
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A general theory of formality

Permalink
https://escholarship.org/uc/item/5t70z373

Author
Beck, Andrew Edward

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5t70z373
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A General Theory of Formality

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Philosophy

by

Andrew E. Beck

Committee in charge:

Professor Gila Sher, Chair
Professor Samuel Buss
Professor Paul Churchland
Professor Monte Johnson
Professor Sorin Lerner
Professor Clinton Tolley

2011

Copyright

Andrew E. Beck, 2011

All rights reserved.

The dissertation of Andrew E. Beck is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2011

iii

DEDICATION

To Jina Park, without your patience, faith, and grace this work could never

have been completed.

iv

EPIGRAPH

In the beginning . . . the earth was without form.

—Genesis 1

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1

Chapter 2 The General Theory of Formality 8
2.1 Invariance . 8

2.1.1 Invariance in Geometry 10
2.1.2 Invariance In Logic 14
2.1.3 Generalized Invariance 28

2.2 The Theory of Formality . 33
2.3 The Formality of Euclidean Geometry 37

Chapter 3 Formality and First Order Logic 43
3.1 Objectual Formality and First Order Logic 46
3.2 “Logical Formality” . 47

3.2.1 Syntax . 47
3.2.2 Semantics . 53
3.2.3 The Irreducibility of Syntax to Semantics 56

3.3 Formality in Language . 59
3.3.1 Grammatical Formality 61
3.3.2 Sentential Formality 65

vi

3.3.3 Derivational Formality 71
3.4 Logic as a Formal Language 77

Chapter 4 Formality and Programming Languages 84
4.1 Hardware and Machine Independence 87

4.1.1 Machine Codes . 88
4.1.2 Memory Location Independence 102
4.1.3 Degrees of Machine Independence 135

4.2 Beyond Machine Independence 149
4.2.1 Structured Programming 150
4.2.2 Object-Oriented Programming 155
4.2.3 Descriptive Programming 159

Chapter 5 Theoretical and Philosophical Considerations 165
5.1 Theoretical Considerations 165

5.1.1 Non-Relational Consequences 167
5.1.2 Relational Consequences 178

5.2 Philosophical Considerations 188
5.2.1 John MacFarlane and the Specialness of Logic 188
5.2.2 Robert Nozick and Objectivity as Invariance 199
5.2.3 James Woodward and Causality as Invariance 217

Chapter 6 Conclusion . 228
6.1 Summary of Results . 229

6.1.1 Adequacy Results . 229
6.1.2 Utility Results . 233

6.2 Continuing Research . 234
6.2.1 Adequacy Research 234
6.2.2 Utility Research . 238

6.3 Closing Remarks . 241

Bibliography . 242

vii

LIST OF FIGURES

Figure 5.1: Formality hierarchy including first order logic. 226
Figure 5.2: Respects of formality. 227

viii

LIST OF TABLES

Table 4.1: Fragment of Simple Machine Code 91
Table 4.2: Human-Readable Machine Code Program 92
Table 4.3: Machine Code Program . 92
Table 4.4: Control Transfer Commands . 94
Table 4.5: EDSAC control combinations. 110
Table 4.6: Example EDSAC Subroutine (pseudo-code). 111
Table 4.7: Example EDSAC Subroutine (executable). 113

ix

ACKNOWLEDGEMENTS

Even in a discipline as individualistic as philosophy, nothing is ever accomplished

alone. There are many people who deserve my deepest gratitude. I first must thank Gila

Sher. Her insight, encouragement, enthusiasm for this project, and most of all her patience,

made her an ideal director for this dissertation. It could never have been completed without

her. Nor could it have been begun without her, for it was in numerous seminars and

independent studies with her that this project took root. I must also thank Clinton Tolley,

who read numerous drafts of this work, especially the early, difficult drafts of Chapter 4.

This was no easy task, and I owe much to his insightful comments and wisdom. Monte

Johnson also read early drafts and provided historical insights which helped shape the way

I think about formality. Much of the direction in Chapter 4 resulted from some valuable

conversations with Sam Buss, and for this I am grateful. No errors are due them, they are

all without question my own.

I also owe a debt of gratitude to the Southern California Working Group in the His-

tory of Logic and Mathematics, whose members read and provided insightful comments

on a draft of Chapter 3. I gave several presentations at the UCSD Philosophy Graduate

Student Colloquia, and there, and on many other occasions, received valuable feedback

from fellow graduate students. In particular I must thank Matt Brown, whose astounding

willingness to contribute his time and thoughts extends even to this day, and Adam Streed,

comrade in logic with whom I honed my thoughts, particularly when this project was in

its infancy.

Special thanks are due to Tim Gades, and David Diepenbrock, on whom I inflicted

a considerable number of puzzling philosophical and technological questions, and who

helped me answer them.

Most of all, I must thank my wife, Jina Park, for her encouragement and patience in

the completion of this project, and also, together with our daughter Josephine, for inspiring

me in all things.

x

VITA

2004 B.A. in Philosophy summa cum laude, Arizona State University

2009 M.A. in Philosophy, University of California, San Diego

2004-2008 Graduate Teaching Assistant, University of California, San Diego

2011 Ph.D. in Philosophy, University of California, San Diego

xi

ABSTRACT OF THE DISSERTATION

A General Theory of Formality

by

Andrew E. Beck

Doctor of Philosophy in Philosophy

University of California, San Diego, 2011

Professor Gila Sher, Chair

“Form” is one of the first concerns of philosophy, though its centrality to philoso-

phy has somewhat faded. However, in the last few decades it has reemerged as a central

idea in a particular area of philosophy — the demarcation of “logicality.” I show that it

should be of concern more broadly. As invariance, the underlying principle used to char-

acterize logical formality, is not itself essentially logical, important questions arise. Can

invariance be used to characterize other formal theories? Can it furthermore form the basis

of a contemporary, general theory of formality?

xii

I develop and advocate for just such a general theory of formality (GTOF). This

GTOF is based on a notion of invariance which is completely generalized — it consists

simply of the stability of features under functional mappings in a given domain. Different

domains and functional mappings give rise, then, to different types of formality.

In advocating the view, I show that the GTOF has promise for an acceptable com-

bination of adequacy — it does minimal damage to intuitions about formality — and

usefulness. I first show that the GTOF rules geometrical theories to be formal. This is

followed by an examination of standard first order logic, which illuminates the possibility

that a close correlation between syntactic and semantic formalities may be distinctive of

formal languages. This is bolstered by an examination of a number of programming lan-

guages and methods. Finally, some deeper consequences of the GTOF are examined and

its association to other philosophical theories is explored.

The general theory of formality I develop is a promising candidate to fill a gap

in existing theory. Not only does it do justice to some of our deepest intuitions about

formality, but it sheds light on important relationships between formal systems that have

not been previously recognized.

xiii

Chapter 1

Introduction

“Form” is one of the first concerns of philosophy. Understanding forms, both in

particular and in general, was a primary goal of the Socratic tradition, which would have

us believe that grasping these forms provides insight into the depths of reality. If there

was any clear success toward this end, however, no record of it has survived. We have

instead a collection of challenging and troubled views complex enough to consume entire

philosophical careers. Plato’s struggle with “form” first rages in his work and then fades

quietly into irresolution. Subsequent thinkers fall just as far from consensus with one

another as Plato did within himself. Unlike Plato’s vision of an independent world of

“ideal forms,” Aristotle took them to be part of the corporeal world. He linked “forms” to

the very “substance” and “ matter” of which particulars consist, and gave them a place in

the causal order. Aristotle granted the same license to talk of the “form” of humans as he

did to that of geometric figures.

The manifestations of “form” we find in the modern period, though still concerning

the ultimately nature of reality, are dramatically different in character. For example, Bacon

writes,

[T]o inquire the Form of a lion, of an oak, of gold; nay, of water, of air, is a vain
pursuit: but to inquire the forms of sense, of voluntary motion, of vegetation,
of colours, of gravity and levity, of density, of tenuity, of heat, of cold, and all

1

2

other natures and qualities, . . . of which the essences, upheld by matter, of all
creatures do consist. . . . [T]o inquire, I say, the true Forms of these, is that
part of metaphysic which we now define of.1

In a sense this is considerably less general than the most prominent ancient views, as

“form” here only pertains to properties or “natures and qualities” of things, rather than to

the objects or things themselves. Yet at the same time Bacon is clearly suggesting that

“form” is explanatorily significant.

Form also plays a notable role in the work of Kant, whose views are perhaps the

most influential in subsequent thinking about formality. But the “forms” he focuses on

most of are certain subjective structures without which, we are told, understanding would

not be possible. Space and time, for example, are such structures which render the content

of “sensibility” (sensible experience, more-or-less) understandable. Thought, on Kant’s

view, relies on similar conceptual structures, and it is in this category that logic falls. It is,

or is part of, a subjective conceptual structure which is necessary for thought. For Kant

the distinction between “form” and “matter” or “content” has markedly epistemological

significance, owing to the subjective and a priori nature of these “forms.” This is the

foundation for the infamous analytic-synthetic distinction, and one need not grasp its finer

points to see the significant divergence from preceding positions.

“Form,” taken as a subject in itself — apart from logic — currently enjoys far less

attention. This is not the result of any kind of consensus, but is primarily due to dis-

ciplinary specialization and a consequent lack of discourse. Platonic views of form are

implicitly endorsed by many mathematicians, and vestiges of Aristotelian “formal causes”

have an uncomfortable existence in the biological and medical sciences.2 There is con-

1[Bacon, 2000], II. vii. §5.
2This stems from the use of teleological explanation, wherein the end, purpose, or “telos” of a system

is provided as the explanation for the system’s existence or function. Aristotle referred to such a telos as
a formal type of cause, and it is consequently closely tied to his account of “form.” In most philosophical
accounts of scientific explanation, teleological explanation is seen as inferior, at best, and most scientific
disciplines have moved away from it. One does not, for example, explain anything about quarks in terms of
their “purpose.” However, biological evolution and other processes give rise to systems in such a way that

3

siderable consensus on the idea that logic is formal in some sense,3 and mathematics as

well. Most would likely agree to physics being intuitively “more formal” than chemistry,

which itself is possibly “more formal” than biology. “Form” features in literary contexts

in contrast to “content,” and in many cases the second is considered to be more interest-

ing than the first.4 Computer scientists talk about “form” in ways that sometimes have

much in common with logicians, but also call many things “formal” (and sometimes even

“logical”) which fall far outside the scope of the logician’s use of these terms.

What we may draw from this is that interest in a general account of formality, of

what it is to be formal or to have one form rather than another, has waned significantly

over the last thousand years or so. Fields separated from once all-encompassing Philoso-

phy stand on their own, and, together with newly developed disciplines lacking philosoph-

ical ancestry, have found adequate linguistic resources for their own internal purposes.

Disciplinary specialization has made it such that, for example, if literary theorists use

“form” differently from logicians, little confusion results. There can be no misunderstand-

ing where there is no communication. The result is that there is little internal impetus to

develop shared vocabulary or come to terms with differences of use.

But is this a problem? Why not simply embrace pluralism, let a thousand “formals”

bloom, and leave it at that? The case for pluralism about “form” and “formality” is strong

and easy to make in view of the straightforward and compelling semantic evidence just

noted. It is also not something against which we wish to argue. It is not our intention

they can be seen as having purposes — they provide or enable a certain competitive edge, successful strategy,
etc. — and it is then that teleological explanations can be useful. It is difficult to explain the existence of
mammalian hearts, for example, without reference to the need for mammals to circulate blood.

3Although there is also considerable debate over how this should be understood (see [Bonnay, 2008],
[Etchemendy, 1990], [Feferman, 1999], [MacFarlane, 2000], [McGee, 1996], [Sher, 1991], [Tarski, 1986],
and the present work, particularly Chapter 3). For a contrasting view, that logic may not be concerned
explicitly with “form,” see [Novaes, 2010].

4A particular sonnet, for example, is hardly interesting for its rhyme scheme and meter but rather for
what it is saying — its content. Which is not to say that a poet may not construct something interesting by
means of “form,” but merely that one does not say of a particular sonnet that it is good or interesting on
account of those formal features which make it a sonnet. One might make such a judgment about sonnets
generally, over and against other poetical forms, but to do so of a particular token seems somehow mistaken.

4

to dictate to logicians, mathematicians, physicists, engineers, or poets what they should

mean when they discuss “form” amongst themselves. There are, however, several reasons

why we are not comfortable to merely “leave it at that.” To begin with, whether some

general account of form can be given is an interesting philosophical question in itself,

and it has received relatively little attention in recent decades. Advancements since Plato

(philosophical, logical, and otherwise) notwithstanding, the topic is interesting for many of

the same reasons it was interesting then. A further reason is that, as we will see, several of

the colloquial senses of “formal” and “formality” have a high degree of discipline-specific

utility, and there are compelling reasons for thinking that this utility is not really domain-

bound. This suggests that a general theory of formality, based on similar principles, may

well have considerable utility in its own right.

In what follows, we present, expound, and recommend the virtues of what we call

the “general theory of formality,” — the “GTOF.” In Chapter 2 we begin by explaining the

fundamental components of the GTOF and how these pieces work together in the context

of the seminal work on geometrical invariance by Felix Klein (from whence the GTOF

claims conceptual ancestry). We discuss some important and significant aspects of the

theory, but reserve more interesting theoretical consequences for Chapter 5. In Chapter 3

we discuss the GTOF in light of the contemporary debate over the demarcation of stan-

dard first order logic, first to show that logic is indeed formal according to the GTOF

(as it certainly should be), but also to make clear how questions of formality, as we con-

ceive them, are distinct from questions of logicality. In Chapter 4 we broaden our view

to include several programming languages and technological developments of historical

interest. We show not only that the formality of these languages satisfies the GTOF, but

also that the GTOF sheds light on the relationships between these languages, their un-

derlying hardware, and the problems they are used to solve. Chapter 5 explores some

interesting theoretical consequences of the view and its relationship to other philosophical

work on formality and invariance. Some final remarks and speculation on future research

are presented in Chapter 6.

5

The approach and purpose of this inquiry diverge in significant ways from those

commonly employed and approved of in contemporary philosophy, and this warrants a few

comments to prevent confusion with superficially similar approaches and also to explain

its legitimacy.

The first thing to make clear is that this project is not primarily directed toward

capturing the meanings of existing uses of “formality” and showing these to be equivalent,

or even somehow consistent.5 This is in contrast to the contemporary “analytic” tradition

which focuses on analysis of and intuitions about existing meanings and ideas. Although

we will engage in some thought about existing notions of “form” and “formality,” this

thought does not ground the legitimacy of the proposed theory any more than to show that

it has useful and interesting applications (and that it can be legitimately called a “theory

of formality” rather than a theory of something else). Hence, if the theory is challenged

on grounds that it is not what anybody actually means by “formality,” and is therefore

dubious, we simply respond that our overall purpose is not purely a descriptive conceptual

analysis. We are taking for granted, more or less, that none of the existing localized notions

of formality are good candidates for a general characterization. 6

It is on account of this inadequacy, together with the interest in having a general

account of formality, that we are proposing this as a new theory of formality.7 And this

brings up a question of legitimacy. If the theory is not grounded on what competent speak-

ers of any language mean by “formality,” why accept it?

5Which is as it should be, since the outlook for such a project is unpromising at best (see [Quine, 1960b]).
6Arguing for this position would require painfully and tediously proceeding through every identifiable

sense of “formality” and showing its inadequacy. Since both pain and tedium are things we hope to avoid
insofar as it is possible, we have elected not to pursue this endeavor. In any case, the GTOF seems to our
undoubtedly biased opinion to be more adequate and compelling as a general theory of formality than any
existing localized notions. The reader is invited to critically consider this position in light of what follows.

7To some extent, this approach places us on the “revisionary” side of Strawson’s famous distinction
between descriptive and revisionary metaphysics in [Strawson, 1959]. We do not purport to describe how
anyone currently thinks of “form” or “formality,” and we are putting forward a new position on the matter.
On the other hand, we see the GTOF as attempting to fill a theoretical gap rather than supplanting some
existing or intuitive position. Furthermore, we are committed to showing the resonance between the GTOF
and existing ways of thinking about “form” and “formality,” insofar as this is possible.

6

It may seem, at first, that an answer to this question could only be forthcoming if

compelling evidence is produced for the theory’s truth. This is, after all, the reason for

theory acceptance most familiar to both philosophers and the general public. This works

well enough for theories intended to capture and describe some objects of reality. Physical

theories, for example, are usually understood as attempts to accurately describe the reality

of the physical world.

Less familiar are those theories which are instead intended to be taken as a way

of speaking about or seeing the world which is useful and productive toward some end.

These kinds of theories are quite common in mathematics, where they consist of systems

of one or more definitions. Philosophers have long accepted the idea that geometry, for

example, is not describing the actual world in the same way as physics. It is, however,

difficult to deny that geometrical theories have applications to the actual world, and it is

when they are applied to particular situations in the actual world that we discover whether

they are useful in that situation or not.

We take the general theory of formality presented here to be of this second type.

The question of its legitimacy should not be grounded on whether it accurately captures

any truths, semantic or otherwise. It should instead be grounded on the virtues it has in

application.8 We will not presume to establish this to any great degree by the end of this

work. We will primarily focus on the exposition and exploration of the general theory of

8The still-disconcerted reader may benefit from considering a generally well-known theory whose pre-
eminence is grounded in just this way. Prior to the work of Alan Turing, Alonzo Church, Stephen Kleene,
and J.B. Rosser, “computability” was a vague, intuitive notion meaning something like “that which is possi-
ble for a computing machine.” One of the most significant contributions of these figures, whereby they are
deemed the “fathers” of the discipline, was in providing a rigorous characterization of computability. As it
happens, there are a number of ways of characterizing computability, some of which may be more appro-
priate than others for certain types of computation. However, the “Church-Turing Thesis,” as it is called, is
accepted as the standard definition not because it captured what was meant colloquially by “computability”
or because it captured the one and only reality of computability, but because it was very useful in a broad
range of contexts. The same sort of thing may be said of some of the most famous of Alfred Tarski’s projects
in the philosophy of logic. In [Tarski, 1983a], contemporary readings notwithstanding, Tarski is not propos-
ing an analysis of what anyone at the time meant by “truth,” but rather a new way of understanding “truth,”
which he took to be useful and fruitful when applied to formalized languages. The practice in mathematics
is widespread, and many examples can be found there as well.

7

formality, with the hope of providing enough impetus that others might investigate and

prove its usefulness in the future.9

If, however, the theory is to be a theory of formality and not something else, it

should respect the significant features of important and central localized uses. If a con-

sequence of our theory was that logic falls short of being formal, or that a programming

language fails to be a formal language, that would challenge its claim to be an adequate

theory of formality (though it may well be an adequate theory of something else). If, how-

ever, our theoretical net turns out not to capture tuxedos and evening gowns, we will not

be too worried until a more adequate rival is produced.

9One important and interesting aspect of the general theory of formality we propose is its relationship
to other similar concepts. These include, in particular, the distinctions between types and tokens, concepts
and instances, genera and species, and also definitional and demarcational concepts, for example identity
conditions and membership conditions. Although far beyond the scope of the present inquiry, we incline
toward thinking that each of these involves formality (both intuitively and as we understand it) in some key
ways, and the reader is encouraged to consider whether and how this may be as the inquiry proceeds.

Chapter 2

The General Theory of Formality

2.1 Invariance

If presented with a statue of Athena and asked to describe its “form,” few of us

would be at a loss. Answers may vary to some degree, but it seems likely that all would

have something to do with the shape or structure of the statue. This fact is implicit in

the verbal construction “That statue was formed out of marble by Phidias.” If presented

with another statue made of wood having exactly the same shape, we would be unlikely to

say that it is the same statue as the first. We might, however, be inclined to say that they

are both “Phidias’ Athena,” and in an unreflective moment we could probably be caught

saying that the second statue is the same as (or even identical to) the first, “but made of

wood.” This is the case most likely because we recognize that, though made of different

materials, the two statues have the same shape or form.

Consider also a particular building, say, the Space Needle. Let us also imagine

that a tremendous earthquake topples the Space Needle (and also that nobody is hurt in

the process). Now, the citizens of Seattle might wish to rebuild their beloved landmark,

and let us assume that they carry out construction precisely as the original building was

constructed, but without reusing any part or material of the original structure. Is this new

8

9

“Space Needle” the same building as the first one? Probably not, but we admit to feeling

some impulse to say that it is — that there is no need to call it “Space Needle II” rather than

just the “Space Needle.” We would not, of course, feel this way had the citizens of Seattle

dusted off the plans for the Washington Monument to use in reconstruction. The reason is

that, in the first case the second building has exactly the same structure or form as the first,

and this is not so with the Washington Monument. Furthermore, if the rubble from the

original Space Needle were reused to construct a different structure, perhaps a municipal

library, there would be no impulse to say that the library is the Space Needle.1 We are

not attempting to make any assertions here about the nature of identity of physical objects.

Instead, the examples serve to illustrate what we take as the fundamental characteristic of

formality — invariance.

In the case of the statues, a comparison is made between the two. It is recognized

that the material used to create the statues is different, but that certain other characteristics

remain the same, or invariant, across the two statues. The same is true in the case of the

Space Needle and its replacement. What is different in this case, however, isn’t even the

type of material out of which the buildings are constructed, just the particular materials

themselves (e.g. they are both made of the same type of concrete, but share no concrete in

common).

Now, this does not mean that we fully grasp the natures of the “forms” of statues

or buildings. In particular, there is also invariance occurring between the original Space

Needle and the library. The materials are invariant (especially if the library used only and

all of the original Space Needle material).

Roughly speaking, however, we can say that in the cases in which there is judged

1A complication lurking just under the surface is that of the distinction between a token and a type. One
might suggest, for example, that “Space Needle” refers not to the particular building, as such, but to the type
of building, of which one building currently standing in Seattle is a token. However, even if so, this is not a
problem, per se. We are not at all concerned with the particular question of identity in this case, but rather
with the role played by invariance. Thus, on this alternative account, we would simply ask what it is that
enables identification of the new building as being of the same type as the old one. If it is that they have
thus-and-such features in common (rather than others), the same points will hold.

10

to be sameness of form, the “shape” or “structure” of the objects remains invariant. This

relationship between certain characteristics and a change or “transformation,” as we will

come to call them, is the central idea of the GTOF. In some sense the GTOF holds that

formality just is invariance. Putting it so simply, however, invites misunderstanding and

criticism and also belies some of the most interesting aspects of the GTOF. As we con-

sidered in the case of the library, we cannot merely point to any invariance whatever in a

given context and declare it to be “formal.” In the case of physical objects, certain trans-

formations are form preserving, while others are not. Saying just which these are hazards

a circularity — without more inquiry we can only say that they are those which leave the

shape or structure intact.

In elucidating the theory of formality we must first take care to understand what

invariance is and the distinctive role played by transformations, as invariance only occurs

with respect to transformations. But we must also answer the question in each case of

formality: “Why these transformations rather than some others?” It is in answering this

question that we will find the theory to be illuminating.

In what follows, we begin with Felix Klein’s seminal work on invariance in geom-

etry and proceed through several generations of generalizers, namely Alfred Tarski, Gila

Sher, and Denis Bonnay. Building upon this foundation, we end the chapter by presenting

the GTOF in technical detail.

2.1.1 Invariance in Geometry

Felix Klein was one of the earliest adopters of the notion of invariance. As laid

out in [Klein, 1872], Klein uses the idea to understand and characterize the relationships

between the newly developing sub-fields of geometry. This endeavor came to be known

as the “Erlangen programme.”

Klein begins with the idea of “space-transformations.” These are various ways of

mapping a given space (usually the entirety of the space) onto itself. Klein’s particular

11

interest is with space-transformation groups — classes of space-transformations for which

the composition operation exhibits closure and associativity, and which possess identity

and inverse elements under this composition.2 The first group to be of interest to Klein is

the group of space-transformations “by which the geometric properties of configurations

in space remain entirely unchanged.”3 This group, called by Klein the “principle group,”

includes translations, dilations and contractions, and reflections in the plane. Once this

group is selected, Klein then defines the “geometrical” properties as those which remain

invariant under space-transformations belonging to this principle group.4

Klein then proceeds to generalize the idea to include any n-dimensional manifold,

such that for any manifold there will be a group of space-transformations which preserve

geometrical properties. Importantly, these groups are not identical. When considered in

this generalized form, there is no ground for privileging one of these groups over the others

(e.g. the principle group). Instead, all groups must be considered as having equal status,

and this brings Klein to his primary task: “Given a manifoldness and a group of transfor-

mations of the same; to investigate the configurations belonging to the manifoldness with

regard to such properties as are not altered by the transformations of the group.”5 Which

is geometrical parlance for the problem of demarcating the various sub-fields of geometry.

The question posed is, given a certain manifold and group of space-transformations, what

configurations (or properties of configurations) remain invariant under that group? We can

appeal to these invariants when demarcating and exploring a given geometrical sub-field.

2Groups of this kind will be familiar to anyone with knowledge of abstract algebra. Because of some
especially useful properties, groups are frequently associated with invariances (or “symmetries” as they are
sometimes called), but as we will see in later chapters, not all interesting transformation classes form groups.

3[Klein, 1872], p. 2.
4It is worth noting that an implicit circularity is lurking here. Klein is supposedly demarcating geom-

etry, but he proposes to do so in terms of space-transformations which leave the “geometrical properties”
unchanged. How can we know which properties are geometrical without already having some understanding
of geometry?

This circularity is analogous to the circularity discussed in the case of the forms of physical objects in the
introduction, and it crops up in nearly every case of formality we discuss below. Fortunately the circularity
is not vicious, can be dealt with easily, and in some cases proves to be enlightening. We resolve the issue in
the particular case of Klein and also discuss it more generally in the concluding section of this chapter.

5[Klein, 1872], p. 4.

12

We may say even that they are characteristic of the sub-field. “Particular stress,” Klein con-

tinues, “is to be laid upon the fact that the choice of the group of [space-]transformations

to be adjoined is quite arbitrary.” So, other than the elements involved in the application

of this approach, we can see two important attributes of the resulting demarcations. First,

Klein’s formulation is essentially relativistic. Whatever it is that turns out to be invariant,

it is invariant with respect to a given group of space-transformations of a particular man-

ifold. Second, there is nothing constraining our choice of space-transformation groups

(other than that it must be a group).

In addition to being useful for demarcation simpliciter, Klein draws attention to the

fact that these characterizations in terms of space-transformation groups and invariants can

be used to identify the relationships between various sub-fields of geometry. Indeed, this

is Klein’s primary purpose. We can speak most easily about these relationships in terms of

the groups of space-transformations involved (though we could also speak in terms of in-

variants). If we take for an initial starting point standard Euclidean three dimensional space

and the principle group of space-transformations, two possibilities present themselves.6

The first is that the group of space-transformations may be contracted to a subset

of the principle group. Call this operation “transformation-contraction.” If we then ask

which of the geometric properties remain invariant after a transformation contraction (i.e.,

invariant under some subset of space-transformations of the principle group), we receive

a trivial answer. They all do on pain of contradiction — they cannot be invariant under

the principle group and not invariant under a subset of the principle group. What we find,

however, is that there are now additional invariants. This is intuitively what we should ex-

pect. Fewer space-transformations means fewer respects in which the domain is varying,

and this means that more properties will remain static or invariant. An alternative way of

implementing a transformation-contraction is to stipulate that a particular configuration in

space remain fixed (invariant), in addition to the geometrical invariants used to define the

6Here and elsewhere the descriptive term “Euclidean” applied to a geometrical system primarily indicates
that the system includes the parallel postulate. It does not mean that the methods used,or the resulting theory,
closely resemble those of Euclid (although they are similar from an axiomatic perspective).

13

principle group. In a very simple case, we could stipulate that the identity of a particular

point must remain invariant. We would then be considering the properties which remain

invariant under the subset of space-transformations of the principle group which keep this

point fixed. It is easy to find space-transformations from the principle group which leave

no point unchanged, and these will be excluded by the transformation-contraction. The

resulting class of transformations will therefore be a proper subset of the principle group.

What we are left with are the transformations (and invariants) that are constitutive of spher-

ical trigonometry — the properties of polygons on spherical surfaces centered on the fixed

point. The invariant properties of spherical trigonometry are, accordingly, a superset of the

standard Euclidean invariants (and this is what makes Euclidean geometry more “general”

than spherical trigonometry).

The second possibility, “transformation-dilation,” involves expanding the group of

space-transformations to include more than those included in the principle group. What

happens then? Well, if we consider the case of the principle group alone, we know that all

and only those properties invariant under these space-transformations are invariant (this is

trivial and obvious). However, if we add new transformations to the group we are looking

at, the invariants will still need to satisfy the condition of being invariant under space-

transformations of the principle group, because this group is still “in play.” The additional

transformations must constitute additional conditions on invariants (otherwise they would

belong to the principle group and would not be “new”). As a result, some of the properties

invariant under the original group, say the principle group, will fail to be invariant under

these new transformations. The resulting class of invariants may be said to contract.7

Both of these results are intuitively satisfying. In the first case, we are stipulating

additional invariants, hence there are fewer ways in which the manifold may “vary,” and

consequently we have a smaller class of space-transformations. In the second case, we

7It is tempting to say that this results in “fewer” invariants, but this language could cause trouble when
the classes of invariants have infinite cardinalities. It makes sense, however, to speak of “contraction” even
when the resulting sets are equinumerous (e.g. the set of even numbers is a contraction of the set of natural
numbers, even though they are equinumerous).

14

add to the group of space-transformations, hence more is “varying” in the system, and we

arrive at fewer invariants.

The result of all of this is that, once various geometries are demarcated in terms

of groups of space-transformations (or alternatively, invariants), the relationships between

them can be understood in terms of the relationships between these groups and invariants.

This classificatory structure is at the heart of Klein’s Erlangen programme.

2.1.2 Invariance In Logic

In recent decades Klein’s basic approach has been taken up by a number of figures

in philosophical logic. These philosophers have hoped, in the same vein as Klein, to

generalize the theory in a way which demarcates logic and explains some of the special

features of logic by establishing clear relations to other theories. To this end we will look

at the work of Alfred Tarski, Gila Sher, and Denis Bonnay. Although we are primarily

interested in their strategies for generalizing invariance, we will also spend some time

considering their various motivations, as these have played a role in the formulation of the

GTOF. The views are, we may say, intellectual ancestors of our GTOF, and consequently

the GTOF can be better grasped by understanding this history.

Tarski on Invariance

One of the first rigorous attempts at generalizing Klein’s work on invariance was

Alfred Tarski, in his posthumously published lecture “What are logical notions?”8 As the

title indicates, the primary purpose of the work is a characterization of logicality, e.g., a

demarcation of logic. Tarski’s goal in asking “What are logical notions?” is not, he claims,

to capture all of the ways “logical” is actually used. Nor is it to capture any “platonic” idea

behind the notion, apart from common usage or normative proposals. Instead, he is trying

to make a proposal that nearly enough captures one fairly restricted use of “logical.” In

8[Tarski, 1986]

15

the sense that it successfully matches it, it can be taken as descriptive, the way it actually

is used in this relatively limited context. Insofar as it deviates, it should be taken as a

prescription for how it should be used. He is successful insofar as his definition has enough

of a theoretical payoff to justify whatever “damage” is done to the intuitive notion.9

Tarski is also not trying to give a complete story about what logic is. Logic, after

all, involves other things like truth and consequence, which he has discussed elsewhere.

The goal is to provide an account of which “notions” are logical, and what it is that makes

them so. By a “notion” Tarski means something like “candidate for semantic denota-

tion.”10 The goal is a principled demarcation between those notions which are logical and

those which are not. It should be no surprise, given their similarity of purpose, that Tarski

should invoke Klein to this end, saying that he will “try to extend [Klein’s] method beyond

geometry and apply it also to logic.”11

The most significant aspect of Klein’s work for Tarski seems to have been Klein’s

claim that invariance under a specific class of transformations is the characteristic property

of the notions of a specific theory (it determines these notions), and that this class of

invariant notions can be expanded or contracted by considering transformation-contraction

or transformation-dilation, respectively.

Having acknowledged these points, Tarski directs us to consider what he takes to

be the limiting case — the class of all transformations.12 This would presumably result

9And for the most part, resistance to Tarski’s account, and the demarcation of logic in terms of invariance
more generally, has been founded on its perceived mutilation of what it means to be logical. To some extent
these objections come from a very different perspective than Tarski’s and exhibit conflicting interests. Tarski,
as a mathematical logician, has an interest in definitions which are theoretically useful. If, on the other hand,
one has an interest in accurately capturing the meanings of “logic” and “logical” for a given community, then
it is not surprising that Tarski’s conclusion will be unsatisfying. See [Bonnay, 2008], [Etchemendy, 1990],
[Feferman, 1999], [Sher, 1991], and [Sher, 2001].

10This is essentially what MacFarlane, following Nuel Belnap, terms “presemantics” in
[MacFarlane, 2000].

11[Tarski, 1986], p. 146. It is worth noting with regard to the present work that Tarski also recognizes the
possibility of similar treatments of other sciences.

12Although it turns out that Tarski implicitly limits the scope of “all” in this context, we take up the issue
of whether anything might be invariant under truly all transformations, and correspondingly what happens
if we stipulate that all notions remain invariant in Chapter 5.

16

in the fewest and most general notions remaining invariant (not in the sense that all other

notions fall under these notions, but in the sense that they are invariant for all objects

under all transformations). It is these notions, resulting from the generalization of Kleinian

invariance to “all transformations” that Tarski proposes are the logical notions.

According to Tarski, what makes this suggestion reasonable is that it leads to con-

sequences that are in accordance with our sense of logicality. It turns out to be the case,

as proved in [Lindenbaum and Tarski, 1983], that all of the notions denoted by the fixed

constants of standard first-order logic are identified by this criterion. To see this, we can

proceed stepwise through the hierarchy of types and ask which notions satisfy the crite-

rion. At the fundamental level, that of individuals, there are no logical notions as there will

always be a transformation from a given individual to some other individual. On the next

level, classes of individuals, we have two notions: the universal class and the empty class.

Of binary relations, we have self-identity and diversity, as well as the universal relation

and empty relation. We may continue up through n-ary relations, for each of which we

will find only a handful of invariant notions.

The next level, classes of classes of individuals, may also be thought of as proper-

ties of classes. The properties of classes which remain invariant are those which concern

the number of elements in their constituent classes. That is to say, they concern the numer-

ical properties of extensions (has one element, two, is finite, infinite, etc.). This is where

we find the class which contains (or the property of being) the universal class — the logical

notion denoted by the universal quantifier — and other quantifiers. Tarski consequently

comments that, though it has been claimed that logic is concerned only with extensions, it

is concerned with even less — the numerical properties of these extensions. Importantly,

there are very many logical notions in this category (and higher orders have even more).

Most of these are not denoted by logical constants in standard formulations of first order

logic, and this has led to criticisms that the invariance criterion of formality overgenerates

— it declares more things to be logical than are intuitively thought to be so.13 It is at the

13See [Etchemendy, 1990] and [Feferman, 1999].

17

level of relations between classes that the notions associated with the logical connectives

— inclusion, disjointness, overlap, etc. — are to be found.14

Like Klein, Tarski has his mind clearly focused on his native disciplines, logic and

mathematics (he suggests as much in his introduction) and he accordingly fails to point

out the philosophical virtues of his account. Some important philosophical questions about

logic concern the “special properties” that it has. Logic is classically thought to be a priori,

necessary, and completely general (in the sense that it is always applicable). Does logic

really have these properties? If so, why? Whatever the answers, many philosophers have

taken logic to be special in important ways. The logicists hoped to reduce mathematics

to logic, thinking that mathematics would thereby have a firmer foundation. The logical

positivists looked on logic as a model for other sciences, and thought that if a science could

be rendered deductive, like logic, then it might acquire some of logic’s special properties

(like necessity). From almost any perspective, logic seems special. But what makes it so?

Tarski’s account of logical notions as invariant under “all transformations” would

provide a nice answer to this question. For Klein, considerations of invariants were always

and explicitly relativized to a specified class of transformations. But there are different

classes to consider, and though some geometrical theories are subordinate to others, there

are many possible relationships (two theories may be peers, for example). But Tarski’s

account demarcates logic as the theory concerned with those notions invariant under “all”

transformations. The idea is that Tarski has expanded the class of transformations involved

14Tarski then proceeds with his account of how mathematical notions (characterized by the membership
relation) may be logical notions or not depending on how we think of things. The question hinges on
whether the membership relation is logical or not, and Tarski’s discussion thus far has been ambiguous with
respect to the theory defining this relation. If we define it in terms of a theory of types, in the tradition
of Principia Mathematica, then it follows that transformations occur essentially only on the fundamental
type. These transformations, however, induce transformations among the higher types. As the membership
relation only occurs among non-fundamental types (i.e. it is always of type greater than zero), and all of
these transformations are induced, it follows that the membership relation is invariant for all types (where
it exists), and therefore is logical. If, on the other hand, we consider first order set theory, the membership
relation is a primitive relation specified extensionally in the meta-language that holds between individuals in
the domain. But we know that there are a limited number of invariant relations between individuals, and the
membership relation is not one of them. Consequently, it would not be logical. [Tarski, 1986], pp. 152-153.

18

to be so large that the resulting invariants are effectively unrelativized or absolute.15 This

has the potential to explain just why it is that logic has many of the special features that

it has. The necessity of logic, for example, would follow from the extreme generality of

the invariants distinctive of logic. If there are no transformations under which the logical

notions fail to be invariant, then truths captured exclusively in terms of these invariants

could never be false. The ubiquitous applicability of logic also follows straightforwardly,

as, again, the logical notions will remain invariant regardless of the transformations which

occur within a particular theory. So the logical constants can be legitimately and unprob-

lematically “imported” into any theory whatever. We can also see how something like

a prioricity follows as well. Depending of course upon what one means by a prioricity,

on such an account a logical theory would make certain very general facts about objects

knowable without encountering any of those objects.

This is Tarski’s account of logical notions, filled with theoretical promise. And if

this were all there was to say about invariance, all would be well and we could end our

exposition immediately. How could one possibly generalize further than “all transforma-

tions”? Unfortunately, the situation is not quite so simple.

If we try to take “all transformations” in something like its widest sense, perhaps

as denoting the class of all functions simpliciter, then at best we are left with things like

“is an individual,” “is a property of individuals,” etc., effectively the properties of being a

certain semantic type or other. Crucially, this class does not include any of what are tra-

ditionally thought of as logical operators. The permissible transformations must therefore

be contracted in some way in order to result in an adequate class of invariants.

It turns out that, although careful in his use of the phrase “all transformations,”

Tarski implicitly limits his discussion to “all permutations” — all one-to-one transforma-

15Strictly speaking, the resulting invariants would still be invariant relative to a certain class of trans-
formations — the universal class, however a consequence of the nature of this class is that they are also
invariant over all sub-classes, and hence every transformation class. This makes them appear invariant sim-
pliciter, when in fact they are still invariant with respect to certain transformations. It is difficult to imagine
something which is in principle essentially invariant, come what may.

19

tions of the world onto itself. This falls somewhat short of the absolute generality brought

to mind by “all transformations,” but the restriction does permit the notions associated

with the standard logical constants to come out as logical.16

Restricting the class of transformations to permutations also leaves open the pos-

sibility of a host of relationships between logic and other theories. Logic might turn out to

be subordinate to yet a more general theory (via transformation-dilation). If this were the

case, the “special” properties of logic still might remain intact. Nothing in our contempo-

rary intuitions about logic precludes the possibility, for example, of other a priori truths or

of an even more general theory than logic. If logic were subordinate to some theory, in the

way that Euclidean geometry is subordinate to topology, then the permutation account still

might explain these special properties of logic (although the superordinate theory would

also certainly share these properties).

On the other hand, if it turns out that logic stands in a peer relationship to other

theories in the way that Euclidean geometry stands as a peer to Lobachevskian geometry,

not only would these aforementioned explanatory virtues of the Tarskian account come

into question, but insofar as the view is considered convincing on its own merits it would

actually cast doubt on whether logic even has these purported virtues. The issue is an

interesting one for the philosophy of logic, and it will be touched on at points later on.17

In either event, claims that logic has pride of place and attempts to explain its

special properties will need better arguments than merely that logic is the most general

16In fact, there have been criticisms raised that this position (and other similar positions) overgenerates
— permitting too many notions to be ruled “logical.” The main issue is that permutations occur with respect
to the same domain, and hence facts about the cardinality of the domain in question will remain invariant
over these permutations. This conflicts with the generally held position that logical truths should not rest
on facts about particular individuals (or their numbers). We do not delve into this problem here, as it has
already received considerable attention in the literature. [McGee, 1996] first raised the issue and is a good
starting point.

17The crux of the issue is the identification of the class of all transformations with the class of permuta-
tions. This class may well be the largest class of one-to-one transformations, but it is far from clear that it is
the most general way of thinking about invariance. See [Bonnay, 2008] for a thorough, detailed account of
many of these possibilities (only a few of which are discussed below). Bonnay suggests that it is plausible
to construe several of these as being in an important sense more general than permutations.

20

theory in terms of being invariant over the widest possible range of transformations.

Sher on Invariance

We will next consider the related position advocated by Gila Sher which, though

developed independently from that of Tarski, makes a further contribution to the general-

ization of invariance and its use in demarcating logical constants. What Sher’s position

has in common with the view of [Tarski, 1986] is that they both hold logical constants

to denote notions which remain invariant under a certain class of transformations. Un-

like Tarski, for whom the inspiration of his position was the geometrical work of Klein,

Sher begins with Mostowski’s important work on generalized quantifiers.18 This work is

in turn directed toward more specific questions of mathematical and abstract logic. The

informal way of understanding the questions Mostowski is addressing is the following. In

[Frege, 1967], Frege provided the foundation for a newer, more powerful logical language.

Arguably the most important innovation was his recognition that logic can penetrate deeper

into language than the propositional level if we treat predication as a function which takes

objects as arguments and maps these to truth values. Coming along with this system, how-

ever, are some new constants — the logical quantifiers and, on some accounts, identity.19

But these quantifiers are, more or less, analogues of certain natural language quantifiers,

namely “all” or “some” — the ones occurring prominently in syllogistic reasoning. A lan-

guage with just these two quantifiers is significantly more rich than is required to account

for the valid syllogisms, but it is easy to see that there are other quantifiers used in natural

language from which related inferences may be drawn. For instance, from “all swans are

white” it follows that “there are white swans” (assuming a non-empty domain). This is

valid with the standard quantifiers. But the consequence also follows with the same in-

18[Mostowski, 1957]
19This, along with the fact that it seems clear that the standard logical connectives differ importantly

between the propositional and predicational contexts (in the former they are truth-functional, in the later
not), is enough to raise Tarski’s demarcation questions. Which of these constants are logical? Are there
other logical constants? Etc. Sher comes to the same questions from a different direction.

21

tuitive necessity and a priori character from “most swans are white,” or for that matter

from “a few swans are white.” This suggests the possibility of quantifiers other than the

standard universal and existential quantifiers.

The questions Mostowski addresses are prior to whether all of these quantifiers

could count as logical. Is there a relationship between these quantifiers? If so, what is

it? There is prima facie some kind of relationship between them, since they all seem to

play a similar semantic role. What Mostowski’s theory of generalized quantifiers provides

is a characterization of what this relationship is. He explains what it is to be a quantifier

and provides a general way to define a predicative (numerical) quantifier of our choos-

ing. Mostowski puts forward his account in a model-theoretic language. Quantifiers are

associated with functions from cardinalities to truth values. Informally we can understand

this to mean that a quantifier is a function which assigns a truth value to a propositional

function based on the cardinalities of its extension and its complement. The existential

quantifier, for example, is a function which assigns to propositional functions with non-

empty extensions the value “true,” and to everything else “false.” The universal quantifier

is a function which assigns propositional functions with empty complements the value

“true,” and to everything else “false.” With this in mind, we can easily construct a function

which assigns the value “true” to a propositional function if and only if the cardinality of

its extension is greater than the cardinality of its complement. This function is analogous

to the monadic natural language quantifier “most.”20

Sher’s primary concern in all of this is the question of which quantifiers are logical

quantifiers. She cites two conditions Mostowski gives:

Condition LQ1: “Quantifiers enable us to construct propositions from propositional func-

20See [Mostowski, 1957], esp. 12-15. There are a number of interesting results concerning generalized
quantifiers. For instance, Mostowski shows that any language containing the universal and existential quan-
tifiers together with any quantifier satisfying a certain condition will be incomplete. This condition is that
for every denumerable domain, the quantifier assigns both “true” and “false” to denumerably many exten-
sion/complement cardinality pairs (where the complement is naturally always denumerably large). It also
follows that a language containing the universal and existential quantifiers and the quantifier “uncountably
many” is complete, as shown in [Keisler, 1970].

22

tions.”

Condition LQ2: A logical quantifier “does not allow us to distinguish between different

elements of the universe.”

LQ1 is primarily concerned with language, and it should be nothing new to anyone famil-

iar with a first order language. LQ2, on the other hand, is directly focused on the associated

semantics. Sher’s glosses LQ2 is as follows: “[L]ogical quantifiers are invariant under per-

mutations of the universe in a given model for the language.”21 The similarity to Tarski’s

account of logical notions is obvious.22

Sher proceeds into an interesting discussion of Mostowskian quantifiers and how

the view can be extended. There is no need here to dwell on most of this discussion. The

important point Sher makes is that LQ2 can naturally be interpreted as “invariance under

permutations” when we are only concerned with predicative quantifiers. When the view

is extended to relational quantifiers (which is syntactically straightforward and practically

inviting to do), the semantics get messy quickly. The trouble is that predicative quantifiers

concern only subsets of the universe, so permutations are sensible, but relational quanti-

fiers concern subsets of Cartesian products. To put the point succinctly, if we are going to

countenance relational quantifiers as logical, then they should satisfy LQ2 above. But in

interpreting LQ2, what are the permutations of interest? The universe? Subsets of Carte-

sian products of the universe? Etc. Which brings us back to the question of what counts

as logical. Sher wants an account of “logical” that is extensionally adequate, meaning that

however we demarcate the logical terms, whether including relational quantifiers or not,

we want to be sure to include everything that is logical and nothing that is not.

This, then, is Sher’s starting point for answering the question of logicality, and we

can already see how it will diverge from Tarski’s at least in that it begins by recognizing

21[Sher, 1991], p. 14.
22Mostowski’s work on quantification and Tarski’s work on logical notions both share the roots of

[Mautner, 1946] and [Lindenbaum and Tarski, 1983], so this is not surprising. The inquiries are very similar,
with Mostowski’s being slightly more limited in scope.

23

that there may be something inadequate in “invariance under all transformations.” Sher’s

more robust proposal involves five separate conditions which she takes to be necessary and

sufficient for logicality.23 The first three — A, B, and C — though necessary for the view

are not strictly characteristic of the position. A and B essentially explain the syntactic role

of logical constants and C stipulates that a constant is defined over models. This is done

in a straightforward way analogous with definitions of the semantics and truth for logical

languages, with the difference being its extreme generality. The characteristic features of

Sher’s proposal are the final two conditions:

D. A logical constant C is defined over all models (for the logic).

E. A logical constant C is defined by a function fc [based on the model-theoretic semantics

defined in C] which is invariant under isomorphisms.

We are concerned primarily with condition E. This condition is partly due to Per Lind-

ström, who in the course of further generalizing Mostowski’s work suggested that logical

operators be viewed as invariant under isomorphic transformations rather than permuta-

tions.24 He did not, however, make a connection between this invariance and the nature of

logicality, seeming rather to view it as only an interesting and important feature of logical

systems. What Sher contributes to condition E is the idea that it characterizes the formality

of logic, and as such that it is a necessary condition for logicality.

As is readily apparent, condition E has the same structure as both the geometric

principles of Klein and the permutation account of Tarski. The sense, however, in which

Sher’s position represents a further generalization of invariance is slightly more compli-

cated than a mere transformation-dilation. This is because, by defining invariance in terms

of permutations, Tarski selects transformations which map the world onto itself. Thus,

on this view transformations are essentially “world-bound,” which means that only the

23[Sher, 1991], pp. 54-55.
24See [Lindström, 1966a] and [Lindström, 1966b].

24

“actual” world is considered — i.e., only a single domain is considered. The appropriate

transformations are just those bijections defined for the domain.25

An important generalizing characteristic of Sher’s isomorphism position is that its

transformations are not “world-bound” in this way. The associated transformations include

transformations that occur between distinct (yet isomorphic) domains. So, in the case of

the relatively limited permutations, it is clearest to think of the domain of the particular

“world” as both the domain and codomain of the transformations. On the other hand,

isomorphisms require us to think in terms of a domain of set-theoretic structures with the

transformations defined on this domain.

This transitional generalization, from a particular domain to a domain of model-

theoretic structures, is what facilitates the further generalization of Denis Bonnay. But it is

Sher’s statement that invariance under isomorphisms characterizes the formality of logic

that gives motivation to Bonnay’s task.

Bonnay on Invariance

The notion of invariance is further generalized by Denis Bonnay, whose impetus

is a controversy surrounding Sher’s claim that invariance under isomorphisms is an apt

characterization of what it means to say that logic is “formal.” We will focus directly on

the question of formality in logic in the following chapter, but for the present purpose we

can say that the controversy has resulted in several competing proposals which endorse

different types of invariance (i.e. classes of transformations) as proper demarcations of

logical constants and characterizations of logical formality.

Bonnay takes as his starting point a particular consequence of the Sherian posi-

tion on logicality. The consequence, welcomed by some and deplored by others, is that

25It is worth noting that, although this is the predominant interpretation of Tarski in the rest of the litera-
ture, the limitation of the position to a single domain has been challenged by Sher as uncharitable towards
Tarski. However, even if the view is expanded to include permutations on multiple domains, the nature of
permutations means the transformations will still be world-bound in being restricted to each particular do-
main, and a move to isomorphisms will therefore still represent a significant generalization (although in this
case, the move involves a straightforward transformation-dilation).

25

invariance under isomorphisms “overgenerates” logical notions, effectively rendering the

foundational mathematical notions of set-theory “logical.”26 This effectively “collapses”

logic into set-theory, since logic turns out to be based on a fragment of set-theory. Bonnay

prefaces his generalization of formality with respect to this consequence saying, “Formal-

ity is a property of logic that is shared by set-theory and other branches of mathematics: it

is not a surprise that taking formality as the starting point of an analysis of logicality yields

a collapse of logic into mathematics. A proper analysis of the distinctive feature of logic

should take into account the fact that it is even more “content-free” than set-theory.”27

What this makes clear is that Bonnay is examining the role of invariance with the goal of

finding a new formulation which takes into account the peculiar characteristics of standard

first order logic. “Generalized invariance,” as he puts it, is the first step towards accom-

plishing this goal.

When all is said and done, there are actually two senses in which generalization

occurs in Bonnay’s work. The less important of these is transformation-dilation, with

which we are already somewhat familiar. It is in this sense that Euclidean geometry is

more general than spherical trigonometry, and also the sense in which logic is more general

than geometry under both Tarski and Sher’s accounts. Bonnay presents several criteria for

transformation classes that are more general even than isomorphisms in the sense that they

are produced by transformation-dilation.

More importantly, Bonnay generalizes the formulation of what we call invari-

ance principles — the criteria by which transformation classes are defined (e.g., principle

group, permutations, isomorphisms, homomorphisms, etc.). He both presents a general-

ized schema for generating invariance principles (on set-theoretic structures) and broadens

the class of relations used to construct these principles.

26Although it must be stressed that for Sher, the standard arithmetical operators do not come out as logical.
27[Bonnay, 2008], pp. 10–11. It is worth noting that Bonnay takes up Sher’s claim that isomorphic

invariance captures the formal characteristic of logic unquestioningly. This is what makes the collapse of
logic into set-theory “not a surprise.” Other positions on the formality of logic will not necessarily generate
this same result. This may well weigh in favor of Sher’s position, but Bonnay does not himself explain his
acceptance of the position.

26

Bonnay’s concern with the demarcation of logic directs his attention primarily to

invariant operators. The details of these operators, though of importance to questions

of logicality, make no difference in understanding how the generalization works. What

does matter is that Bonnay takes these operators to define classes of structures. “For any

operator Q and for any structure M,” writes Bonnay, “ we will use the notation Q(M)

to indicate that M belongs to Q.”28 It is then these structures which are related to one

another by various similarity relations. Bonnay continues, “ A similarity relation S is a

relation between structures respecting signatures (i.e., S is a family of relations Sσ between

σ -structures for all signatures σ). The notation is M SM′.”

An operator Q, then, is invariant under a similarity relation S, or S-invariant, if and

only if for any structures M and M′, where M SM′, Q(M) if and only if Q(M′). In lan-

guage we are more familiar with, the relation S is an invariance principle which designates

a class of transformations. These transformations are defined on the class of structures

(e.g., they are transformations between structures). An operator, Q, is invariant under the

transformations defined by S if and only if every transformation from a structure contain-

ing Q terminates in a structure also containing Q and every transformation from a structure

not containing Q terminates in a structure not containing Q — that is, the transformations

leave the class of structures containing Q unchanged. It is then Bonnay’s task to find a

relation S such that “an operator Q is logical iff it is S-invariant.”29

The class of similarity relations Bonnay is considering includes all of the trans-

formation classes so far considered — permutation, isomorphism, and groups of space

transformations — and many others, including several proposals that have been put for-

ward elsewhere in the literature.30

28[Bonnay, 2008], p. 11.
29[Bonnay, 2008], p. 12.
30One of the more important such proposals is that of Solomon Feferman, which makes use of homomor-

phisms. The class of invariants resulting from the use of homomorphisms is contracted from that resulting
from the use of isomorphisms. This is as we should expect, since the class of isomorphisms is a proper
subclass of the homomorphisms. Importantly, the identity operator, “=,” along with all numerically related
operators (which are invariant under isomorphisms) are not invariant under homomorphisms. Hence, the
debate over whether to use isomorphisms or homomorphisms is in part a question about whether or not

27

Other examples presented by Bonnay include Univ, a very weak relation which

holds between structures just in case they have the same signatures; Bool, which holds

just in case two structures have identical Boolean elements; and App, which holds just in

case two structures “satisfy exactly the same atomic formulas of a language whose sig-

nature is the signature of the structures, and also exactly the same ∆0 formulas of that

language.”31 App is, Bonnay tells us, “the smallest similarity relation respecting func-

tional application.” Of these, Univ is by far the most general, so much so that its class of

invariants is very small and of little interest for logical demarcation. After proving that

these relations form a partial ordering and identifying Univ as the lowest item in this or-

dering, Bonnay proceeds to search for a relation less general than Univ (or even App) but

more general than isomorphism, and which is justified as being characteristic of logicality.

Bonnay makes a few remarks which are worth considering from the perspective of

generalizing invariance. “There are two main differences,” we are told, “between gener-

alized invariance and Klein’s idea of invariance by a group of transformations. The first

one is that we lose the group idea. . . . The second difference is that elements of a group

of transformations were [technical] transformations, namely one-one function[s] from a

set onto itself. . . . [T]his means that similarity is always induced by a bijection.”32 This is

recognition, first, that the relations used need not have a specific structure. They need not

define groups or be equivalence relations. The second is the recognition that the schema

for creating invariance principles permits relations which are not bijective. These points

together amount to the fact that “any kind of relation between structures . . . can be used

as a similarity relation.”33 This is, for our purposes, the crucial generalization. For, while

providing and discussing relations like Univ and App is certainly useful and interesting

from a purely logical perspective, it is the suggestion that any relation can be used as an

these operators are logical. For the original proposal, see[Feferman, 1999]. For an interesting and nuanced
response, see [Bonnay, 2008], pp. 13-17.

31[Bonnay, 2008], p. 18.
32[Bonnay, 2008], p. 13.
33[Bonnay, 2008], ibid.

28

invariance principle that provides the foundation for a truly generalized account of invari-

ance. Although Bonnay limits his consideration explicitly to relations between structures

— no doubt a result of his focus on logical demarcation — there is no principled reason

for this restriction. In the following section, we develop a truly generalized account of

invariance based on the idea that any relation whatsoever may serve as an invariance prin-

ciple to define a class of transformations. It is this account of generalized invariance that

lies at the heart of our GTOF.

2.1.3 Generalized Invariance

We said at the outset that the GTOF essentially holds that formality consists of

invariance. Now that we have seen how invariance works and has been generalized in

some contexts, it is time to make clear precisely what we mean by this. In doing so,

we will introduce some new vocabulary. In some cases this will seem unnecessary given

existing technical vocabulary. For example, we use the term “feature” when in many

cases “property” might work equally well. We do not do this to be revisionary or in any

way disparage existing technical vocabulary. The GTOF is formulated in such a way as

to be extremely broad and general, and we have found some existing vocabulary to be

implicitly narrow or biased toward a specific domain or way of thinking (e.g., “property”

carries significantly more metaphysical baggage than “feature”). In particular, we will be

demonstrating applications of the GTOF both at the level of language and of semantics

(i.e., notions, presemantics, etc.) and wish to avoid any confusion which would result

from using language specific to one domain in applications to the other.

We will take as our starting point the generalized invariance proposed by Bonnay.

On this view, there are several elements involved in each instance of “S-invariance.” First,

of course, there is the similarity relation itself. There is also the class of operators, which

remain invariant with respect to the similarity relation. Finally, there is the class of struc-

tures which participate in the similarity relations. We can step back from the particularities

29

of the logico-mathematical focus of Bonnay and think of these elements in terms of the

roles that they play in the resulting invariance structure. Perhaps the easiest element to do

this with is the class of S-invariant operators. From the perspective of understanding in-

variance (as opposed to the demarcation of logical operators), it does not matter that these

are operators. They could be anything. What matters is that they remain invariant. Hence,

we can just refer to these as a “class of invariants” or merely “invariants.”

We can make a similar move with respect to the similarity relation itself. In the

logical context, it is the particular nature of these similarity relations that result in different

classes of invariants, but the role in every case remains the same. The similarity relation

essentially defines a mapping between structures. From the perspective of invariance, this

mapping transforms, metaphorically, one structure into another. Those features which

remain intact under these transformations are the invariants. Hence, the role played by

the similarity relations is what we will familiarly call a “class of transformations” or just

“transformations.”34

Finally, we come to the role which structures play, which is that they are relata for

the similarity relations. Or, in the new parlance we have established, they sit on either end

of the transformations. From this abstract perspective, then, the structures really play the

role of particulars from which the similarity relations are constructed, and together they

form a domain (or a domain and codomain) upon which the transformations are defined

and act. So, in the case of Bonnay, the “domain” is the class of set-theoretic structures,

as he defines them, and the “particulars” are the individual structures which participate in

various similarity relations.

And so we can say that there are three general roles at play in Bonnay’s account of

generalized invariance: domains and particulars, transformations, and invariants. It is easy

to see that each of the other accounts of invariance above also satisfy this general schema,

34It should be clarified here that we are not using “transformation” in its technical, mathematical sense, as
Klein does. We still use the term, however, because it is evocative of the underlying character of invariance
— that it involves constancy over change. And, of course, everything which is a transformation in the
technical sense is also a transformation in our sense.

30

and it should not be surprising that it is from this that we will develop our generalized

account of invariance which is central to the GTOF. In the state that it is in, however, the

schema merely states roles which must be satisfied in an instance of invariance. It does

not say anything about what these roles are like or what types of things can satisfy them.

This is the work immediately before us.

Domains and Particulars

A domain is a class, and any class can play the role of a domain. This includes

the classes that are familiar domains in many theories — sets and proper classes, spaces,

integers, complex numbers, physical objects, etc. — as well as less familiar classes. These

include, in particular, classes whose members are not conventionally thought of as objects

per se. One could have a domain consisting of properties (e.g. colors), which would oth-

erwise be considered properties of objects, not objects themselves. Other domains might

consist of sentences, expressions, thoughts, propositions, or emotions. We could even

consider domains of mythical beasts, fictional detectives, or other non-existent “objects.”

Gerrymandered domains, like that consisting of a unicorn, the color white, anxiety, and

this very sentence, might even be considered, though they may fail to be useful for any-

thing. In short, all classes are permissible domains within the bounds of our theory of

formality. The reason the criterion for domain-hood is so low is that the role is not partic-

ularly demanding. All that is required are non-empty classes of items such that mappings

can occur between them.35 Although many of the domains we will consider are actually

sets, the role domains play within the GTOF does not distinguish between sets and proper

classes — that is, the difference is of little consequence. For this reason, and also because

there are a number of interesting domains which are not classes, we do not discriminate

between domains which are sets and those which are not.
35The non-emptiness requirement is implicit in the idea of a transformation, which must obtain between

two (possibly identical) particulars. The empty set cannot, therefore, play the role of a domain of invariance
since no transformations can be defined on it. The empty set may, of course, itself belong to such a domain
and participate in transformations.

31

Although it is conventional to refer to the members of a domain as “objects,” since

many domains we wish to consider do not consist of what would conventionally thought

of as objects we will often use the terms “particular” or “element” instead. We will reserve

the term “object” only for conventional, physical objects or elements of a model-theoretic

domain.

Transformations

The fundamental notion of transformations we will use is that of a mapping be-

tween particulars. At a most basic level, this is a further generalization of Bonnay’s result

— namely that any binary relation (not just between structures) is a transformation. On

this view, a class of transformations would then be a class of such relations. In principle,

this could be as simple as a single relation holding only between a single member of a

domain and itself, or a huge number of relations holding between every pair of individ-

uals in the domain. However, for the sake of simplicity we will impose some artificial

constraints on our thinking and consider only a very well-understood type of mapping —

functional mappings. Since all functions can be recharacterized as binary relations, every

such function, including non-mathematical functions and those of mixed type (i.e. from

physical objects to numbers), is a transformation. It just happens that every class of trans-

formations we will be discussing either is a function or can be constructed by taking an

appropriate set or class of functions.36 The domains and codomains of the functions which

define these classes of transformation are domains of the type defined above. A “class of

transformations” is just a class containing one or more of these functions.

36This is possible in nearly every case, since considerations of invariance are themselves insensitive to the
particular character of a transformation. What matters is whether or not a transformation occurs between a
given ordered pair, not how that pair was defined.

32

Invariants

The central focus of our theory of formality is on invariants and their relationships

to classes of transformations. Just what can count as an invariant is quite broad and there

are no familiar ideas we can adopt from other theories to help us understand it.37 Generally

speaking, however, most invariants are easily thought of as properties or in a way similar to

properties (e.g., operators having an extension in a structure).38 For example, invariants are

generally the sort of thing attributable to a particular from the domain, or perhaps even to

the domain itself. There is, furthermore, also no limit placed on the order of an invariant. A

property of a relation between properties of particulars could be an invariant, for example.

In principle there is no way to specify what can and cannot satisfy the invariant role. The

role itself places no constraints on what can count as an invariant other than that it is

invariant over transformations.

The category of potential invariants or “features” is a large category indeed, and

the question may arise of whether just anything, quite broadly, might be an invariant.

While this is a topic discussed in further detail in Chapter 5, we can say here that the

answer is affirmative, with the qualification that the choice of domain places considerable

constraint on which features turn out to be salient. If, for example, we are considering

numerical transformations, “corporeality” will likely not be salient. It may be so if we

consider transformations from physical objects to numbers (though as such it is unlikely

to be invariant). These constraints will, in most cases, prevent us from drowning in oceans

of features.

The constraining effect of domain choice stems from a kind of ontological priority

37Although there is the closely related notion of “symmetries” in physics, this idea is far from “famil-
iar” to most and is nearly always understood in a mathematically ladened way that it is not useful in this
context. This does not mean that such symmetries are not invariants, merely that they are not helpful in
explaining invariance in a generalized way. For more on symmetries from a philosophical perspective, see
[Brading and Castellini, 2003].

38That is, as long as the property is not at the same time playing the role of a particular. In such a case, the
property could not be an invariant, though a property or feature of it may well have invariants under some
transformations. For example, the color orange may have the feature of being more similar to red than to
purple.

33

the domain and its particulars have over features, in that the domain must be determined

prior to any consideration of which features are salient (let alone invariant). On the other

hand, features may be thought to have the ontological upper hand in a way that will prove

significant later on. There is, as we have seen, a certain flexibility in what can count as a

particular, and considerably more flexibility in what counts as a domain. This flexibility

consists in our ability to construct (or select) domains and stipulate what the particulars

will be. At this point, once the domain has been stipulated together with its particulars,

there is no corresponding freedom with respect to features. Our only flexibility is in judg-

ing which features attributable to the particulars or the domains are interesting for our

purposes. The difference between the two can be seen in the truth of certain subjunctive

conditionals. With respect to the domain and particulars, these could have been otherwise

had we so chosen. Once the domain and particulars are stipulated, however, the features,

whatever they are, could not have been otherwise.39

2.2 The Theory of Formality

We are now in a position to understand invariance, and consequently the GTOF,

more rigorously. For a given case of invariance, we begin with two domains, D1 and D2.

These domains need not be distinct, and in many cases they will not be. The domains

consist of particulars pi j such that {p11, p12, . . . , p1n} ∈ D1 and {p21, p22, . . . , p2n} ∈ D2.

We can then define a class of transformations, T , consisting of functions f1, f2, . . . , fn from

p1 js in D1 to p2 js in D2. A feature h is an invariant with respect to D1and D2 under T if

and only if the functions in T have no effect on h. Just how this is understood depends,

in part, on the types of features being considered. For example, let the domains consist

of physical objects, and let a feature h be a property which some of those objects have

39This appears to be a kind of necessity, but we are reluctant to invoke this term as it might lead to
confusion elsewhere. In particular, that a certain feature is ascribed to a certain particular may well not hold
in all possible worlds, but it still has the degree of inflexibility described above. Perhaps we can call this a
kind of factual necessity, since it is not in any way sensitive to choice.

34

and some do not. Feature h is invariant with respect to D1and D2 under T if and only if,

for every fk ∈ T , every p2 j = fk(p1i) has feature h if and only if p1i also does. That is,

every function in T only ever maps objects having h to objects with h, and objects without

h to objects without h. The example can be easily expanded to include all other types

of particulars and their features. It can also be straight forwardly extended to relations,

features of features, and so on.

These are the most common and important cases, and it is best to leave characteri-

zations of other kinds of features until they are needed, but it should be clear more or less

how this can be accomplished. For the sake of brevity, when D1 = D2, we shall simply

call the domain “D,” and shall also say that h is invariant with respect to D under T . In

fact this situation is so common and important that in the abstract we will proceed to speak

only of D when this will not cause problems. Finally, the class of features invariant with

respect to D under T we will generally designate “I.”

This characterization of invariance contains an important dynamic that may not

be prima facie evident. As written, it implies that when D and T are given, the class of

invariant features I is determined. This is an effect stemming from the factual determinacy

of features discussed above, namely that the facts about features are determined simply by

the specification of D (having the particular members that it does). Specifying T does not

change anything about these features, but merely functions to select which features belong

to I. Different choices for T will select different invariant features, and each T will always

select exactly the same I, for a given D, on account of this fixity of features.

Because of this fixity, the same dynamic works in the opposite direction. An al-

ternative to specifying a given T is to instead stipulate some features as invariant, as be-

longing to I (this happened earlier with the move from Euclidean geometry to spherical

trigonometry). We then define the corresponding class of transformations T in terms of

these invariants, namely that T consists of all transformations under which the selected

features remain invariant. This may appear trivial, for if formality consists in invariance

under a class of transformations and the class of transformations itself is defined by stip-

35

ulating invariants, then we should not be surprised when the selected features turn out

invariant over that class of transformations (which they were used to defined). If so, this

would reduce formality to stipulation, and thereby convention - hardly a novel proposal.40

Fortunately, invariances are rarely if ever isolated, and in most cases our stipulations will

only characterize a proper subset of I. The invariances used to define T will belong to I,

that much is trivial, but I will often include additional features which are co-invariant with

the original stipulated invariants. Owing to the fixity of features, this co-invariance is a

matter of fact, not stipulation, and hence the result is not trivial at all. The most convinc-

ing case for triviality would be if the stipulated invariances happen to be the only features

to remain invariant under T . But the fact that the stipulated invariants exhaust I is usually

something we did not know beforehand. It is trivial only in a limited sense, and it will

rarely, if ever, be obvious and uninteresting.

There are many interesting questions to be asked about the relationship between

T , I, and in some cases even D. Might one of T or I be empty? Could we hold every

feature invariant, and if so, what class of transformations would be so defined? What are

the implications of the role played by stipulation (either of T or I)? Some light will be

shed on these issues throughout, as we engage in applications of the GTOF, and we will

take them up more directly in Chapter 5.

Given this account of invariance, it remains to be described what the connection is

to formality. One possibility would be to say, in the spirit of Tarski, that formality, or what

is genuinely formal, is that which is invariant over all classes of transformations for all

domains. This is similar to the sweeping claims made on behalf of logic over the last few

centuries concerning its necessity and preeminence over all scientific theory. Although we

have good reasons for thinking that first order logic does not hold this status, perhaps the

resulting “most formal” theory would be considered even more “fundamental” than logical

theory. While we would certainly be interested to learn of a theory with such special

40Early in his career Rudolf Carnap championed such a view, which was echoed by many other logical
positivists. See [Carnap, 1937].

36

invariance characteristics, not only does it seem difficult to prove such a case for every

class of transformations on every domain, but it is also unnecessarily restrictive. Just as

we wish to propose a theory of formality which is independent of logicality, why should

we think that formality must be identified with any other particular class of invariants

against which everything else is defined as “non-formal.”

Instead we take the following perspective. Invariance, as we have defined it, is

relative to a domain and a class of transformations on that domain. It makes sense to us

to say that formality comes in “types,” and that a given type of formality is determined

by the choice of domain and class of transformations with which it is associated. In the

case of many theories generally considered “formal,” this choice of domain and class of

transformations is definitive of a field of knowledge or discipline of research, as is the case

with logic and geometry. In such cases we will call the invariances associated with that

field, for example logic, constitutive of “logical formality.” According to our GTOF it is

a type of formality in virtue of consisting of invariants of the character described above,

and it is logical in having as its subject the domain and kinds of transformations of interest

to logicians. Not all types of formality can be so easily named, but the underlying idea

remains the same.

A consequence of this perspective is that the GTOF might just as easily be called

a “general theory of types of formality,” since the theory is a proposal for a core charac-

teristic of various types of formality. But this does not make our GTOF any less a theory

of formality, since what we are proposing is that this core characteristic is what it is to be

formal. This is the level at which we intend to explore the theory of formality, showing

that many things conventionally considered “formal” are actually built upon invariants of

the described sort, and hence upon distinguishable types of formality. It will be useful

to have in hand a common framework by which to express these types of formality, and

one is directly suggested by our generalized characterization of invariance. We should be

able to formulate an “invariance principle” for each type of formality which satisfies the

following “invariance schema”:

37

Invariance Schema: A type of formality F consists of the class of features I which remain

invariant with respect to (possibly identical) domains D1and D2 under the class of

transformations T (which may itself be defined with respect to some fixed features).

Our first major task will be to apply the GTOF to standard first order logic to verify

that the GTOF holds logic to be formal (as it ought) and to make clear that the GTOF makes

a distinction between logicality and formality. We take this up in the following chapter,

but it seems useful to show how in general we can go about this by first applying it in the

case of geometry.

2.3 The Formality of Euclidean Geometry

Showing that geometry or any theory either characterizes or is grounded on a type

of formality according to the GTOF requires first identifying which elements play the role

of domain, particulars, features, and class of transformations, and secondly explaining

why these identifications are appropriate (e.g., that they do not violate the corresponding

definitions). We then need to formulate the appropriate invariance principle. In some

cases, we will be able to proceed further to indicate how the particular type of formality

in question is related to other types of formality in terms of transformation-contraction or

transformation-dilation operations.

In Klein’s account of Euclidean geometry, the obvious candidate to play the role of

domain is the space (or the manifolds thereof). If we take as particulars the points which

make up the space, then the space is clearly a set of such points, and thus the space and its

various manifolds satisfy the definition of a domain. As Klein describes transformations as

mapping the space onto itself — by this meaning that the transformations map every point

onto another point of the same space — points are clearly the appropriate particulars (as

opposed to lines, planes, etc.). From this we know that the domain and codomain are the

same for all of the functions. Since these “space-transformations” are functional mappings

38

between particulars in the domain, they are transformations in the sense we have defined

above.

But Klein is not interested merely in transformations of the space onto itself. He is

instead interested in the effect these transformations have on something he calls “config-

urations in space.” These are just loci of points, or regions of space which satisfy certain

properties. These configurations are therefore composed of points, and as a result cannot

be features of points, per se. Spatial configurations are instead best thought of as consisting

of sets of relations between points. The spatial configuration of a line, for example, can be

characterized in terms of a three-place collinearity relation. Now each of the pointillistic

transformations with which Klein is concerned will also induce a transformation on the re-

lations in which those points participate. For example, a relation R between points p1 and

p2 is preserved under functional transformation t if and only if R(t(p1), t(p2)). A region

consisting of certain points P1 will be effectively transformed into the region consisting of

the points P2 to which the original P1s are mapped if and only if the points are mapped in

such a way as to preserve the relations between points which constitute the region.

The focus, further, is really on which features of these configurations are left un-

touched by the underlying transformations of points. In principle, some configurations

might remain invariant. This would happen if the class of transformations contained only

the identity function (in which case all configurations would be invariant). In most cases,

the invariant features will be features of the configurations, and hence features of sets of

relations between particulars.41 In the case of Euclidean geometry, Klein is concerned

with the principle group, which is clearly an appropriate class of transformations. This

puts us in a position to produce the requisite invariance principle:

Euclidean (geometrical) formality consists of those configurations in space
41Above we did not present a general picture of how relations, features of relations, features of features,

etc. could remain invariant. Generally speaking, transformations of the particulars in the domain induce
transformations in relations, features, features of relations, etc. If one of these more complex features is
invariant with respect to all functions induced by a given class of transformations, then the complex feature
is also invariant under that class of transformations. Examples of how this works in the case of a simplified
domain can be found in [Sher, 1991], pp. 72-73.

39

which remain invariant under transformations from the principle group.

We arrived at this principle by a simple substitution of the invariance schema. The domain,

D, consists of the space. The transformations T consist of the principle group. The result-

ing invariances constitute the type of formality, F, which is Euclidean. From this point

it should be apparent how additional invariance principles could be produced for various

other subdisciplines of geometry, substituting the appropriate transformation classes.

So, it looks as though geometry is a paradigmatic case of formality according to

the GTOF, which should not be surprising given its intellectual ancestry. There is still,

however, the matter of the apparent circularity noted above. We know that the type of the

formality, which in this case is euclidean, is determined by the specified class of transfor-

mations (once the domain is fixed). If we want to know more about geometrical formality,

we should ask how the class of changes was defined. In the case of the principle group it

was defined as those transformations which leave the geometrical properties unchanged.

For example, they leave the ratios between the sides of polygons invariant, though the

actual length of these sides may change. The measure of angles is also always invariant

under these transformations. A quick substitution in the invariance principle above gives

us a new principle which makes the apparent circularity explicit.

Geometrical formality consists of those configurations in space which remain
invariant under transformations which leave geometrical properties invariant.

This certainly looks problematic, but we should be wary of labeling every circularity as

“vicious.” In this case it is reasonable to think that a class of transformations and the

resulting invariants are received as a “package deal.” This is a consequence of the deter-

minacy of features discussed above. It is also why transformations or invariants (or both)

may be taken as the characterization of a type of formality. Provided associated classes of

transformations and invariants, we could in every case define each in terms of the other.

This will always allow for a substitution resulting in a circularity — a class of invariants

defined by a class of transformations which was defined by the class of invariants. There

40

is no inconsistency or regression here. Neither is there a serious problem about how the

circularity “gets off the ground.” We can simply start by selecting (arbitrarily or other-

wise) either a class of transformations or invariants. The true source of discomfort comes

from the freedom involved. Why select one class of transformations (or class of invariants)

rather than another? Why the principle group rather than some other? Why call anything

the “principle group”?

This deeper difficulty affords a nice opportunity to explore the idea of a “type” of

formality in a way which is illuminating. This freedom is implicit in the GTOF — for

any given type of formality, many different classes of transformations could have been

selected. But we do not really believe that Klein selected the principle group in a random

manner. Although anything may be permissible, not everything is beneficial. Klein had

a particular theory in mind (or really a class of theories) with which he was antecedently

familiar. Even if Klein’s antecedent notion of “geometrical” involved the principle group

or the geometrical invariants explicitly, at some point in history geometers came upon

one or the other of these classes on account of some interest apart from studying the

classes themselves.42 We select classes of transformations out of a tremendous number

of possibilities, usually on account of particular interests and purposes preceding, and

often instigating, the inquiry itself.

This perspective allows us to engage in some speculation on how a Kleinian story

might go.43 Consider the historical beginnings of geometry (actual or imaginary). It is

plausible to think that such inquiries began with basic interest in shapes and their interre-

lations (in particular we might think that different shapes can be composed out of the same

basic shapes, etc.). Now we notice, so immediately that we may take it for granted, that

objects of the same shape can have different colors, or that changing the colors of objects

42Of course the reality is likely much more complicated and almost certainly involves a gradual devel-
opment of the class of geometrical properties. The point is that this development did not originate from
an understanding of the principle group. This story gains plausibility from the historical fact that many
geometrical properties were known long before group theory came into being.

43Tarski offers a similar story in [Tarski, 1986]. Though ours was developed independently, we are happy
to credit Tarski with the original idea.

41

does not change their shape (e.g., by painting or dyeing). It is immediately apparent that

we have invariance entering into the picture. This is not problematic precisely because we

have defined neither color nor shape in terms of invariance with respect to the other. It

would surely be a problem if we did. Instead, we developed a non-explicit understanding

that the class of properties called “shape” (whatever it may be) is insensitive to changes

in the class of properties we call “color.” It is also not prima facie obvious that shape and

color should be insensitive to one another. This is at least not obvious for (macroscopic)

physical objects. It might have turned out to be true that changes in shape corresponded

sometimes to changes in color. Something like this is true if we count micro-structure as

“shape,” since changes at this level can result in changes of perceived color.

At any rate, we can see how simple experience with a subject matter might lead

us to develop intuitive notions about what is distinctive of a discipline. This story, or a

similar one, could easily be applied to the Kleinian situation to resolve any discomfort the

circularity may cause. There is an intuitive notion of what is euclidean which says that it

is those things which are insensitive to changes in location, size, and handedness. These

intuitions might be wrong (as has turned out in some cases), but they give us something to

work with.

We may then take these intuitions about the interplay between certain features and

transformations and explore them. They face the tribunal of experience, so to speak, and

thereby become more refined and specific. These “working” intuitions merely hypothe-

size that some features are insensitive to certain changes. They are doxastic, and as such

lend themselves not only to questions of empirical adequacy but also to being incomplete.

There is a high probability that other properties not originally included in our intuitive

notion of geometry will end up being geometrical, and some that we thought were might

not be.44

We see this tension between the freedom we have in making determinations of for-

44Which is, of course, the same thing as saying that the considered class of transformations might be
different.

42

mality and the perceived “truth” or effectiveness of things which are formal (in particular

formal theories) under the guise of asking “Which logic, geometry, etc., is the ‘true’ or

‘right’ one?” At least on the present view, this comes down to a question about why we

should choose one class of transformations rather than another, and the only answer avail-

able appeals to our purposes, interests in, and experience of, a subject matter. We will see

this issue surface regularly in the work that follows.

Chapter 3

Formality and First Order Logic

“Form” and “formality” have traditionally been discussed in conjunction with two

mostly distinct subjects — shape (geometry) and language. The historical connection

between these ways of thinking is loose, at best, and it is not immediately obvious that the

“formality” of a language should have much at all to do with the formality of objects or

shapes.1

In Chapter 2 we considered several views which take invariance in geometry as a

starting point and generalize it ultimately to set-theoretic structures. These are prominent

examples of what we call “objectualist” views of logical formality. A central claim of such

views is that the semantics of standard first order logic is built upon set-theoretic invariance

(of one or another kind), and that the particular character of this invariance (isomorphisms,

homomorphisms, etc.) can serve as an adequate demarcation of logical notions, and hence

of the discipline of logic itself.2 While the proliferation of objectualist views raises impor-

1For an account of the transition from a metaphysical to logical focus on formality, and for some argu-
ments that the relation between the two is weak, see [Novaes, 2010].

2Within the scope of the present chapter, we always mean by “first order logic” standard first order
logic. By this we mean the system that is the general focus of mathematical logic, having a language which
consists of variable and function terms (with 0-ary functions denoting individuals), predicate symbols, one
or both of the standard quantifier symbols (∀, ∃), and the standard connectives (or an appropriate minimal
set of these — often ¬ and ∨). In general, we also mean to include identity (=), and we will be explicit any
time this is brought into question. All well-formed formulae are finite in length, and we assume a standard

43

44

tant questions about the nature of logic and prods the logical community to seek consensus

on just which operators they are willing to countenance as “logical,” objectualist views are

interesting as a whole in that they all give semantics a very prominent role in determin-

ing the overall character of the language. Among the views we have considered this is

particularly true for Sher and Bonnay, who explicitly characterize “logical formality” in

these objectual terms, and in so doing make a connection between logical formality and

geometrical formality.

Furthermore, if objectualist semantics can genuinely serve as an adequate account

of logical formality, there is an added advantage for our task in that it should be easy to

show that this “logical formality” is a type of formality according to our GTOF. We under-

take this task in the following section, but since the GTOF is effectively a generalization

of objectualist views, the conclusion follows intuitively. Hence every objectualist account

of first order logic embodies an instance of some kind of formality.

The question before us might then seem to be, “Which objectualist view charac-

terizes logical formality?” And from the perspective of objectualists arguing with one

another this is effectively what is at stake. Unfortunately, the situation is not quite so

clear as objectualist accounts tend to make little fuss over characteristics of first order

logic related to the fact that it is a language. To be fair, of course all of those who are

objectualists about the semantics of the language recognize that it is a language. However,

the language of first order logic does not consist of set-theoretic structures, operations on

structures, or invariants under operations on structures. It consists of symbols, syntactic

rules, and derivational rules, together with a semantics. When the objectualists charac-

terize logicality or logical formality in terms of denotational semantics, they often either

spend little time discussing the syntactic characteristics that have historically been cited as

hallmarks of logicality, or they take for granted that the syntactic features arise from (or

interpretation of the language in terms of satisfaction over standard models with a non-empty universe. What
we have to say about proof theory applies equally to standard axiomatic and natural deduction approaches.
Although much of what we say is also applicable to a broader range of first order systems, we will hold these
considerations to Chapter 5.

45

supervene in some way on) the underlying objectual formality of the semantics. But before

objectualism was conceived, philosophers and logicians were not at a loss as to why the

language was “formal.” Formality was even seen as something essential to the language,

such that first order logic would be formal even if uninterpreted, without any semantics at

all.

Our contention here is that those who provide objectual accounts of first order

logic do provide one way in which the language might be deemed “formal.” However, it

also turns out that logic may be considered formal on purely syntactic grounds, and that

a straightforward reduction of this “syntactic formality” to “objectual formality” is not

possible. The relationship between the two is somewhat weaker, in that while objectual

formality does not determine the syntactic characteristics of first order logic, it imposes

significant constraints on these characteristics. Much stronger constraints are imposed by

the inclusion of derivational rules, which as we will see straddle the syntactic-semantic

divide.

To answer the question of what constitutes logical formality, we take a closer look

at the relationship between syntactic and objectual formality. The result is a fair degree of

confidence in the claim that first order logic comes out as formal according to our theory of

formality, and that objectual formality is in some sense primary. In addition, an interesting

conclusion is raised regarding the nature of formal languages more generally, and this sets

the stage for Chapter 4.

First, however, we should take a brief moment to establish the fact that objectual

accounts of semantics are grounded on a type of formality according to our GTOF. Given

that the GTOF was developed in Chapter 2 as a further generalization of objectualist views,

doing so is relatively straightforward and involves no innovation.

46

3.1 Objectual Formality and First Order Logic

The clearest way to proceed will be to do for Sher’s view what we did in the

example of geometry in Chapter 1 — produce the relevant invariance schema for this type

of formality.

The most obvious element is the class of transformations. This will consist of

isomorphisms.3 These isomorphisms are understood to be functions between set theoretic

structures, and so the underlying domain will consist of these structures. It is important

to note a point of possible confusion about this. Generally speaking, every set theoretic

structure itself has a domain, and the transformations in question can be seen, in part, as

functions between these domains. However, none of these domains is the domain from the

perspective of invariance, as no single one (or two) of these can be used to define the class

of transformations (isomorphisms). These transformations are defined on the class of set

theoretic structures, and hence the class of the domains of these set theoretic structures.

In this case the domain, from the perspective of invariance, effectively consists of set-

theoretic domains. In what follows, the unqualified expression “domain” should always

be taken as the domain of invariance. When speaking of a domain of objects belonging

to a structure, or in any other sense, we will be explicit.4 From this, we can produce the

following invariance principle:

Objectual formality consists of those features of model theoretic structures
which remain invariant under isomorphisms between those structures.

Given the nature of model-theoretic structures, these invariant features will all be functions
3Of course, other objectualist views will involve a class of transformations based on whatever is con-

sidered by that view to demarcate logic. For Tarski, the class of transformations consists of permutations
or automorphisms. For Fefermann it is “strong homeomorphisms.” As we have said before, just which is
chosen has much more to do with questions of logicality than of formality, although in some cases intuitive
reasoning about degrees of formality is brought into play. Reviewing these considerations is beyond the
scope of the present work, but the idea of degrees of formality and comparisons of types of formality, more
generally, will be revisited in Chapter 5

4Nothing of course prevents the use of a set-theoretic domain as an invariance domain in defining some
other type of formality, in a different context.

47

which belong to the particular structures (but are, of course, exemplified in multiple such

structures).

So, it is reasonably easy to see that any account of “logical formality” based on

transformations (or as Bonnay calls them, “similarity relations”) between set-theoretic

structures will constitute a type of formality according to our general theory of formality.

These resulting types of formality are what we have called “objectual formality.”

3.2 “Logical Formality”

In this section we turn our focus to the question of logical formality and the justi-

fication for thinking it is syntactic or semantic (objectual) in nature. First, of course, we

must have an understanding of what it means to hold that logical formality is syntactic in

nature. For this we will turn to some of Tarski’s earlier work. It will then be relatively

easy to see why one would think logic is formal in virtue of syntax. This sets the stage

for considering the reasons Sher presents for thinking that logic is formal in virtue of its

semantics, which is representative of most objectualist positions. We conclude this section

by considering whether the syntax of first order logic reduces to or is entirely determined

by its semantics.

3.2.1 Syntax

It is exceedingly rare for a philosopher or logician to explicitly address the notion

of “syntactic formality” independently of other considerations. The topic nearly always

only comes up during characterizations and discussions of formal languages, and for this

reason we will here be considering some notable passages from the seminal works of

[Tarski, 1983a] and [Tarski, 1983c], in which Tarski discusses his understanding of for-

malized languages and formal consequence.

In [Tarski, 1983a] Tarski tells us that:

48

[Formalized languages] can be roughly characterized as artificially constructed
languages in which the sense of every expression is unambiguously deter-
mined by its form. Without attempting a completely exhaustive and precise
description, which is a matter of considerable difficulty, I shall draw attention
here to some essential properties which all the formalized languages possess:
(a) for each of these languages a list or description is given in structural terms
of all the signs with which the expressions of the language are formed; (b)
among all possible expressions which can be formed with these signs those
called sentences are distinguished by means of purely structural properties.5

We are therefore presented with the following two key characteristics of formalized lan-

guages:

• Formalized languages are artificially constructed.

• Formalized languages are such that the sense of every expression is unambiguously

determined by its form.

What does it mean for a language to be “artificially constructed”? As philosophers and

logicians, we are likely in the habit of construing this to mean something like the properties

Tarski labels “(a)” and “(b).” This is what is usually meant when we call something an

“artificial language.” From a broader context, however, it can quickly become unclear what

artificiality (however it is taken) has to do with formalized languages. The usual distinction

is between “artificial” and “natural” languages, and it is often easier to have a clearer

idea of the latter of these. Natural languages, generally speaking, are those languages

which have evolved on their own without intentional human intervention (from a linguistic

perspective). That is, neither the basic lexicon nor the rules governing composition have

been entirely prescribed. We can easily point to a great many such languages. If we

understand “artificial languages” as those which are not “natural” in this sense, it becomes

difficult to see how the distinction is directly relevant to formalized languages. Although

these will certainly turn out to be artificial, so will a great many non-formalized languages.

5[Tarski, 1983a], p. 166.

49

Esperanto is a clear case of an “artificial” language, and many languages we may want to

call “natural” have undergone considerable intentional human intervention.6 Any novice

philosopher could think of many possible languages which are artificial but not intuitively

“formalized.”

In what sense, then, are formalized languages artificial? What Tarski is more likely

suggesting is that artificiality is something distinctive of formalized languages in more

than just a historical or causal sense. Instead, an “artificially constructed” language is one

which has artificiality at its core in such a way as to be a different kind of language from

a natural language. Conditions (a) and (b) seem to characterize such a language. We are

told by (a) that the language must be presented as a list or description of the signs of the

language. (b) implies the presence of rules of formation such that for every expression

these rules are either satisfied, and therefore the expression is deemed a sentence, or not,

and therefore it is deemed a “non-sentence.”

Characteristic (b), however, goes further than the idea of artificiality. Since Tarski

has made clear that he is only concerned with “interpreted languages” — languages which

have been assigned a semantics — (b) takes on greater significance because the notion

of “sentence” takes on greater significance. In an interpreted language, sentences are

meaningful expressions of the language. They are the sorts of things that, in a logical

language, can be true or false. If, according to (b), the sentences can be distinguished

from non-sentences by purely structural means, it follows directly that the sense of every

expression is determined by its “form” or structure.7

Though, as Tarski himself acknowledges, this characterization is neither exhaustive

nor precise, we can infer that Tarski means to explain the notion of form by reference to

6Examples of this include modern Hebrew, French, and the dialect of Korean spoken in the Democratic
People’s Republic of Korea. Each of these languages has an associated governmental body intentionally
affecting the languages development. The revival of Modern Hebrew, in particular, involved considerable
intentional change to what had come to be an exclusively religious language.

7In the case of first order logic, the notion of “sentence” should probably be expanded to include all
well-formed formulae since, even though not all well-formed formulae evaluate to truth values, they can all
be assigned meaningful semantic values. Well-formed formulae which are not sentences can be evaluated to
sets or extensions.

50

the “structure” of sentences. Otherwise, his “essential properties,” both of which refer only

to such structure and not explicitly to “form,” would be essential to a formalized language

but have nothing to do with form, and would consequently not qualify even as a minimal

account of logical formality.

This is all Tarski says about form in [Tarski, 1983a], but [Tarski, 1983c] says more.

Here, Tarski discusses “formalized deductive theories.” In these theories “proof” results

from the application of minimal rules of inference. “These rules,” writes Tarski, “tell us

what transformations of a purely structural kind (i.e. transformations in which only the

external structure of sentences is involved) are to be performed upon the axioms or theo-

rems already proved in the theory”8 This suggests, again, that the notion of “form”

involved pertains to the external structure of sentences of the language. And though Tarski

rejects the view that logical consequence can be exhaustively explained in terms of deduc-

tion or deducibility, he glosses logical consequence by saying, “[W]e are concerned here

with the concept of logical, i.e. formal, consequence, and thus with a relation which is

to be uniquely determined by the form of the sentences between which it holds”9

What is important for our present purpose is that Tarski takes logical consequence to

be consequence based on form. Given what Tarski has said earlier in this text and in

[Tarski, 1983a], this suggests that logic is formal in the sense that it is concerned with the

external structure of sentences. Though it is not entirely clear what Tarski means in calling

the structure “external,” some help is to be found in [Tarski, 1983b]:

The description of a language is exact and clear only if it is purely struc-
tural, that is to say, if we employ in it only those concepts which relate to
the form and arrangement of the signs and compound expressions of the lan-
guage. Not every language can be described in this purely structural manner.

8[Tarski, 1983c], pp. 409-410.
9[Tarski, 1983c], p. 414. The excerpt is from a longer passage which plays a role in Sher’s reasoning

regarding logical formality. Given this, there is certainly room for debate over what Tarski means by “for-
mal” in this context (as opposed to elsewhere). However, we are only here interested in the relation between
sentences, which is determined by their form. Since objectual formality does not contain resources for de-
scribing the forms of sentences, we believe we are justified in our reading of Tarski’s use of “form” in the
passage. We return to the interpretation of “formal” below.

51

The languages for which such a description can be given are called formalized
languages.10

The use of “purely” for “external” notwithstanding, it seems reasonable to think that by

all of this Tarski takes the relevant structure to involve the arrangement of terms in the

sentences in exclusion of other relations. This point is again reinforced in [Tarski, 1941]

when, after Tarski has presented the result that “All theorems proved on the basis of a

given axiom system remain valid for any interpretation of the system,” he adds:

The common source of the methodological phenomena discussed here is the
fact [that] . . . we disregard the meaning of the axioms and take into account
only their form. It is for this reason that people . . . speak about the purely
FORMAL CHARACTER of deductive sciences and of all reasonings within
these sciences.11

This amounts to saying that form is what remains when we disregard questions of mean-

ing. This will obviously exclude any kind of relation that is not based exclusively on the

arrangement of the symbols of the language.12

Most languages have grammatical rules which determine that some combinations

of symbols of the language are not sentences. In such cases it is necessary that an ex-

pression — a string of primitive symbols (or words) — be grammatically permissible to

be meaningful.13 However, as is well known, grammatical permissibility does not always

guarantee meaningfulness — certainly this is so in English. The difference between a

10[Tarski, 1983b], p. 403.
11[Tarski, 1941], p. 128.
12There is a sense, however, in which the invocation of a rule of inference makes a deduction meaning-

bound, at least insofar as the constants characteristic of the rule of inference are concerned. We address the
important role of inferential systems below. The idea here is that once the rules of inference (or axioms) have
been formulated, we may disregard all meaning in using said rules. It is true that one can know whether a
set of sentences implies a certain sentence without knowing anything about meanings, even the meanings of
the logical constants. Whether anything is thereby gained is another question entirely.

13We readily grant that the situation for natural language is far murkier than we make it appear, and that
grammaticality may itself be an amorphous thing. It is nevertheless the case that strings in a natural language
can fail to be meaningful on grammatical grounds. One does not explain the failure of “Green green, green
green green,” to be meaningful in English in terms of vocabulary choice alone.

52

formalized language and one which is not is what we said above, that for the formalized

language satisfaction of the syntactic rules is also sufficient for an expression to be mean-

ingful. While at the outset we phrased all of this in terms of something called “structure,”

we can now be more nuanced. What the preceding suggests is that in a formalized lan-

guage meaningful sentential expressions are distinguishable from non-sentences entirely

in terms of the order of symbols in the strings. This is a result of the fact that the mean-

ings of expressions of such a language are entirely determined by the arrangements of

their symbols. And of course, it is the syntactic rules of a language which separate the

meaningful sentences from the meaningless strings.

In the case of first order logic, and most other formal languages of note, the syn-

tactic rules make explicit use of particular constants of the language. In first order logic,

these are the quantifiers, connectives, and the identity symbol — the logical constants.

Such symbols are characteristic of the language because the syntactic rules are effectively

defined in terms of them. That is, creating a well-formed expression of the language be-

comes in large part a matter of the location of these characteristic constants within expres-

sions of the language. And since this ordering, as we have just arrived at, is the structure

of the expression, it is only a short step toward saying that these constants constitute the

structure of expressions of the language. This is convenient, if strictly speaking false, since

non-characteristic (in the present case non-logical) constants play such a secondary role.

All of this should be familiar to anyone who has studied the development of logic

in the 19th and 20th Centuries. It is an important component in the views of a number

of important figures of the era, perhaps most notably Hilbert and Carnap. A major differ-

ence, though, is that while Hilbert, Carnap, and Tarski all held the view that formalized

languages are distinguished primarily in terms of their syntaxes, Hilbert and Carnap (at

least earlier in his career) both held hyperbolic forms of the position. It is an important

part of their views that logic is essentially syntactic. This was particularly true of Carnap.

In their explorations of logic they consequently focused almost exclusively on syntax. In

contrast, Tarski held a more moderate position in which formalized languages are at least

53

syntactic in nature. In addition to his views that logic also involves semantic notions like

truth and consequence, there are compelling suggestions in [Tarski, 1983c] that he also

endorsed objectual formality as somehow associated with logical formality.14

Finally, it stands to reason that any claim that “logical formality” is (or is consti-

tuted of) syntactic formality would appeal to the significant role syntactic rules play in

defining the language (especially sentence-hood) and on the role that syntactic form plays

in identifying which sentences imply which others, according to the rules of inference.

3.2.2 Semantics

Although we are already familiar with objectual formality, we have yet to see what

reasons lie behind the claim that it is (or is constitutive of) logical formality. This is our

present task.

Recall that Sher’s account of logical formality hinges on what she labels conditions

D and E:

D. A logical constant C is defined over all models (for the logic).

E. A logical constant C is defined by a function fc [based on standard model-theoretic

semantics] which is invariant under isomorphisms.

Conditions D and E, claims Sher, satisfy the two desiderata Tarski put forward when defin-

ing logical consequence. The first is that logical consequences are necessary, and condition

D is supposed to capture this. The second, which Sher labels (C2), is that logical conse-

quence is formal. The relevant portion of the Tarski text is the very same included above:

Moreover, . . . we are concerned here with the concept of logical, i.e. formal,
consequence, and thus with a relation which is to be uniquely determined

14It is worth noting that Tarski’s influential publications on semantics were strongly encouraged by Car-
nap, who at that time was considerably later on in his career. An interesting discussion of this is included
in [Carnap, 1963], pp. 60-67. Of particular interest are the reasons for and degree of resistance among
philosophers and physicists of the time. Much of Carnap’s later work on semantics builds on this work of
Tarski.

54

by the form of the sentences between which it holds, this relation cannot be
influenced in any way by empirical knowledge, and in particular by knowledge
of the objects to which the sentence X or the sentences of the class K refer.
The consequence relation cannot be affected by replacing the designations
of the objects referred to in these sentences by the designations of any other
objects.15

On Sher’s account, this becomes:

CONDITION C2: Not all necessary consequences fall under the concept of
logical consequence; only those in which the consequence relation between a
set of sentences K and a sentence X is based on formal relationships between
the sentences K and X do.16

On the face of it, this is entirely consistent with a syntactic view about logical formality. It

is in spelling out the connection between E above and condition C2 that we see a significant

different. Sher explains C2 in the following way:

The condition of formality, (C2), has several aspects. First, logical conse-
quences, according to Tarski, are based on the logical form of the sentences
involved. The logical form of sentences is in turn determined by their logical
terms (see Tarski’s notion of a well-formed formula in “The Concept of Truth
in Formalized Languages”).17 Therefore, logical consequences are based on
the logical terms of the language. Second, logical consequences are not em-
pirical. This means that logical terms, which determine logical consequences,
are not empirical either. Finally, logical consequences ‘cannot be affected by
replacing the designations of the objects . . . by other objects.’18

Here we see that Sher has included what Tarski says in the second half of the passage

above, regarding non-empiricality and insensitivity to the identities of objects, as part of

what logical formality means. Whether or not Tarski himself intended this is difficult to

discern from the passage. Since, as we will see, there is a significant relationship be-

tween the syntactic characteristics of logical consequences and the underlying semantics,
15[Tarski, 1983c], p. 414.
16[Sher, 1991], p. 40.
17[Tarski, 1983a]
18[Sher, 1991], p. 40.

55

he might just be stating that non-empiricality and insensitivity to the identities of objects

are properties that consequences have in addition to syntactic (logical) formality. On the

other hand, given the context it seems quite likely that Tarski takes these as intuitive con-

sequences of the formality involved — that is, the consequence relation has those qualities

in virtue of being formal.

Although Sher’s reading of Tarski follows this second line of thinking, the exeget-

ical question is one of mostly historical interest.19 Even if Tarski did not intend these

properties to be part of “logical formality,” it might still be true that these properties fol-

low intuitively from our antecedent understanding of logical formality. Furthermore, it

might be the case that these properties bear some significant relation to the syntactic forms

of sentences such that they give rise to, account for, or explain them.

The final step is to explain how this results in condition E, which Sher gives as

follows:

Why don’t we . . . follow Mostowski’s construal of ‘not distinguishing the
identity of objects’ as invariance under permutations . . . Generalizing Mostowski,
we arrive at the notion of a logical term as formal in the following sense: being
formal is, semantically, being invariant under isomorphic structures.20

And now we see that objectual formality enters the picture as a more detailed account

of what it means for logical consequence to be insensitive to the identities of objects. If

we think that such insensitivity is constitutive of logical formality then we can arrive at

the conclusion that objectual formality — invariance over transformations between set

theoretic structures — just is logical formality.

This line of reasoning finally results in the claim,“This criterion [E] is almost uni-

versally accepted as capturing the intuitive (semantic) idea of formality.”21 And so we can

see that the claim that objectual formality characterizes logical formality ultimately stems

19In [Sher, 1991] Sher cites [Tarski, 1983c] as a source for the position, and reiterates this connection in
[Sher, 1996]. She has since claimed we should understand this as an independent proposal.

20[Sher, 1991], p. 53.
21[Sher, 1991], p. 56.

56

from the intuition that logical consequences are formal in being insensitive to the identities

of particular objects.

3.2.3 The Irreducibility of Syntax to Semantics

We are now faced with two candidates for the title of “logical formality.” One of

these we have already shown to be a type of formality according to our GTOF, but the

other we have not. However, before we engage in a separate inquiry into formality and

syntax, we should take a moment to eliminate the possibility that the syntactic character-

istics of first order logic, though distinct from its semantics, are reducible to or otherwise

determined by it.

What would need to be accomplished to show that the syntactic characteristics of a

formalized language can be accounted for in terms of objectual formality? One significant

feature of semantic formality is that, while it provides the notions which are denoted by

the primitive logical constants of the language (and in addition those notions which are

denoted by complex expressions formed exclusively out of primitive logical constants), it

does not on its own tell us how these primitive symbols should be combined into expres-

sions of the language. This means that any reasoning showing the syntactic features of

logic arise from the objectual formality of the notions denoted by its symbols must appeal

primarily to syntactic features of these symbols, not of complex expressions.

Fortunately, we can avail ourselves of some of our earlier considerations to make

some headway, as follows:

1. Logical consequences are formal consequences, and as such are determined by the form

of the sentences involved. (Characteristic feature of logic.)

2. The form of a sentence is determined by the order of primitive symbols in the sen-

tence, and in particular the locations of characteristic constants within the sentence.

(Definition of “form” or “structure” of a sentence.)

57

3. Logical consequences are determined by the order of symbols — especially the location

of characteristic constants — of the sentences involved. (Follows from 1 and 2.)

The justifications provided are straightforward and should be uncontroversial. What the

reasoning serves to do is to resolve logical consequence, usually characterized at the sen-

tential level (e.g., between sentences), into a statement about the symbols of the language.

What we need is to find some additional reasoning to bridge the gap between (3)

and the conclusion that the syntactic relationship called “logical consequence” is deter-

mined by the denotations of the logical constants involved.

Sher has herself suggested a helpful interpretation of Tarski’s familiar claim that

logical consequences “cannot be affected by replacing the designations of the objects . . . by

other objects.” Her idea is that the fact that logical consequence is insensitive to the iden-

tities of individuals (members of the model-theoretic domain or universe) is evidence that

is in need of explanation. Furthermore, according to Sher, the objectual formality of the

denotations of logical constants is what explains this evidence.22 Logical consequences

are insensitive to the identities of individuals because the logical constants denote notions

which are objectually formal (i.e., they are insensitive to these same individuals). If we

take the characteristic constants, the logical constants, of the sentences involved in con-

sequences to denote the kinds of invariants which Sher suggests, then we could consider

these consequences to characterize laws which hold for these denotations.23 It would then

be in virtue of the fact that these laws are insensitive to the identities of individuals that

the consequences are also insensitive.

The virtue of this way of thinking is that it allows us to say the following:

1. Logical consequences are formal consequences, and as such are determined by the form

of the sentences involved. (Syntactic feature of logic.)

22Gila Sher, 2/6/2008, in conversation.
23In [Sher, 1996], [Sher, 1999], and [Sher, 2001], Sher calls these “formal laws,” a phrase I avoid only to

prevent confusion.

58

2. The form of a sentence is determined by the order of primitive symbols in the sen-

tence, and in particular the locations of characteristic constants within the sentence.

(Definition of “form” or “structure” of a sentence.)

3. Logical consequences are determined by the order of symbols — the location of char-

acteristic constants — of the sentences involved. (Follows from 1 and 2.)

4. Logical consequences characterize laws which hold for the denotations of the charac-

teristic constants of the language.

∴ Logical consequences are determined by the notions denoted by the characteristic con-

stants occurring in the associated sentences.

∴ The syntactic character of a logical consequence is a direct result of the objectual for-

mality of the notions denoted by the characteristic constants of the language.

Statement (4) is designed to capture our preceding reasoning about explanation. The first

conclusion is what should interest us, as the second just makes its significance explicit. It

is also fairly evident that the premises one would use to arrive at this conclusion, if at all,

would be (3) and (4). Is this possible?

No. Although there is clearly a significant relationship between a law which holds

for the domain of semantic invariance and the corresponding logical consequence, this re-

lationship does not hold in virtue of the syntax of the involved sentences over and above

the fact that the senses of the sentences manage to capture or express the law. This means

that, while the sentences will involve characteristic constants with the appropriate denota-

tions, the actual ordering of symbols in the sentences and the locations of the characteristic

constants is under-determined. The correlation is not between the syntactic relation and

the law, but between the correlated semantics of the sentences involved and the law.

To make the point a bit clearer, the objectual formality of the notions denoted

by the characteristic constants of logic clearly places certain constraints on the syntax

of the language. It must, we can say, be capable of expressing the formal laws which

59

hold between these notions. But this stops short of determining the syntax which must be

used. Many different formalized languages, with distinct syntaxes, can be used to express

the same laws. Notational variation alone can permit two languages to express exactly the

same consequence (formal law) but with different syntactic form (although always with the

same underlying characteristic notions). What is more, these laws can even be expressed,

and indeed proofs carried out, in English or many other non-formalized languages.

So, it is difficult to see how the syntax of a language can be fully determined by its

semantics. For all but the simplest, most impoverished languages, the constraints placed

by the semantics upon the syntax simply are not strong enough. And so, we will need to

pursue an analysis of the syntactic features of standard first order logic independently from

the denotations of its characteristic constants. On the other hand, the preceding reasoning

may suggest that while the objectual formality of the logical constants does not wholly

determine or explain the syntax of sentences, it certainly places considerable constraints

on the syntax and explains the presence of characteristic constants within the particular

expressions involved. This is significant and interesting, and it is something we explore in

the final section of this chapter.

3.3 Formality in Language

We can now turn to an examination of the syntactic features of first order logic and

answer the question of whether or not these are a type of formality according to our GTOF.

Most of what follows is applicable well beyond the case of first order logic, and this opens

up some interesting questions to be explored in later chapters.

Generally speaking the syntactic features of all languages, formal and non-formal,

can be divided into two categories. The first of these is a grammar, or what we might call

the “syntax of the language.” This is what is most commonly at issue when philosophers

speak of “syntax,” and it essentially consists of two parts: primitive symbols, and the rules

of composition for forming complex expressions out of these. In some languages, like

60

first order logic, certain primitive symbols play an important role in the rules of composi-

tion. These constants are then distinctive of the language, and they are what we have been

calling “characteristic constants.” The second category we will call the “syntax of expres-

sions.” This is what we characterized above in terms of the non-meaning-based relations

(usually spatial or ordering) between symbols or words within a sentence or well-formed

formula of the language.

In the case of first order logic, the syntax of the language consists of the logi-

cal (characteristic) constants (connectives, quantifiers, and usually identity), non-logical

constants (predicates and functions, including 0-ary constant functions), variable symbols,

and auxiliary symbols,24 together with the general rules about how these may be combined

to produce well-formed formulae of the language. Every such well-formed formula has a

syntax of expression, as well, which consists of the ordering of its actual component sym-

bols. For example, the syntax of the expression “∀xFx” is that it begins with a universal

quantifier symbol, followed by the variable symbol x, followed by the constant predicate

F , followed by another instance the variable symbol x.25

In addition to these two formal characteristics, some formal languages have a third

component related to syntax — a set of derivational rules for manipulating expressions

in the language. In the case of standard first order logic (and many other languages)

this takes the form of a proof theory, with rules of inference and rules of transformation.

Essentially what these rules do is establish a relation on the basis of the expressional

syntax of formulae, almost always given in terms of characteristic constants. Thus, in first

order logic the formulas “∀x(Fx)→∀x(Gx)” and “∀x(Fx)” bear an implication relation to

“∀x(Gx)” in virtue of the positions of symbols within the expressions.26 At a more general

24So called because their only contribution to the language is to resolve ambiguity (e.g., “A∧ B∨C"
becomes “(A∧B)∨C" or “A∧ (B∨C)").

25This likely seems more restrictive than what is usually presented. It is more usual to describe the syntax
of a particular formula in terms of the syntax of the language. Such hybrid descriptions are certainly more
useful, however they make characterization in terms of invariance needlessly complicated. It is best for our
purposes to deal with these independently, and later address their combined use (as we do in section 3.3.2).

26The implication relation here should not be confused with a consequence relation. Implication is a
syntactic relation, whereas consequence concerns semantics. However, the completeness of first order logic

61

level, this third component can vary somewhat from a familiar proof or inferential system,

and it is not a component of all formal languages (as is often the case for diagrammatic

languages).

We will consider these three syntactic characteristics in turn as they pertain to first

order logic.

3.3.1 Grammatical Formality

As we know, the syntax of a language, or the grammar, consists of a description or

list of the basic symbols of the language and a set of rules of composition for constructing

complex expressions from these symbols. How this works in the case of standard first

order logic is well known, so there is no need for a review here, and we can get directly

to our analysis of whether the grammar of a language is grounded on a type of formality

according to our GTOF. This involves identifying the appropriate elements — domain, par-

ticulars, transformations, invariants — and constructing the associated invariance schema.

Given the role of grammar in the composition of complex expressions, two do-

mains present themselves as plausible candidates: the domain of all strings of symbols of

the language, and the domain of all well-formed formulae of the language. The second of

these is, of course, a subset of the first.

If we take the class of all strings of symbols of the language as the domain, and

then choose as the transformation class all functions between individuals in this domain,

we certainly will not end up with anything characterizing the composition rules for well-

formed formulae. If we think about what might remain invariant under transformations

from meaningless strings to well-formed formulae, we can see that we will not arrive at

anything like a grammar. The invariants will be limited to features of strings of symbols

generally, and as this set presumably includes every possible ordering of primitive sym-

bols, nothing structural will turn out to be invariant except the feature of being a string,

guarantees a correspondence between the two such that conflation is easy and often not problematic. The
present context make distinguishing them imperative.

62

which is neither notable nor useful. This puts us off the mark. We will need to look

elsewhere, and the intuitive thing to do is to limit our consideration only to well-formed

formulae of the language, since this is what the grammar characterizes. This will induce

a restriction, so to speak, on the class of all functions between individuals in the domain,

such that the class of transformations only contains functions between well-formed for-

mulae of the language.27

Having identified a plausible domain, we can turn to the evaluation of classes of

transformations. We have mentioned the class of transformations between all well-formed

formulae, but there are other possibilities. One of these is to consider those transforma-

tions which preserve “logical form.” Since we know that the grammar of first order logic

distinguishes well-formed formulae based on their logical form, this class contains essen-

tially only the identity function on sentences.28 The class of invariants generated by this

class of transformations includes, among other things, every well-formed formula of the

language. We know that the syntactic formality of the language does not consist in the fact

that particular formulae can be constructed in the language, at least not directly. So, this

meager class of transformations will not do.29

A more likely proposal is to stick with the class of transformations between all

particulars of the domain. That is, the class of transformations which maps every well-

27There is an additional component worth noting. The inclusion of function symbols in the language
means that there is also such a thing as a “well-formed term” of the language which is not itself a formula. If
we wish to be very inclusive, we might also add such strings to the domain we are considering Doing so will
have little effect, however, as the class of all well-formed formulae includes formulae containing all possible
well-formed terms.

28There is, of course, a small issue concerning the choice of names for variables. We follow
[Quine, 1960a] and [Quine, 1976b] in thinking that, whatever the difference may be between ∀xFx and
∀yFy, it is not a grammatical difference. From a grammatical perspective, these sentences have the same
form.

29Under sufficiently idealized conditions, there is an analogous idea for natural languages which is a bit
more interesting. If we take the class of transformations that maps every sentence to every sentence with
exactly the same characteristic form (e.g., grammatical form in that language), the invariants would turn
out to be the possible grammatical structures of expressions of the language. That is, the invariants would
amount to the possible descriptions of sentences in terms of the grammar, which for natural languages is
non-unique (many sentences may share the same description).

63

formed formula to every other.30 Which are the features invariant over this class? Certainly

the property of being a string of primitive symbols of the language will belong to this class,

as this is true of all well-formed formulae. But this time there is more. A very important

property is preserved by these transformations, that of being a well-formed formula. At

first, this looks trivial; of course they are well-formed formulae! That is how the class

of transformations was defined. But from our earlier discussions of syntax, we know

that a string of symbols is a well-formed formula if and only if it satisfies the syntax

of the language. So, the class of invariants, in addition to containing features relating

to string-hood, also contains features relating to the rules of composition, including the

satisfaction of the rules of composition of the language. In fact, the class of invariants

contains little of substance other than these rules of composition. In addition to string-

hood, which is syntactic in nature, it will also contain the fact that each formula consists

only of the symbols listed in the definition of the language, but none of these symbols itself

is invariant, since the rules of composition of standard first order logic do not require any

given constant be included within a particular formula.31 A less interesting invariant will

be that all formulae contain at least one symbol. But this, again, is a consequence of the

rules of composition. Many more invariants can be found in this class, but none which are

not trivial or uninteresting. What is interesting, however, is that the class seems to include

anything syntactic that pertains to the language as a whole, and this result generalizes. If,

for example, we consider a language using some form of representation other than strings

30As this is the first class of transformations we will work with which is not easily defined by a function
type (e.g. isomorphisms), a brief description of how we can define this class seems appropriate. The simplest
way to do this is to take the class of constant functions which take any well-formed formula as input and
map it to a constant well-formed formula, with one such function mapping to each formula. This will in fact
result in a set, since the number of well-formed formulae is denumerable. However, for our purposes the
details do not matter, provided that the class of transformations is such that for every pair of formulae, there
is some function which maps the first to the second.

31Incidentally, the same cannot be said of all formal languages. Many programming languages, in partic-
ular, require that a valid statement begin or, more usually, terminate with a specific constant (often “;”). For
such languages, constants like these will turn out to be invariant features under all transformations between
valid statements. But, of course, this will also be captured by the rules of formation of the language, which
are themselves invariant under these same transformations.

64

of symbols, the rules of composition would still be invariant. Likewise, it seems clear that

since any rule of composition of the language is, by fiat, satisfied by every formula of the

language, these rules must be among the invariants.

This puts us in a position to formulate the following provisional invariance princi-

ple for what we will call “grammatical formality”:

Grammatical formality consists of those features of well-formed formulae

which remain invariant under transformations between all well-formed for-

mulae of the language.

Given the inter-dependency between invariants and transformations, we can revise this to

capture the more interesting point we have just presented as follows:

Grammatical formality consists of those features of well-formed formulae

which remain invariant under transformations which preserve well-formed-

formula-hood.

An astute reader will have noticed even before these principles were given that

we face a similar circularity to that which we encountered in our discussion of geometry

in Chapter 2. We want to characterize grammatical formality in terms of invariance un-

der a class of transformations, but because of the interdependence between invariants and

transformations, we appear to need a characterization of grammatical formality in order

to identify this class of transformations. That is, it looks as though we need the grammar

in order to construct the set of well-formed formulae. However, just as before, no contra-

diction or regress results. Neither is there a theoretical problem of being unable to grasp

either the grammatical rules or the formulae first. We could dream up the syntactic rules,

for example, and from these generate the well-formed formulae of the language. Like-

wise, we could write down some strings and, if we are lucky and they are formulae, the

grammatical rules would be invariant under transformations between them.

65

However, in the case of first order logic we are at much less of a loss for how the

system can be set up, since for an interpreted formal language, like first order logic, there is

an independent, non-grammatical criterion of well-formed-formula-hood, and especially

of sentence-hood — meaningfulness. That is, if we allow ourselves access to the semantics

of the language, such that we can distinguish meaningful formulae from nonsense, we

can see how the invariance relationship might have been constructed. This suggests a

conclusion we arrived at earlier from another direction — that the semantics of first order

logic play an important role in the particular character of the grammatical formality that

constitutes the syntax of the language. We discuss this conclusion directly in section 3.4,

but not before we encounter it twice more.

What we should take as the conclusion here is that what we have called the “syn-

tax” of the language, or “grammar,” is in fact a kind of formality according to our GTOF.

In fact we have carried on in such a general manner that we can say something more gen-

eral than this. For any system whereby complex objects are constructed out of primitive

objects according to a fixed set of rules, those rules are formal with respect to the objects

so created. This holds true for all formal languages and also many fragments of natural

languages.32 That is to say, these languages exhibit grammatical formality, and their rules

of composition are “grammatically formal.”

3.3.2 Sentential Formality

We will now turn our attention to the syntax of expressions. The syntax of an ex-

pression, we already know, consists of the ordering of symbols in the expression. What

we also know, from our consideration of Tarski above, is that this is what we are left with
32The trouble with applying the GTOF to the syntax of natural languages is that natural languages involve

innumerable exceptions, deviations, and are mutable by nature. All of these cause problems for the GTOF
as presented in Chapter 2 because it assumes an essentially static, exceptionless domain (which works per-
fectly well for formalized languages). We expect that this way of thinking could be broadened to provide
a characterization of “approximate” formality or something of that sort. The issue arises again in section
5.2.3.

66

when we "disregard" the meaning of an expression. This means that, for any given sen-

tence, the syntactic structure of the expression should be the same regardless of meaning

assignments to the constituent parts.

This makes our task reasonably easy in showing that the syntax of expressions

is indeed a type of formality. A consistent theme so far, and one that will continue to

develop, is that focusing on invariance is essentially a way of systematically disregarding

or “washing out” particular aspects of whatever is in focus. Alternatively, it is a way

of systematically selecting and isolating certain details (a structure) which we wish to

attend to or focus on. In the case of grammatical formality above, what is disregarded

are the particular structural characteristics of expressions (by choosing transformations

between all sentences) and what is attended to is what we might call the shared structural

characteristics. From this perspective it seems reasonable to think that the transformations

we wish to consider in this context involve the meanings or interpretations of expressions,

since this is what is getting systematically disregarded.

There are a number of perspectives from which this might be pursued. We might,

for example, take each sentence of the language individually and consider reinterpretations

of the symbols of that sentence. This would result in an invariance schema for each sen-

tence of the language, and hence a “unique” type of formality for each sentence. This is a

bit more complicated than necessary, however, since these can quite naturally be grouped

as a family, and it is likely that we might be considering the same meaning transformations

in each case.

Instead we will take a more holistic approach and think in terms of interpretations

of the language. For the present purpose, we intend the notion of “interpretation” to be

quite a bit broader than how it is standardly understood in logic. We need not, for ex-

ample, require even that the “interpretation” results in all sentences of the language being

meaningful (since meaning is what we are washing out). And importantly, none of the

denotations of any of the symbols remains fixed (not even the logical constants, which are

usually kept fixed). So, by an “interpretation” we mean the following. An interpretation of

67

a formal language, in this case standard first order logic, consists of the list of symbols of

the language and rules of composition, together with a denotation function which assigns

a denotation to each of these symbols.

Our domain consists, then, of ordered pairs consisting of the set of sentences of

the language, as defined by the grammar, together with an interpretation. We must also

stipulate that the interpretations included among these pairs must be of a sufficiently great

variety that every symbol is assigned at least two distinct denotations, but ideally several.

The class of transformations, then, will be taken such that every pair is mapped onto every

other pair by some function in the class of transformations.

It is intuitively clear that the class of invariants will not contain any semantic fea-

ture, other than the relatively mundane fact that the symbols of the language all have some

denotation under an interpretation (unless we include a “null” denotation function as an in-

terpretation). What remains invariant with respect to the set of sentences of the language?

Only that each sentence consists of the symbols that it does in the order in which they

occur. This is all. But this is precisely what we mean by the “external” or “pure” syntax

of an expression.

With this in hand, we can now define what we will call “sentential formality” in

terms of the following invariance principle:

Sentential formality consists of those features of sentences which remain

invariant under all transformations between interpretations.

And so, this is legitimately a type of formality according to our GTOF. There are several

issues worth considering at this point.

First, on its own this is a relatively “weak” kind of formality from a practical per-

spective. It really does not amount to much. In fact, if in constructing our pairs above

we had taken arbitrary strings of the language rather than sentences, these would exhibit

“sentential” formality as well, since they also consist of sequences of symbols of the lan-

68

guage. Furthermore, providing a description of an expression in terms of a sequence of

symbols, whether the description is meaningful or not, is not a particularly useful ability.

This is something of a surprise, seeing as the view that logical formality is syntactic in

nature implies that this is what is interesting about expressions. It still follows, however,

that consequence relations are determined by this ordering of symbols. The same cannot

be said of non-sentence strings, even though they do exhibit structure. The major differ-

ence, of course, is that sentences satisfy the rules of composition and are appropriately

related by means of a rule of inference. That is, what matters for formal consequence is

not merely that a sentence has certain symbols in a certain order, but that having those

symbols in that particular order satisfies the rules of composition of the language in such

a way that an implication relationship results between them.33 It is no surprise, then, that

the complexity of the functional terms does not involve logical constants.

Fortunately, it is also the case that the grammatical rules of the language also be-

long to the class of invariants under interpretation transformations. That is to say, the

grammatical rules of the language do not change under changes in interpretation, and nei-

ther do the facts about which rules are used to construct each sentence. They are, we may

say, also “sententially formal.” The virtue of this is that it allows us to employ the gram-

matical rules in providing descriptions of sentential syntax. These descriptions, it should

be noted, are something of a hybrid between the purely grammatically formal and purely

sententially formal descriptions. Grammatical formality only affords description in terms

of which rules were used to construct an expression, but it does not allow reference to any

particular symbols from within grammatical classes (other than those explicitly involved

in the rules). Sentential formality, on the other hand, permits reference to all symbols in an

33Another way to see this more clearly is in contrast with well-formed complex functional terms (of arity
greater than zero). Such terms have a structure of their own, but this structure plays no role in establishing
consequence relations, for which purpose they are effectively treated as non-composite. Complex well-
formed formulae, on the other hand, are generated by logical constants, and it is this resulting structure
that serves as a basis for logical consequence. That the internal composition of complex functional terms is
also formal (though not logical) is not something we will establish here, but which can be inferred from the
discussion in Chapter 4, in particular section 4.2.3.

69

expression but does not recognize grammatical classes. Hybrid descriptions suffer none of

these drawbacks, which we can see by considering the simple sentence “Pa”, where P is a

one-place predicate and a is an individual constant (zero-place function).

Grammatical: A predicate constant followed by (or applied to) an individual constant.

Sentential: The symbol “P” followed by the symbol “a”.

Hybrid: The predicate constant “P” followed by (or applied to) the individual constant

“a”.

It is easy to see that neither descriptions of the first or second sort make it easy to

see the implication relations between two sentences. In the case of grammatical descrip-

tions, we have no idea which non-logical symbols are shared between sentences, which

is usually necessary to determine a consequence relation. In the case of the sentential de-

scription, it is unknown how symbols relate to one another other than the order in which

they appear. In the case of first order logic, we cannot even presume that each occurrence

of a symbol has the same denotation as every other, since the logical connectives behave

differently depending on whether their arguments are sentences or open formulae.34 It is

only by application of the grammatical rules to the ordering of symbols that we have a

complete picture of what is going on syntactically within a sentence and, crucially for the

case of first order logic, between sentences.

It additionally might be wondered why we defined grammatical formality as a

distinct type of formality when it is also invariant under interpretation transformations.

Should it not be combined with sentential formality? It is first important to recognize that

it is not a problem for features to be formal in more than one respect. Why this is so,

and how it works, is something we discuss in greater detail in Chapter 5.35 Whether the

34Though of course, if the language were altered to remove this ambiguity, perhaps by providing addi-
tional symbols, the condition might be satisfied.

35In fact, as we make clear there, most things (and possibly all) are formal in more than one respect.

70

multiple formal aspects are related, and how, is often an interesting question and one we

take up below with respect to first order logic.

The second thing to recognize is that the fact that something exhibits a certain type

of formality does not mean that it can be easily grasped or constructed by considerations

limited only to that type of formality. This is true in the present case. Assume for a moment

that we are unaware of the rules of composition of the language and are merely presented

with the set of strings of the language (which of course, contains the set of sentences as

a subset). Now, the rules of composition of the language are going to be invariant under

transformations between all particulars in the domain of sentences in this case as well.

But since we do not know these rules of composition, we must somehow recover them.

And we cannot do this without the set of all sentences of the language — we will not

know which strings need to satisfy the rules and which do not.36 We also cannot rely on

the semantic criterion of sentence-hood — meaningfulness — because of course we have

washed away meaning by means of invariance. If we had a distinction between sentences

and mere strings, we could most likely reconstruct the grammar from looking at what is

invariant over the sentences. But where could such a distinction come from if not from

the meaningfulness or grammaticality criteria? It could not. Even if the distinction was

made for us, by some outside source, we would still be relying on that source’s semantic

or grammatical knowledge, and so would not be in any better position.

This allows us to make a distinction between a feature being “essentially” formal

or “incidentally” formal in a given respect. A feature or theory is essentially formal if

invariance under a certain class of transformations is constitutive of what it is to be that

feature or is somehow significant in characterizing it. If this is not the case, it is inci-

dentally formal. In the present example, the rules of composition of first order logic are

36A notable variation on this is combinatorial logic, discussed at the end of Chapter 4, in which the only
rule of construction is juxtaposition of primitive symbols, and sentences can be of any length. For such a
language, every string is a sentence. However, from our ignorant, “original position,” so to speak, we would
not know this to be the case, since that is grammatical knowledge. We simply do not know whether all,
some, or none of the strings are in fact sentences.

71

essentially grammatically formal but only incidentally sententially formal.37

3.3.3 Derivational Formality

The final syntactic component of standard first order logic that we must say some-

thing about is the proof theory.38 In doing this we must be careful to avoid implicit in-

clusion of semantic considerations, since as we will see, a proof theory actually imposes

considerable semantic constraints on a language. Perhaps because of this philosophers

have a tendency to speak loosely about proof theory as involving “logical consequence.”

In one of the passages above, from [Tarski, 1983c], Tarski himself characterizes “logical

consequence” as “a relation which is to be uniquely determined by the form of the sen-

tences between which it holds.” Now, this can only be taken as a fact about the relationship,

not as constitutive of it, since later in that same article Tarski gives his famous semanti-

cally laden definition of logical consequence. A few pages before this passage, however,

Tarski tells us that the rules of inference and transformation “tell us what transformations

of a purely structural kind (i.e. transformations in which only the external structure of

sentences is involved) are to be performed upon the axioms or theorems already proved in

the theory . . . ”39 This, we think, is the proper way to think of proof theory and derivation

from the perspective of syntax alone.

Although we wish to exclude semantic considerations, we cannot do so by looking
37This point also has bearing on a controversial claim the GTOF commits us to, which we discuss in

greater detail in Chapter 5. The claim is that everything can turn out to be formal in some respect (e.g.,
according to some type of formality). One concern this raises is the possibility that the GTOF cannot fail
to proclaim logic to be formal since it proclaims everything to be formal. This is certainly not an intuitive
result, and our response is to say that our project here is not to show that logic is incidentally formal in some
way, but rather to show that it is essentially formal in at least one respect.

38Treating the derivational theory of a formal language as distinct from its grammar raises an interesting
question. Although it is a standard among logicians to define the rules of formation of a language apart from
its proof theory, if the primary purpose of the language is the construction of derivations rather than solitary
expressions, might not the proof theory merely constitute grammatical rules that hold at the the higher level
of statements rather than symbols? Whether this is so may well depend on the purpose and applications of
the language in question, and like many things, this is beyond our scope of inquiry. It does seem that, at the
very least, there is a convenient practical distinction between the two.

39[Tarski, 1983c], pp. 409-410.

72

at invariance under interpretation in the same way we did for first order logic. This is

because derivational rules are not invariant with respect to changes in the denotation of

logical connectives. All that is required to see this is to include among our interpretations

one that exchanges the denotations of conjunction and disjunction. Clearly, this will not

affect sentence-hood (or meaningfulness, for that matter) but it will result in several of the

derivational rules failing to preserve truth. As a result, the structural relationships iden-

tified by the derivational rules will no longer correspond to valid consequences, and the

resulting theory will be unsound. This lack of soundness, which is taken to be a necessary

feature of any logical proof theory, cannot be characterized in syntactic terms since (as our

example shows) the difference between a sound and unsound theory can hinge exclusively

on denotation. Thus, the requirements of truth preservation and soundness therefore im-

pose a considerable constraint upon the semantic reinterpretation of a language, over and

above that placed on it by the grammatical rules. Nothing, of course, forces us to give up or

change the derivational rules, even under very wild interpretations, but they will have lost

their original purpose as a logical theory and will have unpredictable semantic results.40

All of this is just to say that the formality of a proof theory, if it is indeed formal, is distinct

from the type of formality we characterized above for the structure of well-formed expres-

sions (what we called “sentential formality”). Although a proof theory is clearly sensitive

to the ordering of symbols in well-formed expressions, it is also sensitive to changes in

denotation of these symbols (which, of course, the order of the symbols is not).

Likewise, neither does proof theory exhibit grammatical formality. If we assume

that it does, the following should be the case. We can take all sentences of the language and

place them into sets determined by which derivational rules can be applied to them. Just

how we do this does not matter. When we consider the class of transformations germane to

grammatical formality, it should be the case that no sentence is transformed to a sentence

which belongs to a different set (or sets). But since every sentence is transformed to every

other, this is guaranteed to occur. Hence, the derivational rules are also not formal in the

40The syntactic derivations will be just as predictable as ever.

73

purely grammatical sense.

However, there is a certain analogy between a proof theory and the idea that logi-

cal formality is insensitive to the particular character of objects, as there is a clear sense in

which derivational rules are insensitive to much of the structure of the sentences on which

they operate. This is clear from the fact that derivational rules are not defined for each and

every sentence of the language to which they apply, but are instead defined generically for

classes of sentences. This is usually accomplished by means of derivational schemata in

which Greek letters stand for unknown expressions.41 Thus, for example, the rule of de-

tachment does not distinguish between the sentence “P→ Q” and “(∀xFx)→ (Fa&Fb),”

since these each satisfy the structure α→ β . That a sentence has this structure is a require-

ment for the rule of detachment to apply, and the rule applies in exactly the same way to

every such sentence. This is what we mean by saying that the rule does not distinguish be-

tween these sentences — it is insensitive to substitution of members within the class. The

rule is likewise insensitive to differences between sentences to which it does not apply. Of

course, it is sensitive to substitutions between these classes.
41Although we have generally avoided discussion of “variables,” a certain note on this topic is owed

here. It is common logical parlance to refer to the use of Greek letters in derivational schemata as “meta-
mathematical variables” or just “variables,” and it may seem odd that we do not. The reason we do not is
that schematic letters do not denote an unknown referent, “any such referent,” “all referents,” etc. Hence
expressions containing these schematic letters are not evaluable from the perspective of the semantics of
the language without supplying the appropriate bit of language for which they stand — by “filling in the
blanks,” as it were. True variables, or what we might call “semantic variables,” do not require substitution
for evaluation, but rather binding by a quantifier. Furthermore, even if we did bind schematic letters with
quantifiers (say “for all sentences”), it is not at all clear that the resulting “derivational rules” would mean
the same thing that they do in schematic form, or even be part of the language in question (rather than some
metalanguage). At any rate, the main difference from our perspective is simply this: schemata pertain to
language — schematic letters are blank spaces to be filled with bits of language; true variables pertain to
semantics — they are the sort of thing that must be bound (implicitly or explicitly) by a quantifier and rely
on this quantifier for their semantic values. This distinction is similar to that made by in many places by
Quine, but most clearly in [Quine, 1986], pp. 66-68. A major difference is that Quine considers predicate
letters to be schematic, and this is one reason for his rejection of second order logic, whereas we are fo-
cused here only on schematic letters occurring in explicitly metalinguistic derivational rules. Developing a
position on the issue of predicate letters and second order logic would be out of place here, but the GTOF
ultimately suggests a more-or-less pluralistic response — predicate letters can be taken either as schematic
or as bindable variables depending on the application of the resulting theory (and the underlying semantics).
See also [Quine, 1981], pp. 165-168, and [Quine, 1976b].

74

In general, a derivational rule will not distinguish between any n-tuple of sentences

which satisfy it, or between any n-tuple which does not, but it will distinguish between

these two groups. That is, a derivational rule is either applicable to a sentence (or set of

sentences), or it is not. It is not capable of making any further distinction than this, since

it functions the same way for every sentence (or set of sentences) to which it applies, or

not at all for those to which it does not. And all of this does suggest that derivational rules

are somehow invariant with respect to transformations defined on sentences, but more

structure seems needed in defining these transformations.

Let us focus for a moment on just one derivational rule, simplification. Now, the

schematic form of simplification is generally presented thus:

ϕ ∧ψ

ϕ

Also, let us make the simplifying assumption, usual in treatments of first order logic, that

simplification only results in the derivation of the left conjunct (a combination of commu-

tation and simplification being required to derive the right conjunct). From this, we can

create a set of ordered pairs of sentences such that the first sentence satisfies the premise

schema and the second is the appropriate sentence to the inference, namely the left con-

junct. Let this set of ordered pairs be the domain of invariance, and let the class of transfor-

mations be such that each pair is mapped to every other pair in the domain. Now, trivially,

the relation defined by the simplification is preserved under these transformations. The

domain essentially consists of this relation. However, it seems clear that certain struc-

tural (grammatical) features of the ordered pairs will also be invariant. Namely that the

first sentence contains a conjunction as its main operator, and the second sentence is the

sub-sentential string to the left of this main operator (which will also be a sentence). It is

precisely this structural relation that is expressed by the derivational rule of simplification.

And since this structural relation is invariant under transformations between instances of

the relation we have defined (the ordered pairs), it is formal with respect to these.

It is easy to see that there is nothing unique about simplification that it affords this

75

result. The very same process can be carried out for each and every derivational rule of

logic, and the result will be that each particular rule exhibits formality with respect to an

appropriate domain, consisting of a relation between an n-tuple of sentences which satisfy

the antecedent of the schema and the appropriate sentence satisfying the consequent. It

should also not be surprising that, again in every case, we are faced with the familiar

circularity that the domain of invariance is defined in terms of a relation which ends up

being invariant under those transformations. And again this is not a problem because

the relation that constitutes the domain not only need not be constructed by means of

the derivational rules, but it is wildly implausible that it could have come about merely

by recognition of some structural connection between, for example, a conjunction and a

sentence identical to its left conjunct. There are plenty of these types of structural relations

to be found in first order logic which are not included among the derivational rules.

This point underscores the weakness of derivational formality for being individ-

ually distinctive of logicality. For it turns out that derivational formality holds for any

derivational rule formulated in a metalanguage, whether it is logical or not. This goes

for the complete class of structurally related expressions (in terms of the grammar of the

language), for example:

ϕ ∨ψ

ϕ

as well as “derivational rules” which have no ground in structural similarities, for example:

Pa
Qb

Clearly, neither of these rules are truth preserving, and so they are not what we would call

logical. The second is so clearly non-logical that it seems wrong to call it a derivational

rule at all, and yet from the perspective of symbol manipulation, both can be used to

derive new linguistic expressions from old ones. Furthermore, just as with the rules of

logical derivation, these rules are invariant over relations between premise and conclusion

76

sentences. In the case of the second rule, the extension of the relation contains only the

pair (Pa,Qa).

The generality of derivational formality, therefore, raises the question of why cer-

tain derivational rules are “logical” rather than others. It also evinces the weakness of

derivational formality to independently characterize logicality. More information is needed

than is provided by the metalinguistic definitions of valid inference, and the obvious thing

to say is that what makes a derivational rule logical is that it captures or characterizes

semantically grounded families of logical consequence relations in terms that make them

syntactically manipulable. This is a significant point, since it is the seam along which

the formal aspects of the syntax of first order logic are sewn to the formal aspects of the

semantics of the language. As we will see in the next section, they together result in many

of the features that make first order logic interesting and useful as a language.42

42It is worth noting the relationship between this claim and the position put forward by Gentzen, Prawitz,
and later Dummett (the “GPD” tradition). According to the classical, model-theoretic approach, which we
are following, the selection of derivational rules is something in need of explanation. These rules are not
implicit in the selection of characteristic constants or the grammar more generally. The GPD tradition, on
the other hand, takes a basic set of derivational rules as primitives. The constants involved in such rules,
then, derive their semantics from the derivational role they play. This approach has consequently been
called “proof-theoretic semantics” or “inferential role semantics.” Because the derivational rules just are the
semantic primitives, there is no questioning their relationship to the semantic primitives of the language.

In fact, the GPD approach is quite interesting from the perspective of the GTOF as it effectively rein-
terprets what it means to be a logical language. Instead of a language consisting of symbolic constants
combined to form truth evaluable sentences, GPD holds that the language consists of primitive derivational
rules which are combined into derivations. The operant semantic notion, then, is that of validity, which GPD
also defines in terms of these primitive elements (derivational rules), rather than satisfaction or truth.

Although a detailed examination of GPD formal semantics is beyond the scope of our present inquiry,
some interesting questions arise. In particular, [Prawitz, 1971] is clear that derivational primitives corre-
spond to non-formal, intuitive inferences. This is similar to the claim we make below regarding model-
theoretic semantics, but the identification of distinct characteristic atomic elements (derivational rules) and
composites (derivations) makes us wonder whether the two approaches can really be said to be about
the same language at all, and more generally if a comparative examination in terms of the GTOF might
further illuminate relationships between the two approaches. For more on proof-theoretic semantics, see
[Gentzen, 1964] and [Dummett, 1991].

77

3.4 Logic as a Formal Language

We started out with a question about whether or not standard first order logic turns

out to be “formal” according to our theory of formality, and also in what way. We were

worried about whether objectual formality could really capture what logicians have his-

torically meant in saying that “logic is formal.” Now we have seen that logic is in fact

formal in several respects. It surely exhibits some kind of objectual formality (although

just which of these is properly “logical” is not a question we will address here). It is

also defined by a grammar, which is grammatically formal, and that works in tandem with

sentential formality to provide what we usually understand as “syntax.” Furthermore, its

derivational rules, as such, are each formal with respect to an underlying relation which

defines them. This makes it seem reasonable to say that first order logic is formal accord-

ing to the GTOF in virtue of the fact that nearly every significant characteristic turns out

to be directly connected to some type of formality. We could then leave it to other philoso-

phers and logicians to decide amongst themselves just which of these properly makes logic

formal.43

However, as our inquiry has moved along, we have noted two important points.

First, that the types of formality associated with syntax are very general in nature. So

general, in fact, that on their grounds alone we could not distinguish between first order

logic and any other symbolic system, or even some fragments of natural language. Al-

though this, in itself, does not undercut the idea that logic is formal, it belies the intuition

that logic involves formality in some deeper sense. The second point we have noted is

that the only plausible grounds for the particular characteristics of the grammatical and

derivational formalities of first order logic seem to rely heavily on semantics.

In the case of grammatical formality, recall, we needed a way to distinguish the

sentences from non-sentences without appeal to grammaticality itself. The only other

alternative is to employ the idea of meaningfulness, which of course is deeply semantic.

43A task similar to that undertaken in [MacFarlane, 2000].

78

What this means is that, for all of their formal rigor, the grammatical rules of a formal

language are constrained by the rule that their application must always result in meaningful

(truth-evaluable) sentences. This is only possible when the symbols of the language, in

particular its characteristic constants, have semantic values which correspond to certain

structures of the underlying semantics.

What are these constraints in the case of first order logic? We can begin with atomic

sentences. The grammar requires that these consist of a predicate letter paired with a

function symbol (possibly a constant function evaluating to an individual). The constraints

are fairly straightforward under the standard extensional interpretation of first order logic,

which takes predicate letters as denoting sets of primitive elements, and function letters

as denoting functions which evaluate to primitive elements. Since predicate extensions

contain only primitive elements, they cannot be applied (where application is represented

by concatenation) to anything that does not resolve to an object. In particular, unless the

logical constants denote primitive functions (and they do not), a predicate applied to them

will result in a nonsensical, non-well-formed formula.

Predicates may also, of course, be applied to object variables, however the gram-

mar in this case is more complicated. It is a general rule of first order logic that, while

a predicate symbol followed by a variable is considered “well-formed” it is not consid-

ered a sentence. That is, an expression like Fx is a well-formed sub-sentential expression,

but it is not itself a sentence according to the grammar. Why? Following [Quine, 1960a]

and [Quine, 1976b], this is because the semantics of a variable comes essentially from

its quantifier. So, rather than being nonsensical, an unquantified predicate expression is

incomplete.44 It is, therefore, a semantic constraint that object variables be bound by a

quantifier to form a complete, meaningful sentence. It should also not be surprising, given

the semantics of predicate symbols, that the quantifiers denote notions which are them-

selves sets of primitive elements — the range of possible values must be such that the

44Of course, many accounts of the semantics of first order logic include a rule that variables lacking a
binding quantifier are bound implicitly (usually universally).

79

application of any predicate constant to each value will result in a meaningful (though

quite possibly false) statement.

Next we consider the case of logical connectives in a quantificational context —

when all arguments of the connective, taken in isolation, contain unbound variables. The

grammatical rule in the standard formulation is that the binary connectives are interposed

between their arguments, and the unary connective is prefixed. This very division makes

the semantic constraint evident, in that the distinction between binary and unary connec-

tives is driven by the underlying denotations. According to the objectual view we are

following, these connectives denote set-theoretic operators, and it is not surprising that

these operators match their symbols in terms of arity — the negation symbol denotes a

unary operation on sets, the others binary operations.

Finally, we come to the connectives used in sentential contexts — when at least

one supplied argument is a sentence in itself. These follow similar grammatical rules as

in the quantificational context, in that the grammar distinguishes the arity of the connec-

tives. However, in this context the connectives cannot denote set-theoretic operators, since

at least one of the supplied arguments is itself a sentence. Instead, the negation symbol

denotes a unary operation on truth values, while the others denote binary operations. In

the case where a logical connective is used to produce a new formula only from existing

sentences, the resulting formula is itself a sentence. In the case where a binary logical

connective is supplied with a sentence and a well-formed formula containing free vari-

ables, the result is a well-formed non-sentence. There are two ways such a formula can be

turned into a sentence: the argument with free variables may be bound with a quantifier, or

appropriate binding quantifiers may be prefixed to the entire formula. However, since the

quantifier has no effect on the argument which is already a sentence, the two collapse to the

same solution — the non-sentence formula must be rendered truth-evaluable (turned into a

sentence) in order for the entire formula to be truth evaluable. Since the semantics is such

that the denotation of every sentence composed of a connective and one or two sentences

is also a truth value, the semantics permits recursive application of these connectives (e.g.

80

to arguments which are also compound expressions). Additionally, the existence of nota-

tional variations, e.g., polish notation, makes the constraint clearly evident in that none of

these notational variants change the arity of the connectives. This makes sense because

the underlying objectual notions remain the same.

What enables the same symbols to denote truth-value operators in one context and

set-theoretic operators in another is that the grammatical rules guarantee two things. First,

that it is never ambiguous which meaning applies, because the type of every supplied argu-

ment is always clear, and second that all sentences of the language evaluate to truth values,

regardless of the symbols out of which they are composed. Although not strictly a con-

straint of the language, we can see that it is the semantics that facilitates the denotation of

two types of operators by a single set of symbols. If, for example, the two sets of operators

were capable of taking an overlapping set of arguments (especially if their outputs differ

in value or type), any language built on such a foundation could not make use of a single

set of symbols. It is even clearer that this would be the case if the two sets of operators

produced values of different types. If so, distinct operators would be needed to ensure that

no nonsense or unevaluable expressions result.

Again, when we were considering derivational formality, we recognized the need

for an independent criterion to define the relations between sentences which form the in-

variance domains of the derivational rules, thus effectively selecting which rules would

count as logical. We suggested there that the semantic notion of logical consequence

would fit this bill rather nicely. It is, in fact, quite plausible that derivational rules are gen-

erally constructed with certain logical consequences in mind. It is difficult to see how it

could be otherwise, given the considerable number of “purely structural” relations between

expressions that play no part in derivational rules. And, just as in the case of grammat-

icality, the addition of a proof theory to a language effectively places further constraints

on the relationship between the syntax and semantics of the language. The difference is

that the constraints of the derivational theory are much stronger. The reason for this is

that, whereas the underlying semantic constraints for grammaticality stem merely from

81

a consideration of meaningfulness, the derivational theory of first order logic has a pre-

occupation with truth preservation and, more generally, semantic derivability. Not only

must the interpretation of the language be such that all well-formed expressions come out

meaningful, but it must also be the case that the derivational rules all turn out to be truth

preserving and allow the derivation of new, meaningful expressions from existing ones

(the relations characterized by Sher as “formal laws”). This constraint makes it exceed-

ingly difficult to reinterpret the logical constants.

Consider, for example, the simple case from before in which the denotations of

“∨” and “∧” are exchanged. While causing no grammatical problems (all expressions

are still meaningful), the result is that the derivational rules of addition and simplification

(along with most others) are no longer truth preserving, and the proof theory as a whole

is rendered unsound. This is so because the meanings of sentences, related by the deriva-

tional rules purely in terms of syntactic structure, have been changed. Thus the underlying

relations between propositions have been changed, and the derivational rules are no longer

grounded on logical consequence relations. The situation can be resolved easily enough

by changing the derivational rules, but the point should be clear. A derivational theory

is constructed in light of semantic considerations, and the derivational rules capture the

fact that the sentences of the language which represent certain propositions related to one

other by means of a certain consequence relation also have a certain syntactic relationship

within the language. Furthermore, the very reason that these expressions are related struc-

turally (and they need not be, for a logical consequence, in the semantic sense, to hold) is

grounded in the fact that the grammar of the language was designed with these semantic

considerations in mind.

This does not mean, of course, that it is impossible to undertake a radical reinter-

pretation of the language of standard first order logic, such that every symbol is assigned

a non-standard denotation but where the grammatical and derivational rules are preserved.

It does mean, though, that the requirement to preserve the grammatical and derivational

rules places considerable constraint on doing so. In fact, the best way to accomplish such

82

a reinterpretation would be to look for structural analogs to the standard denotations, par-

ticularly the denotations of the logical constants. It is also fairly easy to see that certain

parts of the language are easier to reinterpret than others. These are the non-characteristic

constants — those which do not feature essentially in the grammar or derivational rules. In

the case of first order logic, the validity of derivational rules hinges entirely on the preser-

vation of truth. Truth, in its turn, is generally spelled out in terms of the satisfaction of

sub-sentential predicate expressions. However, the derivational rules are not sensitive to

what satisfaction means or how it is accomplished, and they are also not sensitive to the

identities of particular predicate and object constant symbols.45 Hence there is consid-

erably more semantic flexibility with respect to the interpretation of predicate and name

symbols, and this is one principled reason a standard “interpretation” of first order logic

does not involve a reinterpretation of its characteristic, logical constants. The practical rea-

son, of course, is that one is usually choosing to work with the language of first order logic

out of interest in logic, and repurposing the “logical constants” to denote non-standard

notions would be counter-productive.

So, although the language of first order logic exhibits multiple distinct types of

formality, all of these (with the possible exception of sentential formality) are tailored to

the semantics, which is itself formal. Although this conclusion is suggested by Sher, the

application of our GTOF not only confirms the position but also shows that first order

logic comes out as formal, just as we had hoped. Furthermore, this relatively novel way

of looking at first order logic helps us to understand its utility. Because the syntax is

structured to effectively mirror the semantics of the language, mere syntactic manipulation

stands for — even models — corresponding relations and manipulations in the associated

semantic domain. This enables us to easily conflate the sense of “logic” as a theory about

45This is itself a consequence of the focus of the language on invariance with respect to the identities of
individuals and membership (i.e., set theory). Since the logical constants denote objectually formal opera-
tors, and all of the schemata for derivational rules explicitly include only logical constants (using schematic
letters for the rest), it is no surprise that these rules are themselves insensitive to the non-logical constants
(symbols denoting individuals and sets) to which the logical connectives are also insensitive.

83

certain relations in an objectual domain with the sense of “logic” as a formal language and

proof theory.

This is an interesting and enlightening result in and of itself, but much of what

we said above was either quite general or could very easily be made so. This suggests a

conclusion regarding formal languages more generally — namely that as a rule they in-

volve the structuring of the formal characteristics of the syntax of the language to match

formal characteristics of the underlying semantic domain, and that derivational theories,

where present, will have some additional preoccupation (often with truth, but not neces-

sarily so). This idea, if true, could serve as the foundation of a much more robust account

of formalized languages, one which recognizes that such languages are neither created ex

nihilo nor essentially limited to abstract subjects like logic, mathematics, and geometry. It

is also reminiscent of the somewhat radical position held by Richard Montague, that the

semantics of all languages (formal and natural) could be accounted for in model theoretic

terms.46 While we are limiting our focus to formal languages, the claim we wish to en-

tertain does involve the formal nature of the semantics of all formal languages. The main

difference, however is that the GTOF, distinguishing as it does formality from logicality,

does not oblige us to invoke model theory or any other specific type of formality.

Unfortunately, we cannot easily conduct a general investigation of such a sweeping

idea any more than we already have, since for each case the relationship between syntax

and semantics is quite specific and the semantic domains can vary wildly. Instead, in the

following chapter, we examine whether this claim holds for a number of programming lan-

guages — formalized languages which are more applied, more complex, and less idealized

than first order logic.

46See [Montague, 1974].

Chapter 4

Formality and Programming Languages

We ended our last chapter with a thesis very similar to that of Montague, except

that the postulated connection between syntax and semantics is somewhat weaker, and

there is no restriction that the semantics of the language turn out to be model theoretic.

The basic thesis we are explaining, supporting, and exploring is this:

First, that though the syntax and semantics of a formal language do not completely

determine one another, there is a strong relationship between the two based on what we

have called “constraints,” which are minimal standards which must be satisfied. These

constraints may be considered from either the semantic or syntactic perspective, but are

easiest to see when viewed from the syntactic side. If we have a definition of a language,

but without any semantics, we can ask ourselves the question of just what could serve

as a proper semantics for the language. We might have a range of choices, but these are

clearly constrained by the characteristics of the syntax (as explained in Chapter 3). The

semantic perspective is slightly more difficult to imagine, since it is not easy to conjure

up a semantics from nothing (this, perhaps more than anything else, is what centuries of

logical development has produced). However, as presented in Chapter 3, we could isolate

the semantics of an existing formal language and ask the question, “Which syntaxes would

work to express these semantics?” The result will clearly not be limited to the syntax of

84

85

the original language, but likewise not just any syntax will do.

Second, that the relationship between syntax and semantics, for a formal language,

rather than being a relationship between the syntax and a model-theoretic semantics (as

Montague supposed), is a relationship between the formal, invariant features of the syntax

and the formal, invariant features of the semantics.

Third, that this close relationship effectively makes a language “transparent” with

respect to its semantic domain, such that it is easy to ignore the linguistic aspect and take

the representations and syntactic manipulations which occur in the language as though

they actually are objects and manipulations in the semantic domain.

If this hypothesis is true, we would expect that all formal languages would satisfy

it. Showing this requires either demonstrating that it holds for each and every formal

language, or arguing that it holds from general and undisputed principles about formal

languages. This second path is closed to us, because it is unclear what facts about formal

languages we can appeal to, at least not which involve a relationship between syntax and

semantics and are also undisputed.

This leaves us with the first path, which it is not possible to complete in the present

context (if at all). Instead, we will examine a collection of formal languages to see if (and

how) they satisfy this thesis. In focusing our discussion we should be guided first by a

concern for clarity, but we should also have in mind generalizability. That is, we should

choose in a way that our conclusions are likely to be generalizable to a broader range of

formal languages with a high degree of confidence.

There are a number of classes of formal languages we could consider in this re-

spect. The languages of generative grammars, game theory, those used in the natural

sciences, or even the dance “language” of bees hold some promise for this. However, af-

ter logic and mathematics (or perhaps equal to them) the discipline most tied to formal

languages is computer science. Computation does not, strictly speaking, require formal

languages, but formal languages have proven to be an extremely effective tool for the dis-

cipline. And so it seems the most practical choice is to examine computer programming

86

languages. Not only does this constitute a very broad class of languages, but despite a

common, naive opinion, they differ in significant and important ways from logical and

mathematical languages. Furthermore, we have a fairly clear understanding of the issues

driving the development of early programming systems, which places us in a position to

understand the motivations and goals underlying particular decisions made in the design

of these languages. This proves invaluable in understanding the connection between a lan-

guage and its semantics. In particular, we will follow the development of programming

languages as their focus shifts from machine-oriented semantics to problem or domain-

oriented semantics.

In what follows, we must navigate some difficult waters. We must provide some

depth of understanding regarding the technology in question, but at the same time we

cannot hope to provide a comprehensive treatment of the languages we will be consider-

ing. Since this is a work of philosophy, and we assume that our audience has a primarily

philosophical background, the discussion is tailored in a philosophical way with a focus

on concepts and principles rather than the technicalities of implementation and details of

particular hardware. We have endeavored to only explain those aspects of the technol-

ogy strictly necessary to understand the philosophical points to be made, and this results

in some aspects of languages and technology receiving short shrift, in particular relatively

simple ideas whose implementations are practically challenging but which lack substantial

ramifications from our perspective.1 We have endeavored to provide enough in the way of

detail, however, to prevent our explanations from being cryptic or overly schematic.

The following discussion is broken down into two primary sections. The first and

more substantial section takes as a starting point the machine-oriented nature of low-level

and early programming languages and focuses on the innovations that permit increasing

1A nice example of this is input and output (I/O) facilities. While technically challenging, I/O is not
particularly philosophically interesting, and we feel at liberty to mention it only in passing. The same is true
for most kinds of optimization. While an important area of ongoing research and a field rife with technical
challenges, most kinds of optimization do not have independent philosophical interest and can be safely
ignored. Even a cursory look at much of philosophy will reveal that we have historically had little care for
optimization or efficiency.

87

degrees of “independence” from these machines and their structures. For this purpose we

first consider machine codes (generically), and then look at one of the earliest genuine

programming languages, developed for a machine called “EDSAC”. We conclude this

section by looking at one of the earliest high-level languages — FORTRAN. The second

section considers developments which take into account non-machine oriented semantic

domains. To this end we consider the developments of structured programming, object-

oriented programming methods, and what has been called “descriptive” or “functional”

programming. This final topic permits a few brief comments on the relationship, and

inequality, of logic and programming languages.

4.1 Hardware and Machine Independence

The first subclass of programming languages we look at are those whose design en-

ables some degree of what we call “hardware independence.” Intuitively this means these

languages enable essentially the same process or operations to be carried out in igno-

rance of the underlying physical system. The idea can be more strictly, and conveniently

understood in terms of invariance. Put simply, a program or programming language is

“independent” of a hardware facility if it is insensitive, or invariant, to changes (espe-

cially implementations) of this facility. Hardware independence can differ both in terms

of which hardware facilities the program or language is insensitive to, and also in degrees,

understood in terms of range of variation over which the program or language is invariant.

Languages which are highly insensitive in both respects are called “machine independent.”

In this section we examine three languages with varying levels of machine indepen-

dence. The first, machine code, is by all accounts the least machine independent language.

The second, EDSAC code, has some important features which make it independent with

respect to certain machine features, but its hardware independence is still severely lim-

ited. Finally, we will look at one of the earliest and best known high level programming

languages, FORTRAN, which makes a much stronger claim for machine independence.

88

4.1.1 Machine Codes

The association between programming languages, programming, and computers

is so close that their coexistence is often taken for granted. This was not always the

case. Very early digital computers (both electronic and electromechanical), though pro-

grammable, did not use programming languages of any appreciable kind. Programming

these early machines was essentially a matter of rewiring the device (by means of plugs

and switches) to control the processing flow. A nice example of this is ENIAC, created in

1946 by the Moore School of Electrical Engineering at the University of Pennsylvania.2

The use of programming languages with computers, although postulated and at-

tempted much earlier by Babbage and Lovelace, was facilitated by the introduction of

a distinct electronic unit dedicated to processing “instructions” (written in a language)

and thereby directing the flow of computation. Such machines were known as “stored-

program” computers on account of the fact that they also involved a memory component

in which the program commands would be loaded for execution. Nearly every contem-

porary computer is a stored program computer, although there are a number of different

types.

The most common approach to implementing a stored-program computer makes

use of what has come to be called the “von Neumann architecture.” One of the first de-

scriptions of the von Neumann architecture, named after the logician John von Neumann

(who contributed to its invention), can be found in [von Neumann, 1945]. In this descrip-

tion, von Neumann tells us that the machine should consist of three parts. The first of

these he called the “central arithmetical part” or “CA.”3 The CA consisted of the physical

devices which actually perform the basic operations involved in arithmetical computation

(adders, multipliers, etc.).

In addition to the CA, a von Neumann machine also contains a distinct “central
2A very accessible discussion of ENIAC can be found in [Goldstine, 1972]. It is worth noting that ENIAC

was eventually altered to permit more advanced, flexible programming approaches.
3[von Neumann, 1945], p. 18.

89

control” mechanism which is responsible for determining which simple operations to per-

form on which stored values and in what order. Again, this is the most significant point

from the perspective of programming language use, as it removes the need to physically

rewire the machine. The control mechanism essentially “rewires” the machine based on

the stored input commands.

The third component of a von Neumann machine is a memory store. It is easily

seen that every stored-program computer will need some kind of memory in which to store

the program. What is unique about the von Neumann architecture is that it involves only

one memory store, which is used for both program and data (numerical value) storage.

In principle, we should be interested in all computers which involve some kind of

central control unit, including those with varying memory architectures (e.g., the Harvard

architecture) This is because a central control unit is all that is required to facilitate the

use of programming languages. In practice, however, we will focus only on von Neumann

type computers. This is in part because the vast majority of modern computing systems

implement the von Neumann architecture, and also because a broader focus would take us

too far afield. While there are some interesting consequences for programming language

syntax and semantics that result from these architectural differences, this is a matter for

future inquiry.

A simple von Neumann machine is programmable by means of something called

a “machine code.” Put simply, a machine code program is the sequence of commands

interpreted by the central control mechanism that results in the carrying out of a complex

computation. A machine code is the “language” in which these commands are written.

The best way to understand the basic principles of machine code will be to discuss the

operation of an extremely simple von Neumann computer. The machine we will consider

will be fairly schematic, but it is similar to the EDSAC, one of the first operational stored-

program computers.

Our simple machine has a central control unit which treats memory locations as

though they contain commands. The central control unit always begins processing at

90

memory address 0 and proceeds serially until reaching a control transfer command, a

“halt” command, or the final memory address, for example 511 (but of course, it could

be of any finite size). The arithmetic control unit of this simple computer also reads val-

ues from memory locations, but unlike the central control unit, it treats these as numbers.

It has components for performing basic arithmetic operations on these values, as well as

some auxiliary storage locations (distinct from the main memory) for storage of temporary

values. One of these auxiliary memory locations, called the “accumulator,” is the “output”

location for the arithmetic operations. The main memory consists of a certain number

(e.g., 512) of memory locations or “addresses,” each of which can store a binary string of

a specified, finite number of digits (e.g., 17).

Machine codes are generally quite simple, and as such we only need to consider a

relatively small fragment to have a clear picture of how they function. Table 4.1 shows a

fragment of the machine code for our simple computer, involving just enough to permit a

simple program which adds two numbers.4 Alphabetic references have been included for

convenience, but it is important to remember that this is not how the language is repre-

sented within the machine.

With this fragment of machine code, we can consider a simple example of what

machine code looks like and how it works. Let us consider a program which adds the

numbers -12,743 and 9,957. With large numbers and many carries, it is possible that we

might want such a program. The program in human-readable form is given in Table 4.2.

Of course, in this representation, we have distinguished between numerical values and

commands, but in a machine consumable form the only difference between a command

and a numerical value is how the value is being interpreted at a given time. Also, for

practical reasons related to hardware implementation, all numbers are represented as being

between 1 and -1.5 This means that in order to input the indicated values they need to be

scaled appropriately. We can do this by multiplying each by 2−16.6 The true representation

4Adapted from [Wilkes et al., 1951], p. 5.
5See [Wilkes et al., 1951].
6This value is used because the input values are integers. Non integer values would require different

91

Table 4.1: Fragment of Simple Machine Code

Alphabetic

Reference

Machine

Code Value

Description

A 1.1100 Add the number in the indicated

storage location into the accumulator.

T 0.0101 Transfer the contents of the

accumulator to indicated storage

location and clear the accumulator.

U 0.0111 Transfer the contents of the

accumulator to the indicated storage

location and do not clear the

accumulator.

Z 0.1101 Stop the machine. The address field is

not used for this command, and

consequently may be any value,

including zero.

92

of this program in machine code (including the final value at address 6) is given in Table

4.3.

Table 4.2: Human-Readable Machine Code Program

Address Command Field Address Field

0 A 4

1 A 5

2 T 6

3 Z 0

4 -12,743

5 9,957

6 0 [Will contain result]

Table 4.3: Machine Code Program

Address Value

0 1.1100000000000100

1 1.1100000000000101

2 0.0101000000000110

3 0.1101000000000000

4 1.1100111000111000

5 0.0010011011100101

6 1.1111010100011101

When run, the central control unit will cease processing commands when it reaches

memory address 3, which contains the halt command. At this point, the resulting value

scaling factors in order to fit between 1 and -1. The resulting value must, of course, be scaled as well,
“undoing” the original scaling. It is easy to understand how complicated this kind of scaling can become.
As computational speeds increased, such “fixed-point” operations (so called because of the fixed location of
the binary point) have given way to “floating-point” operations (wherein the location of the binary point is
coded in the overall value), which eliminates the need for additional scaling.

93

of 1.1111010100011101 will be located at address 6. Properly scaled and converted to a

decimal value, this is -2,786.

In order to carry out complex computations, machine languages also need to be

capable of directing the central control unit to “repeat” a sequence of steps a specified

number of times or until a certain condition is satisfied. This is accomplished by intro-

ducing commands which, instead of directing the arithmetical unit to carry out operations

on the contents of a memory address, result in a “transfer of control” within the control

mechanism to a certain memory address. What these commands essentially do is interrupt

the central control unit’s normally linear execution pattern. If address n contains a control

transfer command, the next address read by the central control unit will most likely not

be address n+ 1, but some other address specified in the command. The simplest con-

trol transfer command is a “go to” command. When the central control unit processes a

“go to” command, the result is that the next command processed by the central control

will be whatever address is specified by the command, with execution proceeding serially

from there. This command can be used to create a simple, but non-terminating, loop by

transferring control to any preceding address.

What is required to make “go to” an effective command is an additional feature,

often called “conditional branching.” This amounts to a command which has two possible

outcomes depending on a certain condition (often whether a particular numerical value

is negative or non-negative). This is one of the minimal conditions for a programming

language to be “Turing complete.”7 The need for this is easy to see from considering the

7It is a classic result of computability theory that machines which have a certain minimum level of com-
plexity are capable of processing or expressing, respectively, all of the same functions. These are called
the “computable functions,” and it is also a result of classical computability theory that these are equivalent
to the class of partial recursive functions. Machines having this degree of complexity are called “Turing
complete.” Strictly speaking, a “Turing complete” machine is one capable of computing all computable
(partial recursive) functions given unlimited time and memory. That is, the machine would be computation-
ally equivalent to a “universal Turing machine.” Of course, actual machines do not have these features, and
in this application “Turing complete” is used to denote machines which would be strictly Turing complete
if they did have unlimited time and memory. The classic description of the universal Turing machine is
[Turing, 1936].

94

structure of recursive functions. For such a function to be interesting and useful, from a

computational perspective, it cannot simply apply to itself ad infinitum. It should termi-

nate eventually in some primitive element (often zero or the empty set). So, for such a

function to be representable in a language, the language must have the ability to express a

conditional transfer which effectively permits recursion to terminate and produce a mean-

ingful value. An example of a conditional transfer command for our simple machine code

is described in Table 4.4.

Table 4.4: Control Transfer Commands

Alphabetic

Reference

Machine

Code Value

Description

E 0.0011 If the number in the accumulator is

greater than or equal to zero, execute

next the order which stands in the

storage location indicated; otherwise

proceed serially.

This, together with appropriate memory management commands such as those in

Table 4.1, renders the language “Turing complete.” And, although we certainly have not

presented anything close to a complete machine code, we have presented examples of

the types of commands that one would contain: arithmetic operation commands, memory

transfer commands, and control transfer commands.

Analysis

The first thing we should say regarding the syntax of machine codes is that it is

very regular and simple. This is why we are able to only consider a small fragment of a

machine code. This is probably also part of the reason that machine codes do not generally

have explicit syntactic rules defined for them, in contrast to logic and other more familiar

95

programming languages. To anyone working with one of these languages, the syntax is

more or less obvious from the physical construction of the machine. This is a significant

point from our perspective, since we are interested in outside constraints placed on syntax.

There is, however, one small matter to address first.

The syntactic waters of machine codes are somewhat muddied by the fact that the

value stored at a given memory address has two distinct interpretations — as a number

and a command. While distinct interpretations are generally a semantic issue, the trouble

is that the syntax of the contents of a memory address are construed in two very different

ways by the two interpretations. Taken as a number, the string of digits is syntactically

atomic.8 Taken as a command, on the other hand, the string of digits is syntactically

composite.

The first question to answer, then, is what the relevant syntactic unit of the language

is. It is tempting to say that the entire “vocabulary” of the language for the machine will

consist of fixed length (e.g., 17 digit) binary “words” ranging from 1 to -1, and that these

are interpreted differently by different parts of the machine. We think, however, that this

is not an accurate picture of what a machine code really is. In particular, it does not

8There may be questions over whether the inclusion of a signing digit (indicating whether the number is
positive or negative) makes the resulting number compositional. Saying this is so is equivalent to saying that
“−1” is composite from “−” and “1”. There can be no doubt that “−1” is lexically composite, being formed
out of those two symbols. However, whether or not the expression is syntactically composite depends
on whether one takes the expression as the name of a number (negative one), or as the evaluation of a
function (denoted by “−”) which when applied to the number one evaluates to the number negative one. The
difference is easy to see by considering the true arithmetic expression “−(1) =−1”. In this expression, the
first “−” is clearly the name of a function (i.e., the whole expression is syntactically composite). We know
this because “−(6−5)” is permissible, even though “6−5” is not an atomic expression. If the symbol “−”
receives the same interpretation on the right-hand side, then the equivalence is true in virtue of the syntax of
the language, e.g., by means of a rule which allows the omission of parentheses when the expression within
is atomic. If, however, “−1” is taken as a primitive designation of negative one, the truth holds in virtue of
semantic facts, e.g., facts about the function denoted by “−” on the left-hand side. Just which interpretation
is correct (or we choose to operate with) will make little difference from an arithmetical point of view, and
perhaps for this reason the issue rarely comes up. We think the most natural understanding is to take “−1” as
a primitive name in large part because “+” can be used in a similar fashion to clarify that a value is positive,
and it seems exceedingly doubtful that any functional interpretation is at play in such cases. It is nevertheless
still the case that the primitive names of negative numbers are formed by means of a lexical function, and in
this sense have an air of compositionality. By the same turn, however, “10” is a composite of “1” and “0”.

96

seem plausible to think that the full “word” stored at a memory address, when taken as

a single number, should count as a statement of the language at all. The first reason for

this is that, if so, they have no syntax, because they are atomic. Second, it is dubious

that they are interpreted at all, rather than being merely manipulated. That is, they do

not have any effect on the functioning of the machine. But the final reason is that, as a

coded form of orders controlling the machine, machine code is interpreted by the central

control unit. The central control can direct the arithmetical unit to perform an operation

on the numerical value stored at a certain address, but the central control unit is never in a

position to interpret the value of an address as a number. It is notable, in fact, that numbers

themselves never actually occur explicitly within a machine code program. That is to say,

there is nothing equivalent to “1 + 1” in a machine code. Instead, one must add the contents

of two memory addresses. Just what these values are does not matter from the perspective

of the central control. As far as the central control is concerned, every string between

1 and -1 is a potential command. It is these combined command-memory address codes

that form the basic syntactic “sentences,” or “statements” as they are normally called, of

machine code.

The basic vocabulary, then, consists of command codes and address codes. Given

the technical, physical constraints of machine construction, we know that, in fact, every

permissible expression of the language consists of a command code followed by an address

code. This suggests two plausible syntaxes for the language. First, the syntax might consist

of a separate rule for each command code, stating that the command code followed by an

address code is a permissible expression, and that nothing else is a permissible expression.

Alternatively, the syntax might consist of a single rule based on the lexical categories of

command codes and address codes. The rule would simply state that any command code

followed by an address code, and nothing else, is a permissible expression.

According to the first view, the command codes would be seen as characteristic

constants of the language because they are assigned an explicit role in the syntax (as dis-

cussed in Chapter 3). On the second view, the entire vocabulary consists of constants,

97

none of which are given a unique, explicit syntactic role, and hence the language would

not have any characteristic constants.

We feel that the second possible syntax is the most plausible for two reasons. The

weaker reason is that it is the simplest adequate syntax for the language. The more im-

portant reason stems from the fact that we can easily imagine “extending” our machine

code by adding additional commands. This preferred syntax is easily amenable to such

additions. In fact, the syntax need not be altered in any way. If we imagine adding a

command which would require changing this syntax, say a command code which requires

two address fields, we find that this new command exceeds the limitations imposed by the

machine. Hence, any command which could be added to the language will satisfy this

syntactic rule. We deem this syntax more plausible, not only because it is simpler, but

because it is also maximal in the sense of being adequate for every possible statement of

the language under arbitrary extension without alteration of the machine itself.

The only syntactic rule of the language, then, is that a command code is always

followed by an address code. Just what is done with this address (if anything at all) is not

indicated syntactically, it is part of the semantics of the command code.9

The purpose we have set is to consider carefully the constraints placed by seman-

tics on the resulting formal characteristics of the language, and the hypothesis is that these

semantic constraints, in the case of a formal language, will be formal as well. The ma-

chine code we have been considering is somewhat unusual in that it wears its semantic

constraints somewhat on its sleeve. This is a common trait of machine codes, for reasons

we will explore. So much so that, in fact, formal descriptions of syntax are often unneces-

sary for machine codes. This is because the constraints are primarily due to the underlying

9The word “semantics” is important in both philosophy and computer science, and in many cases the
term is used differently in the two fields. In philosophy, the “semantics” of an expression consists of its
meaning (which may itself consist of different elements, e.g., intension and extension, sense and reference).
This is how the word was used in the preceding chapter. In computer science, the semantics of an expression
is sometimes taken to consist in the transformation the expression brings about on the underlying data. Here,
and in many places, the two notions coincide. In those places where they come apart, we will take care to
clarify the point.

98

technology, the hardware, for which the machine code was designed. If we understand

the hardware, the syntax of the associated machine code is to a high degree self-evident.

This is especially so if one adopts the view that machine code syntax is based on classes

of constants rather than particular constants.

At a general level, it is easy to see that the hardware constrains the permissible

expressions of the language to those representable in at most 17 digits (or however many

digits are permitted on a given machine). In fact, unlike some other languages we will con-

sider, hardware imposes an absolute limit to the semantic expressibility of machine codes

in that there can be at most 2n (217 in our example) unique statements of the language. If

expressions do not influence the semantics of other expressions (that is, if the semantics is

not context sensitive) then this is the upper limit on the number of meaningful expressions

that can be formed in the language, although, of course, most machine codes are not so

semantically rich.10

However, our hypothesis bids we look for a closer relationship. This is because,

insofar as machine codes have a “subject matter,” they are about the machine for which

they are codes. That is to say, they direct or prescribe (and also effectively describe)

the functioning of the machine for which they are designed. If our hypothesis holds, we

should expect a close relationship between the syntax of machine codes and the machines

on which they are used.

On our preferred understanding of machine code syntax, there is but a single rule

— that a command code should be followed by an address code. This means that all

permissible expressions have exactly the same syntactic structure. Even on the alternate

interpretation, the syntax of the language is comparatively quite simple, as, for example,

there are no constants which can transform a well-formed statement into a well-formed

statement. Again, this is so because allowing such a rule in the syntax would permit well-

formed statements to exceed the physical bounds of the hardware.

The length constraint alone, though, does not explain why a machine code would

10In information theoretic terms, this is the maximum number of informative signals.

99

have any particular syntax. However, if we think in a similar way about the operation-

address syntax that our machine code has, it becomes readily apparent (and is not at all

surprising) why it is structured as it is. An operation-address syntax is a natural choice

given the purposes and goals the language was designed to meet — to direct the operation

of a computing machine. What this amounts to, essentially, is controlling the transforma-

tion of bits of data. Nearly every such “activity” undertaken within a computer is charac-

terizable as a function.11 So, it is not surprising that a syntax for a language describing or

controlling such operations should follow a general function-argument pattern.

Furthermore, results from the lambda calculus let us know that a function taking

n-many arguments may be alternatively represented as a set of monadic functions applied

in series.12 Because the purpose in designing a computer (the hardware) is the carrying

out of these functions, the hardware will naturally be built in whatever way makes this

easiest given the existing technology. It is not surprising, then, that computer hardware is

not designed to carry out binary, ternary, etc. operations when monadic operations will do.

Designing the machine to carry out a basic set of monadic operations is the simplest and

most flexible approach. It is furthermore quite convenient from a linguistic perspective,

since a monadic function-argument syntax (where functions cannot be arguments) is very

simple for a machine to parse (and certainly simpler to parse than a syntax involving

functions which take varying numbers of arguments). It is the most easily implemented

compositional language capable of expressing, and thereby directing, the activity of the

hardware in performing operations on data.

These syntactic constraints are essentially built into the hardware of the machine,

and it is for this reason that an explicit syntax is generally unnecessary. The technology

makes it such that expressions which are impermissible simply cannot be uttered (or in

this case, placed into a memory location). When we say that every operation the computer

carries out is a function which takes a single, non-function argument, we are essentially

11In fact, just about everything that occurs within a computer is characterizable as a function.
12[Hindley and Seldin, 2008]. The process is often called “Currying.”

100

saying that this is an invariant of the machine itself. That is, if we take as our domain the

set of operations the machine is designed to carry out, and as our class of transformations

a class of functions which transforms each operation into every other, the most prominent

invariant we are left with is that each operation affects only one memory address.

But this is perfectly analogous to the command-address syntax, which is the only

grammatically formal characteristic of the language. Which is to say, they satisfy our

hypothesis. The invariants of the syntax correspond to the invariance of the semantics.

Also, just as we hypothesized at the conclusion of Chapter 3, it is this correspondence that

lends a kind of transparency to the language. We can say of a machine code program that

it “computes thus-and-such function,” when to be precise we should say that it directs the

computer to compute the function.

To see that this is so, we can imagine an alternative situation in which a different

type of computer is able to receive input in a different language, say one of the languages

of mathematics. Now let this machine, though it has just the basic operations of a Turing-

complete von Neumann machine, be by some mysterious artifice able to read an equation

in the mathematical language, carry out the appropriate computation, and provide a solu-

tion to the equation. In such a case, we would not say that the mathematical equation in

any way describes or captures the operations the machine carried out to solve the equa-

tions. We would not say that the equation “computes thus-and-such function,” as we can

say for a machine code. It might represent the function, but it does not provide much in

the way of how a solution can be found (and in many cases effective means of computation

are obscure). In other words, there is no transparency through the mathematical language

into the operations of the machine.13 That there is such transparency for machine codes is

therefore non-trivial and interesting.

Before moving on, we think it prudent to take a moment to clarify an important

13To be sure, there is an important relation between the two, and it almost certainly has something to
do with invariance. It just is not the sort of relation that permits transparency, or the use of mathematical
language as a formal language to direct or describe the basic functioning of a computer. We will return to
this thought, and the example, in later sections.

101

point about what we have accomplished. We have shown that there is considerable simi-

larity between first order logic and a basic machine code in terms of formality. This might

be distasteful to those who hold that logic is somehow special in its formality. While we

are to some degree challenging the idea that there is a difference in kind between first

order logic and other formal languages (when it comes to their formality),14 we are quite

amenable to the idea that there may be considerable differences in what might be called

“degrees” of formality. That is, we think that logic is specially formal in that it is more

formal than other languages (and the theories that go with them). This idea is explored

more fully in Chapter 5, but we can characterize it ostensibly here.

There happens to be a language with a function-argument structure which, under

a certain interpretation, is equivalent to first order logic. This language is typed combi-

natorial logic (or an equivalent formulation of a typed lambda calculus). For the present

purpose, the most important characteristic of this language is that there is one “operation”

— usually called “application” — which is characterized by the mere juxtaposition of

symbols. For example “FX” is the application of “F” to “X”. It is fairly easy to see how

this is similar to our machine code. Without going into too much detail, a major difference

is that application in combinatorial logic is iterative. For example “GXY” means an appli-

cation of “G” to the result of applying “X” to “Y”. Our machine code only permits a single

application in a given expression, which limits its expressiveness. What is more, our ma-

chine code involves no variables.15 This is a further limitation. One can see that, even if

we grant that machine codes are formal in the same sense that combinatorial logic and first

order logic are formal, the claim that it has a lower or lesser degree of formality is sensible.

14By a difference of kind we mean a difference of what counts as a formal language and what does not
count as a formal language, not a difference in the subject domain with respect to which the language is
formal.

15Certainly, when writing a program in machine code there are steps which emulate the use of variables
we might use to carry out the computations by hand, but nothing like this is a part of the machine language
itself. Every statement in a machine code describes a fixed operation which is carried out on a fixed object
(in this case a memory location). Even though a programmer may make use of variable expressions in
determining how to write the program, there are no equivalent machine code expressions because everything
must have a concrete instantiation at execution time.

102

The language, at best, “captures” invariances only over a small domain (just the machine),

whereas the domains for typed combinatorial logic and first order logic are considerably

larger. The idea of degrees of formality is implicit in the idea of degrees of machine in-

dependence which we invoke frequently below, but we reserve our explicit treatment of

the subject to Chapter 5. The final section of this chapter will look more closely at the

connection between programming languages, combinatorial logic, and standard first order

logic.

4.1.2 Memory Location Independence

It should be obvious that nobody would want to write computer programs entirely

in machine code, and certainly not complex ones. Very early on, programs were first

written in a slightly more human-friendly form by substituting letter combinations for

command codes and decimal numbers for addresses. Once completed, the program would

be transcribed by hand into the machine code for execution. Similar “lower level” codes

still exist today in the form of assembly “languages.”16 It is tempting to think of this

as a translation from an alphanumeric code into a machine language, but we must be

careful here. Generally speaking, alphanumeric codes (and assembly languages) of this

kind do not involve anything in addition to either the syntax or semantics of the underlying

machine language. They are “codes” in the proper sense. They are simply alternative

representations of the same language, with rules for direct transliteration between them,

16We use the notions of “lower” and “higher” level languages in more or less their standard sense in the
programming community. Machine codes are the lowest level languages because of their unmediated con-
nection with hardware, and also their overall simplicity (limited number of constants, simple syntax, etc.).
Assembly languages are of a higher level because these are transformed “downward” into machine codes.
All languages “higher” than machine codes require some kind of transformation (assembly, interpretation,
or compilation) which ultimately result in machine code commands. The terms “higher order” or “higher
level” are generally used for languages which pass through at least one intermediary language (for example,
an assembly language). “Low” or “lower” usually refers to languages at or below the assembly level. This
sense of “level” and “order” should also be distinguished from the logical use, in which the “order” of the
language usually indicates the types of quantification involved in the language.

103

rather than separate languages requiring rules of translation.17 Nevertheless, programming

in this way makes certain characteristics obvious which are important to the development

of more powerful, higher level languages.

One thing recognized more or less from the very beginning was that programming

involved a significant amount of repetition and reuse. We have already considered this with

respect to the control transfer facilities of machine codes (enabling loops and recursion),

but it is also easily recognized that entire, often lengthy, subsections or “segments” of

programs perform the same series of transformations required by other programming tasks.

It was recognized early on that the quality and efficiency of coding could be improved

significantly if there were a library of pre-written program segments — “subroutines” —

from which a programmer could simply select the desired parts.

Recall, however, that every machine code command contains a reference to a mem-

ory address, and that most of these commands make essential use of these addresses. This

means that, though a programmer may wish to make use of the sequence of transforma-

tions described by a certain segment of machine code, a literal reuse is only possible if the

segment is placed in precisely the same memory location as in the original program, and

necessary values are likewise precisely placed. If this is not the case, as in most cases can

be expected, then the memory addresses must be rewritten to reflect the segment’s differ-

ent position within the current program. This significantly undermines the motivation for

having a subroutine library in the first place.

A clumsy solution to this problem would be to expand the library to include ver-

17The difference here between transliteration and translation is subtle but important. Transliterations are
only possible when the differences between the languages consist entirely of different symbols for the same
semantic units. Thus, a transliteration can be defined as a bijection from one language to another which
preserves semantic values. If no such function can be defined between two languages, transliteration is not
possible. Translations, on the other hand, only require that the target language have at least the expressive
power of the source language. Consequently, translation is often possible even when transliteration is not.
A simple example (out of multitudes) can be developed from first order logic by having one language in-
clude “∃” and the other “∀”, in addition to the usual constants. No transliteration will be possible between
these languages, since every bijection results in at least one mapping which does not preserve semantic val-
ues. However, because these expressions are semantically inter-definable (by means of “¬”), we can easily
establish rules of translation.

104

sions of the subroutines appropriate for every possible position in memory. This is work-

able but obviously inefficient. The obviousness of the inefficiency is interesting and telling.

We recognize, without even seeing an example, that two subroutines which differ at most

in being appropriate for different memory locations are two copies of the same subroutine.

At least, that is what we want to say. The semantics of machine code, however, will not

allow this identification. What we have recognized by this is that, at least for most subrou-

tines, the actual memory locations make no difference to the underlying computations that

are carried out. What does matter are the relations between the memory addresses used.

If, for example, a program segment begins at address 50, and a crucial value is stored at

address 85, the critical fact is not that the value is at 85, but that the value is stored 35 mem-

ory locations later than the beginning of the sequence. If we symbolize the initial memory

location (50) by the constant a, it is easy to think of the memory location of the value in

question simply as a+35 (that is, 50+35). We will call values like a an “offset” because

they indicate the location of the subroutine relative to the origin (memory address 0). It

is not difficult to see that the offset itself will not affect the functioning of the subroutine,

provided that internal addresses are defined with respect to this offset value. The recogni-

tion that the offset value a does not affect the subroutine seems to warrant the treatment

of a as not referring to the location 50, but possibly to any location whatever. That is to

say, instead of treating a as a constant denoting memory address 50, it is tempting to think

of it as a variable because, even were the denotation of a something other than memory

address 50, the data transformations carried out would be the same. What we have just

recognized is that the information process characterized by a segment of machine code

is invariant with respect to memory locations, a fact which is clearly not captured by the

machine code itself.

This is important to recognize and it legitimates the practice of rewriting segments

of machine code merely by altering the address references to fit a new memory location.

It does not legitimate the writing of program segments with variable expressions in place

105

of address references. No such expression is permissible in a machine code.18

The practical utility of having usable program libraries, and the technical problems

with developing those libraries in machine code, drove the development of what is usually

considered the first programming system, constructed for the EDSAC at Cambridge. The

EDSAC programming system consists of more than just the input language itself, which

we will call “EDSAC code,” but also of a special program called the “Initial Orders,”

which was responsible for the transformation of programs written in EDSAC code into

appropriate machine code instructions. The need for similar transformations in contempo-

rary higher order languages (e.g. C++, Java) is so ubiquitous at present that they are merely

called programming “languages” and not programming “systems.” However, the fact that

using any language of higher order than machine language requires additional software

(especially compilers and interpreters) should not be overlooked as the transformations

that take place (beyond the mere transliteration of assemblers) are of critical importance

to our inquiry. We will be discussing the Initial Orders in some detail, as a simple exam-

ple of the role that compilers and interpreters play with respect to the formality of higher

order languages. In so doing we hope to avoid the need to delve into the depths of modern

compilers (for which the principles have not changed), and request forbearance in this re-

gard. In addition, what follows is not in any way an introduction to programming with the

EDSAC code, as we will gloss over all but what is significant for our purposes.

For our purpose, the primary innovation of the EDSAC programming system is the

Initial Orders program. What the Initial Orders does is treat the input lines of EDSAC

code as data to be transformed rather than commands to be executed. The resulting out-

put is machine code which could be executed on the EDSAC. Philosophically, what the

18It is a common objection to this claim that there are indeed variables present in a machine code, since
the values stored at memory address may be changed. These, it is claimed, are variables. While it is true that
machine code programs make use of memory addresses as though they are variables, the language has no
capability of expressing or representing this. Instead, explicit reference is only made to constant addresses
whose properties (values) may change in order to emulate variables. Though the addresses emulate variables,
they do so indirectly, and the fact that they emulate variables has much more to do with the knowledge and
understanding of the programmer than anything to do with the syntax or semantics of the language. On its
own a machine code is restricted to the use of fixed constant symbols denoting memory addresses.

106

Initial Orders do is free EDSAC code from some of the constraints imposed by the hard-

ware — something we will call “memory address independence.” In effect, the Initial

Orders allowed the EDSAC to execute programs written in a “non-native” language. A

full description of the EDSAC machine can be found in [Wilkes et al., 1951].

A significant part of the role of the Initial Orders is similar to the transliterative

process known as “assembly.” The Initial Orders is responsible for taking commands,

written in a human readable form, and placing the associated machine code commands

at an appropriate place in the memory of the machine. For our purposes, this is the least

interesting aspect of the EDSAC programming system, as it does not differ significantly

from machine codes. Take as an example the EDSAC code statement:

A 6 D

After processing by the initial orders, the following machine code command is placed in

the store:

Command︷ ︸︸ ︷
1.1100

Address︷ ︸︸ ︷
00000000110

L|S︷︸︸︷
1

The numerical value assigned to A is -.25. The leading 1 indicates a negative value, and the

following four digits, with decimal value .75, are the binary complement of the absolute

value of A.19 The following eleven digits indicate address 6, and the final digit indicates

that address 6 is to be treated as a long memory location.20 The numerical interpretation

of this command is the same as in the example machine code program in table 4.1.

In discussing the EDSAC programming system, we must stress that EDSAC code,

as a programming language, was never input directly into the machine. It was input as data

19Strictly speaking, A was assigned the value -4, which is then scaled by 2−4. As all code values are so
scaled, it seems simpler and more straightforward to speak of them as assigned their scaled values. The role
of code letters, like "D" is discussed in more detail below.

20This simply means that the memory location in question (6) is to be treated as including also the subse-
quent memory location, effectively doubling the length of the binary string that can be read from the memory
location. This is primarily useful when results of a higher precision than can be stored in a single memory
location are required.

107

to the Initial Orders program, which then placed appropriate machine code commands in

the appropriate locations. Given this, EDSAC code consists of two main parts. The first

of these is called the “order code.” This is the part of the language which is processed in

the assembly method just discussed. The symbols are transliterated (with the exception

of code letters) and the result is a machine code command placed in the EDSAC memory

store for future execution. The second, more innovative part of the EDSAC code consists

of commands called “control combinations” and “code letters” which together direct the

Initial Orders on how to process the EDSAC code, but do not themselves directly result in

machine code commands being placed in the store. There are in addition to these what are

called “pseudo-commands.” These are essentially numerical values masked by command

syntax. They are the least interesting for our purposes, and what we say about them will

be accordingly brief.

The EDSAC code contains fourteen code letters (one of which is “D” from the

example above). Thirteen of these code letters are “terminal” meaning that their presence

marks the end of an EDSAC order code statement. In fact, every well-formed order code

statement in EDSAC code terminates with one of these terminal code letters. The four-

teenth code letter (π) is the sole non-terminal code letter. It may immediately precede any

terminal code letter, but may not precede itself. The most interesting function of code let-

ters for our purpose is that when processed by the Initial Orders they result in the addition

of a certain value to the address value specified in the command. Just which value is added

is determined by the code letter (often in conjunction with one of the control combina-

tions). To see how this works, consider that the final digit of the machine representation of

“A 6 D” indicated that address 6 was to be treated as a long storage location. During input,

the Initial Orders first computes the numeric value of the command code (A), then trans-

lates the address into its binary machine representation. The final step is to add a value

to this address according to the terminal code letter. In the case of F, the correct terminal

digit is 0, which is the default value. Consequently, the number added to the address fields

is 0. In the case of D, the terminal bit must be set to 1, and this is done by adding 2−16

108

to the numerical representation of the order code, which causes the machine to treat the

address as a long memory value.

Of course, from the perspective of the machine, what is really happening is that

the value at a certain memory address is being added to the numerical address value. The

values corresponding to code letters are loaded into main memory along with the Initial

Orders program before program input commences. When the Initial Orders receives a

command code terminated with “F,” the machine is directed to add the contents of memory

address 41 to the address value of the order code. During execution of the Initial Orders,

address 41 always contains the value 0. “D” functions the same way, but is associated

with memory address 43, which has the constant value of 2−16. It is appropriate to think

of “F” and “D” as constants of EDSAC code for the following reasons. First, even though

they could be assigned different values (by changing the values at addresses 41 and 43),

doing so would prevent nearly all EDSAC code programs from being executable. That

is, the language of EDSAC code assumes and depends that these values are constant. On

the other hand, “F” and “D” could be fairly easily “remapped” to addresses other than 41

and 43, by means of appropriately revising the Initial Orders program itself. All EDSAC

code programs would continue to function just as well as before. This is why, of the two

plausible semantic values for “F” and “D” (memory address and numerical values), it is

most appropriate to think of “F” and “D” as constants denoting 0 and 1 respectively.

What we have just considered is the first way in which the use of the Initial Orders

enables certain features of the language to exhibit memory address independence. The

semantics of the code letters are freed, by the internal details of the Initial orders, from the

hegemony of the underlying hardware.21 This is a significant step toward the capability to

produce a subroutine library, but it is incomplete. What is needed is a means of specifying

21It should be noted that the role of these constants, so far described, is limited to this specific function
with respect to the memory address component of a command code. Though it might make sense to think
we could add “D” to itself, to arrive at the value “2”, doing so within the language of EDSAC code would
require appropriate syntactic rules, which were never included in the language. We will, however, consider
an additional use of code letters which is a step in this general direction.

109

the offset location of the subroutine within the larger programs in which it is included. A

constant could be used for this, if say “Q” denoted the value 52, but this would not improve

matters much as it would require that the subroutine always begin at memory address 52.

What is needed is a symbol which denotes the offset regardless of where the subroutine is

placed. That is to say, a variable.

The EDSAC code letter reserved for this role is “θ”. In first order logic, the in-

clusion of variables is facilitated by stipulation. In the syntactic rules of the language,

certain terms are reserved as variables (usually x1, ..., xn), and their semantics is likewise

stipulated in interpretations of the language.22 In the case of a programming language, it

should be clear that this method is not possible, unless “stipulation” is taken to include

the construction of mechanisms to facilitate the transformation of statements using the ex-

pressions into machine code. We cannot simply declare that the machine must treat θ as a

variable, it must be enabled to do so. For the EDSAC code this is accomplished by means

of code letters together with the aforementioned control combinations.

Control combinations are essentially directions which tell the Initial Orders pro-

gram how to treat subsequent EDSAC code input, but do not themselves result in code

being placed in the store of the machine. As an example, consider the control combination

“E m K P F”. Before any program runs on the EDSAC, the Initial Orders must be executed

to transform and place the EDSAC code program in the store in executable form. How-

ever, the Initial Orders is a program itself, so at the end of processing, execution must be

passed to the first machine code command of the input program. “E m K P F” results in

a transfer of control to memory address m (without a corresponding control transfer com-

mand being added to the target program), where m is the predetermined starting location

of the program .

This illustrates that control combinations play a number of roles in addition to

facilitating the use of variables. Although control combinations appear compositional, we

22As we mentioned in Chapter 3, the semantics of variables is strictly speaking entirely dependent on
quantifiers. An analogous point, discussed below, also holds for “θ”.

110

argue below that they should not be thought of as such. In fact, despite the appearance that

many additional control combinations can be formed, they are all effectively summarized

in Table 4.5. Here, we will only discuss the one which directly concerns the treatment of

θ as a variable. A more comprehensive treatment follows in the analysis section.

Table 4.5: EDSAC control combinations.

Control

Combina-

tion

Description

T m K
This causes the next order processed to be placed

in storage location m.

G K

This causes the address value for the next

command location to be placed at address 42

(which corresponds to the variable code letter θ).

T Z

This causes the value at address 42 (which in most

cases is an address value) to become the next

location at which the next processed command will

be placed.

E m K P F

This stops the reading of orders (that is, it halts the

Initial Orders program), and causes control to be

transferred to address m, with the accumulator

cleared (effectively executing the input program).

The Initial Orders takes EDSAC code input and places lines of machine code in

the store by means of internal transfer orders specifying the location at which the next

processed command will be placed. Generally speaking, the address in this transfer order

advances by one for each EDSAC order code processed (starting with the first memory

address not required for the functioning of the Initial Orders). Consequently, translated

111

orders are placed in the store serially, as they generally should be.23 Many of the control

combinations are designed to manipulate the value in this transfer order, thereby altering

the location at which the next order will be placed. The control combination of partic-

ular interest to us is “G K”.24 To understand how this control combination results in θ

functioning as a variable, we will consider the simple subroutine shown in table 4.6.

Table 4.6: Example EDSAC Subroutine (pseudo-code).

Order

Location

Order Code Explanation

m S 0 F Subtract value at address 0 from the

accumulator.

m+1 G m+4 F If value in accumulator is less than

zero, transfer control to m+4.

m+2 T 0 F Transfer value in accumulator to

address 0.

m+3 E m+5 F If value in accumulator is equal to or

greater than zero, transfer control to

m+5.

m+4 T 1 F Transfer value from accumulator to

address 1.

m+5

This is a simple but sensible algorithm we might actually make use of. It is fairly

23Care should be taken not to confuse these transfer orders, which are internal to the Initial Orders and
involved in its processing of an input program, with transfer orders that may be part of the program being
processed. The latter have no effect on the ordering of commands in memory, but they do affect the order of
execution of these commands.

24Technically speaking, the control combination is “G 0 K”, but a convention of the EDSAC code is to
omit leading zeros, including even the singular zero value. In the case of “G K” the omission is particularly
appropriate, as any “G m K” where m is any numerical value will be effectively synonymous with “G K”.
The numerical value has no effect whatsoever.

112

easy to see how it is supposed to function, and how memory addresses can be defined with

respect to the offset value m. Unfortunately, this is not EDSAC code, and consequently

it is not executable on the EDSAC system (the Initial Orders will not know what to do

with an expression like “m+ 4”). The control combination “G K” is used to solve this

problem. When the Initial Orders receives “G K” the location in which the next command

is to be place is stored at memory address 42. The command code “θ” functions just as

“F” and “D” — it results in the addition of the value stored at 42 to the address component

of the command. Just as in the case of “F” and “D” there is nothing significant about the

link between θ and address 42 — any address would do, provided the Initial Orders are

configured to use that address with both “G K” and “θ” in the appropriate way. However,

unlike code letters “F” and “D”, the value of “θ” is not known at the time a subroutine is

written, and in fact “θ” will take different values under different circumstances. In every

case, “θ” effectively denotes the offset value of a subroutine, provided that the subroutine

is prefixed with the “G K” control combination. The corresponding EDSAC subroutine,

which is executable, is the following:

In calling this subroutine “executable” we mean two things. First, that the sub-

routine may be included within a program at any memory location. More importantly,

however, we are saying that the subroutine is well-formed in the language of EDSAC

code, despite the fact that the value of “θ” is unknown. In saying subroutine is well-

formed, we mean not just that it satisfies the grammatical rules of the language, but also

that it is meaningful. And this brings up the question of the semantics of “θ”. In regard

to this there are two possible interpretations. The first is that “θ” in some way denotes

an arbitrary memory address value. Meaningfulness then comes down to the fact that the

subroutine is executable for any value which “θ” might take. Alternatively, we can say

that “θ” denotes the full range of its possible values, in which case the meaningfulness of

“θ” depends on the fact that the subroutine is executable for all values it might take. There

is a straightforward analogy to be made, then, between “θ” and a first order variable. The

first interpretation, when applied to a first order variable, legitimates the derivational rule

113

Table 4.7: Example EDSAC Subroutine (executable).

Order

Location

EDSAC

Code

Explanation

N/A G K Causes address in current transfer

order (m) to be placed at location 42.

m S 0 F No change.

m+1 G 4 θ Causes value at 42 to be added to the

address (4+θ).

m+2 T 0 F No change.

m+3 E 5 θ Causes value at 42 to be added to the

address (5+θ).

m+4 T 1 F No change.

m+5

of universal generalization (if F holds for an arbitrary a, then ∀xFx). The second interpre-

tation is the intuition underlying the semantics of the universal quantifier. And, of course,

in every context in which it matters, the two interpretations are effectively equivalent, both

for first order variables and for “θ”. Given both the similarity of role and semantics be-

tween “θ” and a first order variable, it seems more than reasonable to consider “θ” itself

to be a variable in its own right.

The variable code letter θ and the control combination “G K” therefore make it

possible to write executable subroutine segments of EDSAC code which make no refer-

ence to absolute memory store locations. They are effectively memory address indepen-

dent. Such code may consequently be inserted anywhere (at any memory location) within

any EDSAC program, and be both executable and reliable in carrying out the same trans-

formations on values. This is precisely what is needed in order to construct subroutine

libraries.

The inclusion of genuine numerical constants and variables in the EDSAC code fa-

114

cilitates another useful feature that is of interest from a formal perspective. A major theme

of the development of programming languages is a push to increase the range of contexts

in which a program or subroutine is executable and useful. A subroutine is more valuable

if it is useful in many contexts. We have so far been considering “context” in terms of

locations within the memory store. Taken this way, memory address independence is a

kind of context independence.

But what counts as a context can nearly always be thought of in a number of dif-

ferent ways, and it should not be surprising that there are others worth considering here.

Consider a subroutine which only manipulates numerical constants of the sort described

above (e.g. “D” and “F”). Such a subroutine could certainly be placed anywhere within

the memory store, which is excellent, but it is still of rather limited use. As a function

which only ever operates on fixed, constant inputs, it will always provide the same, fixed,

constant output. The “inner workings” of such a subroutine make little difference, and the

whole thing may as well be replaced by a single constant value.

Useful subroutines are those which are capable of receiving a range of inputs and

producing a range of outputs. In machine codes, this is accomplished in practice by alter-

ing the values at a particular memory address, which is the approach the EDSAC code was

designed to avoid. The control combinations and code letters together allow subroutines

to be written which may accept different arguments at different times without any direct

alteration of their code. The act of inputting a particular value (out of a range of values)

into a subroutine is generally referred to as “passing a parameter.” A parameter is similar

to a variable in that, where a variable may be generally understood as a placeholder for

some value (often unknown), a parameter is something like a receptacle for some value

which has not been predetermined. Whereas a variable is always assumed to have some

value, a parameter must be “passed” a value before it is proper to speak of it as having

any value at all. The difference is subtle and, practically speaking (and this is all the more

true in contemporary computers), parameterization makes use of the same techniques as

variables.

115

The first method of passing parameters within EDSAC code is to preset them prior

to processing by the Initial Orders. This is to say, a subroutine may be written which

includes one of the code letters functioning as a variable. The subroutine itself does not

actually include the input value, but instead uses the code letter to stand in as a “receptacle”

for some unknown value. When the subroutine is to be included in a larger program, the

programmer may prefix the subroutine with a command which places a specific value at

the memory address linked to the code letter. On execution, this will be the value of the

parameter (code letter) available throughout the subroutine.

Preset parameter passing occurs during processing by the Initial Orders, which

means that preset parameter values are static during execution. It is fairly reasonable

to expect, however, that a subroutine might be used repeatedly within a single program,

and that each time there is a desire to pass different parameter values. If, for example,

one wishes to produce a table of square roots, one will wish to invoke a square rooting

subroutine multiple times and pass a different parameter value each time. With preset

passing, this would require a separate copy of the subroutine for each parameter value, if

these values could even all be known in advance.

The second method of parameter passing is designed to solve this problem. It ef-

fectively allows a parameter to be passed into a subroutine each time the subroutine is

executed, and thus a different parameter value may be passed at each execution. A tech-

nical explanation of how this is accomplished, however, would go far beyond our interest

in the topic. Generally speaking, the technique involves the use of multiple variable code

letters, in addition to θ , which cause the Initial Orders to calculate, first, the location of the

subroutine itself, and then the value of the address immediately following the command

which transfers control to the subroutine. Then a variable, say, H, may be set to contain

the calculated address. H may then be used within the subroutine to invoke the value at

this address, albeit somewhat indirectly, in a way which is insensitive to just what address

is used (which will depend on the subroutine’s location in memory).25 The net effect is

25For those familiar with the technical nomenclature, H functions essentially as a constant pointer.

116

that a subroutine may be written which takes as a parameter value whatever value is stored

at the memory address immediately following the command passing control to the subrou-

tine. The use of code letters and control combinations makes it possible to do this without

explicitly specifying any parameter values or the address where the parameter value can

be found. Consequently, an EDSAC code subroutine may be written which is independent

both of memory location and parameter values.

Analysis

At the end of our discussion of machine codes, we put forward a thought experi-

ment designed to show that machine codes have a distinctive “transparency” with respect

to the operation of the machines for which they are designed. In this example, we consid-

ered an idealized machine capable of receiving equations input in a mathematical language

and producing solutions to these equations without further aid. In the previous context, the

idea was supposed to highlight the difference between a machine-transparent language,

and one which is not. But saying that a mathematical language is not transparent with

respect to the operation of the computer is not at all the same as saying that the language

may not be transparent with respect to something else. In particular, if the governing hy-

pothesis of this chapter is true, and if the languages of mathematics are indeed formal,

then we would expect these mathematical languages to also be “transparent” with respect

to the objects for which they are constructed.26 This is not a point we have the time or

energy to argue for, nor is it one on which the following discussion rests. It is interesting

in this context, however, for two reasons. First, the ideal machine in the thought experi-

26Though we do not have time here to present detailed arguments for this point, we do think that it is
very plausible from an intuitive perspective. If we take a run-of-the-mill user of our standard arithmetical
language, and start asking them questions about what they are “doing” as they carry out the manipulation of
symbols, they will almost certainly respond that they are carrying out a certain operation or set of operations.
If asked what the number five is, they will almost as certainly present the Arabic numeral “5” and, more often
than not, insist that it is, in fact, the number five. It is not until one begins learning about arithmetical systems
with different bases and symbols that one begins to distinguish the number five from the numeral “5”. In
thinking this way, we follow [Frege, 1960].

117

ment was, and to some extent still is, an ideal goal for programming language designers.

The obfuscatory nature of machine code with regard to what is going on mathematically is

more of a hindrance to writing useful programs than the transparency into machine opera-

tions is a benefit. Second, our claim in what follows is that EDSAC code is an important

first step toward this ideal, and that certain important syntactic elements bear relationships

to invariances in the mathematical domains of functions to make these syntactic features

transparent with respect to this domain.

The EDSAC code has one foot in each of two different worlds, as it were. On

the one foot, certain syntactic elements (e.g., the command codes) are still constrained

by, and transparent with respect to, the operation of the machine. On the other foot, the

innovative elements of the language (permitted by the use of the Initial Orders) break free

from the constraints of the machine and move the overall representation closer to that of a

mathematical language. These syntactic features are governed by semantic constraints of a

functional nature. Not surprisingly, each of these obscures the other. When the order code

is employed, it takes considerable work to understand what mathematical function is being

computed. When variables like “θ” are employed, it is no longer possible to understand

the underlying machine operations involved without a detailed understanding of the Initial

Orders.

A large part of the discussion that follows focuses on the important role that the

Initial Orders plays in enabling programs written in EDSAC code to break free, at least in

part, of machine oriented semantics. Furthermore, in large part we will be focusing on the

differences between machine code and EDSAC code, and the resulting difference in terms

of invariance.

The syntax of EDSAC code is slightly more complicated than for a machine code,

as is the case with all of the languages that follow. In the interest of expediency, we will

limit our discussion of syntax to syntactic categories when possible.27

The syntactic categories are as follows (with the total number of symbols in each

27For more specific detail, see [Wilkes et al., 1951].

118

category):

1. Command codes (29)

(a) Command codes taking numerical address arguments (14)

(b) Command codes taking numerical arguments. (5)

2. Numerical constants (2048)

3. Standard code letters (15)

(a) Terminal code letters (14)

(b) Non-terminal code letters (1)

4. Control combination code letters (4)

In all, not counting numerical constants, the language consists of forty eight posi-

tion specific symbols.28

All EDSAC code expressions follow the same general pattern. They consist of

a command code symbol, followed by a numerical value, optionally followed by a non-

terminal code letter, and terminated by a standard terminal code letter or a control com-

bination code letter (all of which are terminal). Thus, every expression consists of three

or four symbols. As noted above, some commands, most notably “G K”, appear to di-

verge from this pattern on account of a convention of omitting all leading zeros. Hence

the syntax of “G K” is implicitly “G 0 K”, and likewise for other commands.

It is reasonably easy to see the similarities between this syntax and that of any ma-

chine code, and since the EDSAC order code has the most in common with machine code,

it makes sense to begin our analysis with it. A statement is an order code if and only if

it has the following form: [command code][numerical constant][(optional) non-terminal
28Although a few of the symbols are used in multiple categories, they always have distinct, unrelated

semantics, and the grammar is such that it is never ambiguous which meaning should be invoked. They are
effectively distinct elements of the language.

119

code letter][code letter]. Aside from the addition of code letters, we can see that order

code commands and machine code commands share a lot in common syntactically. It is

tempting to say that this is because the order code commands are transliterated directly into

machine code statements, and that for transliteration to be possible, syntax must be essen-

tially the same. Such a view overestimates the constraints placed on a source language

(e.g., EDSAC code) by a target language (e.g., machine code). The use of intermedi-

ary processing by the Initial Orders provides numerous other possibilities. For example,

EDSAC code might have consisted of a single, atomic expression for every possible ma-

chine code command. Although very inefficient, the Initial Orders would then need to

look up the machine code command associated with each symbol. Or, more plausibly,

the language could have been made to look more like a mathematical language (which we

know is possible, since other languages do this). Instead, the EDSAC order code retains

the general syntactic structure of functions being applied to arguments (with functional

application represented as concatenation, just as for a machine code). This is not a choice

which is forced by the syntax of machine code. It is instead the result of the same seman-

tic constraints that are at play for machine code syntax. That is, the order code portion of

EDSAC code is designed to direct or describe machine operations. Just as before, these

operations are all interpreted as monadic functions, and thus the same constraints apply to

the EDSAC order code.

There are, however, two significant differences we need to address. The first is

that acceptable numerical constants for order code statements are constrained based on

command codes. For some command codes, the values may range from 0 to 511, and

for others from 0 to 2047. The first group we have annotated above as those “taking

address values as arguments.” This is not, strictly speaking, a syntactic rule. The correct

syntactic rule would be to simply list those commands and stipulate that any statement

with a command code from the list followed by a numerical constant with a value greater

than 511 is not a valid statement. The fact that there is a reason for this, that the command

codes denote operations taking address values as arguments, is a semantic fact about those

120

operations. It is, furthermore grounded on a material fact having to do with the specific

hardware of the EDSAC computer, which only had 512 memory locations. As we will see

in section 4.1.3 on “machine independence,” this is a characteristic that makes EDSAC

code “less formal” in a particular respect than higher level languages. However, it is still

an important fact that this syntactic rule corresponds to an invariant fact about the EDSAC

hardware — namely the presence of only 512 memory locations (numbered 0-511). In

this case, the domain of invariance consists of all operations the machine does or can carry

out on memory addresses. The class of transformations consists of functions which take

every such operation to every other operation. It is an invariant of these operations that

they only operate on memory addresses 0-511. Of course, this invariance is grounded in

material facts about the machine, which could be altered to have more than 512 memory

addresses. In such a case, however, it is easy to see that there would be compelling reason

to alter the syntax of the language to account for this change, and that the need for such a

change would be driven by the semantics of the command codes, which is in turn altered

by the change in material conditions.

A similar fact holds for the command codes which constrain the numerical con-

stants to have values less than 2048. This restriction is grounded on the size of each mem-

ory address. That is, a certain number of digits in each memory location are taken up by

the machine code operation command (transliterated from the command code letter). The

remaining space is large enough to hold a numerical value no greater than 2047. Again,

from a syntactic perspective the corresponding rule is merely that a certain class of con-

stants can only be followed by a numerical constant with a value between 0 and 2047. In

this case, the constraint does not come from the semantics of the command code, but from

the general semantics of the statement as describing a machine operation. As such, the

order code statement must express operations which are possible on the machine, and this

requires that the supplied values be able to fit within the memory register of the machine.

All of the command codes in this category denote scaling operations on whatever value is

121

stored in a privileged memory location.29 It is tempting to think of this as a mathematical

scaling operation, in which case the syntactic limitation has nothing to do with the seman-

tics of the operation. There are no mathematical limits on how numbers may be scaled.

The trouble with this view is that it strays too far from the intended semantics of the order

code, which is to describe and direct operations on the machine. A scaling operation on the

EDSAC, bearing whatever resemblance it may to general mathematical operations, is lim-

ited in certain ways by the hardware. In this case, if we take as our domain of invariance all

memory locations on the machine and we take a class of transformations which maps each

memory location to every other, an invariant will be that each memory location is at least

a certain length (e.g., the length of the shortest memory location). In nearly every case,

all memory addresses have the same length, so this length itself is invariant. In any case,

since the EDSAC syntax does not contain rules based on particular memory addresses, it

must be possible for every permissible command to fit within every memory address, and

so there will always be an upper limit to the values of these numerical constants, otherwise

the commands would be too long (and hence no longer describe a machine operation).

From our perspective, one of the most interesting differences between EDSAC

code and machine codes is the introduction of code letters. The function of code letters,

as stated above, is the addition of a value stored at a memory location to the value of

the numerical constant of the command. We have already argued that the semantics of

these code letters is best thought of in terms of numerical constants and variables. This is

because the role that they play in EDSAC code, from a linguistic perspective, is entirely

independent of — that is, invariant with respect to — the memory address linked to the

symbol. Below we will address specific details about the treatment of code letters as

variables. At this point, it will be useful to focus on their role as denoting numerical

values (whether constant or variable).

The first thing to note is that the ability for code letters to denote numerical values

is entirely due to the intermediary role played by the Initial Orders. Good evidence for

29This location is called an accumulator. See [Wilkes et al., 1951].

122

this is that no corresponding element occurs on the machine code side. Code letters are

effectively lost during the translation process. This also indicates that code letters have

a different scope than, for example, the command code portion of an order code. This

is because, as we have seen, the semantics of the command codes requires that they take

only a single value as input. So, the code letters must be evaluated within a narrower

scope than the command code. We can represent this implicit scoping by using parenthe-

ses as in a mathematical language: [command code]([numerical constant][non-terminal

code letter][code letter]).30 This means that we only need to focus on this smaller scope

to understand the relation between the syntax and semantics of code letters, both of which

are very straightforward. The syntax is the concatenation of a code letter to a numerical

value. The semantics is that the value denoted by the code letter is added to the numerical

value. We traditionally conceive of addition as a dyadic operation denoted by the symbol

“+”. This is necessary in standard arithmetical languages to both distinguish the opera-

tion of addition from others, and also to distinguish arguments from one another (other

approaches will work, but concatenation is not one of them). In this context, however,

there are no other operations in need of denotation within the scope we are considering,

nor is there any danger of not being able to distinguish arguments if they are concatenated.

So, concatenation plays the denotational role that the “+” sign plays in arithmetic.31

The syntax of the expression governed by this addition operator is: [numerical

constant][code letter]. A classical approach to number theory is to define various classes

of numbers in terms of equivalence classes based on other classes of numbers, ultimately

all based on natural numbers. Equivalence classes are, themselves, defined in terms of

invariant features (e.g., those features which make members equivalent). The classical ap-

30Of course, EDSAC code has no need of grouping symbols, since there is no possibility of significant
syntactic ambiguity. The only syntactic ambiguity occurs when the non-terminal code letter is employed,
and the associated semantics cause every scope interpretation to result in the same evaluation. In practice
the Initial Orders first adds the value of any non-terminal code letter to that of the numerical constant before
processing the code letter.

31Of course, functional application is also denoted by concatenation of a command code to a numerical
value, but this is syntactically position-specific and is also in a different semantic scope, hence no ambiguity
arises.

123

proach to defining natural numbers is in terms of sets of sets with specific cardinalities.

In each case, the cardinality is a stipulated invariant, and it is invariant under transforma-

tions between sets within each cardinality class. The code letters and numerical constants

functioning in the addition context, therefore, also denote semantic invariants.32

Addition itself, on its various common definitions, is an arithmetical invariant. If

addition is defined by means of a successor function “+” and recursion, we have: 0+

a = a and a+(b+) = (a+ b)+. This characterizes a relation which is insensitive to the

particular identities of natural numbers, which is to say it is invariant over transformations

from any pair of natural numbers to any other. Alternatively, addition may be defined

set theoretically as the cardinality of the union of two disjoint sets. In this case, addition

characterizes a relation between the cardinalities of two disjoint sets and the cardinality of

their union. Again, since the definition is set up without reference to any particular sets

or their properties, other than that they are disjoint, the relation is invariant with respect

to all transformations between disjoint sets. Furthermore, for any two disjoint sets with

cardinalities α and β , the cardinality of their union will be the same. Ergo, the relation is

also invariant with respect to transformations between equipolent sets. On either account

the addition operator is an invariant.33

32It is worth noting that address values have different semantic denotations based on syntactic context.
As address values, they are proper names of addresses, and as such are not appropriate arguments for any
arithmetical operator. For any list of names, however, an operator could be assigned which would take that
name and an integer value as arguments and map these to other names. For example, f (Jina,2) could map to
Josephine. Such an operator could be denoted by “+” and have the same syntax as the arithmetical symbol.
If numerical names are also assigned systematically, for example serially, then the syntactic representation
would appear the same as that of addition. This, for example is what occurs with “pointer arithmetic” in
many programming languages. It would be easy, then, to confuse this function with addition. However,
not only do the semantics differ completely, but the address-addition operation will only be defined for a
relatively short list of numerical names and integers. In the present context, we can be sure that the addition
operation denoted by concatenation is addition, and not address-addition, by the fact that it takes arguments
which are not address values (e.g., 512-2047) without any problems, and produces outputs which in many
cases are not valid memory addresses (names). The resulting value is then treated either as a value or a name
by the command code, according to its own syntax (regardless of whether it is a valid name or not).

33There are, of course, many functions which are invariant in this same way. Just as was the case for
logical notions, there are many more arithmetical invariants than are denoted by constants in our arithmeti-
cal languages. Fortunately, our claim here is only that the syntax of a formal language is constrained by
invariances in the underlying semantics, not that it exhaustively captures all of these. That is a question

124

The syntax of order code concatenation is then constrained by the need to represent

addition, and as such it is not syntactically restricted to particular arguments based on the

final evaluation. We have an operator denoted by concatenation, and the two requisite

arguments denoted by numerical constants and code letters. Without these characteristics,

addition could not be represented in the language.

We can tell that code letter concatenation is arithmetically oriented (rather than

machine oriented) because of the aforementioned lack of syntactic limitations. For exam-

ple, there is no rule preventing the concatenation of “D”, which denotes the number one,

to a numerical value of 2047. Within the scope of the arithmetical operation, this is valid,

and it is technically a well-formed EDSAC statement. It will not, however, cause the ma-

chine to function in the expected manner. The same thing can be done by concatenating

other code letters to memory address values to reference non-existent memory. Thus, use

of these code letters may result in problematic machine code commands. These are facts

that the programmer herself must keep track of.

These potential problems are the direct result of mixing invariance domains. On

the one hand, the machine-oriented syntax is structured with respect to invariant features

of the machine, its components, and its operation. The machine oriented elements of the

syntax are as constrained as possible by the hardware of the underlying machine, but this

constraint is in direct conflict with the semantics of code letter concatenation as arithmetic

addition. Furthermore, the syntax (or semantics) of code letter concatenation could not be

further constrained without sacrificing the original purpose of allowing the construction of

address-independent subroutine libraries.

When it comes to the second component of the EDSAC code, control combina-

tions, [Wilkes et al., 1951] is not particularly forthcoming regarding syntax. Instead, a list

of control combinations is provided. Some guidelines are also given for completing certain

control combinations, but these shed little light on any internal structure these commands

may have. There are, however superficial reasons for thinking that control combinations

more closely related to definability in a language, which we are not taking up.

125

have some internal structure. First, they are called “combinations,” which makes us think

that they must have parts which are combined in some way. Second, control combinations,

strictly speaking and purely from the perspective of symbol ordering, share the same struc-

ture as order code commands. They consist of a command code, followed by a numerical

value between zero and 2047 (often zero), follow by one or two code letters. Finally, the

surface appearances of similar control combinations generally have systematic similarities

in the provided descriptions of what the control combinations do, and what differences

there are seem to track structural differences.

A deeper reason, though, for thinking control combinations may have an internal

structure is that in several places in [Wilkes et al., 1951], “K” and “Z” are referred to as

“code letters.” For example, “It may be noted that the operation of code letter Z is always

equivalent to that of K and θ combined.”34 What is interesting about this is that “K” and

“Z” are not included in the list of code letters (along with “θ”) presented earlier in the

text, nor is anything else mentioned about their role other than the above and that they

are “terminal” code letters. However, some of the example uses of control combinations

makes it appear as though they do not terminate with either “K” or “Z”. For example, “E

Z P F”.

Since [Wilkes et al., 1951] is not explicit about whether these control combinations

should be treated as atomic constants or as compositional, in most places suggesting the

former but sometimes implying the latter, understanding which is the case requires some

further investigation. In particular, we know that the semantics of programming languages

are compositional. That is, if a statement in the language is compositional, the meaning

of the statement is also compositional in terms of the semantics of the particular atomic

constants. This being so, one way to investigate the syntax of control combinations is to

investigate their semantics, which in this case means a careful examination of the Initial

Orders program, fortunately published in its entirety in [Wilkes et al., 1951]. We have

undertaken this investigation, but the details are far to tedious and digressive to recount

34[Wilkes et al., 1951], 161.

126

here. The results, however, are as follows.

The most significant internal detail of the Initial Orders is that it distinguishes

between command codes and control combinations based on the symbol located in the

terminal (code letter) position. It is primarily for this reason that “K” and “Z” are referred

to as “code letters,” i.e., because they occupy the terminal position which indicates whether

the complete statement is an order code or a control combination. This parsing rule means

that any statement terminated by a control combination code letter will be interpreted as if

it were a control combination, regardless of what other symbols occur in the statement. In

the case of command code letters which are assigned negative values by the initial orders,

the particular command code does not matter (only the sign digit is treated as significant).

“G” (familiar from the important control combination “G K”) is one such command code.

It seems to have been chosen arbitrarily from the group of nine negatively valued command

codes (all of which have effectively the same semantics).

The same cannot be said of the nine other command codes with positive numerical

values. In these cases the Initial Orders uses the supplied command to partially rewrite

one of the machine code commands which makes up the Initial Orders. The resulting

command is not part of the input program, but will eventually be executed as part of the

Initial Orders, and as such it has a dramatic effect on the functioning of the Initial Orders.

Many of these are quite dangerous in the sense that they effectively destroy the ability

of the initial orders to process the input program, and result in nothing useful. It is for

these reasons that Wheeler only ever lists control combinations beginning with “T” and

“E” (in addition to “G”). So, from a semantic perspective, there are only three possible

components to occupy the command code position of a control combination, the semantic

component denoted by “G” (and eight other code letters), together with those denoted by

“T” and “E”.

The numerical component of a control combination is always interpreted as a ref-

erence to a memory address, and hence can range from zero to 511. The non-terminal

code letter “π” may be used to indicate that the address is to be treated as long. In this

127

context it is no different from that of the order code, where the syntactic construction of a

numerical constant followed by “π” denotes an arithmetical addition operation.

Every presented control combination then terminates with either “K” or “Z”. Our

examination revealed that two other symbols would result in an expression being processed

as if it were an order code, but that the results would be either dangerous or meaningless

(e.g., not result in any machine operation).

Unlike the case of standard code letters, “K” and “Z” do not directly denote nu-

merical values, and their concatenation to complete a control combination cannot be in-

terpreted as arithmetic addition. This is so even though, as the quotation above indicates,

“Z” functions in a semantic sense as a combination of “K” and “θ”.35 The code letter

“K” serves only to indicate that the statement is a control combination, while “Z” both

indicates a control combination and causes the value stored at address 42, i.e., the value

denoted by “θ” to be added to the address value where the command will be placed.

The final result of all of this is that the control combinations which can be thought

of as “meaningful” from the perspective of the Initial Orders (the consumer of the lan-

guage) are actually quite few in number. They consist essentially of the list Wheeler

provides in [Wilkes et al., 1951], reproduced in Table 4.5 above.

In addition to those commands, there could in principle be control combinations in

which “G” is replaced by any of the eight other negative valued command codes, and also

combinations of the form “G n K” and “T n Z” in which “n” is non-zero. However, these

expressions are all synonymous with “G K” and “T Z”, respectively, as neither makes any

use of the supplied value.

Apart, then, from being able to construct synonyms for a few of the listed com-

mands, there are no other legitimate control combinations. This suggests that, although

the symbolic structure of these statements makes it appear as though they have a compo-

sitional grammar, the way that the statements are processed by the Initial Orders means

35It cannot, of course, function this way in a syntactic sense because no valid statement of EDSAC code
can have more than one terminal code letter, thus statements cannot end in “θK” or “Kθ”.

128

that any appropriate grammar would effectively list the above expressions as characteristic

constants. The only variability, then, would be the numerical values supplied to some of

them.

It is our opinion, therefore, that these control combinations are best treated as

atomic constants of the EDSAC code. A control combination statement would then consist

of one of these constants and a numerical value infixed within the string of symbols that

makes up the constant (essentially for reasons having to do with machine parsing).

There are some apparent anomalies from this description, as Table 4.5 contains

commands “E n K P F” and “E Z P F”. One important characteristic of the Initial Orders is

that it reads the symbols of an input program in sequence, and does not pay any attention

to line breaks. Each of these apparently anomalous commands actually consists of two

distinct, well-formed EDSAC code statements. The first recognizably consists of “E n K”

and then “P F”, which plays a special role discussed below. The second one is similar.

These sequences of statements are illustrative of one of the most distinctive charac-

teristics of the EDSAC code. Control combinations introduce syntactic rules governing the

composition of groups of statements, not just individual statements. This contrasts with

most logical languages, in which syntactic rules only govern the well-formedness of sen-

tences, not groups of sentences. Of course, the derivational rules of logical languages do

involve groups of sentences, and derivations can of course be characterized syntactically,

but there is no sense in which a derivation can be ill-formed. A sequence of sentences

either is a derivation, or it is not (e.g., it is invalid), but a sequence of well-formed sen-

tences cannot itself be ill-formed in a grammatical sense. This is not so with sequences of

EDSAC statements involving certain control combinations.

The simplest example is “T n K”. The effect of “T n K”, as stated by the description

given in Table 4.5, is to place the next input command at memory location n. Any “T n K”

command is only meaningful when followed by a valid order code. “T Z” functions in a

similar manner.

A different set of rules governs the use of “G K”, which results in the placement

129

of an address value at address 42 (denoted by “θ”). The rule described by Wheeler is

that “G K” must be prefixed to the start of every library subroutine fed into the Initial

Orders. This is because library subroutines rely on “θ” to indicate the offset of the first

subroutine command from memory address zero. “G K” could be placed elsewhere in

code, but in most cases it would have no effect at all. At worst, it would result in an

unpredictable, “broken” program. Furthermore, EDSAC subroutines will not function

without this prefix, as the resulting offset would be zero (in the best case) or whatever

value is currently denoted by “θ”. Thus, EDSAC subroutines are only well-formed if they

begin with (or are prefixed with) the control combination “G K”. “G K” has no other role

in the language.

Finally, the compound control combinations “E m K P F” and “E Z P F” each

contain a special “pseudo-command,” “P F”. Each of the “E” commands results in the

EDSAC executing next a certain statement, stored at memory address m or 42, respectively.

“P F” is a very special expression of the EDSAC code, as it is the only expression with

context based semantics. In general, “P F” is a “pseudo-code” (discussed below) resulting

in a value of zero being placed at a memory address. When “P F” follows a control

combination (and in other specific contexts) it instead causes the Initial Orders to prepare

the arithmetic memory registers for program execution by setting them to zero. Thus,

although the “E” commands could be used in principle apart from “P F”, it in general does

not make sense. Although “P F” itself can be used apart from control combinations, it has

a different meaning.

We will not elaborate further on the syntactic characteristics of the order code,

as we feel we have explained enough to address the connection these syntactic features

have to semantic invariants. For this purpose, the control combinations can be divided

into two categories based on their semantics. The first group contains those commands

whose semantics cannot be interpreted as other than about the functioning of the Initial

Orders. That is, these commands direct or describe the functioning of the Initial Orders

in much the same way as order code expressions direct or describe the functioning of the

130

EDSAC machine. This group consists of every control combination except for “G K” and

its synonyms. Each of these statements consists either of an atomic constant expression

(“T Z”, “P F”) or a constant command expression with an infixed address value argument

(“T m K”, “E m K”).

The internal syntax of the non-atomic statements is the same function-argument

syntax we saw for the order code. The atomic statements, even including “G K”, have no

internal syntax essentially because they are bound to a constant address (often 42). This is

why “T 511 Z” is synonymous with “T Z”. The constant address is used regardless of the

numerical value supplied, and so the value results in a synonymous command.

Because these commands involve an address value, it might be tempting to think

that they denote operations that the Initial Orders carries out (as opposed to the hardware

itself). In a certain sense this is true, insofar as the commands direct the Initial Orders to

place machine commands at certain addresses. But it is important to recognize that this

kind of direction does not go very far. In the case of machine code, the computer will do

nothing without commands. The commands direct the entire operation of the machine.

Control combinations are far from this level of detail. For the most part, the Initial Orders

is capable of functioning on it’s own. There is no need, for example, for the programmer

to tell the Initial Orders what numerical value to associate with a certain command code,

or to tell it to process the next command. All of this is undertaken autonomously.

What the control combinations, besides “G K” and “P F”, effectively do is provide

necessary information to the Initial Orders. For every command that is input into the Initial

Orders, the program needs to know where to place the command in the store. This is the

role of “T m K” and “T Z”. Then, for every program input into the Initial Orders, the

program needs to know where to begin execution. This is the role of “E m K” and “E

Z”. These commands are essentially providing locational information to the Initial Orders

with respect to the memory store. In saying which semantic invariances are denoted by

these constants, we are faced with a seeming overabundance of related possibilities, owing

to the fact that programs must ultimately be placed somewhere in the memory store of the

131

computer (or translated into commands in another language which are placed there), and

that execution must begin at one of these locations. These are essential invariances of the

way the hardware is built, specifically the memory and central control unit. They are also

invariances in terms of the operation of the Initial Orders (and the information it needs).

Finally, they are invariances of every program placed in the memory store (in machine

code).

The last of these is clearly inappropriate, since our focus in specifically on the

language of EDSAC code, and we know that programs constructed in EDSAC code can be

written in a memory address independent way (by means of “G K” and “θ”). Furthermore,

many modern languages exist which have no need of locational specifications (because the

compilers take care of this entirely). The best thing to say is that these constants denote

invariances in the operation of the Initial Orders, and that these invariances in the Initial

Orders are themselves responsive to the invariances of the hardware.

In terms of supporting our overarching thesis, one can see that the semantics of

these constants constrains their internal syntax (or lack thereof). In the case of the atomic

statements, it is because they denote themselves all of the necessary locational informa-

tion (albeit indirectly). In the case of those which take an argument, they do so because a

location must be supplied. The Initial Orders, of course, takes care of a significant amount

of locating commands by defaulting to the next memory location in the sequence. Thus,

these location-based commands need only be invoked when the default needs to be over-

ridden. This default operation, however, is merely a convention and does nothing to alter

the fact that the Initial Orders requires a location for every order code it processes. That is,

if we take as our domain of invariance the order codes processed by the Initial Orders, and

consider the class of transformations that takes each of these to every other, in addition to

the syntactic characteristics of the order code itself, an additional invariant is that every

order code is mapped to a location in the store by the Initial Orders.

Furthermore, the locational semantics of these expressions clearly constrains the

higher-level syntax. Namely, if the control combination specifies a location for a command

132

to the Initial Orders, there must be a subsequent order code to be placed at that location,

otherwise the sequence of expressions is semantically nonsensical.

A similar thing can be said about “E m K” and “E Z”, but in terms of EDSAC

code programs processed by the Initial Orders. If we take this as the domain of invariance,

and consider the class of transformations between each program to every other, the most

significant invariant from the perspective of the Initial Orders is that the programs have

a starting point, and these commands express this fact. Practically speaking, very little

else will remain invariant under these transformations, except for very general facts about

being a program, being an EDSAC code program, etc.

We have come to a point where we can discuss the special control combination

“G K”. Given the preceding discussion, we know that every program and subroutine must

receive some location in the memory store. We also know from our general discussion in

the preceding section that the code letter “θ” can be used to write subroutines which are

reusable in many different programs (and hence in many different locations). “θ” can be

thought of as analogous to the English indefinite pronoun “somewhere.” So, subroutines

are written entirely by means of references to “somewhere.” But it is clear that this alone

will not result in a meaningful program placed in the memory store. The indefinite “some-

where” needs to become a definite value at some point in order for this to happen. The

control combination “G K” is responsible for this. When the Initial Orders processes “G

K” it takes the address of whatever the next memory location is (which will receive the

first statement of the subroutine) and stores this value at address 42, effectively assigning

that value to “θ”. Thus, “somewhere” becomes a concrete location by means of “G K”.

This process is called “binding” in computer science. That is, “G K” binds “θ” to the

address value of the first argument of the subroutine.

It will be clear to anyone familiar with logic that the role “G K” plays with respect

to the variable “θ” is remarkably similar to the role played by quantifiers. That is, variables

in first order logic must be bound by a quantifier in order for the complete expression to

be meaningful. The quantifier essentially tells us how to treat the variable when it comes

133

time to evaluate the expression. In fact, the need for variables to be bound holds for every

logical and mathematical language that uses them. Very often, however, every variable

is bound in the same way (e.g., algebra) and hence no symbol is used, but there are still

clear rules of interpretation of the variables. It is even worth noting that in [Quine, 1976b],

Quine characterizes variables in terms of indefinite pronouns, just as we have done above

for “θ”.

Our claim, then, is that the semantics of “G K” is that of a binding quantifier

statement which explains how to evaluate statements containing “θ” when the time for

their evaluation has come. We might think of it as saying “for all memory locations . .

.,” thus providing “θ” with its semantic value. Then, wherever the subroutine actually

is, the Initial Orders can carry out an operation analogous to “universal instantiation” and

bind the variable to a specific value. It does this by storing the numerical name of the

memory address of the command immediately following “G K” at memory address 42.

Consequently, whenever “θ” is processed by the initial orders the memory address stored

at address 42, which is the offset of the start of the subroutine from memory address 0,

is added to the values of the numerical constants of commands within the subroutine,

which are themselves offsets from the first command of the subroutine. The result is that

the Initial Orders is able to place the correct machine code command, complete with an

accurate memory address value, in the memory store. All of this is necessary to resolve

the memory-location-independent subroutine into hardware-dependent machine code.

Furthermore, the corresponding semantic invariance captured by “G K”, together

with “θ”, is that the numerical operations carried out by sequences of statements are mem-

ory location independent — the operations they carry out are the same wherever they are

placed in memory. More strictly, we can take as our domain of invariance all subrou-

tines of EDSAC code written for every possible position in memory. We then take the

class of transformations which maps each subroutine to every other which differs at most

in its position in memory. What is invariant across these will be the operations carried

out by the sequences of commands. By using a single symbolic variable to stand for the

134

complete range of trivial variances, this variance is “washed out” of associated linguistic

expressions. What without the variable would have required a large number of different

statements or subroutines with minor differences can effectively be expressed by a single

statement or subroutine. With the variance washed out it seems appropriate to say that the

resulting statement or subroutine represents an invariance — in this case the invariance of

data operations of sequences of commands placed in different locations in memory.

The semantics of “G K” as a binding quantifier also places the syntactic constraint

that it must indicate scope. There are, of course, a number of ways of syntactically in-

dicating scope, but given the relative simplicity of the language (no scope nesting, no

multiple binding quantifiers, etc.) the most practical thing to do is to have “G K” precede

all statements within its scope. A new “G K” marks the end of the preceding scope and

the beginning of the next.

The final control combination to address is “P F”. The effect of “P F” is to place the

arithmetic registers into a consistent (empty) state for execution. The statement therefore

denotes an invariant state of the arithmetic register at program execution time. That is, if

we take transformations between all EDSAC programs, an invariant assumption of every

program is that at execution the arithmetic unit begins in the same (empty) state. “P F”

denotes this state, and this denotation makes it appropriate immediately preceding program

execution and nowhere else. Hence, “P F” is generally the final statement of any EDSAC

program.

This all but completes our discussion of the EDSAC programming system. We will

touch only briefly on the final component of the EDSAC code, the “pseudo-commands.”

Pseudo-commands are EDSAC code statements which begin with the code letter “P”.

When processed by the initial orders, “P” transliterates to the value zero. No EDSAC

machine code command is designated by zero, hence the result is the placement of a nu-

merical value in the memory store. “P F”, when not functioning as a control combination,

resolves to the value zero, “P 2047 F” to 2047, etc. Pseudo-commands are essentially

atomic constants which designate numerical values, with the exception that code letters

135

are processed in terms of arithmetic addition (just as for the order code). They are essen-

tially data, rather than commands, and hence do not fall within the scope of our discussion.

4.1.3 Degrees of Machine Independence

Early on, when the number of electronic computers was quite small and each new

machine represented a significant advancement over its predecessors, programming sys-

tems were usually considered to be a technology which accompanied particular machines.

Even so, early programmers had a keen awareness that much of the work of programming

involved redundancies. We have already seen how the innovations of the EDSAC code

enabled a library of reusable subroutines to be created for execution on the EDSAC. It was

furthermore becoming clear that, even as the cost of computer hardware was coming down

(relative to computing power), the cost of software development was on the rise. Any op-

portunity for reuse would save time and money. Given that computers were all created to

address the same kinds of tasks, it became desirable to be able to reuse programs not just

as subroutines within other programs, but on entirely different machines.

If it is possible to run programs written in a certain language on different machines,

the programming language is said to be “machine independent.” It will not be surprising,

given the previous section on memory address independence, that machine independence

is characterizable in terms of invariance. We can understand it intuitively in the follow-

ing way. Given even the rudimentary understanding of the technology developed above,

it should be reasonably clear that if two machines are similar in the right way — they

implement the same operations in the same way, have equally sized memory stores, etc.

— any program that runs on one of them will run on the other. This could be seen as

a kind of “machine independence,” and it is a property that programs written in EDSAC

code have. That is to say, any executable EDSAC code program would also run on any

machine which is appropriately similar to the EDSAC. This much is true even of machine

code, but it is not what is generally meant by “machine independence.” What is meant is

136

rather that a program written in the machine independent language may be executed on

machines which are not similar in relevant ways. It is best to think of this in terms of a

distinction between tokens and types of machines. By a “type” of computer, we mean a

class of machines that are identical to one another in terms of characteristics germane to

computation. A token machine of a given type, then, is any computer belonging to this

class. Two token machines could be painted different colors and still be of the same type

if they implement the same operations in the same way, have equally sized memory stores,

etc. The more limited sense of machine independence just discussed is independence with

respect to tokens. The machine independence we are really interested in, however, is that

which occurs with respect to types. Henceforth, we use the singular terms “machine” and

“computer” to denote types rather than tokens. Likewise, proper names like “EDSAC”

and “IBM 704” should be taken as denoting the type to which they belong (and which

they define), rather than the token machines themselves.36

There is, however, one sense in which EDSAC code has a small degree of this

type of machine independence. From a practical perspective, the Initial Orders could

function equally well on similar machines with larger memory stores. It follows that any

program executable on the EDSAC would also be executable on such machines. This

independence does not go very far, however, because the converse does not follow — all

programs executable on machines with larger memory stores are not executable on the

EDSAC. This failure is due to the fact that a programmer must know details about the

memory store in order to write a program executable on both machines (that is, she must

avoid using any of the additional memory addresses).

The preceding point does serve to illustrate, however, that it is generally not enough

to say simply that a programming language is “machine independent.” This must be char-

36Strictly speaking, this means that when we say a program in a certain language is executable on different
machines we should really say that it is executable on tokens of different machines (types). In the interest of
simplifying our explanations, however, we will continue with the simpler language with the understanding
that the more complex idea underlies it, except where doing so would lead us into error. We will treat named
types (e.g., IBM 704) in a similar manner.

137

acterized against a class of machines (a class of types) across which the program is exe-

cutable, and this de facto means that it is characterized against those features of the ma-

chines to which the language is insensitive, which is to say invariant. It is already assumed,

for example, that “machine independence” obtains with respect to electronic computers,

but not with respect to automobiles or toasters (even programmable ones). Likewise, we

have already suggested that full-blown machine independence is something broader than

mere “EDSAC-like-machine independence.”

Not surprisingly, the most machine dependent programs are those written exclu-

sively in machine code. Because these programs make constant and explicit reference to

the facilities of the machine (memory addresses, etc.), they are only executable on the

machine for which they are written. The technology that made memory address indepen-

dence possible was the intermediary program called the Initial Orders, which affected a

translation from EDSAC code into machine code. The Initial Orders is the first historical

example of an “implementation layer” for a language. An “implementation layer” for a

language consists of a program (or programs) which makes it possible for programs writ-

ten in a higher level language to be rendered into machine code for execution on a given

machine. They are intermediaries between the language itself, which may look nothing

like machine code, and the commands the machine requires for execution.

There are two main approaches to implementation - compilation and interpretation.

The main difference between the two can be understood roughly in the following way. A

compiler is a program which takes a source program (written in a high level language) and

processes it into a form which is executable on the machine (or an intermediary form).37

At this point, the compiler’s job is complete, and the resulting program may be executed at

will, or even transferred to a different machine (or token of the same type) for execution.

37For a given higher order language, there may in fact be a number of implementation layers (in some
cases including even an operating system). However, because we are concerned only the extrema of the pro-
cess — programs written by humans in a higher level language and binary machine code which is consumed
by the computer — the number of intermediaries involved makes no difference. In any case, there is nearly
always at least one intermediary assembly language.

138

An interpreter, on the other hand, carries out this process at so-called “run-time.” This

means that an interpreter processes the source program into machine executable commands

when the program is executed. An interpreter must therefore do its work every time the

program is executed and must always be present for execution to be possible. In this sense,

the Initial Orders is more similar to an interpreter than a compiler.

There are significant technical trade-offs between compilation and interpretation,

and there are even ways of combining them. From our perspective, however, they accom-

plish the same goal. They play the role of intermediary between the machine independent

language and the extremely machine dependent machine code which is ultimately exe-

cuted. Thus, we can say that a programming language “has been implemented” or “has

an implementation” if some such intermediary program (or series of programs) has been

written which allows programs in the language to be executable on a given machine. In

what follows, we use the term “implementation layer” to refer generically to the class of

such intermediary programs (including compilers, interpreters, and assemblers).

An interpretation layer, then, enables the machine to execute a program written in

the higher level language in question. In so doing, the interpretation layer makes use of

the aspects of machine code which machine independent languages need to avoid. It will,

for example, be aware of how the memory of the machine operates and will make use of

this. It will also contain instructions for interpreting the commands of the source language

as operations (or combinations of operations) in the target machine language. This means

that implementation layers are generally not machine independent (although parts of them

may be).38

38Although it is worth making clear that there is nothing preventing an implementation layer (or its parts)
from being written in a machine independent language. In fact, it is standard practice for most compilers to
at some point be written in the very language which they are designed to compile. The important thing to
recognize is that an implementation layer takes a program in a source language as input (data), and outputs
a program in a target language. This does not require the implementation layer to invoke or use the machine
dependent target language, but only to transform the original program into one executable on the specific
machine — into a sequence of commands which themselves are in the target language. Of course, compiling
a compiler written in the source language it is designed to compile does require either an antecedently
existing implementation layer for the language or the use of a technique called “bootstrapping,” in which

139

Although implementation layers are often quite complicated, and even different

implementation layers for the same combination of language and machine may differ sig-

nificantly, we can say something about the process in general. First, we recognize that

every high level programming language, just as every formal language, consists of atomic

constants and variables. At the most basic level, implementation consists in processing

and resolving these two groups.

With respect to variables, the implementation layer determines the amount of mem-

ory required to hold a value of the type specified, and ultimately the variable is assigned a

location in memory. In most cases, it does not matter where in the memory the variable is

“located” as the implementation layer takes responsibility for keeping track of these and

supplying the correct memory address whenever it is required.

In most higher order languages, there are effectively two types of constants, those

denoting constant values (data) and those denoting operations. In the first case, the imple-

mentation layer will either supply the denoted value or a reference to a memory location

in which this will be stored. The implementation layer translates operational constant

symbols into whatever machine code segment implements or instantiates the intended se-

mantics of the constants. This may be very simple and direct, as in the case of basic

arithmetical functions, or a complex segment consisting of many lines of machine code.

The underlying principle, though, is that however different implementation layers resolve

given constants (and variables, for that matter), they must all instantiate the same function

and have the same effect. The end result being, of course, that a program written in the

higher order language will work in (ideally) exactly the same way for any machine with

an implementation layer for the language — it will be machine independent.

In what follows, we will examine machine independence and its relationship to

formality more closely, again with a particular focus on the relationship between the syntax

and semantics of higher level languages. Because we cannot examine every higher level

a small compiler is written (not in the source language) to compile a portion of the compiler (written in
the source language) sufficient to compile further portions of the main compiler, and so on until the entire
compilation is complete.

140

language (for rather obvious reasons) we will consider one historically notable language

— FORTRAN.

FORTRAN is one of the earliest and best known high level programming lan-

guages. The language was originally created with a focus on scientific numerical cal-

culation but was subsequently expanded and used in considerably wider-ranging applica-

tions. This original focus, though, should bring to mind the imaginary machine considered

above, which is capable of receiving and executing programs written in a purely mathe-

matically oriented language.

The first version of FORTRAN, known as FORTRAN I, was designed for use with

the IBM 704 series of computers, and it was also first implemented on these machines.

Many versions of FORTRAN have been published and implemented since its initial re-

lease by IBM in 1958. We have opted to consider here this first version, and in the follow-

ing section on “sequence independence,” note some of the changes made for the second

language standard, FORTRAN II.

FORTRAN I makes a nice example in part because of its simplicity, but also be-

cause of its flaws from the perspective of machine independence. Although it certainly

involves all of the major innovations of higher level languages, because it was first tar-

geted at only a small range of machine independence — the 704 series — it provides

examples of both what features facilitate machine independence and what features restrict

it. The sense in which the language is “simple” is that it involves relatively few constants

and its syntax is relatively simple when compared to more modern languages. It does not

mean that FORTRAN programs are simpler than similar ones written in more modern lan-

guages, which is rarely if ever the case. This simplicity is an asset from our perspective

because it will simplify our discussion in much the same way axiomatic formulations of

first order logic simplify proving meta-theorems (and in both cases, the simplicity on the

language side makes working within the language more complicated). Furthermore, our

focus on FORTRAN will not require the detailed examination we undertook for EDSAC

code, since it centers around how a language achieves machine independence and the gen-

141

eral effect this has on its syntax. These features are in no way peculiar to FORTRAN

itself.39

The basic anatomy of a FORTRAN program is similar to an EDSAC code pro-

gram in that both consist of a single, linear sequence of well-formed statements of the

language. It is standard to refer to each of these statements as a “line” of code. The nature

of a FORTRAN sequence differs slightly from that of an EDSAC code program owing to

the fact that FORTRAN is agnostic with respect to memory addresses.40 In the case of

EDSAC code, each command code had a means of reference automatically assigned to

it in virtue of being placed at a certain memory address. Sequences of code could then

be referenced by the initial memory address of the sequence or by means of a variable

denoting this address (whatever it may be). In FORTRAN I, there is still a need to refer to

particular lines of code, but owing to memory address independence, memory addresses

will not work for this (because they are unknown). Instead, important lines of code may

be assigned numerical “names” called “statement numbers.” Besides being within a cer-

tain range, there are no restrictions on statement numbers, and in particular these do not

necessarily have any relationship to the lines’ positions in either source or object code.

For example, the fifth line of source code could easily be assigned the statement number

543. Furthermore, not all lines need be assigned a statement number; this is left to the

discretion of the programmer.

A complete list of the 32 types of statements which are permissible in FORTRAN

I can be found in [Backus et al., 1956]. These 32 types of statements can naturally be di-

vided into four categories. The categories are: arithmetical statements, control statements,

input/output statements, and specification statements.

39For more detail, or to check our veracity, we direct you to [Sammet, 1969] and [Backus et al., 1956].
For those who may wish to dabble in FORTRAN I programming, [Mitchell, 1957] and [Backus et al., 1956]
make a nice starting point.

40At one point, the ability to “descend” and include machine code directly in FORTRAN programs was
added (FORTRAN III), but the unsurprising result was that object programs were too closely tied to partic-
ular machines (a lack of machine independence) and the feature was drop from subsequent versions. See
[Sammet, 1969].

142

All arithmetical statements have the form a = b where a is a variable letter, and b

is a string of symbols which evaluates to a numerical value. The syntax of arithmetical

statements is intentionally similar to standard mathematical notation, and this is particu-

larly true with respect to statements involving numerical constants, standard arithmetical

operators (+,−,∗,/), and grouping symbols. The only difference in this case is that “=”

functions in an assertive rather than an evaluative role. It is called the “assignment” op-

erator (and not the “equality” operator) because rather than returning a truth value based

on the equivalence of the operands, it sets the value of the left-hand side (a) equal to the

evaluation of the right-hand side (b).

In addition, FORTRAN I includes a small number of numerical function constants

which take arithmetical expressions as arguments and, since they return numerical val-

ues, themselves constitute numerical expressions. This is accomplished by a now fa-

miliar function-argument syntax. If SOMEF is a function taking two arguments, and c

and d are arithmetical expressions, then SOMEF(c,d) is an arithmetical expression, and

a = SOMEF(c,d) is a valid arithmetical statement. The only other limit on arithmeti-

cal expressions comes in a requirement that the resulting statement contain at most 660

characters (for hardware oriented reasons). 41

One of the things that makes EDSAC code highly machine dependent, and also

error prone, is that control statements always take direct references to memory locations

as arguments. This is true even in the case of included subroutines, in which control state-

ments must refer to relative memory addresses within the subroutine. This means that

insertion or deletion of a command requires extensive revision of control statement argu-

ments. FORTRAN I, on the other hand, makes use of the aforementioned statement num-

bers for this purpose. Since a statement number is essentially a numerical name which may

be arbitrarily assigned, this name can be supplied to a control statement. Every FORTRAN

41The class of arithmetical expressions could, in some sense, be expanded by the addition of defined
function symbols. In FORTRAN I, however, this was only possible by adding the desired function to the
compiler in the form of low-level code. There was no facility for writing these in the FORTRAN I language
itself.

143

I control statement requires at least one such statement number argument.42

The syntax of input and output (I/O) commands is best understood by directly

consulting [Backus et al., 1956]. The only thing important to note about the syntax of

FORTRAN I I/O commands is that they syntactically distinguish between multiple types

of input and output facilities and data formats. There is a close relationship between the

syntax of these commands and the characteristics of the underlying I/O hardware, and we

will return to the significance of this below.

There are three final FORTRAN I statements to discuss, the so-called “specifica-

tion statements.” These statements are most closely analogous to the control combinations

of EDSAC code, as they are not executed but instead direct the FORTRAN compiler to

process commands in a certain way. For example, a “FORMAT” statement is never exe-

cuted, but is taken as part of a read or write command to direct the machine on what format

to expect from input or impose on output. The syntax of these commands derives directly

from their semantics and so will be discussed in that context.

Analysis

FORTRAN I was originally targeted, as we have said, at the IBM 704 series of

computers. This has two important consequences. First, the first FORTRAN I compiler

was written in the machine code for 704 series computers. In fact it was designed to

be executable on a 704 with a relatively small memory core. Even so, the compiler was

designed to be capable of producing programs executable on 704 machines with much

larger memory stores.43 Over time FORTRAN came to be implemented on many different

machines, and FORTRAN compilers can still be easily found despite a dearth of available

IBM 704’s. At the very least, though, we can say that FORTRAN I, and any program

written in the language, is “IBM 704 independent” — meaning that such a program will

42For a more detailed discussion of control statement syntax, see [Backus et al., 1956].
43In principle, any 704 machine could execute a large program if the program were segmented into ap-

propriately sized pieces.

144

execute accurately and reliably on any 704 series machine. This means that the execution

of the program will be exactly the same whatever 704 it is executed on, which is the same

as saying that any FORTRAN I program is invariant across transformations from any 704

machine to any other (both in terms of types and tokens).

We can go one step further, though, and say that the invariance of programs, which

are themselves determined by the syntax of their constituent statements, rests upon the fact

that the syntax of the FORTRAN language captures features which are invariant across 704

machines. Furthermore, just as we saw in the case of EDSAC code, the invariant features

captured in FORTRAN I fall into two categories, those which are oriented toward the

operations of the machine (and tend to restrict the machine-independence of programs)

and those which are oriented toward the expression of mathematical functions.

The arithmetical statements, central as they are to the expression of mathematical

functions, have the strongest claim to being machine independent. An easy way to see

this is to think of what is required, minimally, of a machine to effectively implement these

statements. Obviously, the machine must have a memory store in which the resulting val-

ues may be located. This is captured syntactically by restricting the left hand side of arith-

metical statements to variables only, which are tied to such memory locations. The only

other requirement is that the underlying machine be capable of sufficient basic operations

to implement the operations and functions denoted by arithmetical constants and function

names. It happens that the numerical functions denoted by the operators and constants

employed in the FORTRAN I arithmetic expressions are all computable.44 Hence, the

constraint imposed on any underlying machine is that it must be Turing complete. Aside

from practical considerations of efficiency, it does not matter how these functions and

operations are implemented, either in terms of basic materials (electronic circuits versus

44In terms of classical computation, of course, a language with constants denoting uncomputable functions
would not be implementable on any machine. This constitutes neither machine dependence nor machine
independence. Such a language would be, we may say “off the map” of our present discussion and is,
consequently, not formal with respect to computing machines. The difference between “formal,” “informal,”
and “non-formal,” will be discussed in greater detail in Chapter 5.

145

human beings) or basic components of the arithmetic unit (provided they are rich enough

to compute all partial recursive functions).

The arithmetical statements of FORTRAN, taken on their own, have a considerable

degree of machine independence. A major gain over the EDSAC code, in particular, comes

from the noticeable absence of memory addresses and the direct inclusion of numerical

constants and variables into the language. The relationship between the syntax of the

arithmetical expressions and the invariances involved in computable numerical functions

is straightforwardly the invariances captured by basic arithmetic and set theory.45

What is also quite clear, especially in comparison with EDSAC code, is that the

arithmetical statements are almost exclusively focused on the representation of mathemat-

ical functions, not the processes by which these functions are implemented by the under-

lying hardware. Those are details handled by compilation. The arithmetical statements,

together with the “core” group of control statements (GO TO, ASSIGN, IF (a), and DO),

make the language of FORTRAN I itself Turing complete. And these syntactic features

— numerical constants, variables, arithmetical constants, core control statements — cap-

ture the fact that the language is designed to express computable functions. This seems

obvious, until we recognize that FORTRAN I need not be Turing complete to be machine

independent. In fact, there are other machine independent programming languages which

are not strictly Turing complete. Just as we would expect, they are designed with a differ-

ent class of invariants in mind (some subset of the partial recursive functions).

In terms of machine independence, we may consider the core control statements in

the same way as the arithmetical statements. What is required for a machine to implement

these? It turns out only very basic capabilities are required. In particular, the ability

to associate a numerical name or variable with a memory address, which is essentially

45A minor exception to this claim concerns the fact that variables and numerical values in FORTRAN I are
“typed.” This means that they are bound to different formats for storing values. The syntactic rules governing
the mixing of fixed and floating point constants and variables can be best understood as capturing invariances
of the ways numbers are stored in physical digital media. As such, this reins in the machine independence of
the arithmetical statements somewhat, as any underlying machine must be capable of handling these types
appropriately.

146

the same capability required to handle numerical constants and variables, the ability to

compare values against zero, and the ability to transfer control to another line of code. All

of these are basic capabilities of any machine satisfying the von Neumann architecture, and

hence they will be invariant across all von Neumann machines (not just the IBM 704s).46

The case is quite different for the other control statements, which directly involve

specific hardware of the 704 series of computers, e.g., sense lights and sense switches.

From a syntactic standpoint, these commands do not differ much from the control state-

ments and have considerable semantic overlap as well — they all involve the evaluation

of a condition followed by a transfer of control. To this extent, the inclusion of these con-

stants in the language is consistent with its intended ability to compute partial recursive

functions. However, an additional semantic element is that they refer explicitly to hard-

ware features which were only really implemented on the IBM 704 series of computers

(and even then, not all of them). Thus, these statements are only invariant across a small

subset of machines. Fortunately, the commands are entirely redundant from a computa-

tional perspective, and quickly fell out of disuse (e.g., FORTRAN I programmers would

use only a fragment of the full FORTRAN I language).

In general, input and output (I/O) tends to be the most machine dependent class of

operations. This is understandable as I/O commands are designed to operated directly with

physical media that store information in different ways. FORTRAN is certainly no excep-

tion. Ideal machine-independent I/O commands might simply be “READ” and “WRITE,”

allowing the implementation itself to manage the reading and writing. In practice, how-

ever, different technologies were developed involving significantly different data formats.

The first, and oldest, of these involves reading values from paper tapes or card in which

holes were punched. The other was a kind of magnetic drum — a precursor for con-

temporary magnetic drives. The two kinds of media had to be treated in different ways,

and in many cases machines were capable of reading both. The makers of FORTRAN

46In fact, the invariance in this case is more thoroughgoing. In principle, all that is required is that the
underlying machine be Turing complete, and the arithmetical and core control statements be implemented.

147

dealt with this problem by including sets of analogous commands for each kind of I/O

device, and even for two different tape data formats. The syntax of these commands fol-

lows straightforwardly from the characteristics of the associated devices in the same way

that the function-argument syntax of machine code follows from the underlying machine

facilities. For example, because the IBM 704 had four tape readers, an integer value must

be supplied to the read/write commands in order to specify which of the tape readers

to use. The need for certain commands, like “REWIND”, “BACKSPACE”, and “END

FILE” follows from the particular characteristics of tape readers, as evidenced by the lack

of analogous commands for operating the magnetic drum (whose commands instead re-

quire location values to be specified). Obviously, to implement these commands in a way

consistent with their syntax, a machine would need four tape readers and a magnetic drum.

The inclusion of these commands, again, restricts the machine independence of the lan-

guage and at the same time the size of the class of machines with respect to which it is

invariant.

Given the nature of input and output — that it involves the transference and re-

trieval of digital data onto and off of physical media — it has always been, and will likely

always be, a significant hindrance to machine independence, invariance, and formality.

This is not particularly surprising, as we may think of it as something of an impinge-

ment from the lowest level (physical operations) into the higher-level world of expressing

computable functions.

FORTRAN I, taken as a whole, succeeds in achieving a small degree of machine

independence — with respect to IBM 704s. What is clear from the brief look at the

fragments of the language presented above is that certain fragments have potential for

a greater degree of machine independence, while other fragments serve to restrict this

dependence. This brings into view several interesting points.

The first of these is to note that, if we take a particular fragment of FORTRAN

I, call it FORTRAN*, we can have a formal language which has a higher degree of ma-

chine independence than FORTRAN I. In particular, if we keep only the arithmetical state-

148

ments, the core control statements, and nothing else (ignoring the need for I/O) we have

a language which is implementable on machines with a memory store, sufficiently rich

arithmetical capabilities, and appropriate control capabilities. This essentially amounts to

the requirement that the machine instantiate a Turing complete von Neumann architecture.

These three components are features that remain invariant across transformations between

all computers which implement a von Neumann style architecture. In general, machine

independence is understood to mean independence with respect to this particular class of

machines (as most contemporary computers are von Neumann machines).

This entails that programs written in FORTRAN* are invariant not just with re-

spect to IBM 704 machines, but with respect to all von Neumann machines (assuming

FORTRAN* is implemented for those machines). By contracting the complexity of the

syntax of the language (primarily by dropping constants), the range of invariance of the

resulting language has increased. This is analogous to the structured relationship between

the geometrical systems of concern to Klein, where alterations to the number of stipulated

invariants caused contraction or dilation of the associated class of transformations.

We may, consequently, expect that machine independent languages will involve

the same basic syntactic features of FORTRAN*, because the purpose of these languages

are all to direct the functioning of a von Neumann computing architecture in computing

partial recursive functions. Results in computational theory suggest that just one such

language should be enough, since anything expressible in one Turing complete language

is expressible in all of them. However, we know that there are other high level languages.

If we examined these, we would soon recognize that, beyond a certain minimal basis

(grounded on the desire for Turing completeness) the languages involve numerous other

constants and syntactic constructions that, from a purely computational perspective, are

unnecessary. Although the addition of these “unnecessary” constants and syntactic “sugar”

does not have any effect on the generality of the resulting languages, there is a sense

in which the these languages are more specific, or are tailored to a particular range of

problems. This is not to say that the same tasks cannot be accomplished with different

149

languages, but that a particular language, consisting as it does of certain constants rather

than others, can have practical consequences when using the language to solve certain

problems.47

It is significant, and crucial, to note that this specificity is completely orthogonal to

the generality gained in being machine independent. Any such language still only contains

constants denoting operations executable by all von Neumann machines (though surely

not every possible constant), and hence are invariant over the same set of transformations

(from machine to machine). The languages are equally formal with respect to the machines

they direct, but not necessarily so with respect to specific classes of computational tasks

and problems they might be used to solve. The remainder of this chapter considers ways

in which modern programming languages have been tailored to capture invariances within

specific problem domains.

4.2 Beyond Machine Independence

We have been arguing that the underlying semantics constrains the resulting syntax

of a programming language. We have argued that the core of this relationship is that

the invariances of the language (the syntax) correspond to, or capture, invariances in the

associated semantic domain, and that this lends a kind of transparency to the language

such that it can “stand in” for the real thing in important contexts.

An ongoing theme has been the transition of language development from a focus on

the underlying hardware to an increased focus on the numerical problems computers were

originally created to solve. We have also generally characterized the important role the

implementation layer plays in making this possible, and we have seen how some languages

47It should be clarified that these language additions differ fundamentally from what we might call the
“defined constants” to be encountered in the next section (e.g., named subroutines). In the case of an added
primitive constant or syntactic structure, however complex the underlying operations which realize it may be,
the implementation interprets the symbol or structure in a way which goes beyond syntactic manipulation of
the source language. This is not so with defined constants, which stand in for other statements in the source
language and are usually replaced by these prior to true compilation.

150

incorporate syntactic features which capture invariances in different subject domains.

In the following sections, we shift our focus to ways in which structural charac-

teristics of modern programming languages are tailored to non-machine oriented semantic

domains. The first of these concerns the structure of programs themselves, and the final

two address the characterization of problems (especially those which are non-numerical)

and solutions to these problems. We will, however, no longer be focusing on specific

languages, but instead on more general developments.

4.2.1 Structured Programming

Recall that one of the important goals behind creating the EDSAC programming

system was the construction of memory address independent subroutines. This was ac-

complished by introducing variables and a means of binding these variables to whatever

memory location the subroutine would actually occupy. Although this does provide a de-

gree of invariance to the subroutines themselves, it does not extend very far. In a program

which uses a subroutine, “G K” must be prefixed to the subroutine, directing the Initial

Orders to calculate the memory references within the subroutine. Doing this still requires

making implicit reference to memory addresses. Likewise, control transfer commands all

require specific memory addresses as arguments, even if these may be expressed as a value

to which an offset is added.

The net result is that all EDSAC programs are expressed as a single linear sequence

of commands (even though control transfer commands mean it is not executed as such).

In particular, even a library routine must appear within the main program sequence. If a

subroutine is to be invoked twice, it must either be included in the sequence two distinct

times, or an appropriate control transfer, with a reference to a memory location in the

sequence, must be given.

Programs written in subsequent languages were constructed in a similar fashion,

despite the fact that their high degree of machine independence provided freedom from

151

referencing any memory addresses at all. Statements would be arranged in a single, linear

sequence (with library functions possibly referenced and inserted at compilation). This

sequence would be numbered, and control transfers (generally by means of something

similar to FORTRAN’s “GO TO” command) would be achieved by references to specific

positions in the sequence.

A similar observation is to be made here as was in the case of library subroutines

earlier — namely that if a sub-sequence of a program realizes a conditional or loop struc-

ture, this structure is conceptually independent from its location within the sequence, and

it is dependent only on the commands it contains and the conditions it involves. However,

reliance on control transfer by reference to locations in the sequence forces loops and

conditional branching to be tied to specific locations in the overall sequence. Practically

speaking this means that the insertion of a new command anywhere prior to such a control

transfer could easily result in a malfunction unless all affected control transfer statements

are updated accordingly (which could even include all subsequent control transfer state-

ments). This makes writing recursive procedures particularly difficult and error prone.

The problem can be characterized intuitively in the following way. What is desired

for a control transfer is really something like a demonstrative pronoun. For example,

“If condition X, then go to this command,” where “this” somehow points at a specific

command. In the case of a recursive function, “this” refers to the very sequence of which

the transfer command is a part. The facilities provided by many languages, however, are

in no sense demonstrative but rather proper names of locations in the sequence. What is

needed is a “sequence independent” way of indicating commands and sequences directly,

rather than indirectly by means of locations within the sequence.

Languages which facilitate “structured programming” do precisely this by adding

two new syntactic components. The first of these consists of new constants which serve

essentially the role of demonstrative pronouns by bracketing a sub-sequence into a block.

For example, an unstructured conditional sequence might look like this:

1. IF x = 5, GO TO 4

152

2. x = x+1

3. GO TO 5

4. x = x2

5. PRINT x

This program prints “25” if x equals 5, otherwise it prints the value of x+1 (and it never

prints “6”). It is easy to see that, if one inserts a new command immediately after line two,

the result will still be to print “25” if x = 5, but otherwise (x+1)2. To verify, compute the

following with x = 5 and x = 6.

1. IF x = 5, GO TO 4

2. x = x+1

3. CONTINUE (anything could be here)

4. GO TO 5

5. x = x2

6. PRINT x

The structural counterpart does not suffer from this problem, and can be summarized as

follows:

1. IF x = 5 THEN

2. x = x2

3. ELSE

4. x = x+1

153

5. END IF

6. PRINT x

We include line numbers for ease of reference and to make it explicit how the

statements in the sequence depend in no way on these for their semantics. Instead, there

are new constants demarcating sequences (called “blocks”) of code syntactically, playing

essentially the role of demonstratives.

If x equals 5, then set x = x+1, otherwise set x = x2. Finally, print x.

It is also clear that inserting or deleting commands will not have the same tragic

effects as in the non-structured example. Modern languages usually contain similar delim-

iters for loops as well (usually of more than one kind).

Statement numbers in FORTRAN I provide a different, more limited solution to

this particular problem. These play the role of names (i.e., rigid designators) of statements

rather than demonstratives. Hence, they will always refer to the same statement in code.

This solves the preceding problem, but at the cost of using many, possibly hundreds or

thousands, of additional names. These are not only difficult for programmers to remember,

but also increase the risk of critical typographical errors.

What is often lost in a language oriented toward structured programming is the

ability to unconditionally transfer control to a particular line of code in the sequence (e.g.,

FORTRAN’s unconditional “GO TO” command). This would seriously hamper program-

ming were in not for the second new syntactic component of structured programming —

the ability to assign a name to a particular sequence of commands.48 These sequences

become effectively the same as library subroutines, except that they exist independently of

the main sequence of execution. They are not generally included in-line at the point in the

main sequence where they are required (as happens in EDSAC code). Instead, they may

be appended to the main sequence or even stored in a separate file. When required by the

48This is in contrast to FORTRAN I, in which names are assigned to particular statements only

154

main sequence, only the name is included in the statement (called an “invocation”) and the

implementation layer manages how this is ultimately represented in machine code.

The name of a subroutine is essentially a defined constant. When the name oc-

curs in the main program, this should be understood as intuitively as saying “now execute

XXX,” where “XXX” is a constant name. In unstructured programming, the primary use

of unconditional transfer commands is to re-execute a particular sequence of code. With

structured programming, this sequence is invoked by name whenever necessary. Impor-

tantly, changes to either sequence of code (the primary or subroutine) will not disrupt

the other. It furthermore makes recursion very easy, as a subroutine may simply invoke

itself.49

The result of this is code which is insensitive, or invariant, to facts about the code

itself — namely, relative locations. This is a relatively simple, syntactically-oriented

formality, not unlike the use of “(” and “)” to indicate scope in most formal languages.

For example, a logical quantifier could instead be sub-scripted with the number of sym-

bols within its scope. Instead of “∀x((Fx∧Gx)→ ∀x(Gx))→ ∀x(Fx)” we could have

“∀x9Fx∧Gx→ ∀x2Gx→ ∀x2Fx”. Such numbers would require constant updating, but

suitable rules could be formulated. Likewise, names (often abbreviations) can be assigned

to stand in for more complex expressions. Neither of these alters in any way the expressive

power of the logical language or requires a robust semantic interpretation, being merely

demonstratives and names for already defined sequences of symbols or statements. They

do, however, free up the syntax from needing to track irrelevant information about the

composition of expressions.

It should be no surprise that this technique is called “structured” programming,

as it provides the syntactic facilities to express structure that is present but not captured

by unstructured programming languages and techniques. These structures are invariant

characteristics of the way certain blocks of code (e.g., conditionals, loops, and subroutines)

are used. The “gain” in terms of formality is not with respect to any subject matter other

49FORTRAN II included fairly robust facilities of this kind for subroutine construction. [Sammet, 1969]

155

than the code itself.

4.2.2 Object-Oriented Programming

If we were to present a problem or programming task to a number of programmers

and have them come to agreement on what the best way to solve the problem is, and then

ask them to go off separately and write programs to solve the problem using the same lan-

guage (e.g., FORTRAN), the resulting programs would almost certainly differ from one

another. Even assuming that each exactly solves the problem (in the sense that neither pro-

gram does anything in addition to what was originally asked of it), the resulting programs

may yet differ in significant ways. There is a clear sense in which each programmer has

written a different program. The sequences of operations their programs describe differ.

However, it is also reasonable from a certain perspective to think that the programs es-

sentially “do the same thing.” They instantiate (though differently) the same, previously

agreed upon, solution to the given problem.

An important theme thus far has been the development of programming languages

more closely tied to problem domains than the underlying computer hardware. Recall that

an explicit design consideration of FORTRAN was that it should be convenient for the

representation of numerical calculation, as it was designed for use in solving scientific,

numerical problems. However, computers have turned out to be useful for solving many

other kinds of problems as well, and though in principle everything a computer does is

numerical, there is a clear sense in which many of these problems are not numerical (or

at least not exclusively so). This has naturally given rise to further innovation in program-

ming language design, and in this section we will consider one of the most successful and

influential developments — “object-oriented” programming. This development is in some

ways similar to the development of structured programming in that it involves the way

code is structured. It is importantly different in that this structuring is designed, not with

respect to the code itself, but with respect to a certain class of problems the associated

156

techniques and languages address.50

Object-oriented programming involves adopting a new perspective on the structure

of a program. Instead of consisting of segments of code which are executed in some order

or other, programs are seen as consisting of software “objects” which have properties and

perform actions. A software object is really nothing more than the sum of its properties

and actions. When the implementation layer allocates memory for a software object, it

creates the object from a pattern, called a “class,” which is what is actually created by

the programmer. A class is a grouping of code which includes variables (properties) and

subroutines or “methods” (actions) which apply to every object created from that class.

The class itself is given a name, and this name is treated as the type of the objects created

from that class. It is common practice to give classes descriptive names based on the

properties and methods of the class, which often mirror real world objects. How this

works can be best understood by means of an example.

Imagine that we have been tasked with creating a system for managing student reg-

istration. From an object-oriented perspective it makes sense to have, among other things,

a class named “student.” Now, each object instantiated from this class will be a student

type of object. Each student will have certain properties: a “name” property; a “student

ID” property; perhaps a “GPA” property; and a “class standing” property. Each student ob-

ject will also have certain actions it can perform. In this case, “add a class,” “drop a class,”

and whatever other actions are required during the process of registration. Many of these

methods may be run-of-the-mill structural subroutines, or they may reference properties

and methods of other objects.51

50It is worth noting that the predominant attitude in the field is that “object-oriented” programming is a
method or style rather than a type of language. This is because, with some ingenuity, “object-orientation” can
be achieved in purely structural languages, and structural programming is used within languages designed to
be object oriented, and may even be so used to the exclusion of object oriented techniques. We feel that the
question of whether a language is to be described as “object-oriented” (or anything else) should not hinge on
what can be done with the language (in this respect all Turing complete languages are equal), but on what
it has been designed to do well, more easily, etc. Which is ultimately based on the particular constants and
syntactic rules of the language.

51Although chains of method calling may be constructed (e.g., methods calling methods, calling methods,

157

An object is “created” as an instance of a class by declaring a name for the object (a

variable called a “reference”) and stating what class it instantiates. This is done in another

piece of code, which may well be a method of another object. Once instantiated, an object

is bound to a location in memory and may have its properties set to values and have its

methods invoked.

Returning to our example, imagine a flesh-and-blood student attempting to use our

registration program. The program requests the student ID number, which the student

dutifully supplies, and indicates that she would like to proceed. Program execution begins

by instantiating a student object corresponding to the actual student in terms of certain

relevant properties (these values having been retrieved from a database and assigned to the

appropriate variables). This student object will perform appropriate actions as its methods

are invoked by the main program. If we have made a sensible program, this will usually be

in response to some action on the part of our flesh-and-blood student, and will hopefully

result in successful registration.

Of course, in practice things are generally more complex than this, and even a sim-

ple program may involve dozens of classes and other related components. There are many

practical virtues of object oriented programming, not the least of which is that it is less

prone to error and enables much more effective reuse of existing code. The student class

from the program just considered could also easily be included in a grade management

application. From our perspective, object oriented programming has one theoretical ad-

vantage which the previous example makes apparent. The structuring of the code, which

has been freed from dependence on the structure of the machine, has taken on the structure,

the form, of the very problem it was designed to solve.

The program becomes a model of the real-world activities that are to be carried

out. The advantage in this is that, once the problem has been modeled, it is fairly straight-

forward to construct a program to solve it. It is certainly more straightforward than un-

and so on), any such chain must terminate at some method which is a procedural (non-object oriented)
subroutine (or several of them). Otherwise either nothing will happen, the computer will run out of memory,
or processing will be stuck in a non-terminating loop.

158

structured programming, especially if the problem is very complex.

This relationship between the structure of the program and the real-world prob-

lem it addresses is made possible by the addition of constants and syntactic constructions

which capture invariances in a rather large sub-class of problems addressed by computer

programs. Namely, those problems which are naturally modeled in terms of classed ob-

jects which have properties and can carry out actions. This quality, of being naturally

modeled in terms of interacting objects, can be thought of as a stipulated invariant which

defines an associated class of transformations between all problems of this type. Then the

additional emergent invariances are that the objects in the models have properties and are

capable of carrying out certain actions. And these are precisely what is captured by the

syntactic constructions and constants which are essential to object oriented programming.

So, again, the constants and syntax of the language, which constitute its form, are designed

around mirroring invariances in the target domain.

More specifically, what we see in a given program also involves a kind of formal-

ization, as does the underlying model. The model, if it is a good one, will capture the

invariances of the particular problem (or set of problems). The model captures invariances

of the particular types of objects involved. All students are treated, programmatically,

as being the same (same features, same actions, etc.). These models can be accurate or

not, and if not they will result in a poor program. For example, if the student class is

defined such that all students have a “social security number” property, and this property

is required for certain actions, there will be problems for non-resident aliens. The model

asserts that the possession of a social security number is invariant across all students. Non-

resident alien students, who by external criteria are in fact students, fail to have this as a

property. The model fails by assuming an invariant property of a class which turns out not

to be invariant.52

52What has really occurred can be understood in more detail as follows. We began by identifying the
intuitive characteristic invariants of the real-world class of students. Presumably, this involved things like
having matriculated and taking classes, etc. We then made an assumption regarding a certain property, the
possession of a social security number, as being also invariant across this same class. This assumption may
turn out to be false on empirical grounds, if there turns out to be such a foreign student. We might also

159

It is clearer in the case of object-oriented programming than any yet considered

that these syntactic features render the languages transparent with respect to the domain of

invariance. In the example above, we created a class called “student” which corresponds

to the real-world class of students. It is then quite easy to conflate the action of student

object with those of a real student. This is a primary virtue of object oriented programming

techniques.

4.2.3 Descriptive Programming

The languages so far discussed are generally classed as “prescriptive,” “directive,”

or “imperative” languages, as are the styles of programming associated with them. In gen-

eral what this means is that the languages are designed to direct and control the operations

of the machine, albeit in a relatively formal way and with an implementation layer han-

dling most of the details. This is true even for object oriented programming, since method

details are ultimately imperative in nature.

We began the preceding section with a thought experiment involving a number

of programmers writing programs to solve the same problem. We said that there would

undoubtedly be differences between the resulting programs. This results from the nature of

prescriptive programming languages, which require the programmer to explicitly represent

how a computation proceeds. Since nearly every solution can be constructed in code in

many different ways, the same solution can be realized by more than one program.

A comparatively new trend in programming language design called “descriptive”

or “functional” programming focuses more directly on the solution realized than the se-

quence of operations which realizes the solution. In short, it focuses on what gets done,

not how it gets done.

From our perspective, descriptive programming aims at what we might call im-

think that it is false on stipulative grounds, since there is no principled reason there could not be such a
student, regardless of existential facts. At any rate, the possibility of error in such a case depends on having
an antecedently, clearly demarcated domain.

160

plementation independence. It takes the view that all computational processes ultimately

realize computable functions. In particular, each computable function can be realized by

many different computational processes. In being independent of these particular pro-

cesses, a program would need to be expressed in a language free from reference to (and

hence invariant with respect to) particular machine states, while at the same time being rich

enough to express the computable functions. As a result, it would only need to represent

these functions directly as functions, not as sequences of steps.

From a theoretical perspective, functional languages predate electronic computers

in the form of λ -calculi and combinatorial logics.53 Obviously, these languages have no

need of references to machine states, nor are such references even possible in the pure

forms of the language. They are, nevertheless, more than adequate for expressing all com-

putable (i.e. partial recursive) functions.54 In practice, these languages, as they stand,

are not adequate programming languages. However, most descriptive programming lan-

guages are based on the principles of these formal systems, and so it will be worthwhile to

consider one of them briefly.55

We will consider for our example the pure, untyped combinatorial logic (CL), as

this is one of the simplest functional systems. CL syntax consists of one rule, usually

called “application,” symbolized by the juxtaposition of expressions. All well-formed ex-

pressions denote functions. The expression “AB”, for example, reads “function A applied

to function B.” In addition, the language contains “(” and “)” for controlling the order

of application, and a convention of left association allows their omission in many cases.

Pure CL contains only variables and the constant symbols “I”, “K”, and “S”. “I” denotes

the identity function, such that IX = X . K denotes a function whose application results

in a constant function, say KX , such that KXY = X . S is rather more complex, denoting

a kind of composition function — SXY Z = XZ(Y Z). All variables are free (and, in fact,

53[Hindley and Seldin, 2008]
54[Barendregt, 1981], [Hindley and Seldin, 2008]
55A fact that will prove important in characterizing the difference between logic and programming lan-

guages, discussed below.

161

implicitly universally bound).

The motivation behind CL is the study of ways in which functions combine with

one another. The domain of this language presumably consists of some class of functions

(possibly all of them). It is obvious that application will be invariant across transformations

from function to function, as it is part of the definition of a function that it applies to

arguments. This is furthermore so because polyadic functions may invariably be expressed

as compositions of monadic functions (via a process called “Currying”). Given that the

language has the purpose of exploring the composition of functions — their applications

to one another — this ends up being the only syntactic operator. As such it requires no

symbol and is represented by mere concatenation.

There is an air of tautology in saying that I, K, and S are invariant across the do-

main of functions. In some sense, this is part of their definition. As it turns out, however,

one of the important and interesting questions for CL (and λ -calculi as well) is what func-

tions turn out to be representable in the language. From our perspective, this amounts

to clarifying the domain over which the notions denoted by the constants are invariant. In

particular, if a function cannot be defined in the language, this will be because the language

does not contain constants which make a distinction between that function and others pos-

sible (it lacks the expressive power). In this sense, it treats these “undefinable” functions

as of a piece with many other functions, because it is unable to distinguish them. This is to

be expected, since we know that a smaller number of invariants will demarcate a broader

class of transformations.

A language becomes richer as constants are added (or the syntax becomes more

complex). In terms of definability, a richer language is able to distinguish more regarding

its domain — it is able to assert more about the particular character of classes within

its domain. There are, consequently, fewer transformations with respect to which the

constants of the richer language, taken as a whole, are invariant, and so we can say that the

result is less formal.

There are different variations of CL based on various reduction and equality rela-

162

tions, and typing systems. One of the interesting questions is which functions are definable

(representable) in which of these languages. And the languages we are concerned with are

those which hold promise for expressing the functions instantiated by computers. The

largest such class is, not surprisingly, the computable functions. As it happens, there is

a version of CL able to represent all partial recursive functions, which on the standard

understanding of computability are just the computable functions.

Descriptive programming takes CL (or the λ -calculus) as a starting point. Just as

with any higher-order language, one cannot simply input an expression of CL and have it

count as a program. An implementation layer is required in order for the input expressions

to be meaningful. In particular, the implementation layer must know how to treat variables

and input values, and it is here that the differences between descriptive programming lan-

guages and CL (and also between programming languages and first order logic) become

clear. In CL, variables stand for atomics — either functions or particulars which are ar-

guments to functions. Because pure (untyped) CL is a study in function-composition, all

variables are interpreted as denoting functions. In computational contexts, however, we

are not generally inclined to think of input data as functions. We could try to rectify this

difference by treating data as constant functions (mapping to their conventional values),

but we would then still face the discrepancy that the purview of typed CL (which is most

similar to a programming language) far exceeds that of any programming language. In

particular, just what a function may be applied to (what its arguments may be) is not speci-

fied in CL. Types are formally distinguished but nowhere specified. Hence, expressions of

the language may range over an extremely wide domain. Such functions might take actual

elephants as arguments and map these to continents on the Earth.

On a computer, however, everything is ultimately executed in machine code, with

no variables. Everything is ultimately given a concrete “existence” in the machine. The

best that can be managed would be a function which takes a representations of elephants

and maps these to representations of continents. These representations, though, must be

constructed out of data types that the implementation layer is capable of handling. Fur-

163

thermore, were it even possible to feed an actual elephant into a computer as a datum,

the implementation layer would need instructions on how to treat elephants. The same is,

of course, true of more mundane things like integers, floating point numbers, strings, and

the like. Setting aside the difficult notion of feeding objects as data to computational pro-

cesses, it seems all but impossible that an implementation layer could possibly be created

to handle the full range of types that variables in CL (and first order logic) range over.

Descriptive languages, like all programming languages, must distinguish between

particular types of data so that they may be treated appropriately. Consequently, descrip-

tive programming languages have constraints on the types of inputs which are permissible.

They are designed to express functions taking input values from only a finite number of

types. This is yet one more restriction on the semantics of the variables, and this limits

the range of realizable functions to that subset of the partial recursive functions concerned

exclusively with the appropriate types. In some cases, descriptive languages are designed

with one particular type in mind (e.g., regular expressions).

In this respect the resulting languages are less formal than CL — namely that they

have a target domain which is a subclass of the domain of CL. We can also see how this

difference is forced by the practical use of the language. To be clear, while descriptive

languages are free, or invariant, with respect to machines, and also with respect to the

computational processes which realize the functions the language is designed to express,

the language is quite far from being completely machine independent. At the end of the

day, it must be executed on some machine in a hardware-bound machine language. Try

as we may to “free” our languages from this fact, it is far from obvious how one could

make, say, an expression of CL intelligible to a machine without a compiler to tell it what

to do. This is particularly so as the range of CL (and that of first order logic), as standardly

interpreted, presses the bounds of human intelligibility (some even suggest the extensions

of first order predicates should include objects in other possible worlds).

That said, it should be almost as clear as in the previous section how the semantics

of descriptive programming languages constrains their syntaxes to structures quite similar

164

to CL (or the λ -calculus). These syntactic invariants capture the invariant characteristics

of the semantic domain of functions. This, furthermore, enables us to quite easily manip-

ulate expressions of the language as though they are the functions themselves. Hence, the

relation between the syntax and semantics of these languages renders them transparent, in

accordance with our thesis.

At this point we can also say more to clearly distinguish programming languages

from first order logic. The best argument for their supposed unity is grounded on what

is called the “Curry-Howard Correspondence.” This metalinguistic theorem holds that for

every deduction in a first order language there is an analogous computation and vice versa.

Hence a certain version of CL can be seen as coextensive with first order logic. And since

the semantics of first order logic are exhausted by extension, the two collapse into different

notational systems for the same subject.56

The consequences of the Curry-Howard Correspondence for formality really de-

serves its own study, and so we will not take it up further here. What our considerations

of descriptive programming should make clear is that, at the very least, programming lan-

guages are significantly less formal than first order logic. The analogue of ∀x in a computer

language at best ranges over all permissible values of each permissible type of data, which

are all finitely expressible. This is far from the characteristic universality of logic. Further-

more, there are programming languages so much further down this formal chain of being

as to hardly resemble logic at all (consider the EDSAC code), yet these still exhibit the

important formal characteristics that are our central focus.

The similarity between the two classes of systems should not be surprising given

that the underlying purpose of programming languages is to direct numerical computa-

tions, and one of the earliest purposes of first order logic was the study of numerical

objects.

56In fact, Quine’s version of first order logic without variables presented in [Quine, 1976a] essentially
amounts to a system of Combinatorial Logic. Tarski presents a similar system in [Tarski and Givant, 1987].

Chapter 5

Theoretical and Philosophical

Considerations

We have so far focused primarily on applications of the GTOF. This was to estab-

lish initial plausibility for the theory and also to provide a clearer understanding of what it

amounts to through some “hands-on” applications. It also provides some idea of how to go

about applying the theory to various other “formal” systems and theories. We are hopeful

we have adequately satisfied these goals, and we will now turn to focus more directly on

the theory itself. In what follows we will consider some of the interesting and potentially

problematic consequences of this theory of formality, as well as its relationship to other

philosophical positions.

5.1 Theoretical Considerations

Formality, we have argued, is a quality of those invariants which emerge from the

specification of a domain and a class of transformations on this domain (together with

metaphysical facts about that domain). This definition leads to some interesting results

which generally fall into two categories. The first are consequences which pertain to par-

165

166

ticular instances of invariance. Since they occur only with respect to a single domain,

class of transformations, and class of invariants, we can call these “non-relational” con-

sequences. The second category concerns “relational” consequences — relationships be-

tween different instances of invariance.

There are two non-relational consequences of the theory of formality that we will

consider. The first of these we call the “ubiquity of form.” Since the general theory of

formality allows us to select any domain and class of transformations on that domain, it

has the consequence that many things may be formal that are not normally so called. In

fact, it might be the case that everything is formal in some respect — that is that form

is ubiquitous. The second non-relational consequence concerns the possibility of what in

mathematical language would be called “degenerate” cases. These are essentially extrema

of the theory, and they have some interesting features we should consider.

Perhaps the most interesting and significant consequences are those which result

from the fact that the general theory of formality permits distinct domains and classes of

transformations — what we call “respects” or “types” of formality. Although in many

cases, two respects of formality are entirely distinct — their domains and classes of trans-

formation are entirely disjoint — some interesting things may be said when this is not

the case. In particular, we are able to characterize more clearly what it means to say that

formality comes in degrees.

Further relationships we will consider are the fact that the same “thing” (broadly

construed) may be formal in a number of different respects, and what it means for there

to exist a stipulated relationship between one type of formality and another (as we have

suggested occurs in the case of formal languages).

167

5.1.1 Non-Relational Consequences

The Ubiquity of Form

We begin with the idea that everything might be formal. A strong version of this

claim amounts to a kind of metaphysical monism about form: everything is formal, and

nothing is non-formal. This runs counter to longstanding traditions in philosophy which

endorse a metaphysical dualism, called by MacFarlane “logical hylomorphism,” between

those things which are formal and those which are not (though, of course, there are con-

flicting views about the nature of these categories and what properly belongs to each).

It is clear that we cannot endorse metaphysical dualism, since doing so would re-

quire us to rule some domains and classes of transformations impermissible or somehow

outside the scope of formality. We have no principled reason for doing so, and it is not

at all apparent how we should go about finding one. On the other hand, it also seems im-

plausible to say that everything is formal, at the very least because formality is intuitively

a contrastive notion, opposed to something, and most useful “formal” theories are also

fundamentally contrastive.

Although it may not be immediately apparent, the general theory of formality is

well equipped to resolve this tension in that it permits us to walk a moderate path between

metaphysical dualism and a monism in which everything whatever is formal at all times. It

does so by being essentially relativistic, in the sense that a given formality always obtains

in relation to a given invariance structure. It permits us to say that, from the perspective of

a particular context, there is always a clear distinction between the formal and non-formal.

However, because this distinction is made relative to a given context, it is not a distinction

which holds across all contexts, and it therefore does not distinguish between the “formal”

and “non-formal” as distinct types of objects or properties.

To see this more clearly it will be useful to define what constitutes a context, or

what we will call a formal “frame.” Apart from domain selection, invariances are deter-

mined by the selection of a class of transformations. There are two methods by which

168

this may be accomplished. The first might best be called “collection,” and it proceeds by

directly specifying, or collecting, the desired transformations. This is the approach em-

ployed in the characterization of logical formality discussed in Chapter 3, and it is also

implicit in the various types of formality discussed in Chapter 4.

The second method we call “stipulation,” and this consists in first identifying spe-

cific features to be held fixed or invariant. The class of transformations then consists of all

those transformations which hold these features invariant in the given domain. From these

transformations emerge invariants, among which are the originally stipulated invariants.

This method is employed regularly in mathematics and geometry, whenever a definition

is presented and subsequent properties explored or proven. Consider the example of “cir-

cle.” Usually, this is defined as a figure whose points are all equidistant from a given point

(the center). From our perspective, this definition stipulates that the property of having

all points equidistant from a certain point in the same plain must remain fixed. Under the

resulting class of transformations, certain properties are variant — for example, the radius

— but others are invariant — the ratio between the circumference and diameter (π). Hav-

ing a particular radius, then, is not a formal feature of circles, but π is, in addition to the

stipulated equidistance and many others.1

In either case, the resulting class of invariants is entirely determined by a domain,

D, the underlying facts concerning the features of individuals, and a class of transforma-

tions, T . It is this structure which we call a formal “frame” and denote by the ordered

1A certain analogy can be made here to methods of set and class construction. According to most set
theories, sets must be built from either primitive ur-elements or existing sets (e.g., /0). This is done to
avoid certain well-known paradoxical results. Although every set is also a class, and so some classes may be
constructed in this manner, classes may also be constructed by specifying formulae (or more loosely, criteria)
for membership. The resulting classes may or may not actually be sets (i.e., constructable in a set-theoretic
manner), and if treated as sets they may give rise to paradox.

In the present context, the method we have called “collection” is analogous to set construction, since it
constructs a class of transformations from existing particular transformations or classes of transformations.
“Stipulation,” then, is analogous to class construction, since it effectively puts forward criteria for trans-
formations to belong to the class. A notable difference, of course, is that the results of collection are not
guaranteed to be sets. Although collection could easily be restricted to guarantee transformation sets, it is
unclear what advantage this would have.

169

pair (T,D). Taking standard first order logic as an example, D will be the class of model-

theoretic structures, for example < A,a >, < A′,a′>, etc., and T will consist of the class

of functions between these structures which is thought to be characteristic of first order

logic (isomorphisms, homomorphisms, etc.). In the case of machine independence dis-

cussed in Chapter 4, D is the class of machines with respect to which the program or

programming language is independent (e.g., stored-program computers) and T is the class

of transformations which takes each such machine to every other.

When we said earlier that formality was relative, what we meant was that in every

case formality occurs only with respect to an associated frame. One important result of

this is that, with respect to a frame a feature is either invariant or variant, but never both.

Hence, with respect to a given frame there is always a duality of formal (the invariant) and

non-formal (variant) features.2 On the other hand, this duality is not a robust metaphys-

ical dualism in that it is likely every feature will be formal with respect to some frames

(possibly very many) and non-formal with respect to others (possibly even more).3

There remains the theoretical possibility of an all inclusive frame, consisting of

a domain to which every other domain is a sub-domain and a class of transformations

encompassing all transformations, simpliciter. The resulting invariants would then have

the unusual property of being formal with respect to all frames. Whether or not this is

2We use the term “non-formal” as a generic for what is variably called “content,” “matter,” etc. in partic-
ular contexts. The basic idea of course is that the non-formal is that which changes, or is variant. We reserve
the term “informal” for situations where a formalized system or process (e.g., logic) is generally employed,
but for some reason is not. For example, for a logical or mathematical theory there is generally an accepted
method for defining new concepts within the formal apparatus, but it is often convenient to also employ an
intuitive or plain language definition, often for pedagogical reasons. We call such a definition “informal,”
regardless of whether or not it is invariant under the same class of transformations as the associated formal
theory (which it often will be).

3There is, however, a sense in which the distinction is determined, and necessarily so. Recall from Chap-
ter 2 that while we are free to consider any domain we wish, once we have selected the domain the features
within this domain are factually determined — nothing short of altering the domain can change which par-
ticulars have which features. Furthermore, even though we may construct a class of transformations at will,
once we have done so, the resulting invariants are also factually determined, because they share in the fac-
tual necessity of the features of particulars. This effectively means that the distinction between invariant and
variant features, and hence formal and non-formal features, has a note of necessity about it, but only after
the domain and class of transformations have been selected.

170

actually the case is a question we have no hope of addressing. The possibility does not,

however, establish any respect in which formality might yet be absolute, for the resulting

invariants would still be formal with respect to that particular “master” frame. This is

because the GTOF holds that formality only and always obtains with respect to some

frame or other. It is built into the very foundations of the view laid out in Chapter 2. Our

theory, therefore, does not proclaim that everything is formal, but rather that for any given

feature there is some frame with respect to which that feature will be formal.

Within this framework there undoubtedly remain some interesting, perhaps puz-

zling, possibilities. What we hope is that, for those yearning for a principled line between

the formal and non-formal, this result is satisfying, or at least mitigates any disappointment

or unease. It may, however, appear that this relativistic nature robs some of the mystery

and splendor from a favorite formalism. Is logic (or another favorite theory) really formal

in the same sense as, say, the moon, just with respect to a different frame? Our answer

here is a qualified “yes.” There are, in addition, some important relations between frames

and respects of formality from which more meaningful comparisons may be derived, and

which promise a more intuitively satisfying treatment of the situation. We take up the

particular question of the special status of logic in section 5.2.1 below.

Degeneracy and the Limits of Formality

Degeneracy is an idea that comes from mathematics and geometry. Informally, a

degenerate case is one in which a parameter of a mathematical or geometrical structure of

a certain type has a value of zero, such that the resulting structure, though nominally still

of the original type, is for all intents and purposes of a lower and simpler type. Classic

geometrical examples include the degenerate circle with radius equal to zero and the de-

generate ellipse with collocated foci. The first of these is equivalent to a point, the second

a circle.

The important thing about degenerates is that they seldom have significant interest

in terms of the more complex structures for which they are degenerate, since they are

171

effectively a simpler structure.4 For example, when considered in isolation, it is intuitive

to deny that the degenerate circle is in fact a circle, as it seems far more appropriate to treat

it simply as a point (which of course, it is).

Degeneracy is of significance to the GTOF in helping to mitigate an intuitively

awkward consequence of the theory — that we could construct a class of transformations

containing only the identity function for the associated domain. In such a case every

feature of every particular in the domain will remain invariant, and our theory therefore

proclaims them all to be formal. In the case of a model-theoretic structure, not only are

the logical notions invariant, but also the members of the model-theoretic domain, the

extensions of predicates, denotation function, and every other feature of the structure.

For structures which make use only of model-theoretic domains of arbitrary “objects” or

mathematical objects (what we might call “pure” structures), the invariants are all of the

extensional properties (since such structure can be extensionally defined).

The disturbing aspect of this case is that everything in the defined frame, according

to the GTOF, is itself formal — nothing is variant. It would therefore appear as if there

is nothing against which the formal is opposed, which runs counter to the historical and

intuitively grounded idea that form is fundamentally contrastive — over and against “mat-

ter” or “content”. It furthermore challenges our preceding attempt to preserve this very

distinction.

To an extent, we are prepared to suffer this assault upon intuition (and history), for

we cannot deny that this is a legitimate instance of formality under the GTOF. However,

we would again mitigate the discomfort this may cause by suggesting that the situation

be viewed as a degenerate case of formality, not a deep and meaningful theoretical con-

sequence of it. It is degenerate in the sense that it contains no variance whatsoever. That

is, if we consider the class of variants (the complement to the class of invariants) to be a

parameter in the geometrical or mathematical sense, this degenerate case results from the

4In saying this, we should note that degenerates are often significant and important from other perspec-
tives and for other reasons.

172

cardinality of this class being effectively zero as a result of the limitation on the class of

transformations. As such, though this result concerning formality is technically accurate,

it is fairly clear that a similar remark is warranted here as in the case of the degenerate

circle. “Certainly,” we want to say, “technically, this is a case of formality, but it isn’t

really what we mean by ‘formal’ anymore than a point is what we mean by ‘circle.”’

The possibility of degenerate cases gives rise to a number of additional interesting

questions. First, is it possible that a class of transformations might itself be empty, and if

so, what would be the consequence for the associated class of invariants (if any)? Con-

versely, is there a limit to what functions may belong to a class of transformations, and if

so, what are the consequences? Is it possible for the class of invariants to contract to the

empty set? If so, how does this affect the corresponding class of transformations?

In addressing these questions, it will be helpful to have a more rigorous under-

standing of “transformation-contraction” and “transformation-dilation” than what we have

already discussed in Chapter 2. To this end it will be useful to develop some additional

technical apparatus. First, let MAXT be a function defined on the classes of transformations

such that for any transformation class T and its associated class of invariants I, MAXT (T)

is the maximal class of transformations which leave I unchanged. We call MAXT (T) the

maximization of transformation class T . An analogous function MAXI can be defined on

the classes of invariants such that for any class of invariants I and a class of transforma-

tions T which hold I fixed, MAXI(I) is the maximal class of invariants which are held fixed

under T . We call MAXI(I) the maximization of invariant class I. Both MAXT and MAXI

rely on the fact that each T and I define a class of the other type, say IT and TI respectively,

but are also not necessarily the maximal classes which define these counterparts.5 For ease

of reference, and on account of their similarity, we will simply write MAX(T) or MAX(I)

and let context determine the function we have in mind.6

5But note that MAXT (T) and MAXI(I) do.
6Denis Bonnay defines two related functions, SIM and INV . INV is a function which maps similar-

ity relations (a more limited class of transformation classes) to the class of invariant operators each de-
fines. SIM, conversely, maps a class of invariant operators to the similarity relation under which they

173

Furthermore, we call a transformation class maximal, TMAX if and only if TMAX =

MAX(TMAX). If we take a relation R such that for transformation classes T1 and T2,

R(T1,T2) if and only if MAX(T1) = MAX(T2), we can easily see that R is an equivalence

relation. Furthermore, it is easily proven that each TMAX defines a unique equivalence

class of transformation classes. Let there be two maximal transformation class, TMAX1 and

TMAX2 such that TMAX1 6= TMAX2 and assume that R(TMAX1,TMAX2). By the definition of

R, MAX(TMAX1) = MAX(TMAX2), but since MAX(TMAX1) = TMAX1 and MAX(TMAX2) =

TMAX2, TMAX1 = TMAX2. R therefore cannot hold between non-identical maximal trans-

formation classes, and consequently each maximal transformation class defines a unique

equivalence class under R. Analogous results can be obtained for classes of invariants,

with each maximal invariant class IMAX , where MAX(IMAX) = IMAX , defining a unique

equivalence class under a relation analogous to R.

In Chapter 2 we defined a transformation-contraction as the elimination of one or

more transformations from an existing transformation class to yield a new “smaller” trans-

formation class. Likewise a transformation-dilation involves the addition of one or more

new transformations to an existing transformation class to yield a new “larger” transforma-

tion class. What we said there was that a contraction of a class of transformations results

in a dilation of the corresponding class of invariants, and conversely that a transformation-

dilation results in a contraction of the class of invariants. Although this is generally the

case, it is not true from a rigorous perspective as it permits of a number of exceptions.

The possibility of exceptions to this rule is implicit in definition of MAX and the

equivalence classes created by R. This is because, by definition, a transformation class

T is associated with the same class of invariants as MAX(T). Each equivalence class is

effectively associated with exactly one class of invariants, since every one of its members

is associated with the same class of invariants. Consequently, any contraction or dilation

which remains with a given equivalence class will not induce a change of the associated

are invariant. Restricted to the more limited scope Bonnay considers, for a given similarity relation S,
MAX(S) = SIM(INV (S)), and likewise for a class of invariant operators K, MAX(K) = INV (SIM(K)). See
[Bonnay, 2008], p. 12ff.

174

class of invariants.

Of course, the definition of MAX , though it entails the possibility of such excep-

tions, does not prove their actuality. It might turn out to be that each equivalence class

contains only a single member. In fact, this is not so. The most easily recognized excep-

tion concerns identity functions. An identity function, by definition, leaves the domain for

which it was defined untransformed. That is, application of the identity function results in

no added variance. As a result of this, the identity function is included in every maximal

transformation class, and dilation to include or contraction to exclude the identity function

will have no effect on the corresponding class of invariants.7

A second, less interesting case, results from the expedient of defining transfor-

mation classes as classes of functions rather than binary relations. Dilating the class of

transformations to include functions whose mappings include only mappings covered by

functions which already belong to the class of transformations will, of course, have no

effect on the class of invariants.

A third class of functions which may belong to a transformation class but not its

maximization results from not requiring transformation classes to form groups. In partic-

ular, we allowed for transformation classes which are not closed under composition. This

means that though a may be transformed to b by some function in T , and b to c by some

other, this does not mean that T contains a function which transforms a to c. However,

the definition of invariance is implicitly transitive. That is, if a feature f is invariant over

the transformation from a to b, and also from b to c, then f will de facto remain invariant

under a transformation from a to c, even though this mapping is not established by any

function within the class of transformations T . If, therefore, the class of transformations

is dilated to include functions all of whose mappings belong to the transitive closure of

the mappings of the original class of transformations, effectively no new variance is added

and no change results with respect to the associated class of invariants.

7This has an interesting consequence for the special case where a class of transformations consists only
of the identity function. This is addressed below.

175

There may yet be more complicated exceptions in which the function in question

does not fit into any of the preceding categories and yet, owing to the peculiar features of

particulars, the specific mappings do not result in any effect on the invariants. This could

occur in a case where existing functions do not, for whatever reason, map a to b, but as a

matter of fact a exhibits every invariant feature and so does b. Any function which only

adds such mappings would also have no effect on the associated class of invariants (and

hence will belong to the maximal class of transformations).

So a more rigorous formulation of transformation-contraction and transformation-

dilation is the following: Whenever a class of transformations T1 is contracted or dilated to

produce a class of transformations T2 belonging to a distinct equivalence class ((T1,T2) /∈
R) the associated class of invariants will expand or contract, respectively. Otherwise, there

will be no effect on the class of invariants. Since the only interesting cases of contraction

or dilation are those with consequences for the class of invariants, when we use these terms

we always mean operations which are substantial in this way.

We may now turn first to the question of whether it is possible that the class of

transformations might itself be empty, and what the consequences for the class of invari-

ants are. If taken up directly, this is difficult to address. How can we make any distinction

between variants and invariants when there are no transformations under consideration?

This is where thinking in terms of transformation-contractions is useful. If we begin with

an arbitrary maximal class of transformations T , what we know is that if we contract it the

associated class of invariants I will dilate. Further contractions of T will result in further

dilations of I. We already know that if we contract T down to the identity function (which,

since T is maximal, it must contain), the result is that the class of invariants becomes co-

extensive with the class of features of particulars in the domain. Of course, we need not

contract to this particular function, but what the case suggests is that, as the cardinality

of the class of transformations approaches zero, the class of invariants approaches coex-

tensionality with the class of features of particulars of the domain. In the special case

of contraction to the identity function, coextensionality is achieved. Furthermore, as sug-

176

gested above, the special character of the identity function is precisely that it leaves the

domain unchanged — that is, it is a “transformation” which transforms nothing.8 This in-

tuitive result, if it holds up to scrutiny, strongly suggests an effective equivalence between

a transformation class containing only the identity function and one which is empty —

at least from the perspective of invariance and formality. This makes it plausible to think

that a transformation class can in fact be empty, or even that the identity “transformation”

is really just a convenient stand-in (or name for) the empty class of transformations. At

any rate, the consequence for the class of invariants when the class of transformations is

empty, then, is that it is coextensive with the class of features of particulars of the domain,

which is to say that everything comes out to be invariant.

The second question effectively concerns whether there is a limit to transformation-

dilations, and what consequences this may have for the associated invariants. The best

approach to answering this question is to think of transformation classes as capturing,

containing, or imposing a certain degree of variance with respect to the domain. This

idea of variance is itself best understood in terms of the unique pairings of particulars that

are characterized by the class of transformations. Every class of transformations imposes

the same degree of variance as its associate maximal transformation class, since they all

effectively establish the same pairings of particulars (including implicit pairings resulting

from transitivity). Thus, transformation-contractions reduce variance, and transformation-

dilations increase it. Taken this way, the question becomes whether there is a limit to the

degree of variance which a class of transformations may impose. The answer is easily seen

to be affirmative, for if a transformation class is such that it establishes pairings between

every two particulars in the domain, no dilation can result in any additional pairings being

created, and hence no class of transformations can impose more variance on the domain.

Of course, any dilation of such a class of transformations cannot affect the associated class

of invariants, since its maximization has no proper superclass. This is because the equiva-

8It should not escape notice that this makes the identity function something of a degenerate case itself, at
least from our perspective.

177

lence class to which a class of invariants belongs is effectively determined by the pairings

between particulars it establishes, and no additional pairings can be created. Hence, we

call the maximal class of transformations which establishes pairings between every partic-

ular in the domain its absolutely maximal transformation class. Not only is it maximal in

the sense defined above, it also imposes maximal variance on the domain, and as such it

contains every function definable on the domain in question.

What, then, of the associated class of invariants? Clearly, it will be contracted to

some kind of absolute minimum for the given domain. Intuitively, since every particular

is being transformed to every other, the class of invariants will contain only those features

which are common to all particulars in the domain. In general, this means that the class

of invariants will tend to include (possibly among others) those features which formed the

criteria for the domain to begin with. In the case of logic, for example, the absolutely

maximal class of transformations will map every structure to every other. Clearly, very

little will remain invariant. Essentially what remains are the semantic categories and types,

including such general notions as “is an individual,” “is a property of individuals,” “is a

2-place relation of individuals,” etc. Which is to say, the most significant invariants are

those which characterize what it is to be a model-theoretic structure. These are the generic

notions out of which models may be constructed.9

Though not strictly speaking a degenerate case, the preceding consideration gives

rise to the possibility of another. Is it ever possible for the class of invariants to contract to

the empty set? Since there is a limit to the amount of variance that may be imposed on a

domain, whether this is possible will depend almost entirely on whether or not a domain

may be constructed which is sufficiently heterogeneous such that the absolutely maximal

class of transformations results in no invariants whatsoever. Given the extremely broad

manner in which we have taken “features” it is exceedingly difficult to imagine this being

possible. Even barring obviously trivial features, like that of belonging to the domain in

question, it seems very likely that there will always be some feature, feature of a feature,

9This point is made by Sher in [Sher, 2008], following up on some remarks from [Bonnay, 2008].

178

etc. that will be invariant. Neither is it helpful to approach the problem from the angle

of specifying the class of transformations as those which hold no features fixed. Since

in many — possibly all — cases no class of transformations (not even the empty class)

satisfies this criterion, it seems to be nonsensical. Yet again, this points to the composition

of the underlying domain as the deciding factor in whether an empty class of invariants is

possible, and we would welcome any demonstration of such a case.

So, the only clear degenerate case is that in which the class of transformations con-

tains only the identity relation, which we take as equivalent to an empty class of transfor-

mations. And although the GTOF rules every feature of every particular in such a domain

to be “formal,” this is only so with respect to a frame in which effectively no variance is

involved, and as a degenerate case should not be taken as significant to a characterization

of formality generally any more than a point is significant to the characterization of circles.

5.1.2 Relational Consequences

Degrees of Formality

In Chapters 3 and 4 we suggested several times that formality can come in “de-

grees,” such that one thing may be “more formal” than another. The intuitive idea is that

one invariant is “more formal” than another if it is invariant over a larger range of trans-

formations.10

First, assume two classes of transformations defined on some domain, D, denoted

T1 and T2. According to the theory of formality, each of these gives rise to a corresponding

class of invariants. Call these I1 and I2, respectively. Let T1 ⊂ T2. What is the resulting

relationship between I1 and I2? Well, we may first conclude that I2 ⊆ I1. This follows from

the intuitively obvious fact that any feature invariant over a certain class of transformations

(T2) will be invariant over any subclass of that class of transformations (of which T1 is one).

10This could also be characterized in terms of domains, but even so what really matters are the transfor-
mations involved.

179

We could, for an example, let T1 be the class of isomorphisms and T2 be the class

of homomorphisms defined on model-theoretic structures, as we have been considering in

the context of first order logic. Now, clearly T1 ⊂ T2, since every isomorphism is also a

homomorphism but the converse is not true. If a feature f is invariant under homomor-

phisms (T2), that is f ∈ I2, then it must certainly also be invariant under isomorphisms (T1)

since these are also homomorphisms, and hence f ∈ I1.

The question, then, in any given case is whether I2 ⊂ I1 or I2 = I1. If I2 = I1, then

there is no difference in degree of formality between any x ∈ I1 and y ∈ I2, with respect to

D, because it turns out that I1 (being identical to I2) is invariant over T2 as well, despite that

T1 6= T2. In fact, this means that T1 and T2 both have the same maximization, and hence T1

and T2 are associated with the same class of invariants.

The more interesting situation, which occurs for our logical example, is when

I2 ⊂ I1. The invariants belonging to the subclass of I1 which also belong to I2 (the in-

tersection) will have the same degree of formality as I2 (because I1∩ I2 = I2). In the case

of homomorphisms and isomorphisms, this intersection includes the logical notions de-

noted by the standard quantifiers (∀ and ∃) and the standard logical connectives, but it

does not include identity.11 The class of features Q = (I1− I2), which is the maximal sub-

class of I1 not containing any element of I2, we call less formal than those which belong

to I2. The most notable element in Q in our example is the denotation of “=,” which is

invariant under isomorphisms (it belongs to I1) but not under homomorphisms (it does not

belong to I2).

As a consequence, we consider the denotation of “=” to be less formal than the

logical notions denoted by the quantifiers and connectives. This does not mean, however,

that we take identity to be any less logical than the other notions. We maintain a distinc-

tion between formality and logicality which permits that notions differing in their degree

of formality may yet be equally logical in nature. The question of logicality, from our

perspective, hinges on the content of the theory, not its formal nature.

11[Feferman, 1999]

180

Furthermore, it is customary in the field of logic to say of systems with additional

semantic resources (e.g., first order logic with identity) that they are stronger than those

with fewer resources (e.g., first order logic without identity). This is grounded in the

relative expressive power of the languages — those with greater semantic resources will

be capable of saying more, and hence result in a theory consisting of more and stronger

claims than theories with fewer resources. It may consequently seem backward that we

claim a theory with greater semantic resources is less formal on account of these semantic

resources — that we in fact make the weaker language the stronger. However, we again

invoke the distinction between logicality and formality. Degrees of formality are as distinct

from logical strength as formality is from logicality. Although in general it is true that

a more formal system will be logically weaker (since invariance over a wider range of

transformations will often impose stricter limits on what one can say), this is not always the

case. In the case of logic, for example, the logical constants do not exhaustively denote the

features invariant under either isomorphisms or homomorphisms. This means that stronger

logical systems may be formed by including additional constants, without thereby having

any effect on the formality of the resulting language. Likewise, certain constants could

be dropped from a language resulting in a weaker system with no change in formality

(although one must be careful, since as we have seen, dropping “=” will result in a change).

This way of thinking seems further warranted on account of the invariants of I2

being stable over the broader range of transformations T2 than those of Q, which are only

invariant over the narrower class of transformations T1. Hence, the elements of Q are less

invariant, ergo less formal or of lower degree of formality, than the elements of I2. The

fields of mathematics and geometry are rife with systems related in this way.12

It is furthermore not necessarily the case that a more formal theory is better or more

useful than a less formal theory. To see this, we can consider the chain of theories discussed

in Chapter 2 during our generalization of invariance. This chain is depicted in figure 5.1.

12An interesting example of this is the “chain of formality” having as a less formal member field theory
and as its most formal member category theory. Between this two lies a considerable range of interesting
theories, which are ordered by the more-formal-than relation.

181

Our introduction to this hierarchy began with Klein’s work on geometry. While we only

considered a very limited theory, Klein’s actual work extended to characterizing many

types of geometry. The transformations Klein employed were bijective mappings of space

onto itself, with an additional condition that some or other properties must be preserved.

The objectualist approach to the semantics of first order logic takes this a step further, not

requiring any particular properties to be preserved, but instead requiring certain structural

features of universes as a whole to be preserved. Within this group, views differ over which

structural properties are properly logical (e.g., isomorphisms preserve the cardinality of

universes, homomorphisms do not), but the resulting views are in most cases related in

terms of degrees of formality. From here, invariance was further generalized by Bonnay,

who produced a number of classes of transformations which preserve even fewer structural

features of model-theoretic structures. At the very top of this chain we reach the class of all

transformations between model-theoretic structures, which we already encountered in our

discussion of degeneracy above. As we said there, the corresponding class of invariants

at this level consists primarily of semantic categories. What we did not discuss above,

however, is whether or not these invariants are useful or interesting. For despite the fact

that the semantics categories are the most formal features in this particular chain, they are

in most respects the least interesting. At this very high degree of formality, the most that

we can hope to learn from the invariants is the general nature of the domain of invariance

itself — that is, what the criteria for its selection was. In this case the semantic categories

tell us much about what it is to be a model-theoretic structure, but nothing more. But

in order to even start down this path we needed to have a definition of a model-theoretic

structure, or else we would not be able to characterize classes of transformations between

them. Thus, the invariant features we find at the top of the chain of formality, when

variance is maximized, have an air of tautology about them. We would not say that such

features will never prove interesting in and of themselves, but they certainly do not have

our attention in the way logical notions do.

On the other end of the spectrum we have speculatively suggested that at least some

182

of the special sciences are less formal than geometry, yet still within this chain of formal-

ity. This would be the case if the characteristic invariant features of these disciplines were

invariant over transformations which belong also to the classes above them in the hierar-

chy, and in the case of logic this is not too difficult to imagine — with limited exception,

large segments of the actual world can be characterized as model-theoretic structures. And

while these scientific theories are certainly very interesting and informative, they lack the

generality and scope that is so compelling about logic.

All of this is to say that, although we have certainly not considered it in as much

depth as it deserves, formality may only be interesting up to a certain degree. As we

consider theories with increasing degrees of formality, the breadth and generality of the

features involved reveals to us significant and interesting facts and relationships. However,

at the far end of the process, we end up learning little if anything more than what we began

with. It thus may well be that, while logic is not the most formal theory in this chain, it is

yet the most formal theory which is of considerable interest.

It is noteworthy that the GTOF is not included in figure 5.1, even though it involves

a further generalization of invariance. This is because, as we said in Chapter 2, the sense in

which invariance is generalized is that it permits the characterization of arbitrary types of

invariance, not just those associated with model-theoretic structures. Thus, the depiction

in figure 5.1 is just one of many possible “trees” of formalities that fall within the scope of

the GTOF. What is also not represented in the diagram is that formality hierarchies may

branch, such that two theories are each less formal than a third, but have no such relation

to one another. This can be seen from the fact that, if transformation classes T1 and T2

are completely disjoint, no comparative judgment can be made. A similar result holds

when T1 and T2 overlap without being coextensive, in which case both have a relation to

a third class of transformations, their intersection, but not directly to each other. In such a

case, the formality hierarchy branches, such that these two types of formality are each less

formal than a third, but have no such relation to one another (a possibility not depicted in

figure 5.1). The more-formal-than relation is therefore only a partial ordering relation, as

183

it only obtains when one class of transformations is a subclass of another.

A final thing to recognize is that if one theory or language, L1, is more formal

than another, L2, this means that all of the features employed in L1 are also invariant

features for L2. This is significant in explaining the mixture of formal languages that

are sometimes used in mathematics, set-theory, and most notably the sciences. If the

scope of a given field, say physics, is less formal than another theory (or is assumed to be

so), for example mathematics, then physicists are justified in making use of mathematical

invariants in constructing physical theories.13 This gives rise to “hybrid” formal languages

which contain fragments of languages with a higher degree of formality.

This also explains why, for example, cosmologists borrow from mathematics and

not biology. They assume, and with good reason, that cosmology has a lower degree

of formality than mathematics, and hence they are justified in employing mathematical

invariants in their cosmological theories. The domains of cosmology and biology, so far

as we know, do not share this relationship. They may not even belong to the same chain of

formality.14 The general principle that results from this is that a formal theory based on a

certain set of invariants may make use of invariants from any other theory which is strictly

more formal than itself.
13The case of mathematics is interesting and important for a reason in addition to its pervasive use in the

sciences. When taken as a first order theory, a theory about numbers (whatever those may be), mathematics
is not a particularly formal theory. If it is just a theory about transformations between numbers, for example,
it is not at all clear how physics would fit below it on our hierarchy, or even how it is that mathematics plays
any role in physics at all (unless physics itself is just about numbers). However, a second order perspective
of mathematics, in terms of properties (or classes) of classes, does possess a considerable degree of formality
and is the sort of theory physics and other sciences might fall under and could borrow from. It is therefore
an interesting question what the relationship between first and second order mathematics may be. Although
we cannot hope to answer this question here, we speculate that first order mathematics may be related to
second order mathematics in much the same way that a formal language is related to its formal semantics.
If so, first order mathematics would be a convenient, simplified apparatus for exploring and reasoning about
second order mathematical objects.

14The phrase “chain of formality,” though appropriate in many cases, could be misleading. If it is the case,
for example, that both biology and cosmology are less formal than logic but that they share no relation to
one another, perhaps on account of merely overlapping transformation classes, then the result would rather
be a “tree of formality” than a chain.

184

Formality in Multiple Respects

In Chapter 4 we compared formal programming languages not only in terms of

degree of formality, but also in terms of something we called “respects.” Indeed, in even

discussing degrees of formality, we have indicated that these are always made with respect

to a certain frame. This idea is worth looking into a bit further, and we should, in particular,

clarify how it can be that a language, denotation of a constant, or anything else might be

formal in more than one respect.

In our discussion of degrees of formality, we used frames consisting of related

transformation classes, defined either on the same domain of invariance or effectively in-

volving a subdomain relation. Consider, for example, the relationship between the views

which take invariance under permutations and isomorphisms to be characteristic of logic.

Clearly, the two positions involve non-identical domains of invariance. The permutation

view consists of a single universe, all of whose individuals are permuted to one another.

The invariance domain at play with isomorphisms consists of model-theoretic universes. It

is, however, easy to see that the universe involved in permutations (whichever it may be) is

itself a model-theoretic universe, and also that permutations are included among the class

of isomorphisms. Therefore both the class of transformations and domain of invariance on

the permutation account are subclasses of their counterparts under isomorphic invariance,

as depicted in figure 5.2. This is why the features invariant under isomorphisms are more

formal than those invariant only under permutations. Such features are, in a clear sense,

formal under both classes of transformations.

There is, however, also the possibility that features may be formal under more than

one class of transformations which are not related to one another in this specific way. It

is these features that we consider to be formal in “multiple respects,” and they can be

characterized as follows. First, for a class of transformations T to be defined on a domain

of invariance D, it must be the case that every object in every transformation of T must

belong to D. If we take two domains of invariance, D1 and D2, such that they are entirely

disjoint, the result is that any classes of transformations defined on these domains, T1

185

and T2, respectively, will also be disjoint. Critically, it does not follow from this that the

resulting classes of invariants, I1 and I2, will also be disjoint, and any x ∈ I1 ∩ I2 will be

invariant, and therefore formal, with respect to both frames. An example, also depicted in

figure 5.2, will help make this clear.

Let D1 be the domain consisting of all mice without genetic defects, and let D2 be

the domain consisting of all mangoes, likewise without genetic defects. Let transformation

classes T1 and T2 be defined on these domains respectively such that each transforms every

object of that domain to every other (mice to mice, mangoes to mangoes). Clearly T1 and

T2 are disjoint. Furthermore, the resulting classes of invariants will not be equal, nor will

either be a subclass of the other. But are these invariant classes disjoint? No. The property

of having forty chromosomes turns out to belong to both classes of invariants. In such a

case we can say that “has forty chromosomes” is formal with respect to the frame (T1,D1)

and the frame (T2,D2).

We could, of course, try and create a “super domain” encompassing both D1 and

D2, called DS. But this won’t change anything in terms of the invariants which are formal

with respect to multiple frames, on account of the disjoint transformation classes. If we

construct T S = T1∪T2, the resulting IS will be, not surprisingly, I1∩ I2, which will include

“has forty chromosomes” but be unequal to either I1 or I2. Rather than collapsing or

merging the two original frames, we have produced yet another frame and a further respect

in which the feature is invariant.

Thus, the expression of a program in an object-oriented manner, as described in

section 4.2.2, can be formal with respect to the machine-oriented frame — consisting of

a domain of machines and its absolutely maximal class of transformations — and also a

problem oriented frame constructed around the class of problems the program is designed

to solve.

It is important to recognize that being formal in multiple respects is decidedly

different from the possibility of making use of features with a higher degree of formality,

as discussed in the preceding section. Although in such a case the features are formal

186

in multiple respects, there is a relationship between the associated domains or classes of

transformations. In the present context, no such relation is presumed, and the notion of

formality with respect to a frame is therefore more general than, and implicit in, the idea

of degrees of formality. It is also fairly easy to see that most features may be formal

with respect to a great many frames. Just which frames are taken into consideration in a

given context is primarily a matter of the interests involved in exploring the invariants in

question.

Stipulated Relations

The final point to discuss concerns the manner in which respects of formality may

be related to one another by stipulation. This occurs more frequently than we might ini-

tially think, as most (if not all) representation relationships involve this. The most signif-

icant case, of which we considered particular instances in Chapter 4, is that of a formal

language and its semantics (or its constants and their denotations).

The basic framework for any such relation consists of two, possibly identical but

usually distinct, formal frames. These frames each give rise to a certain class of invariants.

A relation may then be defined between these classes of invariants. The thesis we explored

in Chapter 4, that invariants in the language (characteristic constants, types, grammatical

constructions) denote invariants in the semantic domain, can be understood as the claim

that there is a function from the invariants in the language-oriented frame to the invariants

in the semantics-oriented frame. Furthermore, although nothing prevents formal languages

from containing perfect synonyms within the primitive, characteristic vocabulary, they

generally do not. Hence, we may add the restriction that the function, which we may as

well call a “denotation function,” is injective. These functions should not be expected to

be surjective, since formal languages nearly always involve a limited number of invariants

and the associated semantic domain is usually considerably more complex.15

15Perhaps the most plausible context for finding bijective denotation functions would be to consider “term
models” for languages. Even so, it seems likely that there may be invariant relations or higher order relations

187

The stipulated relations need not be functional, as they are in the case of formal lan-

guages. It just turns out that since formal languages usually involve denotation functions

anyhow, functional relations are very useful. One non-linguistic situation where stipulated

relations between invariants comes up is in the analysis and engineering of processes. In

an analysis, the important features of things like agents, action, events, and products are

characterized effectively by means of invariance. For example, instead of describing a

process in terms of particular agents, by name or other reference, the process may simply

describe a type of agent or role. This type is defined in terms of qualities and abilities

which (it is expected) all agents of that type have. Since these qualities and capabilities

are effectively invariants, it is easy enough to characterize these agent types in terms of

invariance. The same will hold true for other components of the process. Once these

invariant features have been identified, a process structure can be defined by specifying

relationships between these types or certain invariant qualities, abilities, etc. 16

In cases like this, of course, there may well be real world relations that correspond

to the stipulated ones — for example if an analysis describes an existing process. Alterna-

tively, a new process may be engineered by the specification of new relations. We consider

both of these to be stipulative since even in the case of actual, existing relations these are

not a direct consequence of the composition of the formal frames, and the relationship

must be identified independently of considerations of formality. Hence, there may well

be relations of this sort which are empirically determined or necessary. But because the

relationship requires human characterization (e.g. it is part of the content of a theory),

from a formal perspective these are also constructed or stipulated.

which do not belong to the image of the denotation function. Still, it might be possible in the case of a term
model for a language explicitly designed to express such relations.

16It should not be surprising, in light of what we now understand of them, that formal languages have
been developed to facilitate these activities.

188

5.2 Philosophical Considerations

We will now turn to some more broadly philosophical issues with the purpose of

providing a better understanding of how our theory of formality relates to other philosoph-

ical work. These also divide nicely into two categories. The first consists of a prominent

position on the association between logicality and formality put forward by John Mac-

Farlane, and it is in some ways closely related to our GTOF. The second group of views

feature invariance in a prominent way but connect it with something other than formality

(and in general, have little to say about formality or logic).

5.2.1 John MacFarlane and the Specialness of Logic

In the title of his dissertation John MacFarlane asks, "What does it mean to say

that logic is formal?"17 His motivation for asking and seeking answers to this question is

the identification of three distinct traditions in the history of philosophy, each with its own

account of what makes logic distinctively formal. And though we do not ourselves seek

an answer to this question, it is easy to see how the GTOF exacerbates the problem. Under

the GTOF there are, quite literally, indenumerably many distinct types of formality, and

we have already shown that there are a number of these on which first order logic comes

out formal.

The GTOF, however, not only deepens the challenge of identifying the character-

istic formality of logical systems generally, but to a significant extent it undermines the

claim that logic is distinctively formal in the first place. For if logicality and formality are

distinct, and everything can turn out formal in some respect, it is not enough to merely

identify some way in which logic is formal, even if nothing else shares that particular type

of formality, and say that it is thereby distinctively so.

MacFarlane’s work presents us with two questions. First, whether any of the types

of formality he discusses could themselves serve as a general theory of formality — either

17[MacFarlane, 2000]

189

identical to or in competition with the GTOF. Second, if we assume that the GTOF is true,

and therefore that logic fails to be distinctively formal in a strict sense, might there still be

a sense in which logic is somehow specially formal under the various notions of logical

formality.

We must be clear, however, that our purpose is not to answer the question of what

it is that makes logic special, since logicality is not our direct subject. Instead, we will sug-

gest and explore ways in which logic can still be said to be specially formal, even if neither

uniquely nor distinctively so. While in Chapter 3 we focused exclusively on the position

that logicality consists of model-theoretic invariance, here we will look at a broader range

of views, most of which are discussed by MacFarlane. It is our opinion, first, that none

of these can serve on its own as a general theory of formality. Second, that each of these

accounts involves a different respect of formality which could be rigorously characterized

according to the GTOF. However, presenting detailed arguments to this end is a significant

work in its own right, and doing so is beyond the present scope. Nevertheless, we provide

some informal discussion concerning the role played by invariance, as for many of the

views this characterization opens up a plausible sense in which logic could be considered

specially formal.

MacFarlane begins by discussing three accounts of logic as formal that he consid-

ers “decoys” from the demarcational perspective.18 With respect to two of these, syntactic

and grammatical formality, we have already discussed their satisfaction of the GTOF (un-

der the terms “sentential” and “grammatical” formality, respectively). The same reasoning

used there explains why, in addition to being unfit for demarcational purposes, these types

of formality cannot ground a general theory of formality or be seen as providing logic

with any special character or place among our theories. First, these formalities are tied

essentially to languages, and it is clear that any general theory of formality would need

to extend beyond linguistic formality. Second, many, many languages may exhibit these

types of formality, and many do so in potentially more interesting or basic ways than

18[MacFarlane, 2000], Chapter 2.

190

standard first order logic.

The third “decoy” is what MacFarlane calls “schematic formality.” Schematic for-

mality occurs, by nature, at the level of language. It is in this respect somewhat similar to

syntactic formality, except that whereas syntactic formality involves the rules of formation

of a language, schematic formality is based on other less fundamental structures. From

the schematic perspective, logic consists of a collection of “argument schemata.” The

schemata are not themselves arguments, but they consist of a number of nearly complete

statements with indicators (schematic letters) of how the statements may be completed to

produce an actual argument. If done correctly, the schematic arguments should be such

that every possible completion of the argument schema results in a valid argument.

First, a word about schemata and schematics more generally. It is easy to see the

role that invariance plays in the case of logical argument schemata. Argument schemata,

though not themselves valid, or even arguments, can be thought of as characterizing a

collection of arguments — those which can be formed by finishing the schema according

to certain rules. It is a straightforward step to recognize that the use of argument schemata

suggests not only that the property of being an argument is invariant across transformations

between all arguments within the class, but in most cases also that the property of validity

remains invariant across these transformations (although there certainly can be invalid

argument schemata, these are generally not taken as a proper subject of logic). Schemata

are, therefore, another way of thinking of the structure of logical statements and arguments.

It is distinct from syntactic formality in that the schematic letters are not really considered

part of the schema, except insofar as they indicate a relationship between statements (e.g,

specification of a “middle term”).

This way of thinking can be easily extended to cover other kinds of schematics

or uses of schemata. In most cases (for we do not wish to be drawn into a discussion of

the nature of schematicity), schemata are associated with some representational system or

other. This may be linguistic, as in the case of logic, but it also may be diagrammatic

191

(building schematics, flow charts), or possibly even pictorial or graphical.19 What these

schemata all have in common is being taken as incomplete in themselves, but as such they

characterize the class of objects which are completions of the schema in question. Putting

this in terms of invariance is straightforward.

MacFarlane rightly determines that schematic formality is not an adequate ground

for the demarcation of logic. While he cites the possibility of non-logical schematic ar-

guments as reason for this, what we have just said is even more compelling. Not only

is there nothing essentially logical about schematic formality, there is also nothing essen-

tially argumentative or even linguistic. On the other hand, schematic formality in some

ways shares a close affinity to the GTOF, since an implicit understanding of the GTOF

is that characterizing something in terms of formality or formal features is, at least in all

useful cases, to characterize it incompletely. That said, schematicity, even if it does range

beyond representational systems to encompass everything a general theory of formality

should, is rather to be considered a symptom of formality rather than a general account of

it.

None of this means, though, that there are no reasons for thinking that logic is

special from a schematic perspective. For example, there are certainly logically invalid

arguments which can be schematized and which are valid (or whatever lesser notion we

would employ) with respect to a certain limited range of completions. However, it might

turn out, and indeed it seems likely, that logical schemata hold over the broadest possible

range of completions. Even though schematic formality is not distinctive of logic, logic

may still exhibit the highest degree of schematic formality of any argument-schema system

that we know of. If so, this would certainly warrant it a special status, especially if no other

argument-schema system comes close. If true, it might consequently be thought that logic

19The last of these is probably not common, but is becoming increasingly so. One example can be found
in what are sometimes called “memes” (in a non-technical sense). These consist of stock images upon
which text is superimposed to provide a certain consistent effect (usually humorous or ironic), despite that
the resulting composite graphics usually have distinct targets for their humor or irony. The text itself also
frequently follows a schema, so the result comes about by completing a number of different schemata.

192

characterizes the most general class of valid arguments.

In addition to these decoys, MacFarlane seriously considers three respects in which

logic is seen to be formal, unimaginatively named 1-formality, 2-formality, and 3-formality.

We will examine each of these in turn, but one interesting general note MacFarlane makes

is that “we can get at these three notions by construing ‘formal’ as ‘independent of content

or subject matter.”’ As we saw in Chapter 4, “independence” is often characterizable in

terms of invariance, and so it is telling that MacFarlane connects the formality of each of

the views with the idea of independence. Just what kind of independence, he recognizes,

will depend on how “content” is understood.

“To say that logic is 1-formal,” MacFarlane tells us, “is to say that its norms are

constitutive of concept use as such . . . 1-formal laws are the norms to which any conceptual

activity — asserting, inferring, supposing, judging, and so on — must be held responsi-

ble.”20 The content independence this is supposed to express is that logic is “applicable

without qualification, in any domain.” The idea is that the rules described by logic actu-

ally govern our use of concepts, hence any use of concepts, in any domain, will adhere to

the rules of logic (and hence logic will be applicable there). Now, presumably, there may

well be other rules that govern concept use. Particular domains may have rules about how

concepts within that domain will be used, and even particular concepts may have rules of

use. However, the 1-formal position holds that logic is about those rules which are so gen-

eral that they actually define concept use, and hence there is no such thing as non-logical

concept use.

The first thing to note about the position is that it clearly cannot serve as a general

theory of formality since it is tied essentially to concepts and their use. It may well be that

formality is involved in the use of concepts, but there are many cases where the formal

system or features of concern have less to do with the concepts involved than other things

(e.g., a particular language, physical properties).

That said, it does seem prima facie plausible that 1-formality can be characterized

20[MacFarlane, 2000], p. 51.

193

in terms of invariance. The most promising way to do this is to characterize it in terms

of rules which are invariant under transformations between uses of concepts. In fact, if

we conceive of it this way, we can see that we will end up with a complex hierarchical

structure of rules of concept use, defined in terms of the range of the rules’ invariance —

their degree of formality. If it turns out that there is a single set of rules which is invariant

over all concept usage — i.e., rules which have the highest degree of 1-formality — we

would be justified in thinking that these rules have a very special place among our theories,

and if these rules are described or captured by our logical theory, then logic would indeed

be special. We might even be justified in thinking, as those who hold that logic is 1-formal

do, that these rules are special because they are constitutive of concept use.

On this account, the GTOF would not say that logic is special in being distinctively

1-formal, since many conceptual rules will have some degree of 1-formality. Instead it

would say that logic is about those rules which have the highest possible degree of 1-

formality. Even so, saying this presumes much. It requires that there is a single set of rules

which governs all concept use and it requires that the rules characterized by logic be those

rules. We do not know of conclusive results on either count.

What MacFarlane calls “2-formality” is something with which we are already fa-

miliar, as we discussed it at length in Chapter 3 as “objectual formality.” Of course, this

type of formality is explicitly characterized in terms of invariance, although there are many

ways in which the associated class of transformations can be specified. It is equally clear

that 2-formality cannot serve as a general theory of formality itself on account of its very

specific relationship to model-theoretic structures. General though it is, it is not general

enough.

Despite a generally critical stance toward most views in this tradition, it is still the

one MacFarlane finds most promising for demarcational purposes, and his own position,

which we discuss below, fits broadly under this heading. As promising as the position

may be for demarcation, it makes it more difficult to say that logic is special from a formal

perspective. This is because the classes of invariants used by any of the views in this

194

tradition do not, strictly speaking, realize the limiting case of “all transformations” under

Klein’s approach. This makes it appear as though it is not 2-formality that makes logic

special and important, but the particular character of the transformations and invariants

involved.

Some insight, however, comes from the ways in which philosophers with com-

peting views on logic as 2-formal argue. In particular, contemporary philosophers do not

seem to consider an extreme range of invariance (or “generality” as it is sometimes called),

a point of contention. That is, they are not seeking a limiting case to Kleinian invariance

— a position with the highest degree of invariance simpliciter. In certain cases the debates

come down to whether or not a view is invariant enough or too broadly invariant (e.g.,

the question of whether identity is a logical notion can be understood as a question about

how large the class of transformations should be). This suggests that there is some, albeit

vaguely formed, intuitive understanding of the subject matter of logic. This further leads

us to think that logic, whatever the correct view turns out to be, will be the theory with

the highest degree of formality with respect to a certain subject matter.21 Although we

should avoid speculation about what this subject matter might be (since this is yet an open

question in the philosophy of logic), we can with some confidence say that it includes ev-

eryday objects and objects in mathematics and the sciences which are “well-behaved.”22

Whether or not the domain of logic includes all objects is a question which has been raised

by certain quantum mechanical phenomena. Nevertheless, on the suggested view, with re-

spect to those objects and associated theories falling within the domain of logic, logic will

certainly be seen as special in virtue of its formality. It will have preeminence over every

other theory concerning objects which fall within its domain.23

21Similarly, it may be as we have suggested above, that logic is the most formal theory about a certain
subject matter which is still interesting and informative.

22Of course, “well-behavedness” will need some definition which does not itself appeal to logicality. One
approach would be to say that well-behaved objects are those which have properties satisfying certain rules.
Just which rules these might be (e.g., rule of excluded middle) is a deep and interesting question.

23It is worth noting also that many of the purported virtues that have traditionally been attributed to logic,
beyond generality, will either result from or have analogs which result from logic’s high degree of formality
in this respect. For example, the necessity of logic, with respect to the appropriate domain, is guaranteed

195

3-formality is by far the most conceptually challenging type of formality MacFar-

lane seriously considers. His gloss is that it “abstracts entirely from the semantic content

or ‘matter’ of concepts — that it considers thought in abstraction from its relation to the

world and is therefore entirely free of substantive presupposition.”24 It is, we are told,

independent with respect to “semantic content.” Just what this means is difficult to grasp

because the idea bears a strong resemblance to 1-formality. MacFarlane’s immediate dis-

cussion does little to clear this up, but elsewhere he does explain why 3-formality does not

entail 1-formality, and this helps to understand the difference between the two. The crux

of the issue is that, whereas 1-formality purports to be essential to the nature of concept

use, 3-formality merely pertains to ways in which contentful concepts can be combined

with one another. Hence, to say that logic is 3-formal is to say that it is one way in which

semantic concepts may be combined. Other ways may be possible, we are told, and there

is no constraint upon this from the world. No single way of combining concepts, for ex-

ample logic, would be essential to concept use as such (although presumably that there is

at least one way of combining concepts may be). In contrast, if logic is 1-formal, it is the

only way concepts may be combined in thought, as it is constitutive of concept use. Logic

taken as 3-formal, then, would be a framework within which ideas about the world could

be combined, but would not itself pertain to the world or world-oriented concepts.

Thinking of 3-formality in terms of invariance actually provides a much clearer

way to understand the difference between it and 1-formality. The formalization process

for 1-formality begins by considering the ways in which we actually use concepts and

because logic itself was used to circumscribe the domain. This does not reduce logic to a triviality, however,
for two reasons. First, whether or not an object or theory is “logical” is an interesting and important question.
Second, even if logic is necessary over its domain in virtue of defining that domain, logic may still be very
useful within this domain for reasoning about these objects. This is a point which also suggests a sense in
which logic turns out a priori. If we define any set of rules and then gather together those things which
satisfy the rules, we can say without looking at any particular object that it satisfies those rules. Now, if an
awareness of these rules should happen to be somehow innate or learned at a very early age, and everyday
objects happen to fall within the domain of the rules, then the rules could very well appear a priori in
the traditional sense. An alternative account, wherein these virtues arise specifically from invariance under
isomorphisms, is given in [Sher, 1999] and [Sher, 2008].

24[MacFarlane, 2000], p. 51.

196

proceeds toward finding the rules for concept use which are invariant across all of these.

That is, the domain consists of concept uses, and the class of transformations consists of

all transformations between these uses. If logic really is 1-formal, it (or its characteristic

invariants) should at least be among the resulting invariants. 3-formality begins instead

with stipulation of a certain set of rules. Now, this stipulation could be involuntary (as

Kant seems to have held) or voluntary (as Carnap certainly held). Nevertheless, once a

set of rules (called a “conceptual framework” by logical positivists) has been selected, we

may then proceed to either explore the framework itself (pure logic) or use the frame-

work to combine concepts and make inferences (applied logic). In terms of invariance, the

rules are stipulated invariants and the class of transformations consists of those transfor-

mations which preserve these rules. This is its main difference from 1-formality. Whereas

1-formality begins with a fixed set of transformations and seeks the associated invariants,

3-formality begins with a fixed set of invariants (rules) and explores the class of trans-

formations and previously unknown co-invariants (e.g., theorems). A further difference

between the two is that 1-formality presupposes a single transformation class for concept

usage, whereas 3-formality does not presuppose that there is only one set of invariant

rules. In this respect, unlike both 1-formality and 2-formality, 3-formality is not strictly

normative (neither is it descriptive).

One thing that 3-formality does share with 1-formality is its inadequacy to serve

as a general theory of formality, owing again to its close association with concepts and

concept use. On both counts, it is difficult to see how any other instance of formality

can be reduced to or explained by a presumably small and “content-free” set of rules for

combining concepts.

Furthermore, although in principle 3-formality admits of degrees, just as the other

types of formality we have discussed, because the position is not committed to a fixed

foundation, there will be a much broader array of possible 3-formal systems. Some of

these may be commensurable in terms of degrees of formality, but many will not be. It is

furthermore difficult to see what difference degrees of formality would make on whether or

197

not the “logic” in question is considered special. One thing distinctive about 3-formality,

however, is that anything having any hint of semantic content is excluded from being 3-

formal. Hence, unlike every preceding consideration of the formality of logic, there is no

3-formal theory which does anything more than lay down rules for combining semantic

concepts. Thus, when contrasted with other scientific theories, any 3-formal system will

be formal in a way that the other theories cannot, by definition, be. Within the class of

3-formal theories, it may not be possible to grant a particular theory, say first order logic,

any special place in virtue of its formality. However this is consistent with the views of

many of those holding logic to be 3-formal, since they normally appeal to other reasons

for explaining why we use first order logic rather than some other 3-formal system.

MacFarlane directs his most detailed criticisms at the champions of 2-formality.

The specifics of these are not of interest to us here, but the general theory of formality

makes it relatively easy to summarize. MacFarlane’s primary concern is that sufficient

reason is not provided for selecting a certain class of transformations (e.g., isomorphisms)

in defining logicality, rather than some other. At best, 2-formality is endorsed as a demar-

cation of logic on intuitive grounds, which we agree with MacFarlane should always be

suspect. In particular, MacFarlane is concerned with the limitation of the class of transfor-

mations to only transformations of objects, and not including other “presemantic types”

(i.e., semantic denotations considered independently of language), specifically truth val-

ues. Truth values, to paraphrase MacFarlane in a vocabulary we are now familiar with,

are implicitly fixed invariants that produce the correct results. It is this fixing that requires

further justification.

MacFarlane’s answer to this is that we choose the largest class of transformations

which enable the resulting invariant notions to serve as a semantics for a language which

serves certain pragmatic ends, and no more. The pragmatic ends MacFarlane identifies

are truth and inference. According to MacFarlane, this also makes logic 1-formal, since

the invariants which are necessary to support both truth and inference are those which are

constitutive of thought as such.

198

There are many questions to be asked about MacFarlane’s position. For example,

is the resulting theory really constitutive of thought as such (1-formal), or is it perhaps

constitutive of thought as it concerns truth and inference? Or, perhaps it is a theory about

truth and consequence, but having little to do with what is constitutive of thought. These

questions will lead us too far afield. What we must ask here is, first, does his position fare

any better as a general theory of formality, and second, is there a sense in which logic can

be said to be specially formal? To the first question we can easily answer negatively on

account of its close relationship both to concept use and model-theoretic structures, for the

same reasons discussed above.25

To the second question, however, we can answer affirmatively. First, we can appeal

to what we said before regarding 1-formality. Although logic may not be distinctively 1-

formal (because there are lesser degrees of conceptual formality), it may well be special

in being maximal in terms of conceptual formality. In addition to this (or if MacFarlane

is wrong about the resulting 1-formality of logic) we can appeal to what we said before

about 2-formality, but with the identified subject matter of truth and inference. That is,

logic would be specially 2-formal in being the theory about truth and inference with the

highest degree of 2-formality.

Certainly what we have just said is neither rigorous nor complete, and we cannot

therefore affirm with much certainty that the GTOF does not strip logic of every kind

of special formality we may have thought it had. What we hope we have shown is that

it is prima facie plausible to accept the GTOF and also maintain that logic is somehow

specially formal. We have also tried to show that to a large degree this is independent of

the view one holds about the nature of logic itself.

In nearly every case our approach rested on some appeal to the degree of formal-

ity of logic, which is perhaps to be expected. By nature, a higher degree of formality

engenders an increased scope (of invariance) and corresponding broader applicability of

25Of course, presenting a general theory of formality was never one of MacFarlane’s goals, and we in no
way see his work as competing with our own. In fact, there are some significant points of agreement, not the
least of which is the recognition that logic presupposes pragmatic preoccupations with truth and inference.

199

the resulting theory. What these virtues amount to will, of course, depend on what views

one holds about the nature of logic, as this determines the respect in which logic will be

thought to be specially formal.

Since we have no particular horse in the logical demarcation race, it occurs to us

that we might be able to say something much broader than what we have said in these

cases. In particular, whether or not logic is demarcated by any of the preceding types of

formality, it certainly seems plausible to us that it possess several of them to a degree that

warrants being considered formal in a special way, and it may yet possess more. If so, we

could go beyond saying that logic is specially formal in a particular respect to saying that

logic is specially formal in its “formal centrality.” That is, although there may be theories

that are more formal than logic in one respect or another (e.g., a theory of semantic types),

perhaps no other theory can be said to be specially formally in so many respects. In

particular, if logic is a highly formal theory associated with our use of concepts (either 1-

formality or 3-formality) and is also a highly formal theory about things in the actual world

(2-formality), then it would be very special in that it lies at the central intersection — so

to speak — of our concepts and the world. A more conceptually formal theory may lack

application to the world, and a more objectually formal theory may preclude combining

concepts in useful and informative ways. Although this example is highly speculative, it

is not wildly implausible.

5.2.2 Robert Nozick and Objectivity as Invariance

In relating our general theory of formality to other philosophical works we would

be remiss if we left out Robert Nozick’s Invariances: The Structure of the Objective

World.26 In this work Nozick puts forward some interesting theses centered around epis-

temic issues of relativism, objectivity, and subjectivity.

Despite the title, however, the book is not rife with discussion of invariance, which

26[Nozick, 2001]

200

is sequestered almost entirely into a chapter dealing with objectivity and subjectivity in

relation to facts and beliefs. True to form (that is, consistent with characteristics that

have remained more-or-less invariant in Nozick’s work across transformations of time and

subject matter), even within the limited span of a mere forty pages or so Nozick leaves

little time to ponder or ruminate as he darts from topic to interesting topic. We are taken

from nothing less than a proposal for what objectivity is to a discussion of the reliability

of scientific methods and the plausibility of scientific progress. We could not possibly

address all that is of interest were it even within the scope of our current project. From our

perspective, the key ideas concern the account Nozick gives of objectivity as invariance.

Even without further detail, we can see why this is a significant idea for us. It

poses a challenge to the GTOF in that, if Nozick is right (at least in the way he sometimes

presents it) every invariant might turn out “objective.” This would mean that everything

we have called formal would also be objective. Such broad coincidence, or identification

even, seems suspect when it is purely the consequence of theoretical definitions.

On the other hand, we find the idea that objectivity could have something impor-

tant to do with invariance interesting, plausible, and worth working out. Nozick himself

takes some steps toward this end, but for the most part the discussion is quite general, wide

ranging, and, dare we say, informal. This is particularly evident, for example, when he dis-

cusses what he perceives to be two distinct types of transformations with respect to which

something may be invariant. The first one we are already familiar with — mathematical

mappings or functions. The second, he claims, is the sense of “change” or “transforma-

tion” in which one object is altered or changes over time into a different state. What he

seems to mean here is invariance over some kind of process.

What certainly is true is that mathematical functions cannot generally be thought

of as characterizing processes, in the sense that they do not represent any sort of gradual

or sequential change between the input and output values, and there is generally no com-

mitment to preserving key identities (as is practically necessary to identify something as a

process). It seems straightforward, however, that process transformations are really just a

201

special case of functional transformation when considered exclusively from the perspec-

tive of invariance. That is, when we say that x remains invariant under a physical process

P, what we mean is that x is invariant under a mapping between physical states which are

characterized by P. Now, P may be very complex, and in general is probably not arbi-

trary. It may be grounded on some causal concept or other, and it may easily be a class

of transformations with trans-finite cardinality (e.g., infinitesimally small increments of

change).

Nevertheless, there is no fundamental difference between the two classes when

considered solely from the perspective of invariance. All that invariance takes account of

is the mapping, not the definition or reason for that mapping. This does not, of course,

mean that transformation classes may not differ in terms of conceptual provenance, and

thereby also differ in terms of how interesting or useful they are. They often do.

Nozick’s informal approach to the topic, while in some ways very accessible, poses

a significant exegetical challenge if we want to understand his ideas in anything but the

broadest strokes. In what follows, we present Nozick’s view in the general terms he him-

self uses, pointing out some of the more serious problems as we go along. Finally, we

propose a new position which we feel is consistent in spirit with much of what Nozick

says, but which we feel is more consistent, plausible, and also resonates nicely with the

GTOF.

Nozick begins by identifying three intuitive characteristics of objectivity — acces-

sibility from different angles, intersubjective assent, and independence. These, he claims,

are grounded in a fourth “more fundamental” characteristic. “An objective fact,” he claims,

“is invariant under various transformations. It is this invariance that constitutes something

as an objective truth, and it underlies and explains the first three features (to the extent that

they hold).”27

Nozick takes as his inspiration for this view the use physicists make of invariance.

He claims that physicists “treat what is invariant under Lorentz transformations as more

27[Nozick, 2001], p. 76.

202

objective than what varies under these transformations.”28 Nozick goes on to point out the

same circularity we have taken care to note ourselves: if the claim is that what is objective

is what is invariant under certain transformations, it is not informative to define these

transformations as those under which objective facts are invariant. It seems as though we

need one or the other first if the position is to be at all illuminating.

It is Nozick’s view that we do not begin with some a priori understanding of ob-

jectivity or objective facts. Instead he suggests an iterative process whereby the class of

invariants and the associated class of transformations are continuously revised. Nozick

reveals later that the starting point of this iterative process “is fixed by the phenomena

and by the invariances that evolution has shaped us to notice and take account of.”29 Un-

der his description, we begin with such a list of everyday invariances. The objectivity

of these facts supports or entails the objectivity of other facts which are not on the list.

These additional facts are themselves invariant under transformations which may not be

in the original associated transformation class. Consequently, some of the original invari-

ants may fail to be invariant under the new transformations, and are dropped from the list.

The process iterates from this new list (with the addition of the new invariants), with each

iteration producing a new list of invariants to be used in the next iteration. Nozick adds,

“If well-confirmed theories that are our only explanation for certain phenomena fail to be

invariant under certain transformations, these transformations will be dropped from the

list of admissible ones.”30 Thus, the process as Nozick describes it might well result in

invariance and transformation classes which contain none of the original members.

We will not linger too long on this story, since epistemology and philosophy of

science are not our central focus, but it is worth pointing out that this iterative dynamic

Nozick proposes runs into some difficulties if we think more clearly about invariance.

Certainly, if we begin with a small class of invariants I (what we believe to be objective

facts), this can be used to define a corresponding class of transformations. We may then

28[Nozick, 2001], p. 76. Emphasis added.
29[Nozick, 2001], p. 80.
30[Nozick, 2001], p. 80.

203

expand our class of invariants to include all facts which are invariant under this class of

transformations (MAX(I)). All this says is that a class of invariants I may not be maximal,

as defined above, and this is fine as it stands. The problem, however, comes in the next step.

One of the two classes needs to change, but Nozick suggests that the reason for changing

one or the other will come from within the class of invariant facts itself. These will,

purportedly, suggest that other facts are objective, but these will somehow be associated

with a different class of transformations. But we now know that there is a necessary

link between a class of invariants and its associated class of transformations. How could

these invariant facts suggest that another fact is “objective” (e.g. invariant) when that

fact is not in fact invariant? If it were invariant, then it would already be included in the

class of invariants and, more importantly, it would not result in a change in the class of

transformations. This is not necessarily a fatal flaw, but Nozick owes us an explanation of

how new facts are indicated as being objective. Is it some kind of entailment relation? If

so, which one?

That said, the fact that such a process is seen to underlie the definition of “admis-

sible transformations” helps explain why Nozick always stops short of explicitly stating

what these transformations are, despite his frequent intimations that they are Lorentz trans-

formations. This is because what counts as an “admissible transformation” can change

with time as science progresses, which leads Nozick to conclude that “the only general

statement we can make is very general: An objective fact is one that is invariant under all

admissible transformations.”31

This is the core of Nozick’s idea of objectivity as invariance. He proceeds to of-

fer some possible elaborations (e.g., adding theories or models to the process) and some

speculative reasoning about degrees or levels of objectivity. It is nowhere clear whether

Nozick is committed to any of these ideas, and the presentation makes use of poorly de-

fined notions like “levels” and “objectivity-at-a-level.” Are these levels of invariance?

Of transformations? Of science? It is clear that Nozick has something specific in mind,

31[Nozick, 2001], p. 82.

204

since he even proceeds to speculate concerning the possibility of an infinite series of such

“levels,” but the idea is never made explicit.

It is tempting to think that Nozick is gesturing at something for objectivity which

is much like our sense of “degrees of formality,” except that a few pages later he explicitly

puts forward an account of degrees of objectivity (very much similar to what we have

done for formality). In what is perhaps the most detailed idea Nozick puts forward, he

suggests that fact x may be more objective than another fact y (have a higher level of

objectivity) if x is invariant under a class of transformations which is a proper superset of

the class of transformations under which y is invariant. Nozick points out that the ordering

thus imposed is only partial (just as for degrees of formality), and he even speculates on

whether there might be a class of transformations under which nothing is invariant. What

Nozick never does is make clear how, or if, this later idea is connected to the “levels” he

discusses earlier.

In the midst of this discussion we also encounter a peculiar summary statement.

Nozick writes, “Invariance under specified transformations explains the three marks of

objectiveness mentioned earlier (namely, accessibility from different angles, intersubjec-

tive agreement, and independence from the observer and the theorizing mind).”32 What is

peculiar about this is that it is never made clear whether Nozick takes this to be something

he has shown, something that he will show, or something that should somehow be obvious

from what he has previously stated.

It is only several pages later, after the discussion of degrees of objectivity, that

Nozick seems to address this claim. Even then, the only “mark of objectiveness” he takes

up is intersubjective assent. His argument is brief and similar to a familiar argument

from Plato’s Euthyphro. Nozick reasons that it cannot be intersubjective assent which

makes something objective, since nothing prevents a group of subjects from agreeing on

actually false premises. Instead, it must be that intersubjective assent is possible because

of something else about a fact which is intersubjectively assented to. That is, a fact is

32[Nozick, 2001], p. 85.

205

not objective because we intersubjectively assent to it, we intersubjectively assent to it

because it is objective (or has some objectiveness feature). This “objectiveness feature” is,

on Nozick’s view, “being invariant under admissible transformations.” Nozick goes on to

claim, “We need to find an objectiveness property such that we can see (at least sketchily)

how that property produces (or tends to produce) intersubjective agreement. And with

invariance as the objectiveness property, we are able to do this.”33 What is frustrating is

that, although Nozick says we are able to tell this story, even “sketchily,” it is not at all

clear whether he has or intends to tell such a story. It is never made explicitly clear how

broad invariance, e.g. under Lorentz transformations, enables intersubjective assent. It is

also not clear how this assent is different from assent made possible by any lesser degree

of objectivity (i.e., under fewer transformations).

After all of this, Nozick finally comes around to defining “subjective facts.” We

are told, “Why are some facts subjective? They are in our heads/minds/brains. We have de

facto privileged access to them.”34 This is somewhat confusing in the context in which it is

stated, as Nozick is not in general clear about the way in which “subjectivity” is opposed

to “objectivity.” Prior to this the difference appears to be relative, based on the “level” or

“degree” of the invariance in question, but in the passage above it is stated as an absolute.

If the relativistic formulation does not make a distinction between subjective and objective,

but rather the absolute criterion, then everything Nozick has previously said seems more

about degrees of objectivity or subjectivity than the distinction between the two. The real

criterion of objectivity is that the fact is not “in” a head/mind/brain, and ostensibly this has

little to do with invariance.

Furthermore, the very claim that subjective facts are “in” our heads/minds/brains

is difficult to understand, as it runs against a standard intuition about “facts” — namely

that, whatever they may be, facts are not the sorts of things that can be “in” anything or

located anywhere. Facts, whatever they are, may certainly be about something or pertain

33[Nozick, 2001], p. 91
34[Nozick, 2001], p. 92.

206

to it — they display intensionality. So, it can make sense to say of a fact that it is “about”

a head/mind/brain. One may also have a thought which is of or about a certain fact. One

may believe or disbelieve, or love or hate, particular facts. There can also be facts about

facts (we are discussing some of them). This is just to say that facts are also fit to play

the role of intensional content, and as such it might make sense to say that a thought of

a fact is “in” a head/mind/brain, because thoughts certainly are the sort of thing that can

have a location (as long as it is in some head/mind/brain or other). Finally, a given fact

is generally taken to be associated with (or identical to) a state of affairs which is what

the fact is about. Thus, we can say of the state of affairs or any part of it, that the fact

depends on it (or possibly is constituted by it). If, for example, the fact of concern is

that Linda loves John, that fact depends, among other things, on a state of affairs involving

Linda’s head/mind/brain, and at least part of this state of affairs might be said to be “in” her

head/mind/brain. None of these ways of thinking about facts, however, supports the idea

that a fact itself might be “in” a head/mind/brain. A fact can be the subject of a thought

which occurs in a head/mind/brain, it could be a fact about a particular head/mind/brain,

or it may depend in some way on a state of affairs involving a head/mind/brain, but since

facts themselves have no location, they cannot be simply “in” our heads/minds/brains.35

This suggests that Nozick must not mean us to take the idea that subjective facts

are “in our heads/minds/brains” literally. A compelling clue to what he may have in mind

is the statement that subjects have “privileged” access to these facts. Of the three possi-

bilities just considered, only one involves facts which sometimes are accessible only to a

given subject. This is the idea that a fact can be associated with a head/mind/brain state

of affairs. If we think that some of these states of affairs are only accessible via subjective

introspection, then not only may facts depend on these states, but only the owner of the

35A given fact may even involve all three, if, for example, the fact is that a certain head/mind/brain
contains a thought about its own current state, which is that it is thinking of its own current state. Such a
fact clearly is a fact about the head/mind/brain which is engaged in such introspection. It also depends on
the head/mind/brain state of affairs that corresponds to the thinking involved. Finally, the head/mind/brain
dependent fact is itself the object of the intensional state of thinking.

207

head/mind/brain (the subject) has access to these facts, since only the subject can deter-

mine which states-of-affairs obtain. On this view, though the fact may not be located in

the head/mind/brain, the fact depends on at least one head/mind/brain state of affairs to

which the subject has privileged access.

The virtue of such a position is that it is consistent with the intuitive idea of “sub-

jectivity,” which has historically been tied to the idea of privileged access. It is furthermore

consistent with one of the more interesting passages of the text that is otherwise difficult

to fit into the broader account.

If, according to Nietzschean perspectivism, there were some constraints upon
perspectives, and there were some things that are invariant across all the ad-
missible perspectives, it is these things that would posses the greatest objec-
tiveness. What is invariant under transformations of observers from humans
to crickets is more objective psychologically than the features applying only
to human observations, and than the features applying to cricket observations.
Even if the two organisms divide up the world differently, some relations be-
tween human categories might map onto corresponding relations among the
different cricket categories, and this isomorphic psychological structure would
be more objective than what varies between the organisms.36

Those facts to which a subject has privileged access will be by definition inaccessible to

other subjects. Thus, these will fail to be invariant under transformations between perspec-

tives. Facts which are accessible across perspectives will be less subjective, and therefore

presumably more objective.

Lending even further credibility to the claim that Nozick has epistemic access in

mind is a subtle shift in the discussion from intersubjective assent or agreement to inter-

subjective access (which occurs, in part, in the passage above). Unfortunately, Nozick is

never explicit about the relationship between the two, but given what he says elsewhere it

seems reasonable to think that intersubjective assent is evidence for intersubjective access

(without which, intersubjective assent would be astoundingly unlikely). Intersubjective

36[Nozick, 2001], p. 93. Emphasis added.

208

access is itself understood in terms of invariance over epistemic or psychological perspec-

tives.

The final point of interest for us is what Nozick has to say about objective beliefs.

He tells us,

An objective belief is one that is arrived at by a process in which biasing fac-
tors that tend to lead one away from the truth play no role.. . . [T]he [objective]
belief tends to be invariant under a change in biasing factors, under a transfor-
mation in what desires, emotions, etc., the person possesses.. . . The judgments
that result from the operation of subjective factors, many of which tend to be
biasing, are not invariant under transformations in these factors, and hence
lack objectiveness.37

Nozick takes this to be an “additional notion of objectivity,” and thus distinct from the

notion of an objective fact. However, it is fairly clear that the connection between the two is

supposed to be invariance. Although Nozick himself says little else about this connection,

there is an intuitive sense in which the kind of invariance described above is closely related

to the notion of “independence” which is supposed to be a mark of objectivity (but about

which Nozick says nothing explicit).

Before embarking on his discussion of the philosophy of science, Nozick offers

a summary statement, which is important as it differs significantly from much of what

Nozick has previously said. Nozick writes, “What is objective about something, I have

claimed, is what is invariant from different angles, across different perspectives, under

different transformations.” This statement is odd and confusing for several reasons. At

no point does Nozick explicitly discuss invariance with respect to either angles or per-

spectives (though we have tried to connect the two on his behalf), nor has he at any point

elevated these to be equal to the more general account of objectivity as invariance rather

than invariance of a particular type. Instead, we are told that the fact that objectivity just

is invariance is supposed to explain these features.

37[Nozick, 2001], p. 96.

209

The confusion is made more robust in that Nozick seems to be of two minds re-

garding the fundamental relationship between objectivity and invariance. First, he says

“An objective fact is invariant under various transformations.” This is the formulation that

looks most like our general theory of formality. Later, of course, Nozick modifies this to

the claim that objectivity consists in invariance under “admissible” transformations. De-

spite the initial appearance that this limits the view, Nozick’s subsequent discussion of

“degrees of objectivity” and objectivity in different domains effectively means that objec-

tivity is associated with any invariance. At the very least Nozick is unclear about which of

these he intends or thinks most likely, instead making liberal use of speculative language.

The most serious problems for Nozick’s view, however, concern the nature of the

fundamental relationship he posits between objectivity and invariance. One of these we

have already mentioned — Nozick never provides a distinction between objectivity and

subjectivity explicitly in terms of invariance. Instead he suggests repeatedly that objec-

tivity comes in degrees, based on the scope of invariance. This threatens to reduce the

invariance account to merely an account of degrees of objectivity, rather than of objectiv-

ity itself. At the very least the matter is unclear.

Even as an account of degrees of objectivity, however, the view comes up defi-

cient. While we do acknowledge an intuitive sense in which objectivity comes in degrees

(as we explain below), the way in which Nozick formulates this is counter-intuitive. In

particular, the type of the transformations involved does not matter on his view. So, for ex-

ample, topology comes out “more objective” than Euclidean geometry simply on account

of a broader range of invariance. Certainly there is a difference between the two, but we

would never have been inclined to cite objectivity as part of this difference (for our part,

we would cite formality instead). Without further evidence or explanation, the degrees of

objectivity Nozick comes up with seem more of an artifact of tying objectivity to invari-

ance simpliciter than a compelling reason to accept that objectivity is tied to invariance in

this way.

Even if Nozick rejects the idea of degrees of objectivity, the other option he puts

210

forward is that what is objective is that which is the most invariant. But he provides no jus-

tification for thinking, for example, that facts invariant under Lorentz transformations are

objective whereas the fact that the earth revolves around the sun is not. From an intuitive

perspective these both seem objective. If Nozick wishes to claim something otherwise,

he owes an explanation of how this is so. If he is being revisionary, then he owes us an

explanation of how thinking of objectivity in this way is advantageous. The presentation

of the view is so problematic that it is difficult to see what such a justification would be.

Despite its problems, Nozick’s account of objectivity is not without intuitive pur-

chase. First, the three “marks of objectivity” with which he begins seem both important to

objectivity and to involve invariance in some manner. Second, it seems entirely plausible

that invariance may play an important role with respect to science and scientific knowl-

edge, and perhaps with respect to knowledge more generally. We explore the first of these

below, and we take up James Woodward’s compelling account of the second in the fol-

lowing section. We differ significantly from Nozick in that we do not see the two points

to be deeply connected, other than that they each involve invariance, and hence formality.

However, we do not think that we stray too far from the spirit of Nozick’s work, and we

think that the result has an interesting and fruitful relationship to the GTOF. In particular,

on our account objectivity itself exhibits a kind of formality we might expect — it cap-

tures structural features about the relationships between subjects and objects, methods of

observing and observations, and biases and belief formation.

The first mark of objectivity we will consider is the idea that objective facts permit

intersubjective assent. Nozick reasons well, in our opinion, when he concludes that facts

are not objective because they are assented to, but that they are assented to because of

some other feature related to objectivity, which Nozick identifies as invariance. Nozick is

never clear about what kind of invariance is required, but presumably he means invariance

of the Lorentz transformation type. This step is doubtful for the same reasons we doubt the

main view — just how invariance under Lorentz transformations enables intersubjective

assent any more than many other kinds of invariance is totally unclear.

211

However, when Nozick shifts his discussion to the topic of intersubjective access,

he provides the foundation for what holds promise as a characterization of the particular

kind of invariance that is significant for objectivity. Let us imagine that each of us is the

sole existent, perceiving being in a universe. Are there inaccessible facts? Possibly. But

if there are inaccessible facts in such a universe they are not so due to any dependence on

states of affairs in another mind. By fiat, there are no other minds. Any facts which are

inaccessible are so for other reasons (which would likely make them inaccessible to every

subject in the actual world as well). In such a world, the line between “objective” and

“subjective” is effectively blurred owing to the presence of only a single subject.38

Now, let us introduce another human mind into this universe. This immediately

changes the situation since there are now states of affairs (dependent on the other subject’s

mind) to which we do not ourselves have access. If we wish to communicate and get

along with this other subject, we will be most successful if we stick to “common ground,”

i.e., those states-of-affairs to which we both have access. We cannot, for example, ask

our new neighbor if the statement, “The item I am thinking of right now is blue,” is true

and expect to communicate successfully. And so, even at this stage we have a division

between object and subject which we can easily put in terms of an invariance principle —

intersubjectively accessible facts are those which depend only on states-of-affairs whose

accessibility is invariant under transformations between subjects.

Nozick is led to see such intersubjective access as merely a “mark” of objectivity on

account of a certain case in quantum mechanics where observations are only accessible to

the subject, but where these observations are entailed by our best current scientific theory

(which we agree to be objective, if anything is). We think this is an overreaction on Noz-

ick’s part because of an important difference between the two cases. In the case of quantum

mechanics the expected observations, and indeed the very fact that they are observable by

38We do not bring into account “possible subjects” because we are merely making an illustrative point
that does not hang on whether it makes sense to consider such “subjects.” In actual reasoning about whether
or not a certain fact or other is objective it may well make sense to bring possible subjects or perspectives
into play.

212

only one subject, are entailed by facts which are accessible to multiple observers. The

same cannot be said for head/mind/brain dependent facts, since head/mind/brain states of

affairs are not entailed by any other intersubjectively accessible facts. This is what allows

us to have expectations about the results of quantum mechanical experiments, even when

our expectation is that these results are only accessible to a single subject, whereas we

have few if any accurate expectations about the states of affairs of other minds.

To account for this we can simply take the closure under entailment of the pre-

viously defined class. That is, intersubjectively accessible facts are those which depend

only on states-of-affairs which are accessible under transformations between subjects or

are entailed by such facts. It is this particular type of invariance which permits intersub-

jective assent, since having access to the same facts (or their grounding states-of-affairs)

is an important prerequisite for such assent (although unfortunately it cannot guarantee it

will occur).

Nozick glosses the idea of “accessibility from different angles” as meaning that

“access to it can be repeated by the same sense (sight, touch, etc.) at different times; it

can be repeated by different senses of the same observer, and also by different observers.

Different laboratories can replicate the phenomenon.”39 This is, as Nozick himself points

out, closely related to the issue of intersubjective access in that it involves additional “ac-

cess requirements” on objectivity. These are also, we feel, best characterized in terms of

invariance over transformation classes.

The first way a fact can be accessible from multiple angles is for it to be accessible

at different times. This easily turns into the principle that a fact is accessible from multiple

angles if access to the fact remains invariant over temporal transformations — i.e., it is

accessible at more than one time. Just which transformations or how robust the invariance

must be is a question we will set aside for the moment.

Nozick tells us that a fact may also be accessible from multiple angles by being

accessible to different senses of the same observer. While it is simple enough to say that a

39[Nozick, 2001], p. 76.

213

fact is accessible from multiple angles if access to it remains invariant under transforma-

tions between sense modalities of the same observer, something more should be said given

that sense modalities differ from one another in significant ways. That is, the case is not

the same as intersubjective accessibility, where it is plausible to assume that other subjects

access facts in a similar manner. If an individual sees, for example, a hot stove burner and

then proceeds to feel it, it is not a straightforward thing that by touch she senses invariantly

what she sensed when she saw the hot burner. What presumably goes on is that by each

sense the observer is able to infer the same state of affairs — that the burner is hot. Of

course, such inferences are routinely implicit in all but the crudest scientific observations,

as much of science concerns phenomena which are inaccessible to the unaided senses. In

our invariance principle, then, we should understand “access” in terms of inferred states of

affairs, not that by different senses the observer receives precisely the same information.

Finally, an objective fact may be accessible from different angles by being acces-

sible by different observers (including being replicable by different laboratories). But, of

course, we already explored this idea in the form of intersubjective access, so we may

simply say that a fact may be accessible from different angles by being intersubjectively

accessible, which itself is grounded in invariance.

The final mark of objectivity, independence, involves essentially two desiderata.

The first of these is that an independent fact holds independently of the mental state of

any given (or all) subjects. The second is that it holds independently of any subjects’ “ob-

servations or measurements.” The first of these is easier to deal with, and Nozick himself

provides the answer when he discusses objectivity of belief. Nozick calls a belief objec-

tive when the process that formed the belief is invariant with respect to transformations

between different biases. We can simply add to this transformations between all mental

states of each subject (that is, for each subject, transformations between its mental states).

For the second desideratum, it is tempting to interpret independence from “observations

and measurements” in terms of the actions of subjects. However, subjects’ actions rou-

tinely and regularly change facts, and these do not therefore cease to be objective. What

214

is crucial for the actions of observation and measurement is that these are actions which

access facts. What Nozick is suggesting is that if a subject accesses a fact, but such access

causes a change in the very fact accessed (or its associated state of affairs), then this fact

is not independent. In terms of invariance, we can say that an independent fact is invariant

over transformations between pre-access and post-access states. That is, the class of trans-

formations maps every pre-access state of affairs to its corresponding post-access state of

affairs, and an independent fact (or its corresponding state of affairs) is one which remains

invariant over these transformations. Regardless of what else may differ between the pre

and post states, it is not the fact itself.

Thus, all of Nozick’s intuitive “marks” of objectiveness can be naturally charac-

terized in terms of invariance. Furthermore, we find that all of these marks (and their

sub-marks) are related to one another and many of them can be united in a single notion

we call a “perspective.” We define a “perspective” to be an ordered quadruple consisting

of a subject, a time, a mode of access (of the subject), and a mental state (of the subject).

We can then use the class of perspectives to understand objectivity in terms of invariance.

The issue of invariance under access (measurement and observation) is best kept distinct

because of the special character of the associated class of transformations. It could in

principle also be combined, but at the cost of considerable complication.

With this framework in hand, we can recover much of what Nozick had in mind for

objectivity. First, we can say that it seems plausible that objectivity should have something

to do with invariance under transformations between perspectives, since perspectives are

constructed out of the sorts of things that intuitively confound objectivity — things which

are closely tied to subjects.

We can also recover a more plausible sense in which objectivity admits of degrees,

for facts may differ with respect to the perspective transformations over which they are

invariant. These differences can occur along multiple dimensions, as the associated trans-

formation classes will characterize a complete range of invariance for each component of

the perspective. Clearly, if a fact is invariant over only a singleton transformation from one

215

perspective to itself, this fact will be “subjective” (if anything at all). If, on the other hand,

a fact should happen to be invariant under transformations between all perspectives, we

should say that such a fact is certainly objective, perhaps even “most” or “robustly” objec-

tive. There is considerable space between these extremes, and just what to say for certain

cases may be complicated. If, for example, a fact turns out to be invariant under transfor-

mations between all perspectives for a single subject, what should we say? Probably that

the fact is subjective. Other perspective components, e.g. mode of access, may not weigh

quite so heavily in objectivity determinations. It could even be the case that “objectivity”

and “subjectivity” form a continuum, much as many “vague” predicate pairs do, such that

while there are certainly clear cases to be found, there are a vast number of facts in the

“penumbra” between “objective” and “subjective” about which we are uncertain how to

judge.

Although we find this idea fascinating, going further down this road would be an

impropriety on our part. Not only would doing so be beyond the present scope, but also,

despite a basic affinity for the view, we do not pretend to be experts on objectivity and

do not wish to appear overly committed to this highly speculative position. Our purpose

was only to show how we can make good sense of much of what Nozick says within the

framework of the GTOF. Nothing we have to say about formality stands or falls based on

what we have said here about objectivity.

That said, we should address the concern we had at the very beginning regarding

the intersection of objectivity and formality. On the view we have just presented, the dis-

tinction between what is objective and what is subjective is a formal distinction. Or, rather,

we have defined objectivity in terms of the formal characteristics of our intersubjective ex-

perience — the systematic relations between our subjective experiences which produce a

framework we use to communicate and interact with one another and the world around us.

This is not at all unlike what Alan Richardson takes to be an underlying motivation of Car-

nap’s Der Logische Aufbau der Welt, that our ability to communicate and interact with one

216

another and the world is founded on formal features of our intersubjective experience.40

This is not intended to be an ontological claim or commitment to idealism. It is rather

founded on the basic notion of access to facts (by means of our senses) and characterizes

the structural, formal similarities between our experiences (perspectives) as that which is

objective.

Regarding Nozick’s claim that objectivity just is invariance, Nozick has failed to

provide convincing evidence for the position and the view is not independently compelling.

This does not mean, however, that invariance itself may not play a significant role in

science. We might see Nozick in this respect as concerned with those features of particular

objects and the world which we might call most “fundamental.” This is evident in his

discussion of the philosophy of science, where he espouses the view that new laws which

explain and subsume old laws are more “objective.” Subsumption, though, is understood

in terms of the older laws being shown to be instances of the new subsuming law, and

from our perspective this can be understood in terms of invariance (e.g., the new law is

invariant under transformations between all laws which it subsumes, and as a consequence

all subsumed laws will satisfy the subsuming law). It is also natural to think of this in terms

of the subsuming law capturing some common structural component of the subsumed laws.

In being a more common structure, the subsuming law can easily be thought of as more

basic or fundamental, in addition to being more general. Furthermore, as the law captures

more broadly shared structural features, it is compelling to call the subsuming law more

formal — it captures more general structures.

This is just one way of thinking of the role of invariance in science, pressed into

the framework of scientific laws with which Nozick works. Fortunately, James Woodward

has put forward a very interesting and more rigorous account of the role of invariance in

scientific explanation, which we now take up.

40See [Richardson, 1997]. A major difference, of course, is that for Carnap “formal” means “logical,” and
this is a position we staunchly reject.

217

5.2.3 James Woodward and Causality as Invariance

We now take up a compelling account of the role of invariance in science and scien-

tific explanation, put forward in [Woodward, 2003]. James Woodward is addressing what

he sees as a number of problems with contemporary accounts in the philosophy of sci-

ence centering on the notions of causality and explanation. The most significant problem

with the dominant tradition of scientific explanation, which holds that such explanations

must appeal to causal laws, is that it excludes many generalizations and causal principles

employed in the special sciences from being explanatory. This is because these generaliza-

tions very often do not satisfy the relatively strict criteria for causal law-hood appealed to.

Rather than pursuing a modification of what counts as a causal “law,” Woodward presents

an alternative account of causality which affords to these non-law-like generalizations

causal status, and hence a role in scientific explanation. In what follows, we focus mainly

on the content of Woodward’s view and its relationship to the GTOF, since we have time

to review neither the problems to which he is responding nor how he resolves them.

The reason Woodward’s account is of interest to us is that, in his own words,

“[I]nvariance is the key feature a relationship must possess if it is to count as causal or ex-

planatory.”41 Similarly to Nozick’s claim about objectivity, this appears as wide-ranging

as our claim that invariance is constitutive of formality. Woodward takes care, however, to

qualify that he does not mean by this that everything which is invariant in any way is causal

or explanatory (which is good, since such a view would face considerable difficulty). At

the same time Woodward employs a notion of “invariance” which is similar to our own yet

in some ways much broader. These two distinctions from our own position warrant some

additional explanation.

First, as we have explained it, the standard understanding of invariance holds that

it is absolute and exceptionless. If even a single mapping alters a feature, that feature is not

considered invariant. Woodward, however, “count[s] a generalization as invariant or sta-

41[Woodward, 2003], p. 239.

218

ble across certain changes if it holds up to some appropriate level of approximation across

those changes.”42 This is clearly an expansion of the standard notion, yet Woodward pro-

vides little to explain how it might work apart from a few simple examples. It seems to

us, however, that there are at least two ways in which a feature might deviate from stan-

dard invariance and yet be considered “approximately” invariant. The first way would be

if a feature or relationship (Woodward’s primary concern is invariant relationships) fails

to hold precisely, but does hold under a certain degree of “error” or another well-defined

factor which allows the relationship to be more permissive. Now, of course, a huge class

of relationships could be made invariant in this way by simply increasing their permissive-

ness (just as any measuring apparatus can be said to be “accurate” to within a sufficiently

large margin of error). This possibility is balanced by the fact that permissiveness will

have a considerable negative impact on how useful a causal relationship is in scientific ex-

planation. All other things being equal, a relationship which is less permissively invariant

is to be preferred.

The second deviation from standard invariance occurs when the relationship per-

mits of exceptions. As a non-scientific example, consider the generalization that “All birds

have wings.” This generalization expresses a relationship between the property of being

winged and that of being a bird. The invariance which underlies the claim is that the prop-

erty of wingedness is invariant under transformations between birds (or bird species). This

relation fails of standard invariance, however, as Kiwis are wingless birds. Nevertheless,

the generalization is invariant with the exception of Kiwis. Yet again, any generalization

can be made approximately invariant in this way by allowing a sufficiently large number

of exceptions (potentially everything). It is even more clear, though, that in this case the

number of exceptions permitted will have a negative impact on the explanatory power of

any resulting generalization. By definition such a generalization explains nothing about

anything exceptional to it. All other things being equal, an invariant relationship permit-

ting fewer exceptions is to be preferred.

42[Woodward, 2003], p. 239

219

Woodward’s expanded notion of invariance encompasses all such cases, and this

raises an immediate question not faced by standard invariance. How much deviation is

too much? Is there a threshold degree of strictness a generalization must have to count as

causal? Woodward provides no answer and it seems difficult to answer the question in gen-

eral. Every candidate generalization occurs in its own scientific, explanatory context, and

this context will determine much about the status of a generalization. In a new discipline,

where there are few established general principles, perhaps more permissive generaliza-

tions will be viewed as legitimate (at least until stricter rules can be found). Very mature

disciplines, e.g., physics, will likely be more strict, perhaps ruling against anything that is

not strictly invariant.43

The second major difference between Woodward’s account of causation and our

account of formality is that Woodward is only concerned with a certain type of class of

transformations. That is, unlike Nozick, who was concerned with what is invariant under

the broadest class of transformations, Woodward is concerned with all classes of transfor-

mations that are of a certain type. Specifically, Woodward only concerns himself with in-

variance under transformations of background conditions (variables not explicitly involved

in the relationship), interventions on variables explicitly involved in the relationship, and

non-interventional transformations on variables explicitly involved in the relationship. In

our opinion, this limitation is one of the primary virtues of Woodward’s theory.

Although the details of these types of transformations do not figure into our present

analysis, one thing that may not be obvious is whether interventions really are a type of

transformation as we understand them, or if Woodward’s notion of invariance is even more

dramatically different from our own. Interventions, whatever else they involve, result in

a change of the value of an explicit independent variable involved in the generalization.

In the context of scientific explanation, what Woodward calls a “variable” is a means of

43Although even in this case, recent developments in quantum mechanics (indeed, the very advent of
quantum mechanics itself) have caused a great deal of consternation about how strict a generalization must be
to be explanatory. Of particular interest in this debate (among other, more esoteric issues) is the explanatory
status of so-called statistical laws.

220

denoting a range of possible states of affairs (which are usually conceptually united and are

almost always mutually exclusive). An intervention, from the perspective of invariance, is

a change from one state of affairs to another, and since these changes can be characterized

functionally (they are essentially ordered pairs), interventions really are transformations in

the sense we have defined. Being “invariant under interventions,” then, just means being

invariant under a class of transformations, all of which are interventions.44

The distinctions between background conditions, interventions, etc. do not matter

for our purpose. What matters is that Woodward has not identified a particular class of

transformations as essential to causality or explanation. Instead, he has told us which

class of transformations to look for in the context of a particular generalization. Thus,

Woodward restricts his position to the family of transformation classes defined relative to

a particular generalization (and therefore also relative to a scientific discipline).

This relativization of what underlies a causal generalization (i.e., invariance un-

der a particular class of interventions) is seen by Woodward to be the chief virtue of his

view. What it allows is for some generalizations to count as causal, and hence have an ex-

planatory role, but within a potentially very limited scope. At the same time it permits for

generalizations with much broader scope, so broad, in fact, that some of these will count as

causal laws according to standard criteria. Woodward adds that “other things being equal,

relationships that are more invariant (and hence more useful for purposes of manipulation

44Woodward puts forward a few additional points that are worth noting. First, he indicates that mere
invariance under some interventions does not make for a convincing explanatory generalization. This is
especially evident in the case where the generalization permits of a certain degree of error. Such a general-
ization is by fiat invariant under interventions which only change variables within this degree of error, and
it is straightforwardly explanatorily useless. What is needed is for the generalization to be invariant under
interventions which are significant enough to result in a change in dependent variables and for this change
to be predicted by the generalization itself.

Second, Woodward holds (quite reasonably) that a generalization need not be invariant over all trans-
formations in background conditions. This would defeat his goal in proposing a less strict account of
explanatory generalizations since only scientific laws would satisfy such a restriction (if that). He notes,
however, that the explanatory value of a generalization is influenced by its sensitivity to transformations in
background conditions. All things being equal, a generalization which is invariant under a broader range of
transformations of background conditions is to be preferred.

221

and control) provide better explanations.” 45 So, he is still able to provide causal laws with

a special place in scientific explanation. They are the ideal explanatory generalizations.

They are not, however, the only explanatory generalizations, which is consistent with what

actually occurs in most scientific disciplines.

Woodward elaborates on his view in a few ways, but the only one of interest to us

is that he also recognizes that invariance comes in degrees. And while he does take steps

toward incorporating the idea into his view, the result is comparatively limited in its depth.

He only discusses the fact that generalizations may vary in how broadly invariant they are

in terms of relations between their associated transformation classes. However, with the

relativization of transformation classes to particular generalizations, there is no guarantee

that the transformation classes associated with two generalizations will be commensurable

in this way (or even at all). They may be entirely disjoint or overlap without one being a

subclass of the other.

Despite this oversight, it does seem intuitively reasonable to say that a generaliza-

tion could have more “explanatory depth,” as Woodward puts it, than another. Degrees

of invariance could be said to partially explain these kinds of judgments, in cases where

one class of transformations is a proper superset of another. However, it seems clear that

some judgments of this kind are not grounded in degrees of invariance. For example, there

seems to be no doubt that the theory of general relativity has more explanatory depth than

a generalization linking the size of fox litters to the availability of food. Yet both are causal

and explanatory and neither explains anything the other does. The two claims share only

a slight overlap in (mostly trivial) transformations, and since the generalizations share no

variables in common, none of the shared transformations are interventions.

So, while what Woodward says about the impact of degrees of invariance on ex-

planatory depth is reasonable and makes sense, it is far from a complete story. One thing

Woodward never comments on, for example, is the relationship between generalizations

with different degrees of invariance in terms of causal status. We are told that more broadly

45[Woodward, 2003], p. 243.

222

invariant generalizations provide better explanations, but we are never told whether they

differ in terms of causality. Is one more fundamental? Real? Simple? While it is cer-

tainly possible that Woodward wants to grant all generalizations equal causal status, it

seems doubtful that a more broadly invariant generalization is preferable merely from an

explanatory standpoint.

Such is the role that invariance plays in Woodward’s account of causality and sci-

entific explanation. For the most part, we find the view plausible and very much in the

spirit of the GTOF. More than anything else, Woodward’s work raises some interesting

questions for us.

First, what is the relationship between Woodward’s theory of causality and the

GTOF? Woodward’s view does not fall cleanly under it, since the notion of invariance

Woodward invokes is significantly broader than the one at the heart of formality. The most

that can be said is that there may be some overlap. Insofar as there are generalizations

which are invariant under an appropriate unpermissive transformation class without ex-

ception, then the general theory of formality certainly proclaims that such generalizations

are “formal,” as they would satisfy the general theory of formality.

Assuming Woodward is right, is this a result we should expect? We believe so,

for such generalizations have much in common with more familiar formal things (other

than that they are invariant). Take for example a first order system having a finite domain

of objects, each of which is named. If we take an arbitrary sentence in the associated

language containing a single universal quantifier, we can use this “master” sentence as a

pattern to construct a set of sentences such that for each object in the domain we have a

sentence identical to the quantified sentence in question but with the object’s name in place

of the variable and the quantifier symbol removed. Each such sentence may be thought of

as an instance of the single master sentence.

What is the relationship between the set of instance sentences and the master sen-

tence? The instances are effectively contracted to the master sentence by means of the

quantifier. The quantifier enables the master sentence to express semantically (with re-

223

spect to the domain) everything that is captured by the collection of instance sentences.

The master sentence itself expresses the fact that, with respect to the particular domain,

the unique features of any particular object will have no effect on the truth (or meaning) of

the sentence. This is the intuition logicians have sought to express in terms of invariance,

since features which are insensitive to identity are invariant under transformations which

do not preserve identity. Likewise, the master sentence can be used “predictively” to infer

statements about particular individuals.

A similar effect holds true for scientific generalizations which exhibit strict invari-

ance. They have the effect of contracting a huge number of individual statements into a

single expression without any significant semantic loss. Of course, a major difference is

that the subject domain is generally much more specific than what is used for logic, and

the resulting generalizations are not generally assumed to have the usual characteristics

attributed to logic (a prioricity, necessity, etc.). Still, what the generalization asserts is

that, with respect to the particular domain in question, the identities of objects (or partic-

ular states of affairs, in the case of interventions) make no difference to the truth of the

generalization.

Thus, there is intuitive ground for thinking that strictly invariant scientific general-

izations have some degree of formality, and also that they have a lesser degree of formality

than logical truths. This is just what our general theory of formality predicts, provided that

the class of transformations over which the generalization is invariant is a subset of the

class of transformations under which first order logic is invariant. This forces the domain

of the generalization to be a subdomain of the logical domain, which is arguably always

the case for scientific generalizations (what doubts there are mostly concern quantum me-

chanical phenomena).

If we are correct about the relationship between formal languages and their seman-

tics, as characterized in Chapter 4, further compelling evidence for the formality of this

class of scientific generalizations comes from the fact that they can serve, and often do,

as foundations for formalized languages. Much of modern physics is carried out in a spe-

224

cialized, formalized language (borrowing much from mathematics), and the semantics of

this formalized language is composed of the same invariances which are characterized by

generalizations invariant under interventions.

What we can take from all of this is that Woodward’s account of causal/explanatory

generalizations in terms of what he calls “invariance” has only a relatively small overlap

with our general theory of formality. This overlap concerns those generalizations which

are truly invariant, in our stricter sense, and we have provided some reasons for thinking

that it is appropriate to call these generalizations “formal.”

Woodward’s broader understanding of invariance, however, is an idea worth tak-

ing seriously in itself. We might, for example, wonder if our general theory of formality

could or should be extended to include this broader notion as well. Doing so is certainly

technically possible, and it is not intuitively implausible since there is nothing essential

to formality that says what is formal must be without exception or permissiveness. Alter-

natively, we might distinguish some notion of “semi-formal” or even yet a further scale

along which formal features might vary. Any of these options would add additional depth

to the notion of formality. Not only might all of Woodward’s causal generalizations count

as formal, but it would make it possible to identify formal features in probabilistic settings,

where samples cannot be expected to exhibit true invariance.

Whether there are compelling reasons for doing this, however, is beyond the scope

of the present inquiry. Is it desirable for all causal generalizations to be formal? Do we

want or need to appeal to formality in probabilistic contexts? Much hinges on the role (if

any) of formality in the sciences and whether or not the broader formulation of formality

(or a related notion of “semi-formality”) is useful in any way.

The question of whether formality plays an important role in the sciences, and if

so what that role is, is therefore a fundamental and important question. If it turns out

that formality is just an incidental feature of some (or even all) causal generalizations,

not much would hang on the choice between strict and loose invariance. It may well be

that formality only plays a significant role in the so-called “non-empirical” sciences (e.g.,

225

logic, mathematics, geometry). But even if it is significant throughout the sciences, is it

always significant in the same way?

In what we have accomplished so far, we feel we have presented some good reasons

for thinking that formality is foundational to the “non-empirical” sciences. We even think

we have pushed this a bit further with our work on formality and programming languages.

We furthermore offer some speculation in the conclusion (section 6.2) regarding possible

explorations in other sciences. We do not feel, however, that any such broad conclusions

can be drawn from the present work. Indeed, even providing conclusive, comprehensive

answers to our comparatively limited theses would require many volumes. Broader ques-

tions of this sort would require significantly more.

226

Degree of
formality

Homomorphisms

Bonnay's similarity
relations

Isomorphisms

1-1, onto space
transfomrations

Invariance under all
functions

Various

First order logic without "="

Various

First order logic with "="

Euclidean (and other)
 geometries

Semantic types

Special sciences

Transformations Invariants
Dilation Higher

DilationContraction

Contraction

Figure 5.1: Formality hierarchy including first order logic.

227

Invariants

Isomorphisms

Permutations

Permutation
Invariants

Isomorphism
Invariants

Transformations &
Domains of Invariance

Degrees of Formality Respects of Formality Only

Transformations &
Domains of Invariance

Has 40
chromo-
somes

Mouse
Invariants

Mango
Invariants

Mice Mangoes

Invariants

Super Domain
of Mice and Mangoes

Transformations &
Domain of Invariance

Mouse & Mango
Invariants

Mice & Mangoes

Has 40
chromosomes

Invariants

Figure 5.2: Respects of formality.

Chapter 6

Conclusion

The goal that we set in Chapter 1 was not to conclusively prove that the general

theory of formality we have presented, what we have called the GTOF, is the correct theory

of formality. Neither did we set out to capture precisely the meaning of the terms “formal”

and “formality” as used by any or every language community. Instead our purpose was to

show, first, that the GTOF works well for central and important cases of formality. This

was the purpose of our examinations of geometry and first order logic. Our second goal

was to show the promise the GTOF has for application beyond geometry and logic, and to

this end we undertook an examination of various programming languages. These two goals

stem from a desire to establish, within the limits of practicality, the adequacy of the GTOF

as a general theory of formality. The third purpose was to establish, again within practical

limits, the utility of the GTOF. Although results to this effect can be found in a number of

places, the most notable result is that concerning the nature of the relationship between the

syntax and semantics of formal languages — not that there is such a relationship, which is

obvious, but that the relationship is founded on correlated classes of invariants.

Our reason for proceeding in this manner follows from the type of theory we hold

the GTOF to be. That is, it is not a theory about what people now or in the past have meant

by “form” and “formality,” but rather a proposal for what we should mean when we speak

228

229

of formality in general (e.g., in abstract or interdisciplinary contexts). We find no fault

with any current uses of “formality” or associated terms, nor do we advocate eliminating

them from any discourse where they do not result in confusion or miscommunication. As

a proposed definition then, and one for which there is as yet no contemporary competitor,

there is little direct and clear evidence against which to evaluate the GTOF and its conse-

quences. The most relevant criteria for accepting such a proposal is that it is adequate and

useful. By “adequacy” we mean that the GTOF satisfies pre-existing intuitions about what

counts as formal, and by “utility” we mean that the theory leads to additional insights, re-

solves known anomalies, etc. Both of these qualities come in degrees, and while an ideal

theory would exhibit both perfectly, in reality acceptable theories often display trade-offs

between the two. For example, a theory which is highly revisionary may yet be accepted

on account of being extremely useful.

Unfortunately, practical limits have prevented us from providing a full account of

either the adequacy or utility of the GTOF, but we do feel that enough of both have been

established to warrant further interest and continued research. But before looking to the

future, we should take a moment to review the key points so far established.

6.1 Summary of Results

6.1.1 Adequacy Results

In Chapter 2 we presented arguments to the effect that the adequacy of the GTOF

gains intuitive purchase from its ancestral association with Klein’s erlangen programme.

The idea there was that, if anything has form, geometrical shapes do. We also suggested

that it makes sense from an intuitive standpoint to broaden this idea to include also the

shapes of physical objects. For simplicity we focused primarily on Euclidean geometry,

and on account of the similarities between the GTOF and Klein’s theory, showing it to be

formal was straightforward. Furthermore, the success of Klein’s own work suggests that

230

application to many other geometrical theories will be likewise straightforward.

In Chapter 3 we turned to what, aside from perhaps geometry, is arguably the the-

ory most closely associated with “formality” — logic. We focused explicitly on standard

first order logic, but many of our conclusions have broader implications. In our analysis

we considered the two most prominent accounts of the “formality” of logic. The older of

these is that logic is formal in virtue of its syntax and systematic proof theory — that is, on

account of certain linguistic characteristics. The second and more contemporary position

holds that the formality of logic arises from its insensitivity to the particular identity of

objects — that is, on account of the semantics or subject matter of first order logic. The

later view, which we named “objectual formality,” was easily shown to be an instance of

formality according to the GTOF, again on account of the role of Klein’s work in both

theories. Our analysis of the older position, however, found that “syntax” and “syntactic

structure” have not always been characterized in a single way, and we were able to isolate

three different ways of thinking about the “syntactic formality” of first order logic. Our

first significant result with respect to the adequacy of the GTOF is that all three of these

— what we called “grammatical formality,” “sentential formality,” and “derivational for-

mality” — are themselves types of formality according to the GTOF. On account of these

results, together with the objectual formality of the underlying semantics, we concluded

that logic is not just formal according to the GTOF, but formal in a number of respects

which are central the utility of logic itself.

One feature of the GTOF that we have brought up a few times is that it distinguishes

logicality from formality. That is to say, in not building logicality into the definition of

formality, the GTOF permits there to be a distinction between the two. As discussed in

Chapter 5 one consequence of this is that it becomes difficult to hold that logic is distinc-

tively or characteristically formal (although in section 5.2.1 we suggested how logic might

yet be specially formal), which opens the possibility that the results of our application of

the GTOF to logic might be directly applicable elsewhere. It was with this in mind that we

undertook our analysis of programming languages and methodologies in Chapter 4.

231

What we found in Chapter 4 was that, to a considerable extent, much of what holds

true of logic also holds true of programming languages and methods. It is almost trivial to

show that programming languages exhibit syntactic formality (although they are not usu-

ally equipped with derivational systems). Our main focus was therefore on semantics and

whether or not the semantics of particular languages are also formal in the same way as

that of first order logic. What we found was that this is certainly so, but that the situation is

somewhat more complex than for first order logic. To begin with, in every case the associ-

ated domain (or domains) of invariance are far more specific and limited than that of first

order logic. While the semantics of first order logic involves a domain of model-theoretic

structures, the domains we found associated with programming languages are much more

humble — memory addresses, physical hardware, etc. Furthermore, although there are

certainly relationships between the languages we have considered, and even functional

equivalence between most of them, the underlying semantic domains of invariance differ

between languages. Finally, whereas the characteristic constants and grammatical struc-

tures of first order logic all share a single semantic domain of invariance (i.e., they are

all invariant under transformations between model-theoretic structures), many of the lan-

guages we have looked at include distinct characteristic constants and grammatical struc-

tures tied to distinct semantic domains. That is, they involve at least some notions which

are invariant in multiple respects. We identified two broad categories into which these fall:

semantics oriented around machine independence and semantics oriented around classes

of problems. The first of these is primary, and involves the trend over time of languages

to include only those characteristic constants which denote operations that could be ex-

pected of every machine of a certain class (and thus are independent from any particular

machine in that class). The upper limit of this, which most modern languages realize, re-

sults in a language being Turing complete — having the expressive power to represent all

computable (partial-recursive) functions.

The second semantic domain comes into play when languages include syntactic

elements (sometimes called “syntactic sugar”) which do not contribute to machine inde-

232

pendence. Although strictly unnecessary, these features usually make a language easier

to work with, and almost always so with respect to a certain class of problems. In par-

ticular, these additional syntactic features tend to denote features which are invariant over

problems of a given type or class.

The semantics of programming languages, especially higher level languages, con-

sequently come out as formal according to the GTOF. We furthermore saw a case where

the intuitive degree of formality or formalization of languages (e.g., machine code vs.

FORTRAN) turns out to be nicely tracked by the rigorous account implicit in the GTOF

and explored more fully in Chapter 5. Machine code is less formal than FORTRAN in

having constants which denote machine resources which are invariant across a narrower

range of machines than FORTRAN (it is less machine independent).

Attempting to show the adequacy of any theory requires responding to its weak-

nesses and perceived counter-intuitive results. We have attempted to do so in Chapter 5,

although given that the GTOF is a new theory, there may well be additional anomalies

we are unable to see. To this end we considered the consequence of the GTOF that ev-

erything might be formal. Our response was that the GTOF is fundamentally relativistic,

and thus there is nearly always a distinction between the formal and non-formal relative

to a given frame. The only case where this fails is for a frame whose class of transfor-

mations contains only the identity transformation (or, in fact, is empty). In such a case,

every feature comes out formal, and none are non-formal. Our response in this case was to

argue that, while we accept the result, we should not take the case seriously since it is de-

generate. From the perspective of the GTOF, formality is only interesting in the presence

of variance, but the identity function (or the empty class) effectively impose no variance

on the domain. Therefore the result, though technically true, should be dismissed as an

uninteresting degenerate case.

The other main problem to which we responded in Chapter 5 was that the GTOF,

by drawing a line between formality and logicality, robs logic of any sense of being dis-

tinctively formal. Our response there, apart from accepting the conclusion (toward which

233

we feel no animosity), was to show a number of ways in which logic could still be thought

of as specially formal, covering a range of positions on the nature of logic.

While we certainly do not take these results to conclusively show that the GTOF

has a high enough degree of adequacy (given its utility) to gain broad acceptance, we do

feel that a good foundation toward this end has been laid, and that the most immediate

sources of doubt have been addressed.

6.1.2 Utility Results

Not only did our inquiry in Chapter 3 result in the conclusion that first order logic

exhibits formality in multiple respects, but it also led to the conclusion that this is not

accidental. The formality exhibited in the semantics of first order logic imposes various

constraints on the syntactic and derivational formality involved, such that there is a cor-

respondence between the invariants on either side. It is nothing new to claim that there

is a relationship between syntax and semantics, obviously. The novelty of the result is

that the relationship occurs between the syntactic invariants — the logical constants and

grammatical rules — and the semantic invariants — the logical notions. We reasoned

that this correspondence is not accidental first on the grounds that the syntax and deriva-

tional rules of the language are constrained by what cannot be described as other than

semantic considerations — meaningfulness and truth preservation. The requirement that

well-formed expressions be meaningful effectively requires that the characteristic, logical

constants denote semantic invariants. The requirement that derivational rules be truth pre-

serving requires that they correspond to families of logical consequence relations, which

are themselves semantic in nature.

A further reason for thinking that the correspondence between syntactic and se-

mantic invariants is not accidental, however, is that it is precisely this relationship that

permits the language of standard first order logic to be used as a tool for exploring seman-

tic notions like logical consequence. The relationship permits the language to play the role

234

of a transparent medium for reasoning about and exploring the underlying subject matter

(whatever that may be).

Again drawing upon the fact that the GTOF permits us to distinguish logicality

from formality, we hypothesized that the same structure would hold for other, non-logical

(or not strictly logical) formal languages as well. Exploring this claim was our second

motive in our examination of programming languages in Chapter 4, and the conclusion

was that the result does seem to generalize. That is, first, that there is a correspondence

between syntactic and semantic invariants. Second, that the syntaxes of the languages

are clearly set up with semantic constraints in mind. And finally, that the languages so

structured function as transparent media for manipulating the function of computers and

(in the case of object-oriented methods and functional programming) serve as models of

“real-world” systems.

Again, we do not take ourselves to have established with any certainty that these

useful consequences, together with the adequacy results described above, compel accep-

tance of the GTOF. We do hope that they establish that, in addition to being potentially

adequate, the theory is interesting and fruitful.

6.2 Continuing Research

What we have thus far established are merely the most foundational and nearest in

reach, but they are far from the most interesting and exciting aspects of the GTOF.

6.2.1 Adequacy Research

As we have already discussed, theoretical adequacy comes in degrees and it is not

entirely out of the question for an acceptable theory to result in revisions to the way we

might otherwise think about the world. This is perhaps more likely for theories like the

GTOF, for which adequacy is primarily a matter of coincidence with antecedent intuitions,

235

as intuitions are generally easier to violate than other, more direct kinds of evidence. Even

so, as we have already mentioned, some cases are more important than others. If the GTOF

failed to rule that religious rituals and tuxedos are formal, that would clearly be more

acceptable than if it fails to count logic as formal.1 Continued research on the adequacy of

the GTOF should therefore focus first on central, untested cases and gradually increase in

scope.

The first obvious area of investigation is to expand the range of application beyond

that of standard first order logic to include other logical languages. Of particular interest

are intensional languages, especially modal and tense logics. These are significant in that

they include operators which depart from the extensional (model-theoretic) foundations of

first order logic. Furthermore, at least in the case of modal logic, the proof theories are

much better understood than the semantics of the languages themselves. There are serious

questions regarding the semantics of the modal operators and how these change with the

addition or subtraction of various axioms. It seems possible that the GTOF might be able

to shed greater light on what constraints these languages really impose on the semantics

(i.e., the range of possible semantics for the modal operators of a given language) and how

these operators relate to one another.

Another potentially fruitful line of thought concerns intuitionist (and other non-

classical) logics, first to better understand their content or range of application, and second

to characterize their interrelationships to other logical theories. One of the most interesting

traditions is that based on the proof-theoretic semantics of Gentzen, Prawitz, and Dummet.

In effect, this tradition sees logical derivation as a language itself, with basic rules (intro-

ductions, eliminations, etc.) as atomic elements and a grammar organized around validity.

One of the tantalizing aspects of this approach is that its semantics is purportedly grounded

1We are speaking a bit loosely here, in that we have already accepted the consequence that everything
is formal in some respect. How then, could the GTOF possibly fail? What we really mean is that the
GTOF holds that the definition, topic, or concept involved involves formality (invariance) in an important or
essential way. Logical truths are invariant to transformations between just about everything (even possible
worlds), but it is not in virtue of this that the GTOF is considered adequate. What we showed in Chapter 3
was that logic is constructed on a formal foundation.

236

on informal, intuitive inference, rather than model theory. It is a very interesting question

what the formal characteristics of such a system are and what its relationship might be to

other logical systems. Such results have potential bearing on open philosophical questions

concerning the nature of logic and which logical theory is generally “correct” or most

appropriate for given purposes.

A final logical focus is higher order logics and their interpretations, again to learn

more about their semantics and relations to one another. This bears on the controversial

status of higher-order logics, the debate about which we feel often lacks a clear character-

ization of the assumed underlying semantics.

It would also be prudent to carefully consider the relationship between the GTOF

and other potentially related concepts, looking for any conflicts or enlightenment that may

so arise. Concepts of particular interest include types and tokens, concepts and instances,

genera and species, and “matter” or “content”.

The next area of focus is mathematics, more broadly construed than just geometry.

Not only is mathematics as synonymous with “formality” as logic, but there are some im-

portant gaps in the work we have already undertaken that such an analysis would fill. For

example, our analysis of the semantics of first order logic relied on a domain consisting of

model-theoretic structures. These structures are themselves essentially part of, or defined

by, set theory. Although nothing in our reasoning about logic requires that set theory (and

its associated languages) should be formal, showing it to be so would certainly bolster

that analysis. It would also be yet further justification for thinking that logic is specially

formal. Our analysis of programming languages at many points also appealed to arith-

metic notions, and though we did some informal work to suggest that these are themselves

invariants, that work is far from rigorous or comprehensive. A complete analysis would fa-

cilitate a clearer specification of the relationships involved. Fortunately, invariance-based

frameworks already exist for mathematical and algebraic analysis, and it is likely that these

will rather easily turn out to be instances of the GTOF.

Of the empirical sciences, certainly physics is seen as the most formal, and is there-

237

fore of considerable interest from our perspective. One promising characteristic of current

physical theories, other than their inclusion of large fragments of mathematical theory, is

that they tend to focus on what are called “symmetries.” Symmetries are interesting to us

because they are themselves invariants, albeit of a much more specific type than we have

characterized. Nevertheless, there is good reason to expect that many aspects of physics

will turn out to be formal according to the GTOF, and also that an analysis of physics in

terms of the GTOF will shed light on the complicated relationship between physical and

mathematical theory.

The possibility of extending the GTOF’s reach beyond mathematics and physics

to, for example, chemistry or biology, is very exciting as these disciplines also involve

formalisms, and sometimes even formal languages, to a considerable degree. Doing so,

however, poses some difficulties with respect to the very sorts of generalizations of concern

to Woodward.2 That is, chemistry and biology (and most other sciences) make liberal use

of non-law-like regularities, which as we outlined in Chapter 5, are not strictly formal

according to the GTOF. We said there that whether or not it is worthwhile to modify or

expand the GTOF to include less strict notions of invariance hinges on the usefulness of

the resulting theory, which itself hinges on the overall role of formality in the sciences.

Investigating invariance and “semi-invariance” in chemistry and biology may be one way

of beginning to answer these questions.

If it turns out to be promising to open the GTOF up to less strict notions of invari-

ance, a large number of fields become open to application of the GTOF. For example, one

of particular interest to us is the formalized languages used for musical notation. Others

include the study of various artistic “forms” (literary, musical, visual, etc.). But again,

whether or not such analysis will be useful or enlightening is not something we can reli-

ably forecast.

2See section 5.2.3 and [Woodward, 2003].

238

6.2.2 Utility Research

Some of the most exciting potential applications of the GTOF fall under the broad

heading of “usefulness” — they are applications beyond merely accounting for what is

generally taken to be “formal.”

Perhaps the most promising new line of research stems from the successful exten-

sion of our hypothesis regarding the relation between syntax and semantics to languages

beyond logic. This success suggests that it might well be possible to broaden the result

to encompass all interpreted formal languages. As such, the GTOF could significantly

improve our theory and understanding of the semantics of formal languages generally.

Furthermore, the characteristic relationship between syntax and semantics could serve as

a criterion for the successful interpretation (and reinterpretation) of formal languages, as

well as a guide for the construction of new formal languages for specific purposes and

domains.

A further consequence of the GTOF that has promise for being particularly useful

is that its relational consequences, as discussed in Chapter 5, permit rigorous and inter-

esting investigations into the relations between various formal theories in much the same

manner as Klein’s program permitted within geometry and mathematics. The extreme

generality and flexibility of the GTOF does not require that every such formal theory be

related to every other in a grand hierarchy, but rather permits more fragmented and com-

plex possibilities (which there are good reasons to believe persist outside of mathematics).

We have suggested some possibilities for this in the preceding section, but if we modify

the GTOF with a weaker sense of invariance, as discussed in section 5.2.3, many possi-

bilities beyond formal systems and theories would be open to analyses which may prove

quite fruitful.

These future applications are more-or-less directly suggested by the work we have

completed. There are, however, some less obvious, and significantly more ambitious,

possibilities that we believe are worth looking into. We will discuss two of these here, one

of which is historical in nature, and the other concerning the semantics of natural language.

239

The standard story about logic is that it was invented by Aristotle. Certainly there

is some truth to this in that much of early logic made use of what Aristotle accomplished

in the Organon. However, recent research has cast considerable doubt on the idea that a

logical theory, a theory of what follows from what, is the purpose and focus of Aristotle’s

“logical” work. The matter is made more interesting in that Aristotle, following on Plato,

made much of “form” without making a clear connection with his thoughts on syllogism

and demonstration. There are, therefore, two related research projects of interest with re-

spect to Aristotle. The first concerns the question of the purpose behind Aristotle’s work

in the Organnon. Since what Aristotle is engaged in looks much like a project of formal-

ization, it stands to reason that the GTOF might be an enlightening perspective from which

to view Aristotle’s work, especially as it does not presuppose that formalization is essen-

tially logical. Second, like us, Aristotle seems to have a view of form that is distinct from

logic, mathematics, or geometry. In some ways it even superficially resembles the GTOF.

It would be a worthwhile inquiry to gain as clear a picture as possible of what Aristotle’s

view of formality is, and what its relation may be, both technically and historically, to the

GTOF.

The second ambitious research project concerns the semantics of natural languages.

We have already mentioned that our results concerning the relationship between the syn-

tactic and semantic invariants of formal languages could serve as a guide to the construc-

tion of new general purpose and domain specific formal languages. In addition to this

applied investigation, the result also suggests a particularly intriguing possibility. At the

end of Chapter 3, where we first suggested that the relationship might apply more broadly

than just to logic, we mentioned that it bears a certain similarity to the semantic theory of

Montague, who claimed that the semantics of natural language could be worked out in ex-

tensional (first order logic) terms. The similarity is primarily that both we and Montague

hypothesize that a certain type of relationship will hold between a language and its seman-

tics. We differ, of course, not only in our restriction to formal languages, but also in that

we do not restrict the semantics to any particular domain, extensional or otherwise. Mon-

240

tague’s work does, though, suggest the possibility of conducting the same sort of analysis

for fragments of natural language that we have engaged in for formal languages. It does

not seem implausible to think that the semantics of natural language might be grounded

in some way on invariants, for example invariants under transformations between experi-

ences (or experiences of certain sorts).

One reason for thinking that this might be the case is that some fragments of En-

glish (to take one language) exhibit inferential characteristics similar to logic, and which

are sometimes even confused with logical inferences. Color language as applied to objects

seems to have these characteristics. If, for instance, an object is entirely red, we can infer

(vagueness not withstanding) that it is not blue, yellow, purple, or any other color. That

no thing may be entirely two colors simultaneously is sometimes mistaken for a logical

truth, or conversely the idea that something might be entirely both red and blue at the same

time is taken to be “illogical.” It is neither. Since first order logic is not sensitive to the

identities of predicates, Pa∧Qa cannot be logically false.

Where then does this intuitive principle of inference come from? We think the pos-

sibility that it may stem from an underlying experiential invariance to be an interesting and

promising line of thought. In fact, such a pursuit yet again brings to mind what Richard-

son takes to be the guiding intuition of Carnap’s Aufbau, to which we are sympathetic.

The idea is that, despite that we do not have direct access to the minds of others and that

our experiences (for all we know) might be very different from one another (e.g., inverted

spectra), something must enable us to coordinate our activities and, more importantly, our

communicative use of language. Carnap held (according to Richardson) that this inter-

subjective coordinating characteristic was formal in nature (i.e., formal characteristics of

experience). Like all positivists, however, Carnap held that “formal” just meant “logical”

and his view consequently had much in common with Montague. We have already dis-

cussed in the context of Nozick’s account of objectivity how we can think of invariance

across perspectives and individuals. And although Carnap rejected “objectivity,” his quest

for intersubjective features — features common to all experience — is similar enough to

241

be thought of in terms of invariance. Thus, by distinguishing formality from logicality,

we open up the possibility of revisiting this compelling intuition with considerably more

freedom than either Carnap or Montague allowed themselves.3

6.3 Closing Remarks

Our purpose in presenting such ambitious research projects is not to unduly ag-

grandize the GTOF, since of course none of these have been shown and many of them may

yet fail. Instead we want to give an idea of the breadth of possibility for such a fundamen-

tally simple theory. It is, we feel, one of the chief virtues of the GTOF that, though very

simple, its extreme flexibility gives it the potential to be very informative. In this respect

it breaks the general rule that simple theories do not, or cannot, say very much about the

world. Strictly speaking, of course, the GTOF in itself does not say much about the world

— it is just a definition of formality. It is in the application of the GTOF — as a guide

and framework for the discovery and analysis of types of formality and their interrelations,

particularly with respect to the relationship between languages and their semantics — that

it has considerable potential. At the very least we hope that the GTOF inspires additional

inquiry into the distinction between logicality and formality, the conflation of which, in our

opinion, has led many legitimate and interesting ideas into obscurity. Then again, without

an association between logicality and formality, and especially without those who associ-

ated logicality with invariance in the beginning, our general theory of formality would not

exist.

3If such a position on the semantics of natural language could be worked out, it would almost undoubtedly
need to make use of some less stringent notion of invariance.

Bibliography

[Backus et al., 1956] Backus, J., Beeber, R., Best, S., Goldberg, R., Herrick, H., Hughes,
R., Mitchell, L., Nelson, R., Nutt, R., Sayre, D., Sheridan, P., Stern, H., and Ziller,
I. (1956). The FORTRAN Automatic Coding System for the IBM 704 EDPM: Pro-
grammer’s Reference Manual. Applied Sciences Division and Programming Research
Department, International Business Machines Corporation.

[Bacon, 2000] Bacon, F. (2000). The Advancement of Learning. Number 4 in The Oxford
Francis Bacon. Clarendon Press, Oxford.

[Barendregt, 1981] Barendregt, H. (1981). The lamdba calculus: its syntax and seman-
tics. Elsevier North-Holland, New York.

[Bonnay, 2008] Bonnay, D. (2008). Logicality and invariance. Bulletin of Symbolic Logic,
14:29–68.

[Brading and Castellini, 2003] Brading, K. and Castellini, E., editors (2003). Symmetries
in Physics: Philosophical Reflections. Cambridge University Press.

[Carnap, 1937] Carnap, R. (1937). The Logical Syntax of Language. Routledge.

[Carnap, 1963] Carnap, R. (1963). Intellectual autobiography. In Schlipp, P. A., editor,
The Philosophy of Rudolf Carnap, pages 3–86. Opent Court Press, La Salle, IL.

[Dummett, 1991] Dummett, M. (1991). The Logical Basis of Metaphysics. Duckworth,
London.

[Etchemendy, 1990] Etchemendy, J. (1990). The Concept of Logical Consequence. Har-
vard University Press, Cambridge, MA.

[Feferman, 1999] Feferman, S. (1999). Logic, logics, and logicism. Notre Dame Journal
of Formal Logic, 49:31–54.

242

243

[Frege, 1960] Frege, G. (1960). The Foundations of Arithmetic: A Logico-Mathematical
Inquiry into the Concept of Number. Harper & Brothers, New York, 2nd revised edition.

[Frege, 1967] Frege, G. (1967). Begriffschrift, a formula language, modeled upon that
of arithmetic, for pure thought. In van Heijenoort, J., editor, From Frege to GÃűdel: A
Source Book in Methematical Logic, 1879-1931, pages 1–82. Harvard University Press.

[Gentzen, 1964] Gentzen, G. (1964). Investigations into logical deduction. American
Philosophical Quarterly, 1(4):288–206.

[Goldstine, 1972] Goldstine, H. (1972). The computer - from Pascal to von Neumann.
Princeton University Press, Princeton, NJ.

[Hindley and Seldin, 2008] Hindley, J. and Seldin, J. (2008). Lambda-calculus and com-
binators, an introduction. Cambridge University Press, Cambridge, UK.

[Keisler, 1970] Keisler, H. J. (1970). Logic with the quantifier ’there exist uncountably
many’. Annals of Mathematical Logic, 1:1–93.

[Klein, 1872] Klein, F. (1872). A comparative review of recent researches in geometry.
Bulletin of the New York Mathematical Society, 2:215–249.

[Lindenbaum and Tarski, 1983] Lindenbaum, A. and Tarski, A. (1983). On the limita-
tions of the means of expression of deductive theories. In Corcoran, J., editor, Logic,
Semantics, Metamathematics, pages 384–392. Hackett, Indianapolis, 2 edition.

[Lindström, 1966a] Lindström, P. (1966a). First order predicate logic with generalized
quantifiers. Theoria, 32:186–195.

[Lindström, 1966b] Lindström, P. (1966b). On relations between structures. Theoria,
32:172–185.

[MacFarlane, 2000] MacFarlane, J. (2000). What does it mean to say that logic is formal?
PhD thesis, University of Pittsburgh.

[Mautner, 1946] Mautner, F. I. (1946). An extension of klein’s erlanger program: Logic
as invariant-theory. American Journal of Mathematics, 68:345–384.

[McGee, 1996] McGee, V. (1996). Logical operations. Journal of Philosophical Logic,
26:567–580.

[Mitchell, 1957] Mitchell, G. E. (1957). The FORTRAN Automatic Coding System for the
IBM 704 EDPM: Programmer’s Primer. International Business Machines Corporation.

244

[Montague, 1974] Montague, R. (1974). Formal philosophy: selected papers of Richard
Montague. Yale University Press.

[Mostowski, 1957] Mostowski, A. (1957). On a generalization of quantifiers. Funda-
menta Mathematicae, 44:12–36.

[Novaes, 2010] Novaes, C. D. (2010). Reassessing logical hylomorphism and the demar-
cation of logical constants. Synthese, pages 1–24.

[Nozick, 2001] Nozick, R. (2001). INVARIANCES: The Structure of the Objective World.
Harvard University Press, Cambridge, MA.

[Prawitz, 1971] Prawitz, D. (1971). Ideas and results in proof theory. In Proceedings of
the Second Scandinavian Logic Symposium: Studies in Logic and the Foundations of
Mathematics, volume 63, pages 235–307.

[Quine, 1960a] Quine, W. (1960a). Variables explained away. In Proceedings of the
American Philosophical Society, volume 104, pages 343–347.

[Quine, 1960b] Quine, W. (1960b). Word and Object. MIT Press.

[Quine, 1976a] Quine, W. (1976a). Algebraic logic and predicate functors. In The Ways
of Paradox, pages 283–307. Harvard University Press, Cambridge, MA.

[Quine, 1976b] Quine, W. (1976b). The variable. In The Ways of Paradox, pages 272–
282. Harvard University Press, Cambridge, MA.

[Quine, 1986] Quine, W. (1986). Philosophy of Logic. Harvard University Press, second
edition.

[Quine, 1981] Quine, W. V. O. (1981). Theories and Things. Harvard University Press.

[Richardson, 1997] Richardson, A. (1997). Carnap’s Construction of the World. Cam-
bridge University Press, Cambridge, UK.

[Sammet, 1969] Sammet, J. (1969). Programming Languages: History and Fundamen-
tals. Prentice Hall, Englewood Cliffs, NJ.

[Sher, 1991] Sher, G. (1991). The Bounds of Logic. MIT Press, Cambridge, MA.

[Sher, 1996] Sher, G. (1996). Did tarski commit tarski’s fallacy? Journal of Symbolic
Logic, 61:653–686.

245

[Sher, 1999] Sher, G. (1999). Is logic a theory of the obvious? The Nature of Logic, the
European Review of Philosophy, 4:207–238.

[Sher, 2001] Sher, G. (2001). The formal-structural view of logical consequence. The
Philosophical Review, 110(2):241–261.

[Sher, 2008] Sher, G. (2008). Tarski’s thesis. In Patterson, D., editor, New Essays on
Tarski and Philosophy, pages 300–339. Oxford University Press.

[Strawson, 1959] Strawson, P. F. (1959). Individuals. Methuen & Co. Ltd., London.

[Tarski, 1941] Tarski, A. (1941). Introduction to Logic and to the Methodology of Deduc-
tive Sciences. Oxford University Press, New York.

[Tarski, 1983a] Tarski, A. (1983a). The concept of truth in formalized languages. In
Corcoran, J., editor, Logic, Semantics, Metamathematics, pages 152–278. Hackett, In-
dianapolis, 2 edition.

[Tarski, 1983b] Tarski, A. (1983b). The establishment of scientific semantics. In Cor-
coran, J., editor, Logic, Semantics, Metamathematics, pages 401–409. Hackett, Indi-
anapolis, 2 edition.

[Tarski, 1983c] Tarski, A. (1983c). On the concept of logical consequence. In Corcoran,
J., editor, Logic, Semantics, Metamathematics, pages 409–20. Hackett, Indianapolis, 2
edition.

[Tarski, 1986] Tarski, A. (1986). What are logical notions? History and Philosophy of
Logic, 7:143–154.

[Tarski and Givant, 1987] Tarski, A. and Givant, S. (1987). A formalization of set theory
without variables. American Mathematical Society, Providence, RI.

[Turing, 1936] Turing, A. M. (1936). On computable numbers, with an application to
the entscheidungsproblem. In Proceedings of the London Mathematical Society, vol-
ume 43, pages 230–265.

[von Neumann, 1945] von Neumann, J. (1945). First draft of a report on the edvac. In
Taub, A., editor, John von Neumann: Collected Works. Pergamon Press, New York.

[Wilkes et al., 1951] Wilkes, M., Wheeler, D., and Gill, S. (1951). The Preparation of
Programs for an Electronic Digital Computer, with special reference to the EDSAC and
the use of a library of subroutines. Addison-Wesley Press, Cambridge, MA.

246

[Woodward, 2003] Woodward, J. (2003). Making Things Happen: A Theory of Causal
Explanation. Oxford University Press, Oxford.

