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1. INTRODUCTION

In this paper a simultaneous modeling system for dichotomous endogenous

variables is developed and applied empirically to longitudinal travel demand data of modal

choice. The reported research is motivated by three factors. First, the analysis of

discrete data has become standard practice among geographers, sociologists, and

economists. In the seventies a number of new tools were developed to handle

multivariate discrete data (Bishop, et al., 1975; Fienberg, 1980; Goodman, 1972).

However, while these methods are invaluable in studying empirical relationships among

sets of discrete variables, they have a limited ability to reveal the underlying causal

structure that generated the data.

Second, in travel demand analysis and housing market modeling, attention has

been focused largely on single-equation models. It can be argued that this scope is too

limited. Human decisions are usually not taken in isolation but in conjunction with other

decisions and events. There may be complex feedback relations, recursive, sequential,

and simultaneous decision structures that cannot be adequately described in a single

equation. This has been a major motivation in the seventies in sociology for the

development of a new modeling approach: linear structural equations with latent

variables. Such models combine the classical simultaneous equation system model with

a linear measurement model. Original developments, particularly the LISREL model



(JSreskog, 1973, 1977), did not allow for discrete dependent variables. More recently,

Muthen (1983, 1984, 1987) and others (e.g., Bentler, 1983, 1985) developed models 

incorporate various types of non-normal endogenous variables, including censored/

truncated polytomous and dummy variables. This paper explores the possibilities of this

method for simultaneous equation models in dynamic analysis of mobility.

A third motivation for the present research is the rapid growth of longitudinal data

sets. In recent years many longitudinal surveys have become available for geographical,

economic, and transportation analyses. In labor and housing market analysis the Panel

Study of Income Dynamics (PSID, 1984) has played an important role (Heckman 

Singer, 1985; Davies and Crouchley, 1984, 1985). In consumer behavior, the Cardiff

Consumer Panel has been a major motivation for the development and testing of dynamic

discrete choice models (Wrigley, et al., 1985; Wrigley and Dunn, 1984a, 1984b, 1984c,

1985; Dunn and Wrigley, 1985; Uncles, 1987). In the Netherlands a large general mobility

panel has been conducted annually since 1984 (J. Golob, et al., 1985; van Wissen and

Meurs, 1989). Here analyses have focused on discrete data on modal choice (’1. Golob,

et al., 1986), as well as on dynamic structural modeling (Golob and Meurs, 1987, 1988;

Kitamura, 1987; Golob and van Wissen, 1988; Golob, 1988). The present paper is an

extension of this line of research to incorporate dynamic structural models of modal

choice, using data from the Dutch Mobility Panel.

This paper is organized as follows: In Section 2 the basic methodology is

developed. In Section 3 the simultaneous equation system of dummy variables is

compared with the conditional logistic model, which is derived from, and equivalent to,

the familiar log-linear model. In the fourth section, both models are applied to a dynamic
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data set of train and bus usage. Some major conclusions regarding the above are drawn

in the final section.

2. METHODOLOGY

2.1 Two Equation Systems

The basic model can be specified as a set of structural equations involving dummy

endogenous variables. The dummy endogenous variables can be viewed as being

generated by unobserved latent variables. Consider a latent variable y* which is not

observed, but the event y?

y, = 1 iff y? > 0

y, = 0 otherwise

> 0 is observed, through the indicator y, = 1:

(2.1)

Next, suppose y* is explained by the following relationship:

y* = 1, x, + u, (2.2)

Then

Prob(y, = 1) = Prob(u, >--~x,) (2.3)

Equations (2.1) through (2.3) define a binary choice model.

standard normal distributed then the probit model results:

If it is assumed that u is
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Prob (y, = 1) = (} (-~ (2.4)

where ̄ is the standard normal cumulative distribution function.

For generalization to the multivariate case, suppose we have two latent variables,

y,* and y=*, and two observed dummy indicators y, and y2. The latent variables are

assumed to be linear functions of the latent variables themselves as well as exogenous

variables x. So, the following structural model is defined:

Y,*, = /~, Y2*, + "1, x,, + ~’,,

Y2*, = /~2 Y,*, + "/2 x2, + ~’2,

(2.5a)

(2.5b)

The ~’s denote the direct effects among the latent variables, and the -~’s are the direct

effects between the exogenous and endogenous variables. If the error terms ~-, and

~’2 are assumed to be bivariate normally distributed with variance-covariance matrix

then the bivariate probit model results.

In order to estimate the parameters in a structural equations system, a three-stage

procedure is followed (see, e.g., Judge, et al., Ch. 14). First, the equations are written

in reduced form. Second, least squares or maximum likelihood methods can be applied

to the reduced-form equations to obtain consistent estimates of the reduced-form-~,

coefficients. Finally, the structural parameters are derived from the reduced-form

parameters. A unique solution of the structural parameters in terms of the reduced-form

estimates is not always possible, which is the problem of identification.

The three-stage procedure can be illustrated with the structural model given above.

The reduced-form model is
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4- ~2 X2i

Jr" ~22 X21

(2.6a)

(2.6b)

where

1 - #1 #2

#1 "f2
m~

1 - #1 #2

#2 "11

1{’21 = J ~’22

1 - #, #2

"12

1 - #1 #2

#1 £2 + £1 #2 £1 + £2
V1 = , V2 =

1-#, #2 1-#1 #2
(2.7)

The joint distribution of v, and v2 is assumed bivariate normal according to:

E(v,,) = E(v2,) 

E (v2 = 1li ) -- (4) 

E (v,i V2,) = w,2

O

21) = W22 1E (v2 = 1

(2.8)

T̄he variances ~,1 and ~,, are set to 1 because the scale of the probit transformation is

not identified (Maddala, 1983, p. 22).

The reduced-form model parameters in equation (2.6) can be estimated in two

steps. The 7r’s can be estimated by means of probit regressions. Next, the correlation

5



among the errors can be estimated using the theory of tetrachoric correlations in 2x2

tables (Tallis, 1962).

Given estimates ~ from equation (2.6), we can calculate the y*’s. The probabilities

of the joint occurrence of the two events can now be expressed as:

P,, (i) = Prob (y,, = 1 andy2, = 1) = ~’2 (~/~*, Y2*,, p) (2.9a)

P,o (i) = Prob (y,, = 1 and Y2, = O) = ~’2 (Y,*,, -Y~*,, -p) (2.9b)

Po, (i) = Prob (y,, = 0 and y,, = 1) = e2 (’~’,*,, ~)2", -p) (2.9c)

P oo (i) = Prob (Y,i = 0 and y2, = O) = ~2 (-~’,*,, -~’2", , p) (2.9d)

where e2 (.) is the standardized bivariate normal distribution. Maximum likelihood can

be used to obtain a consistent estimator of p, the correlation coefficient.

With the estimated reduced-form coefficients, the ~’s, and p’S, it is possible to

calculate the structural parameters. From equation (2.7) we have:

= , = .

Further, .~, may be derived from the ~’s and .~,, (or ~’2, ), and likewise "~2 from ~= (or

~r,2 ). Finally, the variances and covariance of the structural model can be determined

from the ~’s. Since ~,, and ~,., are set to 1, these parameters are not uniquely identified.

The equations relating the u’s to the (co)variances .~ are:
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In general, the @’s can be solved given the ~)’s and the/~’s.

2.2 q-Equation Systems

Extension of the model to more than two equations is straightforward.

form, equation (2.5) becomes:

In matrix

y* = By* + rx + C (2.11)

where y* is a (q x 1) vector of latent endogenous variables, x is an (m x 1) vector 

exogenous variables, B is a (q x q) parameter matrix of the structural coefficients among

the y* variables, r is a (q x m) parameter matrix of structural coefficients relating the

exogenous and endogenous variables, and ¢ is a (q x 1) vector of disturbances. The

variance-covariance matrix of the C’s is defined as ,I,, with elements @,,. Analogous to

equation system (2.6), we obtain the reduced-form matrix equation:

y* = (I-B)" rx + (I-B)" 

= IIx + v (2.12)

where n = (I - B)" r is the (q x m) matrix of reduced form regression coefficients, 

v is a vector of random disturbances with covariance matrix Var(v) = n (q x q). A typical

element of fl is ~,,. From equation (2.12) the expectation and variance of y* conditional

on x can be derived:

E(y* I x) = (I- B)" (2.13)
T

Var(y* I x) = 0- B)" ¯ (1- B)" (2.14)
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where, as before, ~ denotes the variance-covariance matrix of the ~- disturbance terms.

Analogous to the two-equations case, (2.12) is solved for 1-[ and r}. Given consistent

estimates f[ and ~ the structural parameter matrices B, r and .~ are then estimated. In

the two-equations case the r[ parameters can be solved using univariate probit

regressions. However, the covariance matrix n is in general much more difficult to

estimate. In the two-equations case, maximum likelihood estimation involves the

evaluation of the bivariate normal distribution function, but in the q-equation case this

involves the evaluation of the multivariate normal distribution in q dimensions. There is

no closed form solution for this integral and one has to rely on numerical solutions, which

become computationally expensive with large numbers of variables. Consequently,

various approximations have been developed. Daganzo (1979) developed an algorithm

based on work by Clark (1961), in which the largest of a finite set of multivariate normally

distributed variables is computed. Muthen (1983, 1984) developed a method where only

bivariate information on sample distributions is used. This limited-information maximum

likelihood approach, coupled with generalized least squares (GLS) estimation of the

structural parameters, is implemented in the computer program LISCOMP (Muth~.n, 1987).

2.3 Limited-Information GLS Estimation

The modeling framework of LISCOMP implements structural equation models with

latent endogenous variables that are not normally distributed. Endogenous variable types

that can be handled in this way include dichotomous variables, ordinal variables, and

censored or truncated continuous variables. A special case of this class of models is the

8



multivariate probit model described here. An example of a structural equation model with

mixed types of endogenous variables in the transportation context is provided in Golob

and van Wissen (1988). Here, the focus is on the estimation of the multivariate probit

model.

The distinction between reduced-form model parameters and structural model

parameters is crucial in simultaneous equations modeling. The reduced-form coefficients

may be called sample statistics. These are the regression coefficients N (intercepts and

slopes) and residual correlations ~3.

In the limited-information approach, the elements of n are estimated using only

bivariate sample information. The estimation involves evaluation of equation system (2.9)

for each observation for each pair of latent variables to obtain the corresponding residual

correlations o.

Estimation of the structural model parameters involves optimally replicating the

sample statistics as close as possible in terms of the free model parameters in the B, [’,

and ~, parameter matrices, using the generalized least squares (GLS) approach developed

by Brown (1974, 1982, 1984). In the application of weights in the GLS approach, it 

useful to distinguish between the regression statistics ]I and the correlation statistics n.

Consider the vector of sample statistics S = (S., S b ) with the following elements:

S, = vec{][} (2.15a)

Sb = K vec{n} (2.15b)
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where r[ and n are the sample statistics and K selects lower-triangular elements from the

symmetric correlation matrix. The vec-operator strings out matrix elements row-wise in

a column vector. Next, consider the population vector o = (~. , a b ) where 

corresponds to the regression structure and <7b to the correlation structure of the model.

From equations (2.13) through (2.14) we have:

c,, = vec { (1-B)" r (2.16a)

~b = Kvec{ (l-B) "’) ~,(1-B)"T} (2.16b)

The total number of parameters in ~,

number of free

q (m + ’/2 (q -1)).

the structural equation parameters.

F = (S-~) T W" (S-~)

isqxm and inob is’/2q (q-l). Sothetotal

parameters in B, [’, and ~,, denoted as r, cannot exceed

A generalized least-squares approach can then be used to obtain

The fitting function is

(2.17)

where W is the estimator of the asymptotic covariance matrix of S. (For details on the

computation of W, see Muthdn, 1984, p. 119). F provides a large-scale chi-square test

of model fit to the first and second order statistics. If r is the total number of free model

parameters in B, [’, and ~,, then the appropriate degrees of freedom is

q (m + ’/2 (q 1)) - r. SeeBentler (1980), for interpretation of the chi-square statistic

in large samples.
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3. A COMPARISON WITH THE CONDITIONAL LOGISTIC MODEL

The multivariate probit model presented here can be compared with the log-linear

model (LLM) and equivalent conditional logistic model (CLM). The LLM is one of 

most frequently applied tools in applied multivariate categorical analysis (Bishop, et al.,

1975). The CLM can be derived from the LLM and distinguishes between dependent and

independent variables. The LLM-CLM model is well suited to test statistical associations

among categorical variables, but there are difficulties in estimating structural parameters

among the variables. In particular, there are two types of problems:

o The CLM is not sufficiently rich in parameters to distinguish between statistical

association and structural relations (Heckman, 1978; Maddala, 1983).

.
The use of endogenous dummy variables is inconsistent. If specified as a

dependent variable, a dichotomous variable is treated as a probability; if entered

as an explanatory variable, it is treated as a dummy variable (Winship and Mare,

1983).

To demonstrate these points, the LLM and the corresponding CLM are introduced and

compared with the associated multivariate probit models. In Section 4 an empirical

comparison among the models is given.
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Consider a trinomial discrete variable problem defined by the dichotomous

variables Y,, Y2, and Y3, with values 0 and 1. The cross-classification of these variables

is a three-way table with 2’ = 8 cells with frequencies f,j, . The LLM models the joint

distribution of the variables in terms of main effects and interaction effects. The saturated

trinomial LLM is:

log [P (Y,, Y2, Y3 )]

+

(3.1)

where the singly subscripted #’s are the main effects, #,2, #, 3, and # 2a are second order

interaction terms, and ~,~, is the third order interaction term. The model extends easily

to include more variables and more categories (see, e.g., Bishop, et al., 1975; Fienberg,

1980; Goodman, 1972).

Model (3.1) contains as many parameters as there are cell frequencies. 

imposing constr’aints on the ~ terms, a more parsimonious model results. The predicted

cell frequencies F,j, can be compared with the observed frequencies f,j, to determine

whether the hypothesis expressed in the model fits the data, using the x 2 test or the log-

likelihood ratio. Individual # terms can also be tested using the conventional t-test.

The LLM models the joint distribution of all variables: No distinction between

dependent and independent variables is made. In order to predict the outcome of one

variable conditional on the outcomes of the other variables, the LLM can be transformed

into the conditional logistic model (CLM), the equivalence between the log-linear model

and linear logistic models being well known (McCullagh and Nelder, 1983, Section 6.4).
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From equation (3.1):

P(Y, : 1 I Y2, Y3)
L1 I 23 = log ...............................

P(Y, = OIY~,Y3)

All terms not involving Y1 cancel out.

L 21,3 = /~2 + /~,2Y, + /~Y3

and

Similarly we have:

+ #,~Y,Y3 (3.3)

Equations (3.2) through (3.4) correspond to the same LLM. The form of the three

conditional equations is similar to that of a simultaneous equation system. However, there

are a number Of cross-equation parameter constraints that are usually not imposed in

simultaneous equation systems: # ,2 appears in both equations (3.2) and (3.3), 

appears in equations (3.2) and (3.4), and #~ appears in equations (3.3) and (3.4). 

term # 123 appears in all three conditional expressions. Consequently, they cannot be

given a causal interpretation but should be considered as association-type parameters.

CLM’s can be given a structural interpretation if the system is recursive (Maddala

and Lee, 1976). Consider the joint probability structure:

P(Y,,Y2,Y3) = P(Y,) ¯ P(Y2 I Y1) ¯ P(Y3 I Y,,Y2) (3.5)

From equation (3.5) we have:
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L, = log
P(Y, = 1)

P(Y, =o)
(3.6)

L=I, = log
P(Y2 = 1 IY,)

P(Y,=0 I Y,)
2/~ + 2

/~,2 Y, (3.7)

P(Y3= 1 
L31,2 = log .........................

P(Y3=0 IY,,Y,)

3 3 3
= ~3 + ~.,3Y, + ~Y, + ~,~Y,2 (3.8)

In these equations, the superscripts of the # terms denote the dimensions of the table

used in the estimation. So, equations (3.6) through (3.8) are estimated in three stages:

I 2First, #, is estimated from the marginal distribution of Y,. Next, #~ and #,2 are derived

3 3from estimating a saturated LLM on the two-way table of Y, and Y,. Finally, #3 , #,3,
3 3#a, and #,~ are estimated from the three-way table containing all three variables. The

#’s of the recursive structure can be given a causal interpretation (Goodman, 1973).

If we compare the recursive model structure equations (3.6) through (3.8) with 

types of models discussed in Section 2, an important difference emerges. In the

multivariate probe model the dichotomous variables are treated as latent variables both

as independent and as explanatory (intermediate) variables. This allows the models 

be written in structural form and in reduced form. In the CLM formulation, dichotomous

14



variables are treated as dummies if they are explanatory, but as log odds if they are

dependent variables. A substantive interpretation can be given for both forms, depending

on the type of problem being modeled. Heckman (1978) introdzo~ced a simultaneous

equation system with dummy endogenous vail . ~ containi’ ~e latent variable

and the observed dummy indicator~ ~~onstramr[s~,~-~ ~-,~:~ ,~1

parameters applw j~,~ver.--Maddala (1983, Section 5.7) gave a substantive

int~:#f~ati-0n to including latent variables or their observed dummy counterparts in

structural equations. The latent variable y* can be interpreted as "intention" and the

observed y as the actual action. The model

Y,* = /~, Y*2 +’~, x, + ~-,

y* = /92 y,* + ’~2 x2 + ~’2 (3.9)

specifies that the intentions about y, and y 2 are determined jointly by the x’s.

other hand, the model

Y,* = /~, Y2 + ~, x, + ~’,

= /~2 Y, + ~2 x2 + ~’2

On the

(3.10)

says that the intention for y, is determined by the actual outcome of Y2, but the intention

for Y2 is also determined by the outcome of y,. On the condition that intentions precede

actions, such a model is not logically consistent. This can be shown formally (Maddala,

1983, p. 119). Let F, (.) and F~ (.) be the distribution functions of ~’, and 

respectively. Then, (from 3.10):
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Prob(y, = 1) = F, ~,y= +,/,x,) (3.11)

and

Prob(y, = landy2 = 1) =

Prob (y, = 1 and Y2 = O)

Prob(y, = Oandy2 = 1)

Prob(y, = Oandy= =0) =

F, 09, +-/,x,) F2092 +,/2x2)

= F,(.~,x,) [1-F2092 +,/2x2)

= [1-F, 09, +,/,x,)] F2(,/=~)

[1 - F, (,/, x, )] [1 - F2 (,/2x2)] (3.12)

The sum of these probabilities is equal to:

1 + [F, 09, +,/x,) - F,(-/lx,)] [1=2 092 +’12x~) F2 (% x~ )] (3.13)

It is clear that, in order for this expression to be 1, either/~, or/~2 has to be zero. The

key point to be made here is that the question of including the observed dummy indicator

or its latent counterpart as explanatory variables in a simultaneous system of equations

has important theoretical and substantive implications. By using conditional logistic

models, one is restricted to using dummy indicators, which may not be appropriate for

a given problem.

4. EMPIRICAL MODEL COMPARISON

The differences between the multivariate probit model introduced in Section 2 and

the conditional logistic model in Section 3 are illustrated using data from an ongoing
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national mobility panel in the Netherlands that was initiated in 1984. The survey involves

the yearly recording of one week of travel behavior of a sample of approximately 1,800

households. A stratified sampling scheme was used, based on life cycle, household

income, and place of residence. All household members over eleven years of age were

surveyed. For more information on the sampling scheme and the survey, see J. Golob,

et al., (1986), or van Wissen and Meurs (1989). The present research uses data 

four waves of the Dutch panel conducted in the spring of each of the years 1984 through

1987. The data used in this study is restricted to driver-aged household members over

18 years of age.

The relations among five dichotomous variables are analyzed. Four of the five

variables pertain to the use of two public transport modes: train (r) and bus-tram-subway

(B) at two points in time (denoted T, , T2 and B, , B 2, respectively). The remaining

variable relates to car ownership of the household (C). A pooled wave-pair sample was

used. For each person, yearly interval records were constructed. The variables related

to mode usage were defined for the beginning and the end of the intervals. Intervals in

which a change in car ownership occurred were excluded from the analysis. Table 1

defines the variables used in this section. Since all variables are dichotomous, we can

organize the data in tabular form. Table 2 shows the 25 = 32 cell frequencies in the

table.

We postulate the following hypothesis concerning the data:

P (B,, T,, B~, T2, C) = P (C) ¯ P (B,,T, I c) ¯

P(B2,T= I B,,T,,C) (4.1)
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TABLE 1

VARIABLE DEFINITIONS

VARIABLE
NUMBER VARIABLE

1 C

2 T,

DESCRIPTION

Car ownership indicator of the household
(0 = no car owned, 1 = 1 + cars owned).

Train-usage
(0= no usage, 1 = one or more trips made)
in first 7-day observation period in one-year interval

Bus-train-subway usage
(0 = no usage, 1 = one or more trips made)
in first 7-day observation period in one-year interval

Train usage in second 7-day observation period

Bus usage in second 7-day observation period

This is a partially recursive structure, containing one marginal and two conditional

probabilities. Bus usage and train usage at time t = 1 are jointly determined by car

ownership. In addition, there is also a lagged effect: bus and train usage at time t = 2

are jointly determined by bus and train usage at time t = 1 and car ownership.

First, we estimate this model using a set of simultaneous conditional logistic

equations:

18



TABLE 2

RESPONSE PATTERN TRAIN & BUS USAGE, AND CAR OWNERSHIP
(source: Dutch Mobility Panel)

TRAIN TIME 1 = 0
TRAIN TIME 2

CAR OWNERSHIP = 0
BUS TIME1 =0

TRAIN TIME 1 = 1
TRAIN TIME 2

0 1 0 1

0 4O2 2O
BUS
TIME 2

1 97 39

26 22

6 2O

TRAIN TIME 1 = 0
TRAIN TIME 2

0 1

0 113 7
BUS
TIME 2

1 222 39

BUS TIME1 = 1
TRAIN TIME 1 = 1
TRAIN TIME 2

0 1

46 17

39 94

TRAIN TIME 1 = 0
TRAIN TIME 2

0 1

0 4065 83
BUS
TIME 2

1 240 56

CAR OWNERSHIP = 1
BUS TIME1 =0

TRAIN TIME 1 = 1
TRAIN TIME 2

0 1

79 48

4 18

TRAIN TIME 1 = 0
TRAIN TIME 2

0 1

0 276 12
BUS
TIME 2

1 256 17

BUS TIME1 = 1
TRAIN TIME 1 = 1
TRAIN TIME 2

0 1

64 14

21 52
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1
Lc = #, (4.2a)

L.r, = #~ + #~2 C + /.~ B, (4.2b)

3L,, = #~ + #,3C + /~T, (4.2c)

The model defined by equation system (4) is depicted in the flow diagram of Figure 

The superscripts of the # terms denote the dimension of the table used in the estimation

of the parameters. Thus, #i is estimated from the marginal distribution of C. Next, train

and bus usage at time t = 1 are determined jointly from car ownership, using a three-

3 3* B * C). The terms #,2 and #,3 relate to the causal effect of cardimensional table (T, 

3ownership on train and bus usage, respectively. The #a term appears in both equations

and is the association among bus and train usage at time t = 1. No causal interpretation

can be given to this particular parameter since there is no direction of the effect. The

5 5terms #24 and #~ measure the lagged effects of train and bus usage, respectively. It is

assumed that there are no cross-lagged effects of B, to "1"2 and T, to B2 (# 34 = # 25 =

0).
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FIGURE 1
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Table 3 contains the parameter estimates of the model. All estimated coefficients

are highly significant. Regarding the effects of car ownership, there is the expected

negative influence on both bus and train usage. The effect on bus usage is stronger

than the effect on train usage in both time periods, which is also as expected because,

for example, there is considerable train usage by higher income business travelers.

Moreover, the coefficient values in t = 1 are larger than in t = 2, which could be due to

the absence of lagged effects for the t = 1 period. The lagged effects are highly

significant. If we interpret these parameters as stability coefficien" then train usage

appears to be more stable than bus usage. Further, bus and train usage are highly

complementary: the association between B, and T, is highly positive, as is the

association between B= and T=.

However, the model cannot answer the question of whether train usage implies bus

usage or, conversely, whether there is indeed mere statistical association. Structural

modeling provides the capability of answering this question through hypothesis testing

and involving alternative model specifications. The first alternative model to be tested

(designated as Model I) has the following form:

C* = ¢, (4.3a)

T,* = ,8 2, C* + ¢= (4.3b)

B,* = ,8 3, C* + ~’3 (4.3c)

T* = ~,,C* + /~,~T,* + ~’, (4.3d)

B2* = /~5, C* + ~53B,* + ~-, (4.3e)

with
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TABLE 3

PARAMETER ESTIMATES OF THE
CONDITIONAL LOGISTIC MODEL

(Equation 4.2)

PARAMETER EFFECT COEFFICIENT T-VALUE

3 C --, T, -0.930 -9.22

3
/~z3 B, *-, T, 1.818 18.29

3 C --, B~ -1.577 -21.31

5
#7, C ---, "i"2 -0.489 - 4.30

5
/~2, T, --, T2 2.566 23.43

5#,~ B= *-, "1"2 1.593 15.48

5 C --, B2 -1.066 12.60

5/~= B~--, B2 2.191 28.13

2
x = 133.59
DF = 18
P = 0.000
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= cov(c) 
1
0 1
0

~0~
1

0 0 1
0 0 0 ~,

(4.3f)

Model I, specified in equation system 4.3 represents an implementation of the

general structural equation formulation 2.11 with no exogenous x variables (r = null

matrix) and

B ._,

0 0 0 0 0
#~, 0 0 0 0
#3, 0 0 0 0
#,, #e 0 0 0
#5, 0 #~ 0 0

(4.4)

where the endogenous variables are in the same order as those in Table 1: C, T, ,

B,, "1"2, B2. The model is depicted in the flow diagram of Figure 2.

All variables are latent variables in this simultaneous equation system, so equation

(2.4) holds for all y,, i = 1,2,...,5:

Prob(y, = 1) = 1-~,(k,)

= ~(-ki ) (4.5)

where the k, unknown thresholds are estimated using the method described in Section

2.3.
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Model I implies that there are no structural ~inks between the bus and train choices

at each point in time. These links are specified in terms of the correlations ,~ 32 and .~ ~,

between the respective residuals. These two parameters are analogous to the ~3 and

,5 parameters in the conditional logistic model (4.2). Further, the cross-lagged relations

B,--> T2 and T,--> B2are zero, so ~ = ~,~ = 0 and the effects from C and lagged

relations B,--> B2 and T,-->T2 are modeled through the structural ~ parameters, which

implies (¢2, = ~3, = "~,, = ~s, = ~,~ = ~ = 0). Thus, there areeightfree

parameters in the model. Table 4 displays the results of the estimation, using the limited

information, GLS method of LISCOMP.

The coefficient values for the simultaneous probit Model I are not directly

comparable to those of the conditional logistic model for two reasons. First, the variance

of the logistic distribution is 3’/2 / ~r, while the scale of the probit is set to 1. Amemiya

(1981) suggests multiplying the Iogit estimates by 0.625 to get comparable values.

Second, the explanatory variables are dummies in the CLM, but latent variables in the

multivariate probit model, which makes direct comparison difficult. Further, the x ~ tests

are different and cannot be compared directly. For the log-linear model the test measures

the difference in observed and predicted cell frequencies. In the multivariate normal

model, the test measures the differences in sample statistics and estimated correlations

by the structural model. The CLM can be rejected as a fit to the data, according to the

x ~ value (critical x = value with (~ = 0.01 is 34.8), while the simultaneous probit model

cannot be rejected, the x 2 statistic indicating an excellent fit to the sample statistics. On

the other hand, a more complicated CLM specification, involving higher-order interaction

terms cannot be rejected, implying that bivariate information is not sufficient in this
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TABLE 4

PARAMETER ESTIMATES OF THE
SIMULTANEOUS PROBIT MODEL I

(Equation 4.3)

PARAMETER EFFECT COEFFICIENT T-VALUE

/92, C* -. T* -0.485 -14.85

/93, C* ---’ B* -0.553 -21.25

/~ ,, C* --, T* -0.166 -4.34

P 5, C* --, B* -0.363 -11.41

,= T,* --, T=* 0.568 18.69

~ B* -, B* 0.412 15.27

¢ 32 B,* ,--, T* 0.343 10.34

¯ ~ 5, B~* ,-, T2* 0.280 10.46

2
x = 1.195
DF = 2
P = 0.547

particular sample. Therefore, a full information estimation method might give better

results for the structural model. Given the computational difficulties involved in estimating

a five-dimensional normal variate, the limited information procedure was used.
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Unlike the CLM, the simultaneous probit model allows testing of alternative causal

hypotheses through alternative structural forms. The first set of hypotheses involves

causal influences between the bus and train variables. Instead of a correlation among

these variables, unidirectional links can be specified: train usage implies bus usage, as

specified in Model II--Figure 3; or bus usage implies train usage, as specified in Model

Ill--Figure 4. In Model II (Figure 3), there are no free (nonzero) off-diagonal parameters

in the ̄  matrix, and there are two additional free parameters in the B matrix (4.4)’ #= and

/~54. Model III (Figure 4) differs from Model II in that the causality between T and B 

reversed, and/~ 23 and/~,5 are freed, rather than/~= and ~ ~,. Model estimation results

for Models II and III, contrasted with the base Model I, are given in Table 5. The x2

goodness-of-fit measure is best for the base Model I (correlated train and bus choice

residuals). Regarding the two causal hypotheses, Model II is preferable to Model II1: the

hypothesis that train usage leads to bus usage fits the data better than the competing

hypothesis that bus usage implies train usage.

A second set of hypotheses that can be tested with simultaneous probit models

involves the lagged relations T,-->T2 and B,--> B 2 " the question is whether these are

indeed structural links, implying true

correlated over time (serial correlation).

state dependence, or whether the errors are

The base Model I implies the former, while the

latter hypothesis of serial correlation corresponds to Model IV, depicted in Figure 5. In

Model IV, two free parameters (~,2 and ~ ~ ) are added to the ¯ residual correlation

matrix 4.3f, while the two structural parameters #,2 and/~ in the B-matrix in equation 4.4
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TABLE 5

TESTS OF CAUSAL LINKS
AMONG TRAIN AND BUS USAGE

PARAMETER EFFECT
MODEL I MODEL II MODEL III

COEFF (T-VAL) COEFF (T.VAL) COEFF (T.VAL)

-.485 (-14.85) -.478 (-14.68)

-.553 (-21.25) -.394 (-12.03)

-.leS (-4.34) -.171 (-4.52)

-.363 (-11.41) -.313 (-9.79)

,351 (10.67)

368 (18.69) .5,.q4 (19.10)

.412 (15.27) .323 (13.75)

.225 (lO.26)

.343 (10.34)

.280 (10.46)

-.307 (-7.17)

-.,~54 (-21.31)

-.069 (ol .62)

-.371 (-11.60)

.472 (17.98)

.352 (10,47)

,414 (15.15)

.243 (10.03)

1.195 (2) 7.535 (2) 10.141 (2)

0.5473 0.0226 0.0061

31



41

VARI: C

31

I
f2 ¯

I
VAR2: T

Ii

VAR3 : B
I

I
f3 ~--

T

42

32

VAR4 Bi ~,-- f4.,

i VAR5

FIGURE 5

FLOW DIAGRAM
OF SIMULTANEOUS PROBIT MODEL IV

32



are restricted to zero. The estimation results for base Model I (with true state

dependence) and Model IV (with serial correlation) are compared in Table 6. Clearly, 

fit is much worse for Model IV, which implies true state dependence in public transport

choice.

The aim here has been to compare the conditional logistic model with the structural

simultaneous probit model. It was shown that the probit model allows testing of

alternative causality in situations where the CLM only allows for correlation-type

parameters.

5. CONCLUSIONS

In this paper, a simultaneous modeling system for dichotomous endogenous

variables has been presented, based on the multivariate probit model. This model allows

for causal hypotheses testing of sets of related discrete choice processes. One

potentially fruitful application of this method is in the dynamic modeling of recurrent

choices in time. The choice processes are usually linked through time lags, state

dependencies, and serial correlation (heterogeneity). In principle, these dynamic

relationships can be modeled in the framework presented here. A simple empirical

example was given in Section 4. Public transport choice (train and bus) was modeled 

two points in time, conditional on fixed car ownership levels. A number of hypotheses

could be tested with this model. First, it was shown that train and bus choice was linked

through correlation effects. Such an effect could be the result of mutual causation by

excluded variables. Each of the competing hypotheses indicating that choice of one
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TABLE 6

TEST OF STATE DEPENDANCE VERSUS SERIAL CORRELATION
OF TRAIN AND BUS USAGE

PARAMETER
MODEL I

EFFECT
COEFF (’T-VAL)

MODEL IV

COEFF (T-VAL)

C*--, T,* -.485 (-14.85)

C*-, B,* -.553 (-21.25)

C" ---. T2* -.166 (-4.34)

C*--, B2* -.363 (-11.41)

T*--, T2* .568 (18.69)

B*---, a2* .412 (15.27)

B* ,-, T* .343 (10.34)

T* ,-, T~*

a,*---, g2*

a2* ~. T~* .280 (10.46)

(-17.Ol)
-.605 (-24.29)

-.509 (-15.36)

-.637 (-26.52)

.224 (7.96)

.474 (16.10)

.335 (12.96)

.254 (9.18)

x (OF)
P

1.195 (2)

0.5473

35.087 (2)

0.0000
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mode causes the choice of the other mode showed a worse fit. Second, the nature of

the time dependency of mode choice could be tested. The hypothesis of causally-

related mode usage over time showed a much better fit than the rival hypothesis of

serially-correlated errors, which is evidence for state dependency in train and bus choice.

The simultaneous probit model was also tested against the conditional logistic

model. This model is derived from, and equivalent to, the log-linear model. Although the

conditional logistic model is highly valuable for determining empirical relationships, it has

only limited capability to test causal relationships versus mere statistical association. If

the model is not fully recursive, then it is not possible to determine the true underlying

causal structure. Moreover, the conditional logistic model is restricted in the types of

model specifications that it allows: endogenous dichotomous variables are treated as

dummies whenever they appear as explanatory variables in the equation system. This

may not always be the proper representation of the underlying theory. The simultaneous

probit model does not have this limitation.

Despite the theoretical advantages, there.are still a number of methodological

problems in estimating the simultaneous probit model. First, the assumption of

multinormality for observed outcomes may not be appropriate in many cases. Second,

full maximum likelihood estimation is still not feasible with large numbers of variables,

given the current state of computer technology. The reliance on limited information

solutions simplifies the estimation procedure, but more work is necessary to study all the

consequences of the simplifications invoked.
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