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ABSTRACT OF THE DISSERTATION

Social Learning over Weak Graphs

by

Hawraa Salami

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2019

Professor Ali H. Sayed, Chair

In this dissertation, we study diffusion social learning over weakly-connected graphs and

reveal several interesting properties characterizing the flow of information over such networks.

We discover that the asymmetric flow of information hinders the learning ability of certain

agents regardless of their local observations. Under some circumstances that we clarify in

this work, a scenario of total influence (or “mind-control”) arises where a set of influential

agents ends up shaping the beliefs of non-influential agents. We derive useful closed-form

expressions that characterize this influence, and then analyze this control mechanism more

closely to highlight some critical properties. In particular, we use the theoretical analysis

to address two main questions: (a) First, how much freedom do influential agents have in

controlling the beliefs of the receiving agents? That is, can influential agents drive receiving

agents to arbitrary beliefs or does the network structure limit the scope of control by the

influential agents? and (b) second, even if there is a limit to what influential agents can

accomplish, how can they ensure that receiving agents will end up with particular beliefs?

These questions raise interesting possibilities about belief control. Once addressed, we end

up with design procedures that allow influential agents to drive other agents to endorse

particular beliefs regardless of their convictions. We illustrate the theoretical findings and

results by means of several examples and numerical simulations.
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CHAPTER 1

Introduction

Private information and social interactions among networked agents influence the beliefs of

agents about the state of nature. This latter represents an unknown social state that agents

would like to discover; for instance, agents might be interested in knowing who is the best

candidate to vote for, what movie to watch, which restaurant to choose, what diet to follow,

or whether vaccines are safe or not. In deciding whether the state of nature, denoted by

θ, is either θ = 1 or θ = 0, an agent k observes some private data, which can represent

past experiences, personal knowledge, or own convictions. Additionally, agent k observes the

actions of its neighboring agents (e.g., friends, family, colleagues, ... ) or consults with them

about their opinion on the most plausible value for θ. By combining local measurements with

information from neighbors, agents update their belief about θ. In updating their beliefs,

agents might also be affected by some external influence through media, advertisement,

or celebrities, which can play a role in creating a form of disagreement. Many models in

the literature of social learning have been proposed to analyze how agents socially interact

and aggregate information to form their opinions, and to investigate if agents can reach an

agreement or if they can successfully aggregate their information.

Two main categories of models have been proposed in the literature to examine social

learning. The first one is based on a Bayesian approach [1–17], where an agent relies on some

priors, some observations and its understanding of the world, to perform a Bayesian operation

and update its opinion. The second category of models consists of non-Bayesian learning

models, which traditionally do not involve any Bayesian update step, and describe how

each agent interacts locally with its neighbors and aggregates their opinions to form its own

[17–25]. Both approaches provide insights into the formation of some interesting phenomena
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over social networks, but they both have their own shortcomings. Some recent emerging

models of social learning involve a Bayesian update step without being fully Bayesian [26–40];

these models take into consideration the incoming of new information for agents, as well as

their interaction with their neighbors. Our work focuses on one type of these recent models,

and examines through it the external influence on opinion formation. In this chapter, we

provide a summary of some of the social learning models, and then we outline our work and

main contributions.

Notation: We use lowercase letters to denote vectors, uppercase letters for matrices, plain

letters for deterministic variables, and boldface for random variables. We also use (.)T for

transposition, (.)−1 for matrix inversion, and ρ(.) for the spectral radius of a matrix. We use

� and � for vector element-wise comparisons.

1.1 Bayesian and non-Bayesian Learning

In this section, we present models from both Bayesian and non-Bayesian frameworks. We

describe first the basic model of herding that arises with fully Bayesian agents and discuss

some of its extensions. We then present a classical non-Bayesian model and some of its

variants.

1.1.1 Bayesian Approach

Some of the earliest Bayesian appear in [1] and [2]. Based on observational learning, these

models describe how each agent learns by observing the actions of others, and how it incor-

porates its observations with its own private signals to decide whether to adopt a specific

action or not. In these models, agents sequentially make their decisions given their private

signals and all past actions of previous agents. More specifically, by observing all past ac-

tions, each agent infers the private signals received previously by other agents, then performs

a Bayesian update for its belief about the state of nature and finally chooses the decision that

maximizes its payoff. The key result in [1] and [2] is the possible emergence of the interesting

phenomenon of herding, where at some point agents stop relying on their private signals and
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start following others’ actions. We illustrate this situation by the following example.

Consider an infinitely countable number of agents, indexed by k ∈ N, which sequentially

make decisions related to an unknown state θ. There are two possible values for θ: 1 (good

state) and 0 (bad state). For instance, if there is a new fashion that agents would like to

decide whether to follow it or not, θ = 1 means that the new fashion is good to follow

and θ = 0 means otherwise. Each agent k receives a binary signal ξk ∈ {0, 1} generated

according to the following likelihood function:

L(ξk = 1|θ = 1) = L(ξk = 0|θ = 0) = q >
1

2
(1.1)

The observational signal that takes the value of one is labeled as a positive signal, and the

signal that takes the value of zero is labeled as a negative signal. Moreover, the signals

received by agents are independent. The decision of each agent k is denoted by zk ∈ {0, 1},

where zk = 1 means to adopt, and zk = 0 means to reject. When making decisions, agents

choose the action that maximizes their expected payoff, denoted by the following function:

u(zk, θ) =


1, if zk = 1 and θ = 1

−1, if zk = 1 and θ = 0

0, otherwise

(1.2)

All agents start by assuming that the two possible states θ = 1 and θ = 0 are equally likely

to occur, i.e., all agents start with the following prior: Pr(θ = 0) = Pr(θ = 1) =
1

2
. We

analyze next what happens given that the first agent has received a positive signal.

Assume that agent 1 receives a positive signal, i.e., ξ1 = 1, then agent 1 updates its belief

about the state of nature by computing the following posterior probability:

Pr(θ = 1|ξ1 = 1) =
L(ξ1 = 1|θ = 1)Pr(θ = 1)

L(ξ1 = 1|θ = 1)Pr(θ = 1) + L(ξ1 = 1|θ = 0)Pr(θ = 0)
= q (1.3)

Agent 1 has two options, either to accept or to reject. In order to decide, it computes its

expected payoff for each possible action and chooses the action that maximizes its expected
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payoff. If agent 1 decides to accept, i.e., z1 = 1, then its expected payoff is:

u(z1 = 1,θ = 1)Pr(θ = 1|ξ1 = 1) + u(z1 = 1,θ = 0)Pr(θ = 0|ξ1 = 1) = q − (1− q) = 2q − 1.

(1.4)

Since q > 1
2
, if agent 1 decides z1 = 1, the expected reward is 2q − 1 > 0. On the other

hand, if agent 1 decides to reject, i.e., z1 = 0, its expected payoff is 0. Therefore, agent 1

decides to take the action: z1 = 1.

Assume now that agent 2 also receives a positive signal: ξ2 = 1. Additionally, agent

2 observes the action of agent 1. Since agent 1 decided to accept, agent 2 deduces that

agent 1 has received a positive signal, because otherwise agent 1 would not choose to accept.

Therefore, according to this assumption, agent 2 updates its belief as follows:

Pr(θ = 1|ξ1 = 1, ξ2 = 1) =
q2

q2 + (1− q)2
>

1

2
(since q >

1

2
). (1.5)

Similarly to agent 1, agent 2 will also decide to accept, i.e., z2 = 1, since it is the action that

maximizes the expected payoff. On the other hand, if agent 2 receives a negative signal, then

agent 2 will be indifferent between adopting and rejecting. This is because, the posterior

probability of agent 2 will be in this case:

Pr(θ = 1|ξ1 = 1, ξ2 = 0) =
q(1− q)

q(1− q) + (1− q)q
=

1

2
(1.6)

Then in this case, agent 2 can choose to either adopt or reject.

Agent 3 observes the actions of agents 1 and 2. According to what we have just analyzed,

there are two possible scenarios for what agent 3 can observe: agents 1 and 2 have both

accepted or agent 1 has accepted while agent 2 has rejected.

First Scenario (Agents 1 and 2 have accepted): if agent 3 observes that both agents have

accepted, then agent 3 concludes that agent 1 has definitely received a positive signal and

that agent 2 has most probably received a positive signal. Now, we have two cases for the

signal of agent 3; if agent 3 receives a positive signal, then after updating its belief, it will
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also choose z3 = 1, because this action will maximize its payoff. On the other hand, if agent

3 receives a negative signal, then it will also decide on z3 = 1 despite its negative signal.

This is because, agent 3 first updates its belief:

Pr(θ = 1|ξ1 = 1, ξ2 = 1, ξ3 = 0) =
q2(1− q)

q2(1− q) + (1− q)2q
=

q

q + 1− q
= q >

1

2
(1.7)

Therefore by choosing z3 = 1, agent 3 maximizes its expected payoff. If we continue the

same reasoning for any agent k where k ≥ 4, we see that all remaining agents will end up

choosing to accept, no matter what private signals they receive. We can similarly show that

if the first two agents reject (which can happen when agents 1 and 2 both receive negative

signals), all remaining agents will end up rejecting. Therefore, all agents end up deciding

on the same action, even though it might not be the correct action that they all should be

taking. In other words, if the underlying true state is θ = 0 (bad state), and if the first two

agents receive two positive signals (which can happen with probability (1− q)2 in this case),

then all agents will end up on deciding to accept rather than to reject.

Second Scenario (Agent 1 has accepted and agent 2 has rejected): in this case, agent 3

concludes that agent 1 has definitely received a positive signal and that agent 2 has most

probably received a negative signal. In this case, the history of past actions provides no

information for agent 3, which will now follow its signal. To see this, if for instance agent 3

receives a positive signal, it updates its belief as follows:

Pr(θ = 1|ξ1 = 1, ξ2 = 0, ξ3 = 1) =
q(1− q)q

q(1− q)q + (1− q)q(1− q)
= q >

1

2
(1.8)

Therefore, agent 3 will choose to accept, i.e., z3 = 1. Otherwise it will choose to decline. For

agent 4, similarly, the actions of the first two agents provide no information, by observing

the action of agent 3 and its private signals, agent 4 will choose either to accept or to decline.

We are then back to the same reasoning we started with. If now agents 3 and 4 accept, all

remaining agents will start to accept despite the value of their private signals.

Through this example, we see how the herding phenomenon is possible to arise with
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fully Bayesian agents, where agents start to imitate each other and ignore their private

signal. It is also possible for a mistaken herding to happen, where agents fail to aggregate

the dispersed information. In [3], the authors extended these results to the case where

private signals are unbounded (i.e., the support of the log likelihood ratio is unbounded). In

this case, agents receive a richer set of informational signals, and the authors showed that

with unbounded signals, wrong herd does not occur almost surely and agents succeed in

asymptotically learning the underlying true state.

Various extensions were considered in [4–8]. In [6], the authors assumed the agents do

not observe all past actions, but they randomly sample from past actions. In [7], the authors

considered the case where agents observe the actions of a subset of agents rather than the

whole network. And in [8], the authors considered a Bayesian model based on communication

learning, where Bayesian agents learn by communicating with their neighbors. One of the

problems of the fully-Bayesian approach is that it is computationally intractable on the part

of agents. This is because it requires from each agent to infer the private information in the

network by observing the actions of others, which involves some sophisticated and demanding

reasoning on the side of the agents. We next present the second category of social learning

models, which require less complex reasoning on the part of agents.

1.1.2 Non-Bayesian Approach

We present in this section some of the non-Bayesian models. We start by the classical

DeGroot model and discuss some of its variants that take into consideration the presence

of stubborn agents and the spread of misinformation. In these models, agents are assumed

to be interconnected through a network topology and each agent communicates with its

neighbors. Note that the models of this section assume that the underlying true state θ is

not binary as in the example of the previous section, it is instead a real value. Note also

that while the beliefs in the previous section are represented as a probability for the possible

values of the state, the beliefs in this section are scalar estimates of the true state. The

beliefs here can be deterministic or random variable depending on the assumed model. We
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use boldface for random variables and plain letters for deterministic variables.

DeGroot Model: The DeGroot model [18] is a classical non-Bayesian model based on

a simple learning technique where each agent linearly combines the opinions of its neighbors.

Consider a network of N agents connected by some graph, indexed by N = {1, 2, . . . , N}.

Let the scalar a`k represent the weight with which agent k scales the data arriving from

agent ` and, similarly, for ak`. The weight a`k can represent the level of trust that agent k

has for the data coming from agent `. Let Nk denote the neighborhood of agent k, which

consists of all agents connected to k. Each agent k scales data arriving from its neighbors

in a convex manner, i.e.,

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (1.9)

We collect the weights {a`k} into an N × N matrix A. Note that, according to (1.9), the

matrix A is left-stochastic so that its spectral radius is equal to one. Assume that there is

an underlying unknown true state θ ∈ R. Each agent k starts with an estimate of the true

state denoted by xk,0 ∈ R, and then at each instant i > 0, agent k communicates with its

neighbors to update its belief as follows:

xk,i =
∑
`∈Nk

a`k x`,i−1 (1.10)

Note that in the case where the underlying state is discrete, the belief of agent k will be

defined as a probability distribution over the possible values of the state and the same

update rule (1.10) is used. Let xi represent the vector of beliefs at time i of all agents, i.e.,

xi = [x1,i , . . . , xN,i]
T, then from (1.10), we have:

xi = ATxi−1 =⇒ xi = (AT)ix0 (1.11)

The objective is to examine when agents reach consensus, i.e., lim
i→∞

xi exists and is identical

for any agent k. It can be shown that when the network is strongly-connected, i.e., there

exists a path with non-zero weights connecting any two agents and, moreover, there is at least
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one self-loop, i.e., akk > 0 for some agent k, consensus is reached [18,19]. When the network

is strongly-connected, matrix A is primitive [41, 42], and it then follows from the Perron-

Frobenius Theorem [43], [44] that A has a single eigenvalue at one while all other eigenvalues

are strictly inside the unit disc. We denote the right-eigenvector of A that corresponds to the

eigenvalue at one by y, and all entries of this vector will be strictly positive. We normalize

the entries of y to add up to one, so that y satisfies the following conditions:

Ay = y, 1Ty = 1, y � 0 (1.12)

We refer to y as the Perron eigenvector of A. Then, in this case, we have the following

result [19]:

lim
i→∞

xk,i = yTx0, for any agent k (1.13)

In other words, all agents will end up with the same belief, which is a weighted average of

their initial beliefs. More analysis to the model was provided in [19, 20]. Also, time-varying

weights were considered in [22,23].

Variants of DeGroot Model: In [24], the authors proposed a variation to DeGroot

model, which takes into consideration the presence of forceful agents that can sometimes

impose their beliefs without changing their own. Consider again N agents, where each agent

k starts with an initial belief or estimate xk,0 ∈ R about the unknown underlying state θ ∈ R.

The authors assumed that the information available through the initial beliefs is sufficient

to know the underlying state, by assuming the following:

θ =
1

N

N∑
k=1

xk,0 (1.14)

The agents are assumed to meet according to an asynchronous time model (randomized

gossip algorithm studied earlier in [45]), where agents meet at times defined by a rate one

Poisson process. At each time slot i, one agent, denoted by k, will be active to meet another

agent, denoted by `, where the probability of meeting is p`k. Agents k and ` update their
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beliefs according to three possibilities:

1. Agents k and ` agree on reaching a pairwise consensus, i.e.,

xk,i = x`,i =
xk,i−1 + x`,i−1

2
(1.15)

This possibility happens with probability β`k, labeled as the averaging probability.

2. Agent ` influences agent k to change its belief as follows:

xk,i = εxk,i−1 + (1− ε)x`,i−1, x`,i = x`,i−1 (1.16)

where ε ∈ (0, 1/2]. This possibility happens with probability α`k, labeled as the influ-

ence probability.

3. Agents prefer to stick to their own beliefs,

xk,i = xk,i−1, x`,i = x`,i−1 (1.17)

The probability of this possibility is 1− β`k − α`k

The advantage of this model over the DeGroot model is that it takes into consideration

the presence of influential agents that force others to change their beliefs. Before stating

the main result of this work, we list the assumptions considered. First, the probabilities of

meeting satisfy the following for any agent k:

pkk = 0, p`k ≥ 0,
N∑
`=1

p`k = 1 (1.18)

Second, consider the directed graph (N , E), where the edges E are induced from the proba-

bilities of meeting, i.e., a link from agent ` to agent k exists if p`k > 0. The graph (N , E) is

assumed to be connected, i.e., there exists a path between any two agents in both directions.
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Third, we have that:

α`k + β`k > 0, for all (k, `) ∈ E (1.19)

The third assumption is to ensure that forceful agents change their beliefs at some point.

Under these assumptions, it was shown in [24] that agents are able to asymptotically reach

consensus despite the presence of forceful agents. More specifically, there exists a random

variable x such that for any agent k,

lim
i→∞

xk,i = x, with propbability 1 (1.20)

where x is a convex combination of the initial beliefs, i.e.,

x =
N∑
k=1

πkxk,0 (1.21)

where the variables πk are random for any k and satisfy: πk ≥ 0 and
∑N

k=1 πk = 1. It is true

that all agents are able to reach an agreement, however they do not effectively aggregate the

information from their initial beliefs. However, in the absence of forceful agents (α`k = 0),

it was shown in [24] the following:

lim
i→∞

xk,i =
1

N

N∑
k=1

xk,0 = θ (1.22)

In other words, agents are able to find the true state in the absence of forceful agents. More

characterization of the results can be found in [24].

Another variant to DeGroot model that also considers the presence of agents that stick

to their initial beliefs is analyzed in [25]. Consider a set of N agents, partitioned into K

anchors and M sensors (N = K + M). Anchor agents are the agents whose beliefs are

fixed and the sensor agents are the agents that update their beliefs. Let κ denote the set of

anchors and Ω the set of sensors. A sensor k starts with an initial belief denoted by xk,0 ∈ R

and an anchor k starts with an initial belief denoted by uk,0. Then sensor agents update
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synchronously their beliefs as follows:

xk,i =
∑
`∈Ω

d`k x`,i−1 +
∑
`∈κ

b`k u`,0 (1.23)

where d`k ∈ R represents the weight with which agent k scales the data from sensor agent `

and b`k ∈ R is the weight for the data from anchor agent `. If we collect the weights d`k into

the matrix D and the weights b`k into the matrix B, then from (1.23) we have:

xi = DTxi−1 +BTu0 (1.24)

Then, according to [25], if the spectral radius of D satisfies:

ρ(D) < 1 (1.25)

then the limiting belief of the sensors is given by:

lim
i→∞

xi = (I −DT)−1BTu0 (1.26)

In other words, the beliefs of the sensors converge to a linear combination of the beliefs

of the anchors, which captures a leader-follower relationship between sensors and anchors.

Note here that the agents do not reach an agreement, as each agent ends up with a different

estimate about the underlying state. Involving the presence of anchors in [25] and forceful

agents in [24] is used to model the effect of influential agents on the opinion formation. The

presence of influential agents was also investigated in [46,47], wherein influential agents are

described as malicious agents that affect the opinion formation by modifying the information

they fuse.

Some other models of social learning use tools from statistical physics [48–61] and rely

on classical results of particles’ interaction, to study the conditions for consensus or opinion

fragmentation. For instance, the voter model [49, 50] focuses on studying the transition of

a collection of agents from a disordered condition to an ordered state (i.e., consensus). In
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this model, agents are assumed to be in one of two possible states ±1 and they interact in

a pairwise way continuously with time. During each interaction, an agent k is randomly

selected along with one of its neighbors `, and then agent k changes its state to the same

state of its neighbor `. The questions are whether agents can reach consensus (all agents end

up having the same state) and how long it takes for agents to reach consensus. The analysis

of this type of models is done by setting up some differential equations that describe the

probabilistic evolution of the states of agents, and reveals that consensus depends on the

graph structure and the interaction rules between agents. In [51], it was shown that when

there is an infinite number of agents placed in a lattice of dimension d, consensus is reached

only when d ≤ 2. On the other hand, if there is a finite number of agents placed in a grid of

any dimension [50] or interconnected through a strongly-connected graph [52], consensus is

reached. In [53], the voter model is analyzed over different types of networks. A summary

of the variants of the voter model can be found in [48].

Another model that also studies the possible emergence of an ordered condition for the

agents is the majority rule model [54–56]. Similarly to the voter model, agents are assumed

to be in one of the two possible states ±1. The states of agents evolve as follows: at each

time i, a group of ni agents is randomly selected and then agents of the selected group adopt

the state of the majority (ni might differ over time). Again, the focus of the model’s analysis

is to figure out if agents reach consensus and how fast they reach it. Let p0 denote the

proportion of agents with initial state +1. Then according to [55], there exists pf such that

if p0 > pf , all agents will end up in the state +1. On the other hand, if p0 < pf , then all

agents will end up in the state −1. In [54], the majority rule model was studied where the

size of the selected group was assumed to be fixed over time, i.e. ni is constant, and it was

shown that in this case consensus time is proportional to ln (N) where N is the total number

of agents.

While the voter and majority rule models focus on modeling simple interactions between

agents, another class of models focuses on incorporating the abilities of agents to persuade

others. These models correspond to the class of social impact theory. We describe here the

model of [57]. Consider a set of N agents, let σk,i ∈ {+1,−1} denote the state of agent k at
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time i. Each agent k is characterized by two random parameters: pk and sk. The parameter

pk represents the persuasiveness of agent k, i.e., the ability of agent k to persuade others

about a different opinion. The parameter sk represents the supportiveness of agent k, i.e.,

the degree at which agent k can support a specific topic. At each time i, the total influence

exerted on agent k and denoted by Ik,i is defined as follows:

Ik,i =
N∑
`=1

p`
g(d`k)

(1− σk,iσ`,i)−
N∑
`=1

s`
g(d`k)

(1 + σk,iσ`,i) (1.27)

where d`k denotes the distance between agents k and ` whose value depends on the assumed

geometry, and the function g(.) is some increasing function. The first term in (1.27) repre-

sents the total influence on agent k from agents of opposite state, while the second term in

(1.27) represents the total influence on agent k from agents of same state. Given the total

influence Ik,i, agent k updates its state as follows:

σk,i+1 = −sgn (σk,iIk,i) (1.28)

In other words, if the total influence exerted by agents of opposite state is greater than that

exerted by agents of same state, agent k switches its state. Otherwise, agent k remains in

its state. In [57], the model was analyzed when the graph is complete. In this case, g(d`k)

was set to N and it was shown that the system has infinitely many stationary states and

in general those stationary states might not represent a complete consensus. The state’s

update in (1.28) can be also updated to take into account external influence as follows:

σk,i+1 = −sgn (σk,iIk,i + hk,i) (1.29)

where the variables {hk,i} are random variables independent across time and agents, and

represent any source of influence other than the social impact, e.g., media and celebrities. It

was shown in [57] that with the presence of noise, the only stationary state is the system’s

state that is nearly uniform in opinion (almost all agents are in the same state).

Not all models considered a binary state for agents. Other models also assumed the case
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where the opinion of agents can be continuous. For instance, in the Deffuant model [58,59],

each agent k starts with an initial opinion xk,0 ∈ [0, 1]. At each instant i, two agents k and

` are randomly selected to interact as follows. If the difference in their opinion is less than

a threshold ε, i.e., if |xk,i − x`,i| < ε, they do not update their opinions. Otherwise, they

update their opinions as follows:

xk,i+1 = xk,i + µ (x`,i − xk,i)

x`,i+1 = x`,i + µ (xk,i − x`,i) (1.30)

where µ ∈ [0, 0.5]. The results on Deffuant dynamics were mostly derived through numerical

simulations [59], where it was observed that, for large values of threshold ε, consensus is

reached where the opinions of all agents end up to be the average of their initial opinions.

On the other hand, for lower values of threshold several clusters of different opinions are

observed. A model similar to Deffuant model was proposed in [60], where each agent k

communicates with its neighbors and updates its opinion as follows:

xk,i+1 =

∑
`:|xk,i−x`,i|<ε a`kx`,i∑
`:|xk,i−x`,i|<ε a`k

(1.31)

Numerical simulations were also carried out to analyze the model and similar observations

was also found with this model. In particular, for large value of threshold ε one cluster

of agents with same opinion is observed. For lower values of threshold, more clusters are

observed. A summary of more models for opinion formation based on statistical physics can

be found in [48].

To sum up, non-Bayesian models provide a less complex approach than that of Bayesian

models and are widely used for studying information manipulation. However, in these mod-

els, the only source of information is assumed to be in the starting beliefs of the agents,

or the focus is on examining different forms of interactions between agents and what might

result from them. We present next a set of models that do not belong to a fully-Bayesian

approach, but do involve a Bayesian update step that takes into consideration the continuous
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flow of new information.

1.2 Non-Bayesian Learning with Continuous Information Flow

Classical non-Bayesian models focus only on modeling the interactions between networked

agents. In the work [26], the authors considered incorporating the private information of

non-Bayesian agents into their process of learning. In this new class of non-Bayesian mod-

els, agents do not only consult with their neighbors about the state of nature, but also

continuously receive private observations related to the true state.

1.2.1 Consensus Non-Bayesian Learning

Consider a set of N agents indexed by N = {1, 2 · · · , N}. Similarly to the notation we used

in presenting the DeGroot model, we denote by a`k the weight with which agent k scales

data from agent `, and that these weights satisfy (1.9). We denote by Θ the finite set of

all possible values for the state of nature. Let θ◦ ∈ Θ represent the underlying true state

that is unknown for agents. At each instant i, each agent k receives an observational signal

ξk,i generated according to a likelihood function denoted by Lk(.|θ◦). Each agent starts with

a prior belief about the state of nature, modeled as a probability distribution over Θ. We

denote the prior belief of agent k at any θ ∈ Θ by: µk,0(θ).

In [26], the authors proposed a consensus-type construction to update the agents’ beliefs.

In this construction, instead of combining the opinions of the neighbors in a fully Bayesian

manner, each agent follows the Bayes’ rule to obtain an intermediate belief (using it private

signal) and subsequently combines it with the old beliefs of its neighbors (through convex

combination). More specifically, at instant i agent k updates its belief according to following
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rule: 

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θµk,i−1(θ′)Lk(ξk,i|θ′)
(intermediate beleif)

µk,i(θ) = akkψk,i(θ) +
∑

`∈Nk,`6=k

a`k µ`,i−1(θ)

(1.32)

The first step consists of the Bayesian update and the second step is the aggregation step.

Since this approach does not belong to a fully Bayesian approach, the authors classified it as

non-Bayesian social learning. Under some technical assumptions related to the structure of

the network and the information provided by the observational signals, it was shown in [26]

that agents following this model can asymptotically learn the true state, i.e., for any agent

k, we have:

lim
i→∞

µk,i(θ
◦)

a.s.
= 1 (1.33)

The assumptions taken are to ensure the strong connectivity of the network and that the

observational signals are informative for the whole network. In [27,28], the authors provided

further analysis to the consensus-based model, by showing that agents (asymptotically) learn

the true state exponentially fast and that the rate of learning depends on the relative entropy

of agents’ signal structures and their eigenvector centralities. More specifically, at instant i,

the level of uncertainty across the agents can be measured by:

ei
∆
=

1

2

N∑
k=1

||µk,i(.)− 1θ◦(.)||1 =
N∑
k=1

∑
θ 6=θ◦

µk,i(θ) (1.34)

which represents the total variation between the belief µk,i(.) at instant i and the ultimate

belief 1θ◦(.) (where 1θ◦(.) denote a vector whose entries are zero at any θ 6= θ◦ and one at

θ = θ◦). Then, according to [27], the following results were shown for the consensus-based

model:
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• Let

γ
∆
= lim

i→∞

1

i
sup log ei (1.35)

then γ is finite and γ < 0;

• The rate of learning |γ| is upper-bounded as follows:

|γ| ≤ αmin
θ 6=θ◦

N∑
k=1

ykDKL(Lk(.|θ◦)||Lk(.|θ)) (1.36)

where yk is the k−th element of the Perron eigenvector y of matrix A, α is the weight

to all self-loops in the network, i.e., akk = α for all agents k, and DKL(Lk(.|θ◦)||Lk(.|θ))

is the Kullback-Leibler divergence between Lk(.|θ◦) and Lk(.|θ).

In [29], the authors studied the consensus-based model of [26] over a specific type of time-

varying undirected graphs, where instead of assuming the fixed weights in A, they considered

the following time-varying weight matrix:

A(i) = (1− η(i))I + η(i)A (1.37)

where I is the identity matrix and the parameter η(i) ∈ (0, 1]. As in [26], under some

technical assumptions, it was shown in [29] that agents learn the true state asymptotically

almost surely.

1.2.2 Diffusion Non-Bayesian Learning

An alternative to the consensus mechanism was proposed in [30] by relying on diffusion

strategies, due to their enhanced performance and stability range [41, 62]. In the diffusion-

based model, each agent combines its intermediate belief with the updated (rather than old)

beliefs of its neighbors in a convex manner. More specifically, each agent k updates its belief
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according to the following update rule:


ψk,i(θ) =

µk,i−1(θ)Lk(ξk,i|θ)∑
θ′∈Θµk,i−1(θ′)Lk(ξk,i|θ′)

µk,i(θ) =
∑
`∈Nk

a`kψ`,i−1(θ)
(1.38)

Results in [30] established that agents are also able to asymptotically learn the underlying

state under the diffusion strategy. We are going to discuss this model and its results in

greater detail in Chapter 2. In [31], the authors proposed a variation to the diffusion-based

learning model, where each agent averages the log beliefs of its neighbors, instead of using

convex combination as in (1.38) of [30]. In other words, the second step of the model of [31]

is defined as:

µk,i(θ) =
exp

(∑
`∈Nk

a`k logψ`,i−1(θ)
)∑

θ′∈Θ exp
(∑

`∈Nk
a`k logψ`,i−1(θ′)

) (1.39)

The authors of [31] showed the exponentially fast convergence of agents’ beliefs to the true

state with probability one.

1.2.3 Various Non-Bayesian Models

Other models for non-Bayesian social learning were proposed [32–40]. For instance, in [33],

the authors proposed a non-Bayesian model where, at each time, each agent selects randomly

one of its neighbors to communicate with. Let σk,i ∈ Nk represent the index of the neighbor

that agent k selects at time i. Then agent k uses the past belief of the selected neighbor as

a prior, and updates its own belief as follows:

µk,i(θ) =
µσk,i,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θµσk,i,i−1(θ′)Lk(ξk,i|θ′)
(1.40)

Results in [33] established that agents learn the true state asymptotically almost surely, given

that the observational signals are globally informative and that the network is connected.

Optimization Characterization of Bayesian update: In [34], the authors used an
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optimization characterization for the Bayesian update to motivate their proposed model.

More specifically, the Bayes update given by:

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θµk,i−1(θ′)Lk(ξk,i|θ′)
(1.41)

can be shown yo be the closed-form solution to the following optimization problem [63]:

arg min
ψ(.)∈Ω

{
DKL(ψ(.)||µk,i−1(.))−

∑
θ∈Θ

log
(
Lk(ξk,i|θ)

)
ψ(θ)

}
(1.42)

where Ω is the probability simplex given by:

Ω = {ψ(.) |
∑
θ∈Θ

ψ(θ) = 1, ψ(θ) ≥ 0} (1.43)

and DKL(ψ(.)||µk,i−1(.)) is the Kullback-Leibler divergence between ψ(.) and µk,i−1(.). In

other words, the posterior distribution obtained by performing the Bayesian update is the

solution to the problem of maximizing the log-likelihood function of the observed signal,

regularized by its Kullback-Leibler divergence from the prior. Using this characterization of

the Bayesian update, the authors in [34] suggested a non-Bayesian learning model inspired

by Nesterov’s dual averaging method, which we describe here. In this work, the agents are

assumed to communicate through a gossip scheme [45] similarly to [24], and the underlying

network is assumed to be undirected. During each instant i defined by a rate one Poisson

process, two agents meet to aggregate their accumulated observations by sharing the log-

likelihood of their observational signals. Let zk,i(θ) ∈ R denote the log-likelihood of the

accumulated observational signals for agent k up to time i−1 given any θ ∈ Θ, and zk,0(θ) = 0

for any agent k and any θ. Suppose that at i, agent k is active and meets agent ` with

probability p`k, and together they update zk,i−1(θ) and z`,i(θ) as follows:

zk,i(θ) =
zk,i−1(θ) + z`,i−1(θ)

2
+ log

(
Lk(ξk,i−1|θ)

)
z`,i(θ) =

zk,i−1(θ) + z`,i−1(θ)

2
+ log

(
L`(ξ`,i−1|θ)

)
(1.44)
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At the same time instant, any other agent m /∈ {`, k} updates zm,i−1(θ) as follows:

zm,i(θ) = zm,i−1(θ) + log
(
Lm(ξm,i−1|θ)

)
(1.45)

Then, all agent k update their belief by performing the following Bayes’ like step:

µk,i(.) = arg min
ψ(.)∈Ω

{
DKL(ψ(.)||µk,0(.))−

∑
θ∈Θ

zk,i(θ)ψ(θ)

}
(1.46)

It was shown in [34] that the beliefs of agents converge in the probability sense to an impulse

of size one at the location θ = θ◦. Additionally, the learning happens exponentially fast with

high probability. More specifically, it was shown that for large enough i and for any ε > 0,

we have the following for any agent k:

|µk,i(θ◦)− 1| ≤ K exp

[(
−min

θ 6=θ◦
D(θ) + ε

)
i

]
(1.47)

with probability at least 1− C

ε2i
, for some constants C > 0 and K > 0, and

D(θ) =
1

N

N∑
k=1

DKL(Lk(.|θ◦)||Lk(.|θ)). (1.48)

The authors in [35] extended the work of [34] to directed networks, where the interactions

between agents are captured through a weight matrix A. In this work, the agents syn-

chronously share the log-likelihood of the observed signals with their neighbors, and update

their beliefs as follows:

φk,i(θ) =
∑
`∈Nk

a`kφ`,i−1(θ) + log
(
Lk(ξk,i|θ)

)
(1.49)

µk,i(.) = arg min
ψ(.)∈Ω

{
1

η
DKL(ψ(.)||µk,0(.))−

∑
θ∈Θ

φk,i(θ)ψ(θ)

}
(1.50)

where φk,i(θ) represents, for agent k at time i, the combined log-likelihoods of observational

signals given a state θ, and φk,0(θ) = 0 for any agent k. Moreover, the parameter η is non-
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negative and all agents are assumed to start with a uniform prior belief. In [35], the authors

provide a finite-time analysis for the model, and show that agents asymptotically learn the

true state almost surely [35], under some technical conditions.

In [36–38], the authors assumed the problem of finding the best hypothesis that explains

the observations received by the network’s agents. More specifically, the observational signals

are generated according to an unknown function denoted by fk for each agent k, and it is

not required that there exists θ ∈ Θ such that L(k(.|θ)) = fk. The agents are assumed to

interact over a time-varying network, where at each time i, the interaction between agents

is captured by a weight matrix A(i) that is doubly-stochastic and all its diagonal entries

are strictly positive. The graphs need not to be strongly-connected at each time but it is

assumed that there exists B ≥ 1 such that the graph union of any sequence of B graphs is

strongly-connected. The agents update their beliefs according to the following update rule:

µk,i(θ) =
1

Zk,i

N∏
`=1

Lk(ξk,i|θ)
βk,i µ`,i−1(θ)a`k(i−1) (1.51)

where Zk,i is a normalization factor, and {βk,i} are IID Bernoulli random variables where

βk,i = 1 means that agent k received an observational signal at time i and βk,i = 0 means

that agent k failed to receive an observational signal at time i. The proposed update rule is

shown to be the solution to the following Bayes like step:

µk,i(.) = arg min
ψ(.)∈Ω

{
N∑
`=1

a`k(i− 1) DKL

(
ψ(.)||µ`,i−1(.)

)
− βk,i

∑
θ∈Θ

ψ(θ) log
(
Lk(ξk,i|θ)

)}
(1.52)

The objective is for agents to learn the set of states that best explain the observational

signals. More specifically, let Θ∗ denote the optimal hypothesis set defined as follows:

Θ∗ = arg min
θ∈Θ

N∑
k=1

bk DKL(fk||Lk(.|θ)) (1.53)

where bk is the mean of the IID Bernoulli random variables {βk,i} for agent k. It was then
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shown in [36] that under some technical assumptions agents can asymptotically learn the

optimal hypothesis set, i.e., for any agent k ,

lim
i→∞

µk,i(θ)
a.s.
= 0, for any θ /∈ Θ∗ (1.54)

A geometric non-asymptotic characterization of the learning rate was also provided in [36].

Non-Bayesian Learning with Faulty Agents: In [39], the authors analyzed a non-

Bayesian model in the presence of some faulty agents, i,e., agents that send incorrect, incon-

sistent or empty messages. The non-faulty agents do not know the identity of faulty agents

but know that at most f agents are faulty. At time i, a non-faulty agent k sends its log-belief

log(µk,i−1(θ)) to its neighbors and receive through its incoming links the log-beliefs of other

agents. Since some of the log-beliefs received by agent k might be faulty, to mitigate this

effect, agent k follows an algorithm that allows agent k to trim away any extreme messages

and then combine a subset of the received log-beliefs into an updated log-belief denoted by

ηk,i(θ). The details of the algorithm can be found in [39]. Agent k then computes its final

belief µk,i(θ) as follows:

Lθk,1:i = Lk(ξk,i|θ) Lθk,1:i−1

µk,i(θ) =
Lθk,1:i exp(ηk,i(θ))∑

θ′∈ΘL
θ′

k,1:i exp(ηk,i(θ
′))

(1.55)

where Lθk,1:i denotes for agent k the likelihood of the cumulative observations up to time i

given θ (instead of the likelihood of the current observation only). Under some technical

assumptions, agents are shown to asymptotically learn the true state almost surely.

A generic framework that further treats non-Bayesian social learning can be found in [40].

We have seen different models suggested for studying non-Bayesian learning in the presence

of continuous flow of information. The focus was to show the ability of agents to learn

the true underlying state. However, this might not be always the case as agents might get

exposed to some external influence and end up disagreeing on the state of nature. We have

seen models from classical non-Bayesian learning [24,25] that studied the presence of forceful
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or anchor agents and their effect on consensus reach. In this work, we focus on studying

similar phenomena of external influence when non-Bayesian agents learn with continuous

flow of information.

1.3 Diffusion Learning over Weak Graphs

In this dissertation1, we are going to focus on the mechanism proposed in [30], which relies

on diffusion strategies due to their enhanced performance and stability ranges, especially in

scenarios that involve continuous learning [41, 62]. The models of social interaction studied

in [26,30] assume strongly-connected graphs whereby a path with positive weights connecting

any two agents is always possible and at least one agent has a self-loop. Over such graphs,

social influences diffuse over time and all agents are able to learn asymptotically the true

state of the environment. This is possible even when the local observations at the agents

may be of varying quality with some agents being more informed than others.

1.3.1 Weakly-Connected Networks

In this work, we examine social learning over weakly-connected graphs, as opposed to strongly-

connected graphs. Over a weak topology, there exist some select edges over which information

flows in one direction only, with information never flowing back from the receiving agents to

the originating agents. This scenario is common in practice, especially over social networks.

For example, in Twitter networks, it is not unusual for some influential agents (e.g., celebri-

ties) to have a large number of followers, while the influential agent itself may not consult

information from most of these followers. A similar effect arises when social networks operate

in the presence of stubborn agents [24,25,67]; these agents insist on their opinion regardless

of the evidence provided by local observations or by neighboring agents. It turns out that

weak graphs influence the evolution of the agents’ beliefs in a critical manner. The objective

of this work is to clarify this effect, its origin, and to quantify its implications by means of

1The material in this dissertation is based on work published in [64–66].
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closed-form expressions.

1.3.2 Social Disagreement

In the previous works [67,68], the authors examined the influence of weak graphs on the solu-

tion of distributed inference problems, where agents are interested in learning a parameter of

interest that minimizes an aggregate cost function. It was shown there that a leader-follower

relationship develops among the agents with the performance of some agents being fully con-

trolled by the performance of other agents. In the different context of social learning, this

type of weak connectivity was briefly discussed in [69] where consensus social learning was

analyzed over non-strongly connected networks. This work considered only the special case

in which all agents in the network are interested in the same state of nature. A richer and

more revealing dynamics arises when different clusters within the network monitor different

state variables.

For example, consider a situation in which a weak graph consists of four sub-graphs (see

future Fig. 3.1): the two top graphs are strongly-connected while the other two are weakly-

connected to them. In this case, each of the first two sub-graphs is able to learn its truth

asymptotically. However, the agents in the lower sub-graphs will be shown to reach a state

of disarray in relation to their true state, with different agents reaching in general different

conclusions and, moreover, with each of these conclusions being directly determined by the

separate states of the two top sub-graphs. In this work we carry out a detailed analysis to

show how influential agents dictate the performance of weak components in the network,

and arrive at closed-form expressions that describe this influence in analytical form (suitable

for subsequent design purposes). We will find that, under some conditions, non-influential

agents will be forced to adopt beliefs centered around the true states of the influential agents.

This situation is similar to the leader-follower relationship discussed in [67,68] in the context

of decentralized inference and continuous adaptation. We will also find that these beliefs

differ from one agent to another, which results in a disturbing form of social disagreement.

In some applications, the influential agents may be malicious as in [46, 47]. In contrast
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to these works, in our development, influential agents do not alter the information they are

fusing, but the nature of what they are sending need not be consistent with the true state

of the receiving agents. Moreover, our assumed model takes into consideration not only the

interaction between agents, but also the information continuously received by each agent.

We are going to find out how the quality of this information as well as the network’s structure

affect the learning ability of agents.

1.3.3 Enhancing Self-Awareness

Motivated by the results in the next sections, we will also incorporate an element of self-

awareness into the social learning process of the network through the introduction of a

scaling factor — see Eq. (3.58). This factor will enable agents in the network to assign

more or less weight to their local information in comparison to the information received

from their neighbors. This variation helps infuse into the network some elements of human

behavior. For example, in an interactive social setting, a human agent may not be satisfied

or convinced by an observation and prefers to give more weight to their prior belief based on

accumulated experiences. This mode of operation was studied for single stand-alone agents

in [70, 71] and was studied there as a mechanism for self-control. We will instead examine

the influence of self-awareness in the challenging network setting, where the behavior of the

various agents are coupled together. In particular, we will show that self-awareness helps

agents converge towards a fixed belief distribution, rather than have their beliefs exhibit an

undesired oscillatory behavior, which reflects their inability to settle on a decision — see

Fig. 3.3.

1.3.4 Belief Control Strategies

Using the expressions that describes the effect of influential agents, we will analyze the

control mechanism more closely. We have three main contributions. First, we show that

the internal graph structure connecting the receiving agents imposes a form of resistance to

manipulation, but only to a certain degree. Second, we characterize the set of states that
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can be imposed on receiving networks; while this set is large, it turns out that it is not

unlimited. And, third, for any attainable state, we develop a control mechanism that allows

sending agents to force the receiving agents to reach that state and behave in that manner.

1.4 Dissertation Outline and Contributions

As mentioned earlier, the dissertation is focused on analyzing the model of diffusion learning

over weak graphs. In particular, we study how the asymmetric flow of information over this

type of network affects the learning abilities of some agents. We next outline the dissertation

and summarize the main contributions.

In Chapter 2, we review the model of diffusion social learning over strong graphs. We

explain in details the components of the model, clarify the assumptions for the agents to

learn the true state and summarize the results obtained.

In Chapter 3, we present weak graphs which consist of two types of sub-networks: sending

and receiving sub-networks. We show that when the observational signals of receiving agents

are not informative, receiving agents will not be able to find their own true state and their

limiting beliefs will be concentrated around the true states of the sending agents. We also

provide closed-form expressions for the limiting beliefs. We then consider a variation to the

diffusion learning model to enable agents to give less or more weights to their observational

signals. We show in this case that the total influence scheme can still occur even when the

observational signals of receiving agents are informative.

In Chapter 4, we analyze the control mechanism more closely by exploring the expression

of the limiting beliefs. We find that there are some limitations to what sending agents can

control and provide design procedures to achieve a specific achievable control scheme.
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CHAPTER 2

Diffusion Learning over Strong Networks

We first review strongly-connected networks and summarize the results derived earlier in

[30] for this graph topology. Then, we explain in subsequent chapters how the results are

affected when the underlying topology happens to be weak and show how a leader-follower

relationship develops. We characterize in some detail the limiting behavior of this relation

and identify the factors that influence the ability of the social agents to learn the truth or

to follow other influential agents.

2.1 Network Model

Thus, consider a network of N agents connected by some graph. Let N = {1, 2, . . . , N}

denote the indexes of the agents in the network. We assign a pair of non-negative weights,

{ak`, a`k}, to the edge connecting any two agents k and `. The scalar a`k represents the

weight with which agent k scales the data arriving from agent ` and, similarly, for ak` – see

Fig. 2.1. The network is said to be strongly-connected if there exists a path with non-zero

weights connecting any two agents and, moreover, there is at least one self-loop, i.e., akk > 0

for some agent k. Let Nk denote the neighborhood of agent k, which consists of all agents

connected to k. Each agent k scales data arriving from its neighbors in a convex manner,

i.e.,

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (2.1)

We collect the weights {a`k} into an N × N matrix A. From condition (2.1), A is a left-

stochastic matrix so that its spectral radius is equal to one, ρ(A) = 1. Since the network

is strongly-connected, A is also a primitive matrix [41]. It then follows from the Perron-
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Frobenius Theorem [43], [44] that A has a single eigenvalue at one while all other eigenvalues

are strictly inside the unit disc. We denote the right-eigenvector of A that corresponds to the

eigenvalue at one by y, and all entries of this vector will be strictly positive. We normalize

the entries of y to add up to one, so that y satisfies the following conditions:

Ay = y, 1Ty = 1, y � 0 (2.2)

We refer to y as the Perron eigenvector of A. This network structure plays an important

role in diffusing information across the network and helps agents in learning the true state.

We describe next the mechanism of this learning.

v

Figure 2.1: An example of a strongly-connected network where µk,i(θ) denotes the belief
(pdf) of agent k at time i.

2.2 Diffusion Social Learning

Let Θ denote a finite set of all possible events that can be detected by the network. Let

θ◦ ∈ Θ denote the unknown true event that has happened, while the other elements in Θ

represent possible variations of that event. The objective of the network is to learn the true

state, θ◦. For this purpose, agents will be continually updating their beliefs about the true

state through a localized cooperative process. Initially, at time i = 0, each agent k starts

from some prior belief, denoted by the function µk,0(θ) ∈ [0, 1]. This function represents the
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probability distribution over the events θ ∈ Θ. For instance, if θ1 ∈ Θ then

µk,0(θ1) = Prob(θ = θ1), at time i = 0 (2.3)

For subsequent time instants i ≥ 1, the private belief of agent k is denoted by µk,i(θ) ∈ [0, 1].

All beliefs across all agents must be valid probability measures over Θ. That is, they must

obey the normalization:

∑
θ∈Θ

µk,i(θ) = 1, for any i ≥ 0 and k ∈ N (2.4)

Figure 2.2 presents an example of a belief distribution µk,i(θ) defined over Θ = {θ1, θ2, θ3, θ4}.

The agents will update their private beliefs {µk,i(θ)} over time based on the private signals

they observe from the environment and the information shared by their social neighbors. We

assume that, at each time i ≥ 1, every agent k observes a realization of some signal, ξk,i,

whose probability distribution is dependent on the true event θo, namely, the process {ξk,i}

is generated according to some known likelihood function Lk(·|θ◦) – see Fig.2.3. We further

assume that for each agent k, the signals {ξk,i} belong to a finite signal space denoted by

Zk and that these signals are independent over time.

Figure 2.2: An example of a belief distribution µk,i(θ).

Diffusion social learning, described in [30], provides a mechanism by which agents can

process the information they receive from their private signals and from their neighbors. A

consensus-based strategy can also be employed, as was done in [26]. We focus on the diffusion

strategy due to its enhanced performance, as observed in [30] and as further explained in
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the treatments [41,62]. In diffusion learning, at every time i ≥ 1, each agent k first updates

its belief, µk,i−1(θ), based on its observed private signal ξk,i by means of the Bayesian rule:

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θ µk,i−1(θ′)Lk(ξk,i|θ′)
(2.5)

This step leads to an intermediate belief ψk,i(θ). After learning from their observed signals,

agents can then learn from their social neighbors through cooperation to compute:

µk,i(θ) =
∑
`∈Nk

a`k ψ`,i(θ) (2.6)

Subsequently, agent k can use its updated belief, µk,i(θ), to predict the probability of a

certain signal ζk ∈ Zk occurring in the next time instant i+ 1. This prediction or forecast is

based on the following calculation:

mk,i(ζk)
∆
=
∑
θ∈Θ

µk,i(θ)Lk(ζk|θ) = Prob(ξk,i+1 = ζk) (2.7)

Figure 2.3: Generation of observational signals.

In the sequel, we will be interpreting the diffusion learning model as a stochastic system of

interacting agents, especially since the operation of this mechanism is driven by the random

observational signals. Thus, we rewrite (2.5) and (2.6) as follows by using boldface letters

to refer to random variables.

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θµk,i−1(θ′)Lk(ξk,i|θ′)

µk,i(θ) =
∑
`∈Nk

a`kψ`,i(θ)

(2.8)
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2.3 Correct Forecasting

When agents in strongly-connected networks follow model (2.8) to update their beliefs, the

agents will eventually learn the truth according to the results established in [30]. The

argument there is based on an identifiability condition similar to the one used in [26], and

which is motivated as follows. We assume first that the agents’ private signals {ξk,i} do not

hold enough information about the true state, so that individual agents cannot rely solely

on their observations to identify θ◦ and are motivated to cooperate. More specifically, this

requirement amounts to assuming that each agent k has a subset of states Θk ⊆ Θ for which:

Lk(ζk|θ) = Lk(ζk|θ◦), θ ∈ Θk (2.9)

for any ζk ∈ Zk. We refer to Θk as the set of indistinguishable states for agent k. We sub-

sequently assume that through cooperation with their neighbors, agents are able to identify

the true state by imposing the identifiability condition:

⋂
k∈N

Θk = {θ◦} (2.10)

We refer to this case as θ◦ being globally identifiable. To prove that agents are able to learn

the true state, the analysis in [30] is based on first showing that agents are able to learn the

correct distribution of incoming signals.

Lemma 1 (Correct Forecasting [30]). Assume that there exists at least one agent with a

positive prior belief about the true state θ◦, i.e., µk,0(θ◦) > 0 for some k ∈ N . Then, agents

are able to correctly predict the distribution of the incoming signals, namely, for any ζk ∈ Zk

and k ∈ N :

lim
i→∞

mk,i(ζk)
a.s.
= Lk(ζk|θ◦) (2.11)

where
a.s.
= denotes almost-sure convergence. �

This lemma does not require the identifiability condition (2.10). It explores forms of

learning that were studied in [26,70] and also in [72,73], which dealt with either learning the
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true parameter θ◦ (similar to the setting we are considering) or learning the distribution of

the incoming signal itself.

Correct forecasting does not always imply the ability of agents to learn the true param-

eter, θ◦. However, in the case of strongly-connected networks, this conclusion is true under

some conditions mentioned next (the same implication will not hold for weakly-connected

networks; there, we will show that correct forecasting does not imply the ability of agents to

learn the truth).

Theorem 1 (Truth Learning [30]). Under the same conditions of Lemma 1, assume that

there exists at least one prevailing signal ζ◦k for each agent k, namely, that

Lk(ζ
◦
k |θ◦)− Lk(ζ◦k |θ) > 0, ∀θ ∈ Θ \Θk (2.12)

and assume as well that the true state θ◦ is globally identifiable as in (2.10). Then, all agents

asymptotically learn the truth, i.e., for any k ∈ N :

lim
i→∞

µk,i(θ
◦)

a.s.
= 1 (2.13)

�

Figure 2.4 illustrates what it means for a prevailing signal to exist for an agent k. In

this example, the true state θ◦ is assumed to be θ1. Assume also that for agent k, the set

of distinguishable states is Θ̄k = Θ \ Θk = {θ2, θ3} and the space of observational signals is

Zk = {ζ1, ζ2, ζ3, ζ4}. We see in the example that the signal ζ1 plays the role of a prevailing

signal. This is because when the true state is θ1, the likelihood of ζ1 is greater than its

likelihood when the true state is θ2 or θ3, i.e.,

Lk(ζ1|θ1) > Lk(ζ1|θ2), Lk(ζ1|θ1) > Lk(ζ1|θ3) (2.14)

These two conditions are not jointly satisfied for the other observational signals. The presence

of a prevailing signal provides agent k with sufficient information to identify the distinguish-
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able set Θ̄k = Θ \ Θk. This means that agent k will be able to assign a zero probability

to any θ in this set. Then, with the help of neighboring agents, and in the presence of the

identifiability condition (2.10), agent k will be able to discover the true sate θ◦ in Θk.

Figure 2.4: An example showing the existence of a prevailing signal ζ1 for agent k.

2.4 Simulation Example

We illustrate the results with the following simulation example. Consider the social network

shown in Fig. 2.5 which consists of N = 8 agents. We assume that there are 3 possible

events Θ = {θ◦1, θ◦2, θ◦3}, where θ◦1 is the true event. We further assume that the observational

signals of each agent k are binary and belong to Zk = {H,T} where H denotes head and T

denotes tail.
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Figure 2.5: A strongly-connected network consisting of eight agents.

Agents are connected through the following combination matrix:

A =



0 0.3 0 0 0 0 0 0.3

0.4 0 0.3 0 0 0 0 0

0 0.7 0 0.5 0.25 0 0 0

0 0 0.4 0 0 0.3 0 0

0 0 0.3 0 0 0.1 0.2 0.45

0 0 0 0.5 0.25 0 0.1 0

0 0 0 0 0.3 0.6 0 0.25

0.6 0 0 0 0.2 0 0.7 0



(2.15)

The likelihood of the head signals for each agent k is selected as the following matrix:

L(H) =


5/8 3/4 1/6 1/2 1/3 1/5 4/5 1/2

5/8 3/4 1/6 2/3 1/2 1/5 2/3 1/2

1/4 3/4 1/3 1/2 1/4 1/5 4/5 1/3

 (2.16)

where each (j, k)-th element of this matrix corresponds to Lk(H/θj), i.e., each column cor-

responds to one agent and each row to one network state. The likelihood of the tail signal

is L(T ) = 13×7 − L(H). We further assume that each agent starts at time i = 0 with an

initial belief that is uniform over Θ and then updates it over time according to the model

described in (2.8). Figures 2.6 and 2.6 show the evolution of µk,i(θ
◦
1) of agents.
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Figure 2.6: Evolution of agent k belief at θ◦1 over time (1 ≤ k ≤ 4).
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Figure 2.7: Evolution of agent k belief at θ◦1 over time (5 ≤ k ≤ 8).

2.5 Conclusions

In this chapter, we reviewed the model of diffusion social learning over strongly-connected

graphs. Given that the observational signals are globally identifiable, agents are able to effi-

ciently aggregate the information over the network and learn the true state. The exposition

in this chapter provide a summary of the results in [30].

35



CHAPTER 3

Diffusion Learning over Weak Networks

We first review the main features of the weakly-connected network model from [67, 68].

Consider a network that consists of two types of sub-networks: S sub-networks and R sub-

networks. Each sub-network in the S family has a strongly-connected topology. In contrast,

each sub-network in the R family is only required to be connected. This means that any

receiving sub-network has a path connecting any two agents without requiring any agent to

have a self-loop. Moreover, the interaction between S and R sub-networks is not symmetric:

information can flow from S (“sending”) sub-networks to R (“receiving”) sub-networks but

not the other way around.

Figure 3.1: An example of a weakly connected network.

We index each strongly-connected sub-network by s where s = {1, 2, · · · , S}. Similarly, we

index each receiving sub-network by r where r = {S + 1, · · · , S + R}. Each sub-network s
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has Ns agents, and the total number of agents in the S sub-networks is:

NgS
∆
= N1 +N2 + · · ·+NS (3.1)

Similarly, each sub-network r has Nr agents, and the total number of agents in the R sub-

networks is:

NgR
∆
= NS+1 +NS+2 + · · ·+NS+R (3.2)

We still denote by N the total number of agents across all sub-networks, i.e., N = NgS+NgR.

We continue to denote by N = {1, 2, · · · , N} the indexes of the agents. We assume that

the agents are numbered such that the indexes of N represent first the agents from the S

sub-networks, followed by those from the R sub-networks. In this way, the structure of the

network can be represented by a large N × N combination matrix A, which will have an

upper block-triangular structure of the following form [67,68]:

Subnetworks:1,2,...,S︷ ︸︸ ︷ Subnetworks:S+1,S+2,...,S+R︷ ︸︸ ︷

A1 0 . . . 0 A1,S+1 A1,S+2 . . . A1,S+R

0 A2 . . . 0 A2,S+1 A2,S+2 . . . A2,S+R

...
...

. . .
...

...
...

. . .
...

0 0 . . . AS AS,S+1 AS,S+2 . . . AS,S+R

0 0 . . . 0 AS+1 AS+1,S+2 . . . AS+1,S+R

0 0 . . . 0 0 AS+2 . . . AS+2,S+R

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . AS+R



(3.3)

The matrices {A1, · · · , AS} on the upper left corner are left-stochastic primitive matrices

corresponding to the S strongly-connected sub-networks. Each of these matrices has spectral

radius equal to one, ρ(As) = 1. Moreover, each As has a single eigenvalue at one and the

corresponding right eigenvector has positive entries. We denote it by ys and normalize its
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entries to add up to one, i.e., 1Tys = 1.

Likewise, the matrices {AS+1, · · · , AS+R} in the lower right-most block correspond to the

internal weights of the R sub-networks. These matrices are not necessarily left-stochastic

because they do not include the coefficients over the links that connect the R sub-networks

to the S sub-networks. Nevertheless, based on results from [74], it was shown in [67] that for

any receiving subnetwork r, it holds that ρ(Ar) < 1. Moreover, since Ar has non-negative

entries and sub-network r is connected, it follows from the Perron-Frobenius theorem [43,44]

that Ar has a unique positive real eigenvalue λr, that is equal to its spectral radius ρ(Ar),

and the corresponding right eigenvector has positive entries. We denote this eigenvector by

yr. We again normalize the entries of yr to add up to one, 1Tyr = 1:

Aryr = λryr, 1Tyr = 1, yr � 0 (3.4)

We denote the block structure of A in (3.3) by:

A
∆
=

 TSS TSR

0 TRR

 (3.5)

This specific structure has one useful property that we will exploit in the analysis.

Lemma 2 (Limiting Power of A [67]). It holds that:

A∞
4
= lim

n→∞
An =

 E EW

0 0

 (3.6)

where the NgS ×NgS matrix E and the NgS ×NgR matrix W are given by:

W
∆
= TSR(I − TRR)−1 (3.7)

E
∆
= blockdiag

{
y11

T
N1
, . . . , yS1

T
NS

}
(3.8)

The matrix W has non-negative entries and the sum of the entries in each column is equal

to one. �
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We now examine the belief evolution of agents in weakly-connected networks. We still

denote by Θ the set of all possible states, and we assume that Θ is uniform across all sub-

networks. However, we allow each sub-network to have its own true state, which may differ

from one sub-network to another. We denote by θ◦s the true state of sending sub-network s

and by θ◦r the true state of receiving sub-network r, where both θ◦s and θ◦r are in Θ. Therefore,

if agent k belongs to a sub-network s, its observational signals ξk,i will be generated according

to the likelihood function Lk(·|θ◦s). On the other hand, if agent k belongs to a sub-network

r, its observational signals ξk,i will be generated according to Lk(·|θ◦r).

We already know that the S−type sub-networks are strongly-connected, so that their

agents can cooperate together to learn the truth. More specifically, according to Theorem

1, if agent k belongs to sub-network s, then it holds that:

lim
i→∞

µk,i(θ
◦
s)

a.s.
= 1 (3.9)

The question that we want to examine is how the beliefs of the agents in the receiving sub-

networks are affected. These agents are now influenced by the beliefs of the S−type groups.

Since this external influence carries information not related to the true state of each receiving

sub-network, the receiving agents may not be able to learn their own true states. We will

show that a leader-follower relationship develops.

3.1 Weak Graphs

We consider that all agents are following the diffusion strategy (2.8) for social learning. In

a manner similar to (2.9), if agent k belongs to sub-network r, then we assume that there

exists a subset of states Θk ⊆ Θ such that:

Lk(ζk|θ) = Lk(ζk|θ◦r) (3.10)

for any ζk ∈ Zk and θ ∈ Θk, i.e., Θk is the set of indistinguishable states for agent k.

Moreover, we assume a scenario in which the private signals of agents in the receiving sub-
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networks are not informative enough to let their agents discover that the true states of the

sending sub-networks do not represent their own truth. That is, we are assuming for now

the following condition.

Assumption. The true state θ◦s , of each sub-network s ∈ {1, 2, . . . , S}, belongs to the

indistinguishable set Θk:

θ◦s ∈ Θk, for any k > NgS (3.11)

�

Under (3.11), we will now verify that the interaction with the S sub-networks ends up

forcing the receiving agents to focus their beliefs on the true states of the S−type. Later,

we will show that a similar conclusion continues to hold even when (3.11) is relaxed.

Thus, let Θ• = {θ◦1, · · · , θ◦S} denote the set of all true states of the S−type sub-networks.

We are assuming, for notational simplicity, that the true states {θ◦s} are distinct from each

other. Otherwise, we only include in Θ• the set of truly distinct states, which will be smaller

than S in number. We denote the complement of Θ• by Θ̄•, such that Θ• ∩ Θ̄• = ∅ and

Θ• ∪ Θ̄• = Θ. We first show that as i → ∞, each receiving agent k will assign zero belief

to any event θ ∈ Θ̄•. This means that receiving agents will end up searching for the truth

within the set Θ•.

Lemma 3 (Focus on True States of S Sub-Networks). Under (3.11), each agent k of any

receiving sub-network r eventually identifies the set Θ̄•, namely, for any θ ∈ Θ̄•:

lim
i→∞

µk,i(θ)
a.s.
= 0 (3.12)

Proof: See Appendix 3.A. �

This lemma implies that the receiving agents are still able to perform correct forecasting.

Lemma 4 (Correct Forecasting). Under (3.11), every agent k in sub-network r develops

correct forecasting, namely,

lim
i→∞

mk,i(ζk)
a.s.
= Lk(ζk|θ◦r), for any ζk ∈ Zk (3.13)

40



Proof: See Appendix 3.B. �

Even with the external influence, agent k is still able to attain correct forecasting because

any true state θ◦s of any sending sub-network, s, belongs to the indistinguishable set of agent

k, i.e., Lk(ζk|θ◦r) = Lk(ζk|θ◦s) from (3.11) and (3.10). Since agents zoom onto the set Θ•,

this fact enables correct forecasting but does not necessarily imply truth learning for weak

graphs, as discussed in the sequel.

The previous two lemmas establish that the belief of each agent k in sub-network r will

converge to a distribution whose support is limited to θ ∈ Θ•. The next question is to

evaluate this distribution, which is the subject of the following main result. First let

µsi (θ)
∆
= col

{
µks(1),i(θ),µks(2),i(θ), . . . ,µks(Ns),i(θ)

}
(3.14)

µri (θ)
∆
= col

{
µkr(1),i(θ),µkr(2),i(θ), . . . ,µkr(Nr),i(θ)

}
(3.15)

collect all beliefs from agents that belong respectively to sub-network s and sub-network r,

where the notation ks(n) denotes the index of the n-th agent within sub-network s, i.e.,

ks(n) =
s−1∑
v=1

Nv + n (3.16)

and n ∈ {1, 2, · · · , Ns} and the notation kr(n) denotes the index of the n-th agent within

sub-network r, i.e.,

kr(n) = NgS +
r−1∑

v=S+1

Nv + n (3.17)

and n ∈ {1, 2, · · · , Nr}. Furthermore, let

µS,i(θ)
∆
= col

{
µ1
i (θ),µ

2
i (θ), . . . ,µ

S
i (θ)

}
(3.18)

µR,i(θ)
∆
= col

{
µS+1
i (θ),µS+2

i (θ), . . . ,µS+R
i (θ)

}
(3.19)

collect all belief vectors respectively from all S−type sub-networks and from all R−type

sub-networks.
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Theorem 2 (Limiting Beliefs for Receiving Agents). Under (3.11), it holds that

lim
i→∞

µR,i(θ) = WT
(

lim
i→∞

µS,i(θ)
)

(3.20)

Proof: See Appendix 3.C. �

We expand (3.20) to clarify its meaning and to show how the beliefs are distributed

among the elements of Θ•. We already know from the result in Theorem 1 that, for each

agent k of sending sub-network s, µk,i(θ) converges asymptotically to an impulse of size one

at the location θ = θ◦s . Thus, we write:

lim
i→∞

µsi (θ) = eθ,θ◦s
∆
=

1Ns , if θ = θ◦s

0Ns , otherwise
(3.21)

where 1Ns denotes a column vector of length Ns whose elements are all one. Similarly, 0Ns

denotes a column vector of length Ns whose elements are all zero. Hence,

lim
i→∞

µS,i(θ) = col
{
eθ,θ◦1 , eθ,θ◦2 , . . . , eθ,θ◦S

}
(3.22)

Now, let wT
k denote the row of WT that corresponds to agent k in sub-network1 r. We

partition it into

wT
k =

[
wT
k,N1

wT
k,N2

. . . , wT
k,NS

]
(3.23)

where the {N1, N2, . . . , NS} are the number of agents in each sub-network s ∈ {1, 2, . . . , S}.

By examining (3.20), we conclude that the distribution for each agent k in an R−type

sub-network converges to a combination of the various vectors {eθ,θ◦s}, namely,

lim
i→∞

µk,i(θ) = qk(θ)
∆
=

S∑
s=1

wT
k,Ns

eθ,θ◦s (3.24)

Observe that, from this equation, to get qk(θ
◦
s), the elements of the corresponding block in

wk, i.e., wk,Ns , should be summed. Now, if we consider that multiple sending sub-networks

1The real index of the row of WT that corresponds to agent k is k −NgS .
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have the same true state, then to get qk(.) at this true state, the elements of all corresponding

blocks in wk will need to be summed. Note that this is a valid probability measure in view

of Lemma 2, i.e.,

∑
θ∈Θ•

qk(θ) = 1 (3.25)

Note also that if it happens that θ◦s = θ◦ for all s, then qk(θ
◦) = 1 and qk(θ) = 0 for all

θ 6= θ◦, and in this case, sending agents can be seen as helping receiving agents to find the

true state. We also observe that the beliefs of agents in the receiving sub-networks differ

from one agent to another, since for each agent k, qk(θ) depends on wk. This means that

the external influence has created social disagreement in the receiving sub-networks.

We therefore established that the beliefs of receiving agents converge to a distribution

whose support is limited to the true states of the sending sub-networks. We will refer

to this situation as a total influence or “mind-control” scenario where the learning of the

R−subnetworks is fully dictated by the S−subnetworks. When all agents follow model (2.8)

and when assumption (3.11) is satisfied, this total influence scenario arises. Although the

private signals of the receiving agents are supposed to hold information regarding their own

true state, however, under assumption (3.11), these signals are not informative enough, so

that agents are naturally driven to be under the influence of the sending sub-networks.

We are interested now in knowing whether this total influence situation can still occur

when assumption (3.11) is not satisfied anymore. When this is the case, sending agents may

not be able to totally control the beliefs of receiving agents anymore. Before establishing

the analytical results, and before showing how self-awareness can alter this dynamics, we

provide an illustrative example.

3.2 Implications of Violating Condition (3.11)

We consider a network consisting of three agents, with the first two playing the role of

influential agents and the third one acting as a receiving agent. The combination matrix is
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chosen as follows:

A =


1 0 0.1

0 1 0.2

0 0 0.7

 (3.26)

Figure 3.2: A weakly connected network and the corresponding combination policy (3.26).

We denote by θ◦1 the true state for agent 1, by θ◦2 the true state for agent 2, and by θ◦3 the

true state for agent 3 so that Θ = {θ◦1, θ◦2, θ◦3}. The observational signal for all three agents

is either a head “H” or a tail “T”. In order for agents 1 and 2 to learn their true states

asymptotically, we need to ensure that the conditions of Theorem 1 are satisfied. One of

these requirements is the identifiability condition (2.10), which requires that the intersection

of the indistinguishable sets (2.9) of all agents in a given sending sub-network s must be

the singleton {θ◦s}. In this example, each sending sub-network consists of only one agent, so

that condition (2.10) reduces to Θ1 = {θ◦1} for the first agent and Θ2 = {θ◦2} for the second

agent. In other words, since agents 1 and 2 do not have neighbors to communicate with, they

must rely solely on their observational signals to learn the truth. This is feasible when for

agents 1 and 2 no state is observationally equivalent to their true state (or indistinguishable).

Using the definition of the indistinguishable set (2.9), Θ1 = {θ◦1} translates into the following

requirement for agent 1:

L1(ζ1|θ◦1) 6= L1(ζ1|θ◦2) and L1(ζ1|θ◦1) 6= L1(ζ1|θ◦3) (3.27)

for any ζ1 ∈ {H,T}. Similarly, Θ2 = {θ◦2} translates into the following requirement for agent
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2:

L1(ζ2|θ◦2) 6= L1(ζ2|θ◦1) and L1(ζ2|θ◦2) 6= L1(ζ2|θ◦3) (3.28)

for any ζ2 ∈ {H,T}. For this example, we are choosing the likelihood functions arbitrarily

but satisfying (3.27) for agent 1 and (3.28) for agent 2. For instance, we select for agent 1,

L1(H|θ◦1) = 0.10, L1(H|θ◦2) = 0.35, L1(H|θ◦3) = 0.45 (3.29)

and set L1(T |θ) = 1− L1(H|θ) for any θ ∈ Θ. Likewise for agent 2, we select

L2(H|θ◦1) = 0.10, L2(H|θ◦2) = 0.20, L2(H|θ◦3) = 0.30 (3.30)

and set L2(T |θ) = 1− L2(H|θ) for any θ ∈ Θ. Before analyzing the beliefs of agent 3 when

(3.11) is not satisfied, we consider first the case in which this assumption is satisfied. In this

way, we will be able to compare what is happening in both cases. More specifically, following

(3.11), we consider first that θo1 and θo2 belong to the indistinguishable set of agent 3 denoted

by Θ3, i.e., {θ◦1, θ◦2} ∈ Θ3. This means, according to the definition of the indistinguishable

set (2.9), that

L3(ζ3|θ◦1) = L3(ζ3|θ◦3) and L3(ζ3|θ◦2) = L3(ζ3|θ◦3) (3.31)

for any ζ3 ∈ {H,T}. According to model (2.8), the intermediate belief of agent 3 is given

by:

ψ3,i(θ) =
µ3,i−1(θ)L3(ξ3,i|θ)(∑

θ′∈Θµ3,i−1(θ′)
)
L3(ξ3,i|θ)

= µ3,i−1(θ) (3.32)

We observe in this example that the private signals of agent 3 end up not contributing to its

intermediate belief. As a result, it is only the beliefs of agents 1 and 2 that affect the belief

of agent 3, so that:

µ3,i(θ) = a13ψ1,i(θ) + a23ψ2,i(θ) + a33ψ3,i(θ) = a13µ1,i(θ) + a23µ2,i(θ) + a33µ3,i−1(θ)

(3.33)
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In writing (3.33), we used the fact that the intermediate beliefs for agents 1 and 2 coincide

with their updated beliefs since, in this example, agents 1 and 2 have no neighbors. Thus,

since a33 < 1,

lim
i→∞

µ3,i(θ) =

(
a13

1− a33

)
lim
i→∞

µ1,i(θ) +

(
a23

1− a33

)
lim
i→∞

µ2,i(θ) (3.34)

from which we conclude that

lim
i→∞

µ3,i(θ
◦
1) =

a13

1− a33

(3.35)

lim
i→∞

µ3,i(θ
◦
2) =

a12

1− a33

(3.36)

lim
i→∞

µ3,i(θ
◦
3) = 0 (3.37)

This total influence result is expected to occur according to Theorem 2, when assumption

(3.11) is satisfied.

Let us consider now the case in which assumption (3.11) is not satisfied. This means that

θ◦1 and θ◦2 do not need to both belong to the indistinguishable set Θ◦3 of agent 3, i.e.,

L3(ζk|θ◦1) 6= L3(ζk|θ◦3) or L3(ζk|θ◦2) 6= L3(ζk|θ◦3) (3.38)

for any ζk ∈ {H,T}. In this example, we study the worst case scenario in which both

conditions in (3.38) are met (even if we consider other situations in which only one of these

conditions is met, we still arrive at a similar conclusion, namely, the belief of agent 3 will

not reach a fixed distribution). We select arbitrarily the values for the likelihood function of

agent 3, but in a way that these values satisfy both conditions in (3.38). For instance, we

select

L3(H|θ◦1) = 0.4, L3(H|θ◦2) = 0.3, L3(H|θ◦3) = 0.8 (3.39)
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In this case, the belief for agent 3 will be updated as:

µ3,i(θ) = a13µ1,i(θ) + a23µ2,i(θ) + a33ψ3,i−1(θ)

= a13µ1,i(θ) + a23µ2,i(θ) + a33

L3(ξ3,i|θ)µ3,i−1(θ)∑
θ′∈Θµ3,i−1(θ′)L3(ξ3,i|θ′)

(3.40)

We see here how this equality is different from (3.33), where the last term ψ3,i−1(θ) holds

information about θ◦3 that contradicts with the information held in the other terms. We now

show by contradiction that in this case, agent 3 will not converge to a fixed distribution.

Assume, to the contrary, that the beliefs of agent 3 reach the following distribution:

lim
i→∞

µ3,i(θ
◦
1) = b, lim

i→∞
µ3,i(θ

◦
2) = c, lim

i→∞
µ3,i(θ

◦
3) = d (3.41)

for some fixed non-negative constants b, c and d satisfying

b+ c+ d = 1 (3.42)

We know that, as i → ∞, agents 1 and 2 approach their true states so that by evaluating

(3.40) at θ◦1 when i→∞, we get:

b = a13 +
a33L3(ξ3,i|θ◦1)b

bL3(ξ3,i|θ◦1) + cL3(ξ3,i|θ◦2) + dL3(ξ3,i|θ◦3)
(3.43)

Evaluating (3.40) at θ◦2 when i→∞:

c = a23 +
a33L3(ξ3,i|θ◦2)c

bL3(ξ3,i|θ◦1) + cL3(ξ3,i|θ◦2) + dL3(ξ3,i|θ◦3)
(3.44)

Evaluating (3.40) at θ◦3 when i→∞:

d =
a33L3(ξ3,i|θ◦3)d

bL3(ξ3,i|θ◦1) + cL3(ξ3,i|θ◦2) + dL3(ξ3,i|θ◦3)
(3.45)
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Then, from (3.45), we have:

d =
0.56d

0.4b+ 0.3c+ 0.8d
, if observation is H (3.46)

d =
0.14d

0.6b+ 0.7c+ 0.2d
, if observation is T (3.47)

Then, either d = 0 or

0.4b+ 0.3c+ 0.8d = 0.56 and 0.6b+ 0.7c+ 0.2d = 0.14 (3.48)

However, conditions (3.48) contradict the fact that we must have

(0.4b+ 0.3c+ 0.8d) + (0.6b+ 0.7c+ 0.2d) = b+ c+ d
(3.42)
= 1 (3.49)

We conclude that d = 0. Thus, condition (3.42) reduces to:

b+ c = 1 (3.50)

With regards to the values of b and c, we know from (3.43) that

b = 0.1 +
0.28b

0.4b+ 0.3c
, if observation is H (3.51)

b = 0.1 +
0.42b

0.6b+ 0.7c
, if observation is T (3.52)

That is, the scalars b and c must satisfy

0.28

0.4b+ 0.3c
=

0.42

0.6b+ 0.7c
(3.53)

The denominators are related as follows:

(0.4b+ 0.3c) + (0.6b+ 0.7c) = b+ c
(3.50)
= 1 (3.54)
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Thus,
0.28

0.4b+ 0.3c
=

0.42

1− (0.4b+ 0.3c)
(3.55)

This leads to

0.4b+ 0.3c =
0.28

0.28 + 0.42
= 0.4 (3.56)

so that from (3.51), we have

b = 0.1 +
0.28

0.4
b (3.57)

Thus, b = 1
3
, and since 0.4b+ 0.3c = 0.4, then c = 8

9
. However, b+ c = 11

9
, which contradicts

(3.50). We conclude that the beliefs of agent 3 cannot reach a fixed distribution. This

conclusion is illustrated in Fig. 3.3, which plots the evolution of beliefs of agent 3 for

all θ ∈ Θ. It is clear from the figure how the contradictory information conveyed by the

influential agents and the private signals do not lead agent 3 to approach a fixed belief. This

also means that agents 1 and 2 cannot fully control agent 3. However, if agent 3 decides
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Figure 3.3: Evolution of the beliefs of agent 3 over time for the case in which condition (3.11)
is not satisfied.

to limit the contribution of its private signal on the update of its intermediate belief, will

agents 1 and 2 be able to totally influence agent 3? In other words, will the total influence

scenario arise again even if assumption (3.11) is not satisfied? We show next that this is
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possible by incorporating an element of self-awareness into the learning process.

3.3 Diffusion Learning with Self-Awareness

We are therefore now motivated to modify the diffusion strategy (2.8) by incorporating a non-

negative convex combination γk,i. This factor enables agents to assign more or less weight

to their local information in comparison to the information received from their neighbors.

Specifically, we modify (2.8) as follows:


ψk,i(θ) = (1− γk,i)µk,i−1(θ) + γk,i

µk,i−1(θ)Lk(ξk,i|θ)∑
θ′∈Θµk,i−1(θ′)Lk(ξk,i|θ′)

µk,i(θ) =
∑
`∈Nk

a`kψ`,i(θ)
(3.58)

where γk,i ∈ [0, 1] is a scalar variable. Observe that the intermediate belief ψk,i(θ) of agent k

is now a combination of its prior belief, µk,i−1(θ), and the Bayesian update. The scalar γk,i

represents the amount of trust that agent k gives to its private signal and how it is balancing

this trust between the new observation and its own past belief. This weight can also model

the lack of an observational signal at time i.

Model (3.58) helps capture some elements of human behavior. For example, in an in-

teractive social setting, a human agent may not be satisfied or convinced by an observation

and prefers to give more weight to their prior belief based on accumulated experiences. This

model was studied for single agents in [70, 71] and was motivated as a mechanism for self-

control and temptation. The agent might observe a private signal at some time that can

move this agent away from its current conviction. The agent can control this temptation

by increasing the weight given to its prior belief or it can change its opinion by giving more

weight to its Bayesian update, which is based on the private signal.

We next analyze model (3.58) over weakly-connected graphs and establish two results.

The first result is related to the sending agents and the second result is related to the receiving

agents.
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Lemma 5 (Correct Forecasting with Self-Awareness). Assume that lim
i→∞

γk,i 6= 0 and the

same conditions of Lemma 1. Then, self-aware sending agents develop correct forecasts of

the incoming signals, namely, result (2.11) continues to hold.

Proof: See Appendix 3.D. �

Theorem 3 (Truth Learning by Self-Aware Sending Agents). Under the same assumptions

of Theorem 1, self-aware sending agents learn the truth asymptotically and condition (2.13)

continues to hold.

Proof: See Appendix 3.E. �

We therefore find that sending agents, whether self-aware or not, are always able to learn

the truth. With regards to receiving agents, we now have the following conclusion. For each

agent k in a receiving sub-network r, we write γk,i = τk,iγmax, where γmax are both positive

scalars less than 1, and γmax = supk,i γk,i.

Theorem 4 (Learning by Self-Aware Receiving Agents). The beliefs of self-aware receiving

agents are confined as follows:

lim sup
i→∞

µR,i(θ) � WT
(

lim
i→∞

µS,i(θ)
)

+ γmaxC1NgR
(3.59)

lim inf
i→∞

µR,i(θ) � WT
(

lim
i→∞

µS,i(θ)
)
− γmaxC1NgR

(3.60)

where C
∆
= (I − TT

RR)−1 is an NgR ×NgR matrix.

Proof: See Appendix 3.F. �

This final result coincides with that of Theorem 2, but with an additional O(γmax) term.

This means that if each receiving agent chooses the γ−coefficient to be small enough, then

its belief converges to the same distribution (3.24) of Theorem 2. When agent k gives a small

weight to its Bayesian update, it means that it is giving its current signal ξk,i a reduced role

to play in affecting its belief formation at time i, and it is instead relying more heavily on its

prior belief µk,i−1(θ) and on its communication with its neighbors. When agent k continues
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to give less importance to any current signal it is receiving, its belief update will be mainly

affected by its interaction with influential agents and its neighbors that are also under the

influence of sending agents. Therefore, over time, these circumstances will help establish a

leader-follower relationship in the network. In other words, the receiving sub-networks will

be driven away from the truth and be under total indoctrination by the influential agents.

3.4 Simulation Results

We illustrate the previous results for weakly-connected networks. We assume that the social

network has N = 8 agents interconnected as shown in Fig. 3.4, which corresponds to the

following combination matrix:

A =



0.2 0.2 0.8 0 0 0 0 0

0.5 0.4 0.1 0 0 0.2 0 0.4

0.3 0.4 0.1 0 0 0.1 0 0

0 0 0 0.4 0.3 0.3 0 0

0 0 0 0.6 0.7 0 0 0

0 0 0 0 0 0.2 0.3 0.2

0 0 0 0 0 0.1 0.5 0.3

0 0 0 0 0 0.1 0.2 0.1



(3.61)

Figure 3.4: A weakly connected network consisting of three sub-networks and the corre-
sponding combination policy (3.61).
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We assume that there are 3 possible events Θ = {θ◦1, θ◦2, θ◦3}, where θ◦1 is the true event for

the first sending sub-network, θ◦2 is the true event for the second sending sub-network, and

θ◦3 is the true event for the receiving sub-network. We further assume that the observational

signals of each agent k are binary and belong to Zk = {H,T} where H denotes head and

T denotes tail. We consider two cases. In the first case, we assume that agents update

their belief according to the model described in (2.8) and that assumption (3.11) is met. In

the second case, we assume that agents follow the second model described in (3.58) where

assumption (3.11) is not met.

3.4.1 First Case

In this first case, the likelihood of the head signals for each agent k is selected as the following

3× 8 matrix:

L(H) =


5/8 3/4 1/3 7/8 5/8 1/3 1/4 5/8

5/8 1/4 1/6 7/8 2/3 1/3 1/4 5/8

1/4 3/4 1/6 1/3 2/3 1/3 1/4 5/8


where each (j, k)-th element of this matrix corresponds to Lk(H/θj), i.e., each column cor-

responds to one agent and each row to one network state. The likelihood of the tail signal is

L(T ) = 13×8 − L(H). We observe from L(H) that assumption (3.11) is met here where for

agent k in the receiving sub-network (k > 5) we have Lk(ζk|θ◦1) = Lk(ζk|θ◦2) = Lk(ζk|θ◦3) for

both cases in which ζk is either head or tail. Assumption (3.11) is met here because the true

state of the first sending sub-network θ◦1 belongs to the indistinguishable set of any receiving

agent k in the receiving sub-network 3, i.e., Lk(ζk|θ◦1) = Lk(ζk|θ◦3), and the true state of the

second sending sub-network θ◦2 belongs to the indistinguishable set of any receiving agent

k, i.e., Lk(ζk|θ◦2) = Lk(ζk|θ◦3), where k = 6, 7, 8. We further assume that each agent starts

at time i = 0 with an initial belief that is uniform over Θ and then updates it over time

according to the model described in (2.8). Then, we know from [30] that limi→∞µk,i(θ
◦
1) = 1

for k = 1, 2, 3 and limi→∞µk,i(θ
◦
2) = 1 for k = 4, 5. Now for the agents of the receiving
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sub-network, we need first to compute:

WT = (I − TT
RR)−1TT

SR

=


0 0.4045 0.1489 0.4466 0

0 0.5267 0.1183 0.3550 0

0 0.7099 0.0725 0.2176 0

 (3.62)

The first row of WT corresponds to agent 6, the second row to agent 7 and the third row

to agent 8. Now each row is partitioned into two blocks: the first block is of length N1 = 3

that corresponds to sub-network 1 of true state θ◦1 and the second block is of length N2 = 2

that corresponds to sub-network 2 of true state θ◦2. Then, according to Theorem 2, we can

compute the belief at θ◦1 for each receiving agent at steady state, by taking the first block in

the agent’s corresponding row and summing its elements:

lim
i→∞

µk,i(θ
◦
1) =


0 + 0.4045 + 0.1489 = 0.5534, k = 6

0 + 0.5267 + 0.1183 = 0.6450, k = 7

0 + 0.7099 + 0.0725 = 0.7824, k = 8

Likewise, we can compute the belief at θ◦2 for each receiving agent at steady state, by taking

the second block in the agent’s corresponding row and summing its elements:

lim
i→∞

µk,i(θ
◦
2) =


0.4466 + 0 = 0.4466, k = 6

0.3550 + 0 = 0.3550, k = 7

0.2176 + 0 = 0.2176, k = 8

We run this example for 7000 time iterations. We assigned to each agent an initial belief

that is uniform over {θ◦1, θ◦2, θ◦3}. Figures 3.5 shows the evolution of µk,i(θ
◦
1) and µk,i(θ

◦
2)

of agents in the receiving sub-network (k = 6, 7, 8). These figures show the convergence of

the beliefs of the agents in the receiving sub-networks to the same probability distribution

already computed according to the results of Theorem 2. Figure 3.6 shows this limiting
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distribution over Θ for all receiving agents.
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Figure 3.5: Evolution of agent k belief over time for k = 6, 7, 8 in the first case.
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55



3.4.2 Second Case

We now assume that the likelihood of the head signals for each agent k is selected as the

following 3× 8 matrix:

L(H) =


5/8 3/4 1/3 7/8 5/8 1/2 2/3 3/8

5/8 1/4 1/6 7/8 2/3 1/3 3/5 5/7

1/4 3/4 1/6 1/3 2/3 2/5 1/4 1/3


We observe now from L(H) that assumption (3.11) is not met here where for agent k in the

receiving sub-network (k > 5) we have Lk(ζk|θ◦1) 6= Lk(ζk|θ◦2) 6= Lk(ζk|θ◦3) for both cases in

which ζk is either head or tail. Assumption (3.11) is not met here because θ◦1 does not belong

to the indistinguishable set of any receiving agent k in the receiving sub-network 3, i.e.,

Lk(ζk|θ◦1) 6= Lk(ζk|θ◦3), and θ◦2 does not belong to the indistinguishable set of any receiving

agent k, i.e., Lk(ζk|θ◦2) 6= Lk(ζk|θ◦3), where k = 6, 7, 8. We further assume that agents now

update their beliefs according to the model described in (3.58). We choose γk,i = 0.4 for

k = 1, 2, 3 (agents of the first sending sub-network) at any i, γk,i = 0.5 for k = 4, 5 (agents of

the second sending sub-network) at any i and γk,i = 0.1 for k = 6, 7, 8 (agents of the receiving

sub-network) at any i. We also assume that each agent starts at time i = 0 with an initial

belief that is uniform over Θ. Then, we know from Theorem 3 that limi→∞µk,i(θ
◦
1) = 1 for

k = 1, 2, 3 and limi→∞µk,i(θ
◦
2) = 1 for k = 4, 5. Figure 3.7 shows the evolution of µk,i(θ

◦
1)

and µk,i(θ
◦
2) of agents in the receiving sub-network (k = 6, 7, 8). These figures show how

the beliefs of the receiving agents are confined around the probability distribution already

computed in the previous case.

3.5 Conclusions

In this chapter, we studied diffusion social learning over weakly-connected networks. We

examined the circumstances under which receiving agents come under the total influence

of sending agents. This total influence is reflected by forcing the receiving agents to focus
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Figure 3.7: Evolution of agent k belief over time for k = 6, 7, 8 in the second case.

their beliefs on the set of true states for the sending sub-networks. We determined for each

receiving agent what the exact probability distribution is in steady-state. We also illustrated

the results with examples. Future work will focus on how the network can be designed so

that receiving agents adopt specific limiting beliefs, and how receiving agents can detect the

external influence and limit it. Results of this chapter are based on [64].

57



APPENDIX

3.A Proof of Lemma 3

The proof is based on showing first that for any receiving agent k, it holds that

lim
i→∞

∑
θ∈Θ•

µk,i(θ) = 1 (3.63)

From this result, we will conclude that lim
i→∞

µk,i(θ) = 0 for all θ ∈ Θ̄•. To examine the

evolution of agents’ beliefs toward Θ•, we associate with each agent k the following regret

function:

QW (µk,i)
∆
= − log

(∑
θ∈Θ•

µk,i(θ)

)
(3.64)

We view µk,i(θ) as a stochastic process that depends on the sequence of random observations

{ξk,j} over all k and for all j ≤ i. Therefore, we shall examine agent k’s individual perfor-

mance by taking the expectation of QW (µk,i) over these observations. More specifically, we

define agent k’s risk at time i as

JW (µk,i)
∆
= EFi

QW (µk,i) (3.65)

where Fi denotes the of sequence {ξk,j} over all k and for all j ≤ i.

Proof of Lemma 3. We start with agent k’s risk at time i defined in (3.65), where k > NgS.
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Recall that N = NgS +NgR represents the total number of agents in the whole network:

JW (µk,i) = −EFi
log

(∑
θ∈Θ•

µk,i(θ)

)
(2.8)
= −EFi

log

[
N∑
`=1

∑
θ∈Θ•

a`kψ`,i(θ)

]

(2.5)
= −EFi

log

NgS∑
`=1

a`k
∑
θ∈Θ•

ψ`,i(θ) +
N∑

`=NgS+1

a`k

∑
θ∈Θ• µ`,i−1(θ)L`(ξ`,i|θ)

m`,i−1(ξ`,i)


(a)
= −EFi

log

NgS∑
`=1

a`k
∑
θ∈Θ•

ψ`,i(θ) +
S+R∑
r=S+1

∑
`∈Ir

a`k

∑
θ∈Θ• µ`,i−1(θ)L`(ξ`,i|θ)

m`,i−1(ξ`,i)


(b)
= −EFi

log

NgS∑
`=1

a`k
∑
θ∈Θ•

ψ`,i(θ) +
S+R∑
r=S+1

∑
`∈Ir

a`k

∑
θ∈Θ• µ`,i−1(θ)L`(ξ`,i|θ◦r)

m`,i−1(ξ`,i)


(c)

≤ −EFi

NgS∑
`=1

a`k log

(∑
θ∈Θ•

ψ`,i(θ)

)

+
S+R∑
r=S+1

∑
`∈Ir

a`k log

(∑
θ∈Θ• µ`,i−1(θ)

)
L`(ξ`,i|θ◦r)

m`,i−1(ξ`,i)

]

= −
NgS∑
`=1

a`kEFi
log

(∑
θ∈Θ•

ψ`,i(θ)

)
−

S+R∑
r=S+1

∑
`∈Ir

a`kEFi
log

(∑
θ∈Θ•

µ`,i−1(θ)

)

−
S+R∑
r=S+1

∑
`∈Ir

a`kEFi
log

(
L`(ξ`,i|θ◦r)
m`,i−1(ξ`,i)

)
(3.65)
=

NgS∑
`=1

a`kJ
W (ψ`,i) +

S+R∑
r=S+1

∑
`∈Ir

a`kJ
W (µ`,i−1)

−
S+R∑
r=S+1

∑
`∈Ir

a`kEFi
log

(
L`(ξ`,i|θ◦r)
m`,i−1(ξ`,i)

)
(d)
=

NgS∑
`=1

a`kJ
W (ψ`,i) +

S+R∑
r=S+1

∑
`∈Ir

a`kJ
W (µ`,i−1)− EFi−1

(
S+R∑
r=S+1

∑
`∈Ir

a`k

Eξ`,i

(
log

(
L`(ξ`,i|θ◦r)
m`,i−1(ξ`,i)

)
|Fi−1

))
(e)

≤
S+R∑
r=S+1

∑
`∈Ir

a`kJ
W (µ`,i−1) +

NgS∑
`=1

a`kJ
W (ψ`,i) (3.66)
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where

• in the third equality, we only expanded the second term that corresponds to receiving

agents in order to study its behavior. We did not do the same thing with the first term

because it corresponds to sending agents and we already know how that ψ`,i(θ) will

converge with time for any sending agent `, as later shown in (3.74).

• in step (a), we split the second summation corresponding to receiving agents into R

groups, with each group corresponding to one receiving sub-network. Moreover, the

symbol Ir denotes the set of indexes of agents that belong to receiving sub-network r;

• in step (b), we replaced L`(ξ`,i|θ) by L`(ξ`,i|θ◦r). This follows from assumption (3.11):

for any θ that is in Θ•, L`(ζ`|θ) = L`(ζ`|θ◦r), for any ζ` ∈ Z`;

• in step (c), we applied the convexity property of − log(.) since the elements {a`k} form

a convex combination for each agent k;

• in step (d), we applied the conditional expectation property

(
EX [g(X)] = EY [EX|Y [g(X)|Y ]]

)
as follows:

EFi
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
= EFi−1

(
EFi|Fi−1

(
log

L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

|Fi−1

))
= EFi−1

(
Eξ`,i

(
log

L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

|Fi−1

))
(3.67)

• in step (e), we replaced the previous expression in (d) by an upper bound using the

non-negativity of the KL-divergence from L`(.|θ◦r) to m`,i−1(.) [75].

To continue with the argument we collect the risk values of S−agents and R−agents into
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two vectors as follows:

JW (ψS,i)
∆
= col

{
JW (ψ1,i), . . . , J

W (ψNgS ,i
)
}

(3.68)

JW (µR,i)
∆
= col

{
JW (µNgS+1,i), . . . , J

W (µN,i)
}

(3.69)

Then, from (3.66), we write the vector inequality:

JW (µR,i) � TT
RRJ

W (µR,i−1) + TT
SRJ

W (ψS,i) (3.70)

We now establish the convergence of this inequality. We first consider the term JW (ψS,i).

We know that agents in the sending sub-networks can learn the truth if the assumptions

mentioned in Lemma 1 and Theorem 1 are met. One of the assumptions is that at least one

agent in each strongly-connected sub-network s starts with a non-zero prior belief at θ◦s . Let

us denote this agent by `o. As shown in [30], this condition guarantees that for large enough

i, µk,i(θ
◦
s) > 0 for all k in this sub-network. Accordingly, it also holds that for large enough

i agents in this sub-network will have nonzero intermediate beliefs at θ◦s , i.e., ψk,i(θ
◦
s) > 0.

This implies that JW (ψS,i) � 0 and TT
SRJ

W (ψS,i) � 0 for large enough i since the elements

of TSR are all non-negative. Let us now consider agent k′ of a receiving sub-network r, which

has agent `′ from sending sub-network s in its neighborhood. After large enough i,

µk′,i(θ
◦
s) =

∑
`∈Nk′

a`k′ψ`(θ
◦
s) ≥ a`′k′ψ`′(θ

◦
s) > 0 (3.71)

Then, in the next time step, all agents of sub-network r that have agent k′ in their neigh-

borhood will have non-zero belief at θ◦s . Since the received sub-network r is connected, it

follows that after large enough i,

µk,i(θ
◦
s) > 0 =⇒

∑
θ∈Θ•

µk,i(θ) > 0 (3.72)

for all agents k that belong to sub-network r. We employ the same argument for all other

receiving sub-networks. Therefore,
∑

θ∈Θ• µk,i(θ) > 0 for any k > NgR so that JW (µR,i) � 0
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for large enough i. Thus,

0 � JW (µR,i) � TT
RRJ

W (µR,i−1) + TT
SRJ

W (ψS,i) (3.73)

Furthermore, any agent k in any sending sub-network s can learn asymptotically its own

true state, so that limi→∞µk,i(θ
◦
s)

a.s.
= 1 implies

lim
i→∞

ψk,i(θ
◦
s) = lim

i→∞

µk,i(θ
◦
s)Lk(ξk,i|θ◦s)∑

θ∈Θµk,i(θ)Lk(ξk,i|θ)
= lim

i→∞

Lk(ξk,i|θ◦s)
Lk(ξk,i|θ◦s)

a.s.
= 1 (3.74)

The denominator in the second equality follows from the fact that

lim
i→∞

µk,i(θ
◦
s)

a.s.
= 1 (3.75)

for any agent k of sending sub-network s. It follows that

lim
i→∞

∑
θ∈Θ•

ψk,i(θ)
a.s.
= 1 (3.76)

for any k ≤ NgS. Therefore, lim
i→∞

JW (ψS,i) = 0. Moreover, since ρ(TRR) < 1 [67], we conclude

that

lim
i→∞

JW (µR,i) = 0 =⇒ lim
i→∞

JW (µk,i) = 0, ∀ k > NgS (3.77)

As previously discussed after large enough i,

∑
θ∈Θ•

µk,i(θ) > 0 =⇒ − log

(∑
θ∈Θ•

µk,i(θ)

)
≥ 0 (3.78)

Using the definition of JW (µk,i) in (3.65), it holds that JW (µk,i) represents the expectation

over Fi of non-negative quantities. Hence, result (3.77) implies

lim
i→∞
− log

(∑
θ∈Θ•

µk,i(θ)

)
= 0 ; lim

i→∞

∑
θ∈Θ•

µk,i(θ)
a.s.
= 1 (3.79)

�
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3.B Proof of Lemma 4

Assume agent k belongs to sub-network r and ζk ∈ Zk:

lim
i→∞

mk,i(ζk) = lim
i→∞

∑
θ∈Θ

µk,i(θ)Lk(ζk|θ)
(a)
= lim

i→∞

∑
θ∈Θ•

µk,i(θ)Lk(ζk|θ)

(b)
=

(
lim
i→∞

∑
θ∈Θ•

µk,i(θ)

)
Lk(ζk|θ◦r)

a.s.
= Lk(ζk|θ◦r) (3.80)

where step (a) follows from the result of Lemma 3 and step (b) follows from assumption

(3.11). �

3.C Proof of Theorem 2

The intermediate belief of any agent k is given by:

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)
mk,i−1(ξk,i)

(3.81)

Let us assume that agent k belongs to receiving sub-network r. Using Lemma 4, we have

for any θ ∈ Θ•:

lim
i→∞

ψk,i(θ) = lim
i→∞

µk,i−1(θ)Lk(ξk,i|θ)
mk,i−1(ξk,i)

= lim
i→∞

µk,i−1(θ) (3.82)

We can establish the same property for any agent in a sending sub-network because (3.80)

was already proven for sending agents in [30]. It follows that, for any agent k,

lim
i→∞

µk,i(θ) = lim
i→∞

∑
`∈Nk

a`kµk,i−1(θ) (3.83)
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for any θ ∈ Θ•. We defined the vectors µS,i(θ) in (3.19) and µR,i(θ) in (3.15). Then,

lim
i→∞

 µS,i(θ)

µR,i(θ)

 = AT

 lim
i→∞

 µS,i−1(θ)

µR,i−1(θ)

 (3.84)

from which we obtain using the structure of A in (3.5):

lim
i→∞

µR,i(θ) = TT
SR lim

i→∞
µS,i(θ) + TT

RR lim
i→∞

µR,i(θ) (3.85)

We then conclude that

lim
i→∞

µR,i(θ) = (I − TT
RR)−1TT

SR

(
lim
i→∞

µS,i(θ)
)

= WT
(

lim
i→∞

µS,i(θ)
)

(3.86)

�

3.D Proof of Lemma 5

We start by introducing some notation and definitions. Since we are now interested in

examining the evolution of the agents’ beliefs toward the true state, let us introduce the true

probability mass function p(θ) defined over Θ, namely:

p(θ) = δθ,θ◦
∆
=

1, if θ = θ◦

0, otherwise
(3.87)

The evolution of the belief of agent k toward the true state can be analyzed by computing

the KL divergence of µk,i(θ) from p(θ) at each time instant i. We therefore introduce the

new regret function for agent k at time i as:

Q(µk,i)
∆
= DKL(p||µk,i) =

∑
θ∈Θ

p(θ) log

(
p(θ)

µk,i(θ)

)
= − logµk,i(θ

◦) (3.88)
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where we used the convention that 0 log 0 = 0. We shall again define agent k’s individual

risk at time i as

J(µk,i)
∆
= EFi

Q(µk,i) = −EFi
logµk,i(θ

◦) (3.89)

where Fi denotes the history of {ξk,j} over all k and for all j ≤ i. We then assess the overall

network performance by considering the weighted aggregate risk:

J(µi)
∆
=

N∑
k=1

y(k)J(µk,i) (3.90)

where the {y(k)} denote the entries of the Perron vector, y, of the primitive left-stochastic

matrix A, as defined by (2.2). To prove Lemma 5, namely, the ability of agents to arrive at

correct forecasts, we prove first the convergence of the sequence {J(µi)} as i → ∞. This

convergence will then imply the correct forecasting by agents.

Proof of Lemma 5: We assumed in the statement of the lemma that at least one agent `o

starts with a non-zero prior belief at θ◦, i.e., µ`o,0(θ◦) > 0. As shown in [30], this condition

guarantees that for large enough i, µk,i(θ
◦) > 0 for all k ∈ N , which implies that the terms

of the time sequence {Q(µk,i)} assume nonnegative values for large i and for any agent k.

Thus, the time sequences {J(µk,i)} and {J(µi)} are non-negative for large enough i. Let us
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now expand agent k’s risk for large time i:

J(µk,i) = −EFi
logµk,i(θ

◦) = −EFi
log

(∑
`∈Nk

a`kψ`,i(θ
◦)

)
(a)

≤ −EFi

[∑
`∈Nk

a`k log
(
ψ`,i(θ

◦)
)]

(3.58)
= −EFi

[∑
`∈Nk

a`k log

(
(1− γ`,i)

(
µ`,i−1(θ◦)

)
+ γ`,i

(
µ`,i−1(θ◦)L`(ξ`,i|θ◦)

m`,i−1(ξ`,i)

))]
(b)

≤ −EFi

[∑
`∈Nk

a`k

(
(1− γ`,i) log

(
µ`,i−1(θ◦)

)
+ γ`,i log

(
µ`,i−1(θ◦)L`(ξ`,i|θ◦)

m`,i−1(ξ`,i)

))]

= −EFi

(∑
`∈Nk

a`k log
(
µ`,i−1(θ◦)

))
− EFi

(∑
`∈Nk

a`kγ`,i log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

))
(c)
= −EFi

(∑
`∈Nk

a`k log
(
µ`,i−1(θ◦)

))

− EFi−1

(∑
`∈Nk

a`kγ`,iEξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

])
(d)

≤ −
∑
`∈Nk

a`kEFi
log
(
µ`,i−1(θ◦)

)
=
∑
`∈Nk

a`kJ(µ`,i−1) (3.91)

where

• steps (a) and (b) follow from the convexity of − log(.);

• step (c) follows from the conditional expectation property

(
EX [g(X)] = EY [EX|Y [g(X)|Y ]]

)
as in (3.67);

• step (d) follows by replacing the expression in (c) by an upper bound using the non-

negativity of the KL divergence from L`(.|θ◦) tom`,i−1(.) according to Gibb’s inequality

[75].
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Accordingly, the overall performance at time i, satisfies:

J(µi)
(a)

≤
N∑
k=1

y(k)
∑
`∈Nk

a`kJ(µ`,i−1)
(b)
=

N∑
`=1

y(`)J(µ`,i−1) = J(µi−1) (3.92)

where step (a) follows from (3.91), and step (b) follows from (2.2). Therefore, the sequence

{J(µi)} is a decreasing sequence. But, since this sequence is non-negative, we conclude that

{J(µi)} converges to a real number according to the monotone convergence theorem of real

numbers [76].

We now establish the ability of agents to attain correct predictions. From step (c) in

(3.91), we get

J(µk,i) ≤
∑
`∈Nk

a`kJ(µ`,i−1)− EFi−1

(∑
`∈Nk

a`kγ`,iEξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

])

(3.93)

Then, rearranging terms,

∑
`∈Nk

a`kJ(µ`,i−1)− J(µk,i) ≥ EFi−1

(∑
`∈Nk

a`kγ`,iEξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

])

(3.94)

Scaling by y(k), summing over k, and using (2.2) we get:

N∑
`=1

y(`)J(µ`,i−1)−
N∑
k=1

y(k)J(µk,i) ≥ EFi−1

(∑
`∈Nk

y(`)γ`,iEξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

])
(3.95)

Then,

J(µi−1)− J(µi) ≥ EFi−1

(∑
`∈Nk

y(`)γ`,iEξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

])
(3.96)
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Since {J(µi)} is a convergent sequence, it is also a Cauchy sequence [76] and, therefore,

0 = lim
i→∞

[
J(µi−1)− J(µi)

]
≥ lim

i→∞
EFi−1

(∑
`∈Nk

y(`)γ`,iEξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

])

≥ 0

(3.97)

where the rightmost inequality follows from the non-negativity of the KL-divergence. We

conclude that:

lim
i→∞

EFi−1

(∑
`∈Nk

y(`)γ`,iEξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

])
= 0 (3.98)

Since we assumed that lim
i→∞

γk,i 6= 0 for any k, y(`) > 0 from (2.2), and

Eξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

]
≥ 0

from the non-negativity of the KL-divergence, then

lim
i→∞

Eξ`,i

[
log

(
L`(ξ`,i|θ◦)
m`,i−1(ξ`,i)

)
|Fi−1

]
= 0 (3.99)

Thus,

lim
i→∞

∑
ζ`∈Z`

L`(ζ`|θ◦) log

(
L`(ζ`|θ◦)
m`,i−1(ζ`)

)
= 0 (3.100)

Let

f`,i−1
∆
=
∑
ζ`∈Z`

L`(ζ`|θ◦) log

(
L`(ζ`|θ◦)
m`,i−1(ζ`)

)
(3.101)

where f`,i represents the KL-divergence of m`,i(.) from L`(.|θ◦). We know from Gibb’s in-

equality [75] that the KL-divergence of a probability distribution from another distribution

achieves the value zero only when the two distributions are equal. Since the KL-divergence

f`,i converges to zero as i → ∞ and L`(.|θ◦) is a fixed distribution, this implies that m`,i(.)
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should converge, i.e., its limit exists and it takes the following value:

lim
i→∞

m`,i(ζ`) = L`(ζ`|θ◦) (3.102)

for any ζ` ∈ Z`. Since this result is achieved for any realization of observational signals Fi−1,

we conclude that:

lim
i→∞

m`,i(ζ`)
a.s.
= L`(ζ`|θ◦) (3.103)

for any ` ∈ N and any ζ` ∈ Z`. �

3.E Proof of Theorem 3

We have established that self-aware agents are able to make correct forecast, i.e.,

lim
i→∞

mk,i(ζk)
a.s.
= Lk(ζk|θ◦) (3.104)

for any k ∈ N and any ζk ∈ Zk. From (3.104), we have:

∑
θ∈Θ

Lk(ζk|θ) lim
i→∞

µk,i−1(θ)
a.s.
= Lk(ζk|θ◦) (3.105)

which implies the following for any observational signal ζk ∈ Zk:

∑
θ∈Θk

Lk(ζk|θ) lim
i→∞

µk,i−1(θ) +
∑
θ∈Θ̄k

Lk(ζk|θ) lim
i→∞

µk,i−1(θ)
a.s.
= Lk(ζk|θ◦)

Lk(ζk|θ◦)
∑
θ∈Θk

lim
i→∞

µk,i−1(θ) +
∑
θ∈Θ̄k

Lk(ζk|θ) lim
i→∞

µk,i−1(θ)
a.s.
= Lk(ζk|θ◦)

Lk(ζk|θ◦)

(∑
θ∈Θk

lim
i→∞

µk,i−1(θ)− 1

)
+
∑
θ∈Θ̄k

Lk(ζk|θ) lim
i→∞

µk,i−1(θ)
a.s.
= 0

−Lk(ζk|θ◦)
∑
θ∈Θ̄k

lim
i→∞

µk,i−1(θ) +
∑
θ∈Θ̄k

Lk(ζk|θ) lim
i→∞

µk,i−1(θ)
a.s.
= 0

∑
θ∈Θ̄k

[Lk(ζk|θ)− Lk(ζk|θ◦)] lim
i→∞

µk,i−1(θ)
a.s.
= 0 (3.106)
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We know according to (2.12), that there exists a prevailing signal ζ◦k where

Lk(ζ
◦
k |θ◦)− Lk(ζ◦k |θ) > 0, ∀θ ∈ Θ̄k (3.107)

Applying (3.106) to the prevailing signal, we have:

∑
θ∈Θ̄k

[Lk(ζ
◦
k |θ)− Lk(ζ◦k |θ◦)] lim

i→∞
µk,i−1(θ)

a.s.
= 0 (3.108)

From (3.108) and (3.107), we conclude that:

lim
i→∞

µk,i(θ)
a.s.
= 0, for any θ ∈ Θ̄k (3.109)

Now since,

lim
i→∞

µk,i(θ) =
∑
`∈Nk

a`k lim
i→∞

ψ`,i(θ) (3.110)

we have for any neighbor ` of agent k,

lim
i→∞

ψ`,i(θ)
a.s.
= 0 =⇒ lim

i→∞
µ`,i(θ)

a.s.
= 0, for any θ ∈ Θ̄k and any ` ∈ Nk (3.111)

Sine the network is strongly-connected, by propagating the same argument, we end up

having:

lim
i→∞

µ`,i(θ)
a.s.
= 0, for any θ ∈ Θ̄k and any ` ∈ N (3.112)

By repeating the same steps for all agent k, all agents will assign a zero probability to the

following set:

⋃
k∈N

Θ̄k =⇒
⋂
k∈N

Θk =⇒ Θ\{θ◦} (3.113)
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We therefore have for any agent k:

lim
i→∞

µk,i(θ) =
a.s.
= 0, for any θ 6= θ◦ =⇒ lim

i→∞
µk,i(θ

◦) =
a.s.
= 1 (3.114)

�

3.F Proof of Theorem 4

According to model (3.58), the intermediate belief of any agent k in a receiving group can

be written as follows:

ψk,i(θ) = µk,i−1(θ) + γk,i

[
µk,i−1(θ)

(
Lk(ξk,i|θ)∑

θ′ µk,i−1(θ′)Lk(ξk,i|θ′)
− 1

)]
(3.115)

We assume that γk,i = τk,iγmax, where τk,i and γmax are both nonnegative scalars less than

one. Then,

ψk,i(θ) = µk,i−1(θ) + γmax

[
τk,iµk,i−1(θ)

(
Lk(ξk,i|θ)∑

θ′ µk,i−1(θ′)Lk(ξk,i|θ′)
− 1

)]
(3.116)

We define the auxiliary function:

hk,i(θ, ζk)
∆
= τk,iµk,i−1(θ)

(
Lk(ζk|θ)∑

θ′ µk,i−1(θ′)Lk(ζk|θ′)
− 1

)
(3.117)

where θ ∈ Θ and ζk ∈ Zk, so that

ψk,i(θ) = µk,i−1(θ) + γmaxhk,i(θ, ξk,i) (3.118)

Therefore,

µk,i(θ) =
∑
`∈Nk

a`kψ`,i(θ) =
∑
`∈Nk

a`kµ`,i−1(θ) + γmax

∑
`∈Nk

a`kh`,i(θ, ξ`,i) (3.119)
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Let us introduce the vectors:

hS,i(θ, ξS,i)
∆
= col

{
h1,i(θ, ξ1,i), . . . ,hNgS ,i(θ, ξNgS ,i

)
}

(3.120)

hR,i(θ, ξR,i)
∆
= col

{
hNgS+1,i(θ, ξNgS+1,i), . . . ,hN,i(θ, ξN,i)

}
(3.121)

and,

ξS,i
∆
= col

{
ξ1,i, . . . , ξNgS ,i

}
(3.122)

ξR,i
∆
= col

{
ξNgS+1,i, . . . , ξN,i

}
(3.123)

Recall that we defined the vectors µS,i(θ) in (3.19) and µR,i(θ) in (3.15). Then, we have

µS,i(θ)
µR,i(θ)

 = AT

µS,i−1(θ)

µR,i−1(θ)

+ γmax

hS,i(θ, ξS,i)
hR,i(θ, ξR,i)

 (3.124)

Using the structure of A in (3.5), it follows that

µR,i(θ) = TT
RRµR,i−1(θ) + TT

SRµS,i−1(θ) + γmax

(
TT
SRhS,i(θ, ξS,i) + TT

RRhR,i(θ, ξR,i)
)

(3.125)

We study the convergence of this recursion. Let

ζS
∆
= col

{
ζ1, . . . , ζNgS

}
, ζR

∆
= col

{
ζNgS+1, . . . , ζN

}
(3.126)

We will first establish that

γmax

(
TT
SRhS,i(θ, ζS) + TT

RRhR,i(θ, ζR)
)

= O(γmax) (3.127)

for any θ, ζS and ζR.
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Lemma 6. For any k ∈ N , i ≥ 0, θ ∈ Θ and ζk ∈ Zk, it holds that

|hk,i(θ, ζk)| ≤ 1 (3.128)

Proof. From (3.117),

hk,i(θ, ζk) = τk,i

(
µk,i−1(θ)Lk(ζk|θ)∑
θ′ µk,i−1(θ′)Lk(ζk|θ′)

− µk,i−1(θ)

)
(3.129)

Since τk,i is a nonnegative scalar that is less than one, and since

0 ≤
µk,i−1(θ)Lk(ζk|θ)∑
θ′ µk,i−1(θ′)Lk(ζk|θ′)

≤ 1 (3.130)

for any k ∈ N , i ≥ 0, θ ∈ Θ and ζk ∈ Zk, we conclude that

hk,i(θ, ζk) ≥ −τk,iµk,i−1(θ) ≥ −µk,i−1(θ) (3.131)

and

hk,i(θ, ζk) ≤ τk,i
(
1− µk,i−1(θ)

)
≤ 1− µk,i−1(θ) (3.132)

Moreover, we know that 0 ≤ µk,i(θ) ≤ 1 for all k, i and θ. We then conclude that

− 1 ≤ hk,i(θ, ζk) ≤ 1 (3.133)

From (3.128), we get for any i ≥ 0 and θ ∈ Θ,

∣∣TT
SRhS,i(θ, ζS) + TT

RRhR,i(θ, ζR)
∣∣ � TT

SR|hS,i(θ, ζS)|+ TT
RR|hR,i(θ, ζR)|

(a)

� TT
SR1NgS

+ TT
RR1NgR

(b)
= 1NgR

(3.134)

where (a) follows from (3.128) and (b) follows from the left-stochasticity of the combination

matrix A. Note that the above inequality, as well as the absolute value operator, are element-
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wise. Moreover, 1NgR
is a vector of all ones of size NgR and 1NgS

is a vector of all ones of

size NgS. Thus,

γmax

∣∣TT
SRhS,i(θ, ζS) + TT

RRhR,i(θ, ζR)
∣∣ � γmax1NgR

(3.135)

for all i ≥ 0. This fact leads to the desired conclusion (3.127). In this way, equality (3.125)

implies:

µR,i(θ) � TT
RRµR,i−1(θ) + TT

SRµS,i−1(θ) + γmax1NgR

µR,i(θ) � TT
RRµR,i−1(θ) + TT

SRµS,i−1(θ)− γmax1NgR
(3.136)

We have ρ(TT
RR) < 1 and limi→∞µS,i(θ) exists since agents of sending sub-networks can learn

asymptotically the truth. Then,

lim sup
i→∞

µR,i(θ) � TT
RR

(
lim sup
i→∞

µR,i−1(θ)

)
+ TT

SR

(
lim
i→∞

µS,i−1(θ)
)

+ γmax1NgR

lim inf
i→∞

µR,i(θ) � TT
RR

(
lim inf
i→∞

µR,i−1(θ)
)

+ TT
SR

(
lim
i→∞

µS,i−1(θ)
)
− γmax1NgR

(3.137)

It follows that

lim sup
i→∞

µR,i(θ) � WT
(

lim
i→∞

µS,i(θ)
)

+ γmaxC1NgR

lim inf
i→∞

µR,i(θ) � WT
(

lim
i→∞

µS,i(θ)
)
− γmaxC1NgR

(3.138)

where C = (I − TT
RR)−1. �
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CHAPTER 4

Belief Control Mechanism

Expression (3.20) shows how the limiting distributions of the sending sub-networks determine

the limiting distributions of the receiving sub-networks through the matrix WT. In other

words, it indicates how influential agents (from within the sending sub-networks) can control

the steady-state beliefs of receiving agents. Two critical questions arise at this stage: (a)

first, how much freedom do influential agents have in controlling the beliefs of the receiving

agents? That is, can receiving agents be driven to arbitrary beliefs or does the network

structure limit the scope of control by the influential agents? and (b) second, even if there is

a limit to what influential agents can accomplish, how can they ensure that receiving agents

will end up with particular beliefs? Questions (a) and (b) raise interesting possibilities about

belief (or what we will sometimes refer to as “mind”) control. In the next sections, we will

address these questions and we will end up with the conditions that allow influential agents

to drive other agents to endorse particular beliefs regardless of their local observations (or

“convictions”).

Observe from expression (3.24) that the limiting beliefs of receiving agents depend on the

columns of W = TSR (I − TRR)−1. Note also that the entries of W are determined by the

internal combination weights within the receiving networks (i.e., TRR), and the combination

weights from the S to the R sub-networks (i.e., TSR). The question we would like to examine

now is that given a set of desired beliefs for the receiving agents, is this set always attainable?

Or does the internal structure of the receiving sub-networks impose limitations on where their

beliefs can be driven to? To answer this useful question, we consider the following problem

setting. Let qk(θ) denote some desired limiting distribution for receiving agent k (i.e., qk(θ)

denotes what we desire the limiting distribution µk,i(θ) in (3.24) to become as i→∞). We
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would like to examine whether it is possible to force agent k to converge to any qk(θ), i.e.,

whether it is possible to find a matrix TSR so that the belief of receiving agent k converges

to this specific qk(θ).

4.1 Motivation

In this first approach, we are interested in designing TSR while TRR is assumed fixed and

known. This scenario allows us to understand in what ways the internal structure of the

receiving networks limits the effect of external influence by the sending sub-networks. This

approach also allows us to examine the range of belief control over the receiving sub-networks

(i.e., how much freedom the sending sub-networks have in selecting these beliefs). Note that

the entries of TSR correspond to weights by which the receiving agents scale information

from the sending sub-networks. These weights are set by the receiving agents and, therefore,

are not under the direct control of the sending sub-networks. As such, it is fair to question

whether it is useful to pursue a design procedure for selecting TSR since its entries are not

under the direct control of the designer or the sending sub-networks. The useful point to

note here, however, is that the entries of TSR, although set by the receiving agents, can still

be interpreted as a measure of the level of trust that receiving agents have in the sending

agents they are connected to. The higher this level of confidence is between two agents, the

larger the value of the scaling weight on the link connecting them. In many applications,

these levels of confidence (and, therefore, the resulting scaling weights) can be influenced by

external campaigns (e.g., through advertisement or by way of reputation). In this way, we

can interpret the problem of designing TSR as a way to guide the campaign that influences

receiving agents to set their scaling weights to desirable values. The argument will show that

by influencing and knowing TSR, sending agents end up controlling the beliefs of receiving

agents in desirable ways. For the analysis in the sequel, note that by fixing TRR and designing

TSR, we are in effect fixing the sum of each column of TSR and, accordingly, fixing the overall

external influence on each receiving agent. In this way, the problem of designing TSR amounts

to deciding on how much influence each individual sub-network should have in driving the
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beliefs of the receiving sub-networks.

4.2 Conditions for Attainable Beliefs

Given these considerations, let us now show how to design TSR to attain certain beliefs. As is

already evident from (3.24), the desired belief qk(θ) at any agent k needs to be a probability

distribution defined over the true states of all sending sub-networks, Θ• = {θ◦1, θ◦2, . . . , θ◦S}.

We assume, without loss of generality, that the true states of the sending sub-networks are

distinct, so that |Θ•| = S. If two or more sending sub-networks have the same true state,

we can merge them together and treat them as corresponding to one sending sub-network;

although this enlarged component is not necessarily connected, it nevertheless consists of

strongly-connected elements and the same arguments and conclusions will apply.

We collect the desired limiting beliefs for all receiving agents into the vector:

qR(θ)
∆
=


qNgS+1(θ)

qNgS+2(θ)
...

qN(θ)

 (4.1)

which has length NgR. Then, from (3.20), we must have:

qTR(θ) =
(

lim
i→∞

µS,i(θ)
)T

W (4.2)

Evaluating this expression at the successive states {θ◦1, θ◦2, . . . , θ◦S}, we get


qTR(θ◦1)

qTR(θ◦2)
...

qTR(θ◦S)


︸ ︷︷ ︸

∆
= QS×NgR

=


1T
N1

0 . . . 0

0 1T
N2

. . . 0
...

...
. . .

...

0 0 . . . 1T
NS


︸ ︷︷ ︸

∆
= ES×NgS

W (4.3)
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where Q is the S×NgR matrix that collects the desired beliefs for all receiving agents. Using

(3.7), we rewrite (4.3) more compactly in matrix form as:

E TSR = Q (I − TRR) (4.4)

Therefore, given Q and TRR, the design problem becomes one of finding a matrix TSR that

satisfies (4.4) subject to the following constraints:

1TTSR + 1TTRR = 1T (4.5)

TSR < 0 (4.6)

tSR,k(j) = 0, if receiving agent k is not

connected to sending agent j (4.7)

The first condition (4.5) is because the entries on each column of A defined in (3.5) add

up to one. The second condition (4.6) ensures that each element of TSR is a non-negative

combination weight. The third condition (4.7) takes into account the network structure,

where tSR,k represents the column of TSR that corresponds to receiving agent k, and tSR,k(j)

represents the jth entry of this column (which corresponds to sending agent j–see Fig. 4.2.1).

In other words, if receiving agent k is not connected to sending agent j, the corresponding

entry in TSR should be zero.

Figure 4.2.1: An illustration of the k−th column of TSR and the j−th entry on that column.

It is useful to note that condition (4.5) is actually unnecessary and can be removed. This

is because if we can find TSR that satisfies (4.4), then condition (4.5) will be automatically

satisfied. To see this, we first sum the elements of the columns on the left-hand side of (4.4)
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and observe that

1T
SETSR = 1TTSR (4.8)

We then sum the elements of the columns on the right-hand side of (4.4) to get

1T
S (Q−QTRR) = 1T − 1TTRR (4.9)

This is because 1T
SQ = 1T

NgR
since the entries on each column of Q add up to one. Thus,

equating (4.8) and (4.9), we find that (4.5) must hold. The problem we are attempting to

solve is then equivalent to finding TSR that satisfies (4.4) subject to

TSR < 0 (4.10)

tSR,k(j) = 0, if receiving agent k is not

connected to sending agent j (4.11)

To find TSR that satisfies (4.4) under the constraints (4.10)-(4.11), we can solve separately

for each column of TSR. Let tRR,k and qk, respectively, denote the columns of TRR and Q that

correspond to receiving agent k. Then, relations (4.4) and (4.10)–(4.11) imply that column

tSR,k must satisfy:

EtSR,k = qk −QtRR,k (4.12)

subject to

tSR,k < 0 (4.13)

tSR,k(j) = 0, if receiving agent k is not

connected to sending agent j (4.14)

The problem is then equivalent to finding tSR,k for each receiving agent k such that tSR,k
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satisfies (4.12)-(4.14). For Q to be attainable (i.e., for the beliefs of all receiving agents to

converge to the desired beliefs), finding such tSR,k should be possible for each receiving agent

k. However, finding tSR,k that satisfies (4.12) under the constraints (4.13)-(4.14) may not

be always possible. The desired belief matrix Q will need to satisfy certain conditions so

that it is not possible to drive the receiving agents to any belief matrix Q. Before stating

these conditions, we introduce two auxiliary matrices. We define first the following difference

matrix, which appears on the right-hand side of (4.4) — this matrix is known:

V
∆
= Q(I − TRR) (4.15)

Note that V has dimensions S×NgR. The k−th column of V , which we denote by vk appears

on the right-hand side of (4.12), i.e.,

vk = qk −QtRR,k (4.16)

The (s, k)−th entry of V is then:

vk(s) = qk(θ
◦
s)−

NgR∑
`=1

tRR,k(`)qNgS+`(θ
◦
s) (4.17)

Each (s, k)−th entry of V represents the difference between the desired limiting belief

at θ◦s of receiving agent k and a weighted combination of the desired limiting beliefs of its

neighboring receiving agents. We remark that this sum includes agent k if tRR,k(k) is not

zero. Similarly, it includes any receiving agent ` if tRR,k(`) is not zero. In this way, the sum

runs only over the neighbors of agent k, because any agent ` that is not a neighbor of agent

k has its corresponding entry in tRR,k as zero.

Let C denote an S × NgR binary matrix, with as many rows as the number of sending

sub-networks and as many columns as the number of receiving agents. The matrix C is an

indicator matrix that specifies whether a receiving agent is connected or not to a sending

sub-network. The (s, k)−th entry of C is one if receiving agent k is connected to sending
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sub-network s; otherwise, it is zero. We are now ready to state when a given set of desired

beliefs is attainable.

Theorem 5. (Attainable Beliefs) A given belief matrix Q is attainable if, and only if,

the entries of V will be zero wherever the entries of C are zero, and the entries of V will be

positive wherever the entries of C are one. �

Before proving theorem 1, we first clarify its statement. For Q to be achievable, the

matrices V and C must have the same structure with the unit entries of C translated into

positive entries in V . This theorem reveals two possible cases for each receiving agent k and

gives, for each case, the condition required for the desired beliefs to be attainable.

In the first case, receiving agent k is not connected to any agent of sending sub-network s

(the (s, k)−th entry of C is zero). Then, according to Theorem 1, receiving agent k achieves

its desired limiting belief qk(θ
◦
s) if, and only if,

vk(s) = qk(θ
◦
s)−

NgR∑
`=1

tRR,k(`)qNgS+`(θ
◦
s) = 0 (4.18)

That is, the cumulative influence from the agent’s neighbors must match the desired limiting

belief.

In the second case, receiving agent k is connected to at least one agent of sending sub-

network s (the (s, k)−th entry of C is one). Now, according to Theorem 1 again, receiving

agent k achieves its desired limiting belief qk(θ
◦
s) if, and only if,

vk(s) = qk(θ
◦
s)−

NgR∑
`=1

tRR,k(`)qNgS+`(θ
◦
s) > 0 (4.19)

Proof of Theorem 1. We start by first proving that if Q is attainable, then V and C have

the same structure. If Q is attainable, then there exists tSR,k for each receiving agent k that

satisfies (4.12)-(4.14). Using the definition of E in (4.3), the s−th row on the left-hand side
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of (4.12) is:

∑
j∈Is

tSR,k(j) (4.20)

where Is represents the set of indexes of sending agents that belong to sending sub-network

s. Expression (4.20) represents the sum of the elements of the block of tSR,k that correspond

to sending sub-network s. Therefore, if Q is attainable, then the s−th row of (4.12) satisfies

the following relation:

∑
j∈Is

tSR,k(j) = vk(s) (4.21)

From this relation, we see that if agent k is not connected to any agent in sub-network s,

then
∑

j∈Is tSR,k(j) = 0 which implies that vk(s) is zero. On the other hand, if agent k is

connected to sub-network s, then
∑

j∈Is tSR,k(j) > 0 which implies that vk(s) > 0. In other

words, C and V have the same structure.

Conversely, if C and V have the same structure, then it is possible to find tSR,k for each

receiving agent k that satisfies (4.12)-(4.14). In particular, if agent k is not connected to sub-

network s, then the (s, k)-th entry of C is zero. Since C and V have the same structure, then

vk(s) = 0 . By setting to zero the entries of tSR,k that correspond to sending sub-network

s, relation (4.21) is satisfied. On the other hand, if agent k is connected to sub-network

s (connected to at least one agent in sub-network s), then the (s, k)-th entry of C is one.

Since C and V have the same structure, we get vk(s) > 0. Therefore, since the entries of

tSR,k must be non-negative, we first set to zero the entries of tSR,k that correspond to agents

of sub-network s that are not connected to agent k and the remaining entries can be set to

non-negative values such that relation (4.21) is satisfied. That is, if C and V have the same

structure, then Q is attainable.

We next move to characterize the set of solutions, i.e., how we can design tSR,k assuming

the conditions on V are met.
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4.3 Characterizing the Set of Possible Solutions

In the sequel, we assume that the conditions on V from Theorem 1 are satisfied. That is, if

receiving agent k is not connected to sub-network s, then vk(s) = 0. Otherwise, vk(s) > 0.

The desired beliefs are then attainable. This means that for each receiving agent k, we

can find tSR,k that satisfies (4.12)-(4.14). Many solutions may exist. In this section, we

characterize the set of possible solutions.

First of all, to meet (4.11), we set the required entries of tSR,k to zero. We then remove

the corresponding columns of E, and label the reduced E by Ek. Similarly, we remove the

zero elements of tSR,k and label the reduced tSR,k by t′SR,k. On the other hand, if agent k is

not connected to some sub-network s, then the corresponding row in E will be removed and

Ek will have fewer number of rows, denoted by S ′. Without loss of generality, we assume

agent k is connected to the first S ′ sending sub-networks. We denote by Nk
s the number

of agents of sending sub-network s that are connected to receiving agent k and by Nk
gS the

total number of all sending agents connected to agent k. The matrix Ek will then have the

form (this matrix is obtained from E by removing rows and columns with zero entries; the

resulting dimensions are now denoted by S ′ and Nk
gS):

Ek =


1T
Nk

1
0 . . . 0

0 1T
Nk

2
. . . 0

...
...

. . .
...

0 0 . . . 1T
Nk

S′


S′×Nk

gS

(4.22)

Note that if receiving agent k is connected to all sending sub-networks, then E and Ek will

have the same number of rows, S ′ = S. In the case where agent k is not connected to some

sub-network s, condition (4.18) should be satisfied, and the corresponding row in qk−QtRR,k

should be removed to obtain the reduced vector q′k − Q′tRR,k. We are therefore reduced to

83



determining t′SR,k by solving a system of equations of the form:

Ekt
′
SR,k = q′k −Q′tRR,k (4.23)

subject to

t′SR,k < 0 (4.24)

We can still have some of the entries of the solution t′SR,k turn out to be zero. Now note that

the number of rows of Ek is S ′ (number of sending sub-networks connected to k), which is

always smaller than or equal to Nk
gS. Moreover, the rows of Ek are linearly independent and

thus Ek is a right-invertible matrix. Its right-inverse is given by [77]:

ER
k = ET

k

(
EkE

T
k

)−1
(4.25)

Therefore, if we ignore condition (4.24) for now, then equation (4.23) has an infinite number

of solutions parametrized by the expression [77]:

t′SR,k = ER
k (q′k −Q′tRR,k) + (I − ER

k Ek)y (4.26)

where y is an arbitrary vector of length Nk
gS. We still need to satisfy condition (4.24). Let

v′k
∆
= q′k −Q′tRR,k (4.27)

and note that

ER
k v
′
k =



v′k(1)

Nk
1
1Nk

1

v′k(2)

Nk
2
1Nk

2

...

v′k(S′)

Nk
S′
1Nk

S′


(4.28)
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where v′k(i) represents the ith entry of vector v′k. Likewise,

I − ET
k

(
EkE

T
k

)−1
Ek = diag

{
INk

1
− 1

Nk
1

1Nk
1
1T
Nk

1
, INk

2
− 1

Nk
2

1Nk
2
1T
Nk

2
, · · · INk

S′
− 1

Nk
S′
1Nk

S′
1T
Nk

S′

}
(4.29)

and if we partition y into sub-vectors as

y =


yNk

1

yNk
2

...

yNk
S′

 (4.30)

then expression (4.26) becomes:

t′SR,k =



v′k(1)

Nk
1
1Nk

1

v′k(2)

Nk
2
1Nk

2

...

v′k(S′)

Nk
S′
1Nk

S′


+



(
INk

1
− 1

Nk
1
1Nk

1
1T
Nk

1

)
yNk

1(
INk

2
− 1

Nk
2
1Nk

2
1T
Nk

2

)
yNk

2

...(
INk

S′
− 1

Nk
S′
1Nk

S′
1T
Nk

S′

)
yNk

S′


(4.31)

This represents the general form of all possible solutions, but from these solutions we want

only those which are nonnegative in order to satisfy condition (4.24). From (4.31), the vector

t′SR,k is partitioned into multiple blocks, where each block has the form:

v′k(s)

Nk
s

1Nk
s

+

(
INk

s
− 1

Nk
s

1Nk
s
1T
Nk

s

)
yNk

s
(4.32)

We already have from the conditions of attainable beliefs (4.19) that v′k(s) > 0. Therefore,

we can choose yNk
s

as zero or set it to arbitrary values as long as (4.32) stays non-negative.

We also know that for the beliefs to be attainable, we cannot have v′k(s) < 0. Otherwise,

no solution can be found. Indeed, if v′k(s) < 0, then to make (4.32) non-negative, we would
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need to select yNk
s

such that:

(
INk

s
− 1

Nk
s

1Nk
s
1T
Nk

s

)
yNk

s
� −v

′
k(s)

Nk
s

1Nk
s

(4.33)

However, there is no yNk
s

that satisfies this relation because if we sum the elements of the

vector on the left-hand side of (4.33), we obtain:

1T
Nk

s

(
INk

s
− 1

Nk
s

1Nk
s
1T
Nk

s

)
yNk

s
= 0 (4.34)

While if we sum the elements of the vector on the right-hand side of (4.33), we obtain:

−v
′
k(s)

Nk
s

1T
Nk

s
1Nk

s
= −v′k(s) > 0 (4.35)

This means that we cannot find t′SR,k such that t′SR,k � 0 when any of the entries of v′k or

q′k −Q′tRR,k is negative.

In summary, we have established the validity of the following statement.

Theorem 6. Assume receiving agent k is connected to Nk
s agents in sending sub-network

s. If vk(s) > 0, then all possible choices for the weights from sending agents in network s to

receiving agent k are parameterized as:

v′k(s)

Nk
s

1Nk
s

+

(
INk

s
− 1

Nk
s

1Nk
s
1T
Nk

s

)
yNk

s
(4.36)

where yNk
s

is an arbitrary vector of length Nk
s chosen so that (4.36) stays non-negative. �

4.4 Enforcing Uniform Beliefs

In this section, we explore one special case of attainable beliefs, which is driving all receiving

agents towards the same belief. In this case, Q is of the following form:

Q = q1T
NgR

(4.37)
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for some column q that represents the desired limiting belief (the entries of q are non-

negative and add up to one). We verify that the conditions that ensure that uniform beliefs

are attainable by all receiving agents. In this case, vk is of the following form:

vk = qk −QtRR,k = (1− 1T
NgR

tRR,k)q (4.38)

and the (s, k)-th entry of V is:

vk(s) = (1− 1T
NgR

tRR,k)q(θ
◦
s) (4.39)

Now we know that 1−1T
NgR

tRR,k > 0 when agent k is connected to at least one agent from any

sending sub-network, and that 1 − 1T
NgR

tRR,k = 0 when it is not connected to any sending

sub-network. In the second case where 1 − 1T
NgR

tRR,k = 0, expression (4.39) implies that

vk(s) = 0 for any s. Therefore, in this case, we have agent k not connected to any sending

sub-network s and vk(s) = 0 for any s, and condition (4.18) is satisfied. In the first case

where 1 − 1T
NgR

tRR,k > 0 (i.e., agent k is connected to some sending sub-networks but not

necessarily to all of them), expression (4.39) implies that vk(s) > 0 no matter whether agent

k is connected or not to sending sub-network s. However, when agent k is not connected

to sending sub-network s, condition (4.18) requires that vk(s) = 0 for agent k to achieve its

desired belief at θ◦s . In summary, we arrive at the following conclusion.

Lemma 7. For the scenario of uniform beliefs to be attainable, agent k should be connected

either to all sending sub-networks or to none of them.

We next illustrate the results with two examples.

4.4.1 Example 1

Consider the network shown in Fig. 4.4.1. It consists of N = 8 agents, two sending sub-

networks and one receiving sub-network, with the following combination matrix:
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A =



0.2 0.2 0.8 0 0 0 0 ×

0.5 0.4 0.1 0 0 × 0 0

0.3 0.4 0.1 0 0 × × 0

0 0 0 0.4 0.3 × 0 ×

0 0 0 0.6 0.7 0 × 0

0 0 0 0 0 0.2 0.3 0.2

0 0 0 0 0 0.1 0.2 0.3

0 0 0 0 0 0.1 0.2 0.1



(4.40)

Figure 4.4.1: A weakly connected network consisting of three sub-networks in a broadband influ-

ence scenario.

We assume that there are 3 possible states Θ = {θ◦1, θ◦2, θ◦3}, where θ◦1 is the true event

for the first sending sub-network, θ◦2 is the true event for the second sending sub-network,

and θ◦3 is the true event for the receiving sub-network.

Let us first design TSR so that all receiving agents’ beliefs converge to the same belief

over {θo1, θo2}, say:

q =

 0.2

0.8

 (4.41)

We determine the columns of TSR one at a time. Starting with agent 6, we focus on the first

column of TSR. The vector v6 defined in (4.27) is given by (4.38) for the case of uniform
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beliefs. Therefore,

v6 = 0.6q =

 0.12

0.48

 (4.42)

Thus, according to (4.31),

t′SR,6 =

 v6(1)
2
12

v6(2)

+

 I2 − 1
2
121

T
2

1− 1
1
111

T
1

 y (4.43)

where y is an arbitrary vector of length 3. Note that t′SR,6 represents respectively the coeffi-

cients of agents 2, 3 and 4 that are linked to agent 6. It follows that

t′SR,6 =


0.06

0.06

0.48

+


1
2
y(1)− 1

2
y(2)

−1
2
y(1) + 1

2
y(2)

0

 (4.44)

Let α6
∆
= 1

2
y(1)− 1

2
y(2) so that

t′SR,6 =


0.06 + α6

0.06− α6

0.48

 (4.45)

In order to have positive entries for t′SR,6, we can choose |α6| ≤ 0.06.

Now for agent 7, the vector v7 is given by

v7 = 0.3q =

 0.06

0.24

 (4.46)

89



so that

t′SR,7 =

 v7(1)

v7(2)

 =

 0.06

0.24

 (4.47)

The entries t′SR,7 represent respectively the coefficients of agents 3 and 5 that are linked to

agent 7.

Next for agent 8, we have

v8 = 0.4q =

 0.08

0.32

 (4.48)

so that

t′SR,8 =

 v8(1)

v8(2)

 =

 0.08

0.32

 (4.49)

Therefore, one possible solution is

TSR =



0 0 0.08

0.06 0 0

0.06 0.06 0

0.48 0 0.32

0 0.24 0


(4.50)

To verify that the beliefs of the receiving agents converge in this case to the desired belief,

we compute the matrix WT from (3.7):

WT = (I − TT
RR)−1TT

SR

=


0.0169 0.0839 0.0992 0.7390 0.0610

0.0322 0.0394 0.1284 0.4441 0.3559

0.1034 0.0318 0.0648 0.6678 0.1322

 (4.51)
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Then, according to (3.24), we can compute the belief at θ◦1 for each receiving agent at steady

state, by taking the first block in the agent’s corresponding row and summing its elements:

lim
i→∞

µk,i(θ
◦
1) =


0.0169 + 0.0839 + 0.0992 = 0.2, k = 6

0.0322 + 0.0394 + 0.1284 = 0.2, k = 7

0.1034 + 0.0318 + 0.0648 = 0.2, k = 8

Likewise, we can compute the belief at θ◦2 for each receiving agent at steady state, by taking

the second block in the agent’s corresponding row and summing its elements:

lim
i→∞

µk,i(θ
◦
2) =


0.7390 + 0.0610 = 0.8, k = 6

0.4441 + 0.3559 = 0.8, k = 7

0.6678 + 0.1322 = 0.8, k = 8

Let us now consider the case where we want to design TSR so that the desired limiting beliefs

are not necessarily uniform but rather

Q =

 0.8 0.7 0.75

0.2 0.3 0.25

 (4.52)

Note that now the beliefs are different from an agent to another, but they are still close.

Computing,

vk = qk −QtRR,k (4.53)
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for each receiving agent k, we obtain:

v6 = q6 −QtRR,6 =

 0.495

0.105

 (4.54)

v7 = q7 −QtRR,7 =

 0.17

0.13

 (4.55)

v8 = q8 −QtRR,8 =

 0.305

0.195

 (4.56)

Therefore, one possible TSR is

TSR =



0 0 0.305

0.495/2 0 0

0.495/2 0.17 0

0.105 0 0.195

0 0.13 0


(4.57)

Let us now consider the case where the desired limiting beliefs are more dispersed, such as

Q =

 0.8 0.2 0.3

0.2 0.8 0.7

 (4.58)

In this case for agent 7, we have

v7 = q7 −QtRR,7 =

 −0.14

0.44

 (4.59)

with a negative first entry. Therefore, the desired belief for agent 7 cannot be attained.
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4.4.2 Example 2

Consider now the network shown in Fig. 4.4.2 with the following combination matrix

A =



0.2 0.2 0.8 0 0 0 0 ×

0.5 0.4 0.1 0 0 × 0 ×

0.3 0.4 0.1 0 0 × × 0

0 0 0 0.4 0.3 × 0 0

0 0 0 0.6 0.7 0 × 0

0 0 0 0 0 0.2 0.3 0.1

0 0 0 0 0 0.1 0.2 0.6

0 0 0 0 0 0.1 0.2 0



(4.60)

Figure 4.4.2: A weakly connected network consisting of three sub-networks.

Let us consider the case where we want to design TSR so that the desired limiting beliefs are

as follows:

Q =

 0.8 0.7 0.8

0.2 0.3 0.2

 (4.61)

Computing,

vk = qk −QtRR,k (4.62)
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for each receiving agent k, we obtain:

v6 = q6 −QtRR,6 =

 0.49

0.11

 (4.63)

v7 = q7 −QtRR,7 =

 0.16

0.14

 (4.64)

v8 = q8 −QtRR,8 =

 0.3

0

 (4.65)

Note that in this example, agent 8 is not connected to the second sending sub-network, but

the controlling scheme can still work because condition (4.18) is satisfied. Therefore, one

possible choice for TSR is the following:

TSR =



0 0 0.3/2

0.49/2 0 0.3/2

0.49/2 0.16 0

0.11 0 0

0 0.14 0


(4.66)

To verify that the beliefs of the agents converge in this case to the desired belief, we compute

WT from (3.7) and use (3.24) to determine the limiting beliefs at θo1 and θo2 at the receiving

agents. This calculation gives

lim
i→∞

µk,i(θ
◦
1) =


0.0309 + 0.3737 + 0.3954 = 0.8, k = 6

0.0586 + 0.2200 + 0.4214 = 0.7, k = 7

0.1883 + 0.3193 + 0.2924 = 0.8, k = 8

and

lim
i→∞

µk,i(θ
◦
2) =


0.1539 + 0.046 = 0.2, k = 6

0.0724 + 0.2276 = 0.3, k = 7

0.0588 + 0.1412 = 0.2, k = 8

94



4.5 Joint Design of TRR and TSR

In the previous sections, we analyzed the conditions that drive receiving agents to desired

beliefs. The approach relies on determining the entries of the weighting matrix TSR from

knowledge of Q (the desired beliefs) and TRR (the internal weighting structure within the

receiving sub-networks). We saw how there is limitation to where the beliefs of receiving

agents can converge. In particular, the internal combination of receiving sub-networks con-

tribute to this limitation. We now examine the problem of designing TSR and TRR jointly, to

see whether by having more freedom in choosing the coefficients of TRR, we still encounter

limitations on how to influence the receiving agents. We assume that we know the number

of receiving sub-networks and the number of agents in each of these sub-networks. Using

(4.4), we have

[
E Q

]
︸ ︷︷ ︸

∆
= B

 TSR

TRR

 = Q (4.67)

Therefore, given Q (the desired limiting beliefs of the receiving agents), the design problem

becomes one of finding matrices TSR and TRR that satisfy (4.67) subject to the following

constraints:

1TTSR+1TTRR = 1T (4.68)

TSR,k(j) = 0, if sending agent j does not feed into k

TSR,k(j) ≥ 0, otherwise (4.69)

TRR,k(j) = 0, if receiving agent j does not feed into k

TRR,k(j) > 0, otherwise (4.70)

In the last condition (4.70), we are requiring TRR,k(j) to be strictly positive if receiving agent

j feeds into k. This is in order to avoid solutions where the receiving sub-networks become

unconnected. For instance, consider the example shown in Fig. 4.5.1. This figure shows a

95



case where agent k is connected to all sending sub-networks, and it depicts only the incoming

links into agent k. Let us assume that the desired limiting belief for agent k is

 qk(θ
◦
1)

qk(θ
◦
2)

 =

 0.1

0.9

 (4.71)

Then a possible solution to (4.67) is to assign zero as weights for the data originating from

its receiving neighbors, 0.1 for the data received from sending agent 1, and 0.9 for the data

received from sending agent 2. Then, for this example,

E =

 1 0

0 1

 , Q =

 0.1 q4(θ◦1) q5(θ◦1)

0.9 q4(θ◦2) q5(θ◦2)

 , TSR =

 0.1

0.9

 , TRR =


0

0

0

 (4.72)

so that (4.67) is satisfied. However, this solution affects the connectedness of the receiving

sub-network of agent k, because there will be no path that leads to this agent.

Figure 4.5.1: An example where the receiving network of agent k ends up being disconnected.

To find TSR and TRR satisfying (4.67)-(4.70), we can solve separately for each of their

columns. If it is possible to find a solution for each column, then Q is attainable. We

explore next the possibility of finding solutions for each column. Similarly to the previous

section, tSR,k and tRR,k respectively represent the columns of TSR and TRR that correspond

to receiving agent k, and tSR,k(j) and tRR,k(j) respectively represent the j−th entries of this
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tSR,k and tRR,k. Also qk denote the column of Q that corresponds to receiving agent k. Then,

relations (4.67) and (4.69)–(4.70) imply that the columns tSR,k and tRR,k must satisfy:

[
E Q

]
︸ ︷︷ ︸

=B

 tSR,k

tRR,k

 = qk (4.73)

subject to

1TtSR,k+1
TtRR,k = 1 (4.74)

tSR,k(j) = 0, if j does not feed k

tSR,k(j) ≥ 0, otherwise (4.75)

tRR,k(j) = 0, if j does not feed k

tRR,k(j) > 0, otherwise (4.76)

Since the connections within the sending and receiving networks are known, but not the

combination weights TSR and TRR whose values we are seeking, we can then set to zero the

entries of tSR,k and tRR,k that correspond to unlinked agents. We remove these zero entries

and relabel the vectors as t′SR,k and t′RR,k. We also remove the corresponding columns of

E and Q, and label the modified E and Q by Ek and Qk. We are therefore reduced to

determining t′SR,k and t′RR,k by solving a system of equations of the form:

[
Ek Qk

]
︸ ︷︷ ︸

∆
= Bk

 t′SR,k

t′RR,k

 = qk (4.77)
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subject to

1Tt′SR,k+1
Tt′RR,k = 1 (4.78)

t′SR,k < 0 (4.79)

t′RR,k � 0 (4.80)

Formulation (4.77)-(4.80) has the following interpretation. After some sufficient time i ≥ I,

we know that the beliefs of all agents will approach some limiting beliefs, and based on the

results of the previous work [64], the belief update (2.8) approaches for i ≥ I,


ψk,i+1(θ) = µk,i(θ)

µk,i+1(θ) =
∑
`∈Nk

a`kψ`,i+1(θ) =
∑
`∈Nk

a`k µ`,i(θ)
(4.81)

This means that:

lim
i→∞

µk,i(θ) =
∑
`∈Nk

a`k

(
lim
i→∞

µ`,i(θ)
)

(4.82)

In other words, if we want the beliefs of the receiving agents to converge to some belief vector

q, then we need to make sure that these desired beliefs satisfy the relationship:

qk(θ) =
∑
`∈Nk

a`kq`(θ) (4.83)

for any θ ∈ {θ◦1, · · · , θ◦S} and for all receiving agents k. In other words, given the set of

desirable beliefs, we would like to know if it is possible to express the desired limiting belief

for each receiving agent k as a convex combination of the limiting beliefs of its receiving

neighbors and the limiting beliefs of the sending agents to which agent k is connected. If

this is possible for each agent k, then Q is attainable, i.e., all receiving agents can reach their

desired limiting beliefs. This is precisely what the formulation (4.77)–(4.80) is attempting

to enforce, by finding suitable coefficients such that (4.83) is satisfied. Finding t′SR,k and

t′RR,k that satisfy (4.77) and constraints (4.78)-(4.80) might not be always possible. Since
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each agent k can be connected to all sending sub-networks, or to some of them or to none

of them, the matrix Ek that appears in (4.77) will have a different form for each of these

cases, which will affect the possibility of finding a solution. Before analyzing how the three

possible cases affect the possibility of finding a solution, we summarize first the results:

1. Agent k is connected to all sending sub-networks: the problem reduces to finding t′RR,k

that satisfies (4.92a) and (4.92b, which always has a solution;

2. Agent k is connected to some sending sub-networks: the problem reduces to finding

t′RR,k that satisfies conditions (4.100a)-(4.100c), which may not always have a solution;

3. Agent k is not connected to any sending sub-network: the problem reduces to finding

t′RR,k that satisfies conditions (4.107a)-(4.107c), which may not always have a solution.

Note that relations (4.92a) and (4.100a) are what condition (4.19) required when we

wanted to design TSR, for the case where agent k is connected to sending sub-network s,

when TRR was given. Similarly, relations (4.100b) and (4.107a) are what condition (4.18)

required when we wanted to design tSR,k, for the case where agent k is not connected to

sending sub-network s, when TRR was given. In the earlier section, we had to make sure that

the given TRR satisfies (4.18) and (4.19) for Q to be attainable. Here, we are designing for

TRR as well, and we need to make sure that the entries we choose satisfy these conditions.

We now analyze each case in detail.

Case 1: Agent k is connected to all sending sub-networks

We discuss first the case where agent k is connected to at least one agent from each sending

sub-network. In this case, Ek will have the following form:

Ek =


1T
Nk

1
0 . . . 0

0 1T
Nk

2
. . . 0

...
...

. . .
...

0 0 . . . 1T
Nk

S

 (4.84)
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and relation (4.77) is then:


1T
Nk

1
0 . . . 0 qk(1)(θ

◦
1) . . . qk(Nk

gR)(θ
◦
1)

0 1T
Nk

2
. . . 0 qk(1)(θ

◦
2) . . . qk(Nk

gR)(θ
◦
2)

...
...

. . .
...

...
. . . . . .

0 0 . . . 1T
Nk

S
qk(1)(θ

◦
s) . . . qk(Nk

gR)(θ
◦
s)


 t′SR,k

t′RR,k

 = qk (4.85)

where qk(j)(θ
◦
s) represents the desired limiting belief at θ◦s for the jth receiving neighbor of

agent k, and Nk
gR is the total number of receiving agents that are neighbors of agent k.

The problem here is to find t′SR,k and t′RR,k that satisfy (4.85) subject to the constraints

(4.78)-(4.79). It is useful to note that if we can find t′SR,k and t′RR,k that satisfy (4.85), then

condition (4.78) will be automatically satisfied. To see this, we first sum the elements of the

vector on the left-hand side of (4.85) and observe that

1T
SBk

 t′SR,k

t′RR,k

 = 1T

 t′SR,k

t′RR,k

 (4.86)

This is because 1T
SBk = 1T since the entries on each column of Bk add up to one. We then

sum the elements of the vector on the right-hand side of (4.85) to get

1T
Sqk = 1 (4.87)

Thus, equating (4.86) and (4.87), we obtain (4.78). The problem we are attempting to solve

is then equivalent to finding t′SR,k and t′RR,k that satisfy (4.85) subject to

t′SR,k < 0 (4.88)

t′RR,k � 0 (4.89)

Now, note that (4.85) consists of S equations and note that the number of variables (i.e.,

the total number of entries of t′SR,k and t′RR,k) is greater than the number of equations.

Each equation relates the entries of t′SR,k that correspond to agents of one of the sending

100



sub-networks to all entries of t′RR,k. In particular, the equation that corresponds to sending

sub-network s has the following form:

∑
`∈Is

t′SR,k(`) = qk(θ
◦
s)−

Nk
gR∑

j=1

qk(j)(θ
◦
s)t
′
RR,k(j) (4.90)

Equation (4.90) shows how the entries of t′SR,k that correspond to agents of sending sub-

network s, are related to the entries of t′RR,k through the values of the desired beliefs at θ◦s .

Therefore, the set of all possible solutions to (4.85) consist of vectors whose entries satisfy

(4.90) for each s. In other words, by arbitrarily fixing the entries of t′RR,k, we compute

the entries of t′SR,k using (4.90) for each s to obtain a solution to (4.85). This is because

(4.85) is made of S equations that only indicate how the entries of t′SR,k that correspond to

each sending sub-network s are related to t′RR,k without having any additional equation for

the entries of t′RR,k. Note that it does not matter how the individual entries of t′SR,k that

correspond to sub-network s are chosen as long as their sum satisfies (4.90). However, in

the problem we are trying to solve, we are not interested in the entire set of solutions to

(4.85). This is because we have two additional constraints (4.88) and (4.89). Therefore, in

our problem we cannot arbitrarily fix the entries of t′RR,k to any values as we need to also

satisfy (4.88) and (4.89). Constraint (4.88) implies that (4.90) should be non-negative for

each sending sub-network s, i.e.,

qk(θ
◦
s) ≥

Nk
gR∑

j=1

qk(j)(θ
◦
s)t
′
RR,k(j) (4.91)

Therefore, the problem reduces to finding t′RR,k that satisfies:

qk(θ
◦
s) ≥

Nk
gR∑

j=1

qk(j)(θ
◦
s)t
′
RR,k(j), ∀s

t′RR,k � 0

(4.92a)

(4.92b)
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If it possible to find t′RR,k that satisfies (4.92a) and (4.92b), then t′SR,k can de determined

using (4.90) and therefore a solution for agent k is found. Finding t′RR,k that satisfies (4.92a)

and (4.92b) is always possible. By appropriately attenuating the entries of t′RR,k, we can have

the right-hand side of (4.92a) smaller than qk(θ
◦
s). For instance, one solution is to assign the

same value εk > 0 to all entries of t′RR,k. Then from (4.92a), we have for each s:

qk(θ
◦
s) ≥ εk

Nk
gR∑

j=1

qk(j)(θ
◦
s) (4.93)

which means that εk should be chosen so that:

0 < εk ≤ min
s

 qk(θ
◦
s)∑Nk

gR

j=1 qk(j)(θ◦s)

 (4.94)

We mentioned that, after finding t′RR,k that satisfies (4.92a) and (4.92b), t′SR,k can be

determined using (4.90). We can alternatively express the solutions of t′SR,k using the same

approach of the previous section. This is because after choosing the entries of t′RR,k, the

problem is now similar to the previous problem of finding tSR,k while tRR,k is given. Therefore,

the solutions for t′SR,k can be also given by (4.31). Note that (4.31) is expressed in terms of

v′k to take into account that agent k may not be connected to some sending sub-networks,

in the earlier section. Since in this case we are focusing on agent k connected to all sending

sub-networks, the solution for t′SR,k is given by (4.31 where vk is used instead of v′k.

In summary, when agent k is connected to all sending sub-networks, the problem can have

an infinite number of solutions. We first find t′RR,k that satisfies (4.92a) and (4.92b). Then,

the entries of t′SR,k are nonnegative values chosen to satisfy (4.90). In other words, when

a receiving agent k is under the direct influence of all sending sub-networks, it is relatively

straightforward to affect its beliefs, especially since the influence from its receiving neighbors

can be attenuated as much as needed through the choice εk.
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Case 2: Agent k is connected to some sending sub-networks

We now consider the case where agent k is influenced by only a subset of the sending networks.

Without loss of generality, we assume it is connected to the first s′ sending sub-networks. In

this case, Ek will have the following form:

Ek =



1T
Nk

1
0 . . . 0

0 1T
Nk

2
. . . 0

...
...

. . .
...

0 0 . . . 1T
Nk

s′

0 0 . . . 0
...

...
...

...

0 0 . . . 0


(4.95)

and relation (4.77) becomes:



1T
Nk

1
0 . . . 0 qk(1)(θ

◦
1) . . . qk(Nk

gR)(θ
◦
1)

0 1T
Nk

2
. . . 0 qk(1)(θ

◦
2) . . . qk(Nk

gR)(θ
◦
2)

...
...

. . .
...

...
. . .

...

0 0 . . . 1T
Nk

s′
qk(1)(θ

◦
s′) . . . qk(Nk

gR)(θ
◦
s′)

0 0 . . . 0 qk(1)(θ
◦
s′+1) . . . qk(Nk

gR)(θ
◦
s′+1)

...
...

...
...

...
...

...

0 0 . . . 0 qk(1)(θ
◦
S) . . . qk(Nk

gR)(θ
◦
S)



 t′SR,k

t′RR,k

 = qk (4.96)

The problem now is to find t′SR,k and t′RR,k that satisfy (4.96) subject to constraints (4.78)-

(4.79). As before, if we can find t′SR,k and t′RR,k that satisfy (4.96), then condition (4.78)

will be automatically satisfied. Note now that (4.96) consists of s′ equations that relate the

entries of t′SR,k to the entries of t′RR,k, and S − s′ equations that involve the entries of t′RR,k.
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Therefore, any vector that satisfies (4.96) will have the following property:

Nk
1∑

`=1

t′SR,k(`) = qk(θ
◦
s)−

Nk
gR∑

j=1

qk(j)(θ
◦
s)t
′
RR,k(j) (4.97)

but only for s ≤ s′. In other words, the entries of t′SR,k that correspond to sub-network s ≤ s′

are expressed in terms of t′RR,k through (4.97). In addition, and differently from case 1, any

solution to (4.96) should also satisfy:

Nk
gR∑

j=1

qk(j)(θ
◦
s)t
′
RR,k(j) = qk(θ

◦
s) (4.98)

for any s > s′. Likewise, constraint (4.88) implies that (4.97) should be non-negative for

each sending sub-network s where s ≤ s′, i.e.,

qk(θ
◦
s) ≥

Nk
gR∑

j=1

qk(j)(θ
◦
s)t
′
RR,k(j) (4.99)

for any s ≤ s′. Therefore, the problem reduces to finding t′RR,k that satisfies:

qk(θ
◦
s) ≥

Nk
gR∑

j=1

qk(j)(θ
◦
s)t
′
RR,k(j), s ≤ s′

qk(θ
◦
s) =

Nk
gR∑

j=1

qk(j)(θ
◦
s)t
′
RR,k(j), s > s′

t′RR,k � 0

(4.100a)

(4.100b)

(4.100c)

If it possible to find t′RR,k that satisfies (4.100a)-(4.100c), then t′SR,k can de determined

using (4.97) or alternatively using (4.31). However, in contrast to the case studied in the

previous case, finding t′RR,k that satisfies conditions (4.100a)-(4.100c) may not be always

possible. For instance, consider agent k shown in Fig. 4.5.2, which is connected to only the

first sending sub-network but not to the other two sending sub-networks.
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Figure 4.5.2: An example where receiving agent k is only connected to one sending sub-network.

Let us consider its desired limiting belief as


qk(θ

◦
1)

qk(θ
◦
2)

qk(θ
◦
3)

 =


0.1

0.45

0.45

 (4.101)

while the desired limiting beliefs for its neighbors are:


q2(θ◦1)

q2(θ◦2)

q2(θ◦3)

 =


0.2

0.5

0.3

 ,

q3(θ◦1)

q3(θ◦2)

q3(θ◦3)

 =


0.1

0.4

0.5

 (4.102)

Then, from (4.100a), we should have:

qk(θ
◦
1) ≥ α2q2(θ◦1) + α3q3(θ◦1) =⇒ 0.1 ≥ 0.2α2 + 0.1α3 (4.103)

and from (4.100b),

qk(θ
◦
2) = α2q2(θ◦2) + α3q3(θ◦2) =⇒ 0.45 = 0.5α2 + 0.4α3 (4.104)

qk(θ
◦
3) = α2q2(θ◦3) + α3q3(θ◦3) =⇒ 0.45 = 0.3α2 + 0.5α3 (4.105)
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Solving (4.104) and (4.105) gives the following solution: α2 = 0.3462 and α3 = 0.6923.

However, 0.2α2 + 0.1α3 = 0.1385, which violates (4.103). Still, we can have cases where

all conditions (4.100a)-(4.100c) can be met (we are going to provide one example in a later

section), then in these cases, we choose t′SR,k according to (4.97).

We observe from this case that the fewer the sending networks that influence agent k,

the harder it is to affect its limiting belief. This emphasizes again the idea that the structure

of the receiving sub-networks helps in limiting external manipulation.

Case 3: Agent k is not connected to any sending sub-networks

When agent k is not connected to any sending sub-network, relation (4.77) reduces to:

Qkt
′
RR,k = qk (4.106)

The problem is then to find t′RR,k that satisfies:

Qkt
′
RR,k = qk

1Tt′RR,k = 1

t′RR,k � 0

(4.107a)

(4.107b)

(4.107c)

This problem might not have an exact solution. For instance, we discuss two examples in

Appendix 4.A, where in the second example, we have an agent that is not connected to any

sending sub-network and its desired belief cannot be expressed as a convex combination of

the desired beliefs of its neighbors.

Comment and analysis

Since the problem of finding TSR and TRR satisfying (4.67)-(4.70) is separable, we studied the

possibility of finding a solution for each column of TSR and TRR. We analyzed the problem

for 3 cases and discovered that for the first case (when agent k is connected to at least one

agent from each sending sub-network), problem (4.77)–(4.80) always has a solution. That
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is, if an agent k is connected to all sending sub-networks and given knowledge of the limiting

beliefs of its neighbors, we can always find the weight combination for agent k such that

(4.83) is satisfied. For the second case (when agent k is connected to some sending sub-

networks) and the third case (when agent k is not connected to any sending sub-network),

we found out that problem (4.77)–(4.80) might not always have a solution, i.e., it is not

always possible to satisfy (4.83). These scenarios reinforce again the idea that the internal

structure of receiving agents can resist some of the external influence.

However, for Q to be achievable (i.e., for the beliefs of all receiving agents converge to

the desired beliefs), a solution must exist for each agent k. If the desired limiting belief of

any receiving agent cannot be written as a convex combination of the limiting beliefs of its

neighbors (i.e., a solution cannot be found for problem (4.77)–(4.80)), the whole scenario is

not achievable. Even if it is possible for agent k to find its appropriate weights t′SR,k and t′RR,k,

finding this solution is based on the knowledge of the desired limiting beliefs of its neighbors.

However, if one of the receiving neighbors cannot reach its desired belief, agent k will not

be able anymore to reach its desired belief. Therefore, for Q to be attainable, a solution for

problem (4.77)–(4.80) must exist for each receiving agent k. If Q is not attainable, then the

desired scenario should be modified to an attainable scenario, by taking into consideration

the limitation provided by the internal connection of the receiving sub-networks. Or an

approximate least-squares solution for the weights can be found. That is, we can instead

seek to solve

min
t′SR,k,t

′
RR,k

∥∥∥∥∥∥Bk

 t′SR,k

t′RR,k

− qk
∥∥∥∥∥∥

2

(4.108)

subject to

1Tt′SR,k + 1Tt′RR,k = 1 (4.109)

t′SR,k � 0 (4.110)

t′RR,k � 0 (4.111)
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The last condition can be relaxed to the following:

t′RR,k � εk1 (4.112)

where 0 < εk < 1. Clearly, when we solve problem (4.108)–(4.112), this does not mean

that the objective function (4.108) will be zero at this solution. Note further that the

optimization problem (4.108)–(4.112) is a quadratic convex problem: its objective function

is quadratic, and it has a convex equality constraint (4.109) and inequality constraints (4.110)

and (4.112). The inequality constraints are element-wise, i.e., t′RR,k(j) ≥ εk for all j, which

can be equivalently written as eTj t
′
RR,k ≥ εk for all j where ej is a vector where all its

elements are zero expect for the jth element that is one. In this way, the problem becomes

a classic constrained convex optimization problem, which can be solved numerically (using

for instance interior point methods).

4.6 Simulation Results

We illustrate the previous results with the following simulation example. Consider the social

network shown in Fig. 4.6.1 which consists of N = 23 agents.

Figure 4.6.1: A weakly-connected network consisting of three sub-networks.
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We assume that there are 3 possible events Θ = {θ◦1, θ◦2, θ◦3}, where θ◦1 is the true event for

the first sending sub-network, θ◦2 is the true event for the second sending sub-network, and

θ◦3 is the true event for the receiving sub-network. We further assume that the observational

signals of each agent k are binary and belong to Zk = {H,T} where H denotes head and T

denotes tail.

Agents of the first sending sub-network are connected through the following combination

matrix:

A1 =



0 0.3 0 0 0 0 0 0.3

0.4 0 0.3 0 0 0 0 0

0 0.7 0 0.5 0.25 0 0 0

0 0 0.4 0 0 0.3 0 0

0 0 0.3 0 0 0.1 0.2 0.45

0 0 0 0.5 0.25 0 0.1 0

0 0 0 0 0.3 0.6 0 0.25

0.6 0 0 0 0.2 0 0.7 0



(4.113)

Agents of the second sending sub-network are connected through the following combination

matrix:

A2 =



0 0.35 0 0.3 0 0 0 0.25

0.1 0.25 0.5 0 0 0 0 0

0 0.4 0 0 0.8 0 0 0

0.1 0 0 0 0.1 0 0.6 0

0 0 0.5 0.3 0 0.45 0 0

0 0 0 0 0.1 0 0.3 0

0 0 0 0.4 0 0.55 0 0.75

0.8 0 0 0 0 0 0.1 0



(4.114)

The matrices TSR and TRR are going to be designed so that the desired limiting beliefs for
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receiving agents are as follows:

Q1 =

 0.55 0.5 0.5 0.5 0.45 0.5 0.5

0.45 0.5 0.5 0.5 0.55 0.5 0.5

 (4.115)

In other words, the weights are going to be designed so that θ◦1 and θ◦2 are almost equally

probable for the receiving agents. This illustrates the case when the receiving agents listen

to two different perspectives from two media sources that are trustworthy for them, which

leaves them undecided regarding which true state to choose.

The likelihood of the head signals for each receiving agent k is selected as the following

matrix:

LR(H) =


5/8 3/4 1/6 7/8 2/3 1/3 1/4

5/8 3/4 1/6 7/8 2/3 1/3 1/4

5/8 3/4 1/6 7/8 2/3 1/3 1/4


where each (j, k)-th element of this matrix corresponds to Lk(H/θj), i.e., each column cor-

responds to one agent and each row to one network state. The likelihood of the tail signal

is L(T ) = 13×7 − L(H). The likelihood of the head signals for each sending agent k of the

first sending sub-network is selected as the following matrix:

L1(H) =


5/8 3/4 1/6 1/2 1/3 1/5 4/5 1/2

5/8 3/4 1/6 2/3 1/2 1/5 2/3 1/2

1/4 3/4 1/3 1/2 1/4 1/5 4/5 1/3

 (4.116)

and the likelihood of the head signals of agents of the second sending sub-network is:

L2(H) =


7/8 5/8 1/4 1/2 1/2 1/2 6/7 1/4

7/8 2/3 5/8 1/3 1/2 1/2 8/9 1/4

1/3 2/3 5/8 1/4 1/2 1/5 8/9 1/4

 (4.117)
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Design and Result Simulation

To achieve Q1, we design TSR and TRR using the results in the previous section. The details

of the numerical derivation are omitted for brevity. The non-zero weights in TSR are shown

in Fig. 4.6.2, and TRR is given as follows:

TRR =



0 0.1 0.25 0.25 0 0 0

0.3 0 0.25 0.25 0.3 0 0

0.3 0.1 0 0 0.3 0.5 0

0.3 0.1 0 0 0.3 0 0.5

0 0.1 0.25 0.25 0 0 0

0 0 0.25 0 0 0 0.5

0 0 0 0.25 0 0.5 0


(4.118)

We run this example for 7000 time iterations. We assigned to each agent an initial belief

that is uniform over {θ◦1, θ◦2, θ◦3}. Figures 4.6.3 and 4.6.4 show the evolution of µk,i(θ
◦
1) and

µk,i(θ
◦
2) of agents in the receiving sub-network. These figures show the convergence of the

beliefs of the agents in the receiving sub-networks to the desired beliefs in Q1. Figure 4.6.2

illustrates with color the limiting beliefs of receiving agents.

Figure 4.6.2: Illustration of the limiting beliefs of receiving agents
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Figure 4.6.3: Evolution of the beliefs of the receiving agents at θ◦1 over time
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Figure 4.6.4: Evolution of the beliefs of the receiving agents at θ◦2 over time

4.7 Conclusions

In this chapter, we characterized the set of beliefs that can be imposed on non-influential

agents and clarified how the graph topology of these latter agents helps resist manipulation

but only to a certain degree. We also derived a design procedures that allow influential agents

to drive the beliefs of non-influential agents to desirable attainable states. The results of

this chapter are based on [66].
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APPENDIX

4.A Two Revealing Examples for the Design Procedure (4.77)-

(4.80)

Example I: Cases 1 and 2 (k is influenced by sending networks)

Consider the network shown in Fig. 4.A.1. It consists of N = 8 agents, two sending sub-

networks and one receiving sub-network, with the following combination matrix:

A =



0.2 0.2 0.8 0 0 × 0 0

0.5 0.4 0.1 0 0 0 × 0

0.3 0.4 0.1 0 0 × 0 ×

0 0 0 0.4 0.3 × × 0

0 0 0 0.6 0.7 0 0 0

0 0 0 0 0 0 × ×

0 0 0 0 0 × 0 ×

0 0 0 0 0 × × ×



(4.119)

Figure 4.A.1: A weakly connected network consisting of three sub-networks. In this example,

receiving agents 6 and 7 are influenced by both sending networks, while agent 8 is only influenced

by the first sending network.
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We assume that there are 3 possible states Θ = {θ◦1, θ◦2, θ◦3}, where θ◦1 is the true event for

the first sending sub-network, θ◦2 is the true event for the second sending sub-network, and

θ◦3 is the true event for the receiving sub-network. Let us consider the case where we want

to design TSR and TRR to attain the desired limiting beliefs

Q =

 0.2 0.3 0.5

0.8 0.7 0.5

 (4.120)

The matrix B is therefore of the following form:

B =

 1 1 1 0 0 0.2 0.3 0.5

0 0 0 1 1 0.8 0.7 0.5

 (4.121)

We start with agent 6. After eliminating entries to satisfy the sparsity in the connections,

we are reduced to finding t′SR,6 and t′RR,6 that satisfy

 1 1 0 0.3 0.5

0 0 1 0.7 0.5


︸ ︷︷ ︸

∆
= B6

 t′SR,6

t′RR,6

 =

 0.2

0.8


︸ ︷︷ ︸

∆
= q6

(4.122)

Let  t′SR,6

t′RR,6

 ∆
=
[
α1 α2 α3 α4 α5

]T
(4.123)

Agent 6 is connected to the two sending sub-networks (case 1). Therefore, the problem has

a solution, where t′SR,6 (α1, α2 and α3) can be expressed in terms of t′RR,6 (α4 and α5). More

precisely, from (4.122) and (4.90), we have:

α1 + α2 = 0.2− 0.3α4 − 0.5α5 (4.124)

α3 = 0.8− 0.7α4 − 0.5α5 (4.125)
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According to (4.91), to ensure that α1, α2 and α3 can be chosen as nonnegative numbers,

the scalars α4 and α5 should be chosen to satisfy

0.3α4 + 0.5α5 ≤ 0.2 (4.126)

0.7α4 + 0.5α5 ≤ 0.8 (4.127)

Note that what matters for scalars α1 and α2 (the weights with which the data received from

sending sub-network 1 is scaled) is that their sum should be equal to 0.2 − 0.3α4 − 0.5α5

according to (4.124). In other words, when a receiving agent is connected to many agents

from the same sending sub-network, it does not matter how much weight is given to each of

these agents as long as the sum of these weights takes the required value. This is because the

beliefs of agents of the same sending sub-networks will converge to the same final distribution.

An alternative way to express (4.124) is to set α1 and α2 to the following:

α1 =
1

2
(0.2− 0.3α4 − 0.5α5) + β (4.128)

α2 =
1

2
(0.2− 0.3α4 − 0.5α5)− β (4.129)

where

|β| ≤ 1

2
(0.2− 0.3α4 − 0.5α5) (4.130)

This choice of β ensures that α1 and α2 are non-negative and less than 0.2− 0.3α4 − 0.5α5.

Moreover, we can check from (4.128) and (4.129) that their sum satisfies (4.124). Therefore,

the solution has the following form:

 t′SR,6

t′RR,6

 =



1
2
(0.2− 0.3α4 − 0.5α5) + β

1
2
(0.2− 0.3α4 − 0.5α5)− β

0.8− 0.7α4 − 0.5α5

α4

α5


(4.131)
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where

0.3α4 + 0.5α5 ≤ 0.2 (4.132)

0.7α4 + 0.5α5 ≤ 0.8 (4.133)

α4 > 0, α5 > 0 (4.134)

|β| ≤ 1

2
(0.2− 0.3α4 − 0.5α5) (4.135)

For example, one solution is to assign the same value ε6 for α4 and α5. Then, from (4.132),

(4.133) and (4.94), we have:

0 < ε6 ≤ min

{
0.2

0.5 + 0.3
,

0.8

0.7 + 0.5

}
= 0.25 (4.136)

Let ε6 = 0.1 = α4 = α5, then

α1 + α2 = 0.2− 0.3α4 − 0.5α5 = 0.12 (4.137)

α3 = 0.8− 0.7α4 − 0.5α5 = 0.68 (4.138)

We can choose α1 = 0.1 and α2 = 0.02. Therefore, a possible solution for tSR,6 is:

tSR,6 =
[

0.1 0 0.02 0.68 0 0 0.1 0.1
]T

(4.139)

We follow a similar procedure for agent 7 and obtain:

 t′SR,7

t′RR,7

 ∆
=


β1

β2

β3

β4

 =


0.3− 0.2β3 − 0.5β4

0.7− 0.8β3 − 0.5β4

β3

β4

 (4.140)
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where

0.2β3 + 0.5β4 ≤ 0.3 (4.141)

0.8β3 + 0.5β4 ≤ 0.7 (4.142)

β3 > 0, β4 > 0 (4.143)

For this agent, we can choose for instance as a solution β3 = 0.2 and β4 = 0.1 (as they both

satisfy (4.141) and (4.142)). In this case,

β1 = 0.3− 0.2β3 − 0.5β4 = 0.21 (4.144)

β2 = 0.7− 0.8β3 − 0.5β4 = 0.49 (4.145)

Therefore, a possible solution for tSR,7 is:

tSR,7 =
[

0 0.21 0 0.49 0 0.2 0 0.1
]T

(4.146)

Agent 8 is connected to the first sending sub-network only (case 2). For this agent, we

have:  1 0.2 0.3 0.5

0 0.8 0.7 0.5


︸ ︷︷ ︸

∆
= B8

 t′SR,8

t′RR,8

 =

 0.5

0.5


︸ ︷︷ ︸

∆
= q8

(4.147)

Let

 t′SR,8

t′RR,8

 ∆
=


γ1

γ2

γ3

γ4

 (4.148)
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Therefore, from (4.147), (4.97) and (4.98), we have:

γ1 = 0.5− 0.2γ2 − 0.3γ3 − 0.5γ4 (4.149)

0.8γ2 + 0.7γ3 + 0.5γ4 = 0.5 (4.150)

and any vector that satisfies (4.147) has the following form:

 t′SR,8

t′RR,8

 =


γ1

γ2

γ3

γ4

 =


0.5− 0.2γ2 − 0.3γ3 − 0.5γ4

γ2

γ3

γ4

 (4.151)

where

0.8γ2 + 0.7γ3 + 0.5γ4 = 0.5 (4.152)

Now to ensure that γ1 is non-negative, γ2, γ3 and γ4 should be chosen as follows (as in

(4.99)):

0.2γ2 + 0.3γ3 + 0.5γ4 ≤ 0.5 (4.153)

Therefore, a solution in this case should satisfy (4.151) subject to

0.8γ2 + 0.7γ3 + 0.5γ4 = 0.5 (4.154)

0.2γ2 + 0.3γ3 + 0.5γ4 ≤ 0.5 (4.155)

γ2 > 0, γ3 > 0, γ4 > 0 (4.156)

For this example, finding γ2, γ3 and γ4 that satisfy (4.154)-(4.155) is always possible. To see

this, for any choice of γ2, γ3 and γ4 that satisfy (4.154), condition (4.155) is automatically
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satisfied. Indeed, if (4.154) is satisfied then

0.5γ2 + 0.5γ3 + 0.5γ4 ≤ 0.8γ2 + 0.7γ3 + 0.5γ4 = 0.5 (4.157)

=⇒ 0.5(γ2 + γ3 + γ4) ≤ 0.5 =⇒ γ2 + γ3 + γ4 ≤ 1 (4.158)

Therefore,

γ2 + γ3 + γ4 − 0.8γ2 − 0.7γ3 − 0.5γ4 ≤ 1− 0.5 (4.159)

=⇒ 0.2γ2 + 0.3γ3 + 0.5γ4 ≤ 0.5 (4.160)

For instance, one possible choice for γ2, γ3 and γ4 that satisfies (4.154) is

γ2 = γ3 = γ4 =
0.5

0.8 + 0.7 + 0.5
= 0.25 (4.161)

Then,

γ1 = 0.5− 0.2γ2 − 0.3γ3 − 0.5γ4 = 0.25 (4.162)

Therefore, a possible solution for tSR,8 is:

tSR,8 =
[

0 0 0.25 0 0 0.25 0.25 0.25
]T

(4.163)
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Thus, the overall solution is:

 TSR

TRR

 =



0.1 0 0

0 0.21 0

0.02 0 0.25

0.68 0.49 0

0 0 0

0 0.2 0.25

0.1 0 0.25

0.1 0.1 0.25



(4.164)

To verify that the beliefs of the receiving agents converge to the desired beliefs, we compute

WT from (3.7) and use (3.24) to determine the limiting beliefs at θo1 and θo2 at the receiving

agents. This calculation gives

lim
i→∞

µk,i(θ
◦
1) =


0.1070 + 0.0310 + 0.0620 = 0.2, k = 6

0.0258 + 0.2247 + 0.0494 = 0.3, k = 7

0.0443 + 0.0852 + 0.3705 = 0.5, k = 8

and

lim
i→∞

µk,i(θ
◦
2) =


0.8, k = 6

0.7, k = 7

0.5, k = 8

Example II: Case 3 (agent k not influenced by sending networks)

Consider the network shown in Fig. 4.A.2, with the following combination matrix:
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A =



0.2 0.2 0.8 0 0 × 0 0

0.5 0.4 0.1 0 0 0 × 0

0.3 0.4 0.1 0 0 × 0 0

0 0 0 0.4 0.3 × × 0

0 0 0 0.6 0.7 0 0 0

0 0 0 0 0 0 × ×

0 0 0 0 0 × 0 ×

0 0 0 0 0 × × 0



(4.165)

Figure 4.A.2: A weakly connected network consisting of three sub-networks. In this case, agent 8

is not influenced by any sending network.

What is different now is that agent 8 does not have is not connected to agent 3 (that is,

agent 8 is not connected to any sending network). We are still assuming in this example

that we have the same desired limiting beliefs:

Q =

 0.2 0.3 0.5

0.8 0.7 0.5

 (4.166)

For agents 6 and 7, the solutions found for their corresponding columns are still valid here.

However, in this example, tSR,8 should have all its elements equal to zero and tRR,8 should

have its third element equal to zero. Therefore, for agent 8, the problem reduces to finding
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t′RR,8 that satisfies the following relationship:

 0.2 0.3

0.8 0.7


︸ ︷︷ ︸

∆
= B8

t′RR,8 =

 0.5

0.5


︸ ︷︷ ︸

∆
= q8

(4.167)

where the elements of t′RR,8 should be positive and add up to 1. Any convex combination of

0.2 and 0.3 can only produce a number between 0.2 and 0.3, but not 0.5. This is why in this

case, the problem does not have a solution. However, we can seek instead a least-squares

solution for agent 8:

min
t′RR,8

∥∥B8t
′
RR,8 − q8

∥∥2
(4.168)

subject to

t′RR,8 � ε81 (4.169)

1Tt′RR,8 = 1 (4.170)

By choosing ε8 = 0.01 and solving it numerically, we obtain:

t′RR,8 =

 0.01

0.99

 (4.171)

This solution can be also deduced directly because [0.3; 0.7] is the closer distribution to

[0.5; 0.5] than any other distribution formed by a convex combination of [0.2; 0.8] and [0.3; 0.7].

Because the entries should be strictly greater than 0, the lowest possible value is given to
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the first entry of t′RR,8. Therefore, with this choice:

 TSR

TRR

 =



0.1 0 0

0 0.21 0

0.02 0 0

0.68 0.49 0

0 0 0

0 0.2 0.01

0.1 0 0.99

0.1 0.1 0



(4.172)

we verify the limiting beliefs of the agents as follows. We compute WT from (3.7) and use

(3.24) to determine the limiting beliefs at θo1 and θo2 at the receiving agents . This calculation

gives

lim
i→∞

µk,i(θ
◦
1) =


0.174, k = 6

0.272, k = 7

0.271, k = 8

and

lim
i→∞

µk,i(θ
◦
2) =


0.826, k = 6

0.728, k = 7

0.729, k = 8

It is expected that the beliefs of agents 6 and 7 would not converge to the desired beliefs,

because the belief of agent 8 cannot converge to its desired belief, which will definitely affect

the limiting beliefs of agents 6 and 7. We know that agent 8 will not converge to its desired

limiting belief because [0.5;0.5] cannot be obtained by any convex combination of [0.2;0.8]

and [0.3;0.7] (its neighbors’ limiting beliefs, (4.83)).
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CHAPTER 5

Future Works

In this dissertation, we studied diffusion social learning over weakly-connected networks. We

showed how the asymmetric flow of information prevents the receiving agents from learning

their true states. We also examined the possibility for a leader-follower relationship to

develop in the network, where receiving agents end up having beliefs focused on the set of

the true states of sending agents. Moreover, we showed that not every control scheme is

possible and that the internal structure of receiving agents plays role in limiting some forms

of manipulation. We clarified the set of attainable beliefs and derived network’s design

procedures to drive receiving agents toward some desired attainable states.

We next list some possible future directions related to this work and some other open

questions related to non-Bayesian learning:

• We studied the circumstances under which the receiving agents come under the total

influence of sending agents. The next step is to study how receiving agents can mitigate

this external influence and what conditions help them in learning their true states.

One possible solution is that receiving agents stop receiving data from sending agents.

However, receiving agents might not be able to tell that the data received from sending

agents is what is drifting them from their own truth, or there might be also cases where

one sending sub-network knows the truth of receiving agents and tries to guide them to

their truth. In other words, how can receiving agents be equipped with better learning

abilities to reach their truth despite the presence of sending agents?

• By having considered the weak graph connectivity, we were able to show that, when

agents follow the diffusion model, a form of social disagreement arises in the receiving
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sub-networks. Another way to study the conditions for social disagreement is not

through the connectivity of the network but by considering the presence of forceful

or malicious agents, while assuming a strong network. As in [24, 46, 47], these agents

might alter the information they are sending or force other agents to change their

beliefs. An interesting direction would be to study similar settings in the case where

agents update their beliefs according to the model of diffusion social learning.

• Another extension to diffusion social learning would be to study the model in a more

dynamical environment. For instance, instead of analyzing the model over fixed topol-

ogy, we can also consider time-varying graphs as in [23,38]. Also, instead of assuming

that the underlying true state is static, we can consider that the underlying true state

changes with time. For instance, what might be true for a society over a period of time

might become wrong at some point. In this case, how can agents track the underlying

change?

• An important component in the learning process of agents is the continuous observation

of time-independent private signals. Now if we assume that agents have a finite number

of observations, how would the limited number of observations affect the process of

learning of agents? Moreover, what if the observational signals are dependent over

time?

• In our work, we assumed that agents perfectly share their beliefs with their neighbors.

But we can also take into account communication issues such as communication delays

[23]. Moreover, an agent might not be able to share its complete belief, especially

when there are many possible values for the underlying state. Therefore, we can also

consider the scenario where agents share samples of their beliefs.

125



REFERENCES

[1] A. Banerjee, “A simple model of herd behavior,” The Quarterly Journal of Economics,
vol. 107, no. 3, pp. 797–817, 1992.

[2] S. Bikhchandani, D. Hirshleifer, and I. Welch, “Learning from the behavior of others:
Conformity, fads, and informational cascades,” The Journal of Economic Perspectives,
vol. 12, no. 3, pp. 151–170, 1998.

[3] L. Smith and P. Sorensen, “Pathological outcomes of observational learning,” Econo-
metrica, vol. 68, no. 2, pp. 371–398, 2000.

[4] X. Vives, “Learning from others: A welfare analysis,” Games and Economic Behavior,
vol. 20, no. 2, pp. 177 – 200, 1997.

[5] C. Chamley and D. Gale, “Information revelation and strategic delay in a model of
investment,” Econometrica, vol. 62, no. 5, pp. 1065–85, 1994.

[6] A. Banerjee and D. Fudenberg, “Word-of-mouth learning,” Games and Economic
Behavior, vol. 46, no. 1, pp. 1–22, 2004.

[7] D. Acemoglu, M. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian learning in social
networks,” The Review of Economic Studies, vol. 78, no. 4, pp. 1201–1236, 2011.

[8] D. Acemoglu, K. Bimpikis, and A. Ozdaglar, “Dynamics of information exchange in
endogenous social networks,” Theoretical Economics, vol. 9, no. 1, pp. 41–97, 2014.

[9] C. Chamley, A. Scaglione, and L. Li, “Models for the diffusion of beliefs in social
networks: An overview,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 16–29,
May 2013.

[10] P. Molavi, C. Eksin, A. Ribeiro, and A. Jadbabaie, “Learning to coordinate in social
networks,” Operations Research, vol. 64, no. 3, pp. 605–621, 2016.

[11] V. Krishnamurthy and H.V. Poor, “A tutorial on interactive sensing in social networks,”
IEEE Transactions on Computational Social Systems, vol. 1, no. 1, pp. 3–21, March
2014.

[12] V. Krishnamurthy and M. Hamdi, “Mis-information removal in social networks: Con-
strained estimation on dynamic directed acyclic graphs,” IEEE Journal of Selected
Topics in Signal Processing, vol. 7, no. 2, pp. 333–346, April 2013.

[13] V. Krishnamurthy and W. Hoiles, “Information diffusion in social sensing,” Numerical
Algebra, Control and Optimization, vol. 6, no. 3, pp. 365–411, Sept. 2016.

[14] V. Krishnamurthy and H. V. Poor, “Social learning and Bayesian games in multiagent
signal processing,” IEEE Signal Processing Magazine, vol. 33, no. 3, pp. 43–757, 2013.

126



[15] D. Acemoglu, M. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian learning in social
networks,” The Review of Economic Studies, vol. 78, no. 4, pp. 1201–1236, 2011.

[16] C. Chamley, Rational Herds: Economic Models of Social Learning, Cambridge Univer-
sity Press, 2004.

[17] D. Acemoglu and A. Ozdaglar, “Opinion dynamics and learning in social networks,”
Dynamic Games and Applications, vol. 1, no. 1, pp. 3–49, 2011.

[18] M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical Associa-
tion, vol. 69, no. 345, pp. pp. 118–121, 1974.

[19] B. Golub and M. Jackson, “Naive learning in social networks and the wisdom of crowds,”
American Economic Journal: Microeconomics, vol. 2, no. 1, pp. 112–49, 2010.

[20] P. DeMarzo, D. Vayanos, and J. Zwiebel, “Persuasion bias, social influence, and unidi-
mensional opinions,” The Quarterly Journal of Economics, vol. 118, no. 3, pp. 909–968,
2003.

[21] E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, and A. Scaglione, “Binary opinion
dynamics with stubborn agents,” ACM Trans. Econ. Comput., vol. 1, no. 4, pp. 19:1–
19:30, Dec. 2013.

[22] U. Krause, “A discrete nonlinear and non-autonomous model of consensus formation,”
Communications in Difference Equations, July 2000.

[23] V. Blondel, J.M. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Convergence in multiagent
coordination, consensus, and flocking,” in Proc. IEEE Conf. on Decision and Control,
Jan. 2006, vol. 2005, pp. 2996 – 3000.

[24] D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi, “Spread of (mis)information in
social networks,” Games and Economic Behavior, vol. 70, no. 2, pp. 194–227, 2010.

[25] U. A. Khan, S. Kar, and J. M. F. Moura, “Higher dimensional consensus: Learning
in large-scale networks,” IEEE Transactions on Signal Processing, vol. 58, no. 5, pp.
2836–2849, May 2010.

[26] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-Bayesian social
learning,” Games and Economic Behavior, vol. 76, no. 1, pp. 210–225, 2012.

[27] A. Jadbabaie, P. Molavi, and A. Tahbaz-Salehi, “Information heterogeneity and the
speed of learning in social networks,” Columbia Business School Research Paper, pp.
13–28, May 2013.

[28] P. Molavi, K. R. Rad, A. Tahbaz-Salehi, and A. Jadbabaie, “On consensus and expo-
nentially fast social learning,” in Proc. IEEE ACC, Montréal, Canada, June 2012, pp.
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