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Abstract

CASP assessments primarily rely on comparing predicted coordinates with experimental

reference structures. However, errors in the reference structures can potentially reduce the

accuracy of the assessment. This issue is particularly prominent in cryoEM-determined

structures, and therefore, in the assessment of CASP15 cryoEM targets, we directly utilized

density maps to evaluate the predictions. A method for ranking the quality of protein chain

predictions based on rigid fitting to experimental density was found to correlate well with the

CASP assessment scores. Overall, the evaluation against the density map indicated that the

models are of high accuracy although local assessment of predicted side chains in a 1.52 Å

resolution map showed that side-chains are sometimes poorly positioned. The top 136

predictions associated with 9 protein target reference structures were selected for refinement, in

addition to the top 40 predictions for 11 RNA targets. To this end, we have developed an

automated hierarchical refinement pipeline in cryoEM maps. For both proteins and RNA, the

refinement of CASP15 predictions resulted in structures that are close to the reference target

structure, including some regions with better fit to the density. This refinement was successful

despite large conformational changes and secondary structure element movements often being

required, suggesting that predictions from CASP-assessed methods could serve as a good

starting point for building atomic models in cryoEM maps for both proteins and RNA. Loop

modeling continued to pose a challenge for predictors with even short loops failing to be

accurately modeled or refined at times. The lack of consensus amongst models suggests that

modeling holds the potential for identifying more flexible regions within the structure.



1. Introduction
Assessment of models in CASP is traditionally based on comparing predicted

coordinates with the coordinates of reference structures provided by experimentalists. For

evaluation purposes, the experimental structures are considered the ‘gold standard’. However,

experimental structures by their nature are only models themselves - their construction involves

a certain degree of subjectivity in interpreting density maps and translating them to atomic

coordinates. In several previous CASPs, in parallel to the coordinate-to-coordinate evaluation,

we carried out an evaluation of models versus the experimental data for a subset of

cryoEM-derived structures 1,2, where experimental uncertainty was expected to be larger than

that in X-ray structures. In this article, we continue this trend and check the fit of some of the

best CASP15 models to cryoEM density maps. We also study how the density-guided

refinement of these models improves their fit to map, and how the refined models fare with

regards to the experimental structures. For the first time, besides the protein targets, we analyze

RNA structures.

The number of structures newly solved by 3D-EM roughly doubles every two years and

totals 14,500 as of March 2023, constituting more than 8% of protein structures in the whole

PDB (http://www.rcsb.org/) 3 (compared to around 4% only two years ago). Reflecting this

growth, CASP also registered an uptick in the percentage of cryoEM targets. In CASP14, 7 out

of 54 evaluated targets (13%) were determined by cryoEM, while in CASP15 the corresponding

numbers were 27 out of 93 (29%), including 8 of the 12 (67%) RNA-containing cryoEM

structures.

While AlphaFold2 did not participate in the assembly category in CASP14, it was noted

that its predictions could have alleviated many interface modeling errors 4. Since then,

AlphaFold-Multimer, RosettaFold 5 and AF2Complex 6 are a few examples of a growing number

of deep-learning approaches to complex prediction. Predictions of oligomeric targets were

https://paperpile.com/c/io9IHR/0065+o2Sv
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sufficiently good in CASP15 to directly refine whole proteins and complexes rather than smaller

evaluation units (as done in previous studies). To test the applicability of the predictions in

real-world cryoEM structure determination tasks, we not only examined the refinement of

complete complexes but also investigated a method for identifying good candidates for

refinement. Additionally, given the improvement in the average cryoEM map resolution, we

decided to not only refine the best-predicted models into the corresponding maps but also

assess higher resolution aspects of predicted models, such as their side-chain orientations.

Whilst cryoEM has been an important method for studying proteins, often at near-atomic

resolution (see H1114), cryoEM experiments have not yet been able to achieve the same levels

of resolution for RNA-only structures. The lower resolution nature of the data makes RNA

structures ideal test cases for flexible-fitting into cryoEM maps based on de novo models, where

possible motions of the structure can be calculated from an initial structural model and the

experimental data. However, structure prediction for RNA is far less mature than for proteins,

making RNA refinement into cryoEM maps particularly challenging.

2. Materials and Methods

2.1 Selection of models for refinement from proteins and protein complexes

targets

In CASP15, with the accuracy of domain modeling expected to be on a par with or better

than in previous years, we focussed on the fitting and refinement of multidomain and oligomeric

models (Fig. 1, Table 1). Protein models were selected by combining two approaches (Fig. 2).

In the first approach, we used the following CASP metrics to define accurate models: all

predictions required an lDDT (lDDTo for oligomers) score greater than 0.7. Additionally,

predictions for monomeric targets required a GDT_TS score greater than 0.7. In the case of

oligomeric targets, predictions with QS, TM and F1 scores 4,7,8 all greater than 0.7, 0.8 and 0.6

https://paperpile.com/c/io9IHR/vEBW+iLBD+cnWF


respectively were eligible for refinement. Often in an experimental setting, little is known about

the target structure and therefore the first step is to fit the structure in the map using a global

search. We therefore, as a “control” experiment, also chose the prediction for each of the above

targets (Fig. 1, Table 1) which ranked best against the experimental map (see 2.2).

2.2 Selection of models for refinement based on ranking of individual
protein chains

Instead of rigidly fitting the entire complex in the map, one can identify the optimal initial

position for each of the protein components in the model using an exhaustive search or another

heuristic. Predictions were re-ranked based on this global fitting approach using

Cross-Correlation (CC).

The docking of models in this study was carried out using two automatic docking

programs, Molrep 9,10 and PowerFit 11. Both programs use a six-dimensional search to maximize

an overlap-correlation score between a given model and the map file. Molrep incorporates a

Spherically Averaged Phased Translation Function (SAPTF), followed by a Rotation Function

(RF) and Phased Translation Function (PTF), which achieves a suggested first fit and then

improves the overlap score with a six-dimensional optimisation search 9,10. On the other hand,

PowerFit incorporates an exhaustive six-dimensional search, including rotation at a pre-set

angle sampling density and translation across the map file. Input parameters for the docking

included the input map file, model and resolution 11. The top model was determined by the CC

score calculated using ChimeraX 12.

A group ranking was generated as follows using the complete chain submissions

submitted by groups instead of the CASP-defined Evaluation Units (EUs) 13. Predictors may

submit five models for each target. To reduce the computational time required for the docking

process, only the first submitted model for each target per group was considered. For each

https://paperpile.com/c/io9IHR/iQc5+OwY8
https://paperpile.com/c/io9IHR/xpjg
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target, a score was assigned per group reflecting its position in the CC ranking for that target.

The top model was given a score of 123 since this was the total number of groups. An

automatic rank of 0 was given where a group did not submit a prediction for a given target. For

an overall group ranking, a cumulative score for each group was tallied across all targets for

which that group submitted a prediction. For comparison, similar rankings were done for each

group and target using the composite SCASP15 score defined by 14

For single chain targets, the prediction from the top group was chosen as the starting

candidate. For oligomeric targets (H1114, H1129, H1158, T1121o, T1170o, H1185), a cumulative

score of the individual chains was tallied. The model from the highest scoring group across all

chains for a target was selected for refinement. For these models, no attempt was made to

recombine individual fitted chains: instead the originally submitted multi-chain assembly was

re-docked so that this full assembly was the starting model for the refinement process.

2.3 Selection of models for refinement from RNA targets

All RNA-containing cryoEM targets were considered for refinement. If there were multiple

experimental maps, predicted models were selected separately for each map. The predictors

were not asked to predict these conformations separately and hence, in some cases, the same

predicted model was refined against multiple maps. Due to the prediction accuracy, there were a

limited number of models that fit well in each map, so all models submitted by each team were

considered. The best models were selected as the top ranked structures across all submitted

models based on the previously described map-to-model Z-score, ZEM
15. Due to the fit qualities

an automatic threshold would result in few models per target, so manual visual inspection was

additionally used, to select models that, even without good fits, we thought were the most

promising for refinement. Based on these rankings and visual inspection of fit of the top 10

ranking models by an expert, a final set of models for each target were selected.

https://paperpile.com/c/io9IHR/97Ev
https://paperpile.com/c/io9IHR/qirs


2.4 Model fitting and refinement

As per the CASP13 and CASP14 modeling experiments 1,2, predictions of cryoEM

targets were positioned in the density by aligning them to the target and then optimizing local fit

to density before refinement using ChimeraX fit-to-map function. The fitting and refinement

stages of the pipeline (Fig. 2) used a hierarchical approach built on our previous protocol

designed for Flex-EM/RIBFIND 16. This approach was previously shown to allow large

conformational changes to take place and avoid trapping parts of the model in small density

pockets during fitting. The TEMPy-REFF software package 17 supports this hierarchical

approach by automatically breaking down clusters as refinement progresses. This package

offers a number of force-fields and routines for building pipelines for fitting and refinement using

the OpenMM molecular dynamics engine 18. In our application of the software here (Fig. 2), the

models were iteratively broken down into smaller rigid-bodies using the RIBFIND2 software

[https://ribfind.topf-group.com/]. These subunits were composed of interacting secondary

structure elements determined using DSSP 19 for proteins and RNAView 20 for RNA. Each

subunit was then subjected to a fitting force which is simply the negative gradient of the cryoEM

map 21, whilst strong harmonic restraints maintain the overall geometry of the subunit.

In the last stage, the models were refined using a Gaussian mixture model (GMM)-based

potential similar to the component-based approach of 22, but this time applied to atoms. In this

scheme, each atom is represented by a Gaussian where the mean is given by the atom's

position, sigma can intuitively be thought of as its resolution or Bfactor, and the height is the

atomic number which approximates the scattering potential of neutral atoms. Using the

expectation-maximization algorithm for GMMs, the atomic positions are successively updated so

as to maximize the likelihood that the Gaussians represent the experimental data while at the

same time an AMBER14 force-field 23 corrects stereo-chemistry.

https://paperpile.com/c/io9IHR/o2Sv+0065
https://paperpile.com/c/io9IHR/Y759
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https://paperpile.com/c/io9IHR/KNI2
https://paperpile.com/c/io9IHR/HTq6
https://paperpile.com/c/io9IHR/DQH5
https://paperpile.com/c/io9IHR/wT8W
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Despite the RIBFIND rigid body restraints, early testing of the pipeline showed that some

RNA models suffered from distortions. Therefore, our final protocol included an additional stage

of corrections using the ERRASER2 program, an unpublished accelerated version of the

ERRASER protocol for the refinement of RNA in crystallographic and cryoEM maps 24. It is

available as part of the ROSETTA package 25. However, here ERRASER2 was used only for

optimisation of the structure and not the fit to the density before final refinement of the structure

using the GMM (see Listing 1).

2.5 Model assessment measures for protein models

The protein predictions for cryo-EM protein targets and the subsequent refined models

were evaluated for their goodness-of-fit to the experimental cryo-EM density map (model-to-map

goodness-of-fit) using the following metrics: The local (per-residue) goodness-of-fit was

evaluated with the TEMPy2 Segmented Manders’ Overlap Coefficient (SMOC) score 16 and

global goodness-of-fit using the ChimeraX cross-correlation measurement. The SMOC score

represents the Manders’ overlap coefficient for overlapping residue fragments: it is computed on

local spherical regions around the seven residues in the current window. Overlapping windows

are used, producing one numerical value per residue. SMOC scores can be calculated for the

whole structure by averaging the per-residue scores. In order to compare the quality of fit to the

density of side-chain vs. backbone, we have implemented two new “localised” SMOC scores in

TEMPy: SMOCs and SMOCb. These scores assess the voxels around the side-chain atoms

(SMOCs) and around the backbone atoms (SMOCb), respectively. To compute the SMOCs and

SMOCb scores, each residue from the predictions was locally aligned to the target using the

C-alpha atoms of the residue and its immediate neighbors. Because side-chains are a

high-resolution feature, we did not use sliding windows in this case, i.e., SMOCs and SMOCb

scores were computed on the aligned residues. The geometry of the targets, the predictions and

the refined models were all assessed using MolProbity 26.

https://paperpile.com/c/io9IHR/rUaP
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2.6 Model assessment measures for RNA models

For CASP15, we have implemented a new SMOC score in TEMPy – SMOCn – to

assess the fit of nucleic acid chains. SMOCn is calculated similarly to the original SMOC score,

which was designed to assess the protein chain in the density, by sliding windows around

nucleotides instead of amino acids 16. Due to resolution limitation, the “localized” SMOCb and

SMOCs scores were not used for RNA. As the RNA experimental maps were generally of a

lower resolution than their protein counterparts, assessing geometry was important to ensure

models were not overfit to the maps. RNA Validate, which is part of the Phenix 27 software

package, was used to assess the geometry of the RNA targets, predictions and refinements. We

focussed our geometry analysis on the ‘average suiteness’ scores produced by RNA Validate.

‘Suites’ are defined by the pucker of two consecutive backbone sugars and the five torsion

angles between them. Empirical studies have shown that these suites inhabit a number of

characterized states in 7-dimensional space. ‘Average suiteness’ is a measure of how well the

suites in an RNA model match the discrete conformers found in the empirical data 28.

3 Results

3.1 Protein targets: ranking and selection

3.1.1 Selection of protein targets for refinement using CASP criteria

We refined 136 predictions for multi-domain proteins and protein complexes (Table 1)

that either passed our filter based on CASP score (see 2.1) or ranked first based on the fit of

individual chains (see 2.2). For most targets, there was an overlap between the two, i.e., the

top-ranked model based on global fitting of the chain/s was included in the list of models which

had good CASP scores.

https://paperpile.com/c/io9IHR/Y759
https://paperpile.com/c/io9IHR/HDfN
https://paperpile.com/c/io9IHR/gEHL


The only target listed which did not have models that passed the CASP based selection

criteria was T1169. Predictions of individual domains in T1169 were good but the full protein

models were not accurate enough to pass the threshold due to partially inaccurate domain

organization. This protein was the largest single chain model in CASP history with 5 domains

and over 3000 residues. Here we chose the model with the highest GDT_TS score

(GDT_TS=57.7, lDDT=0.63) which was from Yang-server (group 229). Finally, we did not refine

predictions for target H1114 for which the corresponding cryoEM map is at 1.52 Å resolution.

Given the high resolution of the map and the high quality of the predictions for this target (the

best model had a TM-score=0.97, olDDT=0.86, QS-score=0.79, F1-score=84.13), we decided

to use it for side-chain analysis instead.

3.1.2: Choice of docking software for chain ranking

A Spearman rank correlation coefficient was performed to compare the rankings

produced by Molrep and PowerFit. For the majority of cryoEM targets there were no significant

differences between the PowerFit and Molrep rankings. However, for a minority of cryoEM

targets, significant differences were seen. The greatest differences were for T1114s3 (PowerFit

median CC: 0.6483, Molrep median CC: 0.587), T1137s1 (PowerFit CC: 0.17285, Molrep CC:

0.12070), T1137s3 (PowerFit CC: 0.1894, Molrep CC: 0.1273), T1137s5 (PowerFit CC:

0.20345, Molrep CC: 0.11065), T1157s1 (PowerFit CC: 0.46999˙, Molrep CC: 0.6101 ) and

T1185s1 (PowerFit CC: 0.317, Molrep CC: 0.439). Since PowerFit outperformed Molrep in

those cases more often than the reverse, PowerFit’s placements were chosen for the rankings.

3.1.3 Chain rankings

There was a significant, strong positive correlation between the cumulative SCASP15

rankings and the cryoEM-based docking rankings (Fig. 3). The top five groups from the docking

rankings, in order, were: Yang, BAKER, GuijunLab-Assembly, FoldEver and PEZYFoldings.



Each of these groups submitted predictions for each target with the Yang group ranking

consistently high across all targets. Additionally, Yang had the most (three) top ranking models

by the docking rankings (Table 2). Each of the top groups used different flavors of AlphaFold 2

for the predictions with the exception of BAKER who used RosettaFold. For making

comparisons in performance, control representations of AlphaFold 2 are annotated (Fig. 3) with

group names NBIS-af2-multimer, NBIS-af2-standard, Colabfold and Colabfold_human.

Colabfold and Colabfold_human submitted predictions for every target but their results, while

confirming the value of these readily available predictions for cryo-EM map fitting, were not

among the very best. The best ranked prediction for each target was selected for refinement if it

was not already selected based on CASP criteria (see 3.1.1). These are listed in Table 3.

H1137 was excluded from the ranking as the CC scores for each chain failed to produce

consistent results.

3.2 Protein targets - refinement of top predictions

3.2.1 Overall model analysis

Average SMOC scores of predictions prior to refinement were poor with a large degree

of variation among the predictions for each target (Fig. 4A). After refinement, average SMOC

scores were closer to those of the respective targets, typically with significantly reduced

variance. For example, the top models refined from the predictions of target T1154 had a SMOC

curve very similar to that of the target SMOC curve (Fig. 4B, C). Interestingly, all top predictions

for this target based on CASP criteria could be refined in the N-terminal part of the structure,

despite its initial wrong orientation. This is likely to be attributed to the hierarchical refinement

protocol, where the N-terminal is first pulled into the density as one rigid body. On the other

hand, in the regions of residues 810-814 (Fig. 5B), there is a sharp drop in the SMOC plot due

to the “loopy” characteristics of the region (see below). In fact, most targets had some loops



which did not reach the high SMOC scores seen in the rest of the structure after refinement,

suggesting these regions were poorly modeled and bringing down the average SMOC scores.

Specific cases are explored in detail in (see 3.2.2).

Overall MolProbity scores, which are a log-weighted combination of the clash score,

percentage of unfavoured Ramachandran dihedrals and unfavorable side-chain rotamers,

generally improved after refinement with scores less than 2.0 being common. However, for a

number of targets, the MolProbity scores were worse. In these cases (H1129, H1185, T1154),

the provided maps had been pre-processed using DeepEMhancer 29 or sharpened.

Most of the best predictions based on chain ranking were improved after refinement,

generally exceeding the cutoffs needed to be considered ‘accurate’ (Table 3). However, some

scores for T1154 and T1121o were worse after refinement due to distortions. In the case of

T1154 an incorrect interaction at the N-terminus caused a poor set of rigid-bodies to be

generated during refinement. In the case of T1121o, a domain was rotated perpendicular to the

density causing it to fail to refine.

3.2.2 Analysis of loop predictions

Given that overall the predictions were very accurate for proteins and that the top

predictions required very little refinement in order to fit well into their corresponding target

cryoEM maps, we decided to focus next on examining how well the loops in the top predictions

were refined. Below are specific targets where the accuracy of loops was examined in detail.

H1157 - Complex of CtEDEM and CtPDI1P at 3.3 Å resolution

This target consists of two proteins, each with multiple domains. These were modeled in

a challenging experimental map with varying resolutions. Initial inspection of the target indicated

it had some modeling issues: many aromatic side-chains were not well fit to the density and a

number of loops were in regions of the map that had resolution too low to be modeled with

https://paperpile.com/c/io9IHR/yj8Y


confidence. To our surprise, the best predictions modeled a loop in chain A between residues

210-230 much better than in the target and improved further upon refinement (Fig. 5A). There

was sufficient resolution to be confident in the modeling including density for a number of

aromatic side-chains. Despite the excellent performance in modeling this large loop, predictors

did a worse job at modeling a number of other loops in the target.

T1154 - S-layer protein A (SlaA) at 3.0 Å resolution

Many bacteria and archaea have a protein-based barrier which encapsulates the cell

known as an S-layer. This target was the recently modeled outer S-layer component of the

archaea Sulfolobus acidocaldarius 30. Generally, its domains were well predicted, with refined

models better fitting the experimental data. Despite the overall high-resolution, a short loop

between residues 810-814 had very poor density. Predictions were unable to produce loops

close enough to the correct geometry to be refined into the map (Fig. 5B). Although automated

refinement starting from these models was not possible, the general lack of consensus amongst

the predictions likely reflected some degree of disorder which was mirrored by the poor

resolution seen in this region of the map.

H1129 - The bacteriophage pb5 protein in complex with FhuA at 3.1 Å DeepEMhancer map

Much like the swift adoption of deep-learning methods in the structure prediction

community, deep-learning has been transforming image processing and reconstruction methods

in the cryoEM scene. Here, a dimeric complex of the bacteriophage pb5 protein and its binding

partner (the bacterial outer-membrane protein FhuA) is derived from a map which had been

sharpened using the deep-learning tool DeepEMhancer 29,31. Despite the overall high resolution

of this map, residues 190 and 191 of a short loop were not modeled in the target structure with

density dropping out in this region. Similar to the short loop in T1154, none of the predictions

gave a “refineable” or even visually plausible fit (Fig. 5C). However, the model provided by

Wallner (group 037) was by visual inspection close and could potentially be locally fitted and

https://paperpile.com/c/io9IHR/0xvO
https://paperpile.com/c/io9IHR/yj8Y+pWOS


refined using interactive tools such as Coot 32 or ISOLDE 33. Despite often making visual

interpretation easier, an unfortunate side effect of DeepEMhancer is that lower-resolution

regions of the map tend to be removed. It is possible that the unprocessed map (which we did

not have) may have offered better information about this likely disordered region.

3.2.3 Analysis of side-chain predictions

To examine how well CASP predictors can now predict side chains, we analyzed the

side chains of predictions for target H1114 using its high-resolution 1.52 Å resolution map. The

H1114 target is a hydrogenase isolated from Mycobacterium smegmatis that forms a large

oligomeric complex formed from multiple copies of the HucS, HucL and HucM proteins 34. The

SMOC scores for backbone and sidechain atoms of unrefined predictions compared against

those of the target for each residue are shown in Fig. 6. Sidechain SMOC scores (SMOCs)

were clearly not predicted as well as the backbone scores (SMOCb), suggesting poor atom

placement (Fig. 6A). An example is model 1 from Yang (group 439). In this case, although the

backbone was relatively well fitted (average SMOCb=0.72), some side chains were incorrectly

positioned, such as those of GLU15 and HIS166 (Fig. 6B).

3.2.4 Refinement of T1169 - the mosquito salivary gland surface protein 1 at 3.3 Å
resolution

Target T1169 is the mosquito salivary gland surface protein 1, a monomeric protein

composed of more than 3000 residues involved in pathogen transmission from mosquitos. None

of the predictions passed our CASP criteria for multidomain protein refinement (GDT-TS > 0.7

and LDDT > 0.7). This is potentially due to the existence of a domain in T1169 with a previously

unidentified fold, and others with low sequence homology to known structures 35. Therefore, we

decided to compare between the top-fit prediction based on chain ranking which was from

Shennong (group 466), against the prediction with the highest GDT-TS score (57.7) which was

from Yang-server (group 229) (Fig. 7A). The Shennong model was ranked third based on

https://paperpile.com/c/io9IHR/mkCA
https://paperpile.com/c/io9IHR/7Dlp
https://paperpile.com/c/io9IHR/hB5m
https://paperpile.com/c/io9IHR/7Zgd


GDT-TS with a score of 54.1. Note that based on global fit-to-density using ChimeraX

cross-correlation (CC) scores, the Yang-server model also had a better correlation with the

experimental map (CC=0.55 for Shennong and CC=0.61 for Yang-server). The refined models

of each of these predictions are shown in the 3.3 Å cryoEM map (Fig. 7A). SMOC scores of the

predicted models show that each prediction has regions that are more accurate than the other.

From the corresponding SMOC plot (Fig. 7B), the CASP-criteria selected prediction produced a

better refined model with a SMOC profile closer to that of the target. The poorer refinement of

the Shennong group prediction (Table 3) is likely due to the incorrect placement of the

N-terminal β-propeller towards the center of the molecule (residues 1-340), which could not be

fixed during refinement (Fig 7B).

3.3 RNA targets: refinement of top predictions

3.3.1 Selection criterion of RNA targets for refinement

Six of the eight RNA-containing cryoEM targets were selected for refinement. The two

RNA-protein complexes (RT1189, RT1190) were not selected as targets due to poor prediction

accuracy (RMSD>15.9Å, GDT_TS<27). A separate analysis of these predictions was

performed instead 15. Furthermore, no predictions passed the CASP-scored selection for

proteins (GDT_TS>0.7, lDDT>0.7) so we used an alternative selection process for RNA models.

For each target, the previous ZEM ranking was used to obtain a top 10 models which were then

visually inspected to obtain a set of models we thought most likely to be refined by criteria such

as limited geometric problems, and minimal chain distortions needed to move into map 15 (Table

4). R1126, R1128, and R1149 had a single experimental structure and thus their top models by

ZEM were selected and after manual fitting; 6, 7, and 3 models were refined, respectively. For the

https://paperpile.com/c/io9IHR/qirs
https://paperpile.com/c/io9IHR/qirs


three remaining RNA-only cryoEM targets, multiple experimental maps were used for refining

the predicted structures.

For R1136, the two experimental maps, representing the ligand bound and unbound

conformations, were topologically very similar, so the same models (5 total) were selected to

refine into both maps. R1136 included 15 submitted models with the same RNA structure - they

differed in their ligand prediction - so only 325_1 was used for refinement. For R1138, all top

predictors were closest to the “mature” state, with no predictions close to the “young” state

according to global topological and fit-to-map metrics. The top models (3 total) for the “mature”

state were thus refined to both maps. For R1156 each map was considered separately resulting

in 8 total refinements.

3.3.2 Overall RNA model analysis

The RNA predictions had average SMOC scores above 0.8 after refinement for all but

the young conformation of R1138 discussed below, despite predicted models starting far from

the reference structure (all GDT_TS<0.7) (Fig. 8A). In fact, for R1128, R1138v2, R1149, and

R1156v3 targets, refined predictions surpassed the SMOC values of models fitted into the same

RNA cryoEM maps as reference models (Fig. 8A). Further, while prediction started with a

spread of SMOC scores, the variance in SMOC score was reduced upon refinement. These

results indicate that the refinement procedure was successful in fitting the models into the maps,

moving all predictions to a similar solution, even in cases where large changes were needed.

Compared to protein models where the fit of loops and side-chains could be assessed due to

the higher resolution of the experimental maps, here the focus was on the overall fit of high level

features.



R1138 a 6-helix bundle at 4.9Å resolution

A particularly interesting example for cryoEM refinement of RNA models was the

predictions and refinement for R1138, a designed 6-helix bundle of RNA with a clasp (6HBC) 36.

This target had reference structures and experimental maps for two alternative conformations, a

short-lived “young” conformation and a stable “mature” conformation. The refinements for the

mature conformation gave a better fit to the experimental density than the target reference

structure (Fig. 8B) with the majority of residues having higher SMOC scores than those in the

target reference structure. These predictions required significant conformational change as seen

in Fig. 8C and Supplemental Video 2. The overall geometry, as assessed by the ‘average

suiteness’ score (see Methods), was also better in the refined models than the reference

structure (Fig. 8A). However, CASP predictions for the ‘young’ conformation failed to refine to

the same extent (Fig 8A, Supplemental Video 3). This poorer result might be attributed to the

greater degree of rearrangement of the helices and the breaking and reforming of hydrogen

bonds in the kissing loop clasp required to convert from models resembling the mature

conformation to the early conformation. The breaking and forming of such hydrogen bonds can

in principle occur, but is unlikely, in our refinement protocol.

R1126 a designed “Traptamer” at 5.6Å resolution

The refined predictions of the designed RNA target R1126, a designed RNA origami

scaffold for a Broccoli and Pepper aptamer pair 37, had lower average SMOC scores than the

reference target structure. However, this result may be due to the reference structure being

overfitted to the cryoEM map at the expense of realistic RNA geometry, as reflected by the low

suiteness scores of the target structure compared to the refined models (Fig. 8A). Selected

predictions for this target had a large degree of conformational diversity with models varying

between 9 and 13Å RMSD from the target. Despite our refinement protocol improving the

overall fit-to-map and improving the geometry of some of these predictions, a number of

https://paperpile.com/c/io9IHR/uD0v
https://paperpile.com/c/io9IHR/Yw1K


predictions from Alchemy_RNA2 (group 232) exhibited an incorrect crossover between strands

(Fig. 9A). Fixing such issues would require breaking and rebuilding chains which is not allowed

in our refinement protocol.

Both Alchemy_RNA2 (group 232) and Chen (group 287) provided a number of

predictions which offered excellent refined models. All of these predictions required significant

conformational changes to fit the experimental map. Often these movements involved breaking

predicted interactions. One striking example is in the second prediction from Chen (Fig. 9B,

Supplemental Video 1). In the prediction, a stem-loop was curled around and interacting with

an upstream helix. In order to fit the density, the stem-loop interaction was broken allowing it to

move into density.

R1156v3 - BtCoV-HKU5 SL5 at 7.6Å

Maps and reference structures for four alternative conformations of the SL5 domain from

5’UTR from the Bat coronavirus BtCoV-HKU5 were provided for assessment in this CASP. This

domain is known to have a conserved secondary structure in many coronaviruses 38,39 which is

thought to be important in the packaging of viral particles during infection 40. Maps for this target

varied in resolution from 5.6 to 7.6 Å. The four refined predictions for the third conformation

(R1156v3) exhibited average SMOC values slightly higher than the reference structure.

Although the suiteness scores for the refined predictions were lower than for the reference

structure, in all but one case they were better than the unrefined predictions. In contrast to the

Traptamer example above, where refinement involved the breaking of an interaction of a apical

loop, the refinement of the second prediction from Alchemy_RNA2 involved the formation of an

interaction between a apical loop and an internal loop in another part of the model (Fig. 9C).

https://paperpile.com/c/io9IHR/0qFD+Cm51
https://paperpile.com/c/io9IHR/XxJJ


Discussion
In CASP15, 29% of the total targets, 67% of the RNA-containing targets, were

determined using cryoEM. The accuracy of predictions for protein targets assessed in this paper

and the overall quality of experimental maps allowed many predictions to be further refined to

near-native conformations. Compared to most CASP assessments, where a single reference

model has been used as the ground truth, cryoEM assessment finds itself in a privileged

position. To aid the assessment, CryoEM maps are typically available in conjunction with target

reference models - which are after all just best attempts at model building using the

experimental map, human knowledge and current state of the art technology. This is particularly

important, as cryoEM data tends to have lower resolutions than crystallographic experiments.

Because 3D reconstructions are built from averages of many particles, they may also capture

continuous motions and flexibility of the visualized macromolecule, which can then manifest

itself as lower resolution regions. There is thus an added degree of uncertainty in any static 3D

structure that is derived from cryoEM data.

One model, which particularly highlighted the importance of experimental data this year,

was H1157. This model had an average resolution of 3.3 Å with many regions of the map having

lower local resolution. Intriguingly, a large loop which was erroneously modeled in the target was

much better modeled by the best predictions, fitting the density with aromatic side chains well

placed. If, on the other hand, we only had the target model as ground truth (i.e., if we did not

use the experimental map for assessment), these better predictions would have not been

observed.

For the majority of targets, where the author’s submitted model (target reference model)

and experimental map were in good agreement, some parts of the predicted models resulted in

better fit to map following refinement. At the same time, many targets had loops, which were not

predicted so well, often surprisingly short. Typically, the geometry of these loops varied amongst



predictions, with many failing to be refined because they were too distant from the target. The

lack of consensus amongst some of these loops was often reflected by lower local resolutions in

the experimental map. While we did not investigate the relationship between these two

phenomena in this paper, in CASP14 cryoEM assessment, we showed anticorrelation between

the standard deviation of the SMOC scores of the predicted models (SMOC SD) and SMOC

scores of the target structures 2.

The strong correlation between the rankings based on the cryoEM-based docking score

and the composite SCASP15 score shows that high quality models can often be picked using

experimental data alone. For model building practitioners, this is particularly relevant, as

reference structures may not be available. Given the difficulty of building models into

experimental maps and the fact that there isn’t a single prediction tool which excels across all

targets, docking and ranking offers an approach to screen for good starting models, potentially

from multiple structural prediction tools.

Unfortunately, some maps provided by the experimentalists had already been sharpened

with DeepEMhancer 29. This caused a degradation in MolProbity scores, likely because the

TEMPy-REFF GMM puts more weight on the sharpened map, overpowering the geometry

restraints. Another unfortunate side-effect of DeepEMhancer maps is that low-resolution regions

tended to disappear entirely in the sharpened maps. Many of the predictions displayed a diverse

set of loops in these regions. While sharpened maps may aid in model building, low-resolution

regions can be an important indicator of flexibility and disorder. In future CASP cryoEM

assessments it would be useful to encourage the authors to provide unsharpened maps, and

even half maps for further assessments.

For the first time in CASP history, RNA structures were provided as targets and the

majority of them had associated cryoEM density maps. Compared with the proteins, these RNA

maps had much lower resolutions. Indeed, in some maps such as those of R1156, pitches of

helices were not always visible. Local fit-to-map scores, such as the newly developed SMOCr,

https://paperpile.com/c/io9IHR/o2Sv
https://paperpile.com/c/io9IHR/yj8Y


can aid the assessment of RNA models in these challenging resolutions. Here, this local fit

analysis indicated that many secondary structures and important geometric features can be

accurately predicted. Furthermore, we showed that in silico models can, after further refinement,

offer plausible models that better reflect the experimental maps even at low resolutions.

However, at such low resolutions, it is possible for many alternative structures to fit the density

with equal likelihood. Due to both the known flexibility of the RNA molecules and the

heterogeneity of the experimental maps, ensembles of models are arguably a more accurate

way to describe the underlying experimental data 15,41.

Despite the overall quality of predictions, some reorientation of domains and secondary

structure elements was often required, particularly for RNA models. The multistage pipeline

presented offers an approach to fitting and refinement of structural models into cryoEM maps at

a variety of resolutions. The use of progressively smaller rigid-bodies has been shown to aid the

fitting of models that require large conformational changes 16. However, if the models contain

topological errors or significant misplacements of elements even such a detailed approach will

fail.

As mentioned above, in CASP15 there were two RNA-protein complexes (RT1189,

RT1190). The predictions associated with these targets were not refined due to poor accuracy

15. Given the current progress in the structure prediction field, we expect further improvement on

this front in future CASPs.

CryoEM has been an important method for elucidating large atomic structures, albeit

often at a lower resolution than crystallographic experiments. This CASP15 for example, the

largest monomeric structure in the history of CASPs, T1169, was a cryoEM target. Moreover,

cryoEM experiments are now not just capturing large molecules but often achieving atomic

levels of detail. In CASP15, focussed maps for the target H1114 reached an astonishing

resolution of 1.52 Å. While at such resolutions, computational models are not required for model

building, high-resolution data offers an opportunity to assess accuracy at an even finer level.

https://paperpile.com/c/io9IHR/BSNS+qirs
https://paperpile.com/c/io9IHR/Y759
https://paperpile.com/c/io9IHR/qirs


Using the SMOC score separately for backbone (SMOCb) and side-chains (SMOCs), allowed

us to show that while the overall backbone geometry of H1114 predictions was well modeled,

sidechain orientations did not always agree with the experimental map. Given the progress in

both protein structure prediction and cryoEM fields, we foresee such analyses becoming more

routine in the future.
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Tables

Table 1:

Target Type Target Number of
Predictions
refined

Resolution (Å) Number
residues/nucleotides

Protein H1129 12 2.6 1387

H1157 13 3.3 1524

T1158 15 3.3 1340

T1154 19 3.0 1424

H1137 44 3.1 3939

T1170o 13 3.0-3.3 1908

H1185 16 3.4 1334

T1121o 2 3.7 739

T1169 2 3.3 3364

RNA R1126 6 5.6 363

R1128 7 5.3 238

R1136v1 5 4.4 374

R1136v2 5 3.5 374

R1138v1 3 4.9 720



R1138v2 3 5.2 720

R11149 3 4.7 124

R1156v1 1 5.8 135

R1156v2 1 6.6 135

R1156v3 4 7.6 135

R1156v4 2 7.6 135

Table 1. Overview of targets. Targets with predictions which met the minimum score criteria
were refined.





Table 2:

Target
Top Group by Docking
Rankings

Top Group by SCASP15

Ranking
Groups selected for
Refinement

T1114s1 Gonglab-THU SHT

FoldEver-Hybrid

T1114s2 Panlab trComplex

T1114s3 Yang B11L

T1121 GuijunLab-RocketX GuijunLab-Threader GuijunLab-RocketX

T1129 Venclovas N/A Venclovas

T1137s1 BhageerathH-Pro PEZYFoldings

Venclovas*

T1137s2 SHORTLE Yang

T1137s3 RostlabUeFOFold UM-TBM

T1137s4 ACOMPMOD N/A

T1137s5 DELCLAB UM-TBM

T1137s6 RostlabUeFOFold UM-TBM

T1137s7 Shennong DMP

T1137s8 McGuffin McGuffin

T1137s9 Yang PEZYFoldings

T1154 Venclovas Elofsson Venclovas

T1157s1 Yang-Multimer N/A

Yang-MultimerT1157s2 Yang N/A

T1158 MULTICOM Asclepius MULTICOM



T1169 Shennong Shennong Shennong

T1170 FTBiot0119 MUFold_H FTBiot0119

T1185s1 BhageerathH-Pro BAKER

Yang-Multimer

T1185s2 Yang-Multimer OpenFold-SingleSeq

T1185s4 BAKER Manifold-E

Table 2: Group ranking based on docking. The top-scoring CC model for each target. Also
indicated are the top-scoring groups for the same targets, in the general CASP assessment
using the CASP15 score 14. Some chain models did not receive a CASP15 score because
certain elements used in the CASP15 score formula were not calculated since the chain in
question was split into multiple AUs. These were given an N/A classification. *These targets
were selected in a different way - see section 3.4.3

Table 3:

Target Group (o)lDDT GDT-TS score QS-score TM score

Pred Ref. Pred Ref. Pred. Ref. Pred. Ref.

T1154 494 0.84 0.77 0.63 0.78 NA NA NA NA

T1158 367 0.84 0.86 0.64 0.92 NA NA NA NA

T1169 466 0.66 0.67 0.53 0.72 NA NA NA NA

H1157 239 0.66 0.7 NA NA 0.67 0.8 0.78 0.80

T1170o 165 0.70 0.85 NA NA 0.61 0.85 0.90 0.90

T1121o 091 0.74 0.69 NA NA 0.31 0.25 0.66 0.64

Table 3: Predictions found only by the docking-based ranking method: Values for TM,
GDT-TS, (o)lDDT and QS scores of predictions and their respective refined models. TM and QS
scores were not applicable to monomeric targets.

Table 4

https://paperpile.com/c/io9IHR/97Ev


Target Group Prediction model numbers

R1126 232 1-5

287 2

R1128 232 1-5

287 1,3

R1136v1, R1136v2 232 1,3,5

287 4

325 1

R1138v1, R1138v2 232 3,4,5

R1149 054 1

125 3

416 3

R1156v1 128 5

R1156v2 128 5

R1156v3 128 1,5

232 3

287 1

R1156v4 232 3

439 2

Table 4: RNA predictions which were selected for refinement.



Figures

Figure 1: Overview of targets



Fig. 1: Overview of the Cryo-EM targets used for refinement and analysis in CASP15:
Reference structures for 8 protein targets (A) and 6 RNA targets (B) solved by cryoEM in
CASP15.



Figure 2: Refinement pipeline

Fig. 2: Docking and refinement pipeline. Submitted predictions were chosen for cryoEM
refinement based on CASP metrics (using the reference structure) and using a ranking scheme
which assesses the overall fit of predictions constituent chains to the experimental map.
Selected models are then flexibly fit to the experimental data using a coarse-grained
hierarchical fitting protocol. Corrections were made to RNA model geometry using ERRASER2
followed by an atomistic refinement scheme based using TEMPy-REFF. Models were then
assessed using MolProbity, Phenix.rna_validate, ChimeraX CC and TEMPy SMOC scores.





Figure 3: Ranking vs CASP results

Fig. 3. Group ranking for cryoEM targets. Cumulative per-group docking ranking scores
plotted against SCASP15 rankings across docking targets where SCASP15 scores were available
(oligomeric reference structures were split into individual chains - see also Table 2). The gray
line indicates the line of best fit with a strong positive correlation between the two rankings
(r=0.827, p<0.0001). The top five performing docking ranking groups are labeled, as are the
‘control’ AlphaFold 2 submissions.



Figure 4: Protein refinement results





Fig. 4: Overview of protein refinement results. In (A), the distribution of average SMOC
scores for each prediction is shown before and after refinement with respect to the target model.
In (B), the residue level SMOC plot is shown for T1154 and its predictions. The dark orange and
blue lines are the mean refined and docked SMOC scores with the minimum and maximum
values in light orange and blue. The N-terminal domain, which fitted poorly in all of the
predictions (as indicated by the highlighted region), needed significant movement during
refinement and is shown in (C) for model 1 from PEZYFoldings (group 278). Plots and 3D
structures are in orange for refined models, in gray for reference structures and in blue for
predictions.



Figure 5: Protein loop case-studies.

Fig. 5: Protein loop case-studies. In all the visualizations, the target model is gray and the
predictions are blue and orange before and after refinement, respectively. The dark orange line
in the plot is the mean SMOC score, with the shaded region representing the minimum and
maximum value for the set of predictions. (A) The reference model (for H1157) had a large
poorly modeled loop in chain A as indicated by the low SMOC scores in 210-230 region. The
best-refined predictions were a much better fit. In orange, a refined prediction from McGuffin
(group 180). (B) This short loop, in T1154 was not modeled well enough by any predictions to



be refined into the density. The low-intensity density may also be an indicator that this region is
disordered. (C) Residues 190-191 of chain B were not modeled in the target of H1129 indicated
by the dotted line. None of the predictions were able to produce a refinable loop that matched
the DeepEMhancer-sharpened map in this region. However, the model submitted by Wallner
(group 037), colored purple, was visually the best fitting after refinement, with side-chains at 187
and 192, well positioned.



Figure 6: Side-chain analysis of H1114

Fig 6. Side-chain analysis of H1114. SMOC scores for backbone and sidechain atoms of
H1114 predictions compared against those of the target reference structure for each residue (A).
Backbone SMOCb scores (left) and sidechain SMOCs scores (right) of the reference structure
vs the predictions. In (B) incorrectly positioned side-chains of GLU15 and HIS166 from model 1
prediction by Yang (group 439) (blue) compared to the reference (gray). These residues were
consistently poorly placed by predictors.



Figure 7: T1169 refinement

Fig. 7. Refinement of the prediction with the best CASP score from Yang (group 229) and
the best ranking Shennong (group 466). In (A) SMOC scores of the predictions and the
corresponding structures in the experimental density. Both models have several (often different)
regions which fit relatively well. The best-ranked model had more C-terminal residues modeled
but had a poorly placed N-terminal β-propeller domain. After refinement (B), the model based
on CASP metrics had higher SMOC scores overall. The poorly placed β-propeller of the
best-ranked model was too distant to be refined.



Figure 8: RNA refinement

Fig. 8: Overview of RNA refinement results (A) The average SMOC scores for the target,
predictions and refined predictions are shown alongside the RNA Validate ‘average suiteness’.
(B) the residue level SMOC plots of R1138 in the mature conformation map and the predicted
and refined models. The dark blue and orange lines are the average SMOC score for the
predictions and refinements respectively, with the lightly shaded area representing the minimum



and maximum values. (C) An R1138 prediction by Alchemy_RNA2 (group 232) in the ‘mature’
conformation map. Depicted are the prediction (blue) and refined prediction (orange) with
respect to the reference model (gray).



Figure 9: RNA refinement case studies

Fig. 9 RNA refinement case studies. In all the visualizations, the target model is gray and the
predictions are blue and orange before and after refinement, respectively. The dark orange line
in the plot is the mean SMOC score, with the shaded region representing the minimum and
maximum value for the set of predictions. (A) A SMOC plot of R1126 predictions and their



refinements. Some refinements had residues between 155-175 with a variable SMOC score,
large shaded region. This was due to strands crossing over, in some of the predictions, as
shown in the right panel. (B) A model of R1126 from Chen (group 287) and its refinement.
Overall, the R1126 predictions were refinable despite large conformational changes often being
required. On the right, a close-up of the highlighted area showing the breaking of loop
interaction during refinement. (C) A model of R1156 from Alchemy_RNA2 (group 232) and its
refinement. After refining the model into the third conformation map, it better fitted the
experimental density. On the right, a close-up of the highlighted area showing the formation of
new interactions between an apical loop and an internal loop.



Listings

Listing 1: ERRASER2 command
The following command was used to run ERRASER2 using the nightly version (2021.16.61629)
of Rosetta.

./erraser2 \
-s PATH/TO/PDB_FILE.pdb \
-score:weights stepwise/rna/rna_res_level_energy7beta.wts \
-set_weights \

cart_bonded 5.0 \
linear_chainbreak 10.0 \
chainbreak 10.0 \
fa_rep 1.5 \
fa_intra_rep 0.5 \
rna_torsion 10 \
suiteness_bonus 5 \
rna_sugar_close 10 \

-rmsd_screen 1.0 \
-mute core.scoring.CartesianBondedEnergy \
-rounds 1 \
-stepwise:monte_carlo:cycles 1



References
1. Kryshtafovych, A. et al. Cryo-electron microscopy targets in CASP13: Overview and

evaluation of results. Proteins 87, 1128–1140 (2019).

2. Cragnolini, T. & Kryshtafovych, A. Cryo‐EM targets in CASP14. : Structure, Function, and

… (2021).

3. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

4. Ozden, B., Kryshtafovych, A. & Karaca, E. Assessment of the CASP14 assembly

predictions. Proteins 89, 1787–1799 (2021).

5. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track

neural network. Science 373, 871–876 (2021).

6. Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. AF2Complex predicts direct physical

interactions in multimeric proteins with deep learning. Nat. Commun. 13, 1744 (2022).

7. Lafita, A. et al. Assessment of protein assembly prediction in CASP12. Proteins 86 Suppl

1, 247–256 (2018).

8. Guzenko, D., Lafita, A., Monastyrskyy, B., Kryshtafovych, A. & Duarte, J. M. Assessment of

protein assembly prediction in CASP13. Proteins 87, 1190–1199 (2019).

9. Vagin, A. & Teplyakov, A. MOLREP: an Automated Program for Molecular Replacement. J.

Appl. Crystallogr. 30, 1022–1025 (1997).

10. Vagin, A. A. & Isupov, M. N. Spherically averaged phased translation function and its

application to the search for molecules and fragments in electron-density maps. Acta

Crystallogr. D Biol. Crystallogr. 57, 1451–1456 (2001).

11. van Zundert, G. & Bonvin, A. Fast and sensitive rigid-body fitting into cryo-EM density maps

with PowerFit. AIMS Biophys. 2, 73–87 (2015).

12. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators,

and developers. Protein Sci. 30, 70–82 (2021).

http://paperpile.com/b/io9IHR/0065
http://paperpile.com/b/io9IHR/0065
http://paperpile.com/b/io9IHR/o2Sv
http://paperpile.com/b/io9IHR/o2Sv
http://paperpile.com/b/io9IHR/ZYFx
http://paperpile.com/b/io9IHR/cnWF
http://paperpile.com/b/io9IHR/cnWF
http://paperpile.com/b/io9IHR/LOdi
http://paperpile.com/b/io9IHR/LOdi
http://paperpile.com/b/io9IHR/aiBy
http://paperpile.com/b/io9IHR/aiBy
http://paperpile.com/b/io9IHR/vEBW
http://paperpile.com/b/io9IHR/vEBW
http://paperpile.com/b/io9IHR/iLBD
http://paperpile.com/b/io9IHR/iLBD
http://paperpile.com/b/io9IHR/iQc5
http://paperpile.com/b/io9IHR/iQc5
http://paperpile.com/b/io9IHR/OwY8
http://paperpile.com/b/io9IHR/OwY8
http://paperpile.com/b/io9IHR/OwY8
http://paperpile.com/b/io9IHR/xpjg
http://paperpile.com/b/io9IHR/xpjg
http://paperpile.com/b/io9IHR/N5CI
http://paperpile.com/b/io9IHR/N5CI


13. Kryshtafovych, A. & Rigden, D. To split or not to split: CASP15 targets and their processing

into tertiary structure evaluation units. (2023).

14. Simpkin, A. J. et al. Single chain modelling at CASP15. Proteins (2023).

15. Das, R. et al. Assessment of three-dimensional RNA structure prediction in CASP15.

bioRxiv (2023) doi:10.1101/2023.04.25.538330.

16. Joseph, A. P. et al. Refinement of atomic models in high resolution EM reconstructions

using Flex-EM and local assessment. Methods 100, 42–49 (2016).

17. Cragnolini, T., Beton, J. & Topf, M. Cryo-EM structure and B-factor refinement with

ensemble representation. bioRxiv 2022.06.08.495259 (2022)

doi:10.1101/2022.06.08.495259.

18. Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for

molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

19. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of

hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

20. Yang, H. et al. Tools for the automatic identification and classification of RNA base pairs.

Nucleic Acids Res. 31, 3450–3460 (2003).

21. Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic

structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683

(2008).

22. Kawabata, T. Multiple subunit fitting into a low-resolution density map of a macromolecular

complex using a gaussian mixture model. Biophys. J. 95, 4643–4658 (2008).

23. Babin, V., Berryman, J. T., Betz, R. M., Cai, Q. & Cerutti, D. S. AMBER 14; University of

California: San Francisco, 2014. Google Scholar There is no.

24. Chou, F.-C., Sripakdeevong, P., Dibrov, S. M., Hermann, T. & Das, R. Correcting pervasive

errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10,

74–76 (2013).

http://paperpile.com/b/io9IHR/croq
http://paperpile.com/b/io9IHR/croq
http://paperpile.com/b/io9IHR/97Ev
http://paperpile.com/b/io9IHR/qirs
http://paperpile.com/b/io9IHR/qirs
http://dx.doi.org/10.1101/2023.04.25.538330
http://paperpile.com/b/io9IHR/qirs
http://paperpile.com/b/io9IHR/Y759
http://paperpile.com/b/io9IHR/Y759
http://paperpile.com/b/io9IHR/q32o
http://paperpile.com/b/io9IHR/q32o
http://paperpile.com/b/io9IHR/q32o
http://dx.doi.org/10.1101/2022.06.08.495259
http://paperpile.com/b/io9IHR/q32o
http://paperpile.com/b/io9IHR/rYdr
http://paperpile.com/b/io9IHR/rYdr
http://paperpile.com/b/io9IHR/KNI2
http://paperpile.com/b/io9IHR/KNI2
http://paperpile.com/b/io9IHR/HTq6
http://paperpile.com/b/io9IHR/HTq6
http://paperpile.com/b/io9IHR/DQH5
http://paperpile.com/b/io9IHR/DQH5
http://paperpile.com/b/io9IHR/DQH5
http://paperpile.com/b/io9IHR/wT8W
http://paperpile.com/b/io9IHR/wT8W
http://paperpile.com/b/io9IHR/fWi6
http://paperpile.com/b/io9IHR/fWi6
http://paperpile.com/b/io9IHR/rUaP
http://paperpile.com/b/io9IHR/rUaP
http://paperpile.com/b/io9IHR/rUaP


25. Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and

frameworks. Nat. Methods 17, 665–680 (2020).

26. Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom

structure validation. Protein Sci. 27, 293–315 (2018).

27. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular

structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

28. Richardson, J. S. et al. RNA backbone: consensus all-angle conformers and modular string

nomenclature (an RNA Ontology Consortium contribution). RNA 14, 465–481 (2008).

29. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume

post-processing. Commun Biol 4, 874 (2021).

30. Gambelli, L. et al. Structure of the two-component S-layer of the archaeon Sulfolobus

acidocaldarius. bioRxiv 2022.10.07.511299 (2022) doi:10.1101/2022.10.07.511299.

31. van den Berg, B. et al. Structural basis for host recognition and superinfection exclusion by

bacteriophage T5. Proc. Natl. Acad. Sci. U. S. A. 119, e2211672119 (2022).

32. Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular

model building of Electron Cryo-microscopy and Crystallographic Data. Protein Sci. 29,

1069–1078 (2020).

33. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution

electron-density maps. Acta Crystallogr D Struct Biol 74, 519–530 (2018).

34. Grinter, R. et al. Structural basis for bacterial energy extraction from atmospheric hydrogen.

Nature 615, 541–547 (2023).

35. Liu, S., Xia, X., Calvo, E. & Zhou, Z. H. Native structure of mosquito salivary protein

uncovers domains relevant to pathogen transmission. Nat. Commun. 14, 899 (2023).

36. McRae, E. K. S. et al. Structure, folding and flexibility of co-transcriptional RNA origami.

Nat. Nanotechnol. (2023) doi:10.1038/s41565-023-01321-6.

37. Sampedro Vallina, N., McRae, E. K. S., Hansen, B. K., Boussebayle, A. & Andersen, E. S.

http://paperpile.com/b/io9IHR/4UqK
http://paperpile.com/b/io9IHR/4UqK
http://paperpile.com/b/io9IHR/mqiH
http://paperpile.com/b/io9IHR/mqiH
http://paperpile.com/b/io9IHR/HDfN
http://paperpile.com/b/io9IHR/HDfN
http://paperpile.com/b/io9IHR/gEHL
http://paperpile.com/b/io9IHR/gEHL
http://paperpile.com/b/io9IHR/yj8Y
http://paperpile.com/b/io9IHR/yj8Y
http://paperpile.com/b/io9IHR/0xvO
http://paperpile.com/b/io9IHR/0xvO
http://dx.doi.org/10.1101/2022.10.07.511299
http://paperpile.com/b/io9IHR/0xvO
http://paperpile.com/b/io9IHR/pWOS
http://paperpile.com/b/io9IHR/pWOS
http://paperpile.com/b/io9IHR/mkCA
http://paperpile.com/b/io9IHR/mkCA
http://paperpile.com/b/io9IHR/mkCA
http://paperpile.com/b/io9IHR/7Dlp
http://paperpile.com/b/io9IHR/7Dlp
http://paperpile.com/b/io9IHR/hB5m
http://paperpile.com/b/io9IHR/hB5m
http://paperpile.com/b/io9IHR/7Zgd
http://paperpile.com/b/io9IHR/7Zgd
http://paperpile.com/b/io9IHR/uD0v
http://paperpile.com/b/io9IHR/uD0v
http://dx.doi.org/10.1038/s41565-023-01321-6
http://paperpile.com/b/io9IHR/uD0v
http://paperpile.com/b/io9IHR/Yw1K


RNA origami scaffolds facilitate cryo-EM characterization of a Broccoli-Pepper aptamer

FRET pair. Nucleic Acids Res. 51, 4613–4624 (2023).

38. Miao, Z., Tidu, A., Eriani, G. & Martin, F. Secondary structure of the SARS-CoV-2 5’-UTR.

RNA Biol. 18, 447–456 (2021).

39. Yang, D. & Leibowitz, J. L. The structure and functions of coronavirus genomic 3’ and 5'

ends. Virus Res. 206, 120–133 (2015).

40. Bassett Maclean, Salemi Marco & Rife Magalis Brittany. Lessons Learned and Yet-to-Be

Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol. Mol.

Biol. Rev. 86, e00057–21 (2022).

41. Beton, J. G. et al. Integrating model simulation tools and cryo‐electron microscopy. Wiley

Interdiscip. Rev. Comput. Mol. Sci. (2022) doi:10.1002/wcms.1642.

Supplementary
Supplemental Video 1: Refinement of R1126TS287_2:
https://syncandshare.desy.de/index.php/s/kx8fTAETgiimew4
Supplemental Video 2: Refinement of R1138TS232_3 in Mature map:
https://syncandshare.desy.de/index.php/s/dXWwHEFeKoyjLF9
Supplemental Video 3: Refinement of R1138TS232_4 in Young map:
https://syncandshare.desy.de/index.php/s/CqbF3xFm5XxezTF

http://paperpile.com/b/io9IHR/Yw1K
http://paperpile.com/b/io9IHR/Yw1K
http://paperpile.com/b/io9IHR/0qFD
http://paperpile.com/b/io9IHR/0qFD
http://paperpile.com/b/io9IHR/Cm51
http://paperpile.com/b/io9IHR/Cm51
http://paperpile.com/b/io9IHR/XxJJ
http://paperpile.com/b/io9IHR/XxJJ
http://paperpile.com/b/io9IHR/XxJJ
http://paperpile.com/b/io9IHR/BSNS
http://paperpile.com/b/io9IHR/BSNS
http://dx.doi.org/10.1002/wcms.1642
http://paperpile.com/b/io9IHR/BSNS
https://syncandshare.desy.de/index.php/s/kx8fTAETgiimew4
https://syncandshare.desy.de/index.php/s/dXWwHEFeKoyjLF9
https://syncandshare.desy.de/index.php/s/CqbF3xFm5XxezTF


Scratch
For Rachael: Here are some alternative views for the blow up of R1126TS287_2.

The rigidly docked protein. Here the interacting loop is not so visible. It’s kind of rotated and
pointing into the page. This is the position of the residues we begin refining from.

Here, I show the model where I’ve tried to rigidly dock just this region into the density. One can
see there is no way to nicely rigidly fit this part of the protein, therefore some conformational
change is required. I don’t like this image in that it’s not the position we start refining from. I do
like it in that it highlights the reason why loop interaction needs to be broken. It’s also clear the



pitch of helices need refining.

The final refined model is obviously easy to interpret.




