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Abstract

Dualities and Topological Field Theories from Twisted Geometries

by

Ruza Markov

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ori J. Ganor, Chair

I will present three studies of string theory on twisted geometries.
In the first calculation included in this dissertation we use gauge/gravity duality

to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff
Field Theory. On the gravity side, this theory is given in terms of D3-branes in
type IIB string theory with a geometric twist. While the field theory description,
available in the IR limit, is a deformation of Yang-Mills gauge theory by an order
seven operator which we here compute.

In the rest of this disertation we explore N = 4 super Yang-Mills (SYM) theory
compactied on a circle with S-duality and R-symmetry twists that preserve N = 6
supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives
Chern-Simons theory in the low-energy limit and here we are interested in the non-
abelian counterpart. To that end, we introduce external static supersymmetric quark
and anti-quark sources into the theory and calculate the Witten Index of the resulting
Hilbert space of ground states on a two-torus. Using these results we compute the ac-
tion of simple Wilson loops on the Hilbert space of ground states without sources. In
some cases we find disagreement between our results for the Wilson loop eigenvalues
and previous conjectures about a connection with Chern-Simons theory.

The last result discussed in this dissertation demonstrates a connection between
gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory com-
pactified on a circle twisted by S-duality where the remaining three-manifold is not
flat starting with the explicit geometric realization of S-duality in terms of (2, 0)
theory.
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Chapter 1

An Introduction to Twists

This thesis will present three studies of string theory on twisted geometries that
can be constructed as orbifolds, yielding new and interesting results. Thus I introduce
this concept first, as an attempt of setting a common theme for my dissertation.

Starting with a manifold M with a discrete symmetry group G we can construct
an orbifold M/G via modding out by this group [2, 3, 4]. This means that each point
x ∈ M is identified with its orbit under the action of the group (we think of x and
y = gx as the same point for every g ∈ G, as well as their tangent spaces and so on).
If M has no fixed points under the action of G, the quotient space M/G is a smooth
manifold. On the other hand, fixed points result in orbifold singularities rendering
M/G not a manifold. In certain cases it is known how to repair the singularities by
removing these points and gluing in manifolds with the appropriate boundary. This
is called blowing up and resolving the singularities.

For a simple example, one can consider the real line, R, with coordinate x. It has
an infinite discrete symmetry translating x → x + 2πR with no fixed points so that
R/Z is a smooth manifold — the circle. There is also a discrete reflection symmetry
x→ −x of the real line. This symmetry, however, has a fixed point x = 0 so that the
orbifold R/Z2 is the half line starting at an orbifold singularity.

Many mathematical properties follow from the definition of the orbifold. For
example, the fundamental group of an orbifold is G/F where F is the subgroup
generated by elements that have a fixed point.

Orbifolds are interesting in the context of string theory, since they provide a space
of string compactifications that are richer than tori but still have exactly solvable
sigma models [5, 6]. We can construct a string theory on the orbifold M/G by
gauging a symmetry group G. To do this we must know the action of G both on
the space-time and on the gauge degrees of freedom. The symmetry group, in fact,
does not have to have a geometric interpretation but it can act only on the internal
degrees of freedom.

The orbifold construction indicates that we should keep the states and operators
invariant under the symmetry group. But that is not the whole story for a closed
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string theory. A string theory on an orbifold also includes additional string states
with periodicity condition twisted by G. This means that for an element g of G
we include a twisted sector of strings closed only up to the action of g. Thus the
procedure of modding out by G both reduces the number of states because the states
must be invariant under G, but it also increases the number of states because of these
novel twisted sectors (which correspond to conjugacy classes of G).

Such twisted sectors would not appear in the quantum mechanics of a point par-
ticle on an orbifold which is well described only by G-invariant wave functions. But
twisted closed string states are allowed (they also must be projected onto aG-invariant
subspace) and are actually required for modular invariance.

Strings propagate smoothly over the orbifold singularities of classical geometry.
But the strings in twisted sectors are localized at the fixed points as the aperiod-
icity forbids any center of mass coordinate or momentum. If the fixed points of G
are isolated, expansion about strings sitting at different fixed points leads to disjoint
sectors in the string propagation. States in the twisted sectors have another inter-
esting feature, we will return to later — their quanta of momentum are commonly
non-integral.

The orbifold construction results in breaking of the supersymmetries and gauge
symmetries that do not commute with G which is a phenomenologically interesting
consequence. Also, considering a theory with a tachyon (a state with a negative mass)
on an orbifold sometimes results in a tachyon-free spectrum.
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Chapter 2

Examples

Let me start by presenting two examples of simple geometric twists and men-
tioning some of the properties of the theories on these geometries. The examples
will introduce concepts and ideas that the rest of my thesis describes. This chapter
contains the background needed for understanding these geometric constructions and
their importance for goals of this dissertation. The organization of the dissertation
content is given in the following Chapter 3.

The first geometry discussed here is called a Melvin twist and the resulting Melvin
Universe is an exact solution of Einstein gravity coupled with gauge fields [7]. It
describes a consistent gravitational backreaction to a uniform magnetic field. To con-
struct a Melvin twisted theory of interest, on the gravity side, we start by embedding
this twisted geometry into string theory and adding D3-branes to the Melvin back-
ground. The gauge theory dual to this setup is Puff Field Theory (PFT). In the dual
gravity description of PFT in addition to the usual Ramond-Ramond flux along the
D3-branes, there is a strong five-form flux. This RR-field is responsible for Lorentz vi-
olation and non-locality in PFT. The preserved symmetry in this case includes spacial
rotations and thus makes PFT of particular phenomenological interest.

Another twist this dissertation will focus on is S-duality of four-dimensional super
Yang-Mills (SYM) gauge theory in a geometric realization which is available at a self-
dual value of gauge coupling constant. As S-duality is then a symmetry of the theory
we can compactify the four-manifold on a circle and require that the state of our
system after making one loop around this circle is S-dual to its initial configuration.
Shrinking this circle to zero size leaves us with a three-dimensional theory that has
the S-duality operator at every point and enables us to study its effects. Topologi-
cal Chern-Simons theory arises as the low-energy limit of the gauge theory on this
geometry. And if the leftover three-manifold is curved we also find the gravitational
Chern-Simons contribution.
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2.1 Melvin twist

The simplest example of the Melvin twist is in three dimensions. This geometry
can be thought of as the discrete orbifold (C×R)/Z where, for a (z, ζ) ∈ C×R, the
identification generated by element of Z is given by

z → eiθz,
ζ → ζ + 2πR. (2.1)

The resulting manifold is smooth, with no singularities, as Z is freely acting.
Although construction (2.1) does not have a fixed point one can think of the origin

of the z-plane as the the deformation near which the twisted states of the orbifold are
localized. To see this, consider a low-energy state of the w-twisted sector that winds
w times as in part b) of Figure 2.1. The endpoints of such a state are separated by
an angle wθ in the z-plane and a classical string placed a distance r from its origin
has energy

α′2M(r)2 = (Rw)2 +

(
2rw sin

(
θ

2

))2

. (2.2)

The wave-functions of such winding states falls off exponentially as r →∞ and thus
strings in this geometry are localized near the origin of the z-plane.

a)

�
�

�
�

�
�

�
�z θ

ζ
6

p p p p p p p p p p p��� b)

�
�

�
�

�
�

�
�

E
E
E
E
E
E
E

w

���p p p p p p p p p p p
�

Figure 2.1: Melvin twist in 3 dimensions. a) The construction introduces a rotation
in the z-plane by an angle θ for every loop completed in the compact ζ direction. b)
A twisted string state in this geometry feels a force toward the origin of the z-plane.

The metric describing this twist in three dimensions can be written in cylindrical
coordinates (where z-plane is parametrized by (r, φ)) as

ds2 = −dt2 + dr2 + r2

(
dφ+

θ

2πR
dζ

)2

+ dζ2. (2.3)

It is obvious that for θ = 0, this twisted space reduces to flat 3+1 dimensions. As
well as that there is a natural string theory realization of this Melvin twist, simply, by
embedding metric (2.3) into supergravity. Concretely, let us consider type IIA string
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theory on this geometry. Then T-dualizing along the ζ-direction results in type IIB
theory on a space-time with a background of magnetic fields and scalars

ds2 = −dt2 + dr2 +
1

1 +
(
θr

2πR

)2 (r2dφ2 + dζ2)

B =
θr

2πR
r2

1 +
(
θr

2πR

)2dφ ∧ dζ

eΦ =

√
1

1 +
(
θr

2πR

)2 . (2.4)

This is a Melvin Universe supported by the flux of the NS-NS B-field. Its global
geometry is that of a teardrop. Resulting background is special from the point of view
of string theory, because its world-sheet sigma model is exactly solvable [8]. This is
a simple consequence of it being dual to a flat space with periodic identifications.

This simple Malvin solution in particular is not supersymmetric. However, it
is possible to repeat this twist in more than one plane, obtaining a more general
Melvin configuration, in such a way that some fraction of supersymmetry is preserved.
Further details about more general Melvin twists that preserve some supersymmetry
will be discussed in Part II of this dissertation.

In general, Melvin twists, also called TsT transformations, are constructions that
rely on an a geometric U(1)×U(1) isometry of a theory [9]. (In the three-dimensional
example above these isometries were the U(1) along the compact ζ-direction and a
U(1) for rotation in the z-plane.) A TsT transformation consists of a T-duality, fol-
lowed by an SL(2,Z) transformation of the complex structure of the dual (a shift)
and then another T-duality. The twist could thus be though of as an SL(2,Z) trans-
formation of the Kähler structure of the original theory.

In string theory, applying Melvin twists to Dp-brane backgrounds gives rise to
different field theories depending on the direction of the brane. If both of the U(1)
isometries are along the D-brane, one gets a noncommutative field theory [10, 11, 12].
Taking only one U(1) transverse to the brane, the result is a dipole field theory
[13, 14, 15]. While if both U(1)’s are chosen to be transverse to the brane, we have
the Lunin and Maldacena construction [16] also giving the Puff Field Theory [17, 18]
which is studied in Part II.

Although these theories were described in terms of metrics on twisted geometries
they have another formulation obtained from gauge/gravity duality. On the field
theory side, these models can be constructed instead by starting with a Lagrangian
and adding a Lorentz violating term which is an IR-irrelevant local operator so that
the low-energy behavior is unaffected. The question that then arises is if the UV-
completion exists. Without other corrections a term of conformal dimension ∆ > 4
would result in a theory that is not UV-complete. However, the above examples are
of UV-complete theories with a local Lorentz violating deformations of super Yang-
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Mills (SYM) theory. There, UV-completeness is maintained because, in addition to
the leading deformation operator, the Lagrangian has an infinite number of nonrenor-
malizable local terms, which sum up to renormalizable nonlocal interactions.

For SYM on a space of noncommutative geometry the low-energy deformation
operator is a two-form of conformal dimension ∆ = 6, which breaks the Lorentz
group to SO(2) × SO(1, 1). In the example of the dipole theory, this operator is a
spacetime vector of dimension ∆ = 5. It breaks the Lorentz group to SO(2, 1). Puff
Field theory, in the IR limit, can be approximated by N = 4 SYM deformed by a
dimension ∆ = 7 operator. This construction leaves unbroken the spatial subgroup
of the Lorentz group SO(3) ⊂ SO(1, 3) and thus is of phenomenological interest
for constructing field theory in agreement with the Friedmann-Lematre-Robertson-
Walker type cosmology which, on large scale, breaks Lorentz invariance to rotational
invariance.

2.2 S-Duality twist

A duality is a mathematical equivalence of two theoretical descriptions of a phys-
ical systems which, on the first sight, seem different. Such an equivalence often arises
when a single quantum theory has distinct classical limits. Probably the most famous
example is that of the particle-wave duality. This is simply the fact that quantum
field theory has one limit described by classical field theory and another described
by classical particle mechanics. Another well known example is Kramers-Wannier
duality of the two dimensional square lattice Ising model at a high-temperature with
that at a low-temperature [19].

S-duality is a duality under which the coupling constant of a quantum theory
changes nontrivially. Important examples include the SL(2,Z) self-dualities of IIB
string theory and of four-dimensional N = 4 supersymmetric Yang-Mills (SYM)
theory which, in a simplified sense, are just the electric-magnetic duality.

Indeed, S-duality is a generalization of the 19th century electric-magnetic symme-
try which can be easily seen from the vacuum Maxwell equations

~∇× ~E = −∂
~B

∂t
, ~∇ · ~E = 0,

~∇× ~B =
∂ ~E

∂t
, ~∇ · ~B = 0. (2.5)

These equations have an invariance under ~E → ~B and ~B → − ~E while the structure
constant α = e2/4π~c transforms as α→ 1/α. Alike historic electric-magnetic duality
which exchanges electric charges and magnetic monopoles, in a higher dimensional
space-time, S-duality automatically exchanges the electric and magnetic eigenbranes.

In 1976, [20] showed that in gauge theories electric charge takes values in the
weight lattice of the gauge group, while magnetic charge takes values in the weight
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lattice of a dual group. This result motivated the Montonen-Olive electric-magnetic
duality conjecture [21] according to which a specific gauge theory based on a given
gauge group is equivalent to a similar theory with the coupling constant inverted
and the gauge group replaced by its dual. The duality is even more natural in a
supersymmetric theory [22] and, once θ-angle is included, this Z2 symmetry can be
extended to a full SL(2,Z) transformation [23, 24, 25] as described bellow.

It is simple to see S-duality arising in abelian gauge theory on a four-manifold M4

with one-form gauge field A, being the connection on the U(1) bundle, so that the
curvature is F = dA. This two form can be written in terms of electric and magnetic
fields as F = dt ∧ d~x · ~E + 1

2
d~x · d~x × ~B whence Maxwell’s vacuum equations read

dF = ∗dF = 0.
Starting with the Minkowski space action

S = − 1

4g2
YM

∫
M4

F ∧ ∗F (2.6)

we can perform a Legendre transformation with respect to F and implement Bianchi
identity dF = 0 while introducing a dual connection AD:

S = − 1

4g2
YM

∫
M4

F ∧ ∗F +
1

2
AD ∧ dF. (2.7)

Integrating F out or, equivalently, solving the equation of motion for F gives dAD =
1/g2

YM ∗ F ≡ FD and the action rewritten in terms of this dual field strength

SD = −g
2
YM

4

∫
M4

FD ∧ ∗FD (2.8)

has inverse coupling constant. This argument shows the Z2 summery of abelian gauge
theory taking gYM → −1/gYM.

Now, let us assume M4 to be a compact and oriented spin manifold, as eventually
we will want to include fermions. The third homotopy group

1

(2π)2

∫
M4

F ∧ F (2.9)

is an even integer. Therefore, we see a classical symmetry of the four-dimensional
abelian gauge theory after addition of θ-term to the action

Sθ =
θ

8π2

∫
M4

F ∧ F (2.10)

as eiSθ is invariant under θ → θ + 2π.
The full Yang-Mills gauge theory action including the θ-term is

S = − 1

4g2
YM

∫
M4

F ∧ ∗F +
iθ

8π2

∫
M4

F ∧ F. (2.11)
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Where the θ-angle can be combined with the gauge coupling to form the full complex
coupling

τ ≡ 4πi

g2
YM

+
θ

2π
. (2.12)

Since θ-angle is periodic, τ → τ + 1 is a symmetry of a combined theory as well as
τ → −1/τ . A generic element g ∈ SL(2,Z) acts on the complex coupling

g =

(
a b
c d

)
, τ → aτ + b

cτ + d
(2.13)

by implementing both of these symmetries as follows

T =

(
1 1
0 1

)
, θ → θ + 2π

S =

(
0 1
−1 0

)
, gYM → −1/gYM . (2.14)

The elements S and T are a common choice of generators of SL(2,Z), where S is the
one that inverts the coupling constant.

We can make Yang-Mills gauge theory supersymmetric by coupling it to massless
spin-1/2 particles in the adjoin representation of the gauge group. The number of
physical fermionic modes described by such a spinor field depends on the number
of spacetime dimensions D and the type of spinor it is but it is always a power
of two. However, the number of physical modes described by the gauge field A is
D − 2, corresponding to all the possible transverse polarizations. This shows that
when D = 3, 4, 6 or 10 we can have the same number of physical modes carried by
the spinor as by the gauge field which permits an extra symmetry between the gauge
bosons and the fermions, called supersymmetry. My dissertation will mostly focus on
D = 4 case where the largest possible number of supersymmetries is N = 4.

The generators of supersymmetry transformations are fermionic and are called
supercharges. For N = 4 supersymmetry there are 16 separate supercharges, Qαa

and Q̄a
α̇, where α, α̇ = 1, 2 and a = 1, . . . , 4 are the spinor and R-symmetry indices,

respectively. The R-symmetry in this case is a global SU(4) ' SO(6) that transforms
supercharges, as well as the fields of this theory, into each other. It commutes with
the gauge symmetry.

We can learn new facts about the SL(2,Z) S-duality of N = 4 super Yang-Mills
(SYM) theory in four dimensions by studying a circle compactification of the the-
ory with unconventional boundary conditions as follows. Realizing the circle as the
segment [0, 2πR] with endpoints 0 and 2πR identied, we require the configuration at
2πR to be an S-dual of that at 0. We will refer to this kind of boundary conditions
as an S-twist and study the effect it has on the action

S =

∫
M3×[0,2πR)

LSYMd4x+

∫
M3

A(0) ∧ dA(2πR). (2.15)
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After taking the R → 0 limit we are left with a three-manifold that has the S-twist
at every point. We call the resulting low-energy theory on M3 Tr-S.

The S-twist is only an option if it is a symmetry of the theory which happens when
the coupling, τ , is self-dual. This occurs at the values of τ for which there exists an
element s ∈ SL(2,Z), other than the identity I, or −I, that leaves τ invariant. A
self-dual theory can be compactified on an S1 with an s-twist. The 2+1D low-energy
limit of this setting has been studied [26, 1] and it was shown that abelian SYM on a
flat M3 = T 2 × R gives Chern-Simons theory. The self-dual coupling constant τ = i
is invariant a Z4 ⊂ SL(2,Z) including S : τ → −1/τ and leads to Chern-Simons at

level k = 2. While for τ = e
πi
3 which is invariant under a Z6 ⊂ SL(2,Z) we can get

levels k = 1, 3.
There is a more geometric realization of the S-twist that I would like to mention

now and elaborate on in Part IV of my thesis. Six-dimensional (2, 0) theory of
the worldvolume of M5-branes is probably the most natural setting for defining this
twist. N = 4 super Yang-Mills theory with coupling constant τ is the low-energy
limit of (2, 0) theory compactified on a two-torus, with τ being the complex structure
parameter of the torus, where S-duality can be realized as the SL(2,Z) group of the
diffeomorphisms of the T 2.

Now, Tr-S is viewed as the effective low-energy description of the (2, 0) theory
formulated on M3× [(C×S1)/Zq]. Here (C×S1)/Zq is the discrete orbifold of C×S1,
parameterized by (z, ζ) with 0 ≤ ζ < 2πRq, by Zq that is generated by the freely
acting (z, ζ) → (e2πiqz, ζ + 2πR). Where q = 4 corresponds to τ = i while q = 6 for

τ = e
πi
3 , as above. It is also obvious that we can add an R-symmetry transformation

of order q to this Zq action. In this description, Tr-S theory is reminiscent of the
Melvin twist background described in §2.1.
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Chapter 3

Organization

My dissertation will elaborate on these two examples of geometric twists while
presenting details of the calculations I worked on. The rest of the document is orga-
nized as follows. Part II focuses on the particular Melvin twist that results in Puff
Field Theory (PFT) as sketched in §2.1. I will explain further details of this geometry
while attempting to explore the Coulomb branch of this field theory. The calculation
presented is a project I did with Ori J. Ganor and Shannon McCurdy.

Part III gives a long work on putting static charges into Tr-S theory setup as
described in §2.2 which was done with Ori J. Ganor, Yoon Pyo Hong and Hai Siong
Tan. This part of my thesis can also be found in [27]. We are interested in the
nonabelian Tr-S theory and, in particular, want to show that this theory has no prop-
agating degrees of freedom, and thus is topological, by studying its Witten Index. It
is worth note that there are other possible tests of our conjecture that have not been
explored here. For example, one could study its Bogomol’nyi-Prasad-Sommerfield
(BPS) states — massive representations of the supersymmetry algebra. While mo-
mentum is carried by BPS states, if this theory is topological there should not be any
propagating degrees of freedom, so one could look for BPS states that carry nonzero
momentum along the two-torus the nonabelian SYM is compactified on to disprove
our conjecture.

A topological quantum field theory (TQFT) computes topological invariants —
properties invariant under homeomorphisms. Correlation functions of a TQFT do
not depend on the metric of spacetime. We distinguish two basic kinds of TQFTs.
Witten-type, or cohomological, TQFTs have explicit metric dependence in the La-
grangian but the partition function and some correlation functions can me shown to
be diffeomorphism invariant. One example of this can be found in the Wess-Zumino-
Witten (WZW) model [28, 29].

On the other hand, in a Schwartz-type TQFT the path integral measure as well
as all the observables are explicitly independent of the metric. In, particular, TQFT
found when studying abelianN = 4 SYM on M3×S1 where the circle has an S-duality
twist is Chern-Simons theory on M3. Chern-Simons theory is a Schwartz-type TQFT
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and can be specified by a choice of a gauge group and a level k. Although Chern-
Simons action is gauge dependent the partition function is not if k ∈ Z and gauge
field strength vanishes on ∂M3. The expectation values of Chern-Simons observables
are related to knot invariants [30] and can be calculated as Wilson lines at a fixed
point on the circle in Tr-S theory.

Even though we are unsure if nonabelian Tr-S theory is topological, its abelian
counterpart is understood better [1]. Compactification of U(1) SYM on S1 with
boundary conditions that are twisted by an S-duality (together with an R-symmetry
twist to eliminate zero modes and preserve supersymmetry), leads to a 2 + 1D low-
energy theory that is pure Chern-Simons theory at a level k determined by the SYM
coupling constant τ . However, we know that Chern-Simons theory on a manifold with
curvature is not quite invariant but requires a gravitational Chern-Simons counter-
term [30]. Also, [31] shows that the partition function of Chern-Simons theory is
not a modular invariant but transforms as a modular form with weight quadratic in
curvature. These results suggest that an S-duality twist should be accompanied with
a gravitational Chern-Simons term.

In Part IV, I compare low-energy gravitational Chern-Simons theory with a one-
loop amplitude calculation in (2, 0) theory compactified on a two-torus to get N = 4
SYM gauge theory, and then again on a circle with an S-duality twist inserted. This
calculation was done in collaboration with Ori J. Ganor and Nesty R. Torres-Chicon.
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Part II

A Study of the Coulomb branch of
Puff Field theory in a Melvin

Universe
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Chapter 4

Setup

Puff Field Theory (PFT) arises from an embedding of N D-branes in a particular
Melvin Universe, and is an example of a non-local, Lorentz-violating field theory in
the decoupling limit. PFT is a gauge theory dual to a string theory with D3-branes
in the Melvin background with strong Ramond-Ramond fields.

On the gravity side, PFT can be constructed by lifting type IIA supergravity with
N D0-branes to M-theory and introducing Melvin twists in three transverse planes
before reducing back to type IIA theory. This gives D0-branes in a Melvin universe
[7] supported by an Ramond-Ramond two-form flux. Then T-dualizing along three
untwisted directions results in a simple supergravity dual to PFT: N D3-branes in
type IIB theory supported by an RR five-form field strength background.

Our particular starting configuration has N D0-branes in type IIA string theory
compactified on a three-torus T 3 (S1 × S1 × S1) in directions x, y and z. Let the
leftover R6 directions be parametrized as three (ri, φi) planes with i = 1, . . . , 3. We
proceed by lifting this setup up to eleven dimensions to get a Kaluza-Klein particle
with N units of momentum along the new compact ζ-direction in flat M-theory with
ζ ∼ ζ + 2πR. The metric is parametrized as follows

ds2 = −dt2 + dx2 + dy2 + dz2 +
3∑
i=1

(
dr2

i + r2
i dφ

2
i

)
+ dζ2.

We then twist in each of the three (ri, φi) planes with deformation parameters βi

ds2 = −dt2 + dx2 + dy2 + dz2 +
3∑
i=1

(
dr2

i + r2
i (dφi + βidζ)2

)
+ dζ2.

This is equivalent to doing three separate twists as in the simple three-dimensional
example in §2.1.

After reducing on the M-theory ζ-circle back to type IIA, we perform a TsT twist.
In this case, the twist is T-duality in direction x, followed by an S-duality, followed by
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T-dualities in directions y and z, which results in a system of N coincident D3-branes
embedded in a Melvin universe with RR four-form potential in the background of
type IIB theory.

This IIB supergravity dual solution the has metric

ds2 =
R2

r2

(
K−

1
2

[
dx2 + dy2 + dz2 −

(
dt− 4πN

r2
βψ

)2
]

+K
1
2ds2

R6

)
(4.1)

and the RR four-form potential

C ′4 =
πN

r4
K−1

[
dt ∧ dx ∧ dy ∧ dz − β

r2
ψ ∧ dx ∧ dy ∧ dz

]
(4.2)

with K = 1 +
(

4πN
r2

)2 β2

r2
and constant R4 = 4πgsNα

′2, while gIIB = 2πg2
YM. The

appropriate decoupling limit was taken for the parameters β, N and R as one sends
α′ to zero in order to decouple the gauge theory on the D-branes from the rest of the
string theory modes.

Here x, y, and z are static coordinates on N coincident D3-branes while six trans-
verse coordinates of R6 can be chosen to be radial direction r and coordinates on S5 so
that ds2

R6 = dr2+r2dΩ2
5. If we think of the five-sphere as the principal U(1)-bundle, or

a Hopf fibration of S1, over the base CP 2, we can write the metric dΩ2
5 = ds2

CP 2 +ψ2

where ψ is a one-form such that dψ is a representative of the second de-Rham co-
homology H2(CP 2,R). Considering the transverse directions as a Hopf fibration is
convenient as in these coordinates the Melvin twist is along the direction of the fiber
S1.

It will also be useful to parametrize the S5 using six angular coordinates which
we will denote ~n with components nI where I = 1, . . . , 6. Locally, in these angular
coordinates, one-form ψ can be written as βψ = ~nT εd~n. Rewriting the metric and
the RR four-form in the angular coordinates

ds2 =
R2

r2

(
K

1
2

[
dx2 + dy2 + dz2 −

(
dt− 4πN

r2
~nT εd~n

)2
]

+K−
1
2ds2

R6

)
C ′4 =

πN

r4
K−1

[
dt ∧ dx ∧ dy ∧ dz − 1

r2
~nT εd~n ∧ dx ∧ dy ∧ dz

]
(4.3)

where |~n|2 =
∑
n2
I = 1 and dΩ2

5 =
∑
dn2

I .
The Melvin twist that we modded out by is a simultaneous translation in the

z-direction and a rotation of the S5, where the rotation is determined by the constant
matrix ε ∈ so(6). In this calculation we have chosen the background where ε is the



16

following:

ε =


0 β1 0 0 0 0
−β1 0 0 0 0 0

0 0 0 β2 0 0
0 0 −β2 0 0 0
0 0 0 0 0 β3

0 0 0 0 −β3 0

 ; β = β1 = β2 = β3. (4.4)

Although described in terms of gravity above, on the gauge theory side this is
a deformation of N = 4 SYM which, with our choice β = β1 = β2 = β3, breaks
all supersymmetry. However, it is possible to construct backgrounds that preserve
some fraction of supersymmetry by performing different Melvin twists [17]. Choosing
β1 + β2 + β3 = 0 to stay in a so(3) subgroup preserves N = 1 supersymmetry.
Additionally if we set, say, β3 = 0 we are in a so(2) invariant subgroup and our gauge
theory has N = 2 supersymmetry. Preserving some supersymmetry is important as
a generic background can be unstable.
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Chapter 5

Result

Puff Field theory, in the IR limit, can be approximated to the leading order by
Yang-Mills gauge theory which is not supersymmetric with our choice of the Melvin
twist parameters. We study the Coulomb branch of the decoupled field theory which
is flat in this limit. It is deformed by an order seven operator [18] whose bosonic
part can be deduced from the Dirac-Born-Infeld (DBI) action and the Wess-Zumino-
Witten (WZW) term.

Let the coordinates on the full spacetime be indexed with µ, ν (µ, ν = t, ~x, r, ~n)
while we use indices α, β for coordinates along the brane (α, β = t, ~x) and indices
m, n for the transverse directions. Let Gαβ be the pull-back of the full space-time
metric gµν to the D3-brane. If the gauge fields are Aα, with field strength F = dA,
on the brane and scalars Φ are describing transverse motion of the brane the DBI
action is

SDBI = −T3

∫
M4

dtd3x
√
− det (Gαβ +Bαβ + kFαβ). (5.1)

While the WZW term is

SWZW = µ3

∫
M4

(C ∧ eB+kF ). (5.2)

Here C is the pullback of the total RR potential to the D3-brane worldvolume, while
µ3 and T3 are the D3-brane charge and tension. Constant k = 2πα′ and we set the
NS-NS two-form B = 0.

Changing the coordinates on S5 again, we rescale the six angular denoted ~n (with
components nI where I = 1, . . . , 6, where |~n|2 =

∑
n2
I = 1 and dΩ2

5 =
∑
dn2

I). Take

our new field ~φ to be defined as

φI =
1

r
nI

∂αφ
I = − 1

r2
∂αrn

I +
1

r
∂αn

I .
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Expanding the DBI action with the WZW term to the lowest order in the de-
formation parameter ε ∼ β and keeping up to three derivatives we get the following
order seven operator as the leading contribution deforming the Yang-Mills theory
with gauge fields and fermions set to zero

N2β

2π

εIJεKL
β2

φKε0αβγ∂αφ
I∂βφ

J∂γφ
L.

Further details of this expansions can be found in the following Appendix.



19

Chapter 6

Appendix

6.1 DBI action

The leading order low-energy effective action for the dynamics of the massless
excitations on a D-brane (with gauge field Aα supported on the brane and scalars Φm

describing transverse motion of the brane) is given by the Dirac-Born-Infeld action

SDBI = −T3

∫
dtd3x

√
− det (Gαβ +Bαβ + kFαβ)

where Gαβ is the pull-back of the space-time metric gµν with coordinates Φµ (µ, ν =
t, ~x, r, ~n) to the brane, Fαβ is the field strength of the gauge field Aα on the brane,
and Bαβ = 0 is the NS-NS two-form, while constant k = 2πα′. Let us also set Fαβ = 0
for simplicity of current discussion and reintroduce it in §6.1.1. The induced metric
on the brane can be written as

Gαβ = gµν∂αΦµ∂βΦν

in static coordinates. We use indices (α, β = t, ~x) for coordinates on the D3-brane
worldvolume, and (m, n = r, ~n) for transverse directions, so that

Gαβ = hαβ + gαn∂βΦn + gmβ∂αΦm + gmn∂αΦm∂βΦn

Where the full space-time metric can be writing in matrix form with coordinates in

the order (t, ~x, r, ~n), where for convenience we define cr =
√

4πN
r

gµν =
R2

√
Kr2


−1 0 0 c2

r~n
T ε

0 1 0 0
0 0 K 0

c2
rε
T~n 0 0 (Kr2

1− c4
rε
T~n~nT ε)


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and the rotation matrix

ε =


0 β 0 0 0 0
−β 0 0 0 0 0
0 0 0 β 0 0
0 0 −β 0 0 0
0 0 0 0 0 β
0 0 0 0 −β 0

 ∈ so(6)

with the deformation parameter β.
To calculate the DBI action we need

hγβ = hγαGαβ = δγβ + hγαgαn∂βΦn + hγαgmβ∂αΦm + hγαgmn∂αΦm∂βΦn.

The pull-back metric can be written as hγα = δγα + Mγ
α, where with static coordinates

in the order (t, ~x) in the matrix form

M =

(
htt(grr∂tr∂tr + ∂t~n

Tg~n~n∂t~n+ 2∂t~n
Tg~nt) htt(gt~n∂i~n+ grr∂tr∂ir + ∂t~n

Tg~n~n∂i~n)
hik(∂k~n

Tg~nt + grr∂kr∂tr + ∂k~n
Tg~n~n∂t~n) hik(grr∂kr∂jr + ∂k~n

Tg~n~n∂j~n)

)
and

hαβ =
R2

√
Kr2

(
−1 0
0 1

)
, hαβ =

√
Kr2

R2

(
−1 0
0 1

)
.

Therefore

IDBI = −T3

∫
M4

dtd3x
√
− det(hαβ)

√
det(1 + M)

where √
− det(hαβ) =

R4

Kr4
.

Since

ln det(1 + M) = tr ln(1 + M) = tr(M)− 1

2
tr(M2) +

1

3
tr(M3) + . . .

we have

(det(1 + M))
1
2 = (etr(M)− 1

2
tr(M2)+...)

1
2

= 1 +
1

2
tr(M)− 1

4
tr(M2) +

1

6
tr(M3) +

1

8
(tr(M))2

−1

8
tr(M)(tr(M))2 +

1

48
(tr(M))3 + . . .
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The DBI action, without the gauge fields, where as we expected to find an operator
of order seven, we kept terms with up to three derivatives

LDBI = −T3
R4

Kr4

(
1− c2

r∂t~n
T εT~n

+
1

2
K(−∂tr∂tr + δij∂ir∂jr) +

1

2
Kr2(−∂t~nT (1)∂t~n+ δij∂i~n

T (1)∂j~n)

+(−c2
r∂t~n

T εT~n)
(1

2
Kr2(∂t~n

T )(1)(∂t~n)− 1

2
Kr2δik(∂k~n

T )(1)(∂i~n)
)

+K(c2
r~n

T ε∂i~n)δik∂kr∂tr +
1

2
K(−c2

r∂t~n
T εT~n)(∂tr∂tr + δkj∂kr∂jr)) + . . .

)
where the D3-brane tension, with conventions from [32], is

T3 =
1

(2π)3gsα′2
=

N

2π2R4
. (6.1)

6.1.1 Including Gauge Fields

Recall that the full DBI action is

IDBI = −T3

∫
dtd3x

√
− det(Gαβ + kFαβ)

where we so far have only calculated

SDBI = −T3

∫
dtd3x

√
− det(Gαβ)

setting Fαβ = 0 in §6.1. Now we need to add

SDBI = −T3

∫
dtd3x

√
− det(Gαβ)

√
det(1 + kGβγFγβ).

And we know that

det(Gαβ + kFαβ) = det(Gαβ + kFαβ)T = det(Gαβ − kFαβ)

which is an even function of k. Using matrix notation and denoting

N = kG−1F

we have√
det(1 + N) = (det(1− N2))

1
4

≈ 1− 1

4
tr(N2)− 1

8
tr(N4) +

1

32
(tr(N2))2 + . . .
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≈ 1 +
1

4
k2FαβG

αδGβγFδγ −
1

8
k2(FαβG

αδGβγFδγ)
2 +

1

32
k4 + . . .

However, since we are keeping at most three derivatives for the leading order contri-
bution, we actually only need:√

det(1 + N) ≈ 1 +
1

4
k2FαβG

αδGβγFδγ

where we only need Gαδ up to single derivatives. This is

Gαβ = hαβ +

(
2∂t~n

Tg~nt gt~n∂i~n
∂i~n

Tg~nt 0

)
+ gmn∂αΦm∂βΦn

Gαδ ≈ hαβ + (

√
Kr2

R2
)2

(
−2∂t~n

Tg~nt gt~n∂i~n
∂i~n

Tg~nt 0

)
+ . . .

≈ hαβ + (

√
Kr2

R2
)h̃αβ + . . .

and

h̃αβ = (

√
Kr2

R2
)

(
−2∂t~n

Tg~nt gt~n∂i~n
∂i~n

Tg~nt 0

)
=

(
−2c2

r∂t~n
T εT~n c2

r~n
T ε∂i~n

c2
r∂i~n

T εT~n 0

)
.

Therefore√
det(1 + N) ≈ 1 +

1

4
k2Fαβh

αδhβγFδγ +
1

2
k2(

√
Kr2

R2
)Fαβh

αδh̃βγFδγ

≈ 1 +
1

4
k2Kr

4

R4
Fαβη

αδηβγFδγ +
1

2
k2Kr

4

R4
Fαβη

αδh̃βγFδγ.

And the DBI action, including contributions from gauge fields, is

SDBI = −T3

∫
dtd3x

√
− det(Gαβ)

√
det(1 + N)

= −T3

∫
dtd3x

√
− det(hαβ)

√
det(1 + M)(det(1− N2))

1
4

= −T3

∫
dtd3x

R4

r4

(
1− 1

2
(1 + c2

r∂t~n
T εT~n)∂tr∂tr +

1

2
δij(1− c2

r∂t~n
T εT~n)∂ir∂jr

+
1

2
r2(−(1 + c2

r∂t~n
T εT~n)∂t~n

T (1)∂t~n+ (1 + c2
r∂t~n

T εT~n)δij∂i~n
T (1)∂j~n)

−c2
r∂t~n

T εT~n
+(c2

r~n
T ε∂i~n)δik∂kr∂tr

+
1

4
k2 r

4

R4
(1− c2

r∂t~n
T εT~n)Fαβη

αδηβγFδγ +
1

2
k2 r

4

R4
Fαβη

αδh̃βγFδγ + . . .
)
.



23

6.2 WZW term

We also need to add the terms that come from the Ramond-Ramond field C ′4 in
the form of Wess-Zumino-Witten action which picks out the form of order four (as it
is proportional to the worldvolume of D3-branes) from

SWZW = µ3

∫
4

(C ∧ eB+kF ).

Here C is the total RR potential pulled back to the brane, µ3 is D3-brane charge, and
the NS-NS B-field is set to zero. Ignoring the correction due to the curvature tensor,
which is of a higher order in derivatives

SWZW = µ3

∫
C ′4

as we only have a RR four-form potential. For us

C ′4 =
πN

r4
K−1dt ∧ dx ∧ dy ∧ dz − 4πN

r6
K−1~nT εd~n ∧ dx ∧ dy ∧ dz

where

R4 = 4πNgsα
′2.

This term in the Lagrangian is the pull-back of C ′4 to the brane in static coordinates

LWZW = µ3
πN

r4K
(1− c2

r~n
T ε∂t~n)

while from above

LDBI = − 1

2π2

N

Kr4

(
1− c2

r∂t~n
T εT~n+ . . .

)
.

Remembering that because ∂t(~n
T ε~n) = 0

~nT ε∂t~n = ∂t~n
T εT~n

we see that these two contributions in DBI and WZW Lagrangians will cancel with
D3-brane charge µ−1

3 = 2π3:

LDBI + LWZW = −T3
R4

r4

(
− 1

2
(1 + c2

r∂t~n
T εT~n)∂tr∂tr +

1

2
δij(1− c2

r∂t~n
T εT~n)∂ir∂jr

+
1

2
r2(−(1 + c2

r∂t~n
T εT~n)∂t~n

T (1)∂t~n+ (1 + c2
r∂t~n

T εT~n)δij∂i~n
T (1)∂j~n)

+(c2
r~n

T ε∂i~n)δik∂kr∂tr
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+
1

4
k2 r

4

R4
(1− c2

r∂t~n
T εT~n)Fαβη

αδηβγFδγ +
1

2
k2 r

4

R4
Fαβη

αδh̃βγFδγ + . . .
)

However, this RR potential C ′4 is not complete as it does not have a self-dual field
strength dC4 = F5 6= ∗F5 :

C ′4 =
N

2π2r4K
(dt− c2

r~n
T εd~n) ∧ dx ∧ dy ∧ dz

dC ′4 =
N

2π2r4K

−4

r
dr ∧ dt ∧ dx ∧ dy ∧ dz

− N

2π2r4K

−6

r
c2
rdr ∧ ~nT εd~n ∧ dx ∧ dy ∧ dz

+
N

2π2r4

6

rK
(1−K−1)dr ∧ (dt− c2

r~n
T εd~n) ∧ dx ∧ dy ∧ dz

− N

2π2r4K
c2
rd~n

T ∧ εd~n ∧ dx ∧ dy ∧ dz

F ′5 = dC ′4 =
N

2π2r4K

2

r

(
1− 3

K

)
dr ∧ dt ∧ dx ∧ dy ∧ dz

+
N

2π2r4

6

rK2
dr ∧ c2

r~n
T εd~n ∧ dx ∧ dy ∧ dz

− N

2π2r4K
c2
rd~n

T ∧ εd~n ∧ dx ∧ dy ∧ dz

where I used that

dc2
r = −2

4πN

r3
= −2

r
c2
rdr

dK = −6

r

(
4πNβ

r3

)2

= −6

r
(K − 1)dr

dK−1 = − 1

K2
dK =

1

K

6

r
(1−K−1)dr.

Thus we must add to this calculation a WZW term for another four-form A4 such
that dA4 = ∗F ′5 so that d(C ′4 + A4) = F ′5 + ∗F ′5 = ∗d(C ′4 + A4).

6.2.1 Writing S5 As a Hopf Fibration

Due to the symmetries of the problem it is convenient to parametrize the five-
sphere in the directions transverse to the N coincident D3-branes as a Hopf fibration
instead of using six angular coordinates we denoted ~n. As explained in Chapter 4,
we can think of the S5 as the principal U(1)-bundle over the base CP 2 and rewrite
the metric dΩ2

5 =
∑
dn2

I = ds2
CP 2 + ψ2. Here ψ is a one-form such that ω = dψ is a

representative of the second de-Rham cohomology H2(CP 2,R) and βψ = ~nT εd~n.q
If coordinates on CP 2 are v2, v3, ϕ2 and ϕ3 while ζ is the coordinate along fiber

S1

ds2
CP 2 =

dv2
2 + dv2

3 − (v2dv3 − v3dv2)2

1− v2
2 − v2

3

+ v2
2dϕ

2
2 + v2

3dϕ
2
3 − (v2

2dϕ2 + v2
3dϕ3)2
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and

ψ = dξ + Θ =
1

β
~nT εd~n

where

Θ = v2
2dϕ2 + v2

3dϕ3

ω = dΘ = dψ = 2v2dv2 ∧ dϕ2 + 2v3dv3 ∧ dϕ3.

Then the metric on the S5 can be rewritten as

ds2
S5 =

dv2
2 + dv2

3 − (v2dv3 − v3dv2)2

1− v2
2 − v2

3

+ v2
2dϕ

2
2 + v2

3dϕ
2
3 + dξ2 + 2dξ(v2

2dϕ2 + v2
3dϕ3).

The five-form field strength F ′5 in these coordinates is

F ′5 =
N

2π2r4K

2

r

(
1− 3

K

)
dr ∧ dt ∧ dx ∧ dy ∧ dz

+
N

2π2r4

6

rK2
c2
rβdr ∧ ψ ∧ dx ∧ dy ∧ dz

− N

2π2r4K
c2
rβω ∧ dx ∧ dy ∧ dz

=
N

2π2r4K

2

r

(
1− 3

K

)
dr ∧ dt ∧ dx ∧ dy ∧ dz

+
N

2π2r4

6

rK2
c2
rβdr ∧ (dξ + Θ) ∧ dx ∧ dy ∧ dz

− N

2π2r4K
c2
rβω ∧ dx ∧ dy ∧ dz.

Recalling that the Hodge dual of a m-form η is an n-form ∗η, where m + n = D
is the number of spacetime dimensions, and the components are

∗ ηi1...in =
1

k!

√
| det g|gj1k1 . . . gjmkmηj1...jmεk1...kmi1...in

for the Hodge dual of our five-form field strength we get

∗ F ′5 =
N

4π2

(
ω ∧ ω ∧ dξ +

2πNβ

r4
dt ∧ ω ∧ ω +

8Nπβ

r5
dr ∧ dt ∧ ω ∧ ψ

)
Where we are looking for A4 such that, locally, dA4 = ∗F ′5, which is exists because F
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is closed1. The correction four-form A4 contains

A4 =
N

4π2

(ξ
a
ω ∧ ω +

(
1− 1

a

)
θ ∧ ω ∧ dξ +

2Nπβ

r4
dt ∧ ω ∧ ψ

)
for some constant a.

There is only one term in the pull-back of A4 that contains at most three deriva-
tives of the fields

A4|3derivatives =
N

4π2

(2Nπβ

r4
dt ∧ ω ∧ ψ

)
.

In terms of the ~n coordinates on S5

ψ =
1

β
~nT εd~n

ω =
1

β
d~nT ∧ εd~n

we can rewrite it as

A4|3derivatives =
N

4π2

(2Nπβ

r4

εIJεKL
β2

nKε0αβγ∂αn
I∂βn

J∂γn
Ldt ∧ dx ∧ dy ∧ dz

)
.

Then its pull back to the brane, up to an overall factor, looks like

P (A4|3derivatives) =
N

4π2

(2Nπβ

r4

εIJεKL
β2

nKε0αβγ∂αn
I∂βn

J∂γn
L
)
.

6.3 Stress-Energy Tensor

The most instructive way to rewrite all the contributions to the low-energy effec-
tive action is in terms of the stress-energy tensor of rescaled transverse fields. Let us
define these new fields as

φI =
1

r
nI

1 If F were not closed ([32] pg. 205)

F = F ′5 + ∗F ′5
dF = ∗Jm

d ∗ F = ∗Je(= ∗Jm = ∗J).

From this we would have

∗ d ∗ F ′5 = J.
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∂αφ
I = − 1

r2
∂αrn

I +
1

r
∂αn

I

and remember that

~nT~n = 1, ∂α(~nT~n) = 0.

We have

∂αφ
IδIJ∂βφ

J =
1

r4
∂αr∂βr +

1

r2
∂α~n

T∂β~n

and define

Jα = δφ =
1

r2
~nT ε∂α~n.

Then stress-energy tensor contributions from the Yang-Mills gauge field strength
F = dA and transverse scalar fields ~φ can be written as

(TYM)αβ = ηγνFαγFβν −
1

4
ηαβFγνF

γν

(Tφ)αβ = ∂αφ
IδIJ∂βφ

J − 1

2
ηαβη

γδ∂γφ
IδIJ∂δφ

J .

While the terms

ηδαJδ(Tφ)αt = −Jt(Tφ)tt + Ji(Tφ)it

= −Jt(
1

2
(∂tφ

IδIJ∂tφ
J + ∂iφ

IδIJ∂iφ
J) + Ji(∂iφ

IδIJ∂tφ
J)

ηδαJδ(TYM)αt = −Jt(TYM)tt + Ji(TYM)it

= −Jt(FtiFti +
1

4
FγνF

γν) + Ji(FijFtj).

Adding the the contributions of DBI action and WZW term with A4 correction
gives the total Lagrangian density up to three derivatives

LDBI + LWZW + LA4 =
N

2π2

(
Lφ +

π

gsN
LYM

−(4πN)ηδαJδ(Tφ + TYM)αt

+
(
Nπβ

εIJεKL
β2

φKε0αβγ∂αφ
I∂βφ

J∂γφ
L
)
. . .
)
.
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Part III

Static Charges in the Low-Energy
Theory of the S-Duality Twist
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Chapter 7

Introduction

For U(n) gauge group, S-duality of N = 4 super Yang-Mills theory [21, 22, 33]
asserts that the theory at the complex combination of coupling constant and θ angle

τ ≡ 4πi

g2
YM

+
θ

2π

is equivalent to the same theory at complex coupling −1/τ. The conjecture has passed
many tests (see for instance [34, 35, 36, 37]) and is generally accepted as true, even
though no proof exists. Over the years, much insight has been accumulating on
the way S-duality works. Some notable breakthroughs include the geometric real-
ization of S-duality in terms of the (2, 0)-theory [38, 39], the connection with the
geometric Langlands program [40], and the discovery [41, 42] of the role of certain
strongly-coupled 2+1D N = 4 theories [43] as intertwiners between a supersymmetric
boundary condition and its S-dual.

Another way to explore S-duality was recently examined in [26, 1]. There, an
S-duality twist was introduced into a compactification of N = 4 super Yang-Mills
(SYM) on S1 in a way that preserves N = 6 supersymmetry in 2 + 1D. An S-duality
twist is an unusual possible boundary condition that is permissible when the complex
coupling constant is set to the self-dual value τ = i. The S-duality twist is then
achieved by inserting the transformation that realizes τ → −1/τ at some point along
S1. We can then further compactify the remaining two spatial dimensions on, say, T 2.
The Hilbert space of ground states of this compactification, which was studied in [1],
provides insight into the operator that realizes S-duality. We refer to the resulting
three-dimensional low-energy theory as Tr-S, because correlation functions of Wilson
loops 〈W (C1) · · ·W (Cl)〉Tr-S in this theory can be interpreted as, roughly speaking,
a regularized version of the trace tr((−1)FSRW (C1) · · ·W (Cl)), where the trace is
taken over the Hilbert space of N = 4 U(n) SYM at the self-dual coupling τ = i,
S is the S-duality operator, R is an appropriate SU(4) R-symmetry operator that
is inserted in order to preserve N = 6 supersymmetry in 2 + 1D, F is the fermion
number (which is equivalent to a central element of the R-symmetry group), and
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W (C1), . . . ,W (Cl) are Wilson loop operators associated with the loops C1, . . . , Cl in
R3.

S-duality is part of a larger SL(2,Z) group of dualities, and some of them can

be used as twists as well. These arise for the special coupling τ = e
iπ
3 , which is

invariant under τ → (τ − 1)/τ and τ → −1/(τ − 1), and the corresponding SL(2,Z)
elements can be used to twist the boundary conditions. Together with τ → −1/τ , we
thus have three SL(2,Z) elements to explore as possible twists.1 We denote a general
SL(2,Z)-element by

g ≡
(

a b
c d

)
, τ → aτ + b

cτ + d
, (7.1)

and we denote its order in the group by r (thus gr = 1). In [1] an integer k and a
phase −π < υ < π were assigned to the three SL(2,Z) elements g as follows:

eiυ ≡ cτ + d , k ≡ 2− a− d

c
. (7.2)

It can easily be checked that in our three cases υ is real and equal to 2π/r, and k is
an integer. Explicitly,

k = 1, r = 6, υ = π
3

for τ = eπi/3, g =

(
1 −1
1 0

)
;

k = 2, r = 4, υ = π
2

for τ = i, g =

(
0 −1
1 0

)
;

k = 3, r = 3, υ = 2π
3

for τ = eπi/3, g =

(
0 −1
1 −1

)
.


(7.3)

In [1] the study of the Tr-S theory with gauge group U(n) compactified on T 2 was
started, and the Hilbert space of ground states was determined. We use the notation
H(k, n) to refer to the Hilbert space of ground states of the theory with τ and g
that are determined according to the list (7.3). In [1] it was also found convenient
to restrict attention to the cases with n < r, since these have no Coulomb branch,
as we review in Chapter 8. This restriction arises as in cases where n ≥ r there are
elements of the Weyl group Sn ⊂ U(n) that have order r, and a gauge transformation
by such a Weyl group element can cancel the effect of the R-symmetry twist and
produce a zero-mode. For n < r there are no such zero modes. We believe that in

1The twists are in SL(2,Z) and not PSL(2,Z) because the central element −1 ∈ SL(2,Z) acts
nontrivially, being equivalent to charge conjugation. For each g ∈ SL(2,Z) in the list (7.3) below,
one can also use −g as a twist, but it is always identical to the inverse of an element that already
appears in the list, and the resulting theory with −g is always the parity transform of another theory
from the list.
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this case the compactification has a mass-gap, and the 2+1D low-energy theory Tr-S
is topological.

The purpose of this paper is to continue to explore the Hilbert space of Tr-S on
T 2 by introducing supersymmetric static charges corresponding to m pairs of heavy
quarks and anti-quarks at fixed locations on T 2 and S1. We will study the resulting
Hilbert space of ground states, and show that the Witten Index of this problem can
be calculated by counting the states of a simple quantum mechanical system with
action

I =
1

2π

∫ m∑
a,α=1

Maαp
aq̇α dt , (7.4)

whereMaα is an m×m matrix with integer entries, and p1, q1, . . . , pm, qm are periodic
coordinates with period 2π. The action (7.4) describes geometric quantization of T 2m.

One motivation for introducing static charges into the Tr-S theory — apart from
a better understanding of the theory itself — is to clarify the relationship between
Tr-S and another (known) topological theory in 2 + 1D, namely the Chern-Simons
theory. In fact, when the gauge group is abelian, in which case the N = 4 SYM is
a free theory and we have a complete understanding of its S-duality [31], we have an
explicit description for Tr-S: it is simply the abelian Chern-Simons theory at level k
given in (7.2) (see §5 of [1]).

This simple picture does not hold true for nonabelian gauge groups, but the result
of [1] suggested that there might still exist a close relationship between the two
theories. There, we observed that the Hilbert space of the Tr-S theory compactified
on T 2 decomposes into different sectors, and for almost all sectors we were able to
show that their symmetry operators and behavior under modular transformations of
T 2 agree with those of the Hilbert spaces of the Chern-Simons theory with appropriate
gauge groups and levels. Introduction of static charges then provides a further test
on the identification of the Hilbert spaces of two theories.

Our strategy for extracting the Witten Index of the system with static charges
inserted follows closely that of [1]. Since little is known about the S-duality operator
itself for nonabelian gauge groups, we will embed our setting into full type IIB string
theory and apply a series of string theory dualities, after which the low-energy de-
scription of the system is given by the simple quantum mechanical one in (7.4). For
abelian gauge group, the result we obtain in this way precisely agrees with what we
expect from introducing Wilson line operator in abelian Chern-Simons theory. This is
as it must be, because we already know that the Tr-S theory is Chern-Simons theory
in this case. For nonabelian gauge groups, we show that our result passes a nontrivial
consistency check in itself, but does not agree with Chern-Simons theory predictions
in general. We will provide more discussion on this discrepancy in the concluding
section.

The paper is organized as follows. In Chapter 8 we explain the problem in detail
and describe the S-duality and R-symmetry twists, the amount of supersymmetry that
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is left unbroken, and the absence of the Coulomb branch for n < r. We then construct
the type-IIA dual of the theory without the charges. In Chapter 9 we introduce the
supersymmetric static charges and derive their type-IIA dual description. We then
explain how the geometric quantization systems of the type (7.4) arise. In Chapter 10
we use the known solution of the problem with U(1) gauge group, which reduces to
U(1) Chern-Simons theory at level k [defined in (7.3)], to demonstrate how the type-
IIA dual reproduces the known results about the Hilbert space of ground states of
U(1) Chern-Simons theory with charges. In Chapter 11 we move to the case of U(n)
gauge group. The goal of this section is to calculate the Witten Index of this system
as a function of n, k, and m. We describe the technical aspects of the calculation in
detail and summarize the final results in Table 11.2. Next, using a Wick-rotation
we express the Witten index as a supertrace of a combination of spatial Wilson
loops over H(k, n) (the Hilbert space without external charges). This provides us
with a consistency check on the final result, and moreover, allows us to calculate
the eigenvalues of the spatial Wilson loop operators on H(k, n). We then compare
the results to Chern-Simons theory as conjectured in [1], and show that they do not
match. We conclude in Chapter 12 with a discussion and future directions.
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Chapter 8

Review of the S-duality twist and
its type-IIA dual

In this section, we carry out a brief review of Tr-S theory, how to realize it in
string theory, and how to construct the type-IIA dual of the theory on T 2. We refer
our readers to [1] for more comprehensive details. At the end of this section we include
a small discussion on why we believe Tr-S is topological for n < r.

8.1 Definition of Tr-S

By definition, Tr-S is the 2 + 1D low-energy limit of a compactification of N = 4
super Yang-Mills (SYM) theory on S1 with boundary conditions that include an
S-duality twist and an appropriate R-symmetry twist to be discussed below. This
compactification was introduced in [26, 1], and similar compactifications have also
recently been studied in [44, 45, 46], where the S-duality twist was referred to as a
“duality wall.”

By itself, S-duality does not commute with supersymmetry [40], and since we
want to preserve some supersymmetry we have to supplement the S-twist with an R-
symmetry twist. Therefore, in [1] we twisted the boundary conditions on S1 further
by an element γ of the R-symmetry group SU(4), which in a particular basis takes
the form:

γ =


e
i
2
υ

e
i
2
υ

e
i
2
υ

e−
3i
2
υ

 ∈ SU(4)R , (8.1)

where υ is given by (7.2). This choice, it turns out, preserves the maximal possible
amount of supersymmetry in the presence of S-duality and R-symmetry twists, which
is N = 6 in 2 + 1D. It also preserves a U(3) ⊂ SU(4)R R-symmetry. This U(3)
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can be thought of as the unitary group of rotations that act holomorphically on the
transverse C3 ' R6.

3 + 1D N = 4 SYM has a Coulomb branch on which the gauge group is broken
to U(1)n ⊂ U(n). After compactification with the S-twist and R-twist together, the
Coulomb branch completely disappears for n < r [1]. This is because a point on the
Coulomb branch (R6)n/Sn of N = 4 U(n) SYM is described by an unordered set of
noncoincident n points in R6. S-duality preserves the point in moduli space, but the
R-symmetry twist γ acts on it by rotation of R6. Since γ has order r ≡ 2π/υ when
acting on R6, we see that we need n ≥ r for a point on the Coulomb branch to survive
the twist. For n ≥ r the situation is more complicated and some portion of the moduli
space of the Coulomb branch survives [1]. In order to avoid these complications we
will restrict the discussion that follows to the case n < r.

We can easily realize Tr-S in string theory using D3-branes. Consider the type-
IIB background R9,1 with Cartesian coordinates x0, . . . , x9, and place n D3-branes
at x4 = x5 = · · · = x9 = 0. The type-IIB coupling constant is denoted by τ =
χ + i

gIIB
, where gIIB is the string coupling constant, and χ is the RR scalar. The

S-duality transformation g of (7.1) then lifts to an S-duality transformation of the
full type-IIB string theory (that we also denote by g), and the R-symmetry element
γ lifts to a geometrical rotation in the six directions transverse to the D3-branes. We
compactify the x3-direction on a circle of radius R with boundary conditions given
by a simultaneous S-duality twist g and a γ ∈ Spin(6) geometrical twist in directions
x4, . . . , x9, where γ is given by (8.1). This means that as we traverse the x3 circle
once, we also apply a γ ∈ Spin(6) rotation in the transverse directions before gluing
x3 = 0 to x3 = 2πR.

We now compactify directions x1, x2, so that 0 ≤ x1 < 2πL1 and 0 ≤ x2 < 2πL2

are periodic. This puts the 2+1D field theory on T 2 with area 4π2L1L2 and complex
structure iL2/L1. In the limit

L1, L2, R� α′
1/2
, (8.2)

where α′1/2 is the type-IIB string scale, we can first reduce the description of the
D3-branes to N = 4 U(n) SYM at low-energy, and then compactify N = 4 SYM
with an S-duality and R-symmetry twist.

8.2 Type-IIA dual

We will now transform the type-IIB background, using string dualities, to one
where S-duality is realized geometrically. For this we need to consider the opposite
limit L1, L2 → 0 with R→∞ (in the order to be specified below). In this limit, the
type-IIB description is strongly coupled, but we will perform a U-duality transforma-
tion as specified in Table 8.1 to transform the setting to a weakly coupled type-IIA
background, enabling us to easily study the ground states of the field theory.
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Type Brane 1 2 3 4 5 6 7 8 9 10 Apply:

IIB D3 − − ÷ × T-duality on 1
IIA D2 − ÷ × Lift to M-theory
M M2 − ÷ Reduction to IIA on 2
IIA F1 × ÷ This is the final step!

Table 8.1: The sequence of dualities from n D3-branes in type-IIB to n fundamental
strings in type-IIA. A direction that the corresponding brane or string wraps with
periodic boundary conditions is represented by −, a direction that the object wraps
with twisted boundary conditions is represented by ÷, and a dimension that doesn’t
exist in the particular string theory is denoted by ×. All the branes in the table are
at the origin of directions 4, . . . , 9.

The U-duality transformation proceeds as follows. We first replace type-IIB on
a circle of radius L1 with M-theory on T 2 with complex structure τ and area A =
(2π)2α′2τ−1

2 L−2
1 = (2π)2M−3

p L−1
1 , where Mp is the 11-dimensional Planck scale. We

now reduce from M-theory to type-IIA on the circle of radius L2 to get a theory with
string coupling constant

gIIA = (MpL2)3/2 = τ
1/2
2 L

1/2
1 L

3/2
2 α′

−1
,

and new string scale
α′IIA = M−3

p L−1
2 = α′

2
τ−1

2 L−1
1 L−1

2 .

After these dualities, the D3-branes become fundamental type-IIA strings with a total
winding number n in the x3 direction. The S-duality twist g is now a diffeomorphism
of the type-IIA torus (in the x10x1 directions), which can be realized as a rotation
by an angle υ listed in (7.3). To make this type-IIA background weakly coupled we
assume that the limits are taken in such a way that

A � α′IIA , gIIA � 1 , R� α′
1/2
IIA. (8.3)

This is a different limit than (8.2), but we can use the weakly coupled type-IIA
background to study the Hilbert space of supersymmetric ground states, or more
precisely the Witten Index of the Tr-S theory on T 2.

To describe the basic geometry of the dual type-IIA background, it is convenient to
divide the 9 directions into three groups and view the spatial manifold as an orbifold
of T 2 × R × C3. We regard the T 2 as the complex plane modded out by a lattice,
C/(Z + τZ), and take

z ∼ z + 1 ∼ z + τ (8.4)

as its coordinate. On R, we take the coordinate

−∞ < x3 <∞ ,
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and on C3 ' R6, we take the coordinates to be

(ζ1, ζ2, ζ3) , ζ1, ζ2, ζ3 ∈ C .

The orbifold is then represented by the identification

(z, x3, ζ1, ζ2, ζ3) ∼ (eiυz, x3 + 2πR, eiυζ1, e
iυζ2, e

iυζ3) . (8.5)

Also, the shift x3 → x3 + 2πR ensures that the orbifold has no fixed points, and thus
the geometry is flat and free of singularities. In particular, the ζ1 = ζ2 = ζ3 = 0
subspace is a T 2-fibration over S1 with structure group Zr.

The ground states that are relevant to our problem are those with a total string
winding number n along direction x3. A state with string winding number n is a
p-particle (that is, p-string) state consisting of 1-particle states of winding numbers
n1 ≥ n2 ≥ · · · ≥ np > 0 with n1 + n2 + · · · + np = n. Thus, the Hilbert space of
ground states decomposes as a direct sum:

H(k, n) =
n⊕
p=1

 ⊕
n1≥n2≥···≥np>0
n1+n2+···+np=n

H(k;n1, . . . , np)

 . (8.6)

A crucial point is that the problem of finding the ground states can be solved using
essentially classical geometry: we simply need to find classical string configurations
of minimal length. Consider a superstring with winding number ñ in direction x3. It
turns out [8] that (for ñ 6= 0) the ground states are bosonic and in the RR sector.
(We will independently verify this in Chapter 10.3.) For ñ that is not divisible by r,
there is a basis of ground states that are in one-to-one correspondence with loops of
winding number ñ and minimal length in the geometry (8.5). In the limit α′IIA → 0,
these states reduce to the classical string configurations.

To describe the classical configurations, we can fix an x3 coordinate and specify
the points where the classical string intersects the transverse coordinates T 2 × C3 in
the geometry (8.5). At winding number ñ, the string intersects T 2 × C3 at ñ (not
necessarily distinct) points, and in order to be of minimal length the coordinates
of these points should be independent of x3. The classical configurations are thus
characterized by a set of ñ points in T 2 × C3 that is invariant, as a set, under the
orbifold operation

(z, ζ1, ζ2, ζ3) ∼ (eiυz, eiυζ1, e
iυζ2, e

iυζ3) .

For ñ that is not divisible by r, there is a finite number of such sets, and they are
all localized at the origin of C3, i.e., at ζ1 = ζ2 = ζ3 = 0. They are therefore entirely de-
scribed by the z-coordinates of where the string intersects T 2: z, eiυz, e2iυz, . . . , ei(ñ−1)υz,
since as we go once around the x3 direction the coordinate z switches to eiυz. After
ñ loops z becomes eiñυz, which should be identified with z (up to a shift in Z + Zτ)
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in order to close the string. The classical string configurations are then described by
solutions z = ζMa,Mb

of

eiñυζMa,Mb
= ζMa,Mb

+Ma +Mbτ , (Ma,Mb ∈ Z) (8.7)

and we consider two solutions ζMa,Mb
and ζMa

′,Mb
′ as equivalent if they differ by a

lattice element, i.e., if ζMa,Mb
−ζMa

′,Mb
′ ∈ Z+Zτ. In addition, ζMa,Mb

and eiυζMa,Mb
give

equivalent solutions, since the intersection points of the string with T 2 are unordered.
There is then only a finite number of inequivalent solutions to (8.7), and we have

described them in detail in [1]. The full single-particle string spectrum (including
excited states) decomposes into a finite sum of distinct sectors, labeled by Ma,Mb,
and the solution ζMa,Mb

, which is a point on T 2, describes the center of mass of
the string in the directions of T 2. Thus, a single-particle ground state with winding
number ñ can be described by the location of the intersection of the classical string
configuration with any particular T 2 fiber at a constant x3:∣∣[z, eiυz, . . . , e(ñ−1)iυz]

〉
, (8.8)

where z coordinates are always taken modulo the lattice Z + Zτ. The multi-string
states can subsequently be described by∣∣{[z1, e

iυz1, . . . , e
(n1−1)iυz1], [z2, e

iυz2, . . . , e
(n2−1)iυz2], . . . , [zp, e

iυzp, . . . , e
(np−1)iυzp]}

〉
,

where each zi is a solution ζMai,Mbi
of (8.7) with ñ → ni, and n =

∑p
1 ni is the total

winding number. Also, the number of inequivalent solutions of (8.7) for ñ = 1 is
equal to k. It is a function of υ alone, as indicated in (7.3).

8.3 Zk symmetries

For k > 1 there are two useful Zk symmetries that can be described geometrically
in the type-IIA background as follows [1]:

1. The metric (8.5) has a discrete isometry that is generated by the operator U
defined to act as a translation in the T 2 fiber:

U : (z, x3, ζ1, ζ2, ζ3) 7→ (z +
1

k
(1 + τ), x3, ζ1, ζ2, ζ3) . (8.9)

2. The first homology group H1 of the space (8.5) is Z⊕Zk where Zk is generated
by the homology class of one of the 1-cycles of the T 2 (in the z direction), and
Z is generated by a cycle that wraps around the x3 direction at z = 0. The
homology class of a fundamental string is conserved, and the projection onto
the Zk factor describes a conserved quantum number q ∈ Zk. We define the
operator V to have the eigenvalue e

2πi
k
q on a state with quantum number q.
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In other words, U can be viewed as Zk-momentum, and V can be viewed as Zk-winding
number. They obey the commutation relations [1]:

Vk = Uk = 1 , VUV−1U−1 = e
2πin
k . (8.10)

This Zk × Zk symmetry also has a natural interpretation in terms of the original
gauge theory. Its conserved charges can be expressed in terms of S-duality invariant
combinations of electric and magnetic fluxes in the center U(1) ⊂ U(n); we refer
the reader to [1] for details. For the present paper, however, we only need to know
the commutation relations of U and V with the Wilson loop operators. Those follow
directly from the relation of U and V to electric and magnetic fluxes, or can be derived
directly in the type-IIA dual. The result will be given later on in the paper, in (11.34).

For completeness, we also note that in addition to this Zk × Zk symmetry we
have an SL(2,Z) symmetry that acts as the mapping class group of T 2 on which the
Tr-S theory is defined. In the type-IIA dual picture, the complex structure param-
eter of this T 2 becomes the complexified area modulus of the type-IIA T 2 (in x10x1

directions):

ρ =
i

α′IIA
Area(T 2) +

1

2π

∫
T 2

B . (8.11)

Here B is the NS-NS two-form potential. The SL(2,Z) group acts by T-duality, and
is generated by

S →
(

0 −1
1 0

)
∈ SL(2,Z) , S : ρ→ −1

ρ
,

and

T →
(

1 1
0 1

)
∈ SL(2,Z) , T : ρ→ ρ+ 1 .

In [1], this correspondence was used to read off the modular transformation properties
of the ground states of Tr-S theory.

8.4 Is Tr-S a topological theory?

Before we proceed to study static charges for Tr-S on T 2, let us explain in more
detail why we believe Tr-S is a topological theory. The setting we described above has
N = 6 supersymmetry in 2 + 1D and a U(3) R-symmetry, which is the subgroup of
SU(4) that commutes with γ in (8.1). If Tr-S is not topological and has propagating
degrees of freedom, it must be an interacting N = 6 superconformal field theory.
Let us then consider the low-energy limit of Tr-S on S1. This compactification has
N = (6, 6) supersymmetry in 1 + 1D. To gain more insight about this 1 + 1D
theory, let us look at the list of dualities in Table 8.1, but instead of performing all
the dualities all the way to type-IIA at the last line, let us stop one line before the
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last, at the point where we have M-theory and n M2-branes. At this point direction
x2 is not yet compact, but directions x1, x10 are compact and form a torus with
complex structure τ. The directions transverse to the M2-branes are parameterized
by the complex coordinates (z, ζ1, ζ2, ζ3). The M2-branes wrap direction x3, and the
boundary conditions along x3 are twisted by a geometrical twist, which is a rotation
in the directions transverse to the M2-branes. This twist acts as

(z, ζ1, ζ2, ζ3)→ (eiυz, eiυζ1, e
iυζ2, e

iυζ3) (8.12)

and corresponds to a rotation by an angle υ in 4 transverse planes.
For n = 1, the twisted boundary conditions create a mass gap of 1/rR, where

r = 2π/υ [see the discussion below (7.2)], and the 1 + 1D low-energy theory has no
propagating degrees of freedom. This is consistent with the identification of Tr-S at
n = 1 with abelian Chern-Simons theory, as will be discussed in Chapter 10 in more
detail, and indeed Chern-Simons theory has no propagating degrees of freedom.

What about the nonabelian case, say n = 2? In this case we need to understand
the low-energy limit describing two M2-branes compactified on S1 with transverse di-
rections T 2×C3 parameterized by (z, ζ1, ζ2, ζ3) and with boundary conditions twisted
by (8.12) along S1. The 1 + 1D low-energy theory corresponds to configurations
where (z, ζ1, ζ2, ζ3) are independent of x3. Because of the twist, this implies that
ζ1 = ζ2 = ζ3 = 0 and z is a fixed point of the twist. For given υ, the twist has k fixed
points on T 2, as we explained at the end of §8.2. It is easy to check that these fixed
points are at

zj =
j

k
(1 + τ) , j = 0, . . . , k − 1. (8.13)

The 1 + 1D low-energy theory therefore has k(k + 1)/2 sectors. In k(k − 1)/2 of
the sectors the two M2-branes sit at different fixed points zj 6= zj′ . In this case it
is clear that no massless excitations survive the low-energy limit and the low-energy
1 + 1D theory has no propagating degrees of freedom. The remaining k sectors have
two M2-branes at the same zj. Clearly, all these sectors are equivalent and we can
concentrate on one of them, say at z0 = 0. Since the M2-branes are pinned to the
origin, we can safely replace T 2 with C and set z → ζ0, with ζ0 ∈ C. We have now
reduced the problem to understanding the compactification of two M2-branes on S1

with transverse directions C4 and a twist along S1 given by

(ζ0, ζ1, ζ2, ζ3)→ (eiυζ0, e
iυζ1, e

iυζ2, e
iυζ3). (8.14)

Up until recently we would have had to proceed indirectly from here, but the re-
cent progress in the low-energy description of M2-branes [47]-[48], culminating in
the discovery of the ABJM action [49], allows us, in principle, to explore this prob-
lem directly. We need to take the ABJM action and compactify all fields on S1

with boundary conditions twisted by (8.14). This corresponds to an element of the
SO(8) R-symmetry group. However, proceeding to compactify the ABJM theory in



40

this manner involves subtleties that require a separate treatment, which we hope to
present elsewhere. Instead, for now we will settle for an indirect approach, modifying
the problem a little bit. Instead of taking the discrete value υ = 2π/r in (8.14), let
us consider the case that |υ| � 1. More precisely, consider the double-scaling limit

υ → 0 , R→ 0 , β ≡ υ

R
→ const.

Using a standard technique, we change variables to

z′j ≡ e−
iυx3
2πR ζj , j = 0, 1, 2, 3,

and write the metric as

ds2 = −dx2
0 + dx2

2 + dx2
3 +

3∑
j=0

|dζj|2

= −dx2
0 + dx2

2 +
(
1 +

β2

4π2

3∑
0

|z′j|2
)
dx2

3 +
3∑
j=0

|dz′j|2 −
β

π
dx3 Im

3∑
j=0

z′jdz
′
j .

We can now reduce to type-IIA along direction x3 to obtain a “Melvin background”
[7]-[50]. This background has a Ramond-Ramond field strength

FRR = dARR = − β

2π
Im

3∑
j=0

dz′j ∧ dz′j +O(β3) ,

and a dilaton

eΦ = (MpR)3/2
(
1 +

β2

4π2

3∑
0

|z′j|2
)3/2

,

where Mp is the 10+1D Planck scale. This background creates mass terms for all
low-energy fields that propagate on a long string in direction x2. Such a string is
pinned to the origin z′0 = z′1 = z′2 = z′3, as is obvious from the M-theory description.
In the type-IIA world-sheet description, the fermion mass terms are generated from
the coupling of the string modes to the RR field strength, while the bosonic mass
terms are generated from the string-frame metric. For small β we can trust the
approximate perturbative string analysis, and we see that all propagating modes
along the remaining noncompact direction x2 have mass of order β = υ/R. It is not
immediately clear that we can extrapolate this analysis to υ = 2π/r, but we know
that for a single string in this background no complications should arise, and in the
limit R→ 0 string interactions are small.

Furthermore, if Tr-S is a nontrivial SCFT, and if it has a moduli space, then this
moduli space must be compact because we have eliminated all noncompact modes
along the Coulomb branch via the twist, and because the type-IIA picture shows no
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trace of noncompact flat directions. But N = 6 supersymmetry in 2 + 1D is very
restrictive and requires the moduli space to be locally flat. It must therefore be of the
form T 8d/Γ, where Γ is a discrete isometry group, and d is an integer. On the other
hand, the unbroken R-symmetry group must act nontrivially on the moduli space (by
supersymmetry), but the maximal continuous isometry group of T 8d/Γ is abelian and
cannot contain SU(3), which is a contradiction.

We will proceed under the assumption that Tr-S is topological, but we note that
even if this assumption is incorrect, the results of this paper are still meaningful,
but they then correspond to the Witten Index of an interacting SCFT, rather than a
TQFT. We now proceed to the calculation of the Witten Index.
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Chapter 9

Static charges and their type-IIA
dual description

In this paper we study what happens when we insert static charges into the Tr-S
theory defined in Chapter 8. We add 2m static external sources to the system at
S1 coordinate x3 = 0. Specifically, we insert m heavy (non dynamical) quarks at

the fixed T 2 coordinates (a
(a)
1 , a

(a)
2 ) (where a = 1, . . . ,m), and to cancel the net U(1)

charge1 we insert an equal number m of anti-quarks, which we take to be at fixed T 2

coordinates (a
(a+m)
1 , a

(a+m)
2 ). (Here 0 ≤ a

(a)
i < 2πLi (i = 1, 2) are periodic coordinates

in type-IIB directions x1, x2.)
The ath static charge can be incorporated by introducing a matrix element of a

time-like Wilson line

trP exp

(
i

∫ ∞
−∞

A0(t, a
(a)
1 , a

(a)
2 , 0)dt

)
(9.1)

into the path integral. This prescription, however, breaks all the supersymmetry. To
preserve some supersymmetry we follow [51, 52] and add one of the adjoint scalar
fields of N = 4 SYM to A0 in (9.1). For concreteness, we take

trP exp

(
i

∫ ∞
−∞

[A0(t, a
(a)
1 , a

(a)
2 , 0) + Φ9(t, a

(a)
1 , a

(a)
2 , 0)]dt

)
, (9.2)

where Φ9 is the scalar field that corresponds to D3-brane fluctuations in the x9 di-
rection. In §9.1 we will show that inserting charges that interact with Tr-S as the
low-energy limit of (9.2) preserves 4 real supercharges.

1 Actually, it is not necessary for the net charge to be zero, thanks to the S-duality twisted
boundary conditions in the x3 direction. But the system with nonzero net charge is more complicated
and will not be studied here.
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9.1 Charges as endpoints of type-IIB strings

Our main task now is to identify the type-IIA dual realization of the charges.
We start in type-IIB and follow a standard technique to introduce static charges
with interactions (9.2) into the type-IIB construction described at the beginning of
Chapter 8.

Following [51, 52] we introduce fundamental strings with one endpoint on the D3-
branes and extending indefinitely in direction x9.We label the strings by c = 1, . . . , 2m
and let the strings labeled by c = 1, . . . ,m extend along 0 ≤ x9 < ∞ and the
strings labeled by c = m + 1, . . . , 2m extend along −∞ < x9 ≤ 0. The low-energy
description of this system holds the information about the ground states of Tr-S with
static charges, and the (x1, x2) coordinates of the endpoints of the strings can be set

to (a
(c)
1 , a

(c)
2 ). We are only interested in the low-energy excitations of the system at

energies well below the string scale, as well as the compactification scales:

E �Mst,
1

L1

,
1

L2

,
1

R
.

The semi-infinite strings, in this limit, are very heavy and can be treated semi-
classically.

The long-wavelength excitations of each string are described by 8 free scalars
Xµ

c (x9, t) (µ = 1, . . . , 8) and a free Majorana-Weyl fermion ψc satisfying the chirality
condition

Γ0123456789ψc = ψc

and the free massless Dirac equation along the string:

(Γ0∂t + Γ9∂9)ψc = 0 .

Their low-energy effective action is of the form

I = I(int) +
2m∑
c=1

I(F1)
c , (9.3)

where Ic is the bulk 1 + 1D action of the free fields Xµ
c , ψc, and I(int) is the 0+1D

action that couples the fields Xµ
c , ψc at x9 = 0 to the low-energy degrees of freedom

of Tr-S theory. In addition to the boundary values of Xµ
c , ψc, the interaction term

I(int) depends on additional local 0+1D degrees of freedom, whose form we seek to
find. (See Figure 9.1.)

We will now provide a preview of what I(int) looks like, and we will explain the
derivation at length in the following subsections. The term I(int) is formulated in
terms of additional variables that are localized at the interaction point x9 = 0. These
variables include a discrete variable that specifies the “sector,” with a finite number
of sectors altogether. Each sector is then described by m periodic variables pa (a =
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type-IIB

n D3-branes s
q

s
q

sq sq

6
x9

Xµ
3 , ψ3 Xµ

4 , ψ4

Xµ
1 , ψ1 Xµ

2 , ψ2

pa, qα
�
��

Figure 9.1: External quark and anti-quark sources are realized as endpoints of fun-
damental strings. At low-energy, the strings are described by free 1 + 1D fields
Xµ

c (x9, t), ψc(x9, t) and the low-energy modes of the compact interacting system of
D3-branes and charges are described by periodic variables pa(t), qα(t).

1, . . . ,m) and additional m′ periodic variables qα (α = 1, . . . ,m′), both of which take
values in the range [0, 2π). The number m′ of qα’s depends on the sector, but generally
m′ ≥ m. The action I(int) is then a sum of two terms, which we write schematically
as:

I(int) = I0 + I1 , I0 ≡ I0({pa, qα}) , I1 ≡ I1({pa, qα}, {X1
c (0), X2

c (0)}).

The first term I0 describes the local system at x9 = 0, while I1 is the interaction
term that couples the system to the boundary values of the scalar fields on the 2m
fundamental strings. (The fermions will be discussed later, but are suppressed at the
moment.)

For the sectors for which m′ = m the configuration space of {pa, qα} is T 2m, and
the system described by I0 is equivalent to geometric quantization on T 2m with the
following action:

I
(g.q.)
0 =

1

2π

∫ m∑
a,α=1

Maαp
aq̇αdt , (9.4)

where Maα is a nonsingular matrix of integers that we will describe below. As men-
tioned in the Introduction, the sectors of most interest to us will be of this form. Any
additional kinetic terms that are quadratic in q̇α, ṗa are irrelevant at low-energy. The
other sectors, with m′ > m, also have a piece of the form I

(g.q.)
0 in their action, but it

is necessary to include additional kinetic terms.
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The coupling term I1 is linear in X1
c , X

2
c and the derivatives q̇α, ṗa. It is of the

form:

I1 =
1

2π

∫ ∑
cα

NcαX
1
c (0)q̇αdt+

1

2π

∫ ∑
ca

KcaX
2
j (0)ṗadt , (9.5)

where Ncα,Kca are matrices of integers to be specified later. The remaining fields
Xµ

c with µ = 4, . . . , 8 have Dirichlet boundary conditions Xµ
c (0) = 0, while X3

c has
Neumann boundary conditions. These fields are however irrelevant for our discussion.
In §9.3 we will explain how the interactions (9.3)-(9.5) are derived from the type-IIA
dual. But first, let us discuss how much supersymmetry is left.

9.2 Supersymmetry

To see how much supersymmetry is preserved we consider once again the realiza-
tion of (9.2) in type-IIB. We have fundamental strings that stretch along direction x9

and end on the n D3-branes. Let ΓA (A = 0, . . . , 9) be 9+1D Dirac gamma matrices,
which we take to be real. Let ε = ε1 + iε2 be a complex 9+1D Weyl spinor, where
ε1, ε2 are Majorana-Weyl, and ε∗ = ε1 − iε2 its complex conjugate.

The supersymmetry preserved by the n D3-branes is parameterized by those com-
binations of the supercharges with coefficients ε that satisfy:

Γ0123ε = −iε . (9.6)

The S-R-twist preserves

ε = e−
iυ
2 e

υ
2

(Γ45+Γ67+Γ89)ε , (9.7)

where the first factor is from the S-twist, and the second from the R-twist, and the
interaction (9.2) preserves the same combinations of supersymmetry generators that
a fundamental string in directions 0, 9 preserves, which is given by

Γ09ε = ε∗ . (9.8)

Combining (9.8) and (9.7) we find

ε∗ = e
iυ
2 e

υ
2

(Γ45+Γ67−Γ89)ε∗ ,

while taking complex conjugate of (9.7) yields (keeping in mind that the gamma
matrices are all real)

ε∗ = e−
iυ
2 e

υ
2

(Γ45+Γ67+Γ89)ε∗ .

Together, these two equations imply

Γ89ε = iε .
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Brane 1 3 4 5 6 7 8 9 10

F1 ÷
D2 à −

Table 9.1: Open D2-branes are the U-duals of the type-IIB strings. Here − denotes
a direction that the brane wraps, ÷ denotes a direction that the brane/string wraps
with a twist, and à denote a direction in which the brane extends but with endpoints
(see §9.9).

Then, from (9.7), we obtain
Γ45ε = −Γ67ε , (9.9)

and together with (9.6) this leaves four linearly independent complex supersymmetry
parameters. But (9.8) then puts a reality condition on these parameters, and leaves
four real supercharges unbroken.

Out of the U(3) R-symmetry that is preserved by the R-twist (8.1), the static
charges only preserve SU(2) × U(1) ⊂ U(3). This is the double-cover of the unitary
group U(2) ' [SU(2)×U(1)]/Z2 that acts as unitary rotations of the variables x4+ix5,
x6 + ix7, and preserves x8 + ix9. The surviving supercharges transform as a doublet
of SU(2) and are neutral under U(1) (which is generated by Γ45 + Γ67).

9.3 Constructing the type-IIA dual of charges

Now we transform the system of D3-branes and fundamental strings to type-IIA by
applying the U-duality transformation described in Table 8.1. The 2m fundamental
strings turn into D2-branes, and the n D3-branes turn into fundamental strings, as
listed in Table 9.1. In the type-IIB picture the strings end on the n D3-branes, but in
the type-IIA picture the D2-branes are too big to end on the n strings. The system
must therefore rearrange itself, and we have to pair up each D2-brane that corresponds
to a quark (extending in the positive x9 direction) with a D2-brane that corresponds
to an anti-quark (extending in the negative x9 direction), and glue them into a single
smooth D2-brane. We thus get m D2-branes whose worldvolume is equivalent to an
infinite cylinder.

Some of the type-IIA closed strings that we had in Chapter 8 must now be allowed
to break into open strings and end on the D2-branes. Every D2-brane must have at
least one such open string attached to it, because otherwise the corresponding type-
IIB string would not be bound to any of the n D3-branes. For ease of discussion it will
be convenient to slightly separate the D2-branes in the x3 direction. The resulting
configuration is depicted in Figure 9.2.
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Figure 9.2: The type-IIA configuration following the U-duality transformation of
Table 8.1. The m pairs of type-IIB open strings become m continuous D2-branes.
The n D3-branes become n fundamental strings, which in the presence of the D2-
branes can break up into open strings. At least one pair of open strings must be
attached to each D2-brane. In this example m = 4 and n = 2.

9.4 Local pa, qα variables and their action I0

To understand how the pa, qα that appear in (9.4) arise, it is instructive to start
with a simple example: one D2-brane (m = 1) and one string (n = 1) for the case
k = 2 with υ = π

2
. We have one fundamental string wrapping direction x3 and bound

to the D2-brane, which wraps direction x10 and extends in direction x9. The system
is therefore dual to U(1) Tr-S theory with an external quark and anti-quark pair.

To bind to a D2-brane, the closed string must break to become an open string
that starts and ends on the D2-brane located at x3 = 0. Let the string start at T 2

coordinate z = x10 + ix1 ≡ q + iu on the D2-brane, where u and q are functions of
time. To make u and q compact variables with period 2π, we will rescale the x10

and x1 coordinates so that from now on they take values in [0, 2π). To be of minimal
length the string must remain at x9 = 0 and at constant z, as x3 varies from 0 to 2πR.
The point with coordinates x3 = 2πR and z = q + iu is equivalent in the geometry
of (8.5) to the point with coordinates x3 = 0 and z = eiυ(q + iu) = −u + iq. This
point must also be on the D2-brane, which wraps direction x10 but is at a fixed x1

coordinate. We thus find that u = q. In other words, the bound fundamental string
starts at z′ = (1 + i)q on the D2-brane, and ends at z′′ = (−1 + i)q on the same
D2-brane (see Figure 9.3).

The starting point and endpoint of the string are oppositely charged under the
U(1) gauge field that resides on the D2-brane. Let A10 be the component of this



48

(a)
-x1

6

x10

s
s

�
��
x3

D2

F1

F1

z′

z′′

(b)
-x1

6

x10

i

i
i
i
iiiiii

i
i

i

Figure 9.3: (a) A fundamental string (F1) bound to the D2-brane. The D2-brane
wraps the compact direction x10 (the vertical direction) and extends indefinitely in
direction x9 (not shown in the picture). The fundamental string is at x9 = 0 and
extends in direction x3 (perpendicular to the plane of the drawing). Because of the S-
duality twist, which in the type-IIA picture translates to a rotation, the fundamental
string’s endpoint z′′ can be different from its starting point z′. (b) Configurations of
the D2-brane with the two endpoints z′, z′′ of the string marked as oppositely charged
points. As the D2-brane changes its x1-position, the positions of the charges change
accordingly.

gauge field in the x10 direction. We can fix the gauge so that A10 is independent of
x10, and set p ≡ 2πA10. The starting point and endpoint of the string are separated
along the x10 direction by ∆x10 = 2q, so the action of the system includes the term:

I0 ≡ 2

∫
A10dq =

1

2π

∫
2pdq . (9.10)

We claim that I0 is the only relevant term at low-energy. For example, the kinetic
energies of the fundamental string and of the D2-brane are irrelevant at low-energy,
because they are proportional to (∂0q)2. Indeed, setting the mass dimensions of p, q
to zero, we see that the kinetic term has dimension 2 and is irrelevant in a 0+1D
theory.

The action I0 describes the geometric quantization of a torus with the symplectic
form 2dp ∧ dq. The Hilbert space has two states, and this is indeed the number of
states we expect, since the U(1) Tr-S theory is known to be equivalent to Chern-
Simons theory at level k. (See Chapter 10 for more details.)

We can now turn to the general case. The 0+1D variables pa, qα that appear in
(9.4) arise out of the type-IIA picture as follows. The low-energy description of each
of the m D2-branes includes a gauge field A(a) (a = 1, . . . ,m). The periodic variable
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pa is identified with the holonomy of A(a) around the x10 circle at x9 = 0:

pa(t) =

∫ 2π

0

A
(a)
10 dx10

∣∣∣∣
x9=0

. (9.11)

In the presence of the D2-branes, fundamental strings can break into open strings.
A string doesn’t have to break at every D2-brane, but for ease of notation let us first
assume that each of the n fundamental strings does break at every D2-brane. We
thus have n × (m + 1) open string segments. Each segment must be located at a
constant x10 in order for its length to be minimal. We denote the x10 coordinates
of the open string segments by variables qia

′
(with i = 1, . . . , n and a′ = 0, . . . ,m).

The string segments are ordered via the index a′ in the direction of increasing x3.
(See Figure 9.4 for an illustration.) In addition to the x10 coordinates we also need
to know the x1 coordinates of the strings. We denote them by uia

′
:

(x1, x10)→ (uia
′
, qia

′
).

However, as noted above, an open string doesn’t have to break at every D2-brane.
For a given state, we define the binding matrix B to be the following n ×m matrix
of 0 and 1’s that encodes which strings break and which do not:

Bia =

{
1 if the ith string is bound to the ath D2-brane,

0 otherwise,
(9.12)

for i = 1, . . . , n and a = 1, . . . ,m. We therefore have

uia = ui(a−1), qia = qi(a−1), if Bia = 0,

which indicates that the ith string is continuous at the ath brane. On the other hand,
at every break point (i, a) on the ath D2-brane the ith string is charged under the gauge

field on the ath D2-brane A(a), and the A
(a)
10 dx10 interaction of the gauge field with the

charged particle produces a term proportional to padqia in the effective action. The
sign of this term is positive for one end of the string and negative for the other, as
the charges of the two ends are opposite. Thus an open segment of the ith string that
starts on the ath D2-brane and ends on the bth D2-brane contributes padqia−pbdqi(b−1)

to the action.
On top of this, direction x3 is compact with x3 ∈ [0, 2πR] and the S-duality and

R-symmetry operators act at x3 = 0. The S-R-twisted boundary conditions induce
linear relations between the x1 and x10 coordinates of the strings they connect, where
we are free to add a permutation σ ∈ Sn among the n strings before applying the S-
R-twist. A particular sector of the Hilbert space is thus described by the Bia matrix,
as well as the permutation σ ∈ Sn. We collect this information in a matrix and denote
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Figure 9.4: A variable pa (a = 1, . . . ,m) is associated with each D2-brane, ordered
in the direction of increasing x3. Let every string break at every brane into a total
of m + 1 open segments. The constant x10 coordinate of each of these segments is
denoted by qia

′
with i = 1, . . . , n and a′ = 0, . . . ,m in the direction of increasing x3.

However, the strings actually break only at positions marked with a • and the main
contribution to the action comes from these break points. The strings are coincident,
but we separated them in the picture for clarity.
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a given sector as 
B11 B12 · · · B1m σ(1)
B21 B22 · · · B2m σ(2)

...
...

. . .
...

...
Bn1 Bn2 · · · Bnm σ(n)

 .

Obviously, two sectors [Bia|σ] and [Bσ′(i)a|σ′ ◦ σ ◦ σ′−1] are equivalent (with σ′ ∈ Sn).
The boundary conditions can now be written as

eiυ(qim + τuim) = qσ(i)0 + τuσ(i)0 (mod 2π(Z + τZ)). (9.13)

Using (7.2) and τ = aτ+b
cτ+d

we can rewrite (9.13) as an equation with integer coefficients:

qσ(i)0 = dqim + buim , uσ(i)0 = cqim + auim . (9.14)

For example, for υ = π
2

(k = 2), this becomes

uim = −qσ(i)0 , qim = uσ(i)0 (mod 2πZ).

Finally, let ua (a = 1, . . . ,m) be the x1 coordinate of the ath D2-brane. Then we
have the equations

ua = uia = ui(a−1) , whenever Bia = 1, (9.15)

since the ith string connects with the ath D2-brane. The equations (9.13)-(9.15) reduce
the total number of independent qia

′
variables. A linearly independent basis can be

chosen, and these furnish the qα variables in (9.4). In Chapter 10-Chapter 11 we will
present explicit detailed examples.

Congested and decongested matrices

We say that a binding matrix Bia is congested if there is at least one a for which
there are two distinct i 6= j such that Bia = Bja = 1. This means that there is at least
one D2-brane from which at least two strings emanate. If every D2-brane has exactly
one string emanating from it, we say that the binding matrix is decongested. In this
case, for every a = 1, . . . ,m there is exactly one i for which Bia = 1. The difference
between congested and decongested binding matrices will become relevant when we
discuss fermionic zero modes in §11.2.

9.5 The interaction term I1

We will now derive the interaction of the 0+1D variables pa, qα, ua with the 1+1D
fields. The low-energy 1 + 1D fields that are relevant for the present discussion can



52

be described either in type-IIA or in type-IIB. In type-IIB, these fields are the two
scalars X1(x9, t), X

2(x9, t) (with the index c of the string suppressed). In type-IIA,
the two relevant low-energy fields on the D2-brane are the gauge field component A10

and the x1 coordinate of the D2-brane, which we denote by Φ1. Note that direction 1
in type-IIA is related to direction 1 in type-IIB via T-duality. Following the U-duality
of Table 8.1, it is then easy to see that X1, X2 are the duals (as 1 + 1D free compact
scalar fields) of Φ1, A10, respectively:

∂9X
1 = ∂tΦ

1 , ∂tX
1 = −∂9Φ1 , ∂9X

2 = ∂tA10 , ∂tX
2 = ∂9A10 . (9.16)

From this simple observation, it is easy to derive the requisite interaction between
X1, X2 and pa, qα, ua. In the type-IIA picture {pa, ua} determine the boundary condi-
tions at x9 = 0 of Φ1, A10. If a is the index of the brane, then by definition, we have
the Dirichlet boundary conditions:

2πA10(x9 = 0, t) = pa(t) ,

Φ1(x9 = 0, t) = ua(t) ,

where we suppressed brane indices on the left-hand sides. The duality (9.16) then
converts the Dirichlet boundary conditions of type-IIA to Neumann boundary condi-
tions of type-IIB. The latter can be incorporated into the action with the addition of
the term ∫

(uadX1 + padX2) . (9.17)

For most sectors the ua’s can be written as linear combinations of the qα’s by using
the various constraints discussed at the end of §9.4. In these cases the sum of the
terms (9.17) for all the D2-branes takes the form of I1 in (9.5).

In the present paper we will not have much use for the interaction term I1, since we
keep the charge coordinates X1, X2 constant. We have nevertheless presented it here
for completeness. In a future work we hope to explore the dependence of the Hilbert
space on the position of the charges, and the term I1 will then play a central role.
We conclude the discussion of the interaction term by presenting a more geometrical
interpretation of I1.

D2-F1 intersections

The interaction term padX2 in (9.17) has a simple interpretation in terms of the
geometry of the lift of the D2-branes and F1-strings to M-theory. To see this, let us
focus on a single F1-string and a single D2-brane. We start by recalling some facts
about this system, following the techniques developed in [53]. There, a configuration
of D4-branes and NS5-branes was analyzed by lifting it to M-theory. Here, we need
to analyze a similar configuration of fundamental strings and D2-branes, and we are
also going to lift it to M-theory.
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Figure 9.5: (a) A junction of two open fundamental strings, one starting and one
ending on a D2-brane. (b) The D2-brane wraps direction 10 ≡ \ and the configuration
can be deformed so that it lifts to a smooth holomorphic curve in M-theory.

The lift essentially brings us back to the second-from-last row of Table 8.1, and the
M-theory direction in the present discussion is therefore denoted by x2. We assume
that x2, x10 are periodic with period 2π. Let us also assume for simplicity that the
length of the x3 direction is very large, so that −∞ < x3 < ∞. (That is, we will
suspend the effect of S-R-twist for the moment.) Following [53], we define complex
variables

v = ex9+ix10 , u = ex3+ix2 .

The configuration of an F1-string intersecting a D2-brane then lifts to a single M2-
brane which extends along the locus of the complex equation

v =
u− eiα

u− e−iα
, (9.18)

where α is a real constant. Equation (9.18) is designed so that as x9 →∞ (where v
has a pole) x2 = −α, and as x9 → −∞ (where v has a zero) x2 = α (see Figure 9.5b).
Equation (9.18) also tells us that as x3 → ∞ we have v = 1, while as x3 → −∞
we have v = e2iα. If we now let q1, q2 be the x10 coordinates of the string between
x3 =∞ and x3 = −∞, then we have

∆x10 ≡ q2 − q1 = 2α = −X2(x9 = +∞) +X2(x9 = −∞) mod 2π . (9.19)

Going to the low-energy limit, we can interpret the boundary condition X2(x9 =
+∞) as the boundary value at x9 = 0 of the X2 field on the x9 > 0 portion of the
string (which we denoted by X2

a ), and similarly the boundary condition X2(x9 = −∞)
is the low-energy boundary value at x9 = 0 of the X2 field on the x9 < 0 portion of
the string (which we denoted by X2

a+m). The geometrical equation (9.19) is therefore
consistent with the equations of motion derived from varying p in the action∫

p(q̇2 − q̇1 + Ẋ2
a − Ẋ2

a+m) .
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After taking into account the S-R-twist, q1 and q2 are not independent anymore, and
the above expression then becomes the contribution of p to the action (9.3).

9.6 Bosonic zero modes

In §9.4 we explained how to determine the bosonic part of the action in terms of
the variables pa, uia

′
, and qia

′
. Generally, this action can be further simplified because

equations (9.13)-(9.15) reduce the total number of independent qia
′

variables. So in
general, as we shall see in concrete examples in Chapter 10 and Chapter 11, some
of the uia

′
variables can be expressed as linear combinations of the qia

′
’s, while the

remaining uia
′
’s are reduced to discrete values. After eliminating the uia

′
’s we get

an action of the form (9.4). If the corresponding constants Maα that appear in this
action form a nonsingular square matrix, quantization of (9.4) gives rise to a finite
dimensional Hilbert space.

However, for some sectors we end up with more than m independent qia
′
’s and

then the procedure of §9.4 yields an expression similar to (9.4) but whereMaα is not
a square matrix. The simplest sector for which this happens is for n = m = 2 with

[B|σ] =

[
1 1 1
1 1 2

]
. (9.20)

In general for n = 2 there are more than m independent qia
′
’s when B has at least

two columns of the form (11)> [where (· · · )> denotes the transposed matrix]. As will
be explained in more detail in one of the examples of §11.1, for k = 2 the action for
the sector (9.20) is

I0 =
1

2π

∫ {
p1
[
d
(
q11 + q21

)
+ 2dq12

]
+ p2

[
−d
(
q11 + q21

)
+ 2dq12

]}
. (9.21)

In this sector there are two strings connecting the two D2-branes, and the action only
depends on q11 and q21 through the center of massQcom ≡ q11+q21, and is independent
of the relative coordinate Qrel ≡ q11 − q21. Therefore, in order to proceed we need to
add a kinetic term, proportional to Q̇2

rel. However, if we are only interested in ground
states we may simply rewrite (9.21) in terms of Qcom,

I0 =
1

2π

∫ {
p1(dQcom + 2dq12) + p2(−dQcom + 2dq12)

}
, (9.22)

which is of the form (9.4) with a nonsingular square matrixM =

(
1 2
−1 2

)
. From

(9.22) we can determine the number of ground states, which happens to be 4.
We will show later on that sectors with bosonic zero modes invariably also possess

fermionic zero modes and therefore do not contribute to the Witten Index. In fact,



55

the sectors with bosonic zero modes form a proper subset of the set of congested
sectors, and all congested sectors have fermionic zero modes. In this paper we are
only concerned with the Witten Index, and we therefore do not need to consider
sectors with bosonic zero modes anymore.

9.7 Fermionic zero modes

So far in this section, we have mainly focused on the bosonic degrees of freedom
of the system. While we will not present the explicit form of the fermionic part of
the action, it will turn out to be important to understand the fermionic zero modes
of the system in each sector described by the binding matrix Bia and permutation
σ ∈ Sn. Specifically, they will be crucial to our argument that only decongested
sectors contribute to the Witten Index.2 Therefore, in this subsection, we will discuss
various chirality and boundary conditions that these fermionic zero modes have to
satisfy.

Our conventions for fermions are as follows. In describing the fermionic modes of
type-IIA theory we find it more convenient to consider its M-theory lift. Therefore, we
denote a fermion by a real 32-component 10+1D spinor on which the Dirac matrices
Γ0, . . . ,Γ9,Γ\ act. (We use the notation \ ≡ 10 to avoid confusion between Γ10 and
Γ1Γ0.) They satisfy the identity

Γ0123456789\ = 1. (9.23)

The low-energy fermionic modes of the system can then be described in terms of
1 + 1D fermionic fields that are supported on the type-IIA open strings and on
the dimensional reduction (on x10 direction) of the D2-branes. (See Figure 9.6 for
illustration.) The fermionic field along the ith open F1-string between the a′th and
(a′ + 1)st D2-branes is denoted by ψia′ (with i = 1, . . . , n and a′ = 1, . . . ,m− 1). For
every i = 1, . . . , n, there is another piece of string starting on the mth D2-brane, going
through the S-R-twist, and ending on the 1st D2-brane. To capture the fields on this
string using the same notation, we extend the range of a′ to 0, . . . ,m and postulate
that the fields ψi0 and ψim are identified up to the S-R-twist

ψσ(i)0 = e
υ
2

(Γ1\+Γ45+Γ67+Γ89)ψim , (9.24)

where we have also allowed the possibility of the action of the permutation σ ∈ Sn,
as discussed in §9.4. We set

P ≡ e−
υ
2

(Γ1\+Γ45+Γ67+Γ89) . (9.25)

2This will be our only use for the fermionic degrees of freedom, so a reader who doesn’t wish to
go into the detailed proof of this statement can skip the present section and §10.3,§11.2, as well as
some portions of §9.9.
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Figure 9.6: The fermionic zero modes are constructed from solutions of the linear
equations for the boundary conditions of the gluino fields λai′ on the D2-brane sections
(viewed as 1-dimensional segments below the x10 compactification scale) and the
fermionic modes ψia on string sections. The S-R-twist is denoted by a ×.

Generally, the ψia′ fields are functions of (x3, t) (with the appropriate finite range
for x3), but at low-energy only the zero modes are important, so we can assume that
ψia′ is independent of x3. The ψia′ fields also satisfy the obvious boundary conditions
that if the ith string is not bound to the ath D2-brane then it continuously connects
with ψi(a−1):

ψia = ψi(a−1) if Bia = 0.

All the ψia fields satisfy the chirality condition

0 = (1 + Γ023)ψia (9.26)

corresponding to the low-energy fields on an M2-brane with x2 being the M-theory
direction.

Next, we define the fields along the D2-branes. Dimensionally reducing along the
compact direction of x10, the D2-branes become 1 + 1D objects, and we denote by
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λai′ (with a = 1, . . . ,m and i′ = 0, . . . , n) the low-energy fermionic fields supported
on the segment of ath D2-brane between the i′th and (i′+ 1)st F1-string, where we use
the convention that i′ = 0 corresponds to the segment that continues from the first
string to x9 > 0, and i′ = n continues from the nth string to x9 < 0 (see Figure 9.6).
These fields are generally functions of (x9, t), but at low-energy they can again be
assumed to be constant. Formally, the range of x9 for 1 ≤ i′ < n is zero, but because
the fields are constant this does not matter. A more elaborate treatment starting
with 2D fields that are harmonic functions of x9 + ix10, with poles at the intersections
with the F1-string, will lead to a similar result.

Similarly as for ψia′ , we have for λai′ the continuity conditions

λai = λa(i−1) if Bia = 0

and we also have the chirality conditions:

0 = (1 + Γ09\)λai′ . (9.27)

At the D2-F1 junctions where the ath D2-brane and ith F1-string intersect (so that
Bia = 1), the zero modes have to satisfy the following boundary conditions:

(1− Γ239\)ψia = (1− Γ239\)ψi(a−1) = (1− Γ239\)λai = (1− Γ239\)λa(i−1) , (9.28)

and
0 = (1 + Γ239\)(ψi(a−1) − ψia + Γ39λai − Γ39λa(i−1)) . (9.29)

These equations are derived by first going to the M-theory picture as in Figure 9.5,
where the D2-F1 junction is described by a single M2-brane, and then deforming the
M2-brane worldvolume. Details of the derivation of (9.28)–(9.29) are provided in
Appendix 13.1.

9.8 The eigenvalues of P
The operator P , defined in (9.25), realizes the S-R-twist on the fermionic modes

of the fundamental strings in the type-IIA picture. In this subsection we calculate its
eigenvalues. This will be important in §10.3 and §11.2 where we prove the absence of
zero modes for certain sectors.

Consider a spinor ψ that satisfies Pψ = εψ for some eigenvalue ε. Since P com-
mutes with Γ023 we may assume that ψ has a specific Γ023 chirality. We first assume
that

Γ023ψ = ψ.

Then, Γ0123456789\ = 1 implies

0 = (1− Γ023)ψ = (1− Γ1456789\)ψ ,
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and hence
Γ451\ψ = Γ451\Γ1456789\ψ = Γ6789ψ .

We can therefore rewrite Pψ as

Pψ = e
υ
2

Γ45(1−Γ451\)+υ
2

Γ67(1−Γ6789)ψ = e
υ
2

Γ45(1−Γ6789)+υ
2

Γ67(1−Γ6789)ψ .

Since Γ6789 has eigenvalues ±1, and Γij has eigenvalues ±i for all spatial indices i, j
(i 6= j), we deduce that P has eigenvalues 1 and e±2iυ on the subspace with Γ023-
chirality 1.

We can similarly analyze the eigenvalues of P on the subspace of ψ’s with the
opposite Γ023-chirality, i.e., Γ023ψ = −ψ. On that subspace we find

Pψ = e
υ
2

Γ45(1−Γ451\)+υ
2

Γ67(1−Γ6789)ψ = e
υ
2

Γ45(1+Γ6789)+υ
2

Γ67(1−Γ6789)ψ , (9.30)

and hence deduce that P has eigenvalues e±iυ. Note that e±iυ 6= 1 and so there is no
nontrivial solution to ψ = Pψ on the subspace with Γ023-chirality −1. This fact will
come in handy later on.

9.9 Constructing a Witten Index

The states of the system discussed in §9.1, while they contain all the information
about the Hilbert space of Tr-S theory with external charges, also contain superflu-
ous excitations in the form of long wavelength modes of Xµ

c , ψc along the semi-infinite
strings. We can eliminate these excitations by imposing appropriate boundary con-
ditions on the modes Xµ

c , ψc at some finite distance from the origin, say at x9 = ±∆
(where the + sign is for c ≤ m and the − sign is for c > m, for some positive constant
∆). The following boundary conditions preserve the four real supersymmetries left
unbroken by (9.6)-(9.8).

In the type-IIB picture, we pick Neumann boundary conditions for fluctuations in
directions 4, . . . , 8:

∂9X
4
c (±∆) = ∂9X

5
c (±∆) = ∂9X

6
c (±∆) = ∂9X

7
c (±∆) = ∂9X

8
c (±∆) = 0 , (9.31)

Dirichlet boundary conditions in directions 1, 2, 3:

X1
c (±∆) = a

(c)
1 , X2

c (±∆) = a
(c)
2 , X3

c (±∆) = 0 , (9.32)

and supersymmetric boundary conditions for the fermions:

Γ045678ψc(±∆) = ψc(±∆) . (9.33)

These boundary conditions are formally what we would get if we let the string end
on a D5-brane that extends in directions 4, . . . , 8 and is fixed in directions 1, 2, 3, 9.
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However, we must note that because directions 1, 2, 3 are compact, such a D5-brane
will back-react strongly on the metric and will require additional orientifolds or other
objects to make a complete string-theory solution. (This is similar to the situation
with D8-branes as developed in [54], or with D7-branes in [55].) Here, we will simply
regard (9.31)—(9.33) as formal boundary conditions that we impose to get rid of
unwanted zero modes.

To write down the boundary conditions equivalent to (9.33) in the type IIA picture,
we first decompose the fermionic zero mode ψc on the type-IIB fundamental string
into left-moving and right-moving components as ψc = ψc+ + ψc−, where

ψc± = ±Γ09ψc± = ±Γ12345678ψc± . (9.34)

The boundary condition (9.33) can now be written as a relation between the left-
moving and right-moving modes at the end of the string (x9 = ±∆):

ψc+ = Γ045678ψc− . (9.35)

We now follow the dualities of Table 8.1, each time transforming the fermionic field
to a dual field on a dual brane. The type-IIA boundary conditions then become:

0 = (1− Γ\)(1 + Γ0145678)λai′ (9.36)

for i′ = 0, n. We can now define the Witten index I = Tr(−1)F of the quantum
mechanical system of D3-branes and open strings in the type IIB picture, and we
can calculate it using the system of D2-branes and F1-strings in the dual type-IIA
picture. With boundary conditions (9.31)—(9.33), the semi-infinite open strings can
be regarded as external charges with no internal dynamics, so the Witten index I
will simply count the number of ground states of the theory with external charges
inserted.

On the other hand, in the type IIA picture, we have various configurations of D2-
branes and F1-strings, which can be classified into sectors described by the binding
matrix B and permutation σ. With the extra conditions (9.36) we will show (see
§10.3 and §11.2) that only decongested sectors do not have fermionic zero modes.
Such sectors will make a nonzero contribution to the Witten Index.

We also remark that it is possible to create open strings in a supersymmetric
configuration by using D3-branes instead of D5-branes. This will avoid the problem
of incompleteness of the background, but will instead create additional fermionic zero
modes to make the Witten Index identically zero. We briefly discuss this construction
in Appendix 13.3.

9.10 Summary of the rules

A sector of Tr-S theory with U(n) gauge group in the presence of m external quark
and anti-quark pairs is described by a permutation σ ∈ Sn and an n × m binding
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matrix Bia of 0’s and 1’s. We build the action in terms of periodic variables uia
′
, qia

′
,

ua, and pa, with i = 1, . . . , n, a = 1, . . . ,m, and a′ = 0, . . . ,m. All variables have
2π periodicity. The variables are further restricted by linear relations with integer
coefficients:

uia = ui(a−1), qia = qi(a−1), whenever Bia = 0, (9.37)

ua = uia = ui(a−1) , whenever Bia = 1, (9.38)

and
qσ(i)0 = dqim + buim , uσ(i)0 = cqim + auim . (9.39)

The action is

I0 =
1

2π

∫
dt

n∑
i=1

m∑
a=1

Biap
a(q̇ia − q̇i(a−1)) . (9.40)

Furthermore, the coordinates (X1
a , X

2
a ) of the m quarks, as well as the, the coordinates

(X1
a+m, X

2
a+m) of the m anti-quarks are encoded in the action via an extra term

I1 =
1

2π

∫
dt

m∑
a=1

[(Ẋ1
a − Ẋ1

a+m)ua + (Ẋ2
a − Ẋ2

a+m)pa] . (9.41)

Finally, we only keep those sectors for which
∑

iBia = 1 for all a = 1, . . . ,m (we
called these decongested sectors), because sectors for which

∑
iBia > 1 for some a

have zero modes and therefore do not contribute to the Witten Index, while sectors
for which

∑
iBia = 0 for some a have a D2-brane disconnected from the rest of the

system.
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Chapter 10

U(1) gauge group

We will now apply the rules of §9.10 to study our setup with U(1) gauge group.
We already know that abelian Tr-S is equivalent to U(1) Chern-Simons theory at
level k [1]. This model will therefore provide us with a good example of how the rules
of §9.10 work. In §10.1-§10.3 we apply the rules of §9.10 to U(1) Tr-S with m charge
pairs, and in §10.4 we show how they reproduce the predictions from Chern-Simons
theory.

In solving the problem, a central role is played by the action (7.4). The general
actions that we will consider are equivalent to quantum mechanical systems that are
obtained by geometric quantization of T 2m. They are of the form:

I =
1

2π

∫
Maαp

adqα , a, α = 1, . . . ,m. (10.1)

Here pa, qα are periodic coordinates parameterizing T 2m, in the range [0, 2π), and
Maα are the components of a nonsingular m ×m matrix of integers. We denote its
determinant by

∆ ≡ det
m×m

(Maα) 6= 0.

The dimension of the Hilbert space is then |∆|. We denote the inverse matrix by
(M−1)αa, i.e., Maα(M−1)αb = δba . Suppose that (k1, . . . , km) and (l1, . . . , lm) are
vectors of integers. Then the operators exp(i

∑
a kap

a) and exp(i
∑

α lαq
α) are well-

defined, and we have the commutation relation

ei
∑

a kap
a

ei
∑
α lαq

α

e−i
∑

a kap
a

e−i
∑
α lαq

α

= e2πi
∑
α,a(M−1)αakalα . (10.2)

10.1 A quark and anti-quark pair (m = 1)

Using the rules summarized in §9.10, we can now write down explicitly the low-
energy effective action for the type-IIA configuration that corresponds to inserting
a quark and anti-quark pair in Tr-S theory. As we have explained in the previous
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section, in such a case we have one fundamental string wrapping the x3 circle and
attached to one D2-brane, forming a bound state with it. The closed string that
we would have in the absence of external charges breaks to become an open string
starting and ending on the D2-brane. In the notations explained in §9.10, for fixed
charges we have the action

I0 =
1

2π

∫
p1
(
dq11 − dq10

)
, (10.3)

and if we wish to allow the charges to move around we need to add the term

I1 = − 1

2π

∫
[
(
X1

1 −X1
2

)
du1 +

(
X2

1 −X2
2

)
dp1] . (10.4)

To proceed, we recall that the S-R-twisted boundary conditions induce linear relations
among the variables, following (9.39). For k = 2 this yields u1 = q11 = −q10 ≡ q1,
and thus (10.3)-(10.4) can be simplified to:

I ≡ I0 + I1 (10.5)

I0 =
1

2π

∫
2p1dq1 , (10.6)

I1 = − 1

2π

∫ {[
a

(1)
1 (t)− a(2)

1 (t)
]
dq1 +

[
a

(1)
2 (t)− a(2)

2 (t)
]
dp1
}
, (10.7)

where, as defined in §7,
(
a

(j)
1 , a

(j)
2

)
= (X1

j , X
2
j ) refer to the T 2 coordinates of the

quark’s and anti-quark’s world-lines.
After taking into account similarly the constraints in (9.14) and (9.15) for the

cases k = 1, 3, the action for static charges (10.3) can be written collectively for all
three values of k as1

I0 =
k

2π

∫
pdq . (10.8)

This action is of the form (10.1) and describes geometric quantization of T 2. It gives
rise to a k-dimensional Hilbert space.

We also note that the action (10.5) is of the same form as the action for the
ground states of the well-known Landau problem describing the low-energy spectrum
of a two-dimensional charged particle moving on a torus with k units of magnetic
flux. In this context, the velocity of the quark relative to the anti-quark, which is
given by

(ȧ
(1)
1 (t)− ȧ(2)

1 (t), ȧ
(1)
2 (t)− ȧ(2)

2 (t))

is interpreted as the electric field in the Landau problem. This is consistent with the
interpretation of the quark and anti-quark as charges in U(1) Chern-Simons theory
(see §10.4 below). To simplify matters, in the following, we consider static charges
and let the quarks and anti-quarks be located at the origin.

1For k = 1, q11 = 0 and u1 = −q10, whereas for k = 3, −q10 = 2q11 = 2u1.
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10.2 Multiple quark and anti-quark pairs (m > 1)

Generalization of the results of §10.1 to m > 1 cases is straightforward. There is
only one sector: the permutation σ ∈ S1 is the identity, and the 1×m binding matrix
B is

B =
(
1 1 · · · 1

)
.

The relations (9.38) imply that all uia variables are equal:

u10 = u11 = u12 = · · · = u1m = u1 = · · · = um ≡ u.

Just like what we have done in §10.1, we can write down the low-energy effective
action as

I =
1

2π

∫ m∑
a=1

pa
(
dq1a − q1(a−1)

)
− 1

2π

∫ m∑
a=1

[(
a

(a)
1 (t)− a(a+m)

1 (t)
)
du−

(
a

(a)
2 (t)− a(a+m)

2 (t)
)
dpa
]
.

(10.9)

Furthermore, (9.39) gives linear constraints among u, q10, q1m which depend on k:

q10 = dq1m + bu , u = cq1m + au . (10.10)

This can be solved using the explicit expressions for a,b, c,d in terms of k, given in
(7.3), and we get

q10 = −u , q1m = 0 , for k = 1, (10.11)

and
q10 = (1− k)u , q1m = u , for k = 2, 3. (10.12)

After taking into account these linear constraints, the action for fixed external charges
becomes

I0 =
1

2π

∫ {
p1(dq1 +dqm) +

m−1∑
a=2

pa(dqa−dqa−1)−pmdqm−1
}
, for k = 1, (10.13)

where we set qa = q1a for a = 1, . . . ,m− 1 and qm = u, and

I0 =
1

2π

∫ {
p1[dq1 + (k − 1)dqm] +

m∑
a=2

pa(dqa − dqa−1)
}
, for k = 2, 3, (10.14)
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where we set qa ≡ q1a. The action (10.14) is of the form (10.1) with

M =


1 0 0 0 · · · 0 k − 1
−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
...

. . . . . .
...

...
0 0 0 0 · · · −1 1

 , (10.15)

and it is also straightforward to write down the corresponding matrix M for k =
1 case. Following the discussion below (10.1), we can immediately compute the
dimension of each Hilbert space as |∆| = k.

10.3 Absence of fermionic zero modes

In this subsection, we show that there is no fermionic zero mode in the sector dis-
cussed in §10.2. This is necessary for the consistency of our result, because otherwise
the contribution of the sector to the Witten index would be zero, and since this is
the only sector for n = 1 cases, this would mean that the Witten index of U(1) Tr-S
theory would be zero too, regardless of the value of k. On the other hand, we know
that U(1) Tr-S theory is simply U(1) Chern-Simons theory, which contains k bosonic
ground states only.

As explained in §9.7, the low-energy fermionic modes of our system can be un-
derstood via 1 + 1D fermionic fields ψia′ and λai′ supported on the open strings and
D2-branes. Each ψia′ and λai′ satisfies the chirality conditions (9.26) and (9.27), re-
spectively. In addition, the λai′ ’s at the two far ends of the D2-branes (that is, those
with i′ = 0, n) satisfy the constraint (9.36) which derives from dualizing the bound-
ary conditions for open strings ending on D5-branes in the type-IIB setting. Each
intersection of D2-F1 satisfies the two junction conditions (9.28) and (9.29). Finally,
the S-R-twist on the F1-string gives rise to the boundary condition (9.24). We now
proceed to prove that in the n = 1 abelian case, these various boundary conditions
dictate that we have no fermionic zero modes. (See Figure 10.1 for notation.)

As a warm-up, we start with the m = 0 case. In this case there is only one variable
ψ10 which satisfies the boundary conditions (9.24) and the chirality condition (9.26):

ψ10 = Pψ10 , (Γ023 + 1)ψ10 = 0. (10.16)

But in §9.8 we saw that all the eigenvectors of P with eigenvalue 1 have the opposite
Γ023 chirality from that of ψ10. It follows that(10.16) does not have any non-trivial
solutions and the m = 0 states have no zero modes.

Now, let us study the m > 0 case. We first consider the continuity of λai′ at each
D2-F1 junction. Define

ζa ≡ λa1 − λa0
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Figure 10.1: Illustration of fermionic zero modes for n = 1 and m = 2 case. The
fundamental string breaks at every D2-brane intersection.

for a = 1, . . . ,m. Since in the abelian case (n = 1) both λa0 and λa1 satisfy the
chirality condition (9.27) and the boundary condition (9.36), ζa must also satisfy the
equations

0 = (1 + Γ09\)ζa , (10.17)

0 = (1− Γ\)(1 + Γ0145678)ζa , (10.18)

0 = (1− Γ239\)ζa , (10.19)

where the last equation comes from (9.28). Equations (10.17) and (10.19) together
imply

ζa = Γ023ζa . (10.20)

Since in our convention Γ0123456789\ = 1 (see Appendix 13.1), this in turn implies

Γ0145678ζa = ζa , (10.21)

and (10.18) becomes
(1− Γ\)ζa = 0 .

Then (10.19) now reads
Γ239ζa = ζa , (10.22)

which has no non-trivial solution, because Γ239 has no real eigenvalues (it squares to
−1). Therefore, we obtain ζa = 0, or λa0 = λa1 for all a = 1, . . . ,m.

Next, we consider the ψ1a′ fields. Since ζa = 0, equations (9.28)—(9.29) now
become

(1± Γ239\)(ψ1,a−1 − ψ1a) = 0 ,

or simply
ψ10 = ψ11 = · · · = ψ1m . (10.23)



66

On the other hand, we have from the S-R-twist condition ψ1m = Pψ10, where the
operator P is defined in (9.25), and together with the above equalities,

ψ10 = Pψ10 . (10.24)

At this point, we can again use the fact that all the eigenvectors of P with eigenvalue
1 have the opposite Γ023 chirality from that of ψ10. Therefore, (10.24) does not have
a non-trivial solution, and hence

ψ10 = ψ11 = · · · = ψ1m = 0 . (10.25)

Finally, let us define
ξa = λa0 + λa1 .

With ζa = ψ1a′ = 0, we find that ξa satisfies the same set of equations (10.17)-(10.19)
as ζa:

0 = (1 + Γ09\)ξa , (10.26)

0 = (1− Γ\)(1 + Γ0145678)ξa , (10.27)

0 = (1− Γ239\)ξa . (10.28)

The first two equations follow from the chirality and boundary conditions for λai′ ,
while the third follows from (9.28) and the previous result ψ1a′ = 0 for all a′. There-
fore, we find ξa = 0 as before. Together with ζa = 0, this implies λai′ = 0 for all
a = 1, . . . ,m and i′ = 0, 1. To summarize, we conclude that there is no fermionic zero
mode for the abelian n = 1 case with an arbitrary number m of D2-branes.

10.4 Comparison with Chern-Simons theory re-

sults

At this point, it is pertinent to discuss consistency with abelian Chern-Simons
theory, which we had explained in [1] to be the low-energy limit of abelian Tr-S theory.
For U(1) Chern-Simons theory the dimension of the Hilbert space with m external
charge pairs is always equal to the level k, independently of m. This is indeed what
we found from the type-IIA dual picture in §10.2. There, the dimension dimH(k, n =
1,m) can be calculated as the determinant of the matrix M that appears in (10.15)
and its k = 1 counterpart, and we indeed find the result dimH(k, n = 1,m) = k
independently of m. The underlying reason for this coincidence is the fact that there
are no fermionic zero modes, as we have proved in §10.3. If follows that the dimension
we calculated is in fact the Witten Index of the system.

To go beyond the mere equality of dimensions of the Hilbert spaces, we can con-
sider for k > 1 the action of the Zk symmetry operators U ,V discussed in §8.3. At
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the classical level, the discrete translation U acts as

U : uia
′ → uia

′
+

2π

k
, qia

′ → qia
′
+

2π

k
, ua → ua +

2π

k
, pa → pa , (10.29)

while V , which is related to the homology class of the fundamental string, can be
interpreted as electric flux on the D2-branes and acts as

V : uia
′ → uia

′
, qia

′ → qia
′
, ua → ua , pa → pa +

2π

k
. (10.30)

After geometric quantization, the actions (10.29)-(10.30) translate to actions on quan-
tum operators of the system. The action is by conjugation; for example the rightmost
expression of (10.30) is to be read as V−1paV = pa + 2π

k
.

For n = 1 we find in terms of the variables of (10.14)

V−1paV = pa +
2π

k
, V−1qaV = qa , U−1paU = pa , U−1qaU = qa +

2π

k
,

(10.31)
for a = 1, . . . ,m. Using the commutation relation (10.2), together with the inverse of
(10.15):

M−1 =


1
k

1
k
− 1 1

k
− 1 1

k
− 1 · · · 1

k
− 1 1

k
− 1

1
k

1
k

1
k
− 1 1

k
− 1 · · · 1

k
− 1 1

k
− 1

1
k

1
k

1
k

1
k
− 1 · · · 1

k
− 1 1

k
− 1

...
. . . . . .

...
...

1
k

1
k

1
k

1
k

· · · 1
k

1
k

 , (10.32)

we find that, up to a possible constant phase, we can identify

U = e−ip
1

, V = eiq
m

. (10.33)

Now, let us consider the effect of the interaction I1 of (9.5). For charge positions

a
(c)
1 , a

(c)
2 that are independent of time, I1 contributes a total derivative term in (10.9):

− 1

2π

m∑
a=1

(
a

(a)
1 − a

(a+m)
1

)∫
dqm − 1

2π

∫ m∑
a=1

(
a

(a)
2 − a

(a+m)
2

)
dpa ,

where we used (10.12). We now claim that the effect of the interaction term I1 is to
modify (10.33) to

U = e
−ip1+ i

k

∑m
a=1

(
a
(a)
1 −a

(m+a)
1

)
, V = e

iqm+ i
k

∑m
a=1

(
a
(a)
2 −a

(m+a)
2

)
. (10.34)

This is not so obvious for static charge positions, and to see it we actually need to
let the position, say a

(a)
1 , vary as a function of time. It can then be checked that an

initial state |i〉 at time t = −∞ evolves into

|f〉 = e
i
2π

[a
(a)
1 (∞)−a(a)1 (−∞)]qm|i〉
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at t =∞. But in order for U|i〉 to evolve into U|f〉, the operator U must add a phase

of 1
k
a

(a)
1 (−∞) to |i〉 and a similar phase of 1

k
a

(a)
1 (∞) to |f〉, since U−1qmU = qm + 2π

k
.

A similar method can be used to derive the extra phase 1
k

∑m
a=1

(
a

(a)
2 − a

(m+a)
2

)
in the

action of V .
Now we can compare the above discussion with Chern-Simons theory. It was

argued in [1] that in terms of U(1) Tr-S theory (namely Chern-Simons theory) defined
on T 2 in the x1x2 directions, U and V can be understood as gauge transformations
with discontinuous gauge parameters:

ΛU = e
i
k
x1 , ΛV = e

i
k
x2 , (10.35)

where the coordinates x1, x2 take values in [0, 2π). (This was argued by relating U ,V
to momentum and winding number in type-IIA and then mapping these quantum
numbers to electric fluxes on the D3-brane in type-IIB.) Equation (10.35) in conjunc-
tion with (10.34) allows us to directly map states of Chern-Simons theory to states
of the system we got from geometric quantization of T 2m by, for example, mapping
eigenstates of U in (10.35) to eigenstates of U in (10.34). Moreover, the extra a

(a)
i -

dependent phase that we got in (10.34) has a natural interpretation in Chern-Simons
theory. This is precisely the phase that we would expect to pick up when acting
with a gauge transformation (10.35) on a system that contains m positive charges at

positions (a
(a)
1 , a

(a)
2 ) and m negative charges at (a

(a+m)
1 , a

(a+m)
2 ), for a = 1, . . . ,m. This

concludes our map from the Hilbert space of the geometric quantization system to
the Hilbert space of U(1) Chern-Simons theory.
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Chapter 11

U(n) gauge group

We now turn to the nonabelian case with a U(n) gauge group. Our goal is to
calculate the Witten Index of Tr-S theory on T 2 as a function of k, n and the number
of charge pairs m. We will begin in §11.1 with a few examples of sectors for n = 2,
including a brief description of all its sectors with low m. We then show in §11.2 that
only decongested sectors contribute to the Witten Index. This greatly simplifies the
computation, since decongested sectors are equivalent to a product of decoupled U(1)
Hilbert spaces. We describe the results in §11.3. A reader who wishes to skip the
details is advised to jump directly to §11.3. In §11.4 we test our results by rewriting
the Witten Index as a trace of products of Wilson loop operators in Tr-S theory
without charges (m = 0). This provides us with a consistency check, and also allows
us to calculate the eigenvalues of Wilson loop operators acting on the m = 0 Hilbert
space. Appendix 13.2 includes some additional details of the combinatorics involved,
and for curiosity, we included in Appendix 13.2.2 a combinatorical derivation of the
total number of sectors. Interestingly, it is described by a Fibonacci sequence.

11.1 Examples of U(2) sectors and states

As explained in §9.3, each sector corresponds to a different choice of the binding
matrix B and a permutation σ ∈ Sn that accompanies the action of the S-R-twist
on the n strings. Since for n = 2 the permutation group is Sn ' Z2, in the following
we shall simply express the permutation as σ ∈ {1,−1}, and write it as a subscript
of B, so a sector will be denoted as B±1. Physically, σ = 1 implies that each
string’s endpoint is connected to its own starting point so that we have two strings,
each with winding number 1 along the x3 circle, whereas σ = −1 means that the
string’s endpoint is connected to the other string’s starting point so that we end up
with one string with winding number 2. If the permutation results in an equivalent
configuration, the subscript is omitted. This happens when at least two strings start
on the same D2-brane (i.e., the binding matrix is congested), and relabeling the
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string indices results in equivalent sectors with different σ’s (see for example the
third configuration in §11.1). It is also useful to recall that our conventions are such
that all strings begin at x3 = 0, and the S-R-twist is located at x3 = 2πR.

In this subsection, we will count the states of each sector following the rules of
§9.10, and show that in each case the low-energy action can be reduced to the form
(7.4).

m = 1

We have one D2-brane and a string winding number of n = 2. This yields three
sectors described below [where (· · · )> denotes the transposed matrix]. The diagram
for each sector is a miniature of Figure 9.4, with the S-R-twists colored to reflect σ,1

while the black circles depict junctions where open strings attach to D2-branes.

1. B = (1 0)>1
@� @�

@� @�t
1

2

1

2

One open string of winding number 1 bound to the D2-brane and one closed
string of winding number 1. We saw in §10.1 that the open string plus the D2-
brane system yields k states, while the closed string, being dual to the abelian
Chern-Simons theory without charges, also gives rise to k states. In total, we
get k × k = k2 states.

2. B = (1 0)>−1

@� @�

@� @�t
1

2

2

1

One open string of winding number 2. Let the string start at z = q+ iu and end
at e2iυ(q+ iu) (the phase is 2υ because the string passes through the S-R-twist
twice before ending on the D2-brane). For k = 2, for which υ = π

2
, this means

u = −u mod 2π, or u = 0 or π. For each choice of u, the string starts at
x10 = q on the D2-brane and end at x10 = −q, so the effective action is

Ik=2 =
2

2π

∫
pdq, with u = 0, or π

This gives us 2+2 = 4 states. Note that in this case the parameter u is discrete
and decoupled from the geometrically quantized T 2, which in turn is described
only by (p, q).

1For configurations equivalent under σ, we chose σ = 1 for our analysis.
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For both k = 1 and k = 3, the phase e2iυ is effectively what we had for k = 3
case in §10.1. Therefore, from similar analysis, the effective action is

Ik=1,3 =
3

2π

∫
pdq ,

which gives rise to 3 states each.

3. B = (1 1)>
@� @�

@� @�
tt1

2

1

2

Here we have two open strings of winding number 1 both of which bound to the
D2-brane. For the D2-brane worldvolume gauge field this means that there are
twice as many charged particles as in the sector (1 0)>1 . Therefore, the bosonic
part of the action is also twice that of the (1 0)>1 sector, i.e.,

1

2π

∫
2kpdq.

This is a congested sector that also has 4 real fermionic zero modes, as will be
shown in §11.2. The bosonic part of the action has 4 states, but the actual
Hilbert space is more complicated because of the fermionic zero modes and
because of possible interactions between the bosonic and fermionic modes.

m = 2

We have seven sectors in the m = 2 case, as briefly described below. For each
sector, the effective action is given by

I =
1

2π

∫
Biap

a(dqia − dqi(a−1)) ,

but the qia variables are constrained by the relations (9.37)-(9.39). We derive the
dimension of the Hilbert space of each sector in detail for k = 2, but simply state the
results for k = 1, 3.

1. B =

(
1 1
0 0

)
1

@� @�

@� @�t t
1

2

1

2

One closed string of winding number 1 breaks on each of the D2-branes to form
two open strings, one of which passes through the S-R-twist once. In addition,
there is also a closed string. The open string states were analyzed in §10.2 to
give rise to k states, while the closed string gives rise to k states as well (as
mentioned in the first sector of §11.1). Thus, there are a total of k2 states in
this sector.
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2. B =

(
1 1
0 0

)
−1

@� @�

@� @�t t
1

2

2

1

One string connects the two D2-branes [and hence u11 = u12 = u1 = u2 ≡ u
from (9.38)], while the other starts at the second D2-brane, winds around the
x3 circle and passes through the S-R-twist twice before ending on the first D2-
brane. For k = 2, the string that starts on the second D2-brane at q12 + iu ends
on the first brane at −q12 − iu, giving us the constraint 2u = 0 (modulo 2π),
which implies u = 0, or π. The effective action becomes

Ik=2 =
1

2π

∫
[p1
(
dq11 + dq12

)
+ p2

(
dq12 − dq11

)
] ,

which gives us 2 states for each of the two possible values of u. In total, we get
4 states. For k = 1, 3, the computation is similar to that of the second sector
of §11.1, and we get 3 states in both cases.

3. B =

(
1 0
0 1

)
1

@� @�

@� @�t t1

2

1

2

One open string starts and ends on each D2-brane, and each string passes
through the S-R-twist once. It is easy to see that the two strings are completely
decoupled from each other, each being bound to a separate D2-brane. We
therefore get two decoupled n = 1 sectors, each with m = 1. The action is a
sum of two terms:

Ik=2 =
2

2π

∫
[p1dq11 + p2dq12] ,

which gives us 4 states. A similar computation gives us 1 and 9 states for
k = 1, 3, respectively.

4. B =

(
1 0
0 1

)
−1

@� @�

@� @�
t t1

2

2

1

One open string

starts on the first D2-brane, winds around the x3 circle once, passing through
the S-R-twist, before ending on the second D2-brane. For k = 2, it starts at
q11 + iu11 and ends at q21 + iu21 = −u11 + iq11. The other open string starts on
the second D2-brane at q22 + iu22, passes the S-R-twist once before ending on
the first D2-brane at q10 + iu10 = −u22 + iq22. Since −u11 + iq11 and q22 + iu22

are on the same D2-brane, it follows that q11 = u22 = −q10, and since q11 + iu11
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and −u22 + iq22 are on the same D2-brane it follows that u11 = q22 = −q21. We
therefore get the effective action

2

2π

∫
[p1dq11 + p2dq22] ,

which has the same form as that in Sector 3, and thus there are 4 states. A
similar computation gives 3 states for both k = 1, 3 respectively.

5. B =

(
1 1
1 0

)
@� @�

@� @�tt t
1

2

1

2

One open string stretches between the two D2-branes and is located at q11 + iu1

for k = 2. Another string starts on the second D2-brane, passes through the
S-R-twist and winds around the x3 circle once before ending on the first D2-
brane. It starts at q12 + iu2 and ends at −u2 + iq12. A third string starts on the
first D2-brane at q21 + iu1, passes the S-R-twist once before ending on the same
D2-brane at −u1 + iq21. Taking into account the constraints (9.37)-(9.39), we
get q12 = q21 = −q20 = −q10 = u1 = u2, and the bosonic part of the effective
action simplifies to

Ik=2 =
1

2π

∫ [
p1
(
dq11 + 3dq12

)
+ p2

(
dq12 − dq11

)]
.

This is a congested sector which, as will be shown in §11.2, has 4 real fermionic
zero modes.

6. B =

(
1 1
0 1

)
@� @�

@� @�t tt1

2

1

2

Similar to Sector 5, but with the two

D2-branes exchanged. All results mentioned in Sector 5 are identical to those
in this sector.

7. B =

(
1 1
1 1

)
@� @�

@� @�tt tt1

2

1

2

This is the sector given as an example

for bosonic zero modes in §9.6. Each closed string of winding number 1 breaks
on each of the D2-branes to form two open strings, one of which passes through
the S-R-twist once. One string starts on the second D2-brane at qi2 +iu1, passes
the twist once before ending on the first D2-brane at −u1 + iqi2. The remaining
string stretches between the two D2-branes and is located at qi1 + iu, where
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u = u1 = u2. We have two sets of such strings, for i = 1, 2. Taking into account
the constraints, we get qi0 = −qi2 = −u for i = 1, 2, and the bosonic part of
the effective action simplifies to the expression given in (9.21). This is again
a congested sector which, as will be shown in §11.2, has 12 real fermionic zero
modes.

We thus see that the binding matrix B and the permutation σ can be used to help
us visualize the string and brane configurations and determine the effective action
rather easily.

m = 3

As a last explicit example, let us enumerate the sectors for m = 3. It turns out
that there are 18 sectors described by the following set of binding matrices:

B ∈



(
1 1 1
0 0 0

)
{1,−1}

,

(
1 0 0
0 1 1

)
{1,−1}

,

(
0 1 0
1 0 1

)
{1,−1}

,(
1 1 0
0 0 1

)
{1,−1}

,

(
1 1 1
1 0 1

)
,

(
1 1 1
1 0 0

)
,(

1 1 1
0 1 0

)
1

,

(
1 1 1
1 1 0

)
,

(
1 1 0
1 0 1

)
,(

1 1 1
0 1 1

)
,

(
1 1 0
0 1 1

)
1

,

(
1 1 1
1 1 1

)
.(

1 1 1
0 0 1

)
,

(
1 0 1
0 1 1

)
.



(11.1)

In (11.1), there are 4 decongested B’s of which each permutation σ gives rise to a
distinct sector, and thus these binding matrices generate 8 sectors in total. Apart
from the following pair(

1 1 1
0 1 0

)
{1,−1}

=

(
1 1 0
0 1 1

)
{−1,1}

,

which are equivalent after relabeling of the strings (note that σ has to be changed as
well), the rest of the B’s remain invariant under relabeling. There are thus a total of
18 different sectors for m = 3.

11.2 Counting fermionic zero modes

In order to properly compute the Witten index of our system in the type-IIA
picture, we will now count the number of fermionic zero modes in each sector charac-
terized by the binding matrix B and permutation σ. If a sector does not support a
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fermionic zero mode, then its contribution to the Witten index is just the number of
ground states of its Hilbert space; if on the other hand a sector does support fermionic
zero modes, then after quantization, its Hilbert space will contain an equal number
of bosonic and fermionic ground states, thereby making the net contribution to the
Witten index zero. It is therefore crucial in the computation of the Witten index to
determine which sectors support fermionic zero modes and which sectors do not.

In §11.2, we will address this question for the three sectors that arise in the case
n = 2 with m = 1, as discussed in §11.1. This simplest example will serve to illustrate
the salient points of the discussion. We will then tackle the cases with general m in
§11.2. For ease of discussion, we will explicitly treat k = 2 and n = 2 cases only;
generalization to other values of k and n however is straightforward, and leads to the
same conclusion.

m = 1

Of the three sectors described in §11.1, the first two sectors do not support
fermionic zero modes. This essentially follows from our abelian result in §10.3. Sec-
tor 1 consists of the abelian n = 1, m = 1 sector plus a closed string, neither of which
supports a fermionic zero mode. The fermionic zero modes of Sector 2 must satisfy
the same set of equations as those of the abelian n = 1, m = 1 sector, except for
those coming from the S-R-twist. In other words, in the notation of Figure 11.1, the
ψ1a′ for a′ = 0, 1 and λ1i′ for i′ = 0, 1 (note that λ11 = λ12 and ψ20 = ψ21 in this
sector) will satisfy all the equations of §10.3 with P replaced by P2, because the open
string starting on the D2-brane passes through the S-R-twist twice before ending on
the same D2-brane. Therefore, the boundary condition from the S-R-twist now reads

ψ11 = Pψ20 ≡ Pψ21 = P2ψ10 ,

due to the permutation σ = −1. But the argument otherwise does not change,
because the only property of P that we used there was the fact that it does not have
an eigenvalue +1, and neither does P2. We conclude that Sector 2 does not support
fermionic zero modes.

It remains to consider Sector 3. The full set of equations that we need to solve is
as follows (see Figure 11.1). First, we have the chirality conditions:

0 = (1 + Γ023)ψ10 = (1 + Γ023)ψ11 = (1 + Γ023)ψ20 = (1 + Γ023)ψ21 , (11.2)

0 = (1 + Γ09\)λ10 = (1 + Γ09\)λ11 = (1 + Γ09\)λ12 . (11.3)

Then, we have the boundary conditions at the end of the D2-branes (9.36):

0 = (1− Γ\)(1 + Γ0145678)λ10 = (1− Γ\)(1 + Γ0145678)λ12 . (11.4)

Next, we have two junctions with boundary conditions (9.28)-(9.29), which read:

(1− Γ239\)ψ10 = (1− Γ239\)ψ11 = (1− Γ239\)λ10 = (1− Γ239\)λ11 , (11.5)

0 = (1 + Γ239\)(ψ10 − ψ11 + Γ39λ11 − Γ39λ10) . (11.6)
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Figure 11.1: Fermionic zero modes on the D2-brane and F1-strings for (a) Sectors 1
and 2, and (b) Sector 3 of the m = 1 cases listed in §11.1. In (a), we have trivial
identifications ψ20 = ψ21 and λ10 = λ11.

for the first junction, and

(1− Γ239\)ψ20 = (1− Γ239\)ψ21 = (1− Γ239\)λ11 = (1− Γ239\)λ12 , (11.7)

0 = (1 + Γ239\)(ψ20 − ψ21 + Γ39λ12 − Γ39λ11) . (11.8)

for the second junction. And finally we have the S-R-twist condition (9.24)-(9.25):

ψ11 = Pψ10 , ψ21 = Pψ20 . (11.9)

To solve these equations, we first eliminate the fermionic mode λ11 which lives on
the middle section of the D2-brane. To do this, we note that the junction conditions
(11.5)-(11.6) together imply

λ11 = 1
2
(1 + Γ239\)λ11 + 1

2
(1− Γ239\λ11 = λ10 + 1

2
(1 + Γ239\)Γ39(ψ10 − ψ11) . (11.10)

It is not hard to check that if we set λ11 to the RHS of (11.10), and if we assume
that λ10, ψ10, ψ11 satisfy the chirality conditions that are required of them in (11.2)-
(11.3), then λ11 will automatically satisfy the chirality condition that is required of
it in (11.3). It follows that we can safely eliminate λ11 from the equations using
(11.10). But if we choose to eliminate λ11 from the second junction (11.7)-(11.8), we
get, instead of (11.10),

λ11 = λ12 + 1
2
(1 + Γ239\)Γ39(ψ21 − ψ20) . (11.11)

Comparing (11.10) and (11.11), we obtain

λ10 + 1
2
(1 + Γ239\)Γ39(ψ10 − ψ11) = λ12 + 1

2
(1 + Γ239\)Γ39(ψ21 − ψ20) . (11.12)
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Now, we need to solve (11.4)-(11.9) together with (11.12) for

λ10, λ12, ψ10, ψ11, ψ20, ψ21 ,

that are subject to the chirality conditions specified in (11.2)-(11.3).
To proceed, we note that we can combine (11.5) with (11.7) to get

(1− Γ239\)ψ10 = (1− Γ239\)ψ11 = (1− Γ239\)ψ20 = (1− Γ239\)ψ21

= (1− Γ239\)λ10 = (1− Γ239\)λ12 .
(11.13)

Let
ζ1 ≡ λ10 − λ12 .

It satisfies the same set of equations (10.17)—(10.19) of the abelian case: (10.17)
because of the chirality condition (11.3) on λab, (10.18) because both λ10 and λ12 have
the boundary conditions (11.4) that is dual to type-IIB strings ending on (formal)
NS5-branes, and (10.19) because of (11.13). Hence, the same argument we used
before, next to (10.20)-(10.22), implies ζ1 = 0 again, and so

λ10 = λ12 . (11.14)

Next, substitute (11.14) into (11.12) to obtain

0 = (1 + Γ239\)(ψ10 − ψ11 + ψ20 − ψ21) . (11.15)

On the other hand, from (11.13) we have

0 = (1− Γ239\)(ψ10 − ψ11 + ψ20 − ψ21) . (11.16)

The two equations (11.15) and (11.16) together imply

ψ10 − ψ11 + ψ20 − ψ21 = 0 ,

or
ψ10 + ψ20 = ψ11 + ψ21 . (11.17)

But from the boundary condition (11.9) that describes the S-R-twist we can write
(11.17) as:

ψ11 + ψ21 = P(ψ10 + ψ20),

and since P does not have an eigenvalue +1, we get

ψ10 + ψ20 = ψ11 + ψ21 = 0 . (11.18)

Now, from (11.13) we have

(1− Γ239\)(ψ10 − ψ20) = 0 ,
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and together with (11.18), we deduce that

(1− Γ239\)ψ10 = (1− Γ239\)ψ20 = 0 , (11.19)

and hence all the other expressions appearing in (11.13) also vanish.
If we now define

ξ1 ≡ λ10 + λ12 ,

the result of the last paragraph implies that ξ1 satisfies the same equations that ζ1

satisfies in (10.17)-(10.19), and hence ξ1 = 0. Therefore, we conclude that

λ10 = λ12 = 0 . (11.20)

At this point, there is essentially only one unknown variable, say ψ11. The other
variables ψij and λ11 are determined in terms of it by (11.11), (11.18), and (11.9).
The equations it should satisfy are

0 = (1−Γ239\)P−1ψ11 = (1−Γ239\)ψ11 = (1 + Γ023)P−1ψ11 = (1 + Γ023)ψ11 . (11.21)

where we substituted ψ10 = P−1ψ11 from (11.9). Next, we recall that for k = 2 the
operator P realizes a rotation by π

2
in four transverse two-planes, and so

PΓ239\P−1 = −Γ1238 , PΓ023P−1 = Γ023.

Using these relations, we can write (11.21) as

ψ11 = Γ239\ψ11 = −Γ023ψ11 = −Γ1238ψ11. (11.22)

We can now work in a basis for which Γ23,Γ18,Γ9\ and Γ0 are simultaneously diag-
onal. It is then easy to see that (11.22) has 4 linearly independent solutions. This
corresponds to 4 zero modes of our system. These four real zero modes transform
as singlets under the SU(2) factor of the SU(2) × U(1) symmetry group that was
mentioned at the end of §9.2 and they have ±1 charges under the U(1) factor, which
is generated by i

2
(Γ45 + Γ67). These statements are easy to derive from (11.22), which

together with (9.23) implies that Γ4567ψ11 = −ψ11. (The other fermionic fields of
the problem are determined in terms of ψ11 and are easily seen to satisfy the same
chirality condition.) In this subsection we have restricted for simplicity to the k = 2
case, but the same result of 4 zero modes is also true for the other cases k = 1, 3.

m > 1

Having considered the fermionic zero modes for the n = 2, m = 1 case, we
now move on to consider the cases with general m. In this subsection, we prove the
following criterion for the existence of fermionic zero modes: the fermionic zero modes
exist precisely in those sectors for which B1a = B2a = 1 for some a = 1, . . . ,m. In
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Figure 11.2: An example of sectors without fermionic zero modes. Only one string is
attached to each D2-brane.

other words, they exist if and only if there is at least one D2-brane to which both
open strings attach. These are what we called congested sectors.

It is easy to see that there is no fermionic zero mode if for each of the m D2-branes
there is only one string attached to it (see Figure 11.2 for an example). For those
sectors for which the permutation σ that accompanies the S-R-twist is the identity,
we can divide the D2-branes into two groups: those connecting to the F1-string that
is labeled by i = 1, and those connecting to the F1-string labeled by i = 2. Each
group together with the respective F1-string then forms an abelian system discussed
in §10.3, and hence fermionic zero modes are absent.

For sectors with σ = −1, we can divide the D2-brane indices a = 1, . . . ,m into
two groups so that those with a = a1, . . . , ak attach to the F1-string that is labeled
by i = 1, and those with a = ak+1, . . . , am to the F1-string labeled by i = 2. Then the
system can again be regarded as an abelian case, the D2-branes now being arranged
in the new order a1, . . . , am, except for the S-R-twist condition, which should now
read

ψ1ak = Pψ2ak+1
, ψ2am = Pψ1a1 .

The effect of this new boundary condition is that instead of (10.23), we get

ψ1a1 = ψ1a2 = · · · = ψ1ak = Pψ2ak+1
= · · · = Pψ2am = P2ψ1a1 .

But since P2 does not have an eigenvalue +1, the conclusion (10.25) remains the
same, and hence there is no zero mode.

So let us now establish the fact that if there is at least one D2-brane to which
both strings attach, there are fermionic zero modes (see Figure 11.3 for an example).
Let us first note that if only one string is attached to the ath brane, then we have

ψ1,a−1 = ψ1a , ψ2,a−1 = ψ2a . (11.23)



80

�@ �@

�@ �@u
u u

u u
u
u

uψ20 ψ21

ψ10 ψ11

ψ22 ψ23

ψ12 ψ13

ψ24 ψ25

ψ14 ψ15

λ12

λ11

λ10

λ22

λ21

λ20

λ32

λ31

λ30

λ42

λ41

λ40

λ52

λ51

λ50

F1

F1

D2
@
@R

SR

SR

Figure 11.3: An example of sectors with fermionic zero modes. Both strings attach
to the first, second, and fourth D2-branes.

This follows from the abelian result of §10.3: for example, if it is the i = 1 F1-string
that attaches to the ath D2-brane, then we have a trivial identification ψ2,a−1 = ψ2a

(and λa1 = λa2), while the equality ψ1,a−1 = ψ1a follows from the same reasoning
that leads to (10.23) in §10.3. If, on the other hand, both strings attach to the ath

D2-brane, then we have a weaker identity

ψ1,a−1 + ψ2,a−1 = ψ1a + ψ2a . (11.24)

This follows from the same reasoning that leads to (11.17) in §11.2.
From (11.23) and (11.24), we now get

ψ10 + ψ20 = ψ11 + ψ21 = · · · = ψ1m + ψ2m , (11.25)

and from the S-R-twist,
ψ1m + ψ2m = P(ψ10 + ψ20) , (11.26)

regardless of the choice of permutation σ. These two relations together imply that

ψ10 + ψ20 = ψ11 + ψ21 = · · · = ψ1m + ψ2m = 0 . (11.27)

Let us now divide the D2-brane indices a = 1, . . . ,m so that the subset {a1, . . . , al}
refer to those D2-branes to which both strings attach. Then we can eliminate the
fermionic modes λa11, . . . , λal1 that reside on the middle D2-brane segments, similarly
to (11.10). Then the reasoning leading to (11.20) gives us

λa10 = λa12 = λa20 = λa22 = · · · = λal0 = λal2 = 0 .

For a /∈ {a1, . . . , al}, only one string attaches to the ath D2-brane, so we have trivial
identification λa1 = λa0 or λa1 = λa2. But since λ0a = λ2a = 0 from the same argument
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as in the abelian result, we have λ1a = 0 in either case. Also for a /∈ {a1, . . . , al},
we have ψia = ψi,a−1 for i = 1, 2 from (11.23). It follows therefore that the only
independent variables that we have at this point are ψ1a1 , . . . , ψ1al , since ψ2a1 , . . . , ψ2al

can be recovered from (11.27), and ψσ(i)0 = P−1ψim. The remaining equations are

0 = (1− Γ239\)ψ1a = (1 + Γ023)ψ1a , a ∈ {a1, . . . , al}. (11.28)

Similarly to the discussion following (11.21), there are 4 zero modes for ψ1al and 8
zero modes for each of ψ1a1 , . . . , ψ1al−1

. We get 8l − 4 zero modes in total.

11.3 The Witten Index — results

According to the discussion of §11.2 (and its extension to n > 2), sectors with a
congested binding matrix have a nonzero number of zero modes. They therefore do
not contribute to the Witten Index. Only sectors with no zero modes contribute to
the Witten Index, and these are precisely the decongested sectors.

By our definition at the end of §9.4, a decongested sector is a sector whose binding
matrix has exactly one ‘1’ in each column. It can be alternatively described as
follows. Start with p closed strings of winding numbers n1, n2, . . . , np, such that
n = n1 + · · · + np, and attach each of the m D2-branes to one string. The point of
attachment along the string is also important, and since the x3 coordinate of the D2-
brane is fixed, there are nj choices for the jth string, since the string passes through
the x3 coordinate nj times. The partition n = n1 + · · ·+np determines the conjugacy
class [σ] of the permutation σ ∈ Sn (where σ is represented as a product of cycles
and n1, . . . , np are the lengths of the cycles), and the points of attachment determine
the binding matrix. Thus, there are initially nm choices for the attachment points,
but choices that are equivalent up to relabeling of the strings should be counted only
once.

Let mj be the number of D2-branes that end up being attached to the jth string.
Then m = m1 + · · · + mp, and it is not difficult to see that the Hilbert space of the
corresponding sector is equivalent to a tensor product ⊗pj=1Hj(nj,mj) of decoupled
Hilbert spaces. The dimension of Hj(nj,mj) can be determined explicitly from the
effective twist phase einjυ. Since we have the constraint nj ≤ n < r, the effective phase
is never trivial. In fact, in the cases relevant to us, the effective twist phase takes one
of the following seven values:

einjυ ∈ {±i, e±
πi
3 , e±

2πi
3 ,−1}.

The first six values are the same twist we got in §10 for U(1) theory at levels k =
±2,±1,±3. (It is necessary to keep track of the sign if relative parity is important.)
The dimensions in these cases are given by dimHj(nj,mj) = |k|, regardless of mj.
The last phase einjυ = −1 is a new case that hasn’t been discussed in §10, but



82

appeared for example in the second sectors of §11.1 and §11.1 (for k = 2). As we saw
there, it is not hard to check that in this case dimHj(nj,mj) = 4, independently of
mj, nj.

We can now summarize the results for the dimensions in Table 11.1. The contri-
bution to the Witten Index is calculated as

Im(n1, . . . , nj) =
∑

{mj}:
∑
mj=m

(
p∏
j=1

dimHj(nj,mj)

)
.

As an example for how the entries in Table 11.1 were derived, take the case n = 3
and k = 2 with partition 3 = 1 + 1 + 1. The number of decongested binding matrices
is 3m. (This is the total number of ways to attach m D2-branes to the strings.) But
this over-counts binding matrices that are related by a permutation of the string
labels 1, 2, 3. There are three binding matrices in which all m D2-branes are attached
to the same string (so that we have one row of all 1’s and two other rows of all
0’s). They are of course equivalent to one another after relabeling the string indices.
Excluding these 3 configurations, to which we shall return later, we are left with 3m−3
configurations, and accounting for the relabeling redundancy 3! = 6, we get 1

6
(3m−3)

inequivalent configurations. For each of this type of configurations, let m1,m2,m3

denote the number of D2-branes that are attached to the 1st, 2nd, and 3rd string,
respectively (so that m = m1 +m2 +m3). For each configuration, the Hilbert space is
a product of three Hilbert spaces of the U(1) theory with 2m1, 2m2, or 2m3 charges,
respectively. These Hilbert spaces were analyzed in §10 and have k = 2 states each.
So we get a total of 8 states for each configuration of this form. On the other hand,
the remaining 3 configurations, for which all m D2-branes are attached to the same
string, are equivalent to each other up to relabeling. The string with its m attached
D2-branes has a Hilbert space that is equivalent to that of the U(1) theory with 2m
quarks, and hence possesses 2 states, while the remaining 2 unattached strings form
a Hilbert space that corresponds to the σ = 1 sector of the U(2) Tr-S theory with
no charges, and has 3 states [1]. The total number of states for this configuration is
therefore 2 × 3 = 6 and altogether we get the total number of states for k = 2 and
n = 3 = 1 + 1 + 1:

8× 1
6
(3m − 3) + 6 = 4

3
3m + 2.

As another example, take k = 1 and n = 4 = 2 + 2. The binding matrix has four
rows, labeled by string index i = 1, . . . , 4, and for definiteness we take the permutation
σ = (12)(34). For this discussion it is convenient to pretend that this sector has two
closed strings, one formed by connecting i = 1 and i = 2 strings, the other by
connecting i = 3 and i = 4. Each closed string has winding number 2, to which some
D2-branes are possibly attached. We start by considering all 4m possible binding
matrices, and note that there are 2 × 2m binding matrices for which all D2-branes
are attached to the same (pretend closed) string. The other (4m − 2 × 2m) binding
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matrices have a nonzero number of D2-branes attached to each of the two (pretend
closed) strings. For this latter type of configurations, the over-counting factor is
8 because we can exchange the two strings (namely exchanging {1, 2} and {3, 4},
contributing an over-counting factor of 2) and within each string we can exchange
the two string indices (i = 1 and i = 2 for the first string, and similarly i = 3 and
i = 4 for the second). The total number of inequivalent configurations for which
neither of the strings is unattached is therefore 1

8
(4m−2m+1). Let m1 > 0, m2 > 0 be

the number of D2-branes attached to each string, with m = m1 +m2. Each string has
an effective twist phase of e2iυ = e

2πi
3 , and therefore its Hilbert space corresponds to

the Hilbert space of a U(1) theory with k′ = 3 (which is the value of k for which the

phase is eiυ
′
= e

2πi
3 ), and with 2m1 or 2m2 charges. Each configuration therefore has

3× 3 = 9 states. The remaining configurations have one unattached (pretend closed)
string, and all m D2-branes are attached to the other (pretend closed) string. There
are 2 × 2m such binding matrices, with an over-counting factor of 4 = 8/2 (where 2
is the symmetry factor which corresponds to switching the two string indices of the
unattached string), so we get 2m−1 configurations. Each configuration has a Hilbert
space that corresponds to U(1) theory with k′ = 3 and 2m charges inserted times
the Hilbert space of U(2) theory with k = 1 in the sector σ = (12), and no external
charges. The latter Hilbert space is two-dimensional [1]. The Hilbert space of the
configuration thus has a total dimension of 3 × 2 = 6. Altogether we find the total
number of states of the n = 4 = 2 + 2 sector of the k = 1 theory to be:

9× 1
8
(4m − 2m+1) + 6× 2m−1 = 9

8
4m + 3

4
2m.

In addition to the sector-by-sector analysis described above, we can also write
down closed formulas for certain types of sectors. In general, it is useful to have a
formula for the number f(n,m) of non-equivalent decongested binding matrices that
have at least one nonzero entry in each of the n rows. This corresponds to the number
of configurations for which each of the n strings is attached to at least one D2-brane.
In Appendix 13.2.1 we show that:

f(n,m) =
n∑
j=1

(−1)n−j

j!(n− j)!
jm . (11.29)

Using this result we can write a general expression for the Witten Index in the sectors
with partition n = 1 + 1 + · · · + 1. Such a sector can have 1 ≤ l ≤ n unattached
strings. The dimension of the Hilbert space of the unattached strings is the same
as the number of states that a system of l identical bosons each occupying one of

k states has, which is

(
k + l − 1
k − 1

)
, while the dimension of the Hilbert space of all

(n− l) attached strings is kn−l. So, we get a total of

n−1∑
l=0

(
k + l − 1
k − 1

)
kn−lf(n− l,m) =

n∑
j=1

(
n−j∑
l=0

(−1)n−l−jkn−l(k + l − 1)!

(k − 1)!l!j!(n− l − j)!

)
jm
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states. Using this and similar techniques we get the results listed in Table 11.1. We
can now add the contribution of the various sectors to the Witten Index for each k
and n, listed in Table 11.1, and obtain the results of Table 11.2.

11.4 Wilson loop operators and their eigenvalues

From the expressions for the dimensions of Hilbert spaces with static charges we
can get information about basic properties of Wilson loop operators along the two
(spatial) cycles of T 2. Let us define the two basic 1-cycles of T 2, one along the x1

direction, and the other along the x2 direction. We denote the low-energy limits of
the two supersymmetric Wilson loop operators that correspond to these cycles, and
in the fundamental representation � of U(n), by W1 and W2:

tr�

(
Pei

∫ 2πL1
0 (A1(t,x1,x2,x3)+Φ9(t,x1,x2,x3))dx1

)
low-energy limit−−−−−−−−−→ W1 , (11.30)

tr�

(
Pei

∫ 2πL2
0 (A2(t,x1,x2,x3)+Φ9(t,x1,x2,x3))dx2

)
low-energy limit−−−−−−−−−→ W2 . (11.31)

Here Φ9 is the adjoint scalar from theN = 4 multiplet that corresponds to fluctuations
of the D3-branes in direction x9 as in (9.2), and W1,W2 are operators on the Hilbert
space H(k, n,m = 0) (namely, Hilbert space without external charges). Assuming
that the low-energy theory is topological we expect W1,W2 to be independent of
t, x1, x2 altogether.

A simple Wick rotation now allows us to derive the eigenvalues ofW†iWi from the
dimensions of the Hilbert spacesH(k, n,m) as a function ofm.Obviously, if the theory
is topological the eigenvalues are the same for i = 1, 2. Let us compactify time on a
circle with (supersymmetric) periodic boundary conditions so that 0 ≤ x0 < 2πT. Tr-
S theory is now formulated on T 3 in directions x0, x1, x2. Now insert the m quark and
anti-quark pairs. At this point, if we let x2, for example, play the role of Euclidean
time then every quark corresponds to a Wilson loop operator for a loop around
direction x0. In the microscopic 3 + 1D theory, let W ′ be such a supersymmetric
Wilson loop around direction x0 and at a fixed x3. In the Hilbert space of Tr-S theory
on T 2 (in directions x0, x1), let W be the operator that is the low-energy limit of W ′.
It is, of course, independent of x3. Now we can write

dimH(k, n,m) = tr[(W†W)m] . (11.32)

Thus, if we calculate dimH(k, n,m) for all m, we will be able to read off the
eigenvalues of W†W . Since W†W is a matrix of dimension dimH(k, n, 0), it follows
that dimH(k, n,m) has to be a sum of at most dimH(k, n, 0) m-powers. We therefore
expect

dimH(k, n,m) =

dimH(k,n,0)∑
j=1

λj(k, n)m , (11.33)
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where the λj’s are eigenvalues of W†W and thus are independent of m. If indeed we
can write dimH(k, n,m) in the form (11.33), that will provide us with a nice test of
our construction, and in particular the conjecture that Tr-S is topological. Moreover,
we will be able to find the eigenvalues of W†W .

Also, note that for k = 1, 2 we haveW =W† for the following reason. For k = 1, 2
we find that the order r = 6, 4 of the S-duality twist is even. Thus, the cyclic group
{1,g,g2, . . . ,gr−1} that is generated by the S-duality twist g ∈ SL(2,Z) contains gr/2

which is equal to the central element −I ∈ SL(2,Z). This is physically equivalent
to the charge-conjugation operator C [see (7.3)]. Therefore, when we continuously
change the x3 position of the Wilson loop W ′ until it completes r

2
cycles along the x3

circle, it becomes the charge conjugate (W ′)†. Since we assumed that the low-energy
limit of W ′ is independent of x3, we find that W is hermitian for those values of k.
Thus, for k = 1, 2 the eigenvalues ofW are simply the square-roots of the eigenvalues
of W†W , and are therefore known up to an overall sign.

11.5 Consistency checks

Now let us check the consistency of our results. Comparing the first three columns
of Table 11.2 with the corresponding columns of Table 11.1 we observe an interesting
phenomenon — whereas individual sectors in Table 11.1 do not generally conform
to the required form (11.33), their total contribution in Table 11.2 does! We believe
this result is a nontrivial test of our construction and derivation, and we will discuss
its meaning further in §11.6. Moreover, from the behavior of the Witten Index as
a function of m in Table 11.2 we can read off the eigenvalues of the Wilson loop
operator combination W†W on the Hilbert space of Tr-S without charges (m = 0).
The results are listed in the last column of Table 11.2. In deriving the eigenvalues
of W†W we matched the expressions for the Witten Index with (11.33). In (11.33)
the total number of eigenvalues, taking multiplicities into account, has to be equal
to the dimension of the Hilbert space without charges. These dimensions are listed
in the 4th column of Table 11.2 as dimH(k, n, 0), and in cases where the number of
powers appearing in the expression for the Witten Index in the 3rd column falls short
of dimH(k, n, 0) we have to add zero eigenvalues. (That the number of powers is
always smaller than dimH(k, n, 0) constitutes another consistency check.) There is,
however, an independent check on these results and the number of zero eigenvalues
as follows.

For k > 1, there are symmetry operators U ,V that act on the Hilbert spaces
H(k, n, 0). They were introduced in [1] and reviewed in §8.3. These operators have a
geometrical interpretation in the type-IIA description, but in the original gauge theory
description they are understood as large gauge transformations in the U(1) ⊂ U(n)
center. This latter interpretation allows us to immediately write their commutation
relations with W . For concreteness, let’s assume that W ≡ W1 is a Wilson loop
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around the x1 direction of the (type-IIB) T 2. Then,

V−1WV =W , U−1WU = e
2πi
k W . (11.34)

For k = 2 we argued above that W = W†, and W is therefore diagonalizable. The
second equation of (11.34) then shows that the nonzero eigenvalues of W must come
in pairs (λ,−λ), and so the multiplicities of the nonzero eigenvalues |λ|2 of W†W
are all even. For k = 3 we don’t have a similar argument to show that W is di-
agonalizable, but assuming that it is, the nonzero eigenvalues of W must come in
triplets (λ, e

2πi
3 λ, e−

2πi
3 λ) and therefore the multiplicities of the nonzero eigenvalues

|λ|2 of W†W must all be divisible by 3. This is indeed the case, as we can see from
Table 11.2.

For k = n = 2 we can say more. In this case U and V commute and we can write
H(k = 2, n = 2, 0) as a direct sum

⊕
H(u,v)(2, 2, 0) of simultaneous eigenstates of

(U ,V), with eigenvalues (u = ±1, v = ±1). It is easy to check that

dimH(+1,+1) = dimH(+1,−1) = dimH(−1,+1) = 2 , dimH(−1,−1) = 0.

Now take a state |ψ〉 ∈ H(+1,−1) and consider the (U ,V) eigenvalues of W|ψ〉. By
(11.34) they must be (−1,−1), and since H(−1,−1) is trivial it follows that W|ψ〉 = 0.
Therefore, W is identically zero on the two-dimensional subspace H(+1,−1). It follows
thatW has at least two eigenvalues that are identically zero, and so doesW†W . From
Table 11.2 we see that this is indeed the case, and that the multiplicity of the zero
eigenvalue of W†W is exactly 2.

11.6 Comparison with Chern-Simons theory

So far we have found the Witten Indices of Tr-S theory on T 2 in individual sectors,
listed in Table 11.1, and their sum over all sectors, listed in Table 11.2. We have also
seen that the results pass some nontrivial consistency checks in §11.5. These results
are however supposed to provide some clues about what Tr-S theory is. Is it a known
theory, or is it an entirely new theory? How should we interpret the results from
Table 11.1?

As a first step, we have to know whether different “sectors” correspond to different
theories, or whether they are part of the same theory. Following the results in [1]
regarding the Hilbert spaces H(k, n,m = 0) and their decomposition as representa-
tions of the mapping class group SL(2,Z) of (the type-IIB) T 2, it was proposed there
that a sector [σ] corresponds to a superselection sector of Tr-S theory on R2,1 — per-
haps a discrete remnant of an expectation value of a Wilson loop along the compact
x3 direction. Furthermore, it was observed in [1] that strictly as representations of
SL(2,Z) and operators U ,V , the Hilbert spaces of most of the sectors are equivalent to
the Hilbert spaces of (pure) Chern-Simons theories at various levels and with various
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gauge groups that are in general subgroups of U(n). We have reproduced the general
results of [1] in Table 11.3. For n = 2, for example, the breakdown into individual
sectors is reproduced in Table 11.4. (Note that, as explained in [1], the Chern-Simons
theory level of the U(1) part of the gauge group is given by k′ = nk in all cases.)
Naturally, it was then conjectured that Tr-S in each of these sectors is equivalent
to the Chern-Simons theory at the corresponding level and with the corresponding
gauge group. But given the results of Table 11.1, we can now take a critical look at
some of these conjectures.

To extract useful information out of Table 11.1 we need to know how to match a
sector of Tr-S with m > 0 charge pairs to a sector of Tr-S with no charges (m = 0). A
sector with m = 0 is described entirely by the conjugacy class [σ] of the permutation
σ ∈ Sn, or alternatively, by the partition n = n1 + n2 + · · · + np. A sector with
m > 0, on the other hand, is described by [σ] together with a binding matrix Bia,
up to relabeling of string indices i, and for general sectors, combinations (B, [σ]) and
(B′, [σ′]) with different conjugacy classes ([σ] 6= [σ′]) may be equivalent. In general,
therefore, we cannot unambiguously assign a sector of m = 0 theory to a given sector
with m > 0. This is also clear because the m > 0 sectors have open strings while the
m = 0 sectors only have closed strings.

However, if we restrict ourselves to decongested sectors we can overcome this prob-
lem. Since a decongested sector has exactly one pair of open strings ending on each
D2-brane, we can formally align and recombine without ambiguity these two ends to
form a configuration of closed strings, thereby creating a unique m = 0 sector out of
a decongested m > 0 sector. In fact, the “pretend closed” terminology of §11.3 and
the partitions n = n1 + · · ·+ np appearing in Table 11.1 took advantage of this fact.

But now we face a serious obstacle. It was argued in §11.5 that any sector whose
entry in Table 11.1 does not conform to (11.33) — one for which the coefficient of any
mth power in its contribution to the Witten Index is not an integer — cannot possibly
be a stand-alone theory. For consistency we have to, at the very least, combine sectors
so that their total contribution to the Witten Index will be of the form (11.33). Thus,
for example, both of the k = n = 2 sectors might be individual theories corresponding
to different “superselection” sectors. But the k = 2 and n = 3 sectors corresponding
to the partitions 3 = 1 + 1 + 1 and 3 = 3 cannot be separate theories. Similarly, the
k = 1 and k = 3 sectors with partitions 2 = 1 + 1 and 2 = 2 cannot be separate
theories either. This, we have to admit, is evidence against at least some of the
conjectures that are implicit in Table 11.3.

So, still focusing on the U(2) case, let us assume that we need to combine both
2 = 1 + 1 and 2 = 2 sectors for k = 1, 3, and let us remain agnostic about whether
we need to combine or not the two sectors for the k = 2 case. Let us proceed and
ask whether in this way Tr-S theory can still be a pure Chern-Simons theory in these
cases. What can we learn from Table 11.2? We are going to make the assumption
that if indeed Tr-S is identified with pure Chern-Simons theory then the Wilson loop
operator W is identified with a Wilson loop in Chern-Simons theory (wound around
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one of the nontrivial 1-cycles of T 2). We will now compare the information from
Table 11.2 about the eigenvalues of Wilson loops with what we know about U(2)
Chern-Simons theory.

Wilson loop operators in U(2) Chern-Simons theory

Let us begin by reviewing the known U(2) Chern-Simons results. The Hilbert
space of SU(2) Chern-Simons theory on a torus T 2 at level k′′ is (k′′+1)-dimensional,
and as explained in [30, 56], there exists a canonical basis in which basis states are
labeled by SU(2) spin j = 0, 1

2
, . . . , k

′′

2
, once we choose a basis of 1-cycles a and b for

the first homology group H1(T 2;Z) of the torus. When we think of T 2 as the boundary
of a solid torus, the a-cycle is the one that becomes contractible inside the solid torus,
while the b-cycle remains non-trivial. The state labeled by spin j is then defined in
terms of the wave-function whose value is given by the path integral of Chern-Simons
theory on the solid torus with a Wilson loop in the spin j representation inserted
along the b-cycle. We will denote such basis states of the Hilbert space by |m〉, with
m ≡ 2j = 0, . . . , k′′.

The action of a Wilson loop operator W (na,nb) in any representation of SU(2) that
winds around the torus na times along the a-cycle and nb times along the b-cycle was
given in [57]. For our present purpose, we need the result for the Wilson loop in the
fundamental representation with na = 1, nb = 0:

W ≡ W (1,0) =
∑
m

2 cos
π(m + 1)

k′′ + 2
|m〉〈m| . (11.35)

On the other hand, the Hilbert space of U(1) Chern-Simons theory at level k′ is
k′-dimensional, and the Wilson loops act as

W (1,0) =
k′−1∑
p=0

e
2πi
k′ p|p〉〈p| , W (0,1) =

k′−1∑
p=0

|p+ 1〉〈p| , (11.36)

where |p〉 for p = 0, . . . , k′ − 1 are the basis states.
We can now combine the results for the U(1) and SU(2) theories to construct the

Hilbert space for the U(2) theory. The Hilbert space, denoted by U(2)k′,k′′ , can be
obtained by first taking the tensor product of the Hilbert space of U(1) theory at level
k′ = 2k and that of SU(2) at level k′′, and then restricting to the subspace where a
certain “large” gauge transformation acts trivially. This is because the group U(2)
is not simply the product of U(1) and SU(2), but rather U(2) = [U(1)× SU(2)]/Z2,
where Z2 is the center of SU(2).

Specifically, let us first consider the following “illegal” gauge transformations of
the U(1) gauge theory on T 2:

Λ′1(x1, x2) = eix1/2 , Λ′2(x1, x2) = eix2/2 . (11.37)
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Here, x1, x2 are periodic coordinates on the torus with 0 ≤ xi ≤ 2π, i = 1, 2. Since
Λ′i (i = 1, 2) changes its value from +1 to −1 ∈ Z2 as xi changes from 0 to 2π, it
is not a genuine gauge transformation, and hence acts nontrivially on the physical
Hilbert space. If we let Ω′1, Ω′2 be the corresponding operators on the Hilbert space
of U(1) Chern-Simons theory at level k′ = 2k, then their action on the basis states
|p〉 defined in (11.36) is given by

Ω′1|p〉 = |p+ k〉 , Ω′2|p〉 = (−1)p|p〉 . (11.38)

We can similarly define the “illegal” gauge transformations for the SU(2) theories:

Λ′′i (x1, x2) = diag(eixi/2, e−ixi/2) , i = 1, 2 . (11.39)

They also change their values from the identity to −1 ∈ Z2 as xi change from 0 to
2π. The corresponding operators Ω′′i (i = 1, 2) act on the Hilbert space of SU(2)
Chern-Simons theory at level k′′ > 0 by

Ω′′1|m〉 = |k′′ −m〉 , Ω′′2|m〉 = (−1)m|m〉 . (11.40)

In both U(1) and SU(2) theories, the action of Ω′2 and Ω′′2 is easy to understand from
the definition of the basis states |p〉 and |m〉, and then the action of Ω′1 and Ω′′1 can
be inferred from the modular transformation properties of the basis states.

We can now consider the U(2) gauge theory on T 2 and perform the transforma-
tions Λ′i and Λ′′i simultaneously. The point is that while they are “illegal” gauge
transformations when applied separately, they together become a genuine U(2) gauge
transformation, as can be seen explicitly from the above expressions. Therefore, the
Hilbert space U(2)k′,k′′ is the subspace of the tensor product of the Hilbert spaces of
U(1)k′ and SU(2)k′′ theories on which the operators Ω′i ⊗ Ω′′i act trivially. We can
then read off the action of the Wilson loop operators on this subspace from those of
the U(1)k′ and SU(2)k′′ theories. The results for the cases listed in Table 11.4 are as
follows. (In the following, we consider only the action of W = W (1,0), the Wilson loop
going around the a-cycle once, but W (0,1) is related to W by modular transformation.)

• k = 1: For U(2)2,1, the invariant subspace is one-dimensional, spanned by

|0〉U(1) ⊗ |0〉SU(2) + |1〉U(1) ⊗ |1〉SU(2) .

The Wilson loop operator is just the identity: W = 1.

For U(2)2,3, the invariant subspace is two-dimensional, spanned by

|0〉U(1) ⊗ |0〉SU(2) + |1〉U(1) ⊗ |3〉SU(2) ,

|0〉U(1) ⊗ |2〉SU(2) + |1〉U(1) ⊗ |1〉SU(2) .

The Wilson loop operator is given in this basis by

W = diag(φ, φ− 1),
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where φ = 1
2
(1 +

√
5) is the “golden ratio.” On the other hand, according to

Table 11.2 the Tr-S results are:

W = diag(±
√

2,±
√

2, 0),

and they clearly don’t agree with Chern-Simons results for U(n)2,k′′ for any k′′.
(We have only explicitly written down the cases k′′ = 1, 3 above, since they
appear in Table 11.4, but it can be easily checked that other values don’t give
the right answer either.)

• k = 2: For U(2)4,2, the invariant subspace is three-dimensional, spanned by

|0〉U(1) ⊗ |0〉SU(2) + |2〉U(1) ⊗ |2〉SU(2) ,

|1〉U(1) ⊗ |1〉SU(2) + |3〉U(1) ⊗ |1〉SU(2) ,

|0〉U(1) ⊗ |2〉SU(2) + |2〉U(1) ⊗ |0〉SU(2) .

The Wilson loop operator in this basis is given by

W = diag(
√

2, 0,−
√

2) ,

which is also the result for U(2)4,−2. Thus, the conjectures from Table 11.4 of
U(2)4,2 and U(2)4,−2 for the sectors 2 = 1 + 1 and 2 = 2, respectively, are in
precise agreement with the eigenvalues ofW that we calculated and summarized
in Table 11.2.

• k = 3: For U(2)6,1 the invariant subspace is three-dimensional, spanned by

|0〉U(1) ⊗ |0〉SU(2) + |3〉U(1) ⊗ |1〉SU(2) ,

|1〉U(1) ⊗ |1〉SU(2) + |4〉U(1) ⊗ |0〉SU(2) ,

|2〉U(1) ⊗ |0〉SU(2) + |5〉U(1) ⊗ |1〉SU(2) .

The Wilson loop operator in this basis is given by

W = diag(1,−ω, ω2) ,

where ω = eπi/3.

For U(2)6,3 the invariant subspace is six-dimensional, spanned by

|0〉U(1) ⊗ |0〉SU(2) + |3〉U(1) ⊗ |3〉SU(2) ,

|0〉U(1) ⊗ |2〉SU(2) + |3〉U(1) ⊗ |1〉SU(2) ,

|1〉U(1) ⊗ |1〉SU(2) + |4〉U(1) ⊗ |2〉SU(2) ,

|1〉U(1) ⊗ |3〉SU(2) + |4〉U(1) ⊗ |0〉SU(2) ,

|2〉U(1) ⊗ |0〉SU(2) + |5〉U(1) ⊗ |3〉SU(2) ,

|2〉U(1) ⊗ |2〉SU(2) + |5〉U(1) ⊗ |1〉SU(2) .
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The Wilson loop operator in this basis is given by

W = diag(φ, 1− φ,−ω(1− φ),−ωφ, ω2φ, ω2(1− φ)) ,

where φ is the golden ratio as before. The Tr-S eigenvalues that we expect have
to have an absolute value of

√
2 or 0, and so we don’t find an agreement in this

case either.

In the above, we explicitly compared the eigenvalues of Wilson loop operators only
for the gauge group U(2), but we can do similar computations for other gauge groups
as well using the formula of [57]. We find that in general the results of Table 11.2
do not agree with the eigenvalues of Wilson loop operators in Chern-Simons theories
with gauge group listed in Table 11.3, except for the k = 2, n = 2 case discussed
above.
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k n = n1 + · · ·+ np Contribution to Witten Index

3 1 = 1 3
3 2 = 1 + 1 9

2
2m

3 2 = 2 3
2
2m

2 1 = 1 2
2 2 = 1 + 1 2 · 2m
2 2 = 2 2 · 2m
2 3 = 1 + 1 + 1 4

3
· 3m + 2

2 3 = 2 + 1 4 · 3m + 2
2 3 = 3 2

3
3m

1 1 = 1 1
1 2 = 1 + 1 1

2
2m

1 2 = 2 3
2
2m

1 3 = 1 + 1 + 1 1
6
3m + 1

2

1 3 = 2 + 1 3
2
3m + 1

2

1 3 = 3 4
3
3m

1 4 = 1 + 1 + 1 + 1 1
24

4m + 1
4
2m + 1

3

1 4 = 2 + 1 + 1 3
4
4m + 2m

1 4 = 2 + 2 9
8
4m + 3

4
2m

1 4 = 3 + 1 4
3
4m + 2

3

1 4 = 4 3
4
4m

1 5 = 1 + 1 + 1 + 1 + 1 1
120

5m + 1
12

3m + 1
6
2m + 3

8

1 5 = 2 + 1 + 1 + 1 1
4
5m + 5

6
3m + 1

2
2m + 1

4

1 5 = 2 + 2 + 1 9
8
5m + 3

4
3m + 9

8

1 5 = 3 + 1 + 1 2
3
5m + 2

3
3m + 1

3
2m

1 5 = 3 + 2 2 · 5m + 2
3
3m + 2m

1 5 = 4 + 1 3
4
5m + 5

4

1 5 = 5 1
5
5m

Table 11.1: The contribution to the Witten Index of the sector with given k and
n, and a permutation σ in the conjugacy class that corresponds to the partition
n = n1 + · · ·+ np.
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k n Witten Index dimH(k, n,m = 0) W†W eigenvalues

3 1 3 3 1(3)

3 2 6 · 2m 9 2(6), 0(3)

2 1 2 2 1(2)

2 2 4 · 2m 6 2(4), 0(2)

2 3 6 · 3m + 4 12 3(6), 1(4), 0(2)

1 1 1 1 1(1)

1 2 2 · 2m 3 2(2), 0(1)

1 3 3 · 3m + 1 5 3(3), 1(1), 0(1)

1 4 4 · 4m + 2 · 2m + 1 10 4(4), 2(2), 1(1), 0(3)

1 5 5 · 5m + 3 · 3m + 2 · 2m + 3 15 5(5), 3(3), 2(2), 1(3), 0(2)

Table 11.2: The Witten Index as a function of k, n, and m. The behavior of the
Witten Index as a function of the number of quark and anti-quark pairs m allows us
to calculate the eigenvalues λl of the operatorW†W and their multiplicities Nl. They
are listed in the last column as λ1(N1), λ2(N2), . . . .

υ = π
3

n = 1 U(1)1

(k = 1) n = 2 U(2)2,1 ⊕ U(2)2,−3

n = 3 U(3)3,1 ⊕ [U(1)1 × U(2)2,−3]⊕ U(3)3,−2

n = 4 U(4)4,1 ⊕ 2[U(2)2,1 × U(2)2,−3]⊕ [U(1)1 × U(3)3,−2]⊕H(2,2)

n = 5 U(5)5,1 ⊕ U(5)5,1 ⊕ 2[U(3)3,1 × U(2)2,−3]⊕ [U(1)1 ×H(2,2)]⊕
[U(2)2,1 × U(3)3,−2]⊕ [U(2)2,−3 × U(3)3,−2]

υ = π
2

n = 1 U(1)2

(k = 2) n = 2 U(2)4,2 ⊕ U(2)4,−2

n = 3 U(3)6,2 ⊕ [U(1)2 × U(2)4,−2]⊕ U(3)6,−1

υ = 2π
3

n = 1 U(1)3

(k = 3) n = 2 U(2)6,3 ⊕ U(2)6,−1

Table 11.3: The results of [1] regarding the equivalence of the Hilbert spaces of
Tr-S and Chern-Simons theory on T 2 as representations of the mapping class group
SL(2,Z) together with U ,V . The notation U(n)k′,k′′ corresponds to a Chern-Simons
theory where the U(1) part is at level k′and the SU(n) part is at level k′′. One of the
sectors (4 = 2 + 2) for n = 4 and k = 1 could not be matched with a Chern-Simons
theory and is therefore written explicitly as H(2,2). It also appears in the 5 = 2+2+1
decomposition of the n = 5 theory.
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k n = n1 + · · ·+ np Hilbert space

1 2 = 1 + 1 U(2)2,1

1 2 = 2 U(2)2,−3

2 2 = 1 + 1 U(2)4,2

2 2 = 2 U(2)4,−2

3 2 = 1 + 1 U(2)6,3

3 2 = 2 U(2)6,−1

Table 11.4: The n = 2 results of [1], sector by sector. Each Hilbert space of a
Tr-S sector is equivalent, as a representation of the mapping class group SL(2,Z)
and U ,V , to a corresponding Hilbert space of Chern-Simons theory. The notation
U(2)k′,k′′ corresponds to a Chern-Simons theory where the U(1) part is at level k′ and
the SU(2) part is at level k′′.
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Chapter 12

Discussion

We have computed the Witten Index of Tr-S theory on T 2 with charges, and we
have used the results to calculate the eigenvalues of simple Wilson loop operators in
the theory. The Witten Index of the U(n) theory with parameter k and 2m charges
is listed in Table 11.2. We found that for gauge group U(2) and for the k = 2 case
(the basic S-duality twist corresponding to τ → −1/τ) the results are consistent with
a conjecture put forward in [1] relating the theory to two U(2) Chern-Simons theories
with U(1) ⊂ U(2) at level 4 and the SU(2) at levels ±2. This would imply that the
low-energy theory has two “superselection” sectors. On the other hand, we saw that
in most other cases of n and k, the simple decomposition into superselection sectors
labeled by a conjugacy class in the permutation group Sn (as conjectured in [1]) is
inconsistent with the form of the Witten Index results, and several sectors have to be
combined together to yield a consistent theory. What this theory is we do not know,
but we were able to show that it is inconsistent with pure Chern-Simons theory, at
least at low levels.

A physical perspective for understanding the discrepancy is plausibly as follows.
Well-defined Wilson loops in the four-dimensional N = 4 SYM theory with twisted
boundary conditions flow, in the low-energy limit, to a S-duality invariant operator
Winv. that is a linear combination of Wilson loops and dual monopole operators. For
example, as first briefly discussed in Section 6.6 of [1], for k = 2, the relevant operator
supported on any curve C flows as1

Winv.(C, x3) −→W(C, x3) +M(C, x3) +W(C, x3)† +M(C, x3)†

where M is the dual ’t Hooft operator. It is thus possible that Wilson loops in Tr-S
theory correspond to an appropriate dimensional reduction of Winv.. As a simple
check, we note that for the abelian case, computing tr[(W†inv.Winv.)

m] yields also the
index to be k. Moreover, for the only nonabelian case which agrees with Chern-
Simons theory, namely k = n = 2, the expectation values of monopole operators

1For other values of k, Winv. involves mixed Wilson-’t Hooft operators. See, for example, [58] for
an illuminating discussion.
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and Wilson loops are identical as first explained in [59]. To phrase it simply, the
discrepancy between Tr-S and Chern-Simons theory may be understood physically as
coming from non-trivial electromagnetic boundary conditions that descend from the
four-dimensional twisted theory.

We conjecture that Tr-S is a topological theory for n < r, and we presented some
arguments in favor of this in §8.4. Another possible test of this could be to look
for BPS states that carry nonzero momentum along T 2. If the low-energy theory is
topological we would expect to find only states with energies of the order of 1/R. In
the type-IIA dual the momentum quantum numbers become D0-brane and D2-brane
charge (where the D2 branes wrap directions 1, 10). It would be interesting to study
the bound states of D0-branes with the n fundamental strings. In the limit R → 0
this system can be mapped to a sector of a U(1) dipole-theory [13, 14]. We hope to
explore this further in a separate work.

To calculate the Witten Index we divided the Hilbert space into “sectors” accord-
ing to the pattern of closed and open strings of the dual type-IIA system. We saw
that only a subset of sectors contributes to the Witten Index — the “decongested”
sectors. The remaining (congested) sectors have fermionic zero modes, and they do
not contribute to the Index. It would be interesting to explore these sectors fur-
ther. For example, we noted that the supersymmetric system of charges has a global
U(1) symmetry that is generated by the element J of rotations in transverse direc-
tions that acts on spinors as i

2
(Γ45 + Γ67). Since J commutes with all the surviving

supersymmetry generators it is possible to generalize the Index to

I(u) ≡ tr
[
(−)F eiuJ

]
.

This modified index receives contributions only from ground states, but can get contri-
butions from some congested sectors as well. At the end of §11.2 we gave an example
of a congested sector with 2 complex fermionic zero modes that are all charged under
J . Quantizing these gives a Hilbert space with 4 states with J charges −1, 0, 0,+1
and which contributes a term proportional to (2 − 2 cosu) to the index. It is pos-
sible, however, that the fermionic zero modes interact with the bosonic modes and
calculating I(u) therefore requires a separate treatment and will not be pursued here.

Taking a different approach, it would be interesting to construct Tr-S directly in
terms of the duality-generating theories T (U(n)) defined in [41]. For example, Gaiotto
and Witten argued that S-duality for SU(2) is generated by starting with T (SU(2)),
which they identified with the strongly-coupled low-energy limit of the 2 + 1D N = 4
theory of two equally charged hypermultiplets coupled to a U(1) vector-multiplet.
This theory has a manifest SU(2)×U(1) global symmetry, but as conjectured in [43]
and further explained in [60], the low-energy limit has an enhanced SU(2) × SU(2)
symmetry. The S-duality twist, according to Gaiotto and Witten, is then realized
by gauging one SU(2) with the original gauge field (at x3 = 0 in our context) and
the other SU(2) with the dual gauge field (the one at x3 = 2πR). It would be
interesting to derive our results for the Witten Index directly from this construction.
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The computation is not so trivial, of course, because the T (SU(2)) theory is strongly
coupled.

Recently, Terashima and Yamazaki [44] studied a related compactification with
an S-duality twist but only N = 2 supersymmetry in 2 + 1D. They computed the
partition function of the theory on S3 and related it to SL(2,R) Chern-Simons theory.
It would be interesting to understand if this construction can be modified to provide
information on the N = 6 setting that we studied in this paper.

In [1] another way to reproduce Tr-S from the T (SU(n)) theories was also offered.
This made use of the low-energy limit of a D3-brane boundary on a (p, q) 5-brane, as
constructed by Gaiotto and Witten using T (SU(n)) [41]. The starting point for [1]
in this context was the (2, 0)-theory wrapping the three-dimensional submanifold of
the space (8.5) that is defined by ζ1 = ζ2 = ζ3 = 0. Recently, a beautiful picture of
the low-energy limit of the (2, 0)-theory compactified on a general three-dimensional
manifold has emerged [45]-[61]. It would be interesting to analyze Tr-S from that
perspective as well.

If Tr-S is topological then correlation functions of the low-energy limits of Wilson
loops, discussed in §11.4, construct knot and link invariants. The general question,
to which this paper provides only partial answers in special cases, is what are these
invariants. Recently, there have been exciting new developments in the realization of
knot invariants in terms of field theories and string theory (see [62] -[63] for a sample
of the recent literature). A better understanding of Tr-S might provide new physical
constructions of knot invariants. We hope to explore more general Wilson loops in
future papers.
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Chapter 13

Appendices

13.1 Supersymmetry and fermionic zero modes —

details

In this appendix we expand on various statements made in §9.2, §9.9, and §10.3
about the amount of supersymmetry preserved by intersections of strings and branes
and the fermionic modes that describe these systems at low-energy.

Our conventions are as follows. 10+1D directions are denoted by

I, J,K, · · · = 0, . . . , 10 ≡ \ ,

and we use \ ≡ 10 in indices of Dirac matrices to avoid confusion with 1, 0. We work
in Minkowski signature

ηIJdx
IdxJ = −dx2

0 + dx2
1 + · · ·+ dx2

\ .

All our spinors, whether in 10+1D M-theory on 9+1D type-IIA/B are 32-component
Majorana spinors on which the 11-dimensional Dirac matrices ΓI can act. When
we need type-IIA spinors, we will specify which direction is eliminated (as the “M-
theory direction”). For example, the 2nd row of Table 8.1 is obtained from the 3rd

by eliminating direction 10, so the resulting type-IIA spinors ε are still 32-component
Majorana spinors, but they can be decomposed into left-chirality and right-chirality
spinors:

ε = ε+ + ε− , ε± ≡
1

2
(1± Γ\)ε.

We will construct type-IIB spinors by performing T-duality on another direction. For
example, the 1st row of Table 8.1 is obtained from the 2rd by T-duality on direction
1, so we can define the complex Weyl type-IIB SUSY parameters as

εIIB ≡ ε+ + iΓ1ε− .
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The Dirac matrices ΓI are real and satisfy

{ΓI ,ΓJ} = 2ηIJ , Γ0123456789\ = 1 .

Now take an M2-brane in directions 0, 9, \. We denote

µ, ν, · · · = 0, 9, \; a, b, c, · · · = 1, . . . , 8 .

The M2-brane low-energy fields are the scalars Φa (a = 1, . . . , 8) and the spinors λ,
which satisfy the chirality condition

Γ09\λ = −λ .

Let ε be the 10+1D SUSY parameter and set

εl ≡ 1
2
(1− Γ09\)ε , εr ≡ 1

2
(1 + Γ09\)ε

The SUSY transformations are

δλ = εl + ∂µΦaΓµΓaεr + (λΓµεr)∂µλ , δΦa = λΓaεr + ∂µΦaλΓµεr .

The spinors are real and λ ≡ λtΓ0. From the point of view of the 2 + 1D worldvol-
ume theory, the εr parameters generate worldvolume supersymmetry transformations,
while εl generate the κ-symmetry [64]. If we compactify this M2-brane on T 2 by
making directions 1, 2 periodic, the spinors λ will have 16 linearly independent zero
modes, which generate a multiplet of 256 states. These states are invariant under
all supersymmetries with εl = 0, but not invariant under supersymmetries with εr.
As is customary, we refer to the supersymmetry transformation with εl = 0 as the
“unbroken supersymmetries.”

Now consider an M2-brane stretched along directions 2, 3, which upon reduction
to type-IIA on direction 2 will become an F1 in direction 3. At low-energy there
are 8 scalar fields in the vector representation 8v of the group SO(8) of rotations
in transverse directions 1, 4, 5, 6, 7, 8, 9, 10, as well as their superpartners which are
spinors in (2, 8s) of SO(2, 1)× SO(8). These spinors ψ satisfy

ψ = −Γ023ψ = −Γ1456789\ψ .

Upon reduction to type-IIA we write

ψ = ψL + ψR

where

ψL =
1

2
(1 + Γ2)ψ , ψR =

1

2
(1− Γ2)ψ ,

satisfy
Γ03ψL = ψL , Γ03ψR = −ψR .
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which become left- and right-moving massless fields along the string. Note that in
type-IIA both ψL and ψR are in 8s of SO(8). Now, consider an M2-brane along
directions 9, 10, which becomes a D2-brane in type-IIA, and compactify direction 10
as well. This M2-brane has low-energy fermions χ satisfying

χ = −Γ09\χ = −Γ12345678χ .

Now compactify direction x10. At low-energy, below the x10 compactification scale,
the wrapped D2-brane looks like a string which has left- and right-moving massless
fields χL,R along it. The are defined by:

χ = χR + χL ,

where

χL = 1
2
(1 + Γ\)χ , χR = 1

2
(1− Γ\)χ , Γ09χL = χL , Γ09χR = −χR .

Next, we consider a configuration where such a D2-brane has two F1 strings (with
the same orientation) emanating from a point on it: one string in the positive x3

direction and one string in the negative x3 direction. Note that the total charge at
the point of origin is zero, since the charge of the endpoint of one string cancels the
charge of the endpoint of the other string. Denote the low-energy fields on the string
in the positive x3-direction by ψ(>), and denote the low-energy fields on the string in
the negative x3-direction by ψ(<). Similarly, the wrapped D2-brane, at energies below
the x10 compactification scale, has low-energy fields χ(<) for the x9 < 0 side and χ(>)

for the x9 > 0 side. We are interested in the boundary conditions that connect the
values of the 4 fields ψ(<,>), χ(<,>) at the intersection point.

If we lift this system back to M-theory we get two M2-branes that intersect at
a point. Perhaps the easiest way to derive the requisite boundary conditions is to
deform this system to a smooth M2-brane that extends along a surface that, in
appropriate complex coordinates described below, is a holomorphic curve. The low-
energy reduction, below the x2, x10 compactification scales, looks like a (p, q)-web as
in figure Figure 9.5(b) (see [65, 66] for some examples). The smooth geometry can
be described by techniques similar to those developed in [53]. We define two complex
coordinates

u ≡ e
ix2+x3
L2 , v ≡ e

ix10+x9
L10

where L2, L10 are the radii of directions 2 and 10. The smooth holomorphic curve is
given by

(u− 1)(v − 1) = C (13.1)

where C 6= 0 is a constant. Note that this is a deformation of the singular curve
(u− 1)(v − 1) = 0. An M2-brane that wraps this holomorphic curve will have a low-
energy fermionic field λ on it. We are looking for zero modes of this field which have
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a finite limit at the 4 semi-infinite directions x3 → ±∞ and x9 → ±∞. Below, we
explain how to make the connections:

λ(x9 = −∞)→ χ(<) , λ(x9 =∞)→ χ(>) ,

λ(x3 = −∞)→ ψ(<) , λ(x3 =∞)→ ψ(>) . (13.2)

The linear algebraic relations among these four limit values will constitute the requi-
site boundary conditions.

Consider a part of the M2-brane near x3 → ∞. It is approximately at constant
x9, x10 and stretches in directions x2, x3. The spinor can be decomposed according to
the eigenvalue of Γ23 as

λ = η++η− , η± ≡ 1
2
(1±iΓ23)λ , Γ23η± = ∓iη± , (near x3 →∞) . (13.3)

We then calculate the zero-mode equation

0 = (Γ2∂2 + Γ3∂3)η± = Γ2(∂2 ∓ i∂3)η±

and so η+ is holomorphic in x3 + ix2, and hence in u, while η− is anti-holomorphic.
When extending to the bulk of the holomorphic curve, we have to keep track of the
tangent and normal bundles of the M2-brane surface given by (13.1). At an arbitrary
point p on this surface the tangent plane Tp can be thought of as a subspace of R4

that is the constant tangent space in the x2, x3, x9, x10 directions. As p varies the
embedding Tp ⊂ R4 varies. Locally, we can pick a rotation Ωp ∈ U(2) ⊂ Spin(4) that
maps the tangent plane Tp to a common plane, which we choose to be the x2 − x3

plane, and also varies smoothly with p. At any fixed point p on the surface, this
rotation Ωp is unique up to SO(2) × SO(2) (rotations in the x2 − x3 and x9 − x10

planes separately). Near x9 → ∞, for example, Tp is the x9 − x10 plane and we can
take the rotation in spinor representation to be

Ω = e
π
4

(Γ2\+Γ93) = e
π
4

(1+Γ239\)Γ93

= 1
2
(1 + Γ2\)(1 + Γ93). (13.4)

If we decompose the fermionic field near x9 →∞ as

χ(>) = χ
(>)
R + χ

(>)
L , χ

(>)
R = 1

2
(1 + Γ239\)χ(>) , χ

(>)
L = 1

2
(1− Γ239\)χ(>) (13.5)

the components χ
(>)
R and χ

(>)
L , after rotation of the x9 − x10 plane into the x2 − x3

plane, are

Ωχ
(>)
R = χ

(>)
R , Ωχ

(>)
L = Γ93χ

(>)
L = e

π
2

Γ93

χ
(>)
L = Γ2\χ

(>)
L = e

π
2

Γ2\

χ
(>)
L . (13.6)

Thus, using Ω we can map chiral spinors at any point on the surface to a common
space, and thus extend (13.3) by setting

η± =
1

2
(1± iΓ23)Ωλ. (13.7)
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Let K be the canonical bundle (i.e., the bundle whose sections are holomorphic (1, 0)-
forms on the curve), and let N = K−1 be the normal bundle (where we embed
the curve in C2 in directions 2, 3, 9, 10). The modes η+ transform as sections of
K1/2 ⊗ (N 1/2 ⊕N−1/2) = O ⊕ K, where O is the trivial bundle. The relation (13.7)
thus maps a spinor λ to a section of O ⊕ K (times a trivial spinor bundle in the
transverse directions). So, altogether, we can decompose zero modes into

λ = λR + λL , λR ≡ 1
2
(1 + Γ239\)λ , λL ≡ 1

2
(1− Γ239\)λ .

Then, zero modes λL are sections of K1/2⊗N 1/2 = O which is the trivial bundle, while
zero modes λR are sections of K1/2 ⊗N−1/2 = K. Thus, λL is simply a holomorphic
function of u, with finite limits at the 4 ends, while λR is a holomorphic 1-form with
finite limits at the 4 ends.

In terms of the coordinate u, the curve (13.1) is mapped to the complex u-plane
with 4 singular points: u = 0,∞ correspond to the two ends of the F1-string, while
u = 1 − C, 1 correspond to v = 0,∞, which are the two ends of the D2-brane.
Equation (13.2) becomes

λ(u = 1− C)→ χ(<) , λ(u = 1)→ χ(>) , (13.8)

λ(u = 0)→ ψ(<) , λ(u =∞)→ ψ(>) .

We denote

χ
(<,>)
R ≡ 1

2
(1 + Γ239\)χ(<,>) , χ

(<,>)
L ≡ 1

2
(1− Γ239\)χ(<,>) .

and
ψ

(<,>)
R ≡ 1

2
(1 + Γ239\)ψ(<,>) , ψ

(<,>)
L ≡ 1

2
(1− Γ239\)ψ(<,>) .

As λL modes are sections of the trivial line-bundle, and are therefore constant func-
tions, their boundary conditions must be:

χ
(<)
L = χ

(>)
L = ψ

(<)
L = ψ

(>)
L . (13.9)

On the other hand, the λR modes are sections of the canonical bundle. They cor-
respond to holomorphic 1-forms which we denote by ω(u)du. Being constant near
x3 → ∞ means that ωdu is proportional at u = ∞ to d log u = du/u, and so has a
first-order zero there. Similar analysis of the behavior near the other three singular
points u = 0, 1 − C, 1, shows that the 1-form needs to have at most a simple pole,
and since it vanishes at u =∞, the 1-form is of the form

ω(u) =

(
α

u− (1− C)
+

β

u− 1
+
γ

u

)
du .

Here χ
(<)
R is proportional to the constant α, χ

(>)
R is proportional to the constant

β, ψ
(<)
L is proportional to the constant γ, and ψ

(>)
L is proportional to the constant

−(α + β + γ). Converting back to spinors using (13.7), we find:

0 = Γ39χ
(>)
R − Γ39χ

(<)
R + ψ

(>)
R − ψ(<)

R . (13.10)

Equations (13.9)-(13.10) are the requisite boundary conditions!
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13.2 Additional Combinatorics

13.2.1 The number of decongested binding matrices

In (11.29) we quoted the number f(n,m) of non-equivalent decongested binding
matrices that have at least one nonzero entry in each of the n rows. We will now
derive this expression. We can easily find a recursion formula for f(n,m) by noting
that we can uniquely relabel the strings so that the mth D2-brane is attached to the
nth string. Suppose there are 0 ≤ l ≤ m − n additional D2-branes attached to the
nth string, then the remaining (n− 1) strings have f(n− 1,m− l− 1) configurations,
and therefore

f(n,m) =
m−n∑
l=0

(
m− 1
l

)
f(n− 1,m− l − 1) =

m−1∑
j=n−1

(
m− 1
j

)
f(n− 1, j). (13.11)

Define the generating function

fn(u) ≡
∞∑
m=n

f(n,m)u−m .

Then, (13.11) implies

fn(u) =
∞∑
m=n

m−1∑
j=n−1

(
m− 1
j

)
f(n− 1, j)u−m

=
∞∑

j=n−1

∞∑
m=j+1

(
m− 1
j

)
f(n− 1, j)u−m

=
∞∑

j=n−1

(u− 1)−(j+1)f(n− 1, j)

=
1

u− 1
fn−1(u− 1) .

It follows that

fn(u) =
1∏n

j=1(u− j)
=

n∑
j=1

(−1)n−j

(j − 1)!(n− j)!(u− j)
,

and therefore

f(n,m) =
n∑
j=1

(−1)n−j

j!(n− j)!
jm .
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13.2.2 A generating function for the number of sectors and
Fibonacci numbers

In the following, we will count the number of sectors for all m ≥ 1. Remarkably,
it turns out that the number of sectors for consecutive m’s follows a generalized
Fibonacci sequence = {3, 7, 18, 47, 123 . . .}. To solve this combinatorial problem, we
begin by introducing another set of notations to describe the binding matrices B. We
denote any continuous stretch of rows of B using letters [j] defined as:(

1
0

)
≡ [1],

(
1 1
1 0

)
≡ [2], . . .

(
1 1 1 . . . 1
1 1 1 . . . 0

)
︸ ︷︷ ︸

j rows

≡ [j] (13.12)

and similarly so when the zeroes are located in the first row. Each letter represents

two possible configurations: [1] represents both

(
1
0

)
and

(
0
1

)
; [2] represents both(

1 1
1 0

)
and

(
1 0
1 1

)
; and so on. Thus, for example,

B =

(
1 1 1 0 1 1 1 0 1 1 1
1 1 1 1 1 0 0 1 1 0 0

)
is translated to the word [4][2][1][1][2][1].

(13.13)
In general we cannot recover B from the word, but note that different B’s can be
made equivalent after relabeling of the open strings. In particular, whenever there
is a column with two 1’s, we can relabel the open strings that are to the right of
that column. This will change the matrix B, and potentially also the accompanying
permutation σ, but will give an equivalent physical sector. For example, if we relabel
all strings after the 5th column of (13.13) we get [in the notation of (11.1) of §11.1]:

Bσ =

(
1 1 1 0 1 1 1 0 1 1 1
1 1 1 1 1 0 0 1 1 0 0

)
+1

∼ (13.14)

∼ B′σ′ =

(
1 1 1 0 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 1 1

)
−1

.

This means that up to changing σ we can always assume that after a string of(
1
1

)
columns there appears

(
1
0

)
. The letters [2], [3], . . . thus translate back to

a unique sequence of columns in B. But the letter [1] can translate back to either(
1
0

)
or

(
0
1

)
.

We denote the number of [1] letters in a given word by p. Then, there are 2p ways
to translate the word back to B. There are also two possibilities for σ, which gives
2p+1 possibilities, but now each sector is counted twice because we can exchange the
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entire two rows of B to get equivalent sectors. Altogether, we find that a word with
p letters [1] corresponds to 2p sectors.

We can now count the number of sectors for a generic m > 1 as follows. Let us
consider words that have p letters [1] and r ≥ 0 other letters, which makes (r + p)

letters in total. The total number of different ways to fill in the [1]’s is then (r+p)!
r!p!

.

We need to compute also the total number of ways to write (m − p) as a sum of r
numbers from 2, 3, 4, . . . . This is calculated by subtracting 2 from each letter and
then computing the number of ways to write (m − p − 2r) in this form as a sum of

r non-negative integers, which is simply equal to (m−p−r−1)!
(m−p−2r)!(r−1)!

. Putting these facts
together, the total number of different configurations dm represented by this class of
words is then

dm =
∑
r,p

(r + p)!(m− p− r − 1)!

(m− p− 2r)!(r − 1)!r!p!
2p (13.15)

Finally, we note that the set of B’s that can be represented by a word lacks those

which end with a

(
1
1

)
column, i.e., B1m = B2m = 1. Including such configurations

of which there are dm−1, the total number of different sectors Dm is then found to be

Dm = dm + dm−1 . (13.16)

To find a closed form for Dm, we can sum over m, r, p to write down a rational gen-
erating function whose Taylor coefficients will yield Dm. It is convenient to consider
first

G(t) =
∞∑
m=0

dmt
m =

∑
r,p,m

(r + p)!(m− p− r − 1)!

(m− p− 2r)!(r − 1)!r!p!
2ptm

=
∑
r,p,m

(r + p)!(m− p− r − 1)!

(m− p− 2r)!(r − 1)!r!p!
2ptm−p−2rtp+2r =

∑
r,p

(r + p)!

r!p!
2p(1− t)−rtp+2r

=
∑
p

(2t)p
(
1− t2

1− t
)−p−1

=
1− t

1− 3t+ t2
. (13.17)

Note that d0 = 1. Now, (13.16) and (13.17) allow us to construct the full generating
function for Dm, defined for m ≥ 1. This gives us

F (t) =
∞∑
m=1

Dmt
m =

∞∑
m=1

(dm + dm−1)tm =
∞∑
m=1

(dmt
m) + t

∞∑
m=0

dmt
m

= (1 + t)G(t)− 1 =
3t− 2t2

1− 3t+ t2
. (13.18)

We can thus compute Dm for all m ≥ 1 easily from (13.18), and we get:

Dm = 3, 7, 18, 47, 123, . . . , (13.19)
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which is a sequence that is constructed by taking the even-numbered terms of a
Fibonacci sequence Ln that starts with the first two seed values L0 = 2, L1 = 1. This
sequence (Lucas numbers) is related to the standard Fibonacci sequence Fn, and we
can write down an exact expression1 for Dm:

Dm = L2m−1 + L2m−2 = F2m+1 + F2m−1 = φ2m + (1− φ)2m (13.20)

where φ = (1 +
√

5)/2 is the Golden ratio.
Equation (13.20) can also be derived more directly. For this purpose, consider the

family of sectors for (m− 1) D2-branes. To enumerate the sectors for m D2-branes,
we can add another column to the right2 of B, i.e. any of (1 0)>, (0 1)> and (1 1)>.
This gives a new set of B’s which includes all the sectors for m as a subset. Thus,
we can write

Dm = 3Dm−1 −Om (13.21)

where Om counts the sectors that have been over-counted. It turns out that Om is
exactly Dm−2.

To prove this, we observe that the family of sectors for m−1 D2-branes can always
be divided into two classes: (i)those which are invariant under σ and (ii) those which
are not. Class (i) matrices are bounded at both ends by at least one (1 1)>, whereas
for class (ii), no (1 1)> appears at either the left or right end. Now, for class (ii),
when we add (1 1)> to the right end, the resulting B is now invariant under σ, and
thus 3Dm−1 over-counts by one for each distinct case. By removing the 1st column,
each such over-counted matrix can be mapped to a matrix of class (i) with (m − 2)
D2-branes which end with either (1 0)> or (0 1)>. Similarly, for class (i), consider
each pair of terms generated by adding (1 0)> or (0 1)> at the right end. They can
be easily seen to be equivalent, and thus each such matrix can be mapped to a matrix
of class (i) with (m− 2) D2-branes and which end with (1 1)>. Taking into account
the over-counting for both classes, we see that the total number of over-counts can
be mapped to precisely Dm−2.

We conclude therefore that Om = Dm−2. This means that we have, from (13.21),

Dm = 3Dm−1 −Dm−2. (13.22)

This is precisely the recurrence relation for the generalized Fibonacci sequence we
have found in (13.20). Given D1 and D2, we can generate the rest of the sequence.

Finally, we note that in the case of k = 2, the number of states in each sector is
always 4. (This is not the case for k = 1, 3 as can be seen from our earlier computa-
tions.) For any m, we can verify this straightforwardly using the methods discussed
in this section. Below, we present a short inductive derivation for σ = 1 sectors.

1One can also use a binomial-Fibonacci identity to write Dm =
∑m

k=0
2m−kCk +∑m−1

k=0
2(m−1)−kCk. Invoking (13.16), this gives us a simple closed form for (13.15).

2We can also add another column to the left, but to avoid over-counting, one can choose to add
in only one direction.
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To be definite, let us consider an arbitrary k = 2 sector in m + 1 which begins
with Bi1 = (1 1)>. Such a sector can be thought of as an (m− 1) sector augmented
by two more columns of B as represented in Figure 13.1.

q q q
q q q

(m− 1) D2 branes +

BimBi(m+1)

c cc c
@�

@�

@�

@�

Figure 13.1: The above decomposes the σ = 1 class of sectors (with (m + 1) D2-
branes) in a particular way. The circles on the last two D2-branes indicate various
possibilities for the last two columns of B, giving possibly different sectors.

There are five different possibilities for the last two columns of B that we need
to consider, the rest being related by symmetries. Below, we assume that Bi1 = 1
for i = 1, 2. Also, we denote the action that corresponds to the configuration before
adding the last column by Im, and the resulting action to be Im+1. After some algebra,
we simplify the various actions to be, in each case,

1. Bim = (1 1)>,Bi(m+1) = (1 1)> :

Im+1 = Im +
∫

(pm+1 − pm)
(
2dq1m − dq1(m+1) − dq2m

)
;

2. Bim = (1 1)>,Bi(m+1) = (1 0)> :

Im+1 = Im +
∫

(pm+1 − pm)
(
dq1m − dq1(m+1)

)
;

3. Bim = (1 0)>,Bi(m+1) = (1 0)> :

Im+1 = Im +
∫

(pm+1 − pm)
(
dq1m − dq1(m+1)

)
;

4. Bim = (1 0)>,Bi(m+1) = (0 1)> :

Im+1 = Im+
∫ (

pm+1 − pl
) (
dq1m − dq1(m+1)

)
, where B2l is the second rightmost

column of B2a that is unity;

5. Bim = (1 0)>,Bi(m+1) = (1 1)> :

Im+1 = Im +
∫ (

pl − pm+1
)

(dq2m − dq1m) + (pm − pm+1)
(
dq1(m+1) − dq1m

)
.

Thus, we see that in all of these cases, the new action (for m + 1 branes) differs
from the previous one (for m branes) by a term dependent on new conjugate pairs
of (p, q). This implies that the determinant, and hence the number of states remains
the same. Assuming other choices of Bi1 and σ = −1 leads to a similar conclusion
too, but we will leave details to the interested reader. Essentially, only in the k = 2
case, the number of states = 4 for all sectors with m = 2 branes. The calculation
above, together with similar ones for other choices of Bi1 and σ = −1, then implies
that the number of states = 4∀m by induction.
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Figure 13.2: External quark and anti-quark sources are realized as endpoints of
fundamental strings. 2m D3-branes (m = 2 in the picture) control the (x1, x2) coor-
dinates of the sources. (x1, x2) are along the direction of the n D3-branes.

13.3 An alternative set of boundary conditions us-

ing tilted D3-branes

At the end of §9.9 we mentioned an alternative possibly useful set of boundary
conditions for the fields Xµ

c , ψc (c = 1, . . . , 2m) at the x9 = ∆ or x9 = −∆ end of the
2m open strings, which we will now describe. The boundary conditions that we used
in the main text are formally realized by D5-branes. Here we will instead realize the
boundary conditions by D3-branes. By tilting the D3-branes, these boundary condi-
tions can be made to preserve one real supercharge. They also have the advantage
that they can be realized more comfortably in string theory, avoiding the complica-
tions mentioned below (9.33). However, they suffer from additional fermionic zero
modes which render the Witten Index identically zero. We discuss this construction
below.

In this alternative set-up, we realize the 2m sources as endpoints of 2m strings
that end on the n D3-branes. The coordinates of one end of the jth string are thus
given by

(x0 = t, x1 = a
(j)
1 , x2 = a

(j)
2 , x3 = x4 = x5 = x6 = x7 = x8 = x9 = 0).

We control the coordinates (x1, x2) of the endpoint of the jth string by letting its other
endpoint lie on another D3-brane whose (x1, x2) position is fixed. Thus, for each j =
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Brane type (number) 1, 4 2, 7 3 5, 6 8 9

Original D3 (n) −→ −→ ÷
String F1 (2m) à
additional D3 (2m) ↗ ↗ −

Table 13.1: Open strings end on the original n D3 branes and additional 2m D3-
branes. ↗ denotes a brane that extends along the diagonal of the corresponding
plane (such as x1−x4 = const.) and −→ denotes a brane that extends along the first
direction (x4 = const.).

1, . . . , 2m we introduce a D3-brane which controls the jth source (see Figure 13.2).3.
We take the 2m D3-branes to be parallel to each other, and let the cth one occupy
the locus

x1 − x4 = a
(j)
1 , x2 − x7 = a

(j)
2 , x3 = 0 , x9 = ∆j , x5 = x6 = 0 . (13.23)

We will assume that

∆j+m = −∆j < 0 , j = 1, . . . ,m,

so that a D3-brane that controls a quark (j ≤ m) is at a positive x9 and a D3-brane
that controls an anti-quark (j > m) is at a negative x9, and all strings have a nonzero
mass. We will also set ∆1 = · · · = ∆m = ∆ for simplicity. As we argued below (9.10),
∆ will not affect the low-energy description, and in fact the mass of the string is an
irrelevant operator in the IR.

Equation (13.23) describes a D3-brane that extends along the x8 direction and
along the diagonals of the x1−x4 and x2−x7 planes. The directions of the D-branes
are summarized in Table 13.1. They are designed so that the combined system of
original n D3-branes and the additional 2m D3-branes preserves some amount of su-
persymmetry. More precisely, we find 4 unbroken supersymmetries that are preserved
by this combined system [68, 69, 70, 71]. Including the fundamental string and the
S-R-twist we find that there is only one unbroken real supercharge left. Another way
of saying this is that out of the original 12 supercharges that are preserved by the
n D3-branes and the twist, 11 are broken by the 2m branes and the fundamental
strings.

Recall that the original n D3-branes extend in directions x1, x2, x3 and occupy the
locus

x4 = x5 = x6 = x7 = x8 = x9 = 0 . (13.24)

3This is reminiscent of the way Wilson loops were calculated in the topological string realization
of Chern-Simons theory by Ooguri and Vafa [67]. We are grateful to Kevin Schaeffer for pointing
out to us the connection with that work.
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Brane 1 3 4 5 6 7 8 9 10

F1 ÷
D2 à −
NS5 − − − − −

Table 13.2: In the type IIA dual of Table 13.1, the D2-branes end on NS5-branes.
Appropriate low-energy background fields on the NS5-brane worldvolumes control the
position of the Wilson loop in the type-IIB picture.

Therefore, an open string with one endpoint on the original D3-branes and the other
endpoint on one of the 2m D3-branes will have minimal length (of ∆) if and only if
all its coordinates except x9 are constant:

x1 = a
(c)
1 , x2 = a

(c)
2 , x3 = x4 = x5 = x6 = x7 = x8 = 0 .

The positions of the 2m D3-branes therefore control the positions of the 2m quarks
and anti-quarks.

Now we transform the system to type-IIA by applying the U-duality transforma-
tion described in Table 8.1. After the series of dualities of Table 8.1 the 2m D3-branes
turn into type-IIA NS5-branes that wrap directions x1, x4, x7, x8, x10. The parameters
(a

(c)
1 , a

(c)
2 ) that enter into the conditions (13.23) are encoded in the compact scalar Φ

and 2-form B that are part of the low-energy tensor multiplet of the NS5-brane. We
have

B = (x4 + a
(j)
1 )dx1 ∧ dx10 − x7dx0 ∧ dx8 , Φ = x7 + a

(j)
2 . (13.25)

The type-IIA system is described in Table 13.2.
Similarly to the set-up in the main text, we have to connect each D2-brane that

corresponds to a quark with a D2-brane that corresponds to an anti-quark and glue
them into a smooth D2-brane that ends on one NS5-brane at x9 = ∆ (j = 1, . . . ,m)
and another NS5-brane at x9 = −∆.

For the specific purpose of computing the Witten Index however, this configuration
is not so useful because, in an analogous computation as was done in §10.3, we found
that there are fermionic zero modes that will make the contribution to the Witten
Index vanish. Nonetheless, we also found that this configuration preserves one real
supercharge, and thus it may turn out to be useful in understanding other aspects of
the problem.
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Part IV

Abelian Self-duality and
Gravitational Chern-Simons

Theory
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Chapter 14

Motivation

There exists an intriguing connection between three-dimensional Chern-Simons
theory and S-duality of four-dimensional N = 4 super Yang-Mills (SYM) gauge the-
ory. For abelian gauge groups the connection is simple and can be stated as follows
[1]. Compactification of SYM on a circle with boundary conditions that are twisted
by an S-duality accompanied with an R-symmetry twist in order to eliminate zero
modes and preserve supersymmetry, leads to a 2 + 1D low-energy theory that is pure
Chern-Simons theory at a level k determined by the complex coupling of SYM given
by

τ ≡ 4πi

g2
YM

+
θ

2π
,

with θ and gYM being a theta angle and gauge coupling constant.
In particular, the self-dual coupling constant τ = i is invariant under S : τ → −1/τ

and leads to Chern-Simons level k = 2. In [1] the compactification of SYM was on
a flat three-dimensional manifold (T 2 × R). Since the resulting low-energy theory
is topological, it is independent of the metric. But this assertion is not completely
obvious from the outset. In particular, the symmetries of the problem appear to allow
a gravitational Chern-Simons term, which is defined by analogy with the Yang-Mills
Chern-Simons term in the familiar form

SGCS =
1

4π

∫
M3

(ω ∧ dω +
2

3
ω ∧ ω ∧ ω)

where ω is the Levi-Civita connection one-form on the spin bundle of M3. This term
can be rewritten on a four-manifold M4 with boundary ∂M4 = M3 like

SGCS =
1

2π

∫
M4

tr(R ∧R)

as in §15.1 and must be studied on M4 with non-vanishing curvature R = dω+ω∧ω.
In fact, we can expect that adding the gravitational Chern-Simons term is required

for regularizing this theory [30]. Chern-Simons partition function, at least for large
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k, can be defined as a topological invariant of the oriented, framed three manifold
M3 (a framed three manifold being one that is endowed with a homotopy class of
trivializations of the tangent bundle). This can be done only after adding the grav-
itational Chern-Simons term which is necessary for anomaly cancellation. However,
the Lorentz Chern-Simons term is of a higher-order in derivatives, so only the Yang-
Mills Chern-Simons term is a part of the low-energy effective supergravity theory, as
was found in the study of the ground states [1].

The U(1) gauge theory on a four-manifold M4 has S-duality symmetry which is
an electric-magnetic duality that inverts the gauge coupling constant and extends to
an action of full SL(2,Z) on the complex coupling. However, the partition function of
abelian SYM theory is not a modular-invariant function under this transformation.
It instead transforms as a modular form, with weights that depend on the Euler
characteristic, χ, and the signature, σ, of the four-manifold which can be written as

χ =
1

2π

∫
M4

tr(R ∧ ∗R) , σ =
1

2π

∫
M4

tr(R ∧R)

in terms of the curvature two-form [31]. Thus the partition function includes the
gravitational Chern-Simons term contribution.

Indeed, we do find such a contribution to be, at least to the lowest order in the
deviation from flat four-dimensional space, in agreement with the S-duality of the
abelian gauge theory at the self-dual point. We realize the S-duality geometrically
starting with the six-dimensional description of the worldvolume of an M5-brane in
M-theory, called (2, 0) theory, which gives N = 4 SYM when compactified on a two-
torus [38], and introduce a twist on this T 2. The one-loop perturbative contribution
in this theory is in accord with low-energy approximation of the gravitational Chern-
Simons theory.

14.1 A Review of (2, 0) Theory

The wonderfully thing about supersymmetry is that it makes supersymmetric
theories amenable to exact treatment allowing holomorphic quantities to be exactly
computed. Like with any other symmetry, the more supersymmetry a theory has,
the more constrained the field content and interactions are. The largest number
of supercharges possible in free field theory is sixteen. With a greater number of
supercharges than that, the free multiplet would include fields with spin larger than
one which result in inconsistent theories without gravity.

The most symmetric classical field theory with sixteen supercharges is supersym-
metric Yang-Mills (SYM) theory in ten dimensions. And the simplest such theory is
an Abelian gauge theory. Its supermultiplet includes only a massless photon and a
massless fermion. The nonabelian extension of this theory exists as a classical field
theory, but its quantum version is anomalous and therefore inconsistent.
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We can construct theories with sixteen supercharges in less than ten dimensions
by taking a toroidal compactification and retaining only the states of zero compact
momentum. The theory in d dimensions, which is obtained by dimensional reduction
of the abelian classical theory in ten dimensions, is anomaly free. Its Lorentz sym-
metry is Spin(d− 1, 1) while its R-symmetry group, Spin(10− d), originates from the
rest of ten dimensional Lorentz group.

The most widely known theory with sixteen supercharges is the N = 4 SYM
theory in four dimensions. But in six dimensions, there is also a supersymmetry
algebra with sixteen supercharges [72]. It includes four spinors of the same chirality
and it is usually called the (2, 0) algebra and thus the corresponding class of theories
are (2, 0) theories. Upon compactification on a two-torus down to four-dimensions
these theories become N = 4 SYM [38]. The complex coupling parameter τ of the
four-dimensional U(1) gauge theory is simply the complex structure τ of the T 2.

These theories appeared first in the study of K3 compactications of the Type IIB
theory at an ADE singularity [38] and later in the context of coincidental 5-branes
in M-theory [73, 74]. They are expected to be non-trivial fixed points of the renor-
malization group in six dimensions and thus not to have a dimensionful parameter.
Furthermore, since these fixed points are isolated, they have no dimensionless param-
eter.

In six dimensions, (2, 0) supersymmetry is maximal for a non-gravitational the-
ory, and there is a unique matter multiplet with this supersymmetry. The (2, 0)
supersymmetry constrains the metric on the moduli space to be locally flat. Along
this moduli space there is a tensor multiplets of (2, 0) supersymmetry which includes
five scalars and a two-form B, whose field strength three form is selfdual

H ≡ dB = ∗dB. (14.1)

Even without supersymmetry or fermions the theory needs a spin structure for its def-
inition. With supersymmetry, the mater multiplet also contains four chiral fermions.
This tensor multiplet reduces to a vector multiplet of four-dimensional N = 4 super-
symmetry when compactified on a two-torus.

The theory with a single matter multiplet can be realized as the low energy limit
of the worldvolume theory of a 5-brane in M-theory. Since the only parameter of the
5-brane theory is the eleven-dimensional Planck scale, we again see that, in this limit,
there are no adjustable parameters, dimensionful or dimensionless. The presence of a
self-dual field makes a covariant Lagrangian description tricky [75], but a noncovariant
Lagrangian can be written [76] and it is unique, with no free parameters. However,
known results about the low-energy description of the theory will be sufficient for
understanding our result.

This six-dimensional theory has string-like excitations of an unusual kind. From
the point of view of the construction via type IIB theory at an ADE singularity
the lightest scale in the theory is set by the tension of the strings. However, (2, 0)
theories are scale-invariant just as are the four-dimensional N = 4 gauge theories.
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And thus the strings in a (2, 0) theories are entirely different from other strings we
have studied: they live in six dimensions, they are not associated with gravity, and
they have no adjustable coupling constant — their interactions in fact are of order
one. This is why (2, 0) theories are also called tensionless string theories. Of all the
new phases of gauge and string theories that have been discovered this is perhaps the
most mysterious, and may be a key to understanding many other things.

14.2 (2, 0) Theory on a Twisted Geometry

We are interested in studying S-duality of the abelian N = 4 SYM theory in four
dimensions, which can be realized as a geometrical twist of the six-dimensional (2, 0)
theory [38]. This section describes the construction of this theory by twisting of the
worldvolume of the coincident M5-branes while applying appropriate boundary con-
ditions to the associated fields. This may well be the proper setting for understanding
the S-duality of N = 4 gauge theory.

Let the coordinates on the six-dimensional Minkowski manifold of the (2, 0) theory
be xµ with µ = 0, . . . , 5 while we will use xa with a = 0, . . . , 3 for coordinates on M4.
Let us compactify this six-dimensional manifold to M4 × T 2 with the coordinates on
the two-torus, x4 and x5, given in terms of complex z = x4 + ix5 ∈ C. We regard
the T 2 with structure constant τ as this complex plane C modded out by the lattice,
C/(Z + τZ), so that z ∼ z + 1 ∼ z + τ . After shrinking this torus to zero size the
leftover gauge theory on M4 has manifest S-duality coming from the diffeomorphisms
of the T 2. This is similar to type IIB SL(2,Z) strong-weak coupling duality viewed
as a lower dimensional manifestation of M-theory diffeomorphism invariance [77].

Indeed, N = 4 U(1) super Yang-Mills theory with coupling constant τ is the
low-energy limit of six-dimensional (2, 0) theory compactified on a T 2, with τ being
the complex structure parameter of the torus, where S-duality can be realized as the
SL(2,Z) transformation. If we denote a general SL(2,Z)-element by

g ≡
(

a b
c d

)
, g : τ → aτ + b

cτ + d
(14.2)

is the action of the S-duality transformation on the coupling τ where ad− bc = 1.
We set this complex coupling to the self-dual value τ = i and introduce S-duality

twist into the compactification of the N = 4 SYM on a circle by introducing an
unusual boundary conditions on the fields along this S1, which we choose to be in
the direction x3. This is achieved by inserting a strong-weak coupling transformation
that realizes τ → −1/τ and corresponds to

g =

(
0 −1
1 0

)
. (14.3)
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This choice of g is permissible as it leaves the coupling τ = i invariant. Thinking
of the circle as the segment x3 ∈ [0, 2πR] with endpoints 0 and 2πR identified, we
require the field configuration at 2πR to be an S-dual of that at 0. This kind of
boundary condition is what I have been referring to as an S-twist.

In particular, on the gauge field two-form B of the (2, 0) theory, the boundary
conditions that results from this S-twist are

Baz(x3 + 2πR) = iBaz(x3), Baz̄(x3 + 2πR) = −iBaz̄(x3) , (14.4)

while other components are not effected. This is exactly the action of the S-duality on
the electric and magnetic fields [ ~E±i ~B](x3+2πR) = ±i[ ~E±i ~B](x3) = [− ~B±i ~E](x3).

We recall [40] that g ∈ SL(2,Z) acts nontrivially on the supercharges

g : Qaα →
(
cτ + d

|cτ + d|

)− 1
2

Qaα = e−
iπ
4 Qaα . (14.5)

In order to get a supersymmetric theory, we therefore need to supplement the S-twist
with an R-symmetry twist so that the phase in (14.5) is canceled and supersymmetry
restored. However, only the S-twist affects the gauge field, and only the R-twist
affects the scalars and fermions. So we will not need to consider details of the R-twist
for our calculation.

This setup has been studied in detail on a flat space (with M3 = T 2 × R) in [1]
as well as Part III of this dissertation and it was found to correspond at low-energy
to the pure Chern-Simons theory at level k = 2. Here, I extend that study of the
ground states to include the first order quantum effect arising as a consequence of
curvature on M4. This effect was calculated to one-loop and presented in §15.2. It
turns out that this contribution agrees with the lowest order effect of the gravitational
Chern-Simons term as in §15.1.
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Chapter 15

Calculation

In this Chapter I present details of the calculations that compare the low-energy
effective gravitational Chern-Simons theory with the one-loop correlation function in
(2, 0) theory twisted as described above. A reader that does not wish to get bogged
down in these can find a summary of the results in Chapter 16.

15.1 Low-Energy Expansion of Gravitational Chern-

Simons Theory

Although the Chern-Simons term was first introduced in three-dimensional gauge
field and gravitational models [78], it can also deform physical theories in four-
dimensional space-time, where it modifies conventional kinematics and dynamics in
a Lorentz violating fashion. This possibility has been investigated for Maxwell elec-
trodynamics [79] and in the present calculation we study a similar deformation of
Einstein’s general relativistic gravity theory.

On a four-manifold M4 gravitational Chern-Simons Lagrangian density is given by
the Pontryagin density which is the divergence of topological Chern-Simons current
in analogy with the Yang-Mills case

SGSC =
1

2π

∫
M4

tr(R ∧R) (15.1)

where R is the curvature two-form. We want to expand this Lagrangian in terms of
a small deviation h from the flat metric on a Minkowski manifold M4

gµν = ηµν + hµν . (15.2)

For this low-energy approximation we will be keeping just the lowest order in h so
that, for example, Christoffel symbol to the first order in h looks like

Γνµλ =
1

2
δνσ(∂µhλσ + ∂λhσµ − ∂σhλµ) . (15.3)
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To complete this calculation we are switching to the non-coordinate basis

ea = ea
µ∂µ (15.4)

where ea
µ are valued in GL(4,R) and ∂µ are the coordinate basis. We start by writing

the matrix valued connection one-form as

ωab = eaν(∂µeb
ν + eb

λΓνµλ)dx
µ . (15.5)

When expanded to the first order in h the connection looks like

ωab =
1

2
δaσδb

λ∂[λhσ]µdx
µ . (15.6)

And the curvature two-form

Ra
b = dωab + ωac ∧ ωcb (15.7)

to the first order in h is given by

Ra
b =

1

2
δaσδb

λ∂ν∂[λhσ]µdx
ν ∧ dxµ. (15.8)

The gravitational Chern-Simons Lagrangian density to the lowest order in the
deviation from flat metric h is

LGSC =
1

2π
Ra

b ∧Rb
a =

1

4π
εµναβ∂α∂[σhτ ]β∂ν∂

σhτµdV (15.9)

which is in agreement with [80].
For a plane monochromatic gravitational waves with wave-vector pα satisfying

pαp
α = 0 we can rewrite ∂α∂σhτβ = −pαpσhτβ and the above approximation becomes

LGSC =
1

2π
Ra

b ∧Rb
a =

1

4π
εµναβpαp[σhτ ]βpνp

σhτµ. (15.10)

This is the result we are comparing with the one-loop amplitude calculation of the
twisted abelian gauge theory at the self-dual coupling constant τ = i, presented in
the next section.

15.2 Field theory loop calculation

As described in Chapter 14, we start with the six-dimensional (2, 0) theory com-
pactified first on a two-torus down to four dimensional N = 4 SYM and then on a
circle with an S-duality twist at self dual SYM coupling τ = i so that the twist is
a symmetry of the theory. We are shrinking the T 2 in directions x4 and x5 to zero
size and retaining only the states of zero compact momentum by setting p4 = p5 = 0.
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However, momentum along the S1 direction is not vanishing, but quantized in an
unusual way. As a result of the geometrical twist introduced along the circle the
Kaluza-Klein modes along S1 are shifted by ±1/4.

This effect of the S-twist can be seen as follows. Recall the action of the twist
on the B-field two-form (14.4) and let us first focus on Baz (with a = 0, . . . , 3, while
z = x4 + ix5 and x3 ∈ [0, 2πR]) which S-twist multiplies by i. Starting at x3 = 0 and
making a full circle in the x3-direction shifts momentum eigenstates eip3x3/R of Baz by
e2πip3 . But they must be the same at x3 = 0 after the S-twist by i = eiπ/2. It follows
that p3 ∈ Z− 1/4 for the modes of Baz. Equivalently, the Kaluza-Klein modes of Baz̄

are p3 ∈ Z + 1/4 instead as S-twist multiplies Baz̄ by −i.
The bosonic field content of the (2, 0) consists of five scalars, corresponding to five

broken translations, and a self dual two-form potential, B, with self-dual field strength
H = dB. There are also the Fermionic superpartners, symplectic Majorana Spinors,
all together making up the tensor multiplet. Due to the self-duality constraint on H,
it is not possible to write a simple action for the tensor multiplet even at the linearized
level [77]. This may be achieved, however, by introducing an auxiliary scalar that
effectively allows one to gauge away the anti-self-dual degrees of freedom. This is
often referred to as the PST approach [75].

While it is difficult to write the full action for (2, 0) theory [76], as we are looking
for the highest order effect of spacetime curvature on this theory, using an incomplete
low-energy approximation of the action will suffice

S0 =

∫
L0 = − 1

12g2

∫
d6xHµνλH

µνλ (15.11)

where the three-form field strength Hµνλ, in terms of two-form gauge field Bνλ, is
given by

Hµνλ = 3∂[µBνλ].

Only the self-dual part H
(+)
µνλ contributes to the (2, 0) theory action, where

H
(±)
µνλ =

1

2

(
Hµνλ ±

1

6
εµνλαβγH

αβγ

)
. (15.12)

After gauge-fixing, the correlation function of the three-form can be written in mo-
mentum space as〈

Hµνσ(p)Hαβγ(q)
〉

=
(2π)6(2g2)δ(p + q)

p2
p[µp

[αδβν δ
γ]
σ]. (15.13)

Separating the T 2 coordinates and using that gσz = 0 except for gzz̄ = 1 as well as
that pz = pz̄ = 0 in low-energy limit gives correlation〈

Hmnz(p)Habz(q)
〉

=

(
2

9

)
(2π)6(2g2)δ(p + q)

p2
p[mp

[aδ
b]
n] (15.14)
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and a similar result for
〈
Hmnz̄(p)Habz̄(q)

〉
where Greek indices run over six-dimensions

(α, β = 0, . . . , 5) while Roman indices are reserved for M4 (a, b = 0, . . . , 3) and z is
the complex coordinate on the T 2.

To calculate first order correction to this theory coming from curvature, let the
metric be given by its deviation from flat gφχ = ηφχ + hφχ, as before, and expand the
Lagrangian in powers of hφχ as

L = L0 + hφχT
φχ + hφχhφ̇χ̇T

φχT φ̇χ̇ +O(h3)

in order to get a low-energy effective description. We will calculate one-loop amplitude

�
Figure 15.1: One-loop diagram computed in twisted (2, 0) theory with vertices hφχT

φχ

and hφ̇χ̇T
φ̇χ̇ where hφχ are deviations from flat metric and T φχ is the low-energy-

momentum tensor.

contribution with interactions hφχT
φχ where T φχ is the energy-momentum tensor of

the incomplete Lagrangian L0

T φχ = − 1

2g2
Hχ

νσH
φνσ +

1

12g2
ηφχHµνσH

µνσ. (15.15)

We also must separate self-dual and anti-self-dual contributions to energy-momentum
tensor T φχ = T (+)φχ + T (−)φχ. Here T (+)φχ comes from the self-dual part of the field
strength, H

(+)
µνλ, only while T (−)φχ has only H

(−)
µνλ components. Rewritten in terms of

full Hµνλ = H
(+)
µνλ +H

(−)
µνλ this gives

T (±)φχ = ∓ 1

48g2
εφνσαβγHχ

νσHαβγ ∓
1

48g2
εχνσαβγHφ

νσHαβγ

− 1

4g2
Hχ

βγH
φβγ +

1

24g2
ηφχHαβγHαβγ (15.16)

where just T (+)φχ shows up in our calculation as (2, 0) theory has only a self-dual
three-form field strength.

The correlation function of the energy-momentum tensor vanishes in the flat space-
time. But we expect even the one-loop amplitude contribution∫

d4p

(2π)4

d4q

(2π)4
hφχhφ̇χ̇

〈
T (+)φχ(p)T (+)φ̇χ̇(q)

〉
(15.17)
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to be non-zero in our setup. We find that, after the S-twist, a non-vanishing effect
of hφχ is a consequence of the modification in the treatment of loop momentum. In
particular, the momentum component in the S1 direction x3 only takes discrete values
which, instead of being simply integers, are shifted by the S-twist as p3 ∈ Z± 1/4.

The non vanishing term comes from replacing∫
d4p

(2π)4
=

1

R

∫
d3p

(2π)3

∑
n± 1

4

and after regularizing this sum. This indeed is the effect of the S-twist itself which
results in the ±1/4 shifts. In fact, this contribution is in exact agreement with the
gravitational Chern-Simons term (15.10).
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Chapter 16

Interpretation

It was shown in [1] that the low-energy limit of N = 4 SYM theory on a flat four-
dimensional manifold compactified on a shrinking circle with an S-duality twist gives
a topological field theory, whose correlation functions do not depend on the metric
of the spacetime. However, we know that Chern-Simons theory on a manifold with
curvature is not quite invariant but requires a gravitational Chern-Simons counter-
term [30]. Also, [31] shows that the partition function of Chern-Simons theory is
not a modular invariant but transforms as a modular form with weight quadratic in
curvature. These results are suggesting that an S-duality twist should be accompanied
with a gravitational Chern-Simons term.

To check this, we geometrically realize S-duality in SYM as a twist of (2, 0) theory
of coincident M5-branes compactified on a two-torus. We find that the effective low-
energy contribution is in agreement with the O(h2) contribution of the gravitational
Chern-Simons term

LGSC =
1

2π
Ra

b ∧Rb
a =

1

4π
εµναβpαp[σhτ ]βpνp

σhτµ. (16.1)

This is the first step toward proving the conjecture that adding S-duality twist to
N = 4 super Yang-Mills gauge theory gives Chern-Simons theory with gravitational
Chern-Simons contributions.
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