methylation is dynamically regulated in response to the cell state change. We

analyzed the putative regulatory connectivity between the identified motifs, transcription factors

and the modifying enzymes of TET1 and DNMT3A. We only considered TET1 and DNMT3A

here because their binding peaks are significantly enriched with UMs and MMs, respectively

(Figure 2.2C). It is well accepted that a known TF motif occurring in the promoter of a gene

suggests a possible regulation of the gene expression by the TF. Similarly, we infer the occurrence

of a UM or MM in a gene’s promoter indicates putative regulation on the DNA methylation level

and thus affecting gene expression.

We first analyzed the promoters of TET1 and DNMT3A. We found 19 UMs in the

promoters of both TET1 and DNMT3A. We also found these UMs appearing in the promoters

of 25 TFs that also have motifs in the promoters of both TET1 and DNMT3A and presumably

regulate the two enzymes (Figure 2.5B). Such a topology forms a feed-forward loop (FFL)[157]

that involves three nodes: two regulator nodes (motifs and TFs), one regulates the other (motifs

regulates TFs), and both jointly regulating a target (TET1 or DNMT3A) (see Methods). UMs

induce demethylation of TET1/DNMT3A and their regulator TFs, which forms positive FFLs

to enhance the expression of both TET1 and DNMT3A once the motifs are activated. We also

found 2 and 5 MMs occurring in the promoters of TET1 and DNMT3A, respectively. These

MMs appear in the promoters of 14 TFs as the other regulator of TET1 or DNMT3A, of which
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Figure 2.5: Methylation motifs interplay with TET1, DNMT3A, gene regulation, and histone
modification A. Methylation motifs matched to histone motifs[71]. Motifs are aligned with
Tomtom with e < 0.05. Lower panel showing several examples. B. Feedforward loop targeting
TET1 and DNMT3A. C. Feedforward loop via TET1 and DNMT3A.
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1 TF only regulates TET1, 7 TFs only regulates DNMT3A and 6 TFs regulate both (Figure

2.5B); these FFLs form enhanced dynamic regulation to repress TET1 and DNMT3A expressions.

Overall, there are many more activating than repressive FFLs on regulating TET1 and DNMT3A.

Previous reports have also shown TET1 and DNMT3A have competitive binding to regu-

late promoters in mouse embryonic stem cells[158]. In addition, in honey bees, Dnmt and Tet

(homolog of vertebrate DNMTs and TETs) were found to target memory-associated genes sequen-

tially, while Dnmt3 was found in a negative feedback loop for DNA methylation[159]. We found

6 genes targeted by UMs and also by both TET1 and DNMT3A (as indicated by their ChIP-seq

peaks in hESC and NCCIT cells, respectively) (Figure 2.5C). Interestingly, 4 of them (KLHL3,

C1orf61, ACVR1C, PTPRO) are also targeted by MMs and either TET1 or DNMT3A (Figure

2.5C). One of them, PTPRO, a cancer suppressor and therapeutic target of a variety of solid

and liquid tumors, is silenced by promoter hypermethylation[160]. In fact, we observed higher

methylation at the promoter of the first TSS of PTPRO (TSS1, chr12:15,474,979-15,476,332) in

the TCGA patients (beta value average at 0.15) compared to the Roadmap methylomes (beta value

averaged at 0.05) (Figure 2.5C). PTPRO has multiple TSSs and alternative splicing forms[161],

and each TSS has a TET1 or DNMT3A ChIP-seq peak (Figure 2.5C). As competitive binding

of activator and repressor can lead to sharp turn on/off of the gene expression[162–164], we

speculate the competitive FFLs formed by the motifs and modifying enzymes would thus allow

dynamic regulation of the methylation and presumably the expression levels of these genes.

2.4 DISCUSSION

In this study, we present a comprehensive catalog of the DNA motifs associated with

DNA methylation. We did observe coincident higher and lower methylation levels around the

MM and UM occurring sites, respectively. Furthermore, the motif sites are also enriched with

functional mutations, including mQTL and eQTL. We also showed that combining DNA motifs
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and mutations can achieve accurate prediction of diagnosis and prognosis in TCGA cancer

patients, which supports the importance of these motifs.

Our analysis suggested that these motifs are most likely involved in recruiting TET and

DNMT3A for active demethylation and methylation, as indicated by their significant enrichment

in the binding sites of these enzymes. The passive or maintenance methylation mediated by

DNMT1 seems to be regulated by mechanisms other than DNA binding co-factors because we

did not observe an enrichment of the found motifs in the DNMT1 binding sites.

Interestingly, some of these motifs may also play roles in histone modifications as they

were also found associated with histone modifications, particularly those relevant to DNA methy-

lation such as H3K36me3 that were reported to recruit DNMT3A/B through their PWWP domains.

Furthermore, these motifs can form feed-forward loops (FFLs) with TFs to regulate TET1 and

DNMT3A or regulate genes together with TET1/DNMT3A. These FFLs allow possible regu-

lation of the DNA methylation dynamics and presumably the gene expression dynamics. The

interplay between DNA and epigenetic signatures is central to TF recruitment and eukaryotic

gene expression regulation. Binding sites of TFs are determined by combined factors including

DNA sequence, methylation[165], histone modification[166], and nucleosome landscape[167].

Our motif analysis suggests putative mechanisms for experimental test.

We have shown multiple lines of evidence to support that the identified motifs are involved

in regulating DNA methylation. To confirm the causal relationship between TF-DNA binding

and methylation, additional experimental tests are needed such as mutating the found motifs in a

specific locus and measuring its impact on the local DNA methylation change. We have made all

the motifs and their occurrence sites available, which will allow designing particular experiments

for testing the functions of these motifs in disease or other biological contexts. These experiments

are still challenging nowadays because it requires to simultaneously mutate multiple short motifs.

Given the fast advancement of the genome editing technology, it will become feasible to perform

such a test in a high-throughput fashion of the predicted motifs in the future. There exist more
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than one mechanism of establishing and maintaining locus-specific DNA methylation patterns[5,

165], which may require different combinatorial interactions between different factors. Our study

establishes a catalog of the possible participating motifs, which provides a starting point towards

fully deciphering the grammar of regulating the locus-specific DNA methylation.

Chapter 2, in full, is a reprint of the material as it appears in ”Identification of DNA motifs

that regulate DNA methylation. Mengchi Wang, Kai Zhang, Vu Ngo, Chengyu Liu, Shicai Fan,

John W Whitaker, Yue Chen, Rizi Ai, Zhao Chen, Jun Wang, Lina Zheng, Wei Wang.” in Nucleic

Acid Research, 2019. The dissertation author was a primary investigator and author of this paper.
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2.5 SUPPLEMENTARY

Figure 2.6: Characterization of the identified motifs and regions. A. Gene ontology analysis
and genomic location of the CUR and CMR compared against the whole genome. B. Volcano
plot of 313 top cluster filtered by p < 1e−10 and fold-change enrichment > 2. C. The motif
GC content of top 313 unmethylation motifs (UM), methylation motifs (MM) and known motifs
curated from Hocomoco. D. tSNE plot showing sequence similarity among 313 motifs, pairwise
distance calculation described in Methods.
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Figure 2.7: Identified motifs interact with TETs, DNMTs, and TFs. A. methylation motifs
co-occur with DNMT1 and DNMT3B ChIP-seq peaks in differentiated NCCIT cell, while
unmethylation motifs co-occur with TET ChIP-seq peaks in human embryonic stem cells. The
lower panel shows the histogram of DNMT3A peak counts 5000bp nearby DNMT3B peaks,
with 50bp bin width. B. Details on center-to-edge enrichment of motifs and known TFs in
respect to TETs and DNMTs ChIP-seq peaks. Differential CpGs (dCpGss) are identified in
Kemp et al, 2014[111] (see Methods.). C. Occupancy of TFs ChIP-seq peaks at identified motif
sites. ChIP-seq peaks are acquired from the GTRD database. Motifs occurrence sites are defined
by FIMO (see Methods.). Occupancy is defined by the total number of peaks at the 500bp
windows centered at occurrence sites of each motif. Clustering is performed by using Euclidean
distance and the Ward method.
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Figure 2.8: Identified motif occurrences overlap with TCGA functional SNPs. A. Enrichment
of mQTL at UM and MM occurrence site using three additional studies, namely human life
course study, GenCord Cohort study and a Schizophrenia study. Enrichment of mQTL are
defined as observed mQTL ratio over expected ratio, with error bars showing standard deviation
across samples (Left: across five stages in human life course; Middle: across three cell types;
Right: across three adult human brain regions) and p < 0.01 t-test are marked (See Methods.
for details). B. More examples UMs and MMs matched to known motifs CTCF, SP1, PAX5 and
TOPORS disrupted by somatic mutations show correlation with local methylation alteration.
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Figure 2.9: Motifs disrupted by mutations predict cancer subtype and survival. A. Feature
selection reduces feature number while improving performance for the mutation-only diagnosis
model. ”Elbow” indicates the number of features having positive feature importance scores. B.
Performance evaluation of models predicting patient cancer subtype using auROC metric.

46



Chapter 3

Motto: Representing motifs in consensus

sequences with minimum information loss

3.1 INTRODUCTION

Motif analysis is crucial for uncovering sequence patterns, such as protein-binding sites

on nucleic acids, splicing sites, epigenetic modification markers and structural elements[168]. A

motif is typically represented as a Position Weight Matrix (PWM), in which each entry shows the

occurrence frequency of a certain type of nucleic acid at each position of the motif. PWMs are

often visualized by sequence logo[168], which requires a graphical interface. Recently, several

studies have shown the usefulness of representing motifs using kmers[169–172]; despite the

power of this representation in machine learning models, it is cumbersome to have a set of kmers

to characterize a single motif. In many scenarios, motifs can be sufficiently represented by regular

expressions of the consensus sequences, such as [GC][AT]GATAAG[GAC] for the GATA2 motif.

This representation is the most compact and intuitive way to delineate a motif. In the GATA2

motif example, the GATAAG consensus in the center is the most prominent pattern that would

be read off the PWM or sequence logo. For this reason, consensus sequences are still widely
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used by the scientific community. Sequence pattern in the regular expression is used to highlight

motif occurrence in popular genome browsers such as UCSC[173] and IGV[174]. Consensus

sequences are assigned to de novo motifs and sequences for informative denotations[10, 11, 105,

175]. Wildcard-like sequence patterns are also supported in DNA oligo libraries synthesis by

major vendors including Invitrogen, Sigma-Aldrich, and Thermo-Fisher.

However, current methods that convert PMWs to consensus sequence are often heuristic.

One simple approach is taking the nucleotide with maximal frequency at each position to define

the consensus sequence (eg. GGTCAAGGTCAC for ESRRB). Unsurprisingly, this could mis-

represent positions with similar frequencies (eg. 0.26, 0.25, 0.25, 0.24, which should have been

assigned as N). Alternatively, Douglas et al.[176] proposed in 1987 to follow a set of rules: use

the single nucleotide with the highest frequency when it exceeds 0.50 and two times the second

highest frequency; else, use the top two dinucleotides when their total frequencies exceed 0.75;

else, use N. However, these rules are arbitrary, inflexible and lack a mathematical framework.

Here we present Motto, a sequence consensus representation of motifs based on infor-

mation theory and ensures minimal information loss when converted from a PWM (Figure

4.1). We provide a standardized solution that determines the optimal regular expression of motif

consensus sequence. We have also implemented an lightweight and easy-to-use Python package

with versatile options for the biologists.

3.2 METHODS

Problem formulation

A positional weight matrix (PWM) maps I×P→R , where I is the set of indices of motif

positions, and P is the frequency of the nucleotide in the motif. For a given position i ∈ I, let C(i)

denote the perceived frequencies for a combination of nucleotides, defined by equal frequencies

shared among included nucleotides. For example, a C(i) of [ACT] has the frequencies of [0.333,
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0.333, 0, 0.333] for [A, C, G, T], respectively. Thus, we consider the optimal consensus sequence

as a series of combination of nucleotides that has the most similarity between C(i) and P(i) for

each position i ∈ I.

Minimal Jensen-Shannon Divergence (JSD) method

Here, we propose to use Jensen-Shannon Divergence (JSD) to measure the similarity

between C(i) and P(i). JSD has been widely used in information theory to characterize the

difference between distributions[177]. Using this metric, the combination of nucleotides with the

least JSD from C(i) to P(i) will have the minimal ”information loss”, and is thus considered as

the optimal consensus nucleotide.

To efficiently compare JSD between all possible nucleotide combinations, we propose

the following algorithm (Figure 4.1). Given a motif in its PWM form, having k positions, and

n possible elements at each position, then the probability of jth element at ith position is given

by P(i, j), where ∑ j P(i, j) = 1, i ∈ 1,2, ...,k, and j ∈ 1,2, ...,n. First, we sort the elements of the

PWM in descending order, so that:

P(i, j1)≥ P(i, j2)...≥ P(i, jn)

For example, at the 2nd (i = 2) position of the human transcription factor P73 (Figure

4.1), the nucleotides are sorted by occurrence frequencies so that:

P(2,”G”) = 0.726≥ P(2,”T ”) = 0.197≥ P(2,”A”) = 0.077≥ P(2,”C”) = 0

Next, we denote m as the number of different elements to be presented in the output

consensus at the ith position, m ∈ 1,2, ...,n. If a nucleotide is contained in a position in the

consensus sequence, all the other nucleotides with higher frequencies at the ith position must
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Figure 3.1: Overview of sequence Motto and comparison with sequence logo. Given a motif
PWM as the input, Motto outputs a consensus that minimizes information loss. Here we show
how the sequence Motto of the human transcription factor P73 is determined through the minimal
JSD method.
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also be included. Therefore, identification of the optimal consensus sequence is equivalent to

identifying the optimal m.

When represented by the consensus sequence Motto, each nucleotide is considered as

equally probable at a given position. For a position with ji,1, ji,2, ..., ji,m nucleotides, C(i,1) =

C(i,2) = ... = C(i,m) = 1/m. The closer this distribution is to the original distribution of

nucleotide frequencies, the better approximation of the consensus motif is to the original PWM.

The optimal m (denoted as m∗) can be determined by minimizing the JSD between the two

distributions:

m∗ = argminmJSD(C(i,m),P(i)+q2×m)

JSD(A,B) =
1
2

KLD(A,M)+
1
2

KLD(B,M)

M =
1
2
(A+B)

KLD(A,B) =
n

∑
i=1

log(
A(i)
B(i)

)

Here, q ∈ [0,1] is the ambiguity penalty, a parameter input from the user to penalize

large value of m in the output. When q=0, the optimal m∗ marks the canonical minimal JSD.

When q=1, m∗is guaranteed to be 1, hence the output consensus nucleotide is j1(equivalent to

using nucleotide with the maximal frequency). Thus, the optimal consensus nucleotide at the ith

position is:

ji,1, ji,2, ..., ji,m∗

Repeat this procedure for every position i∈ 1,2, ...,k, the final optimal consensus sequence

is given by:

{ j1,1, j1,2, ..., j1,m∗}{ j2,1, j2,2, ..., j2,m∗} . . .{ jk,1, jk,2, ..., jk,m∗}
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Minimal Mean Squared Error (MSE) method

For comparison purposes, we have also implemented minimal mean squared error (MSE)

method, which is another widely-used metric to measure distribution discrepancy[178]. The

rest of the implementation is unchanged, except for the optimal m (m∗) is now determined by

minimizing the MSE between the two distributions:

m∗ = argminmMSE(C(i,m),P(i)+q2×m)

MSE(A,B) =
1
n

n

∑
i=1

(A(i)−B(i))2

Evaluating motif occurrence sites

We have collected 1156 common transcription factors from human and mouse from the

databases of Transfac[179], Jaspar[180], Uniprobe[181], hPDI[182], and HOCOMOCO[104].

Each PWM is converted into consensus sequences, using default options of the four discussed

methods: JSD (described above), MSE (described above), Douglas[176] and the naive approach of

using the maximal frequency. Motif occurrence sites are determined in the human genome (hg19),

matched by their regular expressions. The ground truth of the occurrence sites is determined by

scanning the original PWMs with FIMO[107] using a 1e-5 p-value cutoff. The resulting p-values

are converted into a significance score (-log(p-value)) and assigned to the matched motif occur-

rence sites from sequence Mottos. Thus, the area under the precision-recall curves[183](auPRC)

is calculated by comparing the motif occurrence sites and their significance scores. Resulting

auPRCs are averaged and a paired (by each motif) t-test is conducted to determine performance.

Comparisons with significance (p-value ¡ 0.01) are shown (Figure 4.3).
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3.3 FEATURES AND EXAMPLES

Motto takes the MEME format of PWM as the input because of its popularity. The MEME

format is supported by the majority of the motif databases[104], and the MEME suite provides

packages for integrative analysis and conversion from other motifs formats[105]. The recently

proposed kmer-based motif models also support conversion to MEME format[169, 170]. Our

package is lightweight and open-source. The algorithm is efficiently implemented in python and

the conversion for 1000 motif sequences typically takes less than two seconds. In addition, perhaps

expectedly, downstream analysis like matching motif occurrences using the regular expression

of sequence Motto is much faster (about 5 seconds for a common PWM on a chromosome,

implemented in-house with python) than a conventional PWM scanning (about 1 minute, scanned

with FIMO[107]. By default, the Motto package takes a motif in the MEME format, parses the

header to get the nucleotide, computes the optimal consensus sequences based on the minimal

JSD method, and then outputs the sequence in a compact format (Figure 4.1). Motto provides

flexibility at each step along this process. Input can be from a file, or from standard input,

and Motto can consider nucleotides, amino acids and customized alphabets such as CpG and

non-CpG methylation[69]. Four methods are made possible for comparison: maximal probability

(Max), heuristic Douglas method (Douglas), minimal mean squared root (MSE) method, and

our proposed minimal Jensen-Shannon Divergence (JSD) (See Methods). Three output styles

are provided: (1) IUPAC uses a single alphabet to represent the combination of nucleotides (eg,

S for [CG]) and is the most compact form, but require reference to the nomenclature[184]; (2)

regular expression (”regex”) enumerate all output consensus nucleotide ranked by occurrences

and is recommended for downstream analysis, such as motif occurrence and oligo designs; (3)

”compact” (the default) is the same as ”regex”, except that it replaces [ACGT] with N. To trim

off Ns ([ACGT]s) at both ends of the output sequences, a optional flag ”–trim” is provided. If

the users prefer consensus with more certainty (eg, prefer [AC] to [ACG]), they can use either
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”–maxAlphabet” as a hard limit to the number of alphabets allowed, or use ”–penalty” to penalize

ambiguity (see Methods).

Effects of these options are shown using an example of human transcription factor CTCF

(Figure 4.2, upper panel). Unsurprisingly, MSE, JSD, and Douglas are more representative than

the naive maximal probability methods. For example, position 1,2,3 and 20 with low information

content (¡0.2) in CTCF, are justifiably called as N by JSD and Douglas, which is an improvement

over strictly calling the top nucleotide. MSE considers [TCG] and [GAT] more representative at

the 1st and the 3rd position but agrees with JSD and Douglas at the 2nd and 20th. Similarly, JSD,

MSE, and Douglas successfully capture strong double-consensus patterns at indices 7, 11, 12 and

16, which maximal probability fails to capture. The advantage of JSD over Douglas is noticeable

at index 6, where the logo of CTCF shows a dominating AG consensus. While JSD finds this

co-consensus, Douglas disregards G that barely misses the cutoff. In addition, at index 19, the

logo of CTCF shows a strong three-way split among A, G and C, but Douglas, by its rules (as

described previously), ignores all such triple patterns. In addition, among the four methods, only

the JSD and MSE are capable of generating consensus sequences for amino acid motifs[185]

(Figure 4.2, lower panel). Due to its arbitrary nature, heuristic methods like Douglas have

difficulties defining decision boundary for motifs more than 4 nucleotides. In such cases, JSD

and MSE provide more mathematically rigorous information than Douglas and oversimplified

maximal consensus methods. With increased penalty level at 0, 0.2, 0.5 and 1 respectively, the

consensus sequence smoothly progresses towards single nucleotide consensus (Figure 4.2). Such

flexibility gives an advantage to users that are biased towards more defined consensus results.

To quantify how well these four methods summarize the information in the original PWMs,

we converted 1156 common human and mouse transcription factors to consensus sequences and

compared their matched occurrences (by regular expression) in the human genome (hg19) with

conventional motif sites scanned by FIMO[184] with PWMs, which is how conventionally motif

sites are determined (see Methods). We observe that using the JSD method has resulted in
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Figure 3.2: Example usage using human CTCF (upper panel) and lipoprotein binding sites
from Bailey 1994[185] (lower panel). The original PWM is shown in sequence logo. Different
Motto options resulted in various consensus sequence output at each position. In particular, ”-m/–
method” specifies the method: JSD (default), MSE (minimal mean square error), Douglas[176],
or Max (using maximal frequency at each position); ”-s/–style” specifies the output style:
IUPAC[184] (single alphabet for nucleotide combinations), regex (regular expression), or
compact (convert [ACGT] to N in regex); ”-t/–trim” is an option for trimming off the flanking
Ns; ”-p/–penalty” specifies a weight between 0 to 1 that penalizes ambiguity at each position.
(For details see Methods)
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the best (0.81± 0.01) area under the Precision-Recall curve (auPRC), significantly (p-value ¡

0.01) when compared with existing alternative methods, including MSE (0.76±0.01), Douglas

(0.76±0.01), and maximal frequency (0.53±0.04) (Figure 4.3).

Figure 3.3: Converted sequence Mottos recapitulate motif occurrence sites of 1156 common
human and mouse transcription factors (TFs) in the human genome (hg19). A. Averaged area
under the precision-recall curve (auPRC) using Motto (default method with minimal JSD)
compared with existing alternative methods. P-value determined by paired t-test. B. Comparison
in three example TFs showing the differences of consensus sequences (shown in IUPAC[184]
coding for better alignment) and performances.

In summary, Motto provides a mathematical framework and a set of convenient features

to epitomize PWMs in a compact, intuitive and informative manner.

Chapter 3, in full, is a reprint of the material as it appears in ”Motto: Representing motifs

in consensus sequences with minimum information loss. Mengchi Wang, David Wang, Kai

Zhang, Vu Ngo, Shicai Fan, Wei Wang.” in Biorxiv, 2019. The dissertation author was a primary

investigator and author of this paper.
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Chapter 4

CRISPY: a pipeline that unifies various

CRISPR/Cas9 functional screening

protocols and leverages existing genetic

and epigenetic knowledge

4.1 INTRODUCTION

The function of genes is determined by an intricate network that involves both local genetic

elements and cell-specific environment. This includes both cis-acting genetic elements, such as

promoter and enhancers, as well as trans-acting elements such as transcription factors. Recent

advancement by large-scale studies, such as ENCODE[65], ROADMAP[66], and TCGA[67], has

provided a comprehensive atlas for genetically function elements, particularly in the non-coding

regions. For example, the ENCODE consortium has provided a web service named SCREEN

(Search Candidate cis-Regulatory Elements by ENCODE(http://screen.encodeproject.org), which

output tissue-specific cis-regulatory elements candidates based on existing cellular signatures
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from H3K27ac, H3Kme1, H3Kme3, DHS, and ATAC-seq data. However, the functionality of the

putative candidates needs to be further determined experimentally.

Currently, there are multiple assays to characterize enhancer-promoter activity. For

example, MPRA (Massive Parallel Reporter Assays)[186] and STARR-seq (Self-Transcribing

Active Regulatory Region Sequencing)[187] combine traditional reporter assays with RNA-seq

technology to profile enhancer activity. However, there are several limitations. For example,

MPRA is limited by the size (∼ 200bp) and number (currently < 100,000) of oligonucleotides.

On the other hand, in the STARR-seq approach, the DNA fragments are cloned and taken out of

the native location, potentially causing artifacts[188]

In comparison, the recently popularized CRISPR/Cas9 mediated genetic screening has

been increasingly recognized as the ”gold standard” for screening functional elements of target

genes[189]. Indeed, CRISPR/Cas9 screening has addressed these aforementioned limitations

by providing the extended capability of oligonucleotide design. More importantly, it enables

the interrogating genome function for both transcribed genes and non-coding regions in their

normal genetic and epigenetic context[189]. Currently, there are two distinct yet complementary

protocols for functional element screening. The first strategy is using targeted single-sgRNA

CRISPR/Cas9 (”single-sgRNA” for short) mediated genetic screening. This protocol targets

pre-defined putative cis-regulatory candidates, typically derived from the chromatin and histone

modification, providing an unparalleled resolution into the targeted regions[190]. For example,

Diao et al in 2016 interrogated 174 candidate regulatory sequences within the 1-Mbp POU5F1

locus in human embryonic stem cells (hESCs) and discovered enhancers and new mechanisms

at the non-coding regions[190]. On the other hand, Diao et al.[191] in 2017 proposed another

method termed ”CREST-seq” (cis-regulatory element scan by tiling-deletion and sequencing).

This method is unbiased and systematically delete cis-regulatory elements in a tiling fashion,

providing insights into previously under-reported elements. As a result, 45 cis-regulatory elements

have been identified in a 2-Mb POU5F1 locus in human embryonic stem cells, with some located
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at regions that would otherwise be excluded from pre-defined putative candidates[191].

Despite the fast advancement in CRISPR/Cas9 mediated screening, a unified, easy-to-use

pipeline that accommodates both single-guide CRISPR and CREST-seq is lacking. Another

challenge of current CRISPR screening pipeline is the lack of reference for predicted functional

elements for downstream experimental validation. Here we present CRISPY: a lightweight,

versatile, customizable pipeline that streamlined CRISPR screening from both single-guide

CRISPR and CREST-seq experiments. CRISPY provides several key advantages compared to

current pipelines. First, it takes advantage of robust algorithms like alpha-RRA[192] and flexible

user interface to allow confident peak calling in either the targeted regions or unbiased genomic

segments. Further, CRISPY makes a comparison between multiple experiments accessible and

presents key visualization for quality control purposes. Finally, CRISPY provide corroborating

evidence of the peak candidates from screening results by integrating prior knowledge from data

such as histone modifications, DHS, and ATAC-seq in existing human and mouse tissues and cell

lines. By combining the prior knowledge with a random forest model, we show that CRISPY

successfully identified previously unreported functional elements for target genes including Sox2,

Dppa2, and FMR1. In order to test the function of the called peaks, elements in Dppa2 are

further validated experimentally through CRISPR-knockdown and CRISPR-i. We show that

this novel strategy which combines unified CRISPR/Cas9 protocols and existing genetic and

epigenetic knowledge from multiple samples can provide improved performance in the discovery

of functional elements. The pipeline

4.2 METHODS

4.2.1 Preprocessing inputs

To unify the input from various methods, we require the input to provide three key

information invariably presented in all CRISPR/Cas9 protocols. The region file contains the
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targeted genomic regions in the ”∗.bed” format. This file can be customized and will be the basic

unit where peak calling takes place. For example, in a single-sgRNA protocol, the target region

file can specify the putative active candidates, usually determined by ATAC-seq, H3K27ac, and

CTCF binding sites[190]. The read file requires is the mapped read counts of each sgRNA across

multiple experiments. We require the user to specify the experiments that should be included

in either foreground or background. On the other hand, reads are usually processed by aligners

such as BWA[193] or BOWTIE[194, 195] and have been separated from the CRISPY pipeline

to maintain its lightweight and modularity. Finally, we require the information of the sgRNAs,

including their genomic location, and their label in the group (for example, test, positive control,

or negative control). To unify the input files from various platforms(Windows/macOS/Linux),

CRISPY remove the special white spaces from the input. Finally, CRISPY automatically checks

and prompts installation (if necessary) all its dependencies, which are the bedtools[196](for

basic ”.bed” file manipulation), edgeR[197](for the negative binomial test), and ggplot2(for

visualization).

4.2.2 Quality control

Quality control steps are organized in two phases: before the determination of the signifi-

cance of sgRNA enrichment (ie., peak calling in the next section), and after. In the first phase, to

evaluate the raw mapping coverage, we plot the sgRNA read distribution across provided samples

in a violin-boxplot (Figure 4.5A ). Principle component analyses are conducted to show the

similarity among experiments, with labels specified in the input files described earlier (Figure

4.5B). To ensure the quality of the reads, we keep sgRNAs that have ≥ 5 reads in at least 50%

of the foreground (or background) experiments. For example, if there are 5 foreground samples

and 2 background controls, a sgRNA needs to have ≥ 5 reads in at least 3 (50% of 5 rounded

up) or 1 (50% of 2) background samples. These parameters can be adjusted in the pipeline. As

a result, the remaining sgRNA with sufficient coverage have their reads plotted in a cumulative

60



frequency plot (Figure 4.5C). To compare the sgRNAs in the foreground and background, we

plot the averaged read counts of each sgRNAs on a scatter plot (Figure 4.5D).

To ensure a robust result and remove the batch effect, we design an optional quantile

normalization with customization, which allows users to specify how to normalize read counts

of the sgRNA among samples. For example, -q ”FG1, FG2; BG1, BG2, BG3” will equalize

the quantile distribution among FG1 and FG2 samples, then among BG1-3 samples. Following

previous studies[198], read counts of the sgRNAs are further normalized by the TMM[198]

(Trimmed Mean of M-values) methods from the edgeR package[197]. Briefly, TMM equalizes

the mean of M-values between experiments, which equates the overall expression levels of the

genes between samples, under the assumption that the majority of them are not differentially

expressed. Both steps remove the artifacts from systematic bias and improve the robustness of the

results.

After peak-calling, the quality of the sgRNAs is profiled in an MA plot (total read count

by fold change) and a significance scatter plot (fold change by p-value) (Figure 4.5). To guide

the users to choose the appropriate parameters for peak calling, we provide a guide table that

calculates an ”external FDR” defined by the of negative sgRNAs (specified in the sgRNA file

described earlier) that would be included, if a p-value cutoff (by the -n option) is given in the

peak-calling step (Table S1).

Peak-calling

Peak-calling is performed broadly following previous studies[190, 191], using edgeR[198]

and RRA[199](robust rank aggregation). Modifications are provided to accommodate various

experimental protocols. Briefly, we estimate the statistical significance (using a negative binomial

test) of each sgRNA in foreground samples in contrast to background samples using the edgeR

package. Next, we converted the resulting p-values to -log(P) values of the sgRNAs and show

in the ”∗ .sgRNA.bedgraph” files for visualization. Next, we used the target genomic region

file (described in the previous section) provided by the users to identify the partition of the
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genome. For example, for ”single-sgRNA” experiment, the targeting regions would be predefined

genomic segments containing ATAC-seq, H3K27ac, and CTCF binding sites[190]. In comparison,

previous studies have used non-overlapping bins of arbitrary length (eg. [191] has used 50bp), we

provide an option to partition the genomic regions by sliding from one sgRNA to the next. This

strategy ensures the highest resolution possible given the design of the oligo library and equates

using 1bp sliding windows with much faster processing speed(data not shown). To identify the

positive ”bin” of the target regions, we perform the RRA step described previously[192]. Briefly,

the sgRNAs passing a user input significance level have the logP values converted to rankings,

and a bin with more high ranking sgRNAs will be identified as significant. Finally, the p-values

of each bin are adjusted to FDR by the Benjamin-Hochberg procedure. Results are visualized

in ”∗ .region.bedgraph”. We note that sometimes when a region has lower coverage, the RRA

test would underestimate the significance of a bin with a few but highly enriched sgRNAs. To

address this, we have also provided a high-resolution signal track based on average fold change.

In summary, we follow the same steps until RRA and average the fold change of the sgRNAs in

the same bin in ”∗ .fc.bedgraph” for further visualization.

4.2.3 Random forest model

To boost the confidence of the identified positive peaks, we build a random-forest model

using existing data. First, we download the H3K27ac from the ENCODE consortium in mm10,

where MACS2[200] has been used to call peaks by the ENCODE DCC[65]. We also download

the RNA-seq from the ENCODE consortium. In total, 30 pairs of H3K27ac and RNA-seq from

various tissues and cells have been collected. Next, an ”activity score” is given to each positive

peak identified from the peak-calling step, by using the averaged H3K27ac (by default, can be

expanded to other datasets, such as HiC or ATAC-seq) peaks MACS2 score in the 1000bp (by

default, can be changed). Next, we use this activity score as the feature to predict the expression

level (TPM) of the target gene (In this case, Sox2, Dppa2, or FMR1) from the 30 cell lines and
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tissues. Next, to build a machine learning model, we ran the random forest using feature trees

n = 500, with default parameters from the R package ”randomForest”[201]. The ”importance

score” of each peak is determined by the out-of-bag Gini-index from random-forest and visualized

from the ”∗ .imp.bedgraph”.

4.3 RESULTS

4.3.1 CRISPY identified cis-regulatory elements of Dppa2

To evaluate the cis-regulatory elements of Dppa2, we performed both single-sgRNA and

CREST-seq CRISPR-cas9 screening following previous protocols[190, 191](Figure 4.1).Briefly,

we introduced a large number of overlapping genomic deletions that are introduced to the 3Mb

region (chr16 : 46000000−49000000) of Dppa2 in the mouse with paired sgRNAs. We collected

the resulting cells with reduced expression of Dppa2, and establish them as the foreground while

using the unsorted cells as the background. Next, we apply CRISPY to the sgRNA mapped from

these cells using BOWTIE[194] as described (Figure 4.1, see Methods.).

To standardize the input from various CRISPY protocols, CRISPY requires three basic

files, the input read counts of each sgRNA, the genomic position of the sgRNAs, and the target

region of interest. For example, in single-guide experiments, users would input targeted open

chromatin regions. In CREST-seq (or the default setting), CRISPY would automatically generate a

single base-pair resolution based on the coverage of the input sgRNA oligo design (see Methods).

Out of the sgRNA pairs we have designed, we identified 43 CRISPY peaks from CREST-

seq experiments, and 34 single-sgRNA CRISPY peaks, using the FDR cutoff of 0.05 (Figure

4.2). The average size of the peaks is ∼ 2kb for the CREST-seq and ∼ 1kb for single-sgRNA

screening. Out of called CRISPY peaks, we observed strong enrichment (> 2 f old) for H3K27ac,

H3K4me1, CTCF, and ATAC-seq downloaded from the ENCODE in mESC[65].

Interestingly, we noticed that the biological data output from CRISPR experiments can
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Figure 4.1: CRISPY pipeline Overview

be complicated. The data from a reliable and consistent sample is crucial to the downstream

computational analysis. This reality necessitates stringent yet intuitive quality control. CRISPY

provides visualization of the distribution of the reads across samples, and PCA to detect the

heterogeneity among experiments. In this real biological example (Figure 4.5), we show that

treatment sample #1 (T1) has a bimodal distribution when compared to T2 and T3, while the

PCA plot shows T1 is far from T2 and T3. These suggest T1 is different from T2 and T3 in the

total number of reads, and on the distribution of the sgRNA reads. Similarly, control sample

#1 (C1) is marked by higher reads from C2, C3, and C4, which clustered together in the PCA

plots, suggesting C1 is inconsistent with the rest of the control samples. Therefore, it is highly

recommended to remove T1 and C1 from foreground and background, respectively.

Tracks show the significance for each output files, in the order of sgRNA logP value,

RRA FDR value, and called CRISPY peaks. Validation is carried out by dual CRISPR knock out.

Annotation files have been downloaded from the ENCODE data portal with relevant peaks from
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Figure 4.2: CRISPY signal for the 3Mb region around Dppa2.
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mESC, including ChromHMM annotation, H3K27ac, H3K4me1, H3K4me3, CTCF, RAD21,

ATAC-seq, and CCRE determined by the ENCODE SCREEN[65]

4.3.2 Random-forest model using existing knowledge from various cell

lines.

One challenge we face in CRISPR screening is verification of the called candidate

peaks. Besides experimental methods, many computational methods been proposed to identify

the regulatory elements (such as enhancers) that regulate the expression of target genes[202].

For example, Yun et al[203] have proposed to use a tensor-based algorithm that decomposite

the epigenetics information to predict enhancer-promoter interactions in mESC. Other models

leverage the correlation between enhancer and promoters, relying on regression or machine

learning to interrogate the relationship between enhancer and promoters. Despite the variety of

the models and features used to predict enhancer-promoter interactions, one major challenge

for the computational models is the problem of overtraining. This is usually caused by the

small sample size with which the initial association between the promoters and enhancers are

established. Combined with a large number of candidates elements that exceeds sample size, this

will derive confident predictions and leads to false discovery.

To address these limitations, we leverage the prior knowledge of epigenome and focus on

using H3K27ac to predict the element for the target gene. The advantage is that with focused

elements pre-filtered by CRISPR, we can have better resolution using a robust regression model.

Therefore, our prediction will be unparalleled accuracy based on prior knowledge, as well as

the cell-type-specific experimental validation from the CRISPR results. The tradeoff is that we

will only have predictions for a handful of CRE elements for the target gene (ie., ∼ 20 target

candidate for Dppa2 in this study)

In our random forest model, we associate two values for the CRE-gene interaction (Figure

4.3).(1) An inherent ”importance” score that characterizes the function of the CRE towards the
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target gene. This is the target value to learn from the random forest model. For example, an

enhancer will have higher importance for its target gene, than an unrelated nearby region. (2) An

”activity” score used to assign the cell-type-specific weight on each CRE. For example, we use

the average H3K27ac score nearby 1000 bp of each CRE to characterize how much ”potential”

of the importance of the CRE is realized. In other words, this differentiates an active enhancer

from an inactive enhancer. As a result, we have assigned importance scores to 15 CRE candidates

identified from the CREST-seq experiment, with OOB Gini importance score > 0.015 (Table

4.1).

Figure 4.3: random-forest model provides tissue-specific knowledge of the candidate CRES by
integrating existing genetic and epigenetic data.
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4.3.3 Experimental Validation

To validate the candidate CREs combinatorially selected from CRISPY peaks and the

random-forest model, we conducted CRISPR-Cas9 dual knockout experiment (Figure 4.2,4.4).

As a result, we observe 8 out of the 11 selected CRE have shown significant (p < 0.05) reduced

expression of Dppa2.

Chapter 4, in full, is currently being prepared for submission for publication of the material

as it would appear as ”CRISPY: a versatile pipeline for CRISPR functional screening. Mengchi

Wang, Xiaoyu Yang, Guoqiang Li, Xingjie Ren, Yin Shen, Bing Ren, Wei Wang” The dissertation

author was a primary investigator and author of this paper.

Figure 4.4: Experimental validation of CRISPR peaks by dual CRISPR knockout.

4.3.4 AVAILABILITY

CRISPY is available at https://github.com/MichaelMW/crispy
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4.4 SUPPLEMENTARY

Figure 4.5: Quality control of sgRNA. A. distribution of the total read counts of each sgRNAs
by experiments. B.PCA of experiments using sgRNA reads as features. C. The cumulative
reads of sgRNAs from the foreground (FG) and background(BG). D. The scatterplot for the
normalized read counts of the sgRNAs in foreground and background.
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Table 4.1:

CRE location OOB importance
chr3 34650423 34650923 0.0344
chr3 35224583 35225083 0.0265
chr3 35754047 35754547 0.0261
chr3 34664633 34665133 0.0241
chr3 34648963 34649463 0.0211
chr3 34649781 34650281 0.0206
chr3 34019705 34020205 0.0186
chr3 36552063 36552563 0.0180
chr3 34650797 34651297 0.0170
chr3 35405270 35405770 0.0168
chr3 34653503 34654003 0.0168
chr3 34648663 34649163 0.0162
chr3 35324061 35324561 0.0159
chr3 36066007 36066507 0.0159
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Chapter 5

Concluding remarks

Current research for liquid biopsy is benefiting from two contributing factors: the increas-

ing sequencing power that follows Moore’s law[204], and the booming patient studies linking

their molecular profile to early cancer and treatment responses[80, 205, 206]. Therefore, while

currently available assays have low-dimension features (i.e., 10-100 strong biomarkers) due to

limited variant data[207], we predict future studies to have high-dimension predictors. As we

can see from the evolution of prediction models, we also predict the adoption of deep learning

models that thrives on the plethora of datasets. Both trends require a deeper understanding of

the interplay between existing features (i.e., DNA methylation and DNA variant) to unlock new

predictive features.

To distinguish between cancer and normal cfDNA, the major challenge is the limited

number of recurring biomarkers, and how to detect them frugally given the finite detection limit.

Recent advances in technology have made possible the simultaneous detection of both DNA

variants and methylation variants on cfDNA[95]. As a result, we would argue that the most

cost-effective strategy is to adopt the prior knowledge of how DNA and methylation interact with

each other to enable higher confidence and sensitivity. In addition, we have recently discovered

DNA motifs that regulate histone modifications[11, 71] and showed that the altered DNA motif
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leads to abolished histone modification, which is also associative in cancer[208]. These cis-acting

motifs can be leveraged to reveal information on the state of histones, which is not readily

available in cfDNA[75]. Further, DNA patterns are also important in establishing local secondary

structures, which has been reported as an epigenetic determinant of cancer genome[209]. Clark et

al. have reported a sequence pattern in the secondary structures as a hotspot for DNA methylation

in human breast cancer patients[40].

Taken together, we believe the ever-growing research revealing genetic-epigenetic inter-

play has opened doors to previously underrepresented strategies in biomarker selection, and points

to new perspectives in characterizing DNA variants in combination with epigenetic signatures.
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genetic elements that autonomously determine DNA methylation states. Nat. Genet. 43,
1091–1097 (2011).

23. Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., van Nimwegen, E.,
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in serum DNA for early identification of disseminated breast cancer. Genome Med. 9, 115
(Dec. 2017).

90. Zhao, F., Olkhov-Mitsel, E., Kamdar, S., Jeyapala, R., Garcia, J., Hurst, R., Hanna, M. Y.,
Mills, R., Tuzova, A. V., O’Reilly, E., Kelly, S., Cooper, C., Movember Urine Biomarker
Consortium, Brewer, D., Perry, A. S., Clark, J., Fleshner, N. & Bapat, B. A urine-based
DNA methylation assay, ProCUrE, to identify clinically significant prostate cancer. Clin.
Epigenetics 10, 147 (Nov. 2018).

91. Brikun, I., Nusskern, D., Decatus, A., Harvey, E., Li, L. & Freije, D. A panel of DNA
methylation markers for the detection of prostate cancer from FV and DRE urine DNA.
Clin. Epigenetics 10, 91 (July 2018).

92. Han, Y. D., Oh, T. J., Chung, T.-H., Jang, H. W., Kim, Y. N., An, S. & Kim, N. K. Early
detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in
stool DNA. Clin. Epigenetics 11, 51 (Mar. 2019).

93. Guo, S., Diep, D., Plongthongkum, N., Fung, H.-L., Zhang, K. & Zhang, K. Identification
of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples
and tumor tissue-of-origin mapping from plasma DNA. en. Nat. Genet. 49, 635–642 (Apr.
2017).

94. Moss, J., Magenheim, J., Neiman, D., Zemmour, H., Loyfer, N., Korach, A., Samet, Y.,
Maoz, M., Druid, H., Arner, P., Fu, K.-Y., Kiss, E., Spalding, K. L., Landesberg, G., Zick,
A., Grinshpun, A., Shapiro, A. M. J., Grompe, M., Wittenberg, A. D., Glaser, B., Shemer,
R., Kaplan, T. & Dor, Y. Comprehensive human cell-type methylation atlas reveals origins
of circulating cell-free DNA in health and disease. Nat. Commun. 9, 5068 (Nov. 2018).

81



95. Shen, S. Y., Singhania, R., Fehringer, G., Chakravarthy, A., Roehrl, M. H. A., Chadwick,
D., Zuzarte, P. C., Borgida, A., Wang, T. T., Li, T., Kis, O., Zhao, Z., Spreafico, A., Medina,
T. d. S., Wang, Y., Roulois, D., Ettayebi, I., Chen, Z., Chow, S., Murphy, T., Arruda, A.,
O’Kane, G. M., Liu, J., Mansour, M., McPherson, J. D., O’Brien, C., Leighl, N., Bedard,
P. L., Fleshner, N., Liu, G., Minden, M. D., Gallinger, S., Goldenberg, A., Pugh, T. J.,
Hoffman, M. M., Bratman, S. V., Hung, R. J. & De Carvalho, D. D. Sensitive tumour
detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583
(Nov. 2018).

96. Rapkins, R. W., Wang, F., Nguyen, H. N., Cloughesy, T. F., Lai, A., Ha, W., Nowak, A. K.,
Hitchins, M. P. & McDonald, K. L. The MGMT promoter SNP rs16906252 is a risk factor
for MGMT methylation in glioblastoma and is predictive of response to temozolomide. en.
Neuro. Oncol. 17, 1589–1598 (Dec. 2015).

97. De Toro-Martin, J., Guenard, F., Tchernof, A., Deshaies, Y., Perusse, L., Biron, S., Les-
celleur, O., Biertho, L., Marceau, S. & Vohl, M.-C. A CpG-SNP located within the ARPC3
gene promoter is associated with hypertriglyceridemia in severely obese patients. Ann.
Nutr. Metab. 68, 203–212 (2016).

98. Shilpi, A., Bi, Y., Jung, S., Patra, S. K. & Davuluri, R. V. Identification of Genetic and
Epigenetic Variants Associated with Breast Cancer Prognosis by Integrative Bioinformatics
Analysis. Cancer Inform. 16, 1–13 (Jan. 2017).

99. Fan, H., Liu, D., Qiu, X., Qiao, F., Wu, Q., Su, X., Zhang, F., Song, Y., Zhao, Z. & Xie,
W. A functional polymorphism in the DNA methyltransferase-3A promoter modifies the
susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med. 8, 12 (Feb.
2010).

100. Rakyan, V. K., Hildmann, T., Novik, K. L., Lewin, J., Tost, J., Cox, A. V., Andrews,
T. D., Howe, K. L., Otto, T., Olek, A., Fischer, J., Gut, I. G., Berlin, K. & Beck, S. DNA
methylation profiling of the human major histocompatibility complex: a pilot study for the
human epigenome project. PLoS Biol. 2, e405 (Dec. 2004).

101. Kerkel, K., Spadola, A., Yuan, E., Kosek, J., Jiang, L., Hod, E., Li, K., Murty, V. V., Schupf,
N., Vilain, E., Morris, M., Haghighi, F. & Tycko, B. Genomic surveys by methylation-
sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat.
Genet. 40, 904–908 (July 2008).

102. Shoemaker, R., Deng, J., Wang, W. & Zhang, K. Allele-specific methylation is prevalent
and is contributed by CpG-SNPs in the human genome. Genome Res. 20, 883–889 (July
2010).

103. Amin, V., Harris, R. A., Onuchic, V., Jackson, A. R., Charnecki, T., Paithankar, S., Lakshmi
Subramanian, S., Riehle, K., Coarfa, C. & Milosavljevic, A. Epigenomic footprints across

82



111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. en.
Nat. Commun. 6, 6370 (Feb. 2015).

104. Kulakovskiy, I. V., Vorontsov, I. E., Yevshin, I. S., Sharipov, R. N., Fedorova, A. D.,
Rumynskiy Eugene I and Medvedeva, Y. A., Magana-Mora, A., Bajic, V. B., Papatsenko,
D. A., Kolpakov, F. A. & Makeev, V. J. HOCOMOCO: towards a complete collection
of transcription factor binding models for human and mouse via large-scale ChIP-Seq
analysis. en. Nucleic Acids Res. 46, D252–D259 (Jan. 2018).

105. Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li,
W. W. & Noble, W. S. MEME SUITE: tools for motif discovery and searching. Nucleic
Acids Research 37, W202–W208. ISSN: 0305-1048 (July 2009).

106. SOKAL & R, R. A statistical method for evaluating systematic relationship. University of
Kansas Science Bulletin 28, 1409–1438 (1958).

107. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given
motif. en. Bioinformatics 27, 1017–1018 (Apr. 2011).

108. Deplus, R., Delatte, B., Schwinn, M. K., Defrance, M., Méndez, J., Murphy, N., Dawson,
M. A., Volkmar, M., Putmans, P., Calonne, E., Shih, A. H., Levine, R. L., Bernard, O.,
Mercher, T., Solary, E., Urh, M., Daniels, D. L. & Fuks, F. TET2 and TET3 regulate
GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. en. EMBO J.
32, 645–655 (Mar. 2013).

109. Jin, B., Ernst, J., Tiedemann, R. L., Xu, H., Sureshchandra, S., Kellis, M., Dalton, S., Liu,
C., Choi, J.-H. & Robertson, K. D. Linking DNA methyltransferases to epigenetic marks
and nucleosome structure genome-wide in human tumor cells. en. Cell Rep. 2, 1411–1424
(Nov. 2012).
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