
UC Riverside
UC Riverside Previously Published Works

Title
Codee: A Tensor Embedding Scheme for Binary Code Search

Permalink
https://escholarship.org/uc/item/5t74h0rn

Journal
IEEE Transactions on Software Engineering, 48(7)

ISSN
0098-5589

Authors
Yang, Jia
Fu, Cai
Liu, Xiao-Yang
et al.

Publication Date
2021

DOI
10.1109/tse.2021.3056139

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5t74h0rn
https://escholarship.org/uc/item/5t74h0rn#author
https://escholarship.org
http://www.cdlib.org/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 1

Codee: A Tensor Embedding Scheme for Binary
Code Search

Jia Yang, Cai Fu, Member, IEEE, Xiao-Yang Liu, Member, IEEE, Heng Yin, Senior Member, IEEE, and Pan
Zhou, Senior Member, IEEE,

Abstract—Given a target binary function, the binary code search retrieves top-K similar functions in the repository, and similar
functions represent that they are compiled from the same source codes. Searching binary code is particularly challenging due to large
variations of compiler tool-chains and options and CPU architectures, as well as thousands of binary codes. Furthermore, there are
some pivotal issues in current binary code search schemes, including inaccurate text-based or token-based analysis, slow graph
matching, or complex deep learning processes. In this paper, we present an unsupervised tensor embedding scheme, Codee, to carry
out code search efficiently and accurately at the binary function level. First, we use an NLP-based neural network to generate the
semantic-aware token embedding. Second, we propose an efficient basic block embedding generation algorithm based on the network
representation learning model. We learn both the semantic information of instructions and the control flow structural information to
generate the basic block embedding. Then we use all basic block embeddings in a function to obtain a variable-length function feature
vector. Third, we build a tensor to generate function embeddings based on the tensor singular value decomposition, which compresses
the variable-length vectors into short fixed-length vectors to facilitate efficient search afterward. We further propose a dynamic tensor
compression algorithm to incrementally update the function embedding database. Finally, we use the local sensitive hash method to
find the top-K similar matching functions in the repository. Compared with state-of-the-art cross-optimization-level code search
schemes, such as Asm2Vec and DeepBinDiff, our scheme achieves higher average search accuracy, shorter feature vectors, and
faster feature generation performance using four datasets, OpenSSL, Coreutils, libgmp and libcurl. Compared with other cross-platform
and cross-optimization-level code search schemes, such as Gemini, Safe, the average recall of our method also outperforms others.

Index Terms—Function feature extraction; tensor embedding; code search; tSVD.

F

1 INTRODUCTION

B INARY code search aims to quantitatively retrieve the
similar binary functions from a number of functions in

the repository [1]. Moreover, if given two input binary func-
tions, it can precisely measure an accurate similarity score.
Hence, code search has recently emerged as a popular topic
for solving software security problems, such as finding clone
code injection [2], [3], detecting software plagiarism [4], [5],
and solving copyright issues [6], [7]. We focus on a cross-
platform and cross-optimization level of the binary similar-
ity problem, where we define two similar binary functions
that are compiled from the same source code. Inspired by
[8], [9], we look for solutions that solve the binary similarity
problem using embeddings. Loosely speaking, each binary
function is first transformed into a vector of numbers (an
embedding), in such a way that code compiled from the
same source results in vectors that are similar. Given that
the number of binary executable files grows dramatically
every year and in most cases the source code is unavailable,
it is crucial to design an effective code search scheme at the
binary level.

Jia Yang, Cai Fu, and Pan Zhou are with School of Cyber Science and
Engineering, Huazhong University of Science and Technology, and Hubei
Engineering Research Center on Big Data Security, Wuhan, China, 430074.
E-mail: d201780841@hust.edu.cn, fucai@hust.edu.cn
Xiao-Yang Liu is with Electrical Engineering Department, Columbia Univer-
sity, New York, NY, USA, 10027.
Heng Yin is with Department of Computer Science and Engineering, Univer-
sity of California, Riverside, CA, USA, 92521.

Some recent works [9], [8], [10], [11] propose to convert a
piece of binary code (e.g., a function) into a numeric vector
(or embedded vector, or simply embedding), such that two
pieces of binary code with equivalent semantics would be
mapped to two embeddings that are close to each other.
The problem of binary code search is then converted into
the problem of searching for similar vectors, which can
be done in O(1) time by using Locality Sensitive Hashing
(LSH) [12]. These embedding-based schemes offer several
unique advantages. First of all, most of these schemes are
very efficient and scalable, and thus can deal with large code
repositories. Second, almost all embedding-based schemes
can tolerate (at least to some extent) changes introduced by
different compiler options, and some of them can even toler-
ate changes caused by different instruction set architecture
(ISAs) [9], [8]. In general, the latest existing state-of-the-art
works can be divided into two categories.

Deep learning-based Works. Some of these schemes
(Gemini [9], CDLH [13], and EKLAVYA [14]) leverage deep
neural network models. To achieve high search accuracy, it
is essential to collect a substantial amount of high-quality
training data, which can be challenging in practice. Even
with good training data, these deep neural network mod-
els may still suffer an overfitting problem. In particular,
Gemini [9] empirically demonstrated that a generic model
did not work well, and a task-specific model should be
trained iteratively, which was a time-consuming and te-
dious process. Moreover, each basic block feature vector is
generated only by manually extracting statistical features
of instructions, which may lose some semantic information.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 2

CDLH [13] learned the functional similarity of source codes
using the lexical and syntactical information by supervised
deep learning methods. This technique devotes to the source
code analysis and cannot be immediately used on binary
code.

Safe [15] generated function embedding based on a self-
attentive neural network, which uses a skip-gram method to
generate instruction embeddings and fed these instruction
embeddings into a bi-directional recurrent neural network.
However, the first part of Safe used the NLP-based learning
process, and the second part of Safe used a complex bi-
directional recurrent neural network to generate function
embedding. These two neural networks all learn the se-
quence information of instructions. Safe only considers the
binary function as language, but loses the structural infor-
mation of binary function. Each basic block embedding gen-
eration has to go through complex computations of two neu-
ral networks. Massarelli [16] improved the manual extrac-
tion part of Gemini as the NLP-based unsupervised feature
learning method, which preserved the same Structure2Vec
deep learning part as Gemini. This method also has two
complex deep learning processes. Thus, the performances of
these methods are heavily dependent on the quality of the
training data. It is difficult to collect high-quality training
dataset due to the diversity and scalability of the binary
functions. Moreover, supervised learning methods could
suffer the overfitting problem.

NLP-based Works. The latest works (Asm2Vec [10],
InnerEye [11], and DeepBinDiff [17]) have leverage Natural
Language Processing (NLP) techniques to generate binary
function embeddings for the binary code search. Asm2Vec
[10] treated a function as a document, and a token (opcode
or operand) as a word in the document, and thus adopts the
Distributed Memory Model of Paragraph Vectors (PV-DM
model) [18] to generate an embedding for each function.
InnerEye [11] regarded basic blocks as sentences to train
the model by using Neural Machine Translation (NMT).
InnerEye [11] has a scalability issue for code search. Each
calculation of basic block similarity has to go through a
complex LSTM-RNN neural network with a large number
of parameters in the current implementation, which signif-
icantly affects the performance. While they are intriguing
ideas, directly applying NLP techniques on binary codes is
not ideal. Binary codes have strict control flow and data flow
dependency, and thus is more structured than natural lan-
guages. Simply applying random walk and a small sliding
window technique will not be able to fully capture the high-
level features of a piece of code, leading to degraded search
accuracy. Moreover, Asm2Vec cannot deal with binary code
from multiple ISAs, and its embedding generation is much
slower than deep learning-based schemes, due to its itera-
tive gradient descent optimization process.

DeepBinDiff [17] focused on the basic blocks matching
based on the unsupervised program-wide code represen-
tation learning technique. However, DeepBinDiff did not
support cross-architecture binary code search. Moreover,
many hyperparameters need to be determined to maximize
the model performance. Only applying NMT techniques in
the binary code search has some challenges. In normal NMT,
a word embedding model is usually trained once using
large corpora, such as Wiki. However, we need to train an

instruction embedding model. The out-of-vocabulary (OVV)
problem is a well-known problem in NLP-based methods.
How to deal with the OOV problem is a challenge. Order
Matters [19] used BERT to pre-train the binary code on
one token-level task, one block-level task, and two graph-
level tasks. They also adopt a convolution neural network
(CNN) on adjacency matrices to extract the order informa-
tion. However, BERT needs an amount of corpus to pre-
train the model. BERT has to go through a complex neural
network with many parameters, which significantly affects
performance and needs strong computation ability. Order
Matters is a very large-scale model, which is much larger
than the other methods by several orders of magnitude.

In this paper, we propose a tensor-based approach,
called Codee, to the problem of binary code search. To
learn semantic information from basic blocks, we use the
NLP-based technique to learn token representation (opcode
representation or operand representation). Specifically, we
modify a skip-gram model with negative sampling [20]
to extract semantic information for tokens (opcodes and
operands). After obtaining all token embeddings in an
assembly function, we model the basic block embedding
generation as a network representation learning problem.
We propose an improved algorithm for the basic block
embedding generation based on two network embedding
algorithms (AANE [21] and LINE [22]). Then we feed the
basic block embeddings into tensor to generate function
embeddings. To facilitate efficient search, we use a ten-
sor singular value decomposition algorithm (tSVD) [23]
to compress all basic block embeddings into a compact
function embedding. The tSVD extracts principal features
by conducting a circular convolution operation. The tSVD
computation can handle more general multilinear data as
long as the data is shown to be compressible in the tSVD
based representation. Furthermore, we design a dynamic
tensor compression method to enable incremental update
of the embedding database. When processing new binary
programs, this dynamic tensor compression method only
needs to generate embeddings for new functions, rather
than recomputing the entire database.

Compared with the existing embedding-based schemes,
our tensor embedding-based scheme has several advan-
tages:

• No complex training is needed. We do not need to
label an amount of data, we only need an one-
effort pre-training process, and our embedding-
based scheme does not suffer an overfitting problem.

• Higher accuracy. Our tensor embedding-based
scheme achieves high accuracy from two aspects.
First, the generated basic block embedding not only
captures the syntactic information and semantic
information of the basic blocks, but also learns the
contextual information from the CFG structure.
Second, the tensor singular value decomposition
(tSVD) algorithm processes feature embeddings
across all binary programs to learn the correlation
of functions and extract the main features of the
function.

• Faster embedding generation. This is mainly due to
the parallel processing nature of tSVD tensor decom-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 3

position. After all basic blocks are generated and fed
into the tensor, decomposition is performed, and all
function embeddings are generated at once.

In summary, we have made the following contributions
in this paper.

• NLP-based token embedding generation. To im-
prove the semantic-aware ability of our model, we
propose a skip-gram pre-training model to generate
the token-level embedding. The NLP-based training
process is based on the entire ICFG diagram and does
not require knowing any prior knowledge of assem-
bly language. We first extract semantic information
of basic blocks. we use the node2vecWalk method
to scale to the random walk generation time in the
ICFG. [20]. Then, we use a skip-gram model with
negative sampling to generate the token embeddings
from the instruction sequences of ICFG. Negative
sampling and node2vecWalk are proposed for effec-
tive training.

• Network representation-based basic block embed-
ding generation. We devise a novel method to deal
with basic block embedding generation in binary
code. We propose an optimization function of basic
block embedding generation as a network represen-
tation learning problem for capturing both semantic
information of basic blocks and the structural infor-
mation of CFG.

• Tensor-based function embedding generation. To
the best of our knowledge, we propose the first
tensor-based approach to the problem of binary code
embedding generation, which relies on a circular
convolution operation to learn the correlation of
functions and extract the main features of the func-
tion. It is an essential step to generate function-level
embedding for scalable and accurate binary code
search. Moreover, a dynamic tensor compression
algorithm is proposed to incrementally update the
function embedding database.

• We conduct extensive experiments on a large
dataset with different compilers, compiler optimiza-
tion levels, and CPU architectures. Our experimen-
tal evaluations demonstrate that Codee outperforms
the other latest state-of-the-art embedding-based
schemes (Safe [15], DeepBinDiff [17], Gemini [9],
and Asm2Vec [10]) concerning higher accuracy, faster
embedding generation, and shorter embeddings.

The remainder of this paper is organized as follows.
The problem statement and an overview of the proposed
scheme are given in Section 2. Section 3 shows how to
generate token embedding based on NLP techniques. In
Section 4, we propose a basic block embedding generation
algorithm. In Section 5, we propose a function embedding
method based on tensor computations. Section 6 shows
experiments to verify the efficiency and accuracy of the
proposed scheme, Codee. Section 7 shows the limitations of
our method. Section 8 discusses the related works. Section 9
concludes the paper.

2 PROBLEM STATEMENT AND SCHEME OVERVIEW

2.1 Problem Statement
Binary code search aims to quantitatively measure the sim-
ilarity between two given binary functions. We define that
two binary functions f1, f2 are similar if they are compiled
from the same original source function with different com-
piler configurations and different architectures. The source
function is written in source code, (e.g, C or C++). In
our paper, we evaluate the baseline schemes with different
architectures (x86-64, ARM, and MIPS), different compilers
(GCC5.4.0 and CLANG3.8.0) and different optimization lev-
els (O0-O3).

Given a target binary function ft, the code search task
is to find functions in the repository that are similar, and
achieves high accuracy and high efficiency. The similar func-
tions means that assembly functions may appear different
syntactic codes, but have similar functional logic in their
source code. To quickly and accurately search binary codes
(e.g., a function), we seek to map each function into a low-
dimensional feature vector. The goal of the code similarity
embedding problem is to find a mapping, which maps the
CFG and instructions of a function ft to a vector represen-
tation r. We formally define the search problem as follows:

Definition 1 Given a target assembly function f , we obtain its
representation vector rt by rt = E(f), where E() represents the
function embedding algorithm. Then we use a similarity search
algorithm SIM(rt,R) to retrieve the top-K function embed-
dings in the repository R, and these top-K most similar function
embeddings are ranked by their similarity values. Retrieve top-K
most similar function embeddings by:

SIM(rt,R) = sort(sim(rt, rs1), sim(rt, rs2), ..., sim(rt, rsN)),
(1)

where rsi ∈ R, i = {1, 2, ..., N}, sim() is the similarity function,
such as cosine similarity function, and sort() is the sort function.
There are N function embeddings in the repository, and rsi is a
function embedding in the repository.

The similarity between two assembly functions can be
computed using a normal similarity function between two
vectors, such as cosine similarity function and others, with-
out incurring the cost of expensive graph matching algo-
rithms. In our problem definition, the repository function
stands for the assembly function that is indexed inside the
repository; and the target function denotes the assembly
function query. Given an assembly function, our goal is to
search for its similar functions from the repository R.

2.2 Notations
First, we denote some notations for designing the optimiza-
tion function of the basic block embedding generation. The
i-th column of a matrix C is denoted by Ci. The (i, j)-
th element of matrix C is denoted by cij . CH denotes the
(Hermitian) transpose of C, while |c| denotes the length
of vector c. The symbol || · ||2 represents the Euclidean
norm, and || · ||F denotes the Frobenius norm. An asterisk
(∗) denotes the tensor product [23]. The term vec(C) de-
notes the vectorization operation. We consider a 3-D tensor
F ∈ Rn1×n2×n3 , where n1, n2, n3 are tensor dimensions.
The i-th frontal slice matrix of tensor F is denoted as F(i),
and F(i) = F(:, :, i). Table 1 lists the main symbols and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 4

TABLE 1: Notations

Notations Definitions
N(i) The set of adjacent basic blocks
n = |V | The number of basic blocks in a CFG

A ∈ Rn×n The adjacency matrix of a CFG
B ∈ Rm×n The basic block feature vector matrix
S ∈ Rn×n The affinity matrix of basic block features
C ∈ Rd×n The basic block embedding matrix

F ∈ Rn1×n2×n3 The tensor representation

their definitions. Let G = (V,E) be the Control Flow Graph
(CFG) of a function. N(i) denotes the set of adjacent basic
blocks of basic block i.

2.3 Background
In this work, we will use the tensor singular value decompo-
sition (tSVD) algorithm to generate the function embedding
and use the locality sensitive hash (LSH) to search for
similar assembly functions. Therefore, we introduce the LSH
and tSVD algorithms in the background.

LSH [12]. We assume that a set of hash functions H =
h : S ← U , and H is (r1, r2, p1, p2) sensitive. For each func-
tion h ∈ H , it satisfies the following two conditions:

Pr[h(O1) = h(O2)]

{
≥ p1 if d(O1, O2) ≤ r1
≤ p2 if d(O1, O2) > r2

,

where O1, O2 ∈ S are two high-dimensional objects,
d(O1, O2) is the difference of two objects. If O1 is similar
to O2, they are mapped as the same hash value with high
probability. If O1 is different from O2, they are less likely to
be mapped as the same hash value.

Symmetric matrix decomposition.
Given a symmetric matrix X, the goal of the symmetric

matrix decomposition is to seek a lower-rank matrix approx-
imation [24], and it can be formulated as

X = GGH .

To obtain the decomposed matrix G of symmetric matrix
X, the Frobenius norm is used to measure the distance
between X and GGH . Hence, the problem of symmetric
matrix decomposition can be formulated as [24]

min
G≤0
||X−GGH ||2F .

The second-order proximity. The general notion of the
second-order proximity can be interpreted as nodes with
shared neighbors being likely to be similar [22].

Definition 2 The second-order proximity of a pair of nodes
(i, j) represents the similarity between their neighborhood graph
structures [22]. Formally, let pi = (wi,1, ..., wi,|V |) denote the
connected weight of i with all the other nodes, then the second-
order proximity between i and j is calculated according to the
similarity between pi and pj . If there is no link from/to both i and
j, the second-order proximity between i and j is 0.

The second-order proximity is applicable for both directed
and undirected graphs. Each node is also considered as
a specific “context”, and if nodes with similar “contexts”
distributions are assumed to be similar.

Before introducing tSVD, we show some related tensor
operations.

Circulant matrices [23]. Circ(F) is a circulant matrix that
can be diagonalized by multiplying the normalized Fast
Fourier Transform (FFT) matrix [25].

Block diagonal matrix [23]. The diag(D(1),D(2), ..,D(n3)) is
the block diagonal matrix. Each D(i) is an n1 × n2 matrix,
and is also a frontal slice of the tensor D.

Tensor product [23]. If X ∈ Rl1×l2×l3 and Y ∈ Rl2×l4×l3 ,
the tensor product X ∗ Y is a l1 × l4 × l3 tensor, having

X ∗ Y = fold(Circ(X) ·Matvec(Y)),

where Matvec(Y) takes the tensor Y into a block l2l3 × l4
matrix. Matvec(Y)= [Y(1);Y(2); ...;Y(l3)], and the operator
fold(·) makes the matrix into the tensor.

Tensor transpose [23]. X is the l1 × l2 × l3 tensor, then we
obtain the l2 × l1 × l3 transposed tensor X † by transposing
each frontal slice matrix X(i) ∈ Rl1×l2 and then reversing
the order of transposed frontal slices from 2 to l3.

Orthogonal tensor [23]. An n1×n1×n3 tensor U is orthog-
onal if U† ∗ U = U ∗ U† = In1n2n3

, where I ∈ Rn2×n2×n3

is an identity tensor. The first frontal slice of I is an identity
matrix of size n2 × n2, and other frontal slices are all zero
matrices. We have:

n3∑
i=1

(U(:, :, i)U(:, :, i)H) = In1
,∑

i 6=j

(U(:, :, i)U(:, :, j)H) = 0n1
.

Tensor singular value decomposition (tSVD) [23]. The
tSVD is defined as follows:

F = U ∗ S ∗ V†,

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are the left and
right singular orthogonal tensor, respectively.

In the tSVD process, first, F̃ is obtained by taking the
FFT along the third dimension of F . That is, we first obtain
the circulant matrix Circ(F), then we make Circ(F) into the
Fourier domain. Circ(F) is transformed as a block diagonal
matrix. Next, we do the truncated SVD decomposition of

each diagonal block matrix D(i), D(i) = Ũ
(i)

M̃
(i)

Ṽ
(i)H

in parallel. Then we fold each slice matrix Ũ
(i)

into an

orthogonal tensor Ũ , Ũ = fold([Ũ
(1)

; Ũ
(2)

; ...; Ũ
(n3)

]). Then,
we obtain U , S , and V by performing the inverse FFT (IFFT)
operation along the third dimension of Ũ , S̃ and Ṽ . Fig.
2 shows a graphical representation for the computation of
tSVD algorithm.

We show the tSVD algorithm in the following Algorithm
1 [23]:

2.4 Scheme Overview
Given a binary function, the code search task is to find sim-
ilar functions in the repository, and achieve high accuracy
and high efficiency. To quickly and accurately search binary
codes (e.g., a function), we seek to map each function into

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 5

Basic Block Embedding
Generation based on
Network Representation
Model

Token Embedding
Generation

0 1 1

0 0 0

0 0 0

Basic Block Feature MatrixC
F
G

A
dj

ac
en

cy

M
at

ri
x

Token embeddings

Function Feature
Vector

Step 1)

Step 2)

Tensor-based Function Embedding Generation

Search

Searching Function
Embedding

Code
Search

Step 3)
Step 4)

…
…

ICFGs

(-0.086, 0.387, 0.415,….)
(-0.374, -1.058,-0.883,…)

…
…

(0.114,1.059,0.883,...)
(-0.374,-0.197,0.109,…)

…

[1.058, 0.883, 0.775, ...]

[-0.374, -1.058,-0.883,…]

[0.835, 0.722, -0.415,…]

(0.928, 0. 958, 0. 803, ...)

(-0.859, -0.691,-0.775,…)

(1.173, 0.777, 0.645, …)

Basic Block embeddings

(0.928, 0. 958, 0. 803, ...)

(-0.859, -0.691,-0.775,…)

(1.173, 0.777, 0.645, …)+
+

Tensor

Compressed
Tensor

Fig. 1: Overview of the tensor embedding-based scheme.

𝑛2

𝑛1
𝑛1

𝑟

∗ ∗
𝑟

𝑛2

Fig. 2: The (reduced) tSVD for a tensor of size n1 × n2 × n3
and tubal-rank r.

Algorithm 1: tSVD [23]

Input: X ∈ Rn1×n2×n3 .
Output: [U ,S,V].

1 X̃ = fft(X , [], 3),
2 for k = 1, 2, 3..., n3 do
3 [Ũ, S̃, Ṽ] = SVD(X̃ (:, :, k)),
4 Ũ (k) = Ũ, S̃(k) = S̃, Ṽ(k) = Ṽ,

5 U = ifft(Ũ , [], 3), S = ifft(S̃, [], 3), V = ifft(Ṽ, [], 3).

a low-dimensional feature vector, and achieve the following
design goals:

• Accuracy. The generated embedding should accu-
rately represent the binary function to ensure an
accurate code search.

• Robustness. The generated embedding can toler-
ate changes caused by different compilers, different
compilation optimization levels, and different CPU
architectures.

• Compact representation. The generated embedding
should be reasonably short, such that both search and
storage of embeddings are efficient.

• Fast embedding generation. The embedding genera-
tion process must be fast enough to process the large

volume of binary code.

As shown in Figure 1, our scheme follows 4 steps: 1)
Token embedding generation based on NLP technique, 2) basic
block embedding generation based on network representation tech-
nique, 3) function embedding based on tensor computation, and
4) binary code search. The first step aims to generate the token
embedding based on inter- procedural control-flow graphs
(ICFG) of the program using the skip-gram model with
negative sampling, which extracts the semantic information
of basic blocks. The second step aims to use the generated
token embedding and the structural information of CFG
to generate basic block embedding. The third is a function
embedding method based on the tensor computation, which
uses a tensor decomposition algorithm to further simultane-
ously generate all function embeddings. Moreover, we pro-
pose a dynamic tensor compression algorithm for updating
the repository. Finally, given a target function, we search
top-K similar functions in the repository using LSH.

This proposed scheme can achieve accuracy and ro-
bustness for the following reasons: 1) we generate the
token embedding based on the ICFG of program, which
extracts semantic information and lexical information of
basic blocks. 2) We leverage the network representation
method with token embeddings to learn the semantic in-
formation and the structural information for basic blocks,
which simultaneously capture its intra- and inter- basic
block features. The intra- basic block feature represents the
semantic information and the lexical information of instruc-
tions (opcode and operand). The inter- basic block feature
represents the semantic information of basic blocks and
the structural information (contextual information) between
basic blocks. 3) In tSVD process, we rely on a circular
convolution operation to extract principal information from
all basic block embeddings within a function to generate the
function embedding.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 6

…

Input

…

…

2nd Random Walk Normalization
push reg4

mov reg4, reg4

sub reg4, imm

push reg4

push reg4

push reg4

lea reg4, mem

mov reg4, imm

mov reg4, imm

rep stosd

mov reg4,imm

test reg4,ptr

jz short, mem

…

Skip-gram
 M

odel w
ith N

egative Sam
pling

Training (-0.086, 0.387, 0.415,….)
(-0.374, -1.058,-0.883,…)

…

Token Embeddings

Fig. 3: Overview of the token embedding generation
scheme.

3 TOKEN EMBEDDING GENERATION

Token embedding generation analyzes instructions in the
inter- procedural control flow graph (ICFG) of binary func-
tions. To generate token embeddings (e.g. opcode embed-
ding and operand embedding), we use instructions of ICFGs
as the input for the skip-gram model. Figure 3 shows the
process of token embedding generation.

Given all programs in a repository, we first build an
NLP-based learning model to obtain all token embeddings.
We do not need to know any prior knowledge of assembly
language. We avoid to manually specify all instruction sets
of assembly language. To better learn the semantic informa-
tion and the lexical information of instructions, we use the
dependency information of the program, which is extracted
from ICFG. The ICFG contains some contextual information
of instructions, which can be used to differentiate semanti-
cally similar basic blocks in different contexts.

In this section, we proposed an unsupervised NLP
method based on the program-level ICFG. Specifically, we
modify a skip-gram algorithm with negative sampling to
extract semantic information for basic blocks [20]. We take
into account the contextual semantic information for learn-
ing token embedding by generating token sequences from
ICFG.

The number of instructions in the ICFG of a program
is much larger than the number of instructions in the CFG
of a function, which may lead to a low efficiency problem.
To solve this problem, we use the node2vecWalk method to
scale to the random walk generation time. Node2vecWalk
algorithm can efficiently explore diverse neighbor instruc-
tions. Moreover, we use a skip-gram model with negative
sampling to train the token embeddings. Negative sampling
can effectively reduce the training time of the NLP-based
neural network.

Specifically, we have the following steps:

1) Generate the token sequences by using the
node2vecWalk random walks method.

2) Normalize the serialized codes by defining some
specific notations.

3) Train the skip-gram model with negative sampling
to obtain the token embedding.

Before performing a skip-gram training model, we need
to generate the sequence of all instructions in a program.

This sequence needs to preserve control flow dependency
information between basic blocks, and decides the con-
text of instructions. The context of instructions is used
to extract the semantics of each token. First, we generate
random walks in ICFG by using node2vecWalk method
[20]. The node2vecWalk method uses a 2nd-order random
walk approach to generate context of nodes. Node2vecWalk
generates a set of biased random walks, which can nearly
cover all basic blocks. This random walk set contains diverse
neighborhood sets for a target node. Each random walk
contains one possible binary execution path. In ICFG, the
edge from the entrance instruction to the exit instruction is a
random walk. We put all random walks together to generate
a total instruction sequence for training.

Before training the total instruction sequence, we need to
filter some tokens to refine the binary code, Codee performs
the normalization after obtaining the instruction sequence
in a CFG. We use the following rules to normalize: 1) all
immediate values are represented as the special symbol
‘imm’; 2) all base memory addresses are represented as
the special symbol ‘mem’. 3) general registers are renamed
according to their lengths; 4) pointers are replaced with
string ptr. The 3) and 4) are the same as the normalization
of DeepBinDiff [17]. We do this filtering because we believe
that there is a small benefit from raw operands.

Codee inputs the generated total instruction sequence
into the skip-gram model with negative sampling [18]. In
our case, we consider each token (opcode or operand) as a
node, and consider generated random walks of ICFG as sen-
tences. The neighbors of each token are as its context. Model
training is only an one-time effort. We use a skip-gram
algorithm with negative sampling to capture the contextual
semantic information of nodes. The contextual information
comes from the random walk sequence of instructions in
ICFGs.

Skip-gram algorithm with negative sampling defines its
objective function as follows [18]:

max
f

∑
i∈V

[− logZi +
∑

nj∈N(i)

f(nj) · f(i)], (2)

where Zi =
∑

v∈V exp(f(i) · f(v)), f is the mapping func-
tion from nodes to feature representations, and N(i) ⊂ V
is a neighborhood of token i generated through a neighbor-
hood sampling strategy.

As shown in Figure 3, we can see that the target token
is “push ” (red color), One instruction before and after this
target token in the random walk is as the context (e.g., sub
reg4, imm and push reg4, shown in green color). If the target
instruction is at the block boundary (e.g., entry instruction
or exit instruction in the block), it has one adjacent instruc-
tion as its context.

4 BASIC BLOCK EMBEDDING GENERATION

After obtaining the token embeddings, we generate the
feature vectors of basic blocks. The purpose of basic block
embedding generation is to obtain a low dimensional rep-
resentation based on the generated token embeddings and
the structural information of CFG. As shown in the Fig. 3,
a binary function contains several basic blocks, each basic
block includes an instruction or multiple instructions, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 7

each instruction contain one opcode and one operand or
multiple operands. According to token embeddings (opcode
embedding and operand embedding) within a basic block,
we concatenate the opcode embedding with the average
feature vector of the operand embeddings to generate in-
struction embedding. Then we further sum up all instruc-
tion embeddings within a basic block to compute the feature
vector of basic block.

We model the basic block embedding generation prob-
lem as a network representation learning problem. We feed
the basic block feature vectors and function control flow
contextual information into the proposed basic block em-
bedding algorithm. Motivated by two efficient network em-
bedding frameworks, AANE [21] and LINE [22], we design
a basic block embedding generation algorithm. We combine
control-flow graph structural information and semantic in-
formation of the basic blocks to generate high-quality basic
block embeddings. Hence, the generated basic block embed-
ding contains intra- and inter- basic-block features. In the
following contents, we first propose the objective function
of the basic block embedding generation. Then we give the
iteration steps to compute the basic block embeddings.

4.1 Loss Function

Based on the CFG and the basic block feature vectors
generated in the prior steps, we propose an algorithm to
generate basic block embeddings. The similar basic blocks
can be represented as similar embeddings. First, we use
each basic block feature vector within a CFG generated
in the prior steps as a row of basic block feature vector
matrix B. Then we obtain the affinity matrix of basic block
feature vectors S. Each element in S can be calculated as
cosine similarity between two basic block feature vectors,
sij = cosine(Bi,Bj), where the i-th column Bi of B is the
feature vector of the basic block i. The element sij shows
the similarity between two basic block feature vectors in a
function, which approximates the product of the generated
basic block embeddings Ci and CH

j , where Ci and Cj are
the i-th and j-th basic block embeddings of C. S is a
symmetric matrix that can be decomposed as CHC, where
C ∈ Rd×n, d ≤ n, is the basic block embedding matrix.
Based on the symmetric matrix decomposition, the key
factor is to force the product of two basic block embeddings
to be the same as its corresponding similarity sij . The loss
function is defined as:

LS = ||S− CHC||2F =
n∑

i=1

||Si − CHCi||22, (3)

where Si is the i-th column of S, Si shows similarity values
between the i-th basic block feature vector and other basic
block feature vectors in a CFG.

The generated basic block embedding also needs to
consider the transitions between basic blocks, which is the
structural information of a CFG. Graph embedding is used
to transform the graph into a vector [9], [22]. In the CFG of a
binary function, an edge represents the probabilistic depen-
dency relationship between two basic blocks, and the code
execution result of one father basic block affects the children
basic blocks. In CFG, a basic block is a node, the second-order
proximity [22] denotes the conditional probability of node j

generated by node i using Ci and Cj [26], which shows the
probability of a random jump from node i to node j. The
empirical probability of second-order proximity between the
node i and j is defined as aij

oi
, where aij is the weight of the

edge (i, j) and oi is the out-degree of node i. According
to the adjacency matrix, we know aij = 0 or aij = 1.
For a directed edge (i, j), the node transition probability
is defined as follows:

p(j|i) =
exp(CH

j Ci)∑
l∈V exp(CH

l Ci)
.

This second-order proximity exists between any pair of
connected nodes in a graph [22]. To obtain the function
feature vector, we use the following loss function by min-
imizing the KL-divergence distance between the empirical
probability of a directed edge and its conditional probability
in a CFG, then we simplify the loss function:

LW = −
∑

j∈N(i)

aij log p(j|i). (4)

We use LS and LW to embed the function based on
the influence of the structural information of CFG and the
semantic information of basic blocks. We consider the dual
influence of Eq. (3) and Eq. (4), and obtain the following loss
function:

min
C

L =
n∑

i=1

||Si−CHCi||22+λ(−
∑

j∈N(i)

aij log p(j|i)). (5)

4.2 The Proposed ADMM Algorithm

The alternating direction method of multipliers (ADMM) is
a popular iteration algorithm, which was efficient to solve
optimization problems with multiple non-smooth terms in
the objective function [27]. Most existing works show that
ADMM is a simple but useful algorithm that is good at
distributed convex optimization. We follow the ADMM
algorithm to solve the loss function of our proposed basic
block embedding algorithm.

Scalar λ denotes a trade-off between the contributions of
the structural information of CFG and the semantic informa-
tion of basic block. The smaller λ is, the less influence weight
of CFG topology is considered in the basic block embedding
vector Ci. In this work, we choose the λ = 1, such that the
CFG topology and the basic block features have the same
influence in C. Section 6.10 evaluates different selections of
λ.

Problem (5) is separable for Ci and reformulated as a bi-
convex optimization problem. We copy C = H. Eq. (5) can
be rewritten as

min
C

n∑
i=1

||Si −HHCi||22 − λ
∑

j∈N(i)

aij log
exp(HH

j Ci)∑
l∈V exp(HH

l Ci)

= min
C

n∑
i=1

||Si −HHCi||22 − λ
∑

j∈N(i)

aijHH
j Ci

+ λ
∑

j∈N(i)

aij log(
∑
l∈V

exp(HH
l Ci))

subject to Ci = Hi,
(6)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 8

where Hi and Hj are the i-th and j-th column of H. Since the
Euclidean norm is convex, the first part of Eq. (6) is convex.
Since the linear function is convex, the second part of Eq. (6)
is convex. Since the exponential linear function is convex,
the third part of Eq. (6) is convex too. Therefore Eq. (6) is
convex when Ci is fixed, and Hi is convex, and vice versa.
Motivated by the Alternating Direction Method of Multi-
pliers (ADMM) [27], we use the augmented Lagrangian to
formulate Eq. (6):

L =
n∑

i=1

||Si −HHCi||22 − λ
∑

j∈N(i)

aij log
exp(HH

j Ci)∑
l∈V exp(HH

l Ci)

+
ρ

2

n∑
i=1

(||Ci −Hi + Zi||22 − ||Zi||22),

(7)

where Si is the i-th column of S, columns Z1,Z2, ...,Zn ∈ Rd

are dual variables, and ρ > 0 is the penalty parameter.
To minimize L, it is converted to find the saddle point.

Thus finding optimal H and C. The corresponding opti-
mization problems in terms of each basic block i at iteration
t+ 1 are formulated as

Ct+1
i =argmin

Ci
||Si −HtHCi||22 +

ρ

2
||Ci −Ht

i + Zt
i||22

− λ
∑

j∈N(i)

aij log
exp(Ht

j
H

Ci)∑
l∈V exp(Ht

l
H

Ci)
,

(8)

and

Ht+1
i =argmin

Hi
||SH

i −HH
i Ct+1||22 +

ρ

2
||Hi − Ct+1

i − Zt
i||22

− λ
∑

j∈N(i)

aji log
exp(Ct+1

j

H
Hi)∑

l∈V exp(Ct+1
l

H
Hi)

.

(9)

To minimize L, it is converted to find the saddle point.
Thus finding optimal H and C. We obtain the derivative of
Eq. (7) w.r.t. Ci and the derivative of Eq. (7) w.r.t. Hi that are
shown as follows:

∂L

∂Ci
= −2HtSi + 2Ht(Ht)

H
Ct+1
i − λ

∑
j∈N(i)

aijHt
j+

λ
∑

j∈N(i)

aij

∑
l∈V Ht

l exp ((H
t
l)

H
Ct
i)∑

l∈V exp ((Ht
l)

H
Ct
i)

+ ρ(Ct+1
i −Ht

i + Zt
i),

(10)

and

∂L

∂Hi
= −2Ct+1Si + 2Ct+1(Ct+1)HHt+1

i − λ
∑

j∈N(i)

aijCt
j+

λ
∑

j∈N(i)

aij

∑
l∈V Ct+1

l exp (Ct+1
l

HHt
i)∑

l∈V exp (Ct+1
l

HHt
i)

+ ρ(Ht+1
i − Ct+1

i − Zt
i).

(11)

Let their derivatives equal to zero.
Let (10) equal to zero. We obtain the update equations

of Ct+1
i . Since Eq. (6) is convex, Ci is the optimal solution

if Ct
i = Ct+1

i . When these two vectors are close enough, we
stop the iteration.

Ct+1
i =

2HtSi + λ
∑

j∈N(i) aijHt
j + ρ(Ht

i − Zt
i)

2Ht(Ht)H + ρI

−
λ
∑

j∈N(i) aij
∑
l∈V Htl exp (Htl

HCti)∑
l∈V exp (Htl

HCti)

2Ht(Ht)
H
+ ρI

.

(12)

Let (11) equal to zero. We obtain the update equations of
Ht+1

i . The Hi (Eq. (13)) follows the Ci rules,

Ht+1
i =

2Ct+1Si + λ
∑

(i,j)∈E aijHt
j + ρ(Ht

i − Zt
i)

2Ct+1(Ct+1)H + ρI

−
λ
∑

(i,j)∈E aij
∑
l∈V Ct+1

l exp ((Ct+1
l)HHti)∑

l∈V exp ((Ct+1
l)HHti)

2Ct+1(Ct+1)H + ρI
.

(13)

As shown in Algorithm 2, we use the Eq. (12) and Eq.
(13) to calculate the final basic block embedding matrix
C after T iterations. Then we feed the C into the tensor,
and perform tensor singular value decomposition (tSVD)
to generate the concise function embeddings for all binary
functions in the repository. We show the tensor-based func-
tion embedding generation in the next section.

Algorithm 2: Basic Block Embedding
Input: adjacent matrix of CFG: A, basic block feature

matrix: B, affinity matrix of basic block feature
vectors: S, and maximum iteration number T .

Output: Basic block embedding matrix: CT .
1 Initial basic block embedding matrix C0 ← first d

right singular vectors of B,
2 Z0 = 0, H0 = C0,
3 for t = 0, 1, 2, ..., T − 1 do
4 for i = 1, 2, ..., n do
5 Update Ct+1

i using Eq. (12),

6 Obtain Ct+1, where Ct+1
i is the i-th column of

Ct+1,
7 for i = 1, 2, ..., n do
8 Update Ht+1

i using Eq. (13),

9 Obtain Ht+1, where Ht+1
i is the i-th column of

Ht+1,
10 Zt+1 = Zt + (Ct+1 −Ht+1),

Time Complexity Analysis Algorithm 2 uses ADMM
algorithm to make it converge in a few iterations. The
time complexity of initialization isO(m2n), the initialization
needs to calculate singular vectors of matrix B of size m×n
using truncated SVD algorithm. Since m is a small defined
fixed constant, so the time complexity of initialization is
O(n). Before performing the Algorithm 2, the affinity matrix
S also needs to be calculated, which costs O(n2) for obtain-
ing each element value. At each iteration, the updating time
for Ci should be O(d2n+dn+d|N(i)|), since it mainly costs
time for matrix multiplication, where |N(i)| is the number
of adjacent basic blocks. Since d << n, the updating time
for Ci is O(n), and the updating time for Hi is also O(n).
Therefore, the total time complexity of Algorithm 2 isO(n2).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 9

Fu
nc
tio
n
1

…

Program	1

Embeding of

Colored	Position: Function	Embeding	Value

Gray	Position: Padding	Value, Zero

𝐹(?)

𝐹(ABC?)

𝐹(D)

𝐹(B)

𝐹(?)

𝐷(?)

𝐷(D)

𝐷(AB)

Circ(.)

FFT

Program	2

Program	𝑛2

Fu
nc
tio
n	
𝑛 3

𝐹(AB)

𝐹(?)𝐹(D)

𝐹(AB)

Program

Feature

Program

C
om

pressed
Feature

Fig. 4: Function embedding generation process using tSVD
algorithm. Left matrices show program representations.

They are inserted into the tensor consecutively. Right
process shows the tensor embedding.

5 FUNCTION EMBEDDING GENERATION

After obtaining basic block embeddings, we obtain the
function feature vector f based on basic block embedding
matrix C. The f vector can be represented as an aggregation
of all basic block embedding vectors in C. C ∈ Rd×n is
vectorized as an n1-dimensional function feature vector f
by column, where n1 ≥ d× n.

Tensor computation is essentially a basic operation in
the deep learning and machine learning, and tensor de-
composition has emerged as a powerful tool to describe
multi-linear relationships between high-dimensional data.
When we obtain each function feature vector f , we feed all
function feature vectors in a tensor F , and then compress F
to extract the principal features of each function by using
the tSVD [28]. As shown in Fig. 4, first, F̂ is obtained
by taking the fft() operation along the third dimension of
F . Then, each frontal slice matrix of F̂ takes truncated
SVD: F̂(i) = Û(i)M̂(i)(V̂(i))H . Next, we use the top n4
columns of Û(i), that is U(:, :, i) = Û(i)(:, 1 : n4), and run
ifft() operation along the third dimension of U to build the
orthogonal tensor U . Finally, we use the U to compress the
tensor F .

5.1 Tensor Representation
We first show how to build a tensor using all function
feature vectors generated in the prior steps. The tensor can
be represented as F ∈ Rn1×n2×n3 , the tensor dimensions
n1, n2, and n3 denote the length of a function feature vector,
the number of programs, and the number of functions in a
program, respectively. A program contains multiple binary
functions, then a program feature can be represented as a
matrix F ∈ Rn1×n3 . F = [F1 F2 ... Fn3], a column Fi

of F is a function feature vector of a program. The order
of function feature vectors in F is based on the order of

assembly function sequence number that is extracted by
IDA Pro1.

Different functions have different numbers of basic
blocks. We extract n1 basic blocks. If the number of basic
blocks is less than n1, and we pad 0s at the tail of the
function feature vector. Different programs have different
numbers of functions. For example, one program has k1
assembly functions, while another program has k2 assembly
functions, k1 6= k2; a program has n3 assembly functions at
most. We use F(:, i, :) = [F1 F2 ... Fk1 ... 0] to denote one
program, and F(:, j, :) = [F′1 F′2 ... F

′
k2

... 0] to denote
another program.

5.2 Tensor Compression

After building the tensor, we use tSVD to compress the ten-
sor to generate the function embeddings. The tSVD is pro-
posed for high-dimensional data compression, which can
grasp the main features and disregard the noise information.
If two function feature vectors have mostly similar values,
they will be compressed as similar values. We use the tSVD
to compress all function feature vectors, which enables us
to solve the function misalignment problem and extract the
principal function feature. Since tSVD is based on circular
convolution operation, we consider that the circular convo-
lution operation can capture the misaligned correlation in
function feature vectors. Kilmer and Martin [23] proposed
tSVD algorithm to compress the image, and Kuang and
Yang [29] showed that 94% of information is concentrated
on the first 21% maximum singular values. In the tSVD, the
majority of information is concentrated on the top several
maximum singular values.

Algorithm 3 shows the function embedding generation
process, we build the tensor F , then perform tSVD for F
and obtain the orthogonal tensor U . Next, we obtain the
compressed tensor R by calculating R = U† ∗ F , where
U ∈ Rn4×n1×n3 , R ∈ Rn4×n2×n3 , and n4 < min (n1, n2).
The term n4 is the size of the compressed function em-
bedding vector. Finally, we store every function embedding
vector:R(:, i, j), and its corresponding debug symbol (func-
tion name) in the repository, R(:, i, j) represents the j-th
function of the i-th program.

Algorithm 3: Function Embedding Generation

Input: Tensor representation F ∈ Rn1×n2×n3 .
Output: Function embedding tensor R.

1 F̂ =fft(F , [], 3),
2 for i = 1, 2, ..., n3 do
3 [Û(i), M̂(i), V̂(i)] =SVD(F̂(:, :, i))
4 U(:, :, i) = Û(i)(:, 1 : n4),

5 M(:, :, i) = M̂(i)(1 : n4, 1 : n4),

6 V(:, :, i) = V̂(i)(:, 1 : n4),

7 U =ifft(U , [], 3),M =ifft(M, [], 3), and
V =ifft(V, [], 3),

8 F = U ∗M ∗ V†,
9 R = U† ∗ F .

1. https://www.hex-rays.com/products/ida/index.shtml

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 10

The circular computation of tSVD shown in Figure 4
solves the basic block misalignment problem in a tensor.
That is, the ordering of basic blocks in one function may not
match with the ordering of basic blocks in a semantically
equivalent or similar function. When we put all the function
feature vectors in the tensor, the operator Circ(·) of the tSVD
considers all permutations of the function feature vectors.
Most existing works show that the majority of information
is concentrated on the top few maximum singular values in
tSVD decomposition [23], [29], [30].

5.3 Order Problem
In this section, we show the reason that the tensor-based
function embedding generation method can handle the or-
der problem of function feature.

Similarity Computation of Misaligned Functions. Since
the function sequences are different in different programs
and the different arrangements of vectors form different
tensor representations, we need to consider the misalign-
ment problem of function feature vectors in the tensor. The
decomposition algorithm needs to solve the function fea-
ture misalignment problem. In the tSVD algorithm, Circ(·)
operation and fft algorithm are the circular convolution
computation that can capture the misalignment correlation
of function feature vectors.

We use a simple example to show how to deal with the
order of each function feature vector by tSVD. The initial
tensor is represented as follows:

F(:, :, 1) =

 1 8 13
2 6 12
3 7 11

 F(:, :, 2) =
 8 11 3

6 12 2
7 13 1

F(:, :, 3) =

 11 2 7
12 3 6
13 1 8

 ,
where F(:, :, i) represents the i-th function feature vectors
of all programs, and F(:, j, i) represents the i-th function
feature vector of the j-th program.

The embedded function feature tensor R is as follows:
R(:, :, 1) = [3.0009 7.6717 − 0.9014]

R(:, :, 2) = [8.2165 − 0.1381 1.9324]

R(:, :, 3) = [0.2867 3.3008 7.5284],

where R(:, :, i) represents the i-th embedded function fea-
ture values of all programs after compressing F , and
R(:, j, i) represents the i-th embedded function feature of
j-th program.

If two vectors have the most same values, we consider
these two vectors to be similar. We can see that the first
function feature vector F(:, 1, 1) is similar to F(:, 3, 2) and
F(:, 2, 3), which has most of the same values, although the
value sequences of these vectors are different. They are em-
bedded as three most similar embedded values R(:, 1, 1) =
3.0009,R(:, 3, 2) = 1.9324, andR(:, 2, 3) = 3.3008. Besides,
F(:, 2, 1), F(:, 1, 2), and F(:, 3, 3) are embedded as three
most similar values: R(:, 2, 1) = 7.6717, R(:, 1, 2) = 8.2165,
and R(: 3, 3) = 7.5284. In this example, all similar func-
tion feature vectors in F have similar embedded function
feature values in R after compressing the original tensor F .
This example demonstrates that the function sequences in

different program matrices have less influence in embedded
function feature values.

Principal Function Feature Extraction. The tSVD algorithm
is proposed for high-dimensional data compression, which
can grasp the main features and disregard the noise infor-
mation. If two function feature vectors have mostly similar
values, they will be compressed as a similar value. We use
an example to illustrate this issue. The initial tensor is as
follows:
F(:, 1, :) = [1 5 11; 2 6 12; 3 7 13; 4 8 14; 0 0 15; 0 0 16]

F(:, 2, :) = [1 5 11; 3 7 12; 4 8 13; 0 6 14; 0 0 15; 0 0 16]

F(:, 3, :) = [1 6 11; 2 7 12; 3 8 13; 0 0 14; 0 0 15; 0 0 16].

After compressing F , a 6-dimensional function feature
vector is embedded as an 1-dimensional embedded function
feature vector. One function feature vector is F(:, 1, 1) =
[1 2 3 4 0 0]. Another two function feature vectors are F(:
, 2, 1) = [1 3 4 0 0 0] and F(:, 3, 1) = [1 2 3 0 0 0]. These
similar function feature vectors are embedded as three most
similar values, −20.0863, −21.6922, and −20.9557. The tSVD
decomposition process thus loses some information but obtains
the main features. In our evaluation, if we compress the original
function feature values down to 25% (compression ratio p from
Eq. (9) is 4), the embedded function feature vector will lose 6%
of the information and preserve 94% of the main features.

5.4 Complexity Analysis for Tensor-based Function
Embedding Generation
Time Complexity. The running time of tensor singular value
decomposition (tSVD) consists of the running time of the tensor
unfolding process, the fast Fourier transform (FFT) process, the
truncated SVD decomposition process for all block-diagonal
matrices, and the compression computation. Let Tunf , Tfft, Tsvd,
and Tpro denote the running time of these four processes,
respectively. The total time is the sum of these four times.

Tensor unfolding costs O(1) time. Since Circ(F) is n3 blocks
of size n1 × n2, Tfft = n1n2n

2
3 logn3

√
n1n2. Tsvd =

∑n3
i=1 Tisvd,

where Tisvd is the SVD decomposition time consumed by D(i).
We can simultaneously handle the SVD decomposition of all
of matrix D(i), Tsvd = Tisvd, and Tisvd = n2

1n2. Tpro = n1n2n3

is the compressed time of original tensor by the orthogonal
tensor subspace U . The time complexity of the tensor embed-
ding method is O(1) + O(n1n2n

2
3 logn3

√
n1n2) + O(n2

1n2) +
O(n1n2n3), in which n1 and n3 can be considered as constants
since n1 is the dimension of the function embedding vector
and n3 is the maximal number of functions in a function in the
practical sense. Therefore, the time complexity isO(n2 log

√
n2).

Space Complexity. Let Mu denote the space used to store
orthogonal tensor bases U , the term Mfft and Msvd refer to the
space usages for the FFT algorithm and the SVD decomposi-
tion. M = Mu +Mfft +Msvd. The complexity of M is equal to
O(n1n2n3), Mfft = O((n1 + n2)n3), and Msvd = O(n1n2n3).
Therefore, the space complexity of Codee is O(n1n2n3), in
which n1, n3 can be considered as constants, since n1 is the
dimension of function embedding vector and n3 is the maxi-
mal number of functions in a program at the practical sense.
Therefore, the memory complexity is O(n2).

5.5 Dynamic Tensor Compression
We design a dynamic computation algorithm (Algorithm 4)
for incrementally generating the function embedding. When
updating the database, we need to dynamically calculate newly
added function features, rather than compressing an entire new
tensor that consists of previous function features and newly
increased function features. There is a much greater number
of previous function features than that of the newly increased

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 11

function features. In the dynamic tensor compression, we use a
dynamic SVD decomposition algorithm to improve the original
SVD decomposition process of every block diagonal matrix in
tSVD tensor decomposition. Based on the tSVD decomposition
process, we propose the dynamic tensor compression algo-
rithm, which avoids recalculating the entire tensor, and only
needs to calculate the newly increased portion.

First, we get the previous SVD tensor decomposition re-
sults for each frontal slice in Fourier domain, Û(i), M̂(i), and
V̂(i). Second, according to newly additive extracted function
features, we obtain each frontal slice matrix of additive tensor
F′

(i)
,F′

(i)
= [F(i) F′i], the term F′i is i-th function feature

vector of the additive program and also the n2+1 column of F′.
The new tensor is denoted as F ′. In tSVD tensor decomposition
[23] [31], the i-th new diagonal block matrix is as follows:

D′
(i)

=

n3∑
j=1

[F(j) F′j]ω
(j−1)(i−1)
n3

=

n3∑
j=1

[F(j) 0]ω(j−1)(i−1)
n3

+

n3∑
j=1

[0 F′j]ω
(j−1)(i−1)
n3

= [D(i)
n3∑
j=1

F′jω
(j−1)(i−1)
n3

],

where ωn3 = e
j 2π
n3 , and j =

√
−1.

Third, we use an incremental truncated matrix SVD decom-
position [32] [33] to obtain each frontal slice matrix of new
orthogonal tensor U ′ shown in Algorithm 4. Finally, we use
the U ′ to obtain the new function embedding tensor R′.

Algorithm 4: Dynamic tensor compression

Input: [U(i), M(i), V(i)] = svd(D(i)), i ∈
[1, 2, ..., n3], f ′j is j-th function feature vector
of an additive program.

Output: New embedded tensor R′, new orthogonal
tensor subspace U ′.

1 D′
(i)

= (D(i)
∑n3

j=1 f
′
jω

(j−1)(i−1)
n3);

2 L = UH
∑n3

j=1 f
′
jω

(j−1)(i−1)
n3 ;

O =
∑n3

j=1 f
′
jω

(j−1)(i−1)
n3 −UL ;

3 J is the orthogonal basis of O;
4 K = JHO by QR decomposition;

5 [U,J]

[
diag(M) L

0 K

][
V 0
0 I

]H
= D′

(i) ;

6 Q =

[
diag(M) UH

∑n3

j=1 f
′
jω

(j−1)(i−1)
n3

0 K

]
;

7 [U′′,diag(M′′),V′′] = svd(Q);
8 U′

(i)
= [U(i),J]U′′,M′

(i)
= M′′,

V′
(i)

=

[
V(i) 0;
0 I;

]
V′′;

9 U ′ = fold([U′(1),U′(2), ...,U′(n3)]);
10 U ′ = ifft(U ′, [], 3), R = U ′(:, 1 : n4, :)

⊥ ∗ F .

6 EXPERIMENTAL EVALUATION

We now evaluate Codee concerning its effectiveness and ef-
ficiency for three different scenarios: cross-architecture, cross-
compilers, and cross-optimization-levels. We also consider the
accuracy of code search in the mixed dataset of these three sce-
narios. Furthermore, we conduct a case study to demonstrate

the usefulness of Codee in real-world vulnerability analysis. We
release the source code of Codee on GitHub2.

6.1 Implementation
Codee consists of three main components: token-level embed-
ding generation, basic-block-level embedding generation, and
function embedding generation. We extract the CFG by using
a platform-agnostic binary analysis framework, ANGR. We
implement our model in Python, and the tensor computation
process in Matlab with tensor toolbox 2.5.

6.2 Experiment Setup
Our experiments are conducted on a server with 32GB memory
and 128GB SSD hard drives. In addition, a server with 2 CPU
at 3.2GHz and 2 NVIDIA GeForce GTX rtx5000 is used for our
token-level embedding generation process, Asm2Vec model,
Gemini model, Safe model, and DeepBinDiff model in the
comparative experiments.

According to the statistics for our datasets, 98.8% of basic
blocks have fewer than 30 instructions, and 97.0% assembly
functions have fewer than 200 basic blocks. Compared with
other large networks, such as the social network with millions
of nodes, most CFGs in our data sets are small graphs with
a handful of nodes. The lengths of basic blocks in CFGs are
also short, so in the basic block embedding process, we embed
a basic block as a value, set d = 1. A function feature vector
is obtained by vectorizing the basic block embedding matrix
by columns; we set n1 = 200. In our data sets, we compile
n2 = 1, 333 binary libraries, and a binary file has n3 = 1000
assembly functions at most. Choosing the size of final function
embedding n4 = 20, expect for discussing n4 in Figure. 13.

6.2.1 Datasets
We collect binary functions from the following programs as
our dataset for evaluation, including OpenSSL3, Coreutils4,
libgmp5, and libcurl6. We compile the dataset using different
architectures (x86-64, ARM, and MIPS), different compilers
(GCC5.4.0 and CLANG3.8.0) and different optimization levels
(O0-O3). In total, we extract 257, 681 assembly functions using
ANGR. Moreover, compiling OpenSSL and bash of different
versions (e.g., OpenSSL-1.0.1{a,e,f,g} and bash-{4.2, 4.3}) using
two different compilers, GCC 5.4 and CLANG 3.8 with x86-64
and O0. This cross-version dataset contains 14, 859 assembly
functions in 12 programs.

Ground Truth. To properly evaluate the experiments, we
use the debug symbol information of binary functions to in-
dicate whether two binary functions are empirically matching.
Particularly, for each input binary function, we first map the
binary function name with the index of this binary function in
the repository. We link their assembly functions by using the
compiler-output debug symbols and generate an one-to-one
mapping between function names and function embeddings.
This mapping is written in the feature database, which is used
as the ground truth.

To compare our evaluation with state-of-the-art techniques,
we use two specific datasets. One is used to compare with
Safe and Gemini, which support cross-architectures and cross-
optimization-levels code search. Another is used for comparing
with Safe, DeepBinDiff, and Asm2Vec, which support cross-
versions and cross-optimization-levels code search.

1) MixedOpenSSL Dataset. We built the MixedOpenSSL
Dataset that consists of a total of 25, 837 functions

2. https://github.com/ycachy/Codee
3. https://www.openssl.org/source/
4. https://ftp.gnu.org/gnu/coreutils/
5. https://gmplib.org/DOWNLOAD
6. https://curl.se/download.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 12

generated from all the binary functions included in
Openssl that have been compiled for ARM, MIPS, and
x86-64 using GCC-5.4 with 4 optimizations levels (i.e., -
O[0-3]). We use ANGR to disassemble this dataset, and
discarded all the functions that ANGR is not able to
disassemble.

2) x86-64CrossOptimizations Dataset. We use four li-
braries by compiling them for x86-64: OpenSSL, Core-
utils, libgmp, libcurl. We use a compiler with GCC-5.4,
and 4 optimization levels (i.e., -O[0-3]) to compile these
libraries. We use ANGR to disassemble this dataset and
obtain 89, 795 functions.

6.2.2 Baseline Comparison Techniques
We select the following baseline methods for comparison:

• Asm2Vec [10]. This scheme learns the assembly code
representation by modeling the CFG as multiple se-
quences based on the PV-DM model. The embedding
size of Asm2Vec is 200, and other training parameters
are the same as its original paper. We access its source
code in the Github7, and evaluate it by using our data
sets.

• Gemini [9]. This scheme learns graph embedding based
on the Structure2Vec neural network. We access its
source code in the Github8, and evaluate it by handling
our data sets. The embedding size of Gemini is 64, and
all other training parameters are the same as the original
Gemini.

• Safe [15] This scheme learns the function embedding us-
ing a word2vec model (called i2v model), bi-directional
recurrent neural network, and a siamese network. We
access its source code in the Github9, and evaluate it by
handling our data sets.

• DeepBinDiff [17]. This scheme produces the basic block
matching based on the word2vec model, and Text-
associated DeepWalk algorithm (TADW). We access its
source code in the Github10, and evaluate it by han-
dling our data sets. Since DeepBinDiff was proposed
for finding the most similar basic blocks between two
binary programs. There are some differences in our code
search of the binary function. To show the accuracy in
the function-level matching, we define that if two binary
functions have at least one similar basic block pair, we
think these two binary functions are similar.

• Order Matters [19]. This scheme generates the function-
level embedding based on the BERT model and CNN
training. Its source codes are not published in the open
web. Since they improved the BERT model that is
proposed by google, the improved BERT needs heavily
strong computation ability. We can not totally complete
their model. We have to use a simple model, a CBOW
model to replace the BERT model. Then we evaluate it
by handling our data sets.

As the source code of Order Matters is not available, we
cannot reproduce the experiments due to the following reasons:

1) Order Matters uses BERT to pre-train the binary
code. The BERT model needs a large number of
high-quantity datasets and strong computation ability,
which is hard to run this model in our laboratory.
Besides, The Order Matters adds two tasks (e.g. block
inside graph task (BIG) and graph classification task
(GC)) in BERT. However, Order Matters does not reveal

7. https://github.com/McGill-DMaS/Kam1n0-Community
8. https://github.com/xiaojunxu/dnn-binary-code-

similarity/blob/master
9. https://github.com/gadiluna/SAFE
10. https://github.com/yueduan/DeepBinDiff

the detailed technology about how to combine the
BERT model and these two tasks.

2) Order Matters also uses the CNN to extract the order
information of CFG nodes. This CNN model needs
a large number of labeled datasets. However, our
method is an unsupervised method, we do not need
the labeled dataset, and we do not have a large number
of the labeled datasets. Besides, Order Matters does
not provide the method how to label the dataset. The
normal CNN labels the single data (e.g. a singular
image) as a sample, but for binary code search problem,
the model needs to label a pair of data (e.g. two CFGs)
as a sample. The label denotes whether two CFGs are
similar, which is different from the normal labeling
method in CNN. We are confused about how to label
the samples.

In our experiments, we use the following two steps to
perform the Order Matters experiments: 1). We replace the
BERT model with the CBOW model, then we pre-process the
results of CBOW model to generate the true pair data and false
pair data. We label the true-pair data as 1 and the false-pair data
as 0. 2). We input all labeled true-pair data and false-pair data
into a siamese network. We train the CNN, message passing
neural network (MPNN) and multi-layer perception (MLP) in
a siamese network to obtain the trained model. Then we use
the final function embeddings that are generated by the trained
model to perform the code search.

Because experiment results of Order Matters are not ideal
in our evaluations, which are different from the original results
of their own paper that are pointed. Therefore, we do not
totally complete the experiments of this paper. We only test
the ROC curves and K-recall curves in MixedOpenSSL Dataset
and x86-64CrossOptimizations Dataset, which comparing with
our model and other baseline methods.

6.2.3 Performance Metrics
In the following subsections, we will evaluate the performance
of Codee in the following metrics.

ROC, F1 score-precision, and K-Recall. Performance is evalu-
ated by ROC (Receiver Operating Characteristics) curve. The
ROC curve is plotted with the recall rate (TPR) against the
false positive rate (FPR) where TPR is on the y-axis and FPR
is on the x-axis. Recall captures the ratio of assembly functions
that are correctly matched. For every query y, suppose there
are r matching functions out of a total of X functions in a
repository and we select the top K most similar functions as
positives, out of which µ functions are correct. In this case, the
true positive rate is Recall = TPR = µ

r
, the false positive rate

is FPR = K−µ
X−r , and the false negative rate is FNR = 1 − µ

r
.

The precision is calculated by Precision= µ/K, and the F1 score
is calculated by F1-score= 2 ∗ precision∗recall

precision+recall
.

Average recall and mean average precision between two bi-
nary programs. Given two binary programs that are compiled
from the same source codes but with different optimization
levels, different architectures, different versions, or different
compilers. We search similar functions in one binary program
against another binary program and compute the recall and the
precision of the function search, then search similar functions
for another binary program against one binary program and
compute the recall and the precision of the function search.
Then we use the average value of these two recalls, and
calculate the mean average precision of these two precision
values. Average recall represents the percentage of ground truth
function pairs that are confirmed to be correctly matched. The
ground truth is collected by examining functions of the two
binary programs containing mapped debug symbol informa-
tion of binary functions. Average precision gives the percentage
of correct matching pairs among all the known pairs. In this

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 13

(a) Recall across different thresh-
olds top-K.

(b) ROC curves.

Fig. 5: Baseline comparisons for MixedOpenSSL Dataset
that are compiled in different architectures, compilers and

optimization levels.

(a) Recall across different thresh-
olds top-K.

(b) ROC curves.

Fig. 6: Baseline comparisons for x86-64CrossOptimizations
Dataset that are compiled in different optimization levels

from different binary function libraries.

case, if we choose fixed K to compute the correct matching
function pairs between two binary programs, and assume that
the correct matching function pairs are m, the ground truth
function pairs are t and the total function pairs are f , the
average recall is m/t, and the average precision is m/f .

Tensor compression metrics. The reconstruction error ratio
denoted as e and feature compression ratio denoted as p are
used for evaluating tensor compression accuracy and efficiency.

The feature reduction ratio of Fn1×n2×n3 is defined as
follows:

p =
n1n2

(n1 + n2 + 1)n4
, (14)

where 1 6 n4 6 min (n1, n2). The reconstruction error ratio of
tensor F is defined as

e =
||F − F||F
||F||F

. (15)

Function feature generation time and search time. We use
the generation time of the function embedding to evaluate
the efficiency of the preparation process. The search time indi-
cates efficiency when searching assembly code on a large-scale
dataset.

6.3 Training Model of Token Embedding Generation
We train three NLP-based models using three training corpora.
One model is for the instruction set of ARM, one for MIPS,
and another for x86-64. With this choice, we try to capture
the different lexical and semantic information of these three
assembly languages. The model that we use for token embed-
ding generation is the skip-gram implementation of word2vec

provided in [20]. Datasets for training the token embedding
generation models are collected from a large number of assem-
bly functions. These assembly functions are compiled from all
libraries in three architectures using ANGR.

6.4 Code Search against Mixed Binary Functions
We evaluate performances of code search for datasets among
different CPU architectures, versions, compilers, and optimiza-
tion levels. We evaluate whether Codee can precisely search
similar assembly functions when the candidate set is from
mixed binary functions. We also evaluate its performance with
varying retrieval thresholds to inspect whether true positives
are ranked at the top. We select all binary functions from
the OpenSSL dataset, which are a mixture of functions from
OpenSSL-1.0.1 a, e, g, f versions compiled for x86-64, MIPS,
and ARM architectures with O0, O1, O2, and O3 optimization
levels. There are 53, 919 assembly functions.

Specifically, we collect the test set Y by randomly choosing
3000 functions, and consider the rest functions of the OpenSSL
dataset as a search base. For each query y in Y , we search it in
the rest to find similar functions. We sort the results and evalu-
ate each of them in sequence. Figure 5(a) plots the recall across
different values of K for cross-architecture cross-versions, and
cross-optimization-levels OpenSSL dataset. Codee outperforms
the other schemes for every K by large margins.

Figure 5(b) shows the ROC curves of the four schemes. ROC
curves are computed from queries across 3000 test functions.
Figure 5(b) substantiates that Codee can achieve better accuracy
than the other state-of-the-art methods. Assembly functions
that are compiled from different architectures change more
significantly. Both Codee and Gemini can capture the control
flow structure in a function. In comparison, Codee performs
even better than Gemini and Safe. In Gemini, the CFG of a
function is first transformed into an annotated CFG, a graph
containing manually selected features, and then embedded into
a vector using the graph embedding model (Structure2vec).
The manually extracted features used by Gemini may lose some
semantic information between basic blocks in a function. Codee
replaces manual features with an unsupervised NLP-based
pre-trained model for token embedding generation. Codee
led to a 2% − 15% performance improvement than Gemini.
Safe uses a skip-gram method-based embedding model i2v
and a bi-directional recurrent neural network to train the
model. Codee led to a 3% − 8% performance improvement
than Safe. The neural networks of Safe are complex and
heavily rely on high-quality dataset. Specifically, for function
search in mixed OpenSSL dataset, at k ∈ {5, 15, 25, 35, 45} we
have recall values {37.72%, 49.06%, 54.97%, 63.12%, 68.01%}
for Codee, {39.2%, 42.2%, 47%, 51.9%, 52.4%} for Safe,
{31.06%, 35.87%, 39.09%, 45.56%, 46.26%} for Gemini, and
{17.64%, 25.49%, 26.47%, 28.43%, 29.41%} for Order Matters.

6.5 Code Search across Optimization Levels
In this experiment, we individually evaluate the code search
performance against different optimization levels. We use all
1, 333 different binary programs from OpenSSL, libcurl, libgmp
and Coreutils libraries that are compiled only by the O0-O3
optimization levels in the x86-64 architecture. In particular, each
binary is diffed two times (O0 vs O3, O1 vs O2) and average
recall and precision results are reported in Table 2. Table 2
shows the recall ratio and precision at top-K = 1 between
two binary programs with optimization levels, O0 Vs. O3, and
O1 Vs. O2. The results meet our expectations. In general, it
is more difficult to search binary code between O0 and O3.
Codee achieves the best results, even for a search between
O0 and O3: the average recall can still correctly match 82.5%
of assembly functions, while Asm2Vec is 74.8%, DeepBinDiff
is 70.9%, Gemini is 77.9% and Safe is 81.7%. Binary libraries

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 14

TABLE 2: Average recall and average precision between optimization levels

Optimization O0 vs. O3
Recall Precision

Baselines Codee Asm2Vec DeepBinDiff Gemini Safe Codee Asm2Vec DeepBinDiff Gemini Safe
OpenSSL 0.809 0.790 0.778 0.774 0.799 0.789 0.613 0.531 0.679 0.69
Coreutils 0.712 0.670 0.623 0.780 0.768 0.819 0.66 0.618 0.778 0.869
libgmp 0.979 0.810 0.720 0.889 0.907 0.828 0.667 0.730 0.807 0.812
libcurl 0.798 0.720 0.714 0.672 0.792 0.811 0.778 0.762 0.744 0.792
Average 0.825 0.748 0.709 0.779 0.817 0.854 0.680 0.660 0.752 0.816

Optimization O1 vs. O2
Recall Precision

Baselines Codee Asm2Vec DeepBinDiff Gemini Safe Codee Asm2Vec DeepBinDiff Gemini Safe
OpenSSL 0.990 0.971 0.846 0.924 0.961 0.864 0.804 0.798 0.812 0.835
Coreutils 0.912 0.975 0.911 0.901 0.924 0.955 0.914 0.889 0.905 0.915
libgmp 0.982 0.860 0.901 0.916 0.927 0.937 0.911 0.896 0.901 0.923
libcurl 0.811 0.765 0.721 0.856 0.877 0.821 0.818 0.806 0.872 0.890
Average 0.924 0.893 0.845 0.899 0.922 0.894 0.862 0.848 0.873 0.890

that are compiled by O1 and O2 tend to be more similar than
others. The average recall of Codee is 92.40%, which is higher
than other schemes. The recall and precision rates in cross-
optimization-level binary diffing are lower than that of cross-
version diffing, since the compiler optimization techniques can
greatly transform the binary codes.

Figure 6(a) plots the recall across different values of K
for cross-optimization-levels of four binary libraries. Codee
outperforms Asm2Vec, Order Matters and Safe for most K
by large margins. Figure 6(b) shows the ROC curves of the
four schemes. ROC curves are computed from queries across
3000 test functions. Figure 6(b) substantiates that Codee can
achieve better accuracy than the other state-of-the-art methods.
Moreover, Figure 7 further presents the Cumulative Distribu-
tion Function (CDF) figures of the F1-scores for three diffing
techniques on OpenSSL binary libraries in cross-optimization-
level diffing settings (o0 vs. o3, o1 vs. o3, o2 vs. o3, and o1
vs. o2). From the CDF figures we can see that Codee, Safe,
Gemini, Asm2Vec and DeepBinDiff have somewhat similar F1-
scores, while Codee performs much better. Safe uses two neural
networks to learn the sequence information of instructions,
which only considers the binary function as language, but
lose the structural information of binary function. DeepBin-
Diff, Asm2Vec and Safe heavily rely on NMT-based neural
networks, which needs an amount of high-quality train dataset.
Codee uses a network embedding-based method and a tensor
computation-based method that performs a circular convolu-
tion operation. These two parts learn the structural information
of code and preserve the semantic information of instructions.

6.6 Code Search across CPU Architectures
Table 3 shows the code search results between different ar-
chitectures (x86-64, MIPS, and ARM). The results meet our
expectation, Codee performs much better than other schemes
that support the cross-architecture methods: the average recall
of Codee is 85.1%, while Gemini achieves 68.30%, and Safe
achieves 81.0% for the comparison between ARM and x86-64.
Figure 8 further presents the Cumulative Distribution Function
(CDF) figures of the F1-scores for three different techniques on
OpenSSL binary libraries in cross-architecture diffing settings
(ARM vs. x86-64, MIPS vs. x86-64, and ARM vs. MIPS). Again,
from the CDF figures we can see that Codee, performs much
better than Safe and Gemini. Since Safe do not support the
MIPS architecture, we do the Safe experiment in ARM and x86-
64 architectures. Compared with Safe, Codee uses a network
embedding-based method and a tensor computation-based
method that performs a circular convolution operation. These
two parts learn the structural information of code and preserve
the semantic information of instructions. Safe uses two neural

networks to learn the sequence information of instructions,
which only considers the binary function as language, but lose
the structural information of binary function.

6.7 Code Search across Compilers
We use all the libraries to evaluate the performance of Codee
across compilers. Table 4 lists average recall between different
compilers. We compile the functions in each library by x86-
64 architecture and the O3 optimization level. In comparison
between GCC and CLANG, for each library, we search each
function that are compiled by GCC in all functions that are
compiled by CLANG, and we search each function that are
compiled by CLANG in all functions that are compiled by GCC,
and then we calculate the average recall. We can see that Codee
performs substantially better than the baseline schemes. On
average, Codee achieves 90.1%, Asm2Vec 77.1%, Gemini 74.9%,
DeepBinDiff 83.0%, Safe 86.55%. Figure 9(c) further presents
the Cumulative Distribution Function (CDF) figures of the F1-
scores for Codee, Gemini, Safe, DeepBinDiff and Asm2Vec on
OpenSSL binary libraries between GCC and CLANG. We can
see that Codee, performs better than other techniques.

Moreover, we use each function as a query in a known (to
be) vulnerable binary programa and try to search other similar
functions that contain similar vulnerable binary codes in the
target database. This target database differs only in that they
are a result of different versions by using different compilation
tools. These similar functions are checked suspicious vulnera-
ble functions. The target dataset contains 7 programs. For all
functions in each program, the task is to retrieve its variants.
The variants are either from different source code versions
or generated by different versions of GCC5.4 and CLANG3.8
compilers.

6.8 Code Search across Versions
For each function in a test program (OpenSSL-1.0.1-a-GCC5.4),
we search top K = 5 similar functions in each target program.
We discuss the recall ratio of similar functions between the
test program and the target program. Each bar in Figure 10
represents a target program, and the height of the bar repre-
sents the recall of similar functions in the target program. The
corresponding compiler vendor and source version are noted
on the X-axis. Bars represent programs generated by the same
source code, they vary in source code versions and compilers
(code version OpenSSL-1.0.1e,g,f). “g” is the patched version.
Figure 10 shows the search results between different versions
and compilers. The different compilers have differing impacts
in recall rate. Codee performs better than Gemini and Asm2Vec
in most cases.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 15

TABLE 3: Average recall and average precision across CPU architectures

Recall ARM vs. x86-64 ARM vs. MIPS MIPS vs. x86-64
Baselines Codee Gemini Safe Codee Gemini Safe Codee Gemini Safe
OpenSSL 0.843 0.546 0.788 0.848 0.549 - 0.718 0.728 -
Coreutils 0.745 0.740 0.772 0.745 0.720 - 0.781 0.746 -
libgmp 0.979 0.847 0.894 0.975 0.787 - 0.987 0.847 -
libcurl 0.836 0.600 0.784 0.682 0.536 - 0.710 0.510 -
Average 0.851 0.683 0.810 0.813 0.648 - 0.799 0.708 -
Precision ARM vs. x86-64 ARM vs. MIPS MIPS vs. x86-64
Baselines Codee Gemini Safe Codee Gemini Safe Codee Gemini Safe
OpenSSL 0.937 0.758 0.885 0.904 0.724 - 0.858 0885 -
Coreutils 0.802 0.759 0.814 0.808 0.784 - 0.811 0.798 -
libgmp 0.983 0.895 0.903 0.989 0.829 - 0.977 0.832 -
libcurl 0.845 0.686 0.798 0.789 0.648 - 0.772 0.650 -
Average 0.892 0.775 0.850 0.873 0.746 - 0.855 0.791 -

(a) O0 vs. O3 (b) O1 vs. O3 (c) O2 vs. O3 (d) O1 vs. O2

Fig. 7: Cross-optimization-level Diffing F1-score CDF.

(a) ARM vs. x86-64 (b) MIPS vs. x86-64 (c) ARM vs. MIPS

Fig. 8: Cross-architecture Diffing F1-score CDF.

TABLE 4: Average recall and average precision between compilers

CLANG vs. GCC
Recall Precision

Baselines Codee Asm2Vec DeepBinDiff Gemini Safe Codee Asm2Vec DeepBinDiff Gemini Safe
OpenSSL 0.973 0.895 0.775 0.714 0.846 0.981 0.902 0.818 0.667 0.857
Coreutils 0.803 0.778 0.842 0.755 0.847 0.860 0.795 0.843 0.612 0.853
libgmp 0.982 0.740 0.939 0.704 0.951 0.989 0.782 0.942 0.798 0.965
libcurl 0.847 0.671 0.762 0.722 0.818 0.869 0.741 0.808 0.748 0.832

Average 0.901 0.771 0.830 0.749 0.8655 0.925 0.805 0.853 0.706 0.877

Moreover, Figure 9(a) and Figure 9(b) further present the
Cumulative Distribution Function (CDF) figures of the F1-
scores for Codee, Gemini, Safe, DeepBinDiff and Asm2Vec on
OpenSSL binary libraries between OpenSSL dataset with dif-
ferent versions. OpenSSL-1.0.1-a is more similar with OpenSSL-
1.0.1-e than OpenSSL-1.0.1-g, where “g” is the patched version.
The CDF curves of Figures 9(a) and 9(b) are obtained by a set

of F1-score values, which is calculated by the corresponding
set of Precision-Recall pairs. According to this set of F1-score
values, we can plot the CDF curve. We should pay attention to
the corresponding abscissa value at the steepest point of CDF
curve, which indicates the probability that F1-score value is less
than or equal to the corresponding abscissa value. Considering
that the larger of this corresponding F1-score value is, the better

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 16

the model is. That is, if the steep point is at a large abscissa
value, it means that the probability of taking a large F1-score
value is large, and the model effect is better. From Figure 9(a)
and 9(b), we can see that Codee has a larger F1-score value at
the steep point of CDF curve than other comparisons methods.
Therefore, we can see that Codee, performs better than other
techniques.

6.9 Efficiency
We evaluate the efficiency of Codee at a large scale, using
190, 090 real-world assembly functions. Specifically, we test the
performance of each phase in Codee. We do not calculate the
disassembling time and extraction time of CFG, since disas-
sembling is a necessary step for all schemes. The extraction
processes of Codee, Gemini, and Centroid are similar. The
extraction time is nearly the same.

Training Time. Training is a one-time effort. We train our
token embedding generation model with the binary functions
in our dataset. We stop the training for each binary when loss
converges or enough epochs (10000 steps). In total, It takes
about 24 hours to finish the whole training process for three
different instruction sets (e.g. ARM, MIPS, x86-24). Asm2Vec,
Safe, and Gemini also need to train their model. Note that the
training process could be significantly accelerated if GPUs are
used.

Tensor Compression. We evaluate the compression efficiency
of the tensor data. The tensor is compressed into a more concise
space.

Figure 11 shows the running time of 190, 090 functions
against different compression ratios. The running time of the
tensor compression increases linearly with an increase in the
number of functions. We comprehensively consider the loss
ratio and detection time. We set the compression ratio p at 0.25.
Before compression, the length of each function feature vector
is different. After compression, each function is represented as
a vector with a fixed length, n4 = 50. The compression time
increases more slowly as the reduction ratio increases.

As shown in Figure 11, we can see different reconstruction
error ratios in different compression ratios. The reconstruction
error ratio decreases as the feature compression ratio increases.
Therefore, we sacrifice only 6.1% of the information in the
tensor to save 57.72% of the running time.

Basic Block Embedding Generation Time. We compare basic
block embedding generation time with three existing code
search schemes: Asm2Vec, Gemini, DeepBinDiff and Safe. Fig-
ure 12 shows that function feature generation time increases as
CFG size increases. Codee, Gemini, and Safe transform the CFG
with basic block raw features of a function to a feature vector.
Function feature generation time of Codee includes function
feature extraction time and tensor compression time, in which
function feature extraction time is 95% of the total time, the
tensor compression time is 5% of the total time for a function.
Gemini uses a neural network-based scheme to train the model
and obtain the function features, which costs time from 25 min-
utes (5 epochs to achieve reasonable performance) to 4.9 hours
(100 epochs to achieve the best performance) by using GPU to
train. Asm2Vec learns to construct a semantic feature vector of
the assembly code, and it needs time to train sequences like
CBOW [34]. The training time of Asm2Vec is nearly 4 hours for
105 functions including 2 × 106 basic blocks on average. The
embedding generation time of DeepBinDiff takes 1.97 seconds
to finish one function embedding generation on average. The
embedding generation time of Safe takes 0.51 seconds to finish
one function embedding generation on average.

Codee only needs 6 minutes to compress the tensor data
with 190, 090 functions. The running time of Codee is mainly
spent on the function feature extraction process and the tSVD

decomposition. Function feature extraction time costs 95% of
total time, while tensor embedding time only costs 5% for each
function. Gemini works on GPU, the number of basic blocks
has little influence for Gemini. Codee takes less time when
the number of basic blocks is less than 1000; 98% of assembly
functions have fewer than 200 basic blocks. Thus we can see
that Codee runs 5 times faster than Gemini on average, and 10
times faster than Asm2Vec on average.

Search Time. This search time shows the LSH search efficiency
when we obtain the all function embeddings in the repository
and the target function embedding. We randomly choose func-
tions as codebase that the number of functions in codebase is
from c = 10 to c = 1, 000, 000. The average search time is close
to 4.6 × 10−6 seconds in 90, 000 assembly functions. For the
search time of a function, Codee takes 0.043 seconds, Gemini
takes 0.1764 seconds for 100 epochs and takes 0.058 seconds
for 5 epochs to obtain a reasonable result. Asm2Vec takes 2
seconds. Our method is the most efficient one. DeepBinDiff
takes about 42 seconds to finish the function search on average.

6.10 Parameter Selection
We systematically evaluate the accuracy of Codee among differ-
ent parameter choices. The parameters include λ, the number
of extracted instructions for each basic block, and function
embedding size (n4). We use all OpenSSL binary functions to
conduct the experiments.

The λ value. To verify the contribution of λ in Eq. (5) of
the function feature extraction, we choose different λ values,
λ = [0, 0.5, 1, 5, 10]. We extract 30 instructions for each basic
block. As shown in Figure 13(a), the larger λ values represent
the higher weight of CFG graph topology structure in the
function embedding. For the normal binary file, too large λ or
too small λwill have a bad influence on the accuracy. We should
balance the influence on both the CFG topology structure and
basic block feature. λ = 1 is a good choice.

Function embedding size. Another important parameter is
the final function embedding size. We compress the extracted
function feature vector as function embeddings of different
sizes. Figure 13(b) shows search results. We can see that the
more function embedding values, the better Codee performs,
since the size of function embedding vector represents different
compressing ratio as shown in Figure 11, the lower compressing
ratio leads to the larger function embedding size, the larger
function embedding size loses less information of original
tensor. If the function embedding size is larger than 50, we
can see that the function embedding size seems not to have a
significant influence on the accuracy of Codee.

6.11 Case Study
We conduct a case study to evaluate how Codee performs
in search of n-day vulnerabilities. In particular, we choose
two vulnerabilities: “Heartbleed” (CVE-2014-0160) in OpenSSL
and “shellshock” (CVE-2014-6271) in Bash. The two vulnerable
functions are compiled using CLANG 3.8. The target dataset
is constructed by compiling OpenSSL and bash of different
versions (e.g., OpenSSL-1.0.1{a,e,f,g} and bash-{4.2, 4.3}) using
two different compilers, GCC 5.4 and CLANG 3.8. In the end,
the target dataset contains 14, 859 assembly functions in 12
programs. Each function takes 0.02 seconds on average to
extract function features, and takes 38 seconds to do tSVD
tensor decomposition for all functions.

When searching the “Heartbleed” vulnerability of
OpenSSL-1.0.1.a-CLANG3.8.0, Codee can find two vulnerable
functions in other OpenSSL versions generated by CLANG 3.8
at rank 1 and 5, and two vulnerable functions generated by
GCC 5.4 at rank 9 and 14. The patched “Heartbleed” functions
in version “g” do not appear in the top 20, as the function

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 17

(a) OpenSSL-1.0.1-a vs. OpenSSL-1.0.1-e (b) OpenSSL-1.0.1-a vs. OpenSSL-1.0.1-g (c) OpenSSL-CLANG vs. OpenSSL-GCC

Fig. 9: Cross-version Diffing F1-score CDF.

Fig. 10: The recall of similar functions
between the OpenSSL-1.0.1.a-GCC5.4.0

and other target programs.

0 5 10 15 20 25 30 35 40

Compression Ratio

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
R

ec
on

st
ru

ct
io

n
Er

ro
r

Reconstruction Error
Running Time

0

100

200

300

400

500

600

700

800

R
un

ni
ng

 T
im

e

Fig. 11: Running time and compression
ratio among different reconstruction

errors.

Fig. 12: The function feature generation
time (excluding pre-trained time).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

=0
=0.5
=1
=5
=10

(a) ROC among different λs (n4 =
50).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

n4=10
n4=50
n4=100
n4=150
n4=200

(b) ROC among different sizes of
the function embedding (λ = 1).

Fig. 13: ROC among different parameters

has changed significantly. In comparison, Asm2Vec finds
two vulnerable functions generated by CLANG 3.8 at rank 1
and 2, respectively, but cannot find any vulnerable functions
generated by GCC 5.4 in at least the top 200. Gemini finds two
vulnerable functions generated by CLANG 3.8 at rank 1 and 6,
and two vulnerable functions generated by GCC 5.4 at rank 10
and 11.

For the ”Shellshock” vulnerability of bash-4.2-CLANG3.8.0,
Codee can find one vulnerable function of another version
generated by CLANG 3.8 at rank 1 and two vulnerable func-
tions generated by GCC 5.4 at rank 10 and 18, respectively. In
comparison, Asm2Vec finds another vulnerable function gener-
ated by CLANG 3.8 at rank 1, but cannot find any vulnerable
functions generated by GCC 5.4 in at least the top 200. Gemini
also finds another vulnerable function generated by CLANG

3.8 at rank 1, and two vulnerable functions generated by GCC
5.4 do not appear in the top 20.

7 DISCUSSION

7.1 Advantages
Different compiled architectures, different compiler optimiza-
tion techniques are key problems to perform the code search.
Codee is designed to handle optimization techniques and archi-
tectures as so to achieve high search accuracy. In experiments,
Codee focus on multiple normal architectures and most com-
mon compiler optimization techniques. Specifically, we train
three token embedding generation models for three different
architectures, ARM, MIPS, and x86-64. For function inlining,
Codee generates random walks based on ICFG to generate the
token embedding, and learn the structural information of CFG
to generate basic block embedding. In the tensor-based function
embedding, Codee learns the correlation between the functions.

The training process of token embedding generation using
an NLP-based model is an one-time effort. We just need to pre-
train three NLP-based models to generate token embedding in
the different architectures, which improve a considerable speed
while learning sufficient semantic information of instructions.
The tensor-based function embedding method uses an effective
tensor computation to capture the misalignment correlation
of function feature vectors based on a circular convolution
operation. Our evaluation shows that Codee outperforms other
current state-of-the-art approaches on the characteristics of
similarity detection accuracy, embedding generation time, and
overall search time. Our research is one of the first to demon-
strate that the tensor-based data analysis techniques can have

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 18

unique strengths in the binary code similarity analysis. Codee
is both faster and more precise than previous solutions.

7.2 Limitations
However, Codee also has two limitations. If the control flow
graph is drastically changed, it influences the accuracy of code
search for Codee. This is because our basic block embedding
generation relies on CFG to extract graph structural infor-
mation to differentiate semantically similar functions, a very
big change of control flow can significantly affect the results.
However, we can fine-tune the parameter λ to change the
influence weight of structural information of CFG. If λ = 0, we
do not consider any structural information of CFG. Normally,
we choose the λ = 1, such that the structural information
of CFG and semantic information have the same influence in
the generated basic block embedding. Moreover, we make an
empirical evaluation for discussing the influence of parameter
λ, which is shown in Figure 7(a). There is a drawback that we
need to know in advance whether the binary function has a
big change for its CFG. Consequently, Codee is vulnerable to
obfuscation techniques that completely alter the CFG. Packing
techniques [35] that encrypt the code can also defeat our
system. Nearly no existing learning-based techniques perform
better because they also rely on graph control flow information.

Moreover, we add the comparison experiments of obfus-
cation data to show our limitation for Codee, Asm2Vec, and
Gemini. Results show that Codee does not perform better in
obfuscated code search. If the CFG topology structure (the
adjacency matrix) of a function is changed a lot, the accuracy
of our method will be decreased. We show the results in the
appendix.

Second, for the revised version, we use an NLP-based
learning technique for the token embedding generation. in
normal NMT, a word embedding model is usually trained
once using large corpora, such as Wiki, and then is reused by
other researchers. However, we have to train an instruction
embedding model from scratch. Second, if a trained model
is used to convert a word that has never appeared during
training, the word is called an out-of-vocabulary (OOV) word
and the embedding generation for such words will fail. This is a
well-known problem in NLP, and it exacerbates significantly in
some cases, as constants, address offsets, labels, and strings are
frequently used in instructions. We leave this as future work.

8 RELATED WORK
We summarize recent code search methods in the following
parts.

Raw features-based code search. Many researchers made a
great contribution in binary code search based on various raw
features. They directly extracted static features from binary for
code similarity matching. David and Yahav proposed trace-
based code search approach by using code execution sequences
as features [36]. Andrews et al. used static birthmarks to search
code based on robust characteristics, such as constant values,
call sequences and known classes [37]. However, they cannot
tolerate the opcode change by different compilations and are
not scalable. Ming et al. proposed a whole-program plagia-
rism detection method based program equivalence checking
approach [38]. However, this approach does not accurately find
code clones across different architectures. Pewny et al. used
input and output pairs to grasp function semantics at the basic
block level [39]. It is very costly to extract features and perform
graph matching. DiscovRe used the pre-filtering to handle CFG
[40], but Genius showed that pre-filtering is not robust. Hu
et al. proposed a semantics-based hybrid approach to detect
binary clone functions [5]. Luo [41] proposed an obfuscation-
resilient semantically equivalent binary code detection method
based on the longest common sub-sequence of basic blocks.

They used a set of symbolic formulas to show the input-
output relations and the semantics of a basic block based on
fuzzy matching. Shirani et al. used simple statistic features
of instructions [42]. Instruction-based features fail to consider
the relationships between instructions. N-grams or N-perms
used the binary function sequence or token code matching [3],
[2], they worked poorly on different compilers since the code
semantics is not be fully preserved in these types of sequences.

Graph-based code search. Graph techniques have their signifi-
cance in code search. Bourquin et al. used the expensive graph
isomorphism algorithm to measure the similarity between
CFGs [43]. Feng et al. proposed a scalable bug search scheme
for the cross-platform bug search problem [8], but its training
and feature encoding also rely on graph matching. Fu et al.
proposed a CFG-based malware detection approach, which
extracted “code chunks” features from CFG, then used the clas-
sification and regression tree algorithm to classify features [44].
Chandramohan et al. proposed a binary search engine, they
use user-defined inlining functions and a relevant library to
obtain function semantics [45]. Flake et al. proposed a method
to compare CFGs to cope with compiler optimizations [46].
Xue [47] used user-defined functions and an inlining relevant
library to capture the fully function semantics based on a
selective inlining technique from high-level semantic features
and structural features. These solutions rely on expensive graph
matching, and are not scalable for searching in large codebases.

Deep learning-based embedding schemes. Recently, there is
a line of works that use deep learning to generate embed-
dings for basic blocks and functions. Gemini employs a graph
embedding network, structure2vec, to embed a function [9].
SAFE is a self-attentive neural network model for function em-
bedding [15]. It improves efficiency by avoiding extractions of
control flow graphs. InnerEye employs a neural machine trans-
lation model for computing basic-block-level embeddings [11].
Massarelli [16] shows a similar method as Gemini [], but replace
manual feature extraction with unsupervised-based neural net-
work feature extraction. Yu [19] uses BERT to pretrain the
binary code on one token-level task, one block-level task, and
two graph-level tasks. Moreover, they adopt convolution neural
network (CNN) on adjacency matrices to extract the order
information of CFG nodes. However, this method relies on
several complex neural networks, which need strong compu-
tation ability to train an amount of hyperparameters. Liu et
al. employs a convolutional neural network directly on the raw
binary code to compute an embedding for a function [48]. While
these deep-learning-based solutions are appealing, it is crucial
to collect a substantial amount of high-quality training data. In
contrast, our tensor-based embedding scheme does not require
training.

9 CONCLUSION
In this paper, we present a tensor embedding-based scheme,
called Codee. Codee consists of an NLP-based token embed-
ding generation method, a network representation-based basic
block embedding generation method and an effective tensor-
based function embedding generation method. The NLP-based
token embedding generation method captures the semantic
information and lexical information of basic blocks. On this
basis, the basic block embedding generation method learns the
structural information of CFG while preserving the semantic
information of basic blocks. The tensor-based function embed-
ding method captures the misalignment correlation of func-
tion feature vectors based on a circular convolution operation.
Our evaluation shows that Codee outperforms other current
state-of-the-art approaches on the characteristics of similarity
detection accuracy, embedding generation time, and overall
search time. Our research is one of the first to demonstrate
that the tensor based data analysis techniques can have unique
strengths in the binary code similarity analysis.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 19

ACKNOWLEDGMENTS
Cai Fu is supported by China NSF (62072200), and Pan Zhou is
supported by China NSF (61972448).

REFERENCES

[1] I. U. Haq and J. Caballero, “A survey of binary code similarity,”
CoRR, vol. abs/1909.11424, 2019.

[2] M. E. Karim, A. Walenstein, and A. Lakhotia, “Malware phylogeny
generation using permutations of code,” Journal in Computer Virol-
ogy, vol. 1, no. 1-2, pp. 13–23, 2005.

[3] W. M. Khoo, A. Mycroft, and R. J. Anderson, “Rendezvous: a
search engine for binary code,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, San Francisco,
CA, USA, May 18-19, 2013, 2013, pp. 329–338.

[4] Y. David and E. Yahav, “Tracelet-based code search in executa-
bles,” SIGPLAN Not., vol. 49, no. 6, pp. 349–360, Jun. 2014.

[5] Y. Hu, Y. Zhang, and J. Li, “Binmatch: A semantics-based hybrid
approach on binary code clone analysis,” in 2018 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018,
Madrid, Spain, September 23-29, 2018, 2018, pp. 104–114.

[6] L. Li, D. Li, T. F. Bissyand, J. Klein, Y. L. Traon, D. Lo, and L. Cav-
allaro, “Understanding android app piggybacking: A systematic
study of malicious code grafting,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 6, pp. 1269–1284, June 2017.

[7] P. D. Nicolao, M. Pogliani, and M. Polino, “ELISA: eliciting ISA
of raw binaries for fine-grained code and data separation,” in
Detection of Intrusions and Malware, and Vulnerability Assessment -
15th International Conference, DIMVA 2018, Saclay, France, June 28-
29, 2018, Proceedings, 2018, pp. 351–371.

[8] Q. Feng, R. Zhou, and C. Xu, “Scalable graph-based bug search
for firmware images,” in Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pp. 480–491.

[9] X. Xu, C. Liu, and Q. Feng, “Neural network-based graph em-
bedding for cross-platform binary code similarity detection,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, October 30 - November
03, 2017, 2017, pp. 363–376.

[10] S. H. Ding, B. M. Fung, and P. Charland, “Asm2vec: Boosting static
representation robustness for binary clone search against code
obfuscation and compiler optimization,” in 2019 IEEE Symposium
on Security and Privacy (SP), Los Alamitos, CA, USA, may 2019.

[11] F. Zuo, X. Li, and P. Young, “Neural machine translation inspired
binary code similarity comparison beyond function pairs,” in 26th
Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019, 2019.

[12] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions,” Commun. ACM,
vol. 51, no. 1, pp. 117–122, 2008.

[13] H. Wei and M. Li, “Supervised deep features for software func-
tional clone detection by exploiting lexical and syntactical in-
formation in source code,” in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, 2017, pp. 3034–3040.

[14] Z. L. Chua, S. Shen, and P. Saxena, “Neural nets can learn function
type signatures from binaries,” in 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017., 2017, pp. 99–116.

[15] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Quer-
zoni, “Safe: Self-attentive function embeddings for binary sim-
ilarity,” in Detection of Intrusions and Malware, and Vulnerability
Assessment, R. Perdisci, C. Maurice, G. Giacinto, and M. Almgren,
Eds. Cham: Springer International Publishing, 2019, pp. 309–329.

[16] L. Massarelli, G. A. Luna, and F. Petroni, “Investigating graph em-
bedding neural networks with unsupervised features extraction
for binary analysis,” in Workshop on Binary Analysis Research (BAR)
2019 24 February 2019, San Diego, CA, USA, 2019, pp. 1–891 562–
58–4.

[17] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning
program-wide code representations for binary diffing,” in 27th
Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020, 2020.

[18] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proceedings of the 31th International Conference
on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,
2014, pp. 1188–1196.

[19] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order matters:
Semantic-aware neural networks for binary code similarity detec-
tion,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, 2020, pp. 1145–1152.

[20] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, 2016, pp. 855–864.

[21] X. Huang, J. Li, and X. Hu, “Accelerated attributed network em-
bedding,” in Proceedings of the 2017 SIAM International Conference
on Data Mining, Houston, Texas, USA, April 27-29, 2017., 2017, pp.
633–641.

[22] J. Tang, M. Qu, and M. Wang, “LINE: large-scale information
network embedding,” in Proceedings of the 24th WWW, 2015, pp.
1067–1077.

[23] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-
order tensors,” Linear Algebra and its Applications, vol. 435, no. 3,
pp. 641–658, 2011.

[24] D. Kuang, H. Park, and C. H. Q. Ding, “Symmetric nonnegative
matrix factorization for graph clustering,” in Proceedings of the
Twelfth SIAM International Conference on Data Mining, Anaheim,
California, USA, April 26-28, 2012, 2012, pp. 106–117.

[25] G. Golub and C. V. Loan, Matrix Computation, 1996.
[26] H. Cai, V. W. Zheng, and K. C. Chang, “A comprehensive survey of

graph embedding: Problems, techniques, and applications,” IEEE
Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, 2018.

[27] S. Boyd, N. Parikh, and E. Chu, “Distributed optimization and
statistical learning via the alternating direction method of multi-
pliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[28] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. E. Kilmer, “Novel
methods for multilinear data completion and de-noising based
on tensor-svd,” in 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014, 2014, pp. 3842–3849.

[29] L. Kuang, L. T. Yang, J. Feng, and M. Dong, “Secure tensor
decomposition using fully homomorphic encryption scheme,”
IEEE Trans. Cloud Comput., vol. 6, no. 3, pp. 868–878, 2018.
[Online]. Available: https://doi.org/10.1109/TCC.2015.2511769

[30] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scal-
able algorithms,” ACM TIST, vol. 8, no. 2, pp. 16:1–16:44, 2017.

[31] B. J. Olson, S. W. Shaw, and C. Shi, “Circulant Matrices and Their
Application to Vibration Analysis,” Applied Mechanics Reviews,
vol. 66, no. 4, 2014.

[32] M. Brand, “Incremental singular value decomposition of uncertain
data with missing values,” in Computer Vision - ECCV 2002, 7th
European Conference on Computer Vision, Copenhagen, Denmark, May
28-31, 2002, Proceedings, Part I, ser. Lecture Notes in Computer
Science, A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, Eds.,
vol. 2350. Springer, 2002, pp. 707–720.

[33] L. Kuang and F. Hao, “A tensor-based approach for big data repre-
sentation and dimensionality reduction,” Emerging Topics Comput.,
vol. 2, no. 3, pp. 280–291, 2014.

[34]
[35] T. Fernique and N. Bdaride, “Density of binary disc packings: The

9 compact packings,” 2020.
[36] Y. David and E. Yahav, “Tracelet-based code search in executa-

bles,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14,
2014, pp. 349–360.

[37] S. Andrews, B. S. Varunbabu, P. Subash, and M. R. Swaminathan,
“Finding the high probabilistic potential fishing zone by acceler-
ated SVM classification,” IJICT, vol. 11, no. 4, pp. 576–585, 2017.

[38] J. Ming, F. Zhang, and D. Wu, “Deviation-based obfuscation-
resilient program equivalence checking with application to soft-
ware plagiarism detection,” IEEE Trans. Reliability, vol. 65, no. 4,
pp. 1647–1664, 2016.

[39] J. Pewny, F. Schuster, and L. Bernhard, “Leveraging semantic
signatures for bug search in binary programs,” in Proceedings of
the 30th Annual Computer Security Applications Conference, ACSAC
2014, New Orleans, LA, USA, December 8-12, 2014, 2014, pp. 406–
415.

https://doi.org/10.1109/TCC.2015.2511769

IEEE TRANSACTIONS ON SOFTWARE ENGINEERI, VOL. , NO. 20

[40] S. Eschweiler, “discovre: Efficient cross-architecture identification
of bugs in binary code,” in 23rd Annual Network and Distributed
System Security Symposium, 2016.

[41] L. Luo, J. Ming, and D. Wu, “Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software
and algorithm plagiarism detection,” IEEE Trans. Software Eng.,
vol. 43, no. 12, pp. 1157–1177, 2017.

[42] P. Shirani, L. Wang, and M. Debbabi, “Binshape: Scalable and
robust binary library function identification using function shape,”
in Detection of Intrusions and Malware, and Vulnerability Assessment
- 14th International Conference, Bonn, Germany, July 6-7, 2017, pp.
301–324.

[43] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate com-
parison of binary executables,” in Proceedings of the 2nd ACM SIG-
PLAN Program Protection and Reverse Engineering Workshop 2013,
PPREW@POPL 2013, January 26, 2013, Rome, Italy, 2013, pp. 4:1–
4:10.

[44] D. Fu and Y. Xu, “WASTK: A weighted abstract syntax tree
kernel method for source code plagiarism detection,” Scientific
Programming, vol. 2017, pp. 7 809 047:1–8, 2017.

[45] M. Chandramohan, Y. Xue, and Z. Xu, “Bingo: cross-architecture
cross-os binary search,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, 2016, pp. 678–689.

[46] H. Flake, “Structural comparison of executable objects,” in Detec-
tion of Intrusions and Malware & Vulnerability Assessment, GI SIG
SIDAR Workshop, DIMVA 2004, Dortmund, Germany, July 6.7, 2004,
Proceedings, 2004, pp. 161–173.

[47] Y. Xue, Z. Xu, M. Chandramohan, and Y. Liu, “Accurate and
scalable cross-architecture cross-os binary code search with em-
ulation,” IEEE Transactions on Software Engineering, vol. 45, no. 11,
pp. 1125–1149, 2019.

[48] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou,
“αdiff: Cross-version binary code similarity detection with dnn,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE 2018, 2018.

Jia Yang She received the Master degree
in Computer Science and Technology from
Huazhong University of Science and Technol-
ogy, China, in 2017. She is currently a phd de-
gree candidate at Huazhong Science and Tech-
nology University, Wuhan, Hubei, China. Her re-
search interests focus on malicious code and
data privacy.

Cai Fu Corresponding author, IEEE member,
Ph.D, professor in School of Cyber Science and
Engineering, Huazhong University of Science
and Technology, Hubei Engineering Research
Center on Big Data Security, Wuhan, His main
research interests include wireless networking
security, routing algorithms and distributed sys-
tem security.

Xiao-Yang Liu IEEE member, he is currently a
PhD in the Department of Electrical Engineer-
ing, Columbia University. He received the B.Eng.
degree in computer science from Huazhong Uni-
versity of Science and Technology, in 2010; PhD.
degree in computer science from Shanghai Jiao
Tong University, in 2016; and MS. degree in
electrical engineering from Columbia University,
in 2017. His research interests include tensor
theory, non-convex optimization, deep learning,
big data analysis and data privacy.

Heng Yin IEEE senior member, professor in the
department of Computer Science and Engineer-
ing at UC Riverside. He received his Ph.D in
Computer Science from the College of William
and Mary in 2009. His research interests lie
in computer security, program analysis, virtual-
ization, and machine learning/deep learning to
solve computer and software security problems,
including but not limited to malware detection
and analysis, vulnerability discovery, program
hardening, and digital forensics.

Pan Zhou IEEE senior member, (S’07M’14-
SM’20) is currently a full professor and PhD advi-
sor with Hubei Engineering Research Center on
Big Data Security, School of Cyber Science and
Engineering, Huazhong University of Science
and Technology (HUST), Wuhan, P.R. China. He
received his Ph.D. in the School of Electrical and
Computer Engineering at the Georgia Institute
of Technology (Georgia Tech) in 2011, Atlanta,
USA. He received his B.S. degree in the Ad-
vanced Class of HUST, and a M.S. degree in

the Department of Electronics and Information Engineering from HUST,
Wuhan, China, in 2006 and 2008, respectively. He held honorary degree
in his bachelor and merit research award of HUST in his master study.
He was a senior technical member at Oracle Inc., America, during 2011
to 2013, and worked on Hadoop and distributed storage system for big
data analytics at Oracle Cloud Platform. He received the Rising Star in
Science and Technology of HUST in 2017. He is currently an associate
editor of IEEETransactions on Network Science and Engineering. His
current research interest includes: security and privacy, big data analyt-
ics, machine learning, and information networks.

	Introduction
	Problem Statement and Scheme Overview
	Problem Statement
	Notations
	Background
	Scheme Overview

	Token Embedding Generation
	Basic Block Embedding Generation
	Loss Function
	The Proposed ADMM Algorithm

	Function Embedding Generation
	Tensor Representation
	Tensor Compression
	Order Problem
	Complexity Analysis for Tensor-based Function Embedding Generation
	Dynamic Tensor Compression

	Experimental Evaluation
	Implementation
	Experiment Setup
	Datasets
	Baseline Comparison Techniques
	Performance Metrics

	Training Model of Token Embedding Generation
	Code Search against Mixed Binary Functions
	Code Search across Optimization Levels
	Code Search across CPU Architectures
	Code Search across Compilers
	Code Search across Versions
	Efficiency
	Parameter Selection
	Case Study

	Discussion
	Advantages
	Limitations

	Related Work
	Conclusion
	References
	Biographies
	Jia Yang
	Cai Fu
	Xiao-Yang Liu
	Heng Yin
	Pan Zhou

