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a b s t r a c t

Photodynamic therapy (PDT) against cancer has gained attention due to the successful outcome in some
cancers, particularly those on the skin. However, there have been limitations to PDT applications in deep
cancers and, occasionally, PDT treatment resulted in tumor recurrence. A better understanding of the
underlying molecular mechanisms of PDT-induced cytotoxicity and cytoprotection should facilitate the
development of better approaches to inhibit the cytoprotective effects and also augment PDT-mediated
cytotoxicity. PDT treatment results in the induction of iNOS/NO in both the tumor and the micro-
environment. The role of NO in cytotoxicity and cytoprotection was examined. The findings revealed that
NO mediates its effects by interfering with a dysregulated pro-survival/anti-apoptotic NF-κB/Snail/YY1/
RKIP loop which is often expressed in cancer cells. The cytoprotective effect of PDT-induced NO was the
result of low levels of NO that activates the pro-survival/anti-apoptotic NF-κB, Snail, and YY1 and inhibits
the anti-survival/pro-apoptotic and metastasis suppressor RKIP. In contrast, PDT-induced high levels of
NO result in the inhibition of NF-kB, Snail, and YY1 and the induction of RKIP, all of which result in
significant anti-tumor cytotoxicity. The direct role of PDT-induced NO effects was corroborated by the use
of the NO inhibitor, L-NAME, which reversed the PDT-mediated cytotoxic and cytoprotective effects. In
addition, the combination of the NO donor, DETANONOate, and PDT potentiated the PDT-mediated cy-
totoxic effects. These findings revealed a new mechanism of PDT-induced NO effects and suggested the
potential therapeutic application of the combination of NO donors/iNOS inducers and PDT in the
treatment of various cancers. In addition, the study suggested that the combination of PDT with subtoxic
cytotoxic drugs will result in significant synergy since NO has been shown to be a significant chemo-
immunosensitizing agent to apoptosis.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
B.V. This is an open access article
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1. Introduction

Photodynamic therapy (PDT) is a therapeutic modality for
certain diseases including cancer. PDT consists primarily of a
photosensitizer (PS) and followed by light irradiation of a pre-
determined wavelength [1]. However, oxygen is an essential
mediator of PDT [1,2]. The PDT-generated reactive oxygen species
(ROS) and singlet oxygen (1O2) cause damage to the tumor tissues
and cells by inducing necrosis and apoptosis. Optimally, the se-
lective effect of PDT is through the localization of the photo-
sensitizer in the desired region and the precise delivery of the light
source to the treated areas. The PDT activity has its own limita-
tions, for example, its effect on metastatic cancer lesions.

1.1. The photosensitizer (PS)

Most of the photosensitizers (PSs) used in cancer therapy be-
long to the protoporphyrin family and are based on a tetrapyrrole
structure. An ideal sensitizer must have an absorption peak
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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between 600 and 800 nm (red to deep red). High wavelengths
greater than 800 nm produce a limited source of photons since
they are poor in exciting oxygen to its singlet state and, thus, re-
duce reactive oxygen species that are required for cytotoxic effects.
The mechanism of tumor localization of PS has been investigated
revealing the role of the leaky blood vasculature in cancers and the
absence of drainage by the lymphatic system leading to retention
[3]. Also, some PSs bind to low density lipoproteins and bind
cancers overexpressing LDL receptors and, thus, are more directed
on tumors [4]. Other reports also demonstrated the use of PSs
covalently linked to binding agents directed at cancer bearing re-
ceptors on the tumor cell surface [5]. Such coupling agents include
antibody molecules, antibody fragments, peptides, proteins, EGF,
etc.

1.2. Light sources for radiation

Red and infrared radiation penetrate into tissues more deep
and only in the range of 600 to 800 nm to generate singlet oxygen
for toxicity [6]. The choice of light source is dependent on the PS
used and is based on the PS absorption, the disease and its size.
The fluence rate affects significantly the PDT response [7]. Both
lasers and incandescent light sources have been used for PDT and
result in similar effects [8]. More detailed analyses of light sources
have been reviewed elsewhere [9–14].

1.3. Photochemistry

The light exposure on the PS undergoes a shift from the ground
(singlet) state to an excited singlet state. The latter undergoes
crossing to an excited triplet state and this can result in the for-
mation of radicals (ROS) (Type I reactions) or transfer the energy
to molecular singlet oxygen (3O2) to form singlet oxygen (1O2)
(Type II reactions). Singlet oxygen is the predominant cytotoxic
molecule in PDT [9].
2. Dual cytotoxic and cytoprotective roles of PDT

2.1. PDT-mediated cytotoxicity

Various PSs target different organelles and subcellular com-
partments and mediate cytotoxic effects, which will vary based on
the targeting – and the sensitivity of the tumor cells to cytotoxic
damage [13,15]. Three major types of cell death by PDT have been
reported, namely, (1) apoptosis, (2) necrosis and (3) autophagy.
Apoptosis is the major cell death mechanism induced by PDT
[9,14].

2.2. PDT-mediated cytoprotection

Many cancer cells are not sensitive to PDT-mediated cytotoxi-
city. Tumor cells develop various mechanisms to protect them
from cell death-induced by PDT and many other cytotoxic agents.
For instance, certain cancer cells have high levels of antioxidants
[16]. Others have overexpression of detoxifying enzymes for ROS
[17] and may have protective genes induced by PDT and/or over-
express several anti-apoptotic gene products [18–20]. A more de-
tailed analysis on the mechanisms discussed above would be re-
ported below.
3. Clinical applications of PDT in a variety of human cancers

Historically, Dougherty et al. [21] reported the first clinical
study of the application of PDT in patients with a variety of
malignant diseases. They treated the patients with PDT with a
hematoporphyrine-derivative (HBD). They achieved complete and
partial responses in 111 out of 113 treated cancer patients. These
initial successful findings of the application of PDT in cancer was
followed by hundreds of clinical trials [9,22,23]. PDT was most
effective on the surface of lesions due to the limited penetration of
the light source deep into the tissues; the range of tumor de-
struction did not overall exceed one centimeter. Briefly, a few
examples of the therapeutic applications of PDT in various cancers
are presented.

Còrdoba et al. [24] and Nestor et al. [25] reviewed the response
of PDT treatment in premalignant and malignant skin tumors.
Noteworthy, PDT was approved in the USA, Canada and Europe for
its use in actinic keratosis and also in the European Union and
Canada for basal cell carcinoma (BCC). In actinic keratosis, rando-
mized controlled trials reported complete response rates (82–
100%) for PDT with aminolevulinic acid (ALA-PDT) or methylami-
nolevulinate (MAL-PDT) as compared to 67 to 100% for cryother-
apy and 74–94% for the application of 5-FU cream at 12 and 24
months [26,27]. In BCC, PDT was superior to cryosurgery or sur-
gery for a selected subset of patients. Also, PDT actinic is a superior
cosmetic outcome compared to surgery [28,29]. The use of MAL-
PDT was found to be a safe and effective treatment for BCC in
patients with Gorlin's syndrome and its efficacy is correlated to
the thickness of the region [30]. PDT was also found to have
chemo-preventive activity in patients with the Gorlin's syndrome
[31].

PDT has been employed in the treatment of head and neck
cancer, successfully [32]. Of interest, the study evaluated PDT
treatment of patients with advanced diseases and not responding
to tumor treatments. They applied Foscan-mediated PDT in 128
patients with a single session of PDT. There was a remarkable re-
sponse in tumor destruction and complete local tumor clearance
[33]. These findings suggest that PDT may be an alternative
treatment for patients with early head and neck tumors.

Tumors of the digestive system have been grouped into PDT of
the esophagus [34] and tumors beyond the esophagus. The U.S.
FDA approved photofrin-mediated PDT for patients with Barret's
esophagus and high grade dysplasia who did not undergo surgery
[34]. PDT has been applied to other GI digestival tumors under the
stomach [35,36], cholangiocarcinoma (CG) [37], with a therapeutic
response on unresectable pancreatic cancers [38], and on colon or
rectal cancers [39,40].

Intraperitoneal (ovarian, gastrointestinal, sarcoma) have been
treated with PDT [41]. There was a suggestion that the median
survivals of two years for ovarian cancer and one year for gastro-
intestinal cancer have been beneficial by PDT compared to
controls.

Several reports have shown that the results of PDT treatment of
prostate cancer. These studies established the potential use of PDT
in prostate cancer and toxicity was considered as a determining
factor [42–44].

Superficial bladder cancer is a good target for PDT. Long-term
desirable responses of 20–60 of patients who were treated and
many of those patients had recurrent disease following BCG
treatment [45,46]. While PDT treatment for bladder cancer has
been approved in the EU and Canada, it is not yet approved by the
U.S. FDA.

In non-small cell lung cancer, the results of PDT treatment are
encouraging [47,48]. In patients with malignant pleural mesothe-
lioma, a randomized phase III study compared PDT with surgery
and the findings demonstrated the benefit of PDT over surgery
[49].

Promising clinical findings of PDT in brain tumors were re-
ported [50,51]. However, more phase III clinical trials are needed
to place PDT as superior to other therapeutics in certain cancers.
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Also a number of applications of laser technologies for accurate
dosimetry are needed.

PDT has also been used in the treatment of mycosis fungoides,
an indolent subtype of cutaneous T-cell lymphoma. It was re-
ported that consecutive PDT treatments are adjunct for treatments
of mycosis fungoides with good cosmetic results [52].
4. Molecular mechanisms of PDT-mediated cytotoxicity and
resistance

4.1. PDT-mediated cytotoxicity

It was stated that active PDT-mediated cytotoxicity resulted
from apoptosis, necrosis and autophagy. Apoptosis is a mechanism
of programmed cell death that is activated by external death li-
gands (type I) or intracellular effects on the mitochondria (type II)
via chemotherapeutic drugs, antibodies, toxins, DNA damaging
agents, etc. For example, type I apoptosis is activated from the
binding of death ligands (CTL, NK), FasL, TNF-α, and TRAIL to
corresponding receptors Fas, TNF-R1/R2, DR4/DR5, respectively.
Sensitive cells are induced to apoptosis by activation of caspase-8
and the effector caspase-3 leading to activation downstream of
PARP and DNA fragmentation. Type II apoptosis results from al-
tering the mitochondria permeability membrane and inducing the
release of cytochrome c and smac/DIABLO, which lead to the ac-
tivation of caspase-9. Subsequently, there is activation of caspases
7 and 8 and caspase 3, a merging point of type I and type II, and
leading downstream to apoptosis. In addition to cytochrome c and
smac/DIABLO, AIF is also released and activates apoptosis by a
caspase-independent mechanism. Most PDT induce type II apop-
tosis [14]. PDT also photooxidizes lysosomes leading to the rupture
and release of cathepsins which induce Bid cleavage and per-
meabilization of the mitochondrial outer membrane [53]. Cell
death induced by PDT by necrosis has been observed and the
underlying mechanism is not really clear [54,55]; although it has
been reported that the activation of the receptor activity protein I
(RIPT-1), excessive ROS production, lysosomal damage, and cal-
cium are involved [55,56].

PDT also induces autophagy, a lysosomal pathway involved in
the degradation and recycling of intracellular proteins and orga-
nelles. Autophagy can be induced by oxidative stress [57,58].

4.2. Resistance to PDT-mediated cytotoxicity

Tumor cells utilize several mechanisms to be resistant to the
cytotoxic effect of PDT [59,60]. Briefly below, we discuss the most
pertinent of those mechanisms, and several of those have been
revealed through the utilization of PDT-resistant tumor cell lines.
The mitochondrion plays an important role and any perturbation
of the content enzymes in cancer cells may result in PDT resistance
since PSs mediate their activity in the mitochondria [61,62].

Tumors resistant to several chemotherapeutic drugs exhibit the
MDR phenotype [63–65]. The findings of the role of the MDR (Pgp)
and the resistance to PDT are controversial depending on the cell
lines, the kind of the PS used, and how the PS interacts with the
MDR proteins. Another ABC transporter capable of inducing drug
resistance in breast cancer cells was termed ABCG2 [66,67]. There
is a correlation between the expression of ABCG2 and the re-
sistance to PDT as a function of the PS structure [68]. Overall, high
Pgp and ABCG2 expressions potentiate resistance to PDT and in-
hibitors of those transporters may reverse resistance [69].

DNA damage may be induced by PDT [70]. PDT induces acti-
vation of early response genes [61] with the activation of cell
survival pathways. Hence, the hyper activation of survival pathway
may result in resistance of PDT-mediated cytotoxicity. In addition,
tumor cells overexpress anti-apoptotic gene products that play a
role in the resistance of PDT-mediated cell death.

PDT is also antagonized by antioxidant defense mechanisms
including the glutathione system, superoxide dismutase (SOD),
catalase, and lipoamine dehydrogenases [17,71]. The increase of
heat shock proteins may also be involved in PDT resistance [72].
Modification of the extra cellular matrix in tumor cells affects PDT
cell toxicity [59].

The role of NO in resistance has been controversial and de-
pending on the level of NO. Low levels of NO mediate chemo and
radio-resistance whereas high levels of NO mediate cytotoxicity
and sensitize tumor cells to chemo-immunotherapy (see chapter
Bonavida and Garbon in this volume). The subset of NO in PDT will
be discussed below separately.
5. Dual roles of NO-mediated anti-tumor effects

The induction of NO in tumor cells may result in some pro-
tective effects by mediating cell proliferation, survival, and re-
sistance. For example, reports by Sikora [73] reported that the
inhibition of inducible nitric oxide synthase (iNOS) repressed the
growth of human melanoma in vivo and synergized with cisplatin.
Noteworthy, Eyler et al. [74] reported that glioblastoma stem cells
expressed higher levels iNOS than normal stem cells and the iNOS
inhibition reduced cell proliferation in vitro. In vivo, in a mouse
xenograft model, an iNOS inhibitor slowed tumor progression and
prolonged survival. Such studies and others demonstrated that
many cancer cells utilized low levels of iNOS/NO to reduce apop-
tosis, to stimulate cell proliferation and to induce invasion and
metastases. NO at low concentration can act as antioxidant [75]
and also S-nitrolsylate proteins that activate pro-survival path-
ways [76].

The dual roles of NO have been the subject of many studies in
both NO-mediated cytoprotective and cytotoxic effects. NO at high
concentration, in the mM range, is cytotoxic due to its conversion
to oxidized intermediates that damage the DNA, exerts lipid per-
oxidation on the membrane and inhibits certain proteins by
S-nitrosylation [77–80]. NO dual contrasting roles in PDT have
been reviewed elsewhere [81–84].
6. NO donors and PDT

Recently, several groups have begun to synthesize NO donors to
promote PDT-mediated anti-tumor cytotoxicity. For instance, Car-
neiro et al. [85] reported the synthesis and activity of a nitrosyl-
phtalocyanin ruthenium complex [Ru (NO) (NO) (ONO) (pc)] and
studied its effect on a murine melanoma cell line, B16F10, in the
presence or absence of light irradiation. Their findings demon-
strated that the complex was more effective in inhibiting B16F10
cell growth than the free [Ru (pc)] demonstrating the importance
of NO release. Also, the encapsulation of the complex into lipo-
somes was 425% more effective than the non-capsulated com-
plex. The phototoxicity of the complex on B16F10 cells was pri-
marily due to apoptosis.

Giles et al. [86] designed 2 photolabile NO-releasing prodrugs,
tert-butyl-S-nitrosothiol and tert-dodecaire-S-nitrosothiol. These
prodrugs have better kinetics of NO release than available ni-
trosothiols and are stable in vitro in the absence of radiation. Ex-
perimentally, irradiation increased the cytotoxic activity of these
prodrugs and the authors suggested their therapeutic potential. In
subsequent studies, the same group designed a superior NO donor
than the conventional GSNO SNAP [87]. Tert-dodecaire-S-ni-
trosothiol released high NO than GSNO or SNAP, and exhibited a
photodynamic response. The authors concluded that this
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compound is the most effective known S-nitrosothiol for PDT ap-
plication. Rapozzi et al. [88] reported the superior activity of a new
complex DR2 constituted of a PS (Pheophorbide a, Pba) connected
to a non-steroidal antiandrogen molecule able to release cytotoxic
NO under the exclusive control of light in prostate cancer cells.

Reported studies implicated the role of the high level of NO in
its interference with the dysregulation of NF-κB/Snail/YY1/RKIP in
cancer cells [89]. This loop provided the tool to examine its role
and implication in PDT on one hand and its regulation in NO-
mediated PDT treatment resulting in either the cytoprotective
tumor recurrence or antitumor cytotoxicity. Below briefly, we
present our findings that have been recently published [90,91].

6.1. NO-mediated PDT-induced cytotoxicity

It is well established that treatment with PDT results in the
induction of NO through the activity of the PS and light as a result
of the induction of iNOS [81,82]. The induction of NO by PDT is the
result of both the activity of iNOS expression by both the tumor
cells and the tumor microenvironment [83,84]. Whether the NO-
mediated induction by PDT plays a major role in PDT-mediated
cytotoxicity was investigated. This hypothesis was examined in
vitro in a tumor cell model using the amelanotic murine cell line,
B78-H1 [90].

In this model, Pba was used as the PS. Treatment of tumor cells
with Pba induced iNOS expression and the level of iNOS are a
function of the concentration of Pba used. In addition, treatment
with Pba inhibited tumor cell viability as assessed by a reduction
of metabolic activity of the treated cells. The direct role of NO-
induction by PDT was corroborated by the use of L-NAME, an in-
hibitor of NO, and such a treatment reversed the cytotoxic activity.

We then examined the effect of Pba on the expression of the
loop gene products. Treatment of B78-H1 cells with Pba resulted
in the inhibition of NF-kappa B and Snail expressions while up-
regulating the expression of RKIP. In addition, treatment with Pba
induced the activation of caspases 3 and 7 above control levels and
suggested that the cytotoxic mechanism involved apoptosis. The
in vivo findings of Pba-induced inhibition of cell proliferation and
induced cytotoxicity were corroborated in a murine bearing B78-
H1 tumor cells whereby the administration of mPEG Pba resulted
in significant inhibition of tumor growth in vivo [90].

The above findings demonstrated clearly that treatment of B78-
H1 tumor cells with PDT resulted in cytotoxicity via inhibition of
the constitutively activated NF-kappa B pathway, responsible for
cell proliferation and viability, and downstream inhibition of its
target gene product, Snail, and resulting in the derepression of the
metastasis suppressor gene product RKIP. In addition, the induc-
tion of RKIP potentiated the inhibition of NF-kappa B activity as
reported [92]. PDT-mediated effects are the result, in part, of the
induction of NO. NO has been reported to inhibit the NF-κB ac-
tivity via the S nitrosylation of p50 and p65 [93]. Thus, based on
these findings, we have postulated that NO-mediated PDT cyto-
toxic activity may be enhanced by the combined treatment of PDT
and an NO donor. Accordingly, we have used the NO donor, DE-
TANONOate, which was reported to have a significant effect in
interfering with the loop in cancer cells and resulting in the in-
hibition of cell survival and sensitization to chemotherapeutic
drugs [89]. Therefore, the combination of PDT and DETANONOate
was examined and the findings revealed, in contrast to single
agent treatment alone, that the combination resulted in significant
potentiation of (a) inhibition of metabolic activity (b) inhibition of
NF-κB activity (c) inhibition of Snail and (d) upregulation of RKIP.
In addition, in vivo studies in mice revealed that the combination
of Pba and DETANONOate resulted in significant inhibition of tu-
mor growth compared to single treatment alone and significant
prolongation of survival in mice [90].
Overall, the above findings demonstrated clearly that the NO-
induced by PDT plays a pivotal role in PDT-induced cytoxicity and
that the addition of exogenous NO potentiated the cytotoxic ac-
tivity against the tumor cells. A schematic diagram representing
PDT-induced NO-mediated cytotoxity is shown in Fig. 1.

6.2. NO-mediated PDT inhibition of cytotoxicity and epithelial me-
senchymal transition

The protective role of NO-induced by PDT in cytoprotection has
been the subject of many reports and recently reviewed by Girotti
[82]. We have reported that the level of NO-induced by PDT has
contrasting effects on the NF-κB/Snail/YY1/RKIP loop i.e. low level
of NO activates NF-κB, YY1, and Snail and inhibits RKIP whereas
high level inhibits NF-κB, Snail, YY1, and induces RKIP [90,91,94].

It was also reported that the activity of the above loop not only
regulated cell survival and viability, but also regulates the epi-
thelial to mesenchymal transition (EMT) [95]. Thus, based on the
findings that a suboptimal PDT-treatment resulted in a transient
inhibition of tumor cell growth followed by recurrence, we ex-
amined the role of PDT-induced NO in a model of tumor cell re-
currence as well as its role in EMT [91]. The tumor model used
consisted of the human PC3 prostate cancer cell line. A suboptimal
concentration of Pba was used, which had no effect on PC3 cells,
and treatment was repeated 4 or 8 times and the properties of the
treated tumor cells were examined at these time intervals. There
was significant enhancement of cell proliferation and with a mild
and constant production of iNOS in the cells. Noteworthy, there
was significant activation of NF-κB and YY1 [91] expressions fol-
lowing 8 treatments along with inhibition of RKIP. Also, there was
significant activation of the AKT pathway, which regulates NF-κB
activity [91]. In addition, the modulation of the loop by PDT
treatments resulted in the induction of the EMT phenotype of PC3
cells as determined by inhibition of E-cadherin and the induction
of vimentin. The direct role of NO on both the effects on the loop
and EMT by repeated PDT treatments was corroborated by the use
of the NO-inhibitor, L-NAME, that resulted in the reversal of the
observed effects.

The above findings demonstrated a mechanism by which the
cytoprotective effect of PDT is mediated by low levels of NO-in-
duction resulting in cell proliferation and EMT [91]. A schematic
diagram representing these effects is shown in Fig. 2.

We hypothesized that low levels of PDT-induced NO may ac-
tivate the loop and result in cell proliferation and tumor recur-
rence. However, high levels of induced NO will inhibit the loop and
result in the inhibition of cell proliferation, reduced cell viability,
and induction of cell apoptosis.
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7. Concluding remarks and future directions

7.1. Concluding Remarks

It is clear that the induction of NO by PDT plays an essential
role in its cytotoxic anti-tumor activity provided the amount of NO
released is optimal for mediating cytotoxicity. Since the amount of
NO-induced by PDT varies and is dependent on the tumor tissue,
the PS used, the light source, one may consider various means to
overcome such limitations. The combined treatment of NO donors
and PDT resulted in a significant synergistic cytotoxic activity
using tumor model systems described here. Clearly, the overall
activity mediated by PDT-induced NO or the addition of exogenous
NO resulted, in part, in the interference of a dysregulated loop (the
pro-survival/anti-apoptotic/NF-κB/Snail/YY1/RKIP) found to be
present in many cancers. This dysregulated loop has been shown
to be central for tumor cell survival, proliferation, resistance, in-
vasion, angiogenesis, EMT and metastasis. Thus, the combined
treatment of PDT and NO donors results in pleiotropic activities
that not only induce cytotoxicity against a tumor, but also, prevent
invasion and metastasis as well as reverse resistance. Several NO
donors have been used and others are being developed for their
anti-tumor mediated activities used alone or in combination with
sensitizing agents and drugs. Clearly, the therapeutic implication
for the use of the combination of NO donors and PDT in cancer
patients warrants clinical trials to determine toxicity and efficacy.
At present, there have been a few ongoing clinical trials with NO
donors as single agents, but clearly, these would be followed with
clinical trials for the combination treatments with PDT.

7.2. Future directions

Several future directions for investigations are being currently
contemplated, for example, analysis of the effect of the combina-
tion of NO donors and PDT on cytotoxicity on cancer stem cells.
Also, several reports have demonstrated the significant chemo and
immuno-sensitizing activities of NO donors. Thus, analysis of the
combination of NO donors and suboptimal PDT in resistance as
chemoimmunosensitizing agents are warranted for investigation.
There are also reports on the analysis of the superiority of NO-drug
conjugates in comparison with single agents. Novel synthesized
PDT-NO complexes have been synthesized and are currently being
investigated. Preliminary findings demonstrated that a selected
PDT-NO complex is more cytotoxic than single agents alone or
combination [88]. In addition, the application of nanoparticles
coated with the PS-NO complex will be examined for their su-
perior activity. The findings demonstrating PDT-induced NO on the
dysregulated NF-κB/Snail/YY1//RKIP loop suggested that inhibitors
of NF-κB/Snail/YY1 or inducers of RKIP may be useful if used in
combination with PDT for anti-tumor cell activity, and such studies
are currently being explored.

This schematic diagram represents treatments with suboptimal
PDT result in the low induction of iNOS and resulting in low levels
of NO. Under these conditions, NO induces the expressions and
activities osf NF-κB and downstream its target gene products Snail
and YY1. The overexpression of SNAIL represses the transcription
of RKIP. Thus, under the conditions of low levels of NO, the mod-
ified dysregulated loop results in the overexpression of NF-κB,
YY1, and Snail and the inhibition of RKIP expression. Hence, the
tumor cells undergo recurrence, cell proliferation, resistance to
cytotoxic drugs, expression of the EMT phenotype, and metastasis.

This schematic diagram represents optimal PDT treatments
which result in the high induction of iNOs expression and high
levels of NO. High levels of NO inhibit NF-κB, Snail, and YY1 ac-
tivities and expressions and resulting in the derepression and
overexpression of RKIP. In addition, the overexpression of RKIP, in
turn, potentiates the inhibition of NF-κB and its target genes Snail
and YY1. These manifestations by high levels of NO result in in-
hibition of tumor cell growth, induction of apoptosis in sensitive
cells, sensitization to cytotoxic drugs, and inhibition of EMT and
metastasis.
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