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Evaluating interproximal and occlusal lesion severity with a dual 
SWIR transillumination/reflectance probe

Yihua Zhu, Daniel Fried
University of California, San Francisco, San Francisco, CA 94143-0758

Abstract

We have developed a clinical probe capable of acquiring simultaneous, multispectral short 

wavelength infrared (SWIR) reflectance and occlusal transillumination images of lesions on tooth 

proximal and occlusal surfaces to reduce the potential of false positives and enhance diagnosis. 

The dual probe was 3D printed and the imaging system uses an InGaAs camera and broadband 

light sources at 1310 nm for occlusal transillumination and 1600 nm for cross-polarization 

reflectance measurements. In this study a mathematical model to estimate the penetration 

depth of “hidden” occlusal lesions from the SWIR images was developed. We compared the 

model’s estimated lesion depth on 18 extracted teeth with lesions against microCT measurements. 

Although the model estimated depth deviates from that measured in microCT at higher depths, 

there is a good linear correlation (R2 = 0.93) between the estimated depth from SWIR images 

and the measured depth using microCT. SWIR occlusal transillumination images at 1300 nm also 

provide information about interproximal lesion penetration depth which can be directly viewed 

from the occlusal surface. SWIR occlusal transillumination and reflectance depth measurements 

on 49 natural interproximal lesions were compared with microCT measurements. There was 

significant correlation between the depths measured with SWIR occlusal transillumination (R2 = 

0.81) and reflectance (R2 = 0.19) compared with the depths measured with microCT.
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1. INTRODUCTION

Short wavelength infrared (SWIR) and near-IR (NIR) imaging methods have been under 

development for almost 20 years for use in dentistry and several clinical devices are now 

available commercially [1–5]. Due to the high transparency of enamel at SWIR wavelengths, 

novel imaging configurations are feasible in which the tooth can be imaged from the 

occlusal surface after shining light at and below the gum line, which we call occlusal 

transillumination [3, 6]. Interproximal lesions can be imaged by occlusal transillumination 

of the proximal contact points between teeth and by directing SWIR light below the crown 

while imaging the occlusal surface [6–8]. The latter approach is capable of imaging occlusal 

lesions as well with high contrast [2, 3, 6, 9–11]. In 2010, it was demonstrated that 

interproximal lesions that appeared on radiographs could be detected in vivo with SWIR 

imaging with similar sensitivity [6] and that occlusal transillumination could be employed 

clinically. This was the first step in demonstrating the clinical potential of SWIR/NIR 
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imaging for caries detection. In another clinical study at wavelengths greater than 1300 nm 

[12], we demonstrated that the sensitivity of SWIR imaging for interproximal and occlusal 

lesions was greater than radiographs. More recently we have combined SWIR reflectance 

and occlusal transillumination measurements taken at SWIR wavelengths into a single probe 

to reduce false positives since it is unlikely that confounding structural features or specular 

reflection (glare) are going to be present in both reflectance and transillumination images 

[10, 13–17].

We are also interested in developing improved methods of analysis to extract lesion depth 

and severity data from SWIR images. Our previous studies comparing the lesion contrast 

and the lesion depth have not shown a strong correlation with lesion contrast and severity 

[17]. Simon showed a positive correlation between the contrast with SWIR reflectance and 

the lesion depth for shallow occlusal lesions [14]. In addition, he demonstrated that the 

width of occlusal lesions in SWIR images correlated with the lesion depth [14]. In this 

paper, we compare the depth of lesions estimated using the dual occlusal transillumination 

and reflectance system operating at 1300 and 1600 nm with lesion depth and width data 

measured on extracted teeth with occlusal and interproximal lesions using microcomputed 

tomography (microCT). In addition, we introduce a simple model for estimating the depth of 

subsurface demineralization from the occlusal surface by comparing the contrast of surface 

and subsurface demineralization in reflectance measurements at 1600 nm. Most lesions of 

interest are located in the pits and fissures of the occlusal surface and at the proximal contact 

points in between teeth. Occlusal lesions that penetrate through the pits and fissures of 

the enamel can spread laterally in the soft underlying dentin. Often these lesions are not 

visible on radiographs even though they have spread extensively into the underlying dentin 

and they are called “hidden” lesions or questionable occlusal caries “QOCS”. The occlusal 

lesions are clearly visible where they reach the tooth surface at in the pits and fissures. 

The subsurface spread of occlusal lesions is also visible with optical coherence tomography 

(OCT), occlusal transillumination and reflectance at SWIR wavelengths due to the high 

transparency of enamel, however the contrast is lower since these lesion areas are located 

well below the surface under sound enamel [18, 19]. Interproximal lesions occur on the 

proximal contact points in between teeth and can also be seen from the occlusal surface 

through sound enamel even though they are located a few mm below the surface [6, 20, 21]. 

We have derived a simple mathematical model for estimating the depth of subsurface lesions 

using the Beer-Lambert law. This model requires the presence of demineralization located 

both below the surface and on the surface which is typical for occlusal lesions that penetrate 

beyond the dentinal-enamel junction (DEJ).

2. MATERIALS AND METHODS

2.1 Sample Preparation

Teeth with no identifiers were collected from patients in the San Francisco Bay area 

and Geneva Switzerland with approval from the UCSF Committee on Human Research. 

Extracted teeth (n=120) were selected with occlusal and approximal lesions for this study. 

Teeth were sterilized using gamma radiation and stored in 0.1% thymol solution to maintain 

tissue hydration and prevent bacterial growth. Then, samples were mounted in black 
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orthodontic acrylic blocks from Great Lakes Orthodontics (Tonawanda, NY) and imaged 

with digital radiographs using a CareStream 2200 System from Kodak (Rochester, NY) 

operating at 60 kV.

All teeth were imaged using Microcomputed X-ray tomography (μCT) with a 10-μm 

resolution. A Scanco μCT 50 from Scanco USA (Wayne, PA) located at the UCSF Bone 

Imaging Core Facility was used to acquire the images. Visible color images of the samples 

were acquired using a USB microscope, Model AM7915MZT from AnMO Electronics 

Corp. (New Taipei City, Taiwan) with extended depth of field and cross polarization. The 

digital microscope captures 5 mega-pixel (2,952 × 1,944) color images.

2.2 SWIR Image Acquisition and Analysis

The SWIR reflectance images were captured using a Model GA1280J (Sensors Unlimited, 

Princeton, NK) camera with a 1280 × 1024 pixel format, a 15 μm pixel pitch and a bit depth 

of 12-bit. Two 1 in diameter planoconvex antireflection coated lenses of 60 mm and 100 mm 

focal length along with an adjustable aperture were placed between the handpiece and the 

InGaAs camera to provide a field of view of 11 mm × 11 mm at the focus plane. A low-OH 

optical fiber of 1 mm diameter was used to deliver light from a 1604 nm superluminescent 

diode (SLD), Model ESL 1620–2111 from Exalos (Schlieren, Switzerland) with an output 

of 17 mW and a bandwidth of 46 nm. The intensity delivered to the tooth was 5 mW. The 

transillumination light is delivered through two 0.4 mm diameter low-OH optical fibers. A 

1314 nm (BW) SLD, Model DL-CS3452A-FP 1620–2111 from Denselight (Singapore) with 

an output of 48 mW and a bandwidth of 33 nm was used as the source for transillumination. 

A 50/50 beamsplitter was used to deliver light to each arm for transillumination. The output 

intensity of each arm was set at 10 mw before entering the Teflon plugs. The system and 

optical probe is described in [17]. The samples were dried of excess water with an air 

nozzle for 30 seconds before each reflectance image was taken due to the elevated water 

absorption at 1600 nm. [4]. Image processing of the images was performed by custom 

scripts written using MATLAB from Mathworks (Natick, MA). The acquired 12-bit images 

(4096) were converted to 16-bit (65535) by multiplying by 16 and subtracting 1 to facilitate 

processing using MATLAB. The contrast was calculated for each lesion using the formula 

(IL − IS)/IL for reflectance images and (IS − IL)/IS for transillumination images, where IL 

is the average intensity in the lesion area ROI, and IS is the average intensity in the sound 

ROI [5]. MicroCT image analysis and lesion structural measurements were carried out using 

Dragonfly from ORS (Montreal, Canada).

2.3 Lesion Depth Model (Reflectance Imaging)

This occlusal imaging model utilizes the Beer-Lambert Law and the two imaging geometries 

shown in Fig. 1 for occlusal lesions and interproximal lesions, respectively. Most occlusal 

lesions that are severe enough to penetrate into dentin and require surgical intervention 

have the geometry shown in Fig 1A. We have shown in in vitro and in vivo studies that 

this geometry can be exploited to detect severe occlusal lesions that are not yet visible on 

radiographs in OCT and SWIR images [18, 19]. A similar approach can also be applied 

to interproximal lesions (Fig. 1B) that originate from the proximal surfaces, however this 
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approach requires a 2nd occlusal lesion that is visible on the occlusal surface to provide the 

measurement for IL1.

Model parameters are shown in Fig. 1. The contrast of subsurface lesion areas is calculated 

as: Css =
IL2 − IS

IL2
 and the contrast of lesions on the surface is Cs =

IL1 − IS
IL1

. We assume 

that the ratio of the light incident and reflected from the lesion at the surface is similar to the 

ratio of the light incident and reflected at the subsurface lesion inside the enamel. This ratio 

is called A:

I1
I2

≈
I0

IL1
= A

I1 is the attenuation of I0 at depth z in enamel:

I1 = I0e−μEz

Where μE is the attenuation coefficient of sound enamel at 1600 nm. Based on references 

[22, 23], we chose μE to be 1.5 cm−1 in our model.

According to ratio A, I2 is then written as:

I2 =
I1
A =

I0
A e−μEz

IL2 is thus:

IL2 = I2e−μEz =
I0
A e−2μEz

Substitute A again:

IL2 = I0
IL1
I0

e−2μEz = IL1e−2μEz

Therefore, z can be estimated as:

Zest =
ln

IL1
IL2

2μE

IL1 and IL2, the intensities of the surface and subsurface lesions can be directly extracted 

from reflectance images as shown in Fig. 2A for occlusal lesions. A similar approach can be 

applied to interproximal lesions as shown in Fig. 3 using a second occlusal lesion for IL1. 

The depth zest calculated by our model was then compared with actual depth zact measured 

with microCT.
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The assessment of the lesion depth for interproximal lesions is more straightforward since 

the depth penetration from the proximal surface can be directly viewed from the occlusal 

surface through the transparent enamel at both 1300 and 1600 nm. Length measurements 

on lesion depth and width were performed on reflectance and transillumination images 

separately and microCT was used for comparison as shown in Fig. 4.

3. RESULTS AND DISCUSSION

We identified 10 samples with “hidden” subsurface occlusal lesions and 8 samples with 

both interproximal lesions and occlusal surface lesions on the same tooth. With IL2 and 

IL1 directly measured in reflectance images, we calculated the model predicted lesion depth 

using μE = 1.5 cm−1. The estimated lesion depth and the depth measured with microCT is 

plotted in Fig. 5. The slope of the theoretical curve and the measured curve are different 

suggesting that a different value of μE may be more appropriate, this may be due to surface 

scattering or the influence of multiple scattering. For higher lesion depths, we anticipate 

greater contributions from multiple scattering and greater deviation from the model. It is 

encouraging that the model is capable of distinguishing shallow lesions from deep lesions 

based on intensities alone which is valuable for differentiating those lesions that are shallow 

and confined to enamel and those that penetrate deeper into the dentin and are more likely 

to require surgical intervention. We plan to further investigate this approach with a larger 

sample size in the future.

Comparison of the depth and width measurements for interproximal lesions is 

more straightforward. Forty-nine teeth with interproximal lesions were selected. In 

transillumination mode, the interproximal lesion depths measured by the dual probe show 

very high correlation with those measured with microCT as shown in Figs. 7 A&B. Both 

the actual depth penetration and the depth to the dentin enamel junction (DEJ) measured 

with microCT are plotted in Figs. 6 & 7. SWIR imaging methods have limited contrast over 

dentin and it is only necessary to show that the lesion is severe enough to penetrate to the 

underlying dentin. There is high correlation between occlusal transillumination and microCT 

for the lesion depth and shifting the cutoff to the DEJ only slightly improves the correlation 

(0.823 vs 0.807). The correlation of the lesion depth measured using SWIR reflectance and 

microCT showed lower correlation than for transillumination. There is low but significant 

correlation (P<0.05) between reflectance and microCT for the lesion depth and shifting the 

cutoff to the DEJ only slightly improves the correlation (0.25 vs 0.19). This result was not 

anticipated since in our prior clinical studies SWIR reflectance measurements were more 

sensitive than SWIR proximal and occlusal transillumination in the detection of caries lesion 

on both occlusal and proximal surfaces. The high sensitivity of reflectance imaging makes 

it perform better at detecting lesion presence, however transillumination performs better at 

estimating the severity of the detected lesion if the lesion appears with sufficient contrast to 

be detected.

Interproximal lesion widths were also compared. The lesion depth is of greater interest 

since it shows the depth of penetration, however the lesion width is also useful because it 

can be used to estimate the overall size of the lesion and is valuable for making a more 

informed decision on whether surgical intervention is recommended. The lesion widths for 
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SWIR reflectance and occlusal transillumination are shown in Fig. 8. The correlation of the 

lesion width in occlusal transillumination was also higher than for reflectance compared to 

microCT (0.237 vs 0.052).

This study shows that a simple model applied to SWIR reflectance images can provide 

lesion depth information and further aid in differentiating shallow occlusal lesions from 

the more severe deeply penetrating lesions. In addition, this study showed that occlusal 

transillumination images at 1300 nm were more valuable in providing lesion depth and 

width information regarding interproximal lesions than reflectance images at 1600 nm even 

though the later method of imaging has shown a higher sensitivity in previous studies. 

This study further demonstrates the value of the simultaneous acquisition of SWIR occlusal 

transillumination and reflectance images.
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Fig. 1. 
Models of occlusal (A) and interproximal (B) lesions viewed from the occlusal surface. 

White areas represent sound enamel and gray areas are lesion areas, respectively I0 is 

the incident light intensity, IS is the backscattered light from sound areas. IL1 is the 

backscattered light from lesion areas at the tooth surface. I1 is the incident light and I2 

the backscattered light from the subsurface lesion areas. IL2 is light emitted from the tooth 

surface above subsurface lesion areas. Z is the distance of subsurface lesion areas below the 

tooth surface.
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Fig 2. 
(A) SWIR reflectance image of tooth occlusal surface showing positions of surface (IL1) and 

subsurface lesion intensities (IL2). (C) MicroCT 3D rendering of tooth’s occlusal surface. 

Horizontal dashed lines show positions of cross sections in (B&D). The depth of the 

subsurface lesion zactual is shown in (B).
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Fig. 3. 
Estimating the depth from the occlusal surface of an interproximal lesion. (A) SWIR 

reflectance image of the tooth occlusal surface using a 2nd occlusal lesion for IL1 and the 

subsurface interproximal lesion intensity for IL2. (C) MicroCT surface rendering, the dashed 

line shows the position of the extracted slice shown in (B) that shows the distance between 

the tooth surface and the interproximal lesion (zactual). (D) MicroCT cross-section showing 

the occlusal surface lesion in the central fissure.
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Fig. 4. 
(A) color, (C) SWIR reflectance, (F) SWIR occlusal transillumination, and (D) MicroCT 

surface rendering with extracted slices in (B) and (E) showing the interproximal lesion and 

the depth and width measurements as shown by the two rulers in (B, C &F).
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Fig. 5. 
Model lesion depth estimated from SWIR reflectance vs. actual depth measured in microCT 

for “hidden” occlusal lesions and interproximal lesions with occlusal surface lesions as a 

reference point. The red dotted line represents matching depths for SWIR and microCT. 

There is high correlation of the lesion depth model with microCT (blue dotted line) R2=0.93, 

P<0.05. The SWIR model underestimates the lesion depth for larger lesion depths.
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Fig. 6. 
Interproximal lesion depth measured from the proximal surface in transillumination mode 

versus microCT. (top) Lesion depth measured with microCT and (bottom) cutoff at DEJ 

in microCT. There is high correlation with microCT (blue dotted lines) R2=0.81 and 0.82 

(P<0.05).
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Fig. 7. 
Interproximal lesion depth measured from the proximal surface in reflectance mode versus 

microCT measurement. (top) Actual lesion depth in microCT and (bottom) cutoff at the 

DEJ in microCT. There is correlation of the lesion depth with microCT (green dotted lines) 

R2=0.19 and 0.25 (P<0.05).
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Fig. 8. 
Interproximal lesion width measured from the proximal surface using reflectance and 

transillumination versus microCT. There is correlation of the lesion width measured with 

transillumination with microCT (blue dotted line) R2=0.24, P<0.05 but not for reflectance 

(green dotted line) R2=0.05, P>0.05.
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