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Missing microbial eukaryotes and
misleading meta-omic conclusions

Arianna I. Krinos 1,2,3,4 , Margaret Mars Brisbin3,5,9, Sarah K. Hu6,
Natalie R. Cohen 7, Tatiana A. Rynearson 8, Michael J. Follows 2,
Frederik Schulz 4 & Harriet Alexander 3

Meta-omics is commonly used for large-scale analyses ofmicrobial eukaryotes,
including species or taxonomic group distribution mapping, gene catalog
construction, and inference on the functional roles and activities of microbial
eukaryotes in situ. Here, we explore the potential pitfalls of common
approaches to taxonomic annotation of protistan meta-omic datasets. We re-
analyze three environmental datasets at three levels of taxonomic hierarchy in
order to illustrate the crucial importance of database completeness and
curation in enabling accurate environmental interpretation. We show that
taxonomic membership of sequence clusters estimates community composi-
tion more accurately than returning exact sequence labels, and overlap
between clusters can address database shortcomings. Clustering approaches
can be applied to diverse environments while continuing to exploit the wealth
of annotation data collated in databases, and selecting and evaluating these
databases is a critical part of correctly annotating protistan taxonomy in
environmental datasets. We argue that ongoing curation of genetic resources
is crucial in accurately annotating protists in in situ meta-omic datasets.
Moreover, wepropose that precise taxonomic annotation ofmeta-omic data is
a clustering problem rather than a feasible alignment problem.

Protists (microbial eukaryotes) are ubiquitous and essential organisms
that provide multifarious ecosystem services, ranging from interac-
tions with other microbes to impact on global biogeochemical
cycles1–5. Protists have complex ecosystem roles andmorphology, and
often bridge seemingly disparate scales of interactions, which makes
them difficult to visually differentiate yet critical to census for a
complete understanding of ecosystem ecology1,3,4.

Molecular surveys of microbial communities have allowed
researchers to characterize taxonomic diversity without

microscopy or imaging and their associated limitations. Compu-
tational approaches are used to assess the taxonomic composi-
tion of metagenomic or metatranscriptomic samples. However,
approaches that have been available since the early days of
metagenomics, like Naïve Bayes classification6,7, deep learning,
and topic modeling have become less popular in recent literature
in favor of more direct comparisons to databases, which are more
interpretable but also minimally predictive8–10. Comparison
approaches may include: k-mer profiling of raw reads11–13; direct
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recruitment of raw reads from the meta-omic (community-level)
sequencing sample to a reference or set of references of interest
(e.g., genome, transcriptome, metagenome-assembled genome
(MAG), or single-amplified genome (SAG))14–17; identification and
recovery of well-known marker genes (e.g., 18S rRNA) from meta-
omic raw reads or from assembled contigs followed by phyloge-
netic alignment and within-sample quantification18–21; or sequence
search of assembled contigs to a database, using match quality
and percentage identity cutoffs to assign best-available level of
confidence to taxonomic annotation of genes22–26. Computational
approaches to assign taxonomic identities range in the scale over
which they can be applied (Supplementary Fig. 1).

All annotation methods share a reliance on databases containing
labeled sequences from past studies (“reference sequences”), some of
whichmay carry study-specific features. Environmentalmicroeukaryote
meta-omic studies often rely on annotations from transcriptomes of
cultured representatives of protists17,27–30, and are therefore repre-
sentative of conditions or treatments specific to an experiment. Though
transcriptomes constitute a fraction of the genome, they are more
readily available than genomes due to the high time andmonetary cost
of sequencing the large repetitive and intergenic regions common to
eukaryotes31. Because it is difficult to collect laboratory genetic data
when populations are in decline and expression levels are low, micro-
organisms that are in an unusual or poor state of metabolism are more
challenging to detect in the field using transcriptome reference data-
bases. Moreover, reference datasets that include different cell life cycle
stages and environmental conditions would be ideal to link taxonomic
identity to functional role but are not always available32.

Here, we highlight three vignettes that span three scales of taxo-
nomic hierarchy (genus, family, and phylum) and explore how
alignment-based taxonomic annotation of assembled predicted pro-
teins may be impacted by database composition. We extend the
existing documentation of database annotation challenges in the
literature33–35 with a systematic evaluation of how these issues impact
eukaryotic microbiome sequence data. To demonstrate how cluster-
ing methods provide a complement to alignment-based taxonomic
annotation, we applied a two-stage clustering technique that includes
unsupervised clustering to a simplified metatranscriptomic use-case.
Wepropose that clustering approaches highlight the limitof our ability
to taxonomically annotate de novo assembled sequences.Ourmethod
re-poses taxonomic annotation as a clustering problem and can be
used to improve characterization of community composition at mul-
tiple levels of taxonomy or to recruit potential sequences associated
with some taxon for which an insufficient number of database
sequences are available.

Results
Genus
Genetic differentiation between species complicates accurate
identification of genus-level community composition. Species in the
haptophyte genus Phaeocystis are genetically related, yet have dis-
tinctive geographic distributions and morphologies. Phaeocystis ant-
arcticaandP. pouchetii are cold-adaptedand form largebloomsat high
latitudes, and along with globally-ubiquitous P. globosa form colonies
(“colony-formers”), while P. cordata and P. jahnii are found at mid-
latitudes and do not form colonies (“free-living”)36–39. We re-analyzed
Tara Oceans metagenomic samples from the Mediterranean Sea and
the Southern Ocean, assembling contigs and then annotating using
standard lowest common ancestor (LCA) algorithm against three
modified MMETSP andMarRef databases containing: 1) all Phaeocystis
references (both colony-formers and free-living), 2) only the colony-
formers, and 3) only the free-living; all databases contained non-
Phaeocystis taxa. Given that all three databases contain Phaeocystis
representatives to the genus level, our expectation was that all three
databases would differentiate Phaeocystis at the genus level. In the

Southern Ocean where large blooms of P. antarctica are observed,
79.0% of the total Phaeocystis sequences identified with a combined
database were identified using the colony-former database, whereas
only 11.3% of the Phaeocystis sequences were identified using the free-
liver database (Fig. 1). In the Mediterranean Sea where free-living
Phaeocystis aremore abundant40, 58.8% of Phaeocystis sequences were
identified using the free-liver database as compared to 39.9% with the
colony-former database (Fig. 1). This implies that the presence of
biogeographically distinct species ecotypes in our databases compli-
cates reliable identification of expected taxa - ecotypes that have not
been added to the database may be entirely missed.

Family
Database imbalance limits phylogenetic resolution in closely
related diatom taxa. Taxonomic annotations are impacted when
many closely related taxa have uneven database representation. When
a large number of reference sequences belong to one family, but none
or only a few references belong to another, this imbalanced database
representation may alter annotation recovery unexpectedly. We
explored this phenomenonusingmetatranscriptomicdata froma2012
survey28 paired with associated microscopic cell counts (University of
Rhode Island Long-Term Plankton Time Series; https://web.uri.edu/
gso/research/plankton/data/). We focus our analysis on diatoms, a
group that is well-represented in reference databases (266 tran-
scriptomes in MMETSP; Source Data), but has uneven representation
across families (Anderson-Darling Test against uniform distribution:
An=70.221; p = 1.3e-5). The diatom Dactyliosolen fragilissimus (family
Rhizosoleniaceae) constituted over 38–60% of the cells counted using
lightmicroscopy in 3 of 4 sampledweeks (Fig. 2A). However, it was not
consistently identified in the metatranscriptomes (<1% of species-level
annotations)28,41, despite the observed species being present in the
reference database (Marine Microbial Eukaryote Transcriptome
Sequencing Project (MMETSP))29,31,42. Four other Rhizosoleniaceae are
also included in the MMETSP database (Source Data)31, yet the family
constituted just 0.5–4.3% of family-level annotations and 0.1–0.7% of
total sequence abundance. By contrast, the diatom family Skeletone-
mataceae represented as much as 95% of microscopy counts in one
sample, and given the availability of isolates from Narragansett Bay in
the database, it was well-annotated in the metatranscriptomes
(Fig. 2A). Cerataulina pelagica (family Hemiaulaceae) was also abun-
dant in the microscopy data. Counterintuitively, while not present
within the MMETSP database, contigs in the metatranscriptome were
consistently annotated as belonging to Hemiaulaceae using a single
related reference (Eucampia antarctica; Fig. 2A). The outcomes of low
database taxonomic resolution were incongruent between taxa:
though bothmissing taxa ofHemiaulaceae and Rhizosoleniaceae had a
member of the same family available in the database (Fig. 2B), only
Hemiaulaceae yielded annotations at the expected taxonomic resolu-
tion. Critically, this implies that taxonomic coverage alone often does
not lead to accurate phylogenetic labels. This vignette highlights that
metatranscriptomic data should not be directly interpreted as repre-
sentative of community abundance. The combined impact of bias in
recovering RNA fragments from different taxa, expression differences
between taxa, and taxonomic annotation database ambiguity cumu-
latively contribute to annotation uncertainty.

Phylum
Broad-rank absence from databases leads to inaccurate commu-
nity composition estimates. Sequence representation across major
lineages in the eukaryotic tree of life is variable1,43. We explored
the impact of missing one eukaryotic lineage from a reference
database on the predicted taxonomy of metatranscriptomes. Data
from the North Atlantic along a transect from Woods Hole
Oceanographic Institution (WHOI) to the Bermuda Atlantic Time
Series (BATS) station (“BATS transect”)44 were annotated using a
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popular marine microeukaryote database (MMETSP)31,42 com-
posed of diverse eukaryotic lineages, though missing key groups
such as radiolarians (phylum Retaria) that are especially difficult
to culture hence frequently inadequately covered in reference
databases45. This is a common problem in microeukaryotic data-
bases because limited reference sequences are available from the
ocean, failing to represent the full extent of lineage diversity. This

exercise left 42,736 putative radiolarian proteins unannotated
and 46,283 annotated as different phyla across diverse lineages
(Fig. 3A–C). Adding radiolarians (see Online “Methods” section)
to the database impacted not only the total sequences labeled but
also changed assigned annotations of existing taxa, highlighting
how database incompleteness impairs community interpretation
via both missing and incorrect annotations. Further, of 1,021,229
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(8.6%) ORFs that were annotated at the domain–but not the
phylum–level (“lineage-conflicted”), 95.8% were assigned a func-
tional annotation, a higher rate than likelihood of functional
annotation among all ORFs (45.8%). This suggests that highly

conserved proteins will be left out of lineage-specific analysis
because they tend to be taxonomically ambiguous (Fig. 3D), with
distinctions in lineage-conflicted ORFs additionally noted
between metaproteomes and metatranscriptomes44.

Fig. 1 | Effect of different species-level references on the success of genus-level
identification of Phaeocystis. A Abundance of metagenomic proteins in each
ocean basin coassembled from the Tara Oceans dataset annotated to be Phaeo-
cystis by a combined database of the colony-forming references (left in each group;
purple), a combined database of the free-living references (middle in each group;
pink), a combined database of all Phaeocystis references (right in each group;
black). Each group of bars represents either the large (>20μm) or the small size
(0.8–5μm) fraction samples. Abundance is shown via read coverage (TPM) of
annotatedmetagenomic contigs.B Phylogenetic tree of Phaeocystis references and
genomic and transcriptomic outgroups. The bars to the right of the tree show the
total number of orthogroups in each species that are a, pink or lavender: shared by
other members of the same ecotype (colony-former or free-liver), b, maroon:

shared among multiple Phaeocystis species regardless of ecotype, or c, white:
present only within one species. C Percentage of sequences from the coassembly
from the Southern Ocean TaraOceans samples annotated to be Phaeocystis by any
of the databases that were annotated as Phaeocystis using (top group of two bars) a
combined reference database containing all of the free-living Phaeocystis refer-
ences, (middle group of bars) a combined reference database containing all of the
colony-forming Phaeocystis references, (bottom group of bars) a combined refer-
ence database containing all Phaeocystis references. The top bar in each group
(brown) corresponds to the smallest Tara Oceans size fraction, while the bottom
bar in each group (blue) corresponds to the largest Tara Oceans size fraction.
D Identical to Panel C, but for the Tara Oceans samples from the
Mediterranean Sea.

Fig. 2 | The effect of database composition on annotation of diatoms.
A Community composition of diatoms in Narragansett Bay based on light micro-
scopy counts (top) compared to their metatranscriptomic activity (bottom).
Lineage-conflicted refers to predictedproteins thatwere annotated as belonging to
class Bacillariophyta, but had a conflict at the family level. “Other” refers to diatom

families with associated TPM of less than 1000. Circles (top) indicate cells per L
(right y-axis). B Mean percentage identity of non-self hits meeting a minimum
bitscore value threshold (≥50) for diatom families represented in the MMETSP.
C The bars to the right of the heatmap mean percentage identity plot indicate the
total number of transcriptomes contained in the MMETSP for each family.
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Clustering and kAAmer approaches increase the scope of taxo-
nomic exploration in environmental -omics. Combining database
expansion, targeting to taxa of interest, and unsupervised clustering
can expand the reach of sequence classification for assembled
sequences from meta-omic datasets. Unsupervised approaches have
been developed to combat inadequate reference database
coverage46,47. Current unsupervised approaches largely classify highly
dissimilar fragments (e.g., separating sequences at the domain level

between eukaryotes and prokaryotes) because finer scale differences
are not easily inferred due to sequence overlap. We posit that lever-
aging large eukaryotic databases, preprocessing the database to
reduce problem size and taxonomic overlap, and then training an
unsupervised model on unknown sequences alongside curated data-
bases can improve interpretability of community assessment.

To explore this idea, we leverage existing clustering tools in a two-
stage method of taxonomic assignment, an approach we have named
“tax-aliquots: Assigning Lineage to Queries Over Two Steps” (Fig. 4).
Proteins are first clustered according to their homology, and then
hierarchically using the kAAmer (subsequences of amino acids) con-
tent of the proteins in the homology-based cluster. The advantages of
this method are twofold: we reduce the computational complexity of
kAAmermatching48, which is an effective tool to distinguish taxonomic
groups49, and we ensure that assignment is also constrained by
sequence alignment. We applied three distance thresholds for tax ali-
quots in the second clustering stage: a permissive, intermediate, and
stringent strategy (see “Methods” section). Similar to the percent
identity cutoffs used to make decisions about taxonomic level in the
Least Common Ancestor (LCA) approach, the distance threshold
determines how small the distance between sequences needs to be in
order for them to fall into the same cluster. Unlike the LCA approach,
all labels are retained in each cluster once they meet the cutoff (Sup-
plementary Figs. 13 and 14).We envision that combining the traditional
BLAST+ LCA approach with clustering approaches like tax-aliquots
enable rapid, global annotation of sequences (BLAST-LCA) alongside
maximizing available taxonomic resolution and recovering novel
content that performs poorly via a traditional alignment approach.

To demonstrate the utility of the tax-aliquots approach in iden-
tifying taxa of interest, we constructed a simplified mock metatran-
scriptomic example consisting of a single taxon, Phaeocystis
pouchetii–one species from vignette 1 above. This particular taxon is
known to form colonies, yet was absent from reference databases until
recently. Additionally, there are several related, bloom-forming spe-
cies of Phaeocystis (i.e., P. globosa and P. antarctica) available in the
MMETSP and other databases. We generated a default (the UniRef90
protein database50 or the MMETSP database combined with the Mar-
Ref2 bacterial database31,51) and a Phaeocystis-only database, each with

Fig. 3 | Effect of removing Radiolarian sequences from the database on the
annotation of metatranscriptomic samples from the North Atlantic Ocean.
AMap of the BATS transect colored by the distance of each sample from the shore
in kilometers. B Fraction of annotated scaled abundance of proteins that changed
annotation before and after the radiolarian sequences were added, grouped by
depth. C Among sequences that changed annotations, comparison of their anno-
tation without radiolarian sequences (left axis) to with radiolarian sequences (right
axis). In both cases the database contained the MMETSP and MarRef2 databases.

While themajority categoryofputativeRadiolarian sequenceswas thosepreviously
unannotated at the phylum level, some were previously classified as other phyla.
Some phylum-level annotations were lost due to conflicts with added radiolarian
sequences. D Comparison of the number of proteins that were taxonomically
annotated (“Annotated”), taxonomically unannotated (“Unannotated”), or had
conflicting taxonomy (“Conflicted”) according to whether they were also func-
tionally annotated.

Fig. 4 | Schematic diagram of the tax-aliquots two-stage clustering workflow.
The workflow is intended to be used alongside the LCA algorithm to detect
ambiguity in taxonomic assignment and identify possible taxonomic annotations
of sequences which cannot be annotated using the short alignment method. By
assessing similarity using subsequence patterns over the entire sequence length,
tax-aliquots can also identify discrepancies in the taxonomic annotation selected
by alignment and the LCA algorithm.
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only the P. pouchetii sequences which were not being tested included,
to examine the performance of (1) BLAST + LCA via EUKulele24, (2)
mmseqs252, and (3) tax-aliquots in the taxonomic annotation of the P.
pouchetii sequences from the mock metatranscriptome (Fig. 5A). We
prefiltered putative haptophyte sequences based on their BLAST-LCA
taxonomy via EUKulele24 from the mock metatranscriptome and then
applied both tax-aliquots clustering and two LCA-based approaches,
EUKulele24 and mmseqs2 taxonomy52 (Fig. 5). Then, we split the P.
pouchetii sequences into two parts, annotating the taxonomy of one
half of sequences and including the other half of sequences in the
Phaeocystis database to simulate the case where only a partial tran-
scriptome was previously sequenced and included in the database.
This use-case is designed to emulate the common scenario of having

sequences of an unknown or unsequenced species in a sample with
some closely or distantly related relatives present in the sequencing
database. Because we split the P. pouchetii sequences and left the
complement of the tested sequences in the Phaeocystis database, we
were testing the case where previous sequencing efforts have been
insufficient, even though the taxon is technically represented in the
database.

The initial annotation with the default database for BLAST + LCA
(EUKulele) resulted in 89.8% of total sequences being annotated as
haptophytes, 41.1% of which were annotated as genus Phaeocystis
without a species label, and approximately 5.8% of which were anno-
tated as a non-pouchetii species of Phaeocystis. The EUKulele default
settings conservatively annotated sequences but did not retain

Fig. 5 | The utility of the tax-aliquots clustering approach is demonstrated on a
simplified mock metatranscriptome, highlighting enhanced annotation at
finer taxonomic resolution. A Left panel:Workflow schematic; first, we annotated
a “mock metatranscriptome” (a Phaeocystis pouchetii transcriptome) and filtered
putative haptophyte sequences using EUKulele (Right panel: results of annotating
the mock metatranscriptome with BLAST + LCA (EUKulele) as compared to
mmseqs2). Then, we split the sequences into two parts, and annotated half of

putative haptophyte sequences with a custom Phaeocystis-only reference database
which excluded the half of P. pouchetiibeing tested (but included the other half as a
simulated partial database transcriptome) using BLAST+ LCA (EUKulele),
mmseqs2, and tax-aliquots. B Tax-aliquots clusters using the “permissive” cluster-
ing scheme for the putative haptophyte sequences retrieved from the BLAST + LCA
approach in panel B. C Comparison of the fate of the test putative haptophyte
sequences between the BLAST + LCA, mmseqs2, and tax-aliquots approaches.

Article https://doi.org/10.1038/s41467-024-52212-w

Nature Communications |         (2024) 15:9873 6

www.nature.com/naturecommunications


information about lineage beyond phylum and/or genus. The
mmseqs2 tool using default settings and a similar default database
annotated 34.1% of sequences as haptophytes, including 25.3% as a
non-pouchetii species. Additionally, 30.3% of sequences were mis-
annotated as non-haptophytes and 35.6% were not annotated as any
lineage (Fig. 5B). 89.8% (n = 57,002) of the sequenceswere identified as
haptophyte by EUKulele to the phylum level. We split the P. pouchetii
transcriptome into mock metatranscriptome sequences (n = 31,777)
and retained those that were identified as haptophytes (n = 31,056),
and included the remaining (n = 31,778) sequences in the reference
database. We generated a custom reference database containing all
non-pouchetii Phaeocystis reference sequences as well as the latter
(n = 31,778) reserved P. pouchetii sequences from the split described
above. We then re-annotated the putative haptophyte sequences
(n = 31,056) identified from the split using mmseqs2, BLAST + LCA via
EUKulele, and tax-aliquots (Fig. 5A). Using the custom Phaeocystis
database, EUKulele annotated 60.6% of sequences as Phaeocystis (no
species), and 31.4% as a haptophyte (no genus); the remaining 8.0% of
species were labeled as a Phaeocystis species (including 1.0% labeled as
Phaeocystis pouchetii using the partial transcriptome included in the
database). The identical database using the mmseqs2 tool resulted in
45.1% of sequences labeled as Phaeocystis species, 32.1% unannotated,
and 22.7% annotated as Phaeocystis (no species) (Fig. 5C). Hence, while
EUKulele accurately returned no species label for the majority of
sequences, mmseqs2 more liberally assigned conclusive species
annotations (Fig. 5D).

Using the tax-aliquots approach, relationships between sequen-
ces are identified and reported, rather than returning exact taxonomic
labels (i.e., LCA estimates). The tax-aliquots algorithm conservatively
clusters sequences regardless of the total size of the reference data-
base (unlike BLAST + LCA, which as shown in Fig. 2 is impacted by
database composition). Thus, tax-aliquots allows the closest taxo-
nomic relatives of the query sequences to be identified independent of
database completeness. For example, 64.5% of the putative hapto-
phyte sequences were clustered with one of the other Phaeocystis
reference sequences, but the majority (63.4%) of these clusters con-
tained multiple additional Phaeocystis species. This observed overlap
between Phaeocystis species is analogous to sequences being unam-
biguously assigned only at the genus level using BLAST+ LCA, but with
the additional benefit that information is directly retained about the
closest species relative to the unknown sequence. Unknown P. pou-
chetii sequences tended to fall into clusters only with sequences from
colony-forming Phaeocystis species (45.2%), which provides insight
into the probable ecology of the “unknown” species in an environ-
mental sample (Fig. 5B). By contrast, using BLAST + LCA or mmseqs2,
the nearest species lineage is discarded unless a species-level annota-
tion is made (Fig. 5C). Some of the P. pouchetii sequences also fell into
clusters with other P. pouchetii sequences–the largest such cluster
contained 10 sequences–and 20.9% of P. pouchetii sequences were in
clusters with two or more P. pouchetii proteins. The P. pouchetii
sequences that could not be clusteredwould be viewed as an unknown
or novel (relative to taxonomy and/or gene content) sequence in the
metatranscriptomic setting. Additional information about the pro-
posed tax-aliquots approach is included in Supplementary Note 1 for
all three vignettes described in this study.

This clustering example demonstrates the utility of the approach
for surveying close relatives of taxonomically-ambiguous taxa (Fig. 5)
and expanding the number of sequences on which some inference can
be made (Supplementary Note 1). We envision that tax-aliquots could
be used in conjunction with a conventional taxonomic annotation tool
to expand candidate sequences for a taxon of interest. For example, if
P. pouchetii was of interest, but only a single transcriptome reference
was available, an LCA-style alignment-based taxonomy tool could be
used to conservatively annotate proteins as pouchetii-like, and then
those sequences could be combined with the P. pouchetii reference

sequences as query sequences for tax-aliquots. This combination of
alignment and clustering based methods could enable more sequen-
ceswith similar subsequenceprofiles (via kAAmer or k-mer content) to
P. pouchetii proteins from the same sample to be identified and
explored in-depth.

Discussion
The growth of taxonomically diverse sequence databases and the
development of complementary computational analysis approaches
have enabled taxonomic predictions for community assessment in
meta-omics16,17,31,43,53. The overall size of available databases has expan-
ded dramatically since the first environmental metagenome, fueled by
the growing availability of genomes, new sequencing technology that
can be deployed straight from the lab (e.g., Nanopore sequencing54–56),
and the curation of resources from transcriptomes24,29,31,42,57–59 and
metagenome-assembled genomes14 for eukaryotes15–17,60, which expand
databases to include non-marker genes or full contigs.

Database curation plays a critical role in how sequences are tax-
onomically annotated, which directly impacts downstream ecological
and biological data interpretation (e.g., how taxonomic identity is
linked to functional role)61. All database matching is selective and
implicitly biased, because only a selection of organisms have been
isolated, subsequently sequenced, and added to protein reference
databases. Because microeukaryotes have high average genetic
differentiation62, much of our ability to annotate diversity hinges on
tradeoffs inherent to building appropriate databases from an unba-
lanced number of available references for different phyla and orders.
We demonstrated the impact of high-level database composition via
themisannotation of Radiolaria transcripts in the BATS dataset, where
Radiolarian references were absent in theMMETSP31 but present in the
EukProt and EukZoo databases43,59. This is one example froma transect
dataset, but inmore remote environments such as the deep sea, where
a smaller proportion of environmental sequences are expected to have
been cultured and sequenced, closely related, complete database
counterparts, using an entirely generative and flexible approach such
as topic modeling or global hierarchical clustering may be warranted
rather than a homology search, as this approach may facilitate the
better identification of clusters of sequences from the same organism
that lack similarity to a reference database.

While the absence of complete lineages limits our ability to
accurately annotate environmental sequences, database expansion
does not always remedy the annotation problem. Annotation is chal-
lenging because very highly conserved proteins often cannot be dis-
entangled, and some unique sequences rarely have homology with
others in the reference database even when coverage is relatively
good. Our family-level analysis showed that even when a group had
higher database representation, it was not necessarily easier to identify
in community data (Fig. 2). We also showed that more than half of
sequences within an abundant and ecologically significant protistan
phylum (Bacillariophyta) lack non-self hits to another sequence of the
same family (Table 1 and Supplementary Fig. 6). Because non-self,
same-family hits appeared to be limited to a maximum value regard-
less of the number of available family-level relatives in the database
(Supplementary Fig. 6), this observation is unlikely to be solely a
consequence of database incompleteness. In some cases, the
sequences lacking family overlapmight be spurious, and in other cases
sequences may constitute valuable variability that could enable
understanding of population dynamics in protists63,64. In our analysis,
the addition of genomes and transcriptomes at genus resolution in the
Tara Oceans samples similarly did not necessarily increase our ability
to identify a different species from that genus using typical annotation
approaches. Further, percentage identity within a high-scoring align-
ment for protein matching is frequently an unreliable indicator of
phylogenetic relatedness (e.g., Fig. 3B). Training models or selecting
thresholds using a phylogeny-aware approach takes into account the

Article https://doi.org/10.1038/s41467-024-52212-w

Nature Communications |         (2024) 15:9873 7

www.nature.com/naturecommunications


patterns in sequence overlap that differentiate microorganisms (e.g.,
what defines distinct species at the sequence-level for one family may
be different for another family).

Accurate taxonomic annotation of environmental sequences has
evolved with both algorithms and the increasing size of databases.
Using an unsupervised method and a clustering approach such as the
tax-aliquots workflow shown here reduces bias associated with parti-
cularly rare taxonomic groups for which only a single database
representative might be available. Multiple repeated hits are not
weighted more heavily by clustering algorithms, allowing annotation
challenges to be diagnosed. Taken together, our vignettes and the
output of the tax-aliquots workflow illustrate the importance of criti-
cally evaluating the completeness and composition of the database
selected. Using clustering and engaging with sequence content offers
an approach to target taxa that are insufficiently covered in current
databases or may be novel. Considering taxonomic annotation as a
clustering problem may also be complementary to emerging approa-
ches in leveraging protein structure information to understand pro-
teins of unknown function61. We encourage applying clustering
workflows like tax-aliquots to challenging datasets with low rates of
taxonomic annotation to expand inference on groups of interest.
Ultimately, critical reassessment of datasets and reevaluation of
methods is a vital step towards improving taxonomic annotation and
enhancing our ability to link taxonomic variability to functional
potential in natural communities of ecologically essential protists.

Methods
In order to evaluate and select a sequence identity cutoff for use in
taxonomic classification, we performed a bidirectional DIAMOND
search65 of the MMETSP database using the blastp algorithm66. We
used a cutoff of hits with bitscore of at least 50, and processed hits
according to their percentage identity. We removed self-hits to the
same sequence, and then recorded the percentage of sequences
within each taxonomic family that had (a) hits to other sequences in
the same taxonomic family and (b) hits to other sequences in dif-
ferent taxonomic families using eight different percentage identity

cutoffs (30, 40, 50, 60, 65, 70, 80, and 90). We compared each of
these percentages to the total number of transcriptomes associated
with each family within the MMETSP. The results from this bidir-
ectional search were used for the diatom family best hits displayed
in Fig. 1D and for the diatom familymean percentage identity results
in Fig. 2B. A similar bidirectional search which also included addi-
tional Radiolarian references was used to generate Supplementary
Fig. 2E, and the same bidirectional search among the Phaeocystis
references above was used to generate Supplementary Fig. 2F. We
tested the uniformity of the counts of each diatom family in the
MMETSP using the Anderson-Darling test against the uniform dis-
tribution generated with a count bound of zero to 10 greater than
the maximum observed per-family count using the goftest package
(version 1.2–3) in R67.

Genus Scale: Tara Oceans metagenomes
Metagenomic samples from the global ocean were retrieved from the
Tara Oceans project68. Assemblies were previously generated in
Alexander et al. (2021)17, with input sequencing reads grouped by
ocean basin, depth, and size fraction; in brief, assemblies were gen-
erated by the MEGAHIT assembler69 after trimming with the Trimmo-
matic software70. Protein prediction was performed with Prodigal47,71.
The taxonomic identity of predicted proteins was obtained using
EUKulele v2.0.324, first using a combined database containing the
MMETSP29,31,42, MarRef72, and additional Phaeocystis references,
including the genome resources for Phaeocystis antarctica and
Phaeocystis globosa73,74 available from the IMG/M (IntegratedMicrobial
Genomes & Microbiomes) database (Phaant1 and Phaglo1, respec-
tively), Phaeocystis cordata, Phaeocystis jahnii, and Phaeocystis globosa
transcriptome resources75–77, and a Phaeocystis pouchetii tran-
scriptome (Mars Brisbin et al. in prep). The contigs associated with the
proteins identified to the genusPhaeocystiswerequantified against the
raw reads using the CoverM software in contig mode, from which we
obtained estimates for total coverage in TPM as represented in Fig. 1
(v0.6.2; https://github.com/wwood/CoverM; coverm contig --min-
covered-fraction 0).

Table 1 | Summary of terms used in the paper to describe methods to annotate meta-omic sequencing datasets

Term/Concept Context Definition

k-mer profiling Assessing the taxonomy of raw sequen-
cing reads

Tools like Kraken12 that operate directly on raw sequencing reads to estimate taxo-
nomic breakdown of a community meta-omic sample.

Sequence alignment Assessing the taxonomy of raw sequencing
reads or assembled contigs

Arranging assembled sequences or reads alongside reference transcriptomes or
genomes to identify what the assembled sequence/read is most similar to.

Read recruitment to
references

Assessing the taxonomy of raw sequen-
cing reads

Mapping raw readsdirectly to reference transcriptomes or genomeswithout breaking
them down into k-mers. The proportion of reads recruited to each reference repre-
sents the taxonomic breakdownof the sample. Recruitmentmaybedone just to a few
references of interest or to the entire available database.

Assembly Creating contigs from raw read sequences Using an assembly algorithm to construct contiguous sequences from short raw
reads. Unlike raw reads, these sequences can be functionally annotated and biolo-
gically interpreted.

Lowest Common Ances-
tor (LCA)

Assessing the taxonomy of raw sequencing
reads or assembled contigs

An algorithm used to decide taxonomy based on the most specific level of taxonomy
shared between two conflicting potential taxonomic annotation sources.

Clustering approaches Assessing the taxonomy of raw sequencing
reads or assembled contigs

Instead of one-to-one sequence comparisons, creating clusters of sequences or raw
reads in order to process a dataset and/or infer taxonomy52,85,95. Clusters that contain
only a single reference can be interpreted directly.

Tax-aliquots Assessing the taxonomy of assembled
contigs

A clustering method introduced in this study that combines clustering based on
homology with kAAmer profiling. Resulting clusters can be set with a “permissive”,
“intermediate”, or “stringent” threshold, corresponding to the internal distance of the
clusters returned.

Non-self Characterizing taxonomic classification
output

A sequence search result wherein a “hit” sequence match is returned to a different
sequence (other than the one being considered). This other sequencemay ormay not
be a member of the same taxonomic group.

Taxonomically coherent Characterizing taxonomic classification
output

A sequence cluster or set of sequencematches that only contains a single taxonomic
label at the level of interest.

Taxonomically ambiguous Characterizing taxonomic classification
output

A sequence cluster or set of sequence matches that may contain several taxonomic
labels at the level of interest.
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Subsequently, separate EUKulele databases were created that
contained the MMETSP29,31,42 with all genus Phaeocystis references
removed, the MarRef72 database, and one of the ten distinct
Phaeocystis genome or transcriptome references, inclusive of spe-
cies Phaeocystis antarctica, Phaeocystis globosa, Phaeocystis pou-
chetii, Phaeocystis jahnii, Phaeocystis cordata, and Phaeocystis rex. A
third set of EUKulele databases was created which contained the
MMETSP29,31,42 with all genus Phaeocystis references removed, the
MarRef72 database, and all of either the colony-forming Phaeocystis
species or the free-living Phaeocystis species (Phaeocystis cordata,
Phaeocystis jahnii, and Phaeocystis rex). Each Tara Oceans assembly
was annotated with each of these databases. All databases used for
the mapping are available online on Zenodo (https://zenodo.org/
record/8269166).

A phylogenetic tree for the Phaeocystis references was constructed
by conducting orthologous group clustering against all Phaeocystis
references, a selection of Emiliania huxleyi transcriptome assemblies
from the MMETSP (MMETSP0994, MMETSP0995, MMETSP0996,
MMETSP0997, MMETSP1006, MMETSP1007, MMETSP1008,
MMETSP1009, MMETSP1150, MMETSP1151, MMETSP1152, MMETSP1153,
MMETSP1154, MMETSP1156, MMETSP1157), Gephyrocapsa oceanica
transcriptome assemblies from the MMETSP (MMETSP1363,
MMETSP1364, MMETSP1365, MMETSP1366), Isochrysis galbana tran-
scriptome assemblies from the MMETSP (MMETSP0943,
MMETSP00595), and three reference genomes from the JGI’s IMG/M
(Integrated Microbial Genomes & Microbiomes) database73,74 - Chryso-
chromulina tobinii (Chrsp), Oxytricha trifallax (Oxytri1), and Guinardia
theta (Guith1). Orthologous groups were created from proteins from all
references using OrthoFinder (v2.5.4)78, and orthologous groups con-
taining a single protein from all of the Phaeocystis references were used
to create an alignment and phylogenetic tree. This amounted to 40 total
single-copy genes shared across references which were used to build the
alignment. TheMAFFT tool was used formultiple sequence alignment of
each of the concatenated lists of single-copy genes (one file per gene
containing all gene versions across organisms in the alignment; version
7.508), followed by the removal of possible spurious sequences using
trimAl79 (version 1.4.rev15), and then a secondary multiple sequence
alignment using Clustal-Omega80. Sequences in the alignment were
adjusted to standardize their trimmed lengths, and the subsequent
alignments were concatenated and trimmed once more with trimAl.
FastTree (version 2.1.11) was used to build the phylogenetic tree with 100
resamples (-boot 100)81.

Family Scale: metatranscriptomes from Narragansett Bay
The metatranscriptome assembly and annotation process for the
metatranscriptomic samples fromNarragansett Bay is described in full
in Krinos et al. (2023)41. In brief, raw reads were trimmed and quality-
assessed, and then assembled in parallel using the eukrhythmic
pipeline41. Trimming was performed using Trimmomatic version
0.3970, with a minimum read length of 50 basepairs, a sliding window
of length 4 and quality score 2, and a standard list of Illumina adapters
(ILLUMINACLIP:<adapter-list > :2:30:7 LEADING:2 TRAILING:2 SLI-
DINGWINDOW:4:2 MINLEN:50). Assembly was performed using
default parameters to the eukrhythmic pipeline and used MEGAHIT,
rnaSPAdes, metaSPAdes, and Trinity69,82–84. Taxonomic annotations
were assigned using the EUKulele tool24 using a combined database
containing the MMETSP and MarRef2 sequences31.

Phylum Scale: metatranscriptomes from a transect between
WHOI and BATS
Samples from the transect between Woods Hole Oceanographic
Institution (WHOI) and the Bermuda Atlantic Time Series (BATS) sta-
tions were assembled and post-processed as described in Cohen et al.
(2023)44, with assembly products available online through Zenodo
(https://zenodo.org/record/8287779). EUKulele24 was used for the

BLAST-LCA search against these sequences, first using the MarRef and
MMETSP database31 and then adding all radiolarian references avail-
able in the EukProt and EukZoo databases34,44. These organisms
included Sticholonche zanclea (EP00491), Amphilonche elongata
(EP00492), Phyllostaurus siculus (EP00493), Astrolonche serrata
(EP00494), Collozoum sp. 1 RS2012 (EP00495), Lithomelissa setosa
(EP00496), and Spongosphaera streptacantha (EP00497). All data
associatedwith this project are published as part of Cohen et al. (2023;
in prep). Raw sequences have been deposited to the NCBI SRA data-
base under BioProject ID PRJNA903389. Assemblies, annotations and
count data are available through Zenodo (https://zenodo.org/record/
7317272#.Y3Z5w-zMInV).

Hybrid partially-supervised clustering workflow
A very permissive protein clustering is performed using DIAMOND
DeepClust85, followed by taxonomic profiling using hierarchical clus-
tering on a matrix formed in parallel by calculating kAAmer overlap
between sequences present in the cluster. This enables exact kAAmer
overlap to be computed efficiently, and does not taxonomically
annotate sequences for which an alignment is based on sequence
coverage of <20-50% of the protein. Unlike other LCA-based approa-
ches where ancestry is computed using the aligned fragment, this
method profiles the short kAAmers over the entire length of the pro-
teins which were originally clustered together on the basis of a short
and potentially low sequence similarity alignment. This allows
sequences with promising homology, even with low percentage iden-
tity, to be clustered based on consistency in sequence content over the
entire protein length.

We ran DIAMOND DeepClust85 against the predicted proteins
from the MMETSP and MarRef2 databases31 using a 50% coverage
threshold for the shorter sequence in the alignment and no minimum
percentage identity. First, kAAmers were identified in parallel sepa-
rately for each cluster. We used the pyahocorasick package, which
implements the Aho-Corasick algorithm for efficient string
matching86,87. After counting all kAAmers of length 4 using this
approach and the “Automaton” utility from pyahocorasick, we com-
puted similarity between each sequence in the protein cluster
according to the formula:

Di,j =
nkAAmers ið Þ,nkAAmers ið Þ
� �� intersections i, jð Þ

nkAAmers ið Þ,nkAAmers jð Þ� �

Where intersections i, jð Þ is the number of intersecting kAAmers
between proteins sequences i and j and nkAAmers ið Þ,nkAAmers ið Þ

� �
is the

minimum number of kAAmers found in each of the two protein
sequences, which is used to scale the raw number of intersections.
These distance numbers were used for the downstream hierarchical
clustering steps, which were conducted using the fcluster function
from SciPy88.

We linked original sequences from the database to revised taxo-
nomic annotations according to the taxonomic coherence of the
cluster to which it was assigned using the two-part algorithm. We
created a new taxonomy string dictionarywhich takes into account the
taxonomic ambiguity of sequences according to their kAAmer overlap.
The stringent approach used a distance threshold of 0.2, the inter-
mediate a threshold of 0.5, and the permissive approach used a dis-
tance threshold of 0.8.We explored the utility of this approach using a
“mock metatranscriptome” (the Phaeocystis pouchetii transcriptome)
as a hypothetical scenario of an unknown taxon to which sequences
could be recruited via clustering; for this example we used the
MMETSP and MarRef combined database and a kAAmer length of 3
(Fig. 5). We conducted an initial EUKulele search with the default
database containing MMETSP and the MarRef database31,51 and filtered
sequences that were annotated as haptophytes for the second search
with tax-aliquots and the two LCA-based tools with only Phaeocystis
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sequences as described below. To compare our approach to other
taxonomic annotation tools, we annotated the taxonomy of the same
“metatranscriptome” with the mmseqs2 taxonomy tool52, using a
default UniRef90 database available with mmseqs250 as well as a cus-
tom database containing either all Phaeocystis apart from Phaeocystis
pouchetii (applied to the the sequences annotated as haptophytes
using EUKulele). Finally, we annotated the transcriptome using
EUKulele (version 2.0.7)24 using the customdatabases described above
that contained the MMETSP and MarRef databases31,42,51 as well as a
custom database containing all Phaeocystis but excluding Phaeocystis
pouchetii (applied to the sequences annotated as haptophytes using
the initial EUKulele search). We applied tax-aliquots to the filtered
haptophyte sequenceswith the custom Phaeocystis-only database. The
figures and discussion in the text refer to a less stringent 0.8 distance
cutoff for the hierarchical clustering step of tax-aliquots, but we also
ran tax-aliquots with a 0.3 and a 0.5 distance cutoff for demarcating
sequences as part of the same cluster, corresponding to more strin-
gent clustering.

Figures were generated in R (version 4.1) and in Python (version
3.10.1) using the ggplot2 software (including the world map dataset
using the map_data function from ggplot2), ggridges package, ggUp-
Set package, ggmap package, and ggalluvial package89–94.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For the Phaeocystis sequences: EUKulele databases used to annotate
the Tara68 assemblies17 are available at Zenodo (https://zenodo.org/
record/8269166). Raw read sequences for the Tara dataset are avail-
able from the European Molecular Biology Laboratory-European
Bioinformatics Institute (EMBL-EBI; accession number PRJEB4352).
For the Narragansett Bay dataset: all raw read sequences and assem-
blies are available as described in Alexander et al. (2015) and Krinos
et al. (2023)28,41, and raw read sequences were deposited to the
National Center for Biotechnology Information Sequence Read
Archive (NCBI SRA; www.ncbi.nlm.nih.gov/sra; accession no.
SRP055134). For the BATSdataset: raw sequences have been deposited
to the NCBI SRA database under BioProject ID PRJNA903389. Assem-
blies, annotations, and count data are available through Zenodo
(https://zenodo.org/record/7317272#.Y3Z5w-zMInV). Source data are
provided with this paper.

Code availability
Code for running the tax-aliquots clustering can be accessed at https://
github.com/akrinos/tax-aliquots (also published on Open Science
Framework; https://doi.org/10.17605/OSF.IO/P865G). Code for analy-
sis and figure generation can be found at https://github.com/akrinos/
2023-euk-diversity (also published on Open Science Framework;
https://doi.org/10.17605/OSF.IO/PH8EC).
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