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Coping with the Rise of E-commerce Generated Home 
Deliveries through Innovative Last-mile Technologies and 
Strategies 

EXECUTIVE SUMMARY 

E-commerce can potentially make urban freight sustainable with economically viable, 
environmentally efficient, and socially equitable goods flow. However, with the increasing 
consumer-focused trends in e-commerce, urban freight witnesses a significant increase in 
associated distribution costs and negative externalities, including greenhouse gas emissions 
advancing global climate change and criteria pollutant emissions worsening local air quality and 
thus affecting those living close to logistics clusters. To this end, alternate last-mile distribution 
strategies such as those that include the use of electric delivery trucks for last-mile operations, 
a fleet of crowdsourced drivers for last-mile delivery, or consolidation facilities coupled with 
light-duty delivery vehicles for a multi-echelon distribution, or collection-points for customer 
pickup, can restore sustainable urban goods flow. Thus, it is pertinent to understand the 
opportunities and challenges in e-commerce last-mile distribution. Hence, this work 
investigates the sustainability of alternate last-mile distribution strategies for an e-retailer 
offering expedited service. 

The findings suggest that last-mile delivery using a fleet of electric delivery vehicles can render 
urban freight economically viable, environmentally efficient, and socially equitable goods flow. 
However, the higher upfront cost of electric delivery vehicles can deter e-retailer, especially 
when the e-retailer may need to rent out additional delivery vehicles to cope with demand 
uncertainty.  To this end, the e-retailers can instead crowdsource last-mile delivery to cater to 
customers arriving dynamically through the day and, in doing so, establish a cost-effective and 
flexible last-mile distribution structure resistant to demand uncertainty. However, it is essential 
to note that using independent contractors could result in less reliable performance than 
company-owned delivery vehicles. To this end, the e-retailer may need to offer higher 
incentives to drivers to improve reliability. And thus, the e-retailer must carefully consider the 
relation between viability and reliability of last-mile distribution when crowdshipping. 
Moreover, the e-retailer must also consider the potential impact of crowdshipping on 
environmental efficiency and social equity associated with urban goods flow.  

To this end, multi-echelon distribution strategies, such as using consolidation facilities and light-
duty delivery vehicles, can reduce exposure to harmful pollutants in urban environments. 
However, these strategies may be less cost-effective and less resistant to demand uncertainty 
due to the additional handling and transportation required. To reduce these costs, e-retailers 
can consider having customers collect packages at collection points, which may increase 
negative externalities from urban goods flow. To mitigate this issue, e-retailers can locate 
collection points near major traffic generators to reduce the need for customers to travel. 

Further, the authors investigated the potential for using delivery robots and aerial delivery 
vehicles. While the authors showcase the potential for such a distribution strategy to absorb 
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uncertainty in last-mile distribution, the limited operational range narrows down the use case 
of such new and innovative distribution strategies. 

These findings provide valuable insights for e-retailers looking to optimize their last-mile 
distribution operations and balance sustainability and reliability to cater to a market demanding 
increasingly consumer-focused services. 
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1. Introduction 

“Attention Shoppers: Internet Is Open” headlined the New York Times article in 1994, 
proclaiming the advent of e-commerce Lewis (1994). Almost three decades since online 
shopping has become a fundamental part of the consumer shopping experience. What would 
previously have been a trip to the store is now a hassle-free delivery to the home. Yet, the first 
decade of e-commerce was subject to skepticism, with e-retail only amounting to 1.7% of the 
total retail sales in 2003 (U.S. Census Bureau, 2022). Nonetheless, the increased internet-use in 
the following years provided opportunities for retailers to expand the market horizon with e-
commerce. Thus e-retail sales grew rapidly, contributing a share of 5.8% of the total retail sales 
by 2013. And despite internet penetration reaching saturation levels since e-commerce 
continues to expand with e-retail expected to account for 15% of the total retail sales by 2023.  

This rise of e-commerce has brought prosperity for the consumer and the retailer, thereby 
fostering economic growth through urban goods flow – 1st pillar of sustainability (Pahwa and 
Jaller, 2022). It has also expanded access to essential products for otherwise disadvantaged 
communities, which proved critical during the COVID-19 pandemic, thus improving social equity 
in urban goods flow – 3rd pillar of sustainability (Pahwa and Jaller, In Review-a). Further, owing 
to demand consolidation and optimized delivery, e-commerce has substantially reduced 
transportation-related negative externalities from urban goods flow – 2nd pillar of 
sustainability (Jaller and Pahwa, 2020). However, the recent turn towards consumer-focused 
service in e-retail significantly impacts the economic viability, environmental efficiency, and 
social equity of e-commerce last-mile distribution. 

Since online shopping only amounts to 4% of daily shopping activities (Hofferth et al., 2020), e-
retailers compete with traditional retailers for market share, establishing consumer-focused 
services. For instance, to compensate for the lack of instant gratification, e-retailers offer 
expedited shipping with rush-delivery. Further, e-retailers offer a lenient return policy to 
compensate for the information mismatch, which is common in the e-apparel industry—
however, such consumer-focused trends in e-retail result in frequent less-than-truckload last-
mile deliveries. And hence urban environments witness a substantial increase in freight 
distribution costs and associated negative externalities, including greenhouse gas emissions 
advancing global climate change, as well as criteria pollutant emissions worsening local air 
quality and thus affecting those living close to logistics clusters. Therefore, urban goods flow 
economically unviable, environmentally inefficient, and socially inequitable (Pahwa and Jaller, 
In Review-b). Hence, to remain competitive, e-retailers innovate with alternate last-mile 
distribution strategies. These alternate strategies, such as those that include the use of electric 
delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, or 
consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, 
or collection-points for customer pickup, can restore sustainable urban goods flow. 

Thus, this work aims to establish opportunities and challenges associated with alternate last-
mile distribution strategies to cope with the increasing consumer-focused trends in e-
commerce towards rush delivery within strict time-windows (expedited logistics) by exploring 
the paradigms of economic viability, environmental efficiency, and social equity. To this end, 



 

 2 

this work formulates a last-mile network design (LMND) problem as a dynamic-stochastic two-
echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed 
using an adaptive large neighborhood search (ALNS) metaheuristic. 

In the following section, the authors discuss pertinent literature about the sustainability of last-
mile delivery. In the Methodology section, the authors formulate the LMND problem as DS-2E-
C-LRP-TW and then detail the associated ALNS metaheuristic algorithm developed in this work. 
In Section 4, the authors develop the case study before presenting the empirical results in 
Section 5. In the penultimate Discussion section, the study emphasizes the managerial and 
policy implications for the stakeholders involved in urban freight management. The authors 
conclude this work with a section highlighting the novelty and limitations of this study along 
with the future scope of this work. 
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2. Literature Review 

In the U.S., many freight-related occupations include, as a primary responsibility, handling 
goods or driving motor vehicles. The COVID-19 pandemic has significantly impacted the freight 
sector, and the data and projections may not reflect the long-term effects on the industry. 
Furthermore, employment counts are a limited metric and only a starting point in the 
conversation about how to steer changes in the labor market; wages and job quality are also 
essential to consider.  

The increasing prevalence of internet marketplaces and the consequent transformation of 
individual shopping behaviors have raised significant academic concerns about the 
sustainability of urban goods flow. To this end, the literature has explored economic viability, 
environmental efficiency, and social equity paradigms for e-commerce last-mile delivery. In this 
context, some earlier works highlighted the potential for online shopping to substitute for 
individuals traveling for in-store shopping, thereby consolidating goods flow to render efficient 
distribution from point-of-sale to point-of-consumption (Cairns, 2005; Edwards et al., 2010; 
Siikavirta et al., 2002). Nonetheless, some of the other contemporary studies of the time 
cautioned, emphasizing the possibility of increased urban goods flow owing to the 
complementarity effect whereby online shopping induces in-store shopping (Farag et al., 2006; 
Ferrell, 2004; Mokhtarian, 2004). Yet, as e-retailers compete with increasingly consumer-
focused service, urban environments witness not only online shopping-induced personal travel 
to brick-and-mortar stores but also a substantial increase in less-than-truckload freight traffic 
on their road network. This consequently renders a significant increase in freight distribution 
costs as well as negative externalities from urban goods flow, including greenhouse gas 
emissions advancing global climate change, criteria pollutant emissions worsening local air 
quality, and congestion resulting in noise pollution and traffic accidents, as made evident by 
Figliozzi (2007), Van Loon et al. (2015), Pahwa and Jaller (2022), and many others. Thus, e-
retailers deploy alternate distribution structures for last-mile delivery to compete sustainably 
with traditional retailers. To this end, research work has established opportunities and 
challenges associated with these alternate last-mile distribution strategies.  

One such distribution strategy includes the use of urban consolidation facilities coupled with 
the use of light-duty delivery vehicles such as electric vans, cargo-bikes, autonomous delivery 
vehicles (ADRs), or unmanned aerial vehicles (UAVs) for last-mile delivery, thereby moving 
heavy-duty delivery trucks away from core commercial and residential parts of the city. The 
literature has consequently showcased the potential for consolidation strategies to lower the 
operational costs for the e-retailers and reduce the adverse effects of freight traffic in the city 
(Estrada and Roca-Riu, 2017; Isa et al., 2021; Quak and Tavasszy, 2011). However, delivery using 
such alternate fuel delivery vehicles has logistical limitations and is precisely feasible for 
expedited delivery in dense urban environments where service with conventional large-sized 
delivery trucks may be difficult (Browne et al., 2011; Lemardelé et al., 2021; Pahwa and Jaller, 
2022).  

Thus, Iwan et al. (2016), Hofer et al. (2020), van Duin et al. (2020), and others alike have 
explored opportunities and challenges associated with yet another multi-echelon distribution 
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strategy that instead includes the use of collection points to in fact, outsource the last few miles 
of the last-mile travel to the customer, thereby enabling expedited delivery at low costs for the 
e-retailer. In addition, these studies have highlighted the potential for collection-points to 
reduce the negative externalities associated with goods flow if the e-retailer could establish a 
dense network of such collection-points located near customers’ homes, schools, or 
workplaces, thereby limiting customer detours to collect packages. Nonetheless, Pahwa and 
Jaller (In Review-a) underscored the susceptibility of distribution via collection-points to 
disruption in the last-mile, considering the uncertainty about customers’ willingness to collect 
packages.  

Yet, the e-retailer may still outsource the entire last-mile employing a fleet of crowdsourced 
drivers for a low-cost door-to-door expedited delivery service (Arslan et al., 2019; Guo et al., 
2019; Pourrahmani and Jaller, 2021). The literature has emphasized the potential for 
crowdsourced deliveries to reduce transportation-related externalities, assuming it does not 
induce vehicle use for crowdshipping alone. However, De Ruyter et al. (2018) raised equity and 
welfare concerns associated with the gig-work considering the independent contractor status 
of crowdsourced drivers. Moreover, much like collection-point pickup, Pahwa and Jaller (In 
Review-a) highlighted that crowdsourced deliveries might also be susceptible to last-mile 
disruptions due to the uncertainty about driver availability. 

Nonetheless, the COVID-19 pandemic has prompted e-retailers to innovate further and develop 
not only sustainable delivery methods with an economically viable, environmentally efficient, 
and socially equitable distribution structure that is capable of handling high-probability low-
severity fluctuations in the last-mile but also resilient delivery methods with robust, redundant, 
resourceful, and rapid distribution structure that is capable of handling low-probability high-
severity last-mile disruptions (Pahwa and Jaller, In Review-a). One such new distribution 
strategies include the use of ADRs and UAVs from a delivery truck functioning as a mobile 
warehouse carrying high-demand products in anticipation of customer requests (anticipatory 
shipping) to limit product shortages and further reduce customer lead time (Lee, 2017; Singh et 
al., 2021; Srinivas and Marathe, 2021). 

Yet, the successful implementation of any distribution strategy requires a thorough appraisal of 
the efficacy of the distribution structure (Dolati Neghabadi et al., 2019; Zenezini and De Marco, 
2016). And while in-situ examination with pilot testing renders an ideal ground to assess a 
distribution strategy in the context of the delivery environment of operation, in-vitro 
examination using modeling, simulation, and optimization tools provide a broader opportunity 
to assess the distribution strategy across multiple synthesized delivery environments. One such 
in-vitro methods include formulating a last-mile network design (LMND) problem to configure 
and optimize the distribution structure and determine the distribution facilities to operate 
(type, number, and location), the fleet choice (size and composition), the customer allocation, 
and consequently the order of customer visits (Janjevic et al., 2021; Merchán and Winkenbach, 
2018; Rautela et al., 2021; Snoeck et al., 2018; Zhou et al., 2019).  
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To this end, some earlier works modeled simplistic distribution structures (Jamil et al., 1994; 
Laporte et al., 1988; Salhi and Nagy, 1999). However, improvements in computational power 
have instigated research to incorporate more complex features into the problem, including 
resource constraints (Barreto et al., 2007; Pirkwieser and Raidl, 2010; Schwengerer et al., 2012), 
customer time windows (Aksen and Altinkemer, 2008; Crainic et al., 2011; Li and Keskin, 2014), 
multi-echelon distribution (Contardo et al., 2012; Govindan et al., 2014; Wang et al., 2018), 
stochastic elements (Ahmadi Javid and Azad, 2010; Nadizadeh and Nasab, 2014; Schiffer and 
Walther, 2018), dynamic elements (Albareda-Sambola et al., 2012; Koç, 2016; Rabbani et al., 
2019), etc. Further, considering the NP-hard nature of the problem, the literature has 
developed solution algorithms using meta-heuristic frameworks with local search methods such 
as simulated annealing (Ahmadi-Javid and Seddighi, 2013; Ferreira and de Queiroz, 2018; Lin et 
al., 2011), tabu search (Caballero et al., 2007; Klibi et al., 2010; Lin and Kwok, 2006), variable 
neighborhood search (Melechovský et al., 2005; Veenstra et al., 2018; Zhang et al., 2019), 
adaptive large neighborhood search (Hemmelmayr et al., 2017; Koç, 2019; Tunalıoğlu et al., 
2016); evolutionary computation techniques such as Genetic Algorithm (Derbel et al., 2012; 
Fazayeli et al., 2018; Hu et al., 2018), Evolutionary Algorithm (Prins et al., 2006; Prodhon, 2011; 
Sun, 2015); and swarm intelligence algorithms such as Ant-Colony Optimization (Gao et al., 
2016; Herazo-Padilla et al., 2015; Ting and Chen, 2013), Particle Swarm Optimization 
(Marinakis, 2015; Peng et al., 2017; Rabbani et al., 2018). For a comprehensive overview of 
recent developments in the field of location routing problems, the interested reader may refer 
to Prodhon and Prins (2014), Drexl and Schneider (2015), and Mara et al. (2021). 

Considering that this work aims to establish the sustainability of e-commerce last-mile 
distribution for an e-retailer offering expedited service with rush delivery within strict time-
windows, this work formulates the LMND problem for this e-retailer as a dynamic-stochastic 
two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW). To 
address this complex LMND problem, the authors develop an associated adaptive large 
neighborhood search (ALNS) metaheuristic algorithm. As per the authors' knowledge, no 
previous work has addressed the LMND problem for e-commerce distribution in a delivery 
environment with dynamic and stochastic customers. 
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3. Methodology 

In this section, the authors detail the last-mile network design (LMND) problem, which 
essentially involves optimizing the configuration of the last-mile distribution structure for an 
economically viable, environmentally efficient, and socially equitable, i.e., sustainable last-mile 
delivery while accounting for supply and demand constraints.  

3.a Formulating the location routing problem (LRP) 

The authors split the LMND problem into its constituent strategic, tactical, and operational 
decisions in this work. Here, the strategic decisions undertake long-term planning to develop a 
distribution structure with appropriate distribution facilities and a suitable delivery fleet to 
service the expected customer demand in the planning horizon. The tactical decisions pertain 
to medium-term day-to-day planning of last-mile delivery operations to establish efficient 
goods flow in this distribution structure to service the daily stochastic customer demand. And 
finally, operational decisions involve immediate short-term planning to fine-tune this last-mile 
delivery to service the requests arriving dynamically through the day. Considering this 
distribution environment, the authors model the problem as a location routing problem (LRP) 
for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-
mile distribution (Figure 1), catering to a market with a stochastic and dynamic daily customer 
demand requesting delivery within time-windows.  

 

Figure 1. A typical e-retail two-echelon last-mile distribution structure 
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Below is the list of notations for parameters and variables used in the LRP formulation 
developed in this work. 

Sets  

𝑁 : Set of nodes 

𝐶 : Set of customer nodes 

𝐷 : Set of distribution facility nodes 

𝑃 : Set of primary distribution facility nodes 

𝑆 : Set of secondary distribution facility nodes 

𝐴 : Set of arcs 

𝑉 : Set of delivery vehicles 

𝑅 : Set of vehicle routes 

𝑇𝑗 : Set of tail nodes (predecessors) to node 𝑗 ∈ 𝑁; {𝑘; (𝑘, 𝑗) ∈ 𝐴} 

𝐻𝑗 : Set of head nodes (successors) to node 𝑗 ∈ 𝑁; {𝑘; (𝑗, 𝑘) ∈ 𝐴} 

Indices 

𝑖 : Node index 

𝑐 : Customer node index 

𝑑 : Distribution facility index 

𝑝 : Primary distribution facility index 

𝑠 : Secondary distribution facility index 

𝑖𝑗 : Arc index for arc connecting nodes 𝑖 and 𝑗 

𝑣 : Vehicle index 

𝑟 :  Route index 

Customer parameters 

𝑥𝑐 : Location of customer node 𝑐 along the x-axis 

𝑦𝑐 : Location of customer node 𝑐 along the y-axis 

𝑞𝑐 : Commodity demand for customer node 𝑐 

𝜏𝑐
𝑉 : Service time delivering package at customer node 𝑐 

𝑡𝑐
𝑒 : Earliest service start time at customer node 𝑐 

𝑡𝑐
𝑙 : Latest service start time at customer node 𝑐 

Distribution facility parameters 

𝑥𝑑 : Location of distribution facility 𝑑 along the x-axis 

𝑦𝑑 : Location of distribution facility 𝑑 along the y-axis 

𝑞𝑑 : Capacity of distribution facility 𝑑 

𝑡𝑑
𝑠 : Service start time at distribution facility 𝑑 
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𝑡𝑑
𝑒 : Service end time at distribution facility 𝑑 

𝜋𝑑

𝑓 : Fixed cost for distribution facility 𝑑 

𝜋𝑑
𝑜 : Operational cost for distribution facility 𝑑 

𝑉𝑑 : Set of delivery vehicles at distribution facility 𝑑 

Vehicle parameters 

𝑙𝑣 : Range of vehicle 𝑣 

𝑞𝑣 : Capacity of vehicle 𝑣 

𝑠𝑣 : Speed of vehicle 𝑣 

𝜏𝑣
𝐷 : Service time loading packages for vehicle 𝑣 at a distribution facility 

𝜁𝑣
𝐷 : Re-fueling time for vehicle 𝑣 at a distribution facility 

𝑤𝑣 : Driver working hours for vehicle 𝑣 

𝜋𝑣
𝑓 : Fixed cost of vehicle 𝑣 

𝜋𝑣
𝑜𝑑 : Distance-based operational cost of vehicle 𝑣 

𝜋𝑣
𝑜𝑡 : Time-based operational cost of vehicle 𝑣 

𝑘̅𝑣  : Maximum number of delivery routes allowed for vehicle 𝑣 ∈ 𝑉 

𝑟𝑣
𝑘  : 𝑘𝑡ℎ route for vehicle 𝑣 ∈ 𝑉 

𝑅𝑣 : Set of routes of vehicle 𝑣 

Distribution operation variables 

𝑙𝑟 : Length of route 𝑟 

𝑡𝑐
𝑎 : Vehicle arrival time at customer node 𝑐 

𝑡𝑐
𝑑 : Vehicle departure time at customer node 𝑐 

𝑡𝑟
𝑠 : Start time of route 𝑟 

𝑡𝑟
𝑒 : End time of route 𝑟 

𝑡𝑣
𝑠 : Start time for vehicle 𝑣 

𝑡𝑣
𝑒 : End time for vehicle 𝑣 

Decision variables 

𝑓𝑝𝑠 : Commodity flow from primary 𝑝 to the secondary distribution facility node 𝑠 

𝑥𝑖𝑗
𝑟  : Vehicle flow on arc 𝑖𝑗 in route 𝑟 

𝑦𝑝 : Facility use of primary distribution facility 𝑝 

𝑦𝑠 : Facility use of secondary distribution facility 𝑠 

𝑦𝑣 : Use of vehicle 𝑣 

𝑧𝑐𝑟 : Allocation of customer node 𝑐 to route 𝑟 
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min Π = ∑ (𝜋𝑝
𝑓 + ∑ 𝜋𝑝

𝑜𝑓𝑝𝑠

𝑠∈𝑆

+ ∑ (𝜋𝑣
𝑓 + ∑ ∑ 𝜋𝑣

𝑜𝑑𝑥𝑖𝑗
𝑟 𝑙𝑖𝑗

(𝑖,𝑗)∈𝐴𝑟∈𝑅𝑣

+ 𝜋𝑣
𝑜𝑡(𝑡𝑣

𝑒 − 𝑡𝑣
𝑠)) 𝑦𝑣

𝑣∈𝑉𝑝

) 𝑦𝑝

𝑝∈𝑃

+ 

∑ (𝜋𝑠
𝑓 + ∑ 𝜋𝑠

𝑜𝑓𝑝𝑠

𝑠∈𝑆

+ ∑ (𝜋𝑣
𝑓 + ∑ ∑ 𝜋𝑣

𝑜𝑑𝑥𝑖𝑗
𝑟 𝑙𝑖𝑗

(𝑖,𝑗)∈𝐴𝑟∈𝑅𝑣

+ 𝜋𝑣
𝑜𝑡(𝑡𝑣

𝑒 − 𝑡𝑣
𝑠)) 𝑦𝑣

𝑣∈𝑉𝑠

) 𝑦𝑠

𝑠∈𝑆

                                             (1) 

Subject to, 

∑ 𝑧𝑐𝑟

𝑟∈𝑅

= 1                                                                                                                                             ∀ 𝑐 ∈ 𝐶             (2) 

∑ 𝑥𝑐𝑗
𝑟

𝑗∈𝐻𝑐

= 𝑧𝑐𝑟                                                                                                                             ∀ 𝑐 ∈ 𝐶; 𝑟 ∈ 𝑅             (3) 

∑ 𝑥𝑖𝑗
𝑟

𝑖∈𝑇𝑗

= ∑ 𝑥𝑗𝑘
𝑟

𝑘∈𝐻𝑗

                                                                                                                    ∀ 𝑗 ∈ 𝑁; 𝑟 ∈ 𝑅             (4) 

∑ 𝑓𝑝𝑠

𝑝∈𝑃

= ∑ ∑ ∑ 𝑧𝑐𝑟𝑞𝑐 

𝑐∈𝐶𝑟∈𝑅𝑣𝑣∈𝑉𝑠

                                                                                                               ∀ 𝑠 ∈ 𝑆             (5) 

∑ 𝑧𝑐𝑟𝑞𝑐

𝑐∈𝐶

≤ 𝑞𝑣𝑦𝑣                                                                                                                      ∀ 𝑟 ∈ 𝑅𝑣; 𝑣 ∈ 𝑉             (6) 

∑ ∑ ∑ 𝑧𝑐𝑟𝑞𝑐

𝑐∈𝐶𝑟∈𝑅𝑣𝑣∈𝑉𝑠

≤ 𝑞𝑠𝑦𝑠                                                                                                                     ∀ 𝑠 ∈ 𝑆             (7) 

∑ 𝑓𝑝𝑠

𝑠∈𝑆

+ ∑ ∑ ∑ 𝑧𝑐𝑟𝑞𝑐

𝑐∈𝐶𝑟∈𝑅𝑣𝑣∈𝑉𝑝

≤ 𝑞𝑝𝑦𝑝                                                                                                 ∀ 𝑝 ∈ 𝑃             (8) 

𝑡𝑐
𝑎 + 𝑀(1 − 𝑥𝑖𝑐

𝑟 ) ≥ {
𝑡𝑟

𝑠;    𝑖 ∈ 𝐷

𝑡𝑖
𝑑;   𝑖 ∈ 𝐶

+ 𝑥𝑖𝑐
𝑟

𝑙𝑖𝑐

𝑠𝑣 

                                                 ∀ 𝑖 ∈ 𝑇𝑐; 𝑐 ∈ 𝐶; 𝑟 ∈ 𝑅𝑣; 𝑣 ∈ 𝑉             (9) 

𝑡𝑐
𝑑 ≥ 𝑡𝑐

𝑎 + 𝑚𝑎𝑥(0, 𝑡𝑐
𝑒 − 𝑡𝑐

𝑎) + 𝜏𝑐
𝑉                                                                                                      ∀ 𝑐 ∈ 𝐶           (10) 

𝑡𝑐
𝑎 ≤ 𝑡𝑐  

𝑙                                                                                                                                                    ∀ 𝑐 ∈ 𝐶           (11) 

𝑡𝑟𝑣
1

𝑠 = 𝑡𝑑
𝑠                                                                                                                                   ∀ 𝑟𝑣 ∈ 𝑅𝑣; 𝑣 ∈ 𝑉𝑑           (12) 

𝑡
𝑟𝑣

𝑘
𝑠 = 𝑡

𝑟𝑣
𝑘−1

𝑒 + 𝜁𝑣
𝐷 ∑ 𝑥𝑖𝑗

𝑟𝑣
𝑘 𝑙𝑖𝑗

𝑠𝑣
(𝑖,𝑗)∈𝐴

+ 𝜏𝑣
𝑑 ∑ 𝑧𝑐𝑟𝑣

𝑘

𝑐∈𝐶

𝑞𝑐                                                   ∀ 𝑟𝑣
𝑘−1; 𝑟𝑣

𝑘 ∈ 𝑅𝑣; 𝑣 ∈ 𝑉               (13) 

𝑡𝑣
𝑠 = 𝑡𝑑

𝑠                                                                                                                                                     ∀ 𝑣 ∈ 𝑉           (14) 

𝑡𝑣
𝑒 = 𝑡

𝑟𝑣
𝑘̅𝑣  

𝑒                                                                                                                                                ∀ 𝑣 ∈ 𝑉           (15)  

𝑡𝑣
𝑒 ≤ 𝑚𝑖𝑛(𝑡𝑣

𝑠 + 𝑤𝑣, 𝑡𝑑
𝑒)                                                                                                          ∀ 𝑣 ∈ 𝑉𝑑; 𝑑 ∈ 𝐷            (16) 
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∑ ∑ 𝑥𝑖𝑗
𝑟

(𝑖,𝑗)∈𝐴

𝑙𝑖𝑗

𝑟∈𝑅𝑣

≤ 𝑙𝑣                                                                                                                            ∀ 𝑣 ∈ 𝑉           (17) 

𝑓𝑝𝑠   ∈ 𝛪+                                                                                                                                     ∀ 𝑝 ∈ 𝑃; 𝑠 ∈ 𝑆            (18) 

𝑥𝑖𝑗   
𝑟 ∈ {0,1}                                                                                                                         ∀ (𝑖, 𝑗) ∈ 𝐴; 𝑟 ∈ 𝑅           (19) 

𝑦𝑣    ∈ {0,1}                                                                                                                                             ∀ 𝑣 ∈ 𝑉           (20) 

𝑦𝑠     ∈ {0,1}                                                                                                                                              ∀ 𝑠 ∈ 𝑆            (21) 

𝑦𝑝    ∈ {0,1}                                                                                                                                           ∀ 𝑝 ∈ 𝑃            (22) 

𝑧𝑐𝑟  
∈ {0,1}                                                                                                                                ∀ 𝑐 ∈ 𝐶; 𝑟 ∈ 𝑅           (23) 

To begin with, the authors define the LMND problem on a directed graph 𝐺 = (𝑁, 𝐴) with node 
set 𝑁 encompassing customer nodes 𝐶, and potential distribution facility nodes 𝐷 = {𝑃 ∪ 𝑆}, 
where 𝑃 and 𝑆 represent the set of primary and secondary distribution facility nodes, 
respectively; while 𝐴 represents the set of arcs connecting these nodes, with a vehicle 
traversing the arc connecting nodes 𝑖 and 𝑗 spanning a length 𝑙𝑖𝑗. Further, each distribution 

facility node 𝑑 ∈ 𝐷 has an associated set of delivery vehicles 𝑉𝑑, capacity 𝑞𝑑, service start and 

end time 𝑡𝑑
𝑠 and 𝑡𝑑

𝑒, respectively, as well as fixed cost 𝜋𝑑

𝑓, and operational cost 𝜋𝑑
𝑜 per package. 

And each customer node 𝑐 ∈ 𝐶 has an associated service time 𝜏𝑐
𝑑 and demand 𝑞𝑐, which the e-

retailer must delivery within the specified time-window [𝑡𝑐
𝑒, 𝑡𝑐

𝑙] with a delivery vehicle either 
directly from one of the primary distribution facilities or via one of the secondary distribution 
facilities. These delivery vehicles have an associated set of delivery routes 𝑅𝑣, capacity 𝑞𝑣, range 
𝑙𝑣, refueling time 𝜏𝑣

𝑓, loading time per package 𝜏𝑣
𝑑, driver working hours 𝑤𝑣, fixed cost 𝜋𝑣

𝑓, and 
operational costs 𝜋𝑣

𝑜𝑑 per unit distance and 𝜋𝑣
𝑜𝑡 per unit time, respectively. 

Considering the goal of LMND problem to configure the last-mile distribution structure for a 
sustainable last-mile delivery, the authors formulate the encompassing LRP with an objective 
function minimizing the total distribution cost (equation 1) with economic viability, 
environmental efficiency and social equity monetized as fixed and operational cost of 
distribution, while accounting for customer service constraint (equation 2), flow constraints 
(vehicle flow - equations 3 and 4; commodity flow - equation 5), capacity constraints (vehicle 
capacity - equation 6, secondary distribution facility capacity - equation 7, primary distribution 
facility - equation 8), customer time-window constraint (equation 11) with equations 9 and 10 

establishing arrival time 𝑡𝑐
𝑎, and departure time 𝑡𝑐

𝑑, at the customer node, respectively, route 
start and end time constraints (equations 12 and 13), vehicle start and end time constraints 
(equations 14 - 16), and constraints on vehicle range 𝑙𝑟 (equation 17). The decision variables 
pertain to primary distribution facility use 𝑦𝑝, and likewise secondary distribution facility use 𝑦𝑠, 

the amount of commodity flow between each primary and secondary distribution facility 𝑓𝑝𝑠, 

vehicle use 𝑦𝑣, vehicle flow on arc on a given route 𝑥𝑖𝑗
𝑟 , and customer allocation to a delivery 

route 𝑧𝑐𝑟. In addition, equation 18 enforces integer constraint on the commodity flow variable, 
while equation 19 constrains the arc flow variable as binary. Further, equations 20 - 22 enforce 
binary values on resource-use variables (vehicle, secondary distribution facility, and primary 
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distribution facility), and equation 23 imposes a binary constraint on the customer-route 
allocation variable. Thus, with this LRP formulation, the authors split the LMND problem into its 
constituent strategic, tactical, and operational decisions. 

In particular, the strategic decisions establish the type, number, and location of the primary and 
secondary distribution facilities, as well as the size and composition of the associated delivery 
fleet, to serve the expected customer demand for the e-retailer in the planning horizon. To this 
end, at the strategic level, the decision variables of the LRP pertain to primary distribution 
facility use 𝑦𝑝, secondary distribution facility use 𝑦𝑠, the amount of commodity flow between 

each primary and secondary distribution facility 𝑓𝑝𝑠 , vehicle use 𝑦𝑣, vehicle flow on arc on a 

given route 𝑥𝑖𝑗
𝑟 , and customer-route allocation 𝑧𝑐𝑟.  

The tactical decisions then define the order of customer visits for each day of the planning 
horizon to meet the daily stochastic customer demand observed by this e-retailer, given the 
primary and secondary distribution facilities and the associate delivery vehicle fleet. Thus, at 
the tactical level, the decision variables for the LRP include commodity flow between each 
primary and secondary distribution facility, vehicle use, vehicle flow on arc on a given route, 
and customer-route allocation, with primary distribution and secondary distribution facility use 
taking values from the strategic stage.  

And finally, the operational decisions then fine-tune the last-mile delivery for the e-retailer 
considering the dynamic arrival of customer requests requiring service by the end of the day. 
Hence, the operational decision variables are the same as those at the tactical level but only 
limited to customers yet to be served at any point during the day. 

Considering this stochastic and dynamic nature of the delivery environment, the authors 
develop a Monte-Carlo framework simulating each day in the planning horizon. Each day is 
divided into timeslots, and each timeslot accepts customer requests for service by the end of 
the day. In particular, the framework assumes the e-retailer delays route commitments until 
the last-feasible timeslot to accumulate customer requests and assign them to an uncommitted 
delivery route. Note a delivery route is committed once the e-retailer starts loading packages 
assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the 
end of every timeslot, this framework assumes the e-retailer integrates the new customer 
requests by inserting these customer nodes into such uncommitted delivery routes in a manner 
that results in the slightest increase in distribution cost keeping the customer-distribution 
facility allocation fixed. Thus, the framework iterates through the timeslots with the e-retailer 
processing route commitments, accumulating customer requests, and subsequently integrating 
them into the delivery operations for the day. 

3.b Developing the adaptive large neighborhood search (ALNS) meta-heuristic 

The LMND problem formulated as an LRP constitutes three subproblems: facility location, 
customer allocation, and vehicle routing problems, each of which are NP-hard combinatorial 
optimization problems. To this end, the authors develop an adaptive large neighborhood search 
(ALNS) meta-heuristic algorithm that searches through the neighborhood by destroying and 
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consequently repairing the solution, thereby reconfiguring large portions of the solution with 
specific operators that are chosen adaptively in each iteration of the algorithm, hence the name 
adaptive large neighborhood search (Ropke and Pisinger, 2006). The interested reader may 
refer to the work of Hendel (2022) for a discussion on recent developments in ALNS. 
Considering the destroy and repair principle of the ALNS, the literature has investigated many 
destroy and repair operators to improve exploration and exploitation of the search space, each 
of which presents unique opportunities and challenges. However, this work simplifies the 
choice of operators to deploy by categorizing and detailing the fundamental principles of each 
operator. The authors here detail the specifics of the ALNS meta-heuristic developed in this 
work. 

Adaptive Large Neighborhood Search (ALNS) parameters - 𝜒 

𝑛 : Number of ALNS iterations in an ALNS segment 

𝑘 : Number of ALNS segments 

𝑚 : Number of local search iterations 

𝑗 : Number of ALNS segments triggering a local search  

𝛹𝑟 : Set of removal operators (destroy) 

𝛹𝑖 : Set of insertion operators (repair) 

𝛹𝑙 : Set of local search operators 

𝜎1 : Operators score if the new solution is unique and better than the best solution 

𝜎2 : Operators score if the new solution is unique and better than the current solution 

𝜎3  : Operators score if the new solution is unique, worse, yet accepted as the current 
solution 

𝜔 : Start temperature control threshold 

𝜏 : Start temperature control probability 

𝜃 : Temperature cooling rate 

𝐶 : Minimum customer nodes to remove 

𝐶 : Maximum customer nodes to remove 

𝜇 : Minimum removal fraction 

𝜇 : Maximum removal fraction 

𝜌 : Reaction factor 

Objective function. The constraints formulated for the LRP modeled in this work significantly 
restrict the feasible search space; hence, to enable the ALNS meta-heuristic algorithm to 
explore the search space comprehensively, the authors develop the algorithm to iterate 
through infeasible solutions. To this end, the authors consider a modified objective function 𝑓, 
taking the total cost of distribution and adding up a penalty for constraint violation equivalent 
to the magnitude of violation in the order of distribution cost.  
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Algorithm: Adaptive Large Neighborhood Search (ALNS) 

𝐴𝐿𝑁𝑆(𝜒, 𝑠) 
Input: 𝜒 – ALNS parameters, 𝑠 – Initial solution 
Output: 𝑠 – Final solution 

Step 1. Initialize 

𝑠∗  ← 𝑠  

𝑆   ← {𝑠}  

for 𝑟 ∈ 𝛹𝑟 do 𝑤𝑟 
← 1 end for 

for 𝑖 ∈ 𝛹𝑖 do 𝑤𝑖 ← 1 end for 

𝑇  ← 𝜔𝑓(𝑠)/ln (1/𝜏)  

Step 2. Loop over segments 

ℎ  ← 1  

while ℎ ≤ 𝑘 do 

Step 2.1. Reset count and score for every removal and insertion operator 

for 𝑟 ∈ 𝛹𝑟 do 𝑐𝑟, 𝜋𝑟 ← 0, 0 end for 

for 𝑖 ∈ 𝛹𝑖 do 𝑐𝑖, 𝜋𝑖  ← 0, 0 end for  

Step 2.2. Update selection probability for every removal and insertion operator 

for 𝑟 ∈ 𝛹𝑟 do 𝑝𝑟 ← 𝑤𝑟/ ∑ 𝑤𝑟𝑟∈𝛹𝑟
 end for 

for 𝑖 ∈ 𝛹𝑖 do 𝑝𝑖  ← 𝑤𝑖/ ∑ 𝑤𝑖𝑖 ∈𝛹𝑖 
 end for 

Step 2.3. Loop over iterations within the segment 

repeat 𝑛 times 

Step 2.3.1. Randomly select a removal and an insertion operator based on operator 
selection probabilities and consequently update the count for the selected operators 

𝑅 ~ 𝑝(𝑅 = 𝑟) = 𝑝𝑟  

𝐼  ~ 𝑝(𝐼 =  𝑖) = 𝑝𝑖  

𝑟
𝑅
← 𝑅  

𝑖 
𝑅
← 𝐼  

𝑐𝑟 ← 𝑐𝑟 + 1  

𝑐𝑖 ← 𝑐𝑖 + 1  

Step 2.3.2. Using the selected removal and insertion operators, destroy and repair the 
current solution to develop a new solution 

Λ   ~ 𝑈(0,1)  

𝜆  
𝑅
← Λ  

𝑞 ← [(1 − 𝜆) ∗ min (𝐶, 𝜇|𝐶|) + 𝜆 ∗ min(𝐶, 𝜇|𝐶|) ]
−

  

𝑠′ ← 𝑖(𝑟(𝑞, 𝑠))  

Step 2.3.3. If this new solution is better than the best solution, then set the best solution 
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and the current solution to the new solution, and accordingly update scores of the selected 
removal and insertion operators by 𝜎1 

if 𝑓(𝑠′) < 𝑓(𝑠∗) then 

𝑠∗ ← 𝑠′  

𝑠   ← 𝑠′  

𝜋𝑟 ← 𝜋𝑟 + 𝜎1  

𝜋𝑖  ← 𝜋𝑖 + 𝜎1  

𝑆   ← 𝑆 ∪ {𝑠}  

Step 2.3.4. Else if this new solution is only better than the current solution, then set the 
current solution to the new solution and accordingly update scores of the selected removal 
and insertion operators by 𝜎2 

else if 𝑓(𝑠′) < 𝑓(𝑠) then 

𝑠  ← 𝑠′  

if 𝑠 ∉ 𝑆 then  

𝜋𝑟 ← 𝜋𝑟 + 𝜎2  

𝜋𝑖  ← 𝜋𝑖 + 𝜎2  

end if 

𝑆 ← 𝑆 ∪ {𝑠}  

Step 2.3.5. Else set the current solution to the new solution conditional upon the 
acceptance criterion and accordingly update the scores of the selected removal and 
insertion operators by 𝜎3 

else 

Λ ~ 𝑈(0,1)  

𝜆
𝑅
← Λ  

if 𝜆 < exp(− (𝑓(𝑠′) − 𝑓(𝑠)) 𝑇⁄ ) do 

𝑠  ← 𝑠′  

if 𝑠 ∉ 𝑆 then 

𝜋𝑟 ← 𝜋𝑟 + 𝜎3  

𝜋𝑖  ← 𝜋𝑖 + 𝜎3  

end if 

𝑆 ← 𝑆 ∪ {𝑠}  

end if 

end if 

𝑇 ← 𝜑𝑇  

end repeat 

Step 2.4. Update weights for every removal and insertion operator 

for 𝑟 ∈ 𝛹𝑟 do if 𝑐𝑟 ≠ 0 then 𝑤𝑟 ← 𝜌𝜋𝑟/𝑐𝑟  + (1 − 𝜌)𝑤𝑟 end if end for 
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for 𝑖 ∈ 𝛹𝑖 do if 𝑐𝑖 ≠ 0 then 𝑤𝑖 ← 𝜌𝜋𝑖/𝑐𝑖  + (1 − 𝜌)𝑤𝑖  end if end for 

Step 2.5. Perform local search 

if 𝑗 mod ℎ for 𝑙 ∈ 𝛹𝑙 𝑠 ← 𝑙(𝑠, 𝑚) end for end if 

if 𝑓(𝑠) < 𝑓(𝑠∗) then 𝑠∗ ← 𝑠 end if 

ℎ ← ℎ + 1  

end while 

Step 3. Return the best solution 

return 𝑠∗ 

Initial solution. In this work, the ALNS meta-heuristic algorithm initiates the adaptive large 
neighborhood search with an initial solution built by selecting a random distribution facility 
node, a random delivery vehicle operating from this distribution facility, a random delivery 
route for this delivery vehicle, and after that inserting a randomly selected customer node 
between this distribution facility node and the first node on this route until all customers are 
inserted into the route. 

Framework. Starting from this initial solution, the ALNS meta-heuristic algorithm performs 𝑛 
iterations in a batch of 𝑘 segments. In each such iteration, the algorithm searches through the 
neighborhood by removing and subsequently re-inserting customer nodes into the solution, 
thereby reconfiguring large portions of the solution using removal and an insertion operator 
that are chosen adaptively from a given set of removal operators 𝛹𝑟 and insertion operators 𝛹𝑖 
based on the performance of the operators in the previous iterations. Further, after every 𝑗 
segment, the algorithm employs local search operators from the set 𝛹𝑙, each for at most 𝑚 
iterations, stopping at the first improvement. Finally, after a total of 𝑛 × 𝑘 iterations, the 
algorithm terminates, returning the best-found solution. 

Operator selection. In every algorithm iteration, the selected removal operator removes 
customer nodes from the current solution rendering a partial solution. The selected insertion 
operator reinserts these removed customer nodes into the partial solution to thus develop a 
new solution. The choice of a removal and insertion operator is contingent on the previous 
performance of the operators in improving the quality of the solution quantified using operator 
weights 𝑤𝑟 and 𝑤𝑖 , respectively. Specifically, in every iteration, the algorithm selects a removal 
and insertion operator using the roulette wheel selection method considering the operator 
selection probabilities 𝑝𝑟 and 𝑝𝑖, respectively, set equal for every removal and insertion 
operator.  

Operator selection. In every iteration, the ALNS meta-heuristic algorithm selects a removal and 
an insertion operator using the roulette wheel selection method considering the operator 
selection probabilities 𝑝𝑟 and 𝑝𝑖, respectively, evaluated using operator weights 𝑤𝑟 and 𝑤𝑖  
each. With these operator weights set to one for every operator at the initialization, the 
algorithm quantifies the operators' performance in improving the solution's quality. 
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Operator scoring. In every iteration of the ALNS meta-heuristic algorithm, the selected removal 
operator removes specific customer nodes from the current solution, rendering a partial 
solution. The selected insertion operator subsequently re-inserts these customer nodes into the 
partial solution to thus develop a new solution. Tantamount to the uniqueness and quality of 
this new solution in comparison to the current and the best solution, these operators 
accumulate score 𝜋𝑟  and 𝜋𝑖  each, set to zero for every operator at the start of a segment of the 
algorithm. In particular, the algorithm updates these scores for the selected removal and 
insertion operators by, 𝜎1 - if the new solution is unique and better than the best solution; 𝜎2 - 
if the new solution is still unique but only better than the current solution; and 𝜎3 - if the new 
unique solution is worse than the current solution yet accepted as the current solution. 

Adaptive mechanism. At the end of the segment, the ALNS meta-heuristic algorithm updates 
the operator weights using the operator scores accumulated in the segment normalized by 
operator count and additionally adjusted by a reaction factor 𝜌, while also accounting for 
scores accumulated through the previous segments of the algorithm, adjusted by a factor of 
(1 − 𝜌). Note operator count 𝑐𝑟 and 𝑐𝑖 is the number of times the algorithm chose a removal 
and an insertion operator, respectively, in the just terminated segment. With these updated 
operator weights, the algorithm updates operator selection probabilities evaluated as the ratio 
of operator weight to the sum of weights of all removal/insertion operators. 

Acceptance criteria. In every iteration, the ALNS meta-heuristic algorithm sets the current 
solution 𝑠, to the new solution 𝑠′, if this new solution is better than the current solution. 
However, to enable a comprehensive exploration of the search space, the algorithm also 
accepts a worse new solution as the current solution with a probability 

exp(− (𝑓(𝑠′) − 𝑓(𝑠)) 𝑇⁄ ), reducing through every iteration of the algorithm by a factor of 

exp(1 𝜃⁄ ). This simulated annealing acceptance criteria gradually narrows down the solution 
space analogous to the physical annealing process wherein a material is heated to a liquid state 
and then slowly cooled down to re-crystalize. Note, the ALNS algorithm developed in this work 
assumes an initial temperature, 𝑇 = 𝜔𝑓(𝑠)/ln (1/𝜏), such that the algorithm could accept a 
solution 𝜔 times worse than the initial solution with a probability of 𝜏, cooled off by a factor of 
𝜃 every iteration of the algorithm. 

Removal operators. The goal of a removal operator is to remove a certain 𝑞 number of 
customer nodes from the solution, thereby rendering a partial solution. In this work, the ALNS 
meta-heuristic algorithm employs twelve removal operators with three distinct principles of 
removal, namely, random removal, related removal, and worst removal, each working on four 
distinct parts of the solution.  

To begin with, random removal operators operate by randomly removing customer nodes. In 
particular, the random-customer removal operator selects q random customer nodes and 
removes them from the solution. However, the random-route removal operator iteratively 
selects a random delivery route and subsequently removes the customer nodes from the route 
until exactly q customer nodes are removed. Likewise, the random-vehicle removal operator 
iteratively selects a random delivery vehicle and consequently iterates through its delivery 
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routes, removing customers until at least q customer nodes are removed from the solution. 
And similarly, the random-facility removal operator iteratively selects a random distribution 
facility and consequently iterates through its delivery vehicles until at least q customer nodes 
are removed. 

However, unlike random removal operators, related removal operators remove the most 
“related” customer nodes. Here, relatedness estimates the potential for improving the solution 
quality by removing and re-inserting such “related” customer nodes into the solution. Thus, the 
related-customer removal operator selects a random pivot customer node and subsequently 
removes q customer nodes most related to this pivot customer (equation 24). Further, the 
related-route removal operator randomly selects a pivot delivery route and iterates through the 
most related delivery routes until exactly q customer nodes are removed from the solution 
(equation 27). Similarly, the related-vehicle removal operator selects a pivot delivery vehicle 
and iterates through the delivery routes of the most related delivery vehicles until at least q 
customer nodes are removed (equation 30). However, the related-facility removal operator 
selects a pivot distribution facility node and subsequently removes q customer nodes most 
related to the pivot customer (equation 33). Note the authors develop these measures of 
relatedness heuristically considering the previous use of related removal in the literature. 

𝜙(𝑐1, 𝑐2) =
|𝑞𝑐1

− 𝑞𝑐2
| + 𝜑(𝑐1, 𝑐2)

𝑙𝑐1𝑐2
+ |𝑡𝑐1

𝑠 − 𝑡𝑐2
𝑠 | + |𝑡𝑐1

𝑒 − 𝑡𝑐2
𝑒 |

                                          ∀ 𝑐1, 𝑐2 ∈ 𝐶          (24) 

where, 

𝜑(𝑐1, 𝑐2) = {

4,      if 𝑟1 = 𝑟2

3,      else if 𝑣1 = 𝑣2

2,      else if 𝑑1 = 𝑑2

1,      otherwise

                                                            ∀ 𝑐1, 𝑐2 ∈ 𝐶          (25)  

𝑙𝑐1𝑐2
= √(𝑥𝑐1

− 𝑥𝑐2
)

2
+ (𝑦𝑐1

− 𝑦𝑐2
)

2
                                                      ∀ 𝑐1, 𝑐2 ∈ 𝐶          (26) 

with, 𝑧𝑐1𝑟1
= 1, 𝑟1 ∈ 𝑅𝑣1

, 𝑣1 ∈ 𝑉𝑑1
; 𝑧𝑐2𝑟2

= 1, 𝑟2 ∈ 𝑅𝑣2
, 𝑣2 ∈ 𝑉𝑑2

 

𝜙(𝑟1, 𝑟2)  =
|∑ (𝑞𝑐𝑧𝑐𝑟1

− 𝑞𝑐𝑧𝑐𝑟2
)𝑐∈𝐶 | + 𝜑(𝑟1, 𝑟2)

𝑙𝑟1𝑟2
+ |𝑡𝑟1

𝑠 − 𝑡𝑟2
𝑠 | + |𝑡𝑟1

𝑒 − 𝑡𝑟1
𝑒 |

                                   ∀ 𝑟1, 𝑟2 ∈ 𝑅          (27) 

where, 

𝜑(𝑟1, 𝑟2) = {
3,        else if 𝑣1 = 𝑣2

2,        else if 𝑑1 = 𝑑2

1,        otherwise
                                                             ∀ 𝑟1, 𝑟2 ∈ 𝑅          (28) 

𝑙𝑟1𝑟2
= √(

∑ 𝑥𝑐𝑧𝑐𝑟1𝑐∈𝐶

∑ 𝑧𝑐𝑟1𝑐∈𝐶
−

∑ 𝑥𝑐𝑧𝑐𝑟2𝑐∈𝐶

∑ 𝑧𝑐𝑟2𝑐∈𝐶
)

2

+ (
∑ 𝑦𝑐𝑧𝑐𝑟1𝑐∈𝐶

∑ 𝑧𝑐𝑟1𝑐∈𝐶
−

∑ 𝑦𝑐𝑧𝑐𝑟2𝑐∈𝐶

∑ 𝑧𝑐𝑟2𝑐∈𝐶
)

2

      ∀ 𝑟1, 𝑟2 ∈ 𝑅          (29)  

with, 𝑟1 ∈ 𝑅𝑣1
, 𝑣1 ∈ 𝑉𝑑1

; 𝑟2 ∈ 𝑅𝑣2
, 𝑣2 ∈ 𝑉𝑑2
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𝜙(𝑣1, 𝑣2) =
|∑ (∑ 𝑞𝑐𝑧𝑐𝑟𝑟∈𝑅𝑣1

− ∑ 𝑞𝑐𝑧𝑐𝑟𝑟∈𝑅𝑣2
)𝑐∈𝐶 | + 𝜑(𝑣1, 𝑣2)

𝑙𝑣1𝑣2
+ |𝑡𝑣1

𝑠 − 𝑡𝑣2
𝑠 | + |𝑡𝑣1

𝑒 − 𝑡𝑣2
𝑒 |

  

       ∀ 𝑣1, 𝑣2 ∈ 𝑉          (30) 

where, 

𝜑(𝑣1, 𝑣2) = {
2,       else if 𝑑1 = 𝑑2

1,       otherwise
                                                            ∀ 𝑣1, 𝑣2 ∈ 𝑉           (31) 

𝑙𝑣1𝑣2
= √(

∑ ∑ 𝑥𝑐𝑧𝑐𝑟𝑐∈𝐶𝑟∈𝑅𝑣1

∑ ∑ 𝑧𝑐𝑟𝑐∈𝐶𝑟∈𝑅𝑣1

−
∑ ∑ 𝑥𝑐𝑧𝑐𝑟𝑐∈𝐶𝑟∈𝑅𝑣2

∑ ∑ 𝑧𝑐𝑟𝑐∈𝐶𝑟∈𝑅𝑣2

)
2

+ (
∑ ∑ 𝑦𝑐𝑧𝑐𝑟𝑐∈𝐶𝑟∈𝑅𝑣1

∑ ∑ 𝑧𝑐𝑟𝑐∈𝐶𝑟∈𝑅𝑣1

−
∑ ∑ 𝑦𝑐𝑧𝑐𝑟𝑐∈𝐶𝑟∈𝑅𝑣2

∑ ∑ 𝑧𝑐𝑟𝑐∈𝐶𝑟∈𝑅𝑣2

)
2

  

                                                                                                                          ∀ 𝑣1, 𝑣2 ∈ 𝑉         (32)  

with, 𝑣1 ∈ 𝑉𝑑1
; 𝑣2 ∈ 𝑉𝑑2

 

𝜙(𝑐𝑜, 𝑑𝑜) =
𝜑(𝑐𝑜, 𝑑𝑜)

𝑙𝑐𝑜𝑑𝑜  

                                                                     ∀  𝑐𝑜 ∈ 𝐶; 𝑑𝑜 ∈ 𝐷          (33) 

where, 

𝜑(𝑐𝑜, 𝑑𝑜) = {
2,       if 𝑧𝑐𝑜𝑟𝑜

= 1; 𝑟𝑜 ∈ 𝑅𝑣𝑜
, 𝑣𝑜 ∈ 𝑉𝑑𝑜

1,       otherwise
                      ∀ 𝑐𝑜 ∈ 𝐶; 𝑑𝑜 ∈ 𝐷         (34)  

𝑙𝑐𝑜𝑑𝑜
= √(𝑥𝑐𝑜

− 𝑥𝑑𝑜
)

2
+ (𝑦𝑐𝑜

− 𝑦𝑑𝑜
)

2

   
                                                 ∀ 𝑐1, 𝑐2 ∈ 𝐶         (35) 

And finally, the worst removal operators operate by removing customer nodes from poorly 
optimized parts of the solution. Specifically, the worst-customer removal operator iteratively 
removes the customer node that renders the worst impact on the objective function from being 
included in the solution in the first place until exactly q such worst customer nodes are 
removed. However, the worst-route removal operator iteratively selects the route with the 
least vehicle capacity utilization and subsequently removes customer nodes from the routing 
unit exactly q customer nodes are removed from the solution. Similarly, the worst-vehicle 
removal operator iteratively selects the delivery vehicle with the least capacity utilization. 
Consequently, it iterates through its delivery routes until at least q customer nodes are 
removed. And likewise, the worst-facility removal operator iteratively removes the facility with 
the least capacity utilization and consequently iterates through its delivery vehicles until at least 
q customer nodes are removed from the solution. 

Insertion operators. The goal of an insertion operator is to re-insert the customer nodes back 
into the solution considering the change in objective function value of the solution from 
inserting a customer node into the solution, defined as the insertion cost of the customer node. 
In this work, the ALNS meta-heuristic algorithm employs six insertion operators with three 
distinct insertion principles: best insertion, greedy insertion, and regret insertion, each with two 
different insertion measures.  

In particular, the best insertion operators iteratively re-insert a randomly selected customer 
node at its best position until all customer nodes are re-inserted into the solution. In this work, 
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the authors develop a precise and perturbed version of this insertion method: best-precise and 
best-perturb. The former employs precise values of insertion cost, while the latter perturbs 
insertion cost by ±20% thus preventing the same solution from recycling through the 
iterations. 

However, unlike the best insertion operators, the greedy insertion operators iteratively re-
insert the customer node with the least insertion cost at its best position in the solution until all 
customer nodes are re-inserted into the solution. Again, the authors develop a precise and 
perturb version of this insertion method, wherein greedy-precise uses the precise values of 
insertion cost while greedy-perturb perturbs the insertion cost. 

Nonetheless, both best and greedy insertion operators are myopic. Thus, to cope with this 
issue, the authors employ regret insertion operators that iteratively re-insert the customer 
node with the highest regret cost at its best position until all customer nodes are re-inserted 
into the solution. This regret cost is the opportunity cost of inserting the customer node at a 
position other than its best position. More precisely, the regret-k cost is the sum of the 
opportunity cost of inserting the customer node at 1st, 2nd, 3rd, …, kth best position instead of its 
best position. To this end, the algorithm employs regret-2 and regret-3, insertion operators. 

Local search. After iterating through every 𝑗 segment (𝑛 × 𝑗 iterations), the ALNS meta-heuristic 
algorithm initiates a local search. In doing so, the algorithm further exploits the solution space 
making minor modifications to fine-tune the solution. In this work, the algorithm employs six 
such local search operators with three distinct principles of local search: move local search, 2-
opt local search, and swap local search, each working on two distinct parts of the solution. 

Specifically, the move local search operators iteratively select a node and move it to its best 
position in the solution. This could be a customer node, as with the move-customer local search 
operator, or a distribution facility node, as is the case with the move-facility local search 
operator. This distinction is necessary since the move-facility operator moves the distribution 
facility node in every route initiated at this distribution facility. 

On the other hand, the 2-opt local search operators iteratively take two random arcs and 
reconfigure them if it improves the quality of the solution. While the intra-opt local search 
operator is restricted to choosing the two arcs from the same route, the inter-opt local search 
operator must select these two arcs from two different routes. 

And finally, the swap local search operators iteratively select two random nodes and swap them 
into each other’s position. In particular, the swap-customer local search operator swaps 
customer nodes. In contrast, the swap-facility local search operator swaps distribution facility 
nodes and the associated delivery vehicles, delivery routes of these delivery vehicles, and 
customer nodes visited on these delivery routes. 

Stopping criteria. Finally, after a total of 𝑛 × 𝑘 iterations, the ALNS algorithm terminates, 
returning the best-found solution. 
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This study employs Julia v1.7.2 (Bezanson et al., 2017) on an Intel Core i7-11800H @ 2.30GHz 
CPU with 64GB RAM to model the LMND problem and develop the associated Monte-Carlo 
simulation framework encompassing the ALNS meta-heuristic for LRP. For a comprehensive 
description of the algorithms and the corresponding Julia code, refer to the GitHub release LML 
v1.0 (Pahwa, 2022). 
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4. Case Study 

Without loss of generality, this work focuses on the region of southern California, particularly 
the city of Los Angeles, with a population of 3.3 million. To this end, the authors model last-mile 
distribution operations for an e-retailer operating in this region with a distribution structure 
encompassing a regional distribution facility located in San Bernardino, 50 miles east of 
downtown LA, along with primary and secondary distribution facilities located strategically in 
the region.  

The e-retailer sorts packages for an overnight (off-hours) delivery to specific primary 
distribution facilities using a heavy-duty delivery vehicles. At these primary distribution 
facilities, each equipped with a fleet of medium-duty delivery vehicles, the e-retailer further 
sorts packages, some for a direct delivery to the customer, and others for a delivery from one of 
the secondary distribution facilities, by the end of the day. These secondary distribution 
facilities include micro-hubs, each with a fleet of light-duty delivery vehicles for last-mile 
delivery, and/or collection-points, wherein customers traverse the last-mile to collect packages. 
Hence, the study considers a typical delivery process to begin at this regional distribution 
facility.  

Considering the configuration of the distribution structure, the distribution strategy could 
encompass a single-echelon distribution structure with direct deliveries form the primary 
distribution facilities to the customers’ doorstep with a fleet of medium-duty delivery vehicles 
such as class-5 diesel trucks (DD-C5DT), class-5 electric trucks (DD-C5ET), diesel vans (DD-DV), 
or electric vans (DD-EV); or a crowdsourced fleet of light-duty delivery trucks (DD-CSLT). 
Further, the distribution strategy could include a two-echelon distribution structure wherein 
the e-retailer delivers some packages directly as described above, with other packages 
distributed via the secondary distribution facilities, including micro-hubs coupled with light-
duty delivery vehicles such as electric cargo-bikes (MH-ECB); or collection-points with customer 
pickup (CP-PC). In addition, the e-retailer can deploy a hybrid strategy using mobile micro-hubs, 
i.e., delivery vans coupled with light-duty delivery vehicles such as autonomous delivery robots 
(MMH-ADR) or unmanned aerial vehicles (MMH-UAV).  Refer to Table 1 for a review of vehicle 
characteristics of the heavy-, medium-, and light-duty vehicles employed in the distribution 
structures modeled in this work. 
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Table 1. Vehicle characteristics for certain delivery vehicles in last-mile distribution 

Vehicle characteristics Vehicle type 

Heavy-duty vehicles 

     Class-8 DT Class-8 ET 

Purchase cost a ($)     120k 200k* 

Capacity (customers per tour)     1800 1800 

Range (mi)     1000 500 

Speed on rural network (mph)     50 50 

Speed on urban network (mph)     15 15 

Delivery time at customer (hour)     - - 

Loading time at facility (hour)     1 1 

Re-fueling time at station (hour)     0.208 0.9 

Re-fueling time at facility (hour)     0.06 0.9 

Driver cost b ($/hour)     35 35 

Maintenance cost a ($/mi)     0.190 0.140 

Fuel cost c ($/gal, $/kWh)     3.86 0.12 

Fuel con. rate a (gal/mi, kWh/mi)     0.125 1.800 

CO2 emission rate d (g/mi)     1592 0 

CO emission rate d (g/mi)     0.81 0 

NOx emission rate d (g/mi)     5.55 0 

PM emission rate d (g/mi)     0.09 0 

Vehicle characteristics Vehicle type 

Medium-duty vehicles 
 

  Class-5 DT DV Class-5 ET EV 

Purchase cost a ($)   80k 45k 150k* 70k* 

Capacity (customers per tour)   360 360 360 360 

Range (mi)   500 350 150 150 

Speed on rural network (mph)   55 55 55 55 

Speed on urban network (mph)   20 20 20 20 

Delivery time at customer (hour)   0.017 0.017 0.017 0.017 
Loading time at facility (hour)   1.8 1.8 1.8 1.8 

Re-fueling time at station (hour)   0.083 0.039 0.800 0.534 

Re-fueling time at facility (hour)   0.025 0.011 0.800 0.534 

Driver cost b ($/hour)   35 35 35 35 

Maintenance cost a ($/mi)   0.200 0.250 0.150 0.175 

Fuel cost c ($/gal, $/kWh)   3.86 3.86 0.12 0.12 

Fuel con. rate a (gal/mi, kWh/mi)   0.100 0.067 0.800 0.534 

CO2 emission rate d (g/mi)   1049 549 0 0 

CO emission rate d (g/mi)   0.77 0.50 0 0 

NOx emission rate d (g/mi)   4.10 2.42 0 0 

PM emission rate d (g/mi)   0.130 0.021 0 0 



 

 23 

Vehicle characteristics Vehicle type 

Light-duty vehicles 

  LT ECB ADR UAV PC 

Purchase cost a ($)  - 6.5k* 4k* 4k* - 

Capacity (customers per tour)  30 30 1 1 20 

Range (mi)  500 30 30 6 500 

Speed on rural network (mph)  60 10 1.5 15 60 

Speed on urban network (mph)  25 10 1.5 15 25 

Delivery time at customer (hour)  0.008 0.008 0.050 0.008 0.008 

Loading time at facility (hour)  0.250 0.150 0.008 0.008 0.167 

Re-fueling time at station (hour)  0.050 0.121 - - 0.020 

Re-fueling time at facility (hour)  0.050 0.604 0.875 0.493 0.020 

Driver cost b ($/hour)  20 30 15 15 20 

Maintenance cost a ($/mi)  - 0.02 0.164 0.265 - 

Fuel cost c ($/gal, $/kWh)  - 0.12 0.12 0.12 - 

Fuel con. rate a (gal/mi, kWh/mi)  - 0.029 0.042 0.118 - 

CO2 emission rate d (g/mi)  386 0 0 0 303 

CO emission rate d (g/mi)  1.77 0 0 0 1.09 

NOx emission rate d (g/mi)  0.17 0 0 0 0.08 

PM emission rate d (g/mi)  0.003 0 0 0 0.002 

DT: Diesel Truck, DV: Diesel Van, ET: Electric Truck, EV: Electric Van, LT: Light-duty Truck, PC: Passenger Car 
DT re-fueling rate - 10gal/min at re-fueling station, 35gal/min at a facility (Environmental Protection Agency, 1993).  
Battery recharging infrastructure - Level 3 DC for electric heavy- and medium- duty vehicles (Nicholas, 2019). 
Battery recharging infrastructure - Level 1 charger for light-duty electric vehicles (Nicholas, 2019). 
a Burke and Miller (2020)  b Caltrans (2016)    c AAA (2019)   d California Air Resource Board (2018) 
*Charging infrastructure cost excluded 

Note, this work amortizes fixed costs considering last-mile operations for a planning horizon of 
10 years, each with 330 working days, with 9 working hours every day. To establish the fixed 
cost of distribution facilities, the authors employ CoStar (2020) sales and lease data for 
industrial facilities in southern California, thus estimating facility fixed cost as $356.37(𝑥2 +
𝑦2)−0.115 per sq. ft. for a distribution facility located at 𝑥, 𝑦 relative to downtown LA. Note, 
here, the authors estimate the floor space requirement of a distribution facility assuming a 

consolidation of 0.2 customers per sq. ft. based on interviews and field study experience. 
Further, for last-mile operations with electric delivery vehicles, this work accounts for fixed 
costs of installing private charging infrastructure at the distribution facilities in vehicle purchase 
costs. In particular, the authors assume the e-retailer to re-fuel the electric truck fleet with 
Level-3 chargers ($20k per charger) while Level-1 chargers re-fuel the light-duty electric delivery 
vehicles. 

Note, the analyses here account for emission costs from last-mile distribution for CO2, CO, NOx, 
and PM emissions in vehicle operational cost, valued at $0.066, $0.193, $76.97, and $630.3 per 
kilogram of emissions, respectively (Caltrans, 2017; Marten and Newbold, 2012).  
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5. Empirical Results 

This section presents the empirical results assessing the sustainability of e-commerce last-mile 
distribution for an e-retailer with a 1% market share, operating in LA, offering expedited service 
with rush delivery by the end of the day (same-day delivery). Figure 2 presents the last-mile 
distribution structure for this e-retailer encompassing a regional distribution facility located 50 
miles east of downtown LA, potential primary distribution facility locations, potential secondary 
distribution facilities including micro-hubs and collection-points, and potential customer 
locations in the service region.  

 

Figure 2. Last-mile distribution structure of the e-retailer 

A day’s work for this e-retailer includes last-mile operations catering to the static customer 
demand accrued since the previous working day (Figure 3a) and additional service of dynamic 
customer demand arriving through the day (Figure 3b). And therefore, for this e-retailer, the 
authors investigate the opportunities and challenges associated with the different last-mile 
distribution strategies to cope with daily dynamic-stochastic total customer demand (Figure 3c 
and 3d). To this end, the authors simulate the decision-making process for this e-retailer with 
the Monte-Carlo simulation framework encompassing the LMND problem formulated as DS-2E-
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C-LRP-TW and addressed with an ALNS metaheuristic algorithm, as discussed above in the 
Methodology section. 

 

Figure 3. Daily customer demand 

This simulation framework begins with the strategic decision-making process wherein the e-
retailer establishes the type, number, and location of the primary and secondary distribution 
facilities, as well as the size and composition of the associated delivery fleet, to serve the 
expected customer demand over a planning horizon spanning 10 years. The framework then 
simulates the tactical decisions with the e-retailer defining the order of customer visits for each 
day of a month sampled from the planning horizon to meet the daily stochastic customer 
demand, given the primary and secondary distribution facilities and the associate delivery 
vehicle fleet.  And finally, the simulation framework develops the operational decision-making 
process wherein the e-retailer fine-tunes the last-mile delivery in every hourlong timeslot in the 
day considering the dynamic arrival of specific customer requests requiring service by the end 
of this day. In particular, the authors assume the e-retailer delays route commitments until the 
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last-feasible timeslot to accumulate customer requests and assign them to an uncommitted 
delivery route. At the end of every timeslot, the e-retailer integrates the new customer 
requests by inserting these customer nodes into uncommitted delivery routes in a manner that 
results in the slightest increase in distribution cost keeping the customer-distribution facility 
allocation fixed. 

With this, the authors develop the impact of demand uncertainty on last-mile distribution 
(Table 2). To this end, the analysis establishes expected distribution cost for each distribution 
structure with a counterfactual scenario assuming the e-retailer has complete knowledge of the 
delivery environment. Hereafter, this work develops an operational variance metric, estimating 
the coefficient of variance of the total cost, to assess the impact of stochastic customer 
demand. And to investigate the impact of dynamic customer demand, this study develops the 
value of information metric, comparing the counterfactual scenario with the actual scenario 
wherein customers arrive dynamically throughout the day. 

Table 2. Impact of demand uncertainty on last-mile distribution 

Distribution 
structure 

Expected distribution 
cost 

Operational 
variance 

Value of 
Information 

DD-C5DT $2.09 1.58% $0.14 
DD-DV $1.95 1.23% $0.12 
DD-C5ET $1.96 1.13% $0.11 
DD-EV $1.84 1.12% $0.11 
DD-CSLT $1.87 0.70% $0.12 
MH-ECB $2.80 3.22% $0.21 
CP-PC $1.85 1.53% $0.13 
MMH-ADR $3.89 0.83% $0.21 
MMH-UAV $2.37 0.85% $0.14 

DD-C5DT. Here, the e-retailer establishes a single-echelon distribution structure with direct 
delivery using a fleet of class-5 diesel trucks operating from a primary distribution facility 
fulfilled by the regional distribution facility located in San Bernardino with a fleet of class-8 
diesel trucks (Figure 4). The strategic decision-making process guides the e-retailer to deploy a 
fleet of 5 class-5 diesel trucks operating from a primary distribution facility close to downtown 
LA to cater to the expected demand over the planning horizon. With this, the e-retailer can 
cater to the daily total customer demand at a total cost of $2.09 per package, with fixed and 
operational costs amounting to $0.78 and $1.31 per package, respectively. However, owing to 
the stochastic nature of this customer demand, the e-retailer observes a 1.58% operational 
variance in distribution costs. Moreover, the dynamic nature of the customer demand further 
exacerbates the viability of last-mile operations, increasing distribution costs by $0.14 per 
package. Note, in such a distribution structure, goods flow from the regional distribution facility 
to the customers’ doorstep renders on average 0.35 miles of distance traveled per package, 
resulting in 409g of CO2, 0.3g of CO, 1.6g of NOx, and 0.05g of PM emissions, thus accruing 
$0.17 in emissions cost per package. 
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Figure 4. Direct delivery with a fleet of class-5 diesel trucks (DD-C5DT) 

DD-DV. In contrast, the e-retailer can cater to the daily total customer demand with direct 
delivery from the downtown LA primary distribution facility using a fleet of diesel vans (Figure 
5) at a total cost of only $1.95 per package, with operational costs rendering the most savings. 
Owing to this lower operational cost of a diesel van fleet compared to a class-5 diesel truck 
fleet, the stochastic customer demand renders only 1.23% in daily operational variance and 
$0.12 in additional cost per package, respectively. Further, due to a diesel van's lower emissions 
rate compared to a class-5 diesel truck, last-mile distribution renders 246g of CO2, 0.2g of CO, 
1g of NOx, and 0.01g of PM emissions per package. Thus each package accounts for only $0.1 in 
emissions cost despite requiring a similar 0.35 miles of vehicle travel, as in DD-C5DT.   

 

Figure 5. Direct delivery with a fleet of diesel vans (DD-DV) 

DD-C5ET. Unlike with the DD-C5DT, here the e-retailer establishes direct delivery using a fleet 
of class-5 electric trucks, each with an operating range of 150 miles, operating from a primary 
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distribution facility fulfilled by the regional distribution facility a fleet of class-8 diesel trucks 
(Figure 6). Yet much like with DD-C5DT, the e-retailer establishes the primary distribution 
facility next to downtown LA, deploying 5 class-5 electric trucks to cater to the expected 
customer demand. With this alternate fuel delivery vehicle fleet, the e-retailer can serve the 
daily total customer demand at a total cost of $1.95 per package with fixed costs as high as 
$0.88 per package, while operational costs only amounting to $1.07 per package, including 
$0.03 in tailpipe emissions. These results, therefore, highlight the potential of electric trucks in 
rendering operational improvements in last-mile delivery despite their higher fixed cost. Due to 
these operational improvements, the stochastic and dynamic uncertainties in daily customer 
demand render only as much as 1.13% in daily operational variance and $0.11 in additional 
distribution cost, respectively. Outsourcing additional electric trucks to cater to this dynamic-
stochastic customer demand can significantly affect the viability of last-mile distribution owing 
to the high rental fee associated with electric trucks. 

 

Figure 6. Direct delivery with a fleet of class-5 electric trucks (DD-C5ET) 

DD-EV. Similarly, the e-retailer can cater to the daily total customer demand with direct 
delivery from the downtown LA primary distribution facility using a fleet of electric vans (Figure 
7) at a total cost of only $1.84 per package with $0.77 in fixed costs and $1.07 in operational 
costs including $0.03 in tailpipe emissions. Much like with the class-5 electric truck fleet (DD-
C5ET), the operational improvements in last-mile distribution due to using the electric delivery 
van fleet restrict daily operational variance due to the stochastic customer demand to 1.12% 
and additional distribution costs due to the dynamic customer demand to $0.11. Further, due 
to the lower fixed costs of an electric van, outsourcing additional delivery vans to cater to this 
dynamic-stochastic customer demand does not pose significant viability concerns, as is the case 
with last-mile distribution using electric trucks (DD-C5ET). These results, therefore, bolster the 
case for using electric delivery vehicles, especially electric delivery vans, for last-mile delivery. 
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Figure 7. Direct delivery with a fleet of electric vans (DD-EV) 

 

Figure 8. Direct delivery with crowdsourced fleet of light-duty trucks (DD-CSLT) 

DD-CSLT. Here, the e-retailer establishes direct delivery with a fleet of crowdsourced drivers 
using light-duty trucks to perform last-mile operations operating from a primary distribution 
facility (Figure 8). Like DD-C5DT and DD-C5ET, the e-retailer fulfills this primary distribution 
facility using a fleet of class-8 diesel trucks from the regional distribution facility 50 miles east of 
downtown LA. However, unlike in DD-C5DT and DD-C5ET, the e-retailer here does not own the 
fleet of delivery vehicles (at the primary distribution facility). Therefore, the e-retailer 
remunerates these crowdsourced drivers only for their labor at $20/hour while saving on 
vehicle maintenance and fuel costs. Considering this incentive structure, the authors assume 
the crowdsourced drivers only perform at most two delivery tours per day for the e-retailer. 
And thus, to cater to the daily total customer demand, the e-retailer needs a fleet of 63 
crowdsourced drivers from the primary distribution facility a mile from downtown LA. This 
results in a total cost of $1.87 per package, with fixed costs accounting for $0.69 per package 
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and operational costs amounting to $1.18 per package, lower than last-mile delivery with an e-
retailer-owned fleet. Further, owing to the flexible nature of crowdsourced delivery, the 
stochastic and dynamic uncertainties in daily customer demand render only as much as 0.7% in 
daily operational variance and $0.12 in additional distribution cost, respectively. Nonetheless, 
owing to the limitations of this light-duty truck fleet, crowdsourcing delivery renders the 
inefficient flow of goods, with every package necessitating 1.1 miles of vehicle travel resulting 
in 477g of CO2 and 1.8g of CO emissions. 

MH-ECB. Unlike the above-discussed last-mile distribution strategies, the e-retailer establishes 
a two-echelon distribution structure with the additional layer encompassing micro-hubs, each 
with a fleet of cargo bikes (Figure 9). Note, the regional distribution facility fulfills the primary 
distribution facility using class-8 diesel trucks, and the primary distribution facility fulfills the 
micro-hub facilities with class-5 diesel trucks. The e-retailer groups the expected customer 
demand and appropriately locates 5 micro-hub facilities. Thus, the e-retailer can cater to daily 
total customer demand with this distribution structure. Some customers receive packages via 
one of the 3 class-5 diesel trucks directly from the primary distribution facility located a mile 
east of downtown LA. In contrast, other customers receive packages from micro-hubs via one of 
the 51 cargo bikes. These last-mile delivery operations result in a distribution cost of $2.80 per 
package with $1.20 in fixed costs and $1.70 in operational costs, both significantly higher than 
that rendered by the conventional distribution strategy (DD-C5DT), owing to the additional 
costs of the additional echelon. Fine-tuning last-mile operations to serve the customers arriving 
dynamically through the day results in an additional distribution cost of $0.21 per package for 
the e-retailer, with stochastic customer demand rendering as much as 3.2% operational 
variance in distribution costs. Further, owing to the multi-echelon nature of the distribution 
structure, each package generates 0.55 vehicle miles traveled, substantially higher than a 
single-echelon distribution structure. Nonetheless, owing to the use of cargo bikes for last-mile 
delivery, the tailpipe emissions in such a distribution structure amount to $0.14 per package. 

 

Figure 9. Delivery via micro-hubs using electric cargo bikes (MH-ECB) 
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CP-PC. Again, the e-retailer establishes a two-echelon distribution structure with the additional 
layer, including collection points fulfilled by the regional distribution facility via the primary 
distribution facility (Figure 10). To this end, the e-retailer groups the expected customer 
demand and appropriately operates 15 potential 20 collection-point facilities. Thus, with this 
distribution structure, the e-retailer can cater to the daily total customer demand. Note, the 
author assumes customers must travel at most 5 miles to self-collect packages. Some packages 
travel directly via one of the 3 class-5 diesel trucks operating from the primary distribution 
facility near downtown LA, while other customers self-collect packages by driving to collection 
points. With this, the e-retailer can effectively outsource a segment of the last-mile to the 
customer and thus cater to its customers at just $1.85 per package with fixed costs amounting 
to $1.05 per package and operational costs accounting for $0.80 per package. This lower 
operational cost for last-mile distribution reduces the impact of demand uncertainty (in 
contrast to DD-C5DT), with stochastic customer demand rendering a 1.5% operational variance 
in distribution cost, while dynamic customer demand results in an additional $0.13 per package. 
Nonetheless, considering that individuals travel in their cars to collect packages, collection-
point pickup renders an inefficient flow of goods, with each package traveling 2.18miles and 
consequently generating 1029g of CO2, 2.2g of CO, 2.1g of NOx, and 0.06g of PM tailpipe 
emissions that amount to a cost of $0.27 per package. 

 

Figure 10. Delivery via collection points with customer pickup (CP-PC) 

MMH-ADR. Considering a hybrid distribution strategy, the e-retailer deploys mobile micro-
hubs, i.e., delivery vans coupled with autonomous delivery robots (Figure 11). The delivery vans 
stop at predetermined locations while the delivery robots carry out the last-foot travel. Here, 
due to the low operating speed of a delivery robot, the e-retailer employs as many as 15 
delivery vans (and 45 delivery robots) to cater to the daily total customer demand by the end of 
the day, thus rendering a total cost of $3.88 per package with fixed and amounting to $0.85 per 
package but operational costs accounting for $3.03 per package. Further, due to such 
operational limitations of the delivery robot, the e-retailer observes an additional distribution 
cost of $0.21 per package to cater to the customers arriving dynamically through the day. 
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However, owing to the predetermined nature of delivery van routing, such a distribution 
strategy absorbs much of the uncertainty. Hence, the e-retailer observes a 0.83% operational 
variance due to stochastic customer demand. Finally, as far as emissions are concerned, a large 
chunk of distribution emissions results from the last-mile travel performed by the diesel 
delivery vans. To this end, the e-retailer can instead deploy electric delivery vans and stop at 
predetermined locations equipped with appropriate charging infrastructure to use the idle time 
and recharge the delivery van. In contrast, delivery robots traverse the last foot. 

 

Figure 11. Delivery via mobile micro-hubs using autonomous delivery robots (MMH-ADR) 

MMH-UAV. Much like MMH-ADR, the e-retailer establishes a hybrid distribution strategy with 
delivery vans acting and stopping at predetermined locations, each coupled with 3 unmanned 
aerial vehicles traversing the last foot (Figure 12). However, unlike delivery robots, aerial 
delivery vehicles allow for fast last-foot operations. Therefore the e-retailer employs 6 delivery 
vans (and 18 aerial delivery vehicles) to cater to the daily total customer demand rendering a 
total cost of $2.37 per package, with fixed and operational costs accounting for $0.75 and $1.61 
per package, respectively. And thus, with aerial delivery vehicles making the last-foot travel, 
dynamic customers necessitate an additional distribution cost of only $0.14 per package in 
contrast to $0.21 when delivery robots traverse the last foot instead.  However, as is the case 
with MMH-ADR, this distribution strategy absorbs much of the uncertainty considering the 
predetermined nature of delivery van routing. Hence, the e-retailer observes an operational 
variance of 0.85% due to the stochastic nature of the customer demand. Here again, a 
significant portion of distribution-related emissions stem from the last-mile travel executed by 
the diesel delivery vans. And as discussed earlier, to address this issue, the e-retailer could opt 
to utilize electric delivery vans, which can recharge at predetermined stops equipped with 
suitable charging infrastructure during their idle time as delivery robots cover the last foot of 
the journey. 
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Figure 12. Delivery via mobile micro-hubs using unmanned aerial vehicles (MMH-UAV) 
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6. Discussion 

E-commerce has the potential to provide an economically viable, environmentally efficient, and 
socially equitable flow of goods. However, as e-retailers compete with traditional retailers for 
market share by employing consumer-focused service models with expedited and reverse 
logistics, urban environments witness frequent less-than-truckload last-mile deliveries. This, 
therefore, results in a substantial increase in freight distribution costs and associated negative 
externalities, including greenhouse gas emissions advancing global climate change, as well as 
criteria pollutant emissions worsening local air quality and thus affecting those living close to 
logistics clusters. Thus, such consumer-focused trends in e-commerce render last-mile 
distribution economically unviable, environmentally inefficient, and socially inequitable. To this 
end, alternate last-mile distribution strategies such as those that include the use of electric 
delivery trucks for last-mile operations, or fleet of crowdsourced drivers for last-mile delivery, 
or consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon 
distribution, or collection points for customer pickup, can restore sustainable urban goods flow. 
Thus, in this work, the authors established opportunities and challenges in e-commerce last-
mile distribution for the different distribution structures considering the recent consumer-
focused trends in e-commerce. The results of this study have important implications for e-
retailers seeking to optimize their last-mile distribution operations and balance cost, reliability, 
and sustainability. 

To begin with, the findings here suggest that last-mile delivery using a fleet of electric delivery 
trucks can render urban freight with environmentally efficient and socially equitable 
distribution and an economically viable goods flow compared to last-mile delivery with diesel 
trucks. These results, therefore, highlight the potential for electric delivery vehicles to render 
operational improvements in last-mile distribution. However, it is worth considering the 
potential barriers to adopting electric trucks for last-mile delivery. One of the main challenges is 
the higher upfront cost of electric delivery vehicles, which can be a deterrent for e-retailer, 
especially when the e-retailer may need to rent out additional delivery vehicles to cope with 
demand uncertainty (stochastic and dynamic customer demand).  

To this end, the e-retailers can instead crowdsource last-mile delivery to cater to customers 
arriving dynamically through the day and, in doing so, establish a cost-effective and flexible last-
mile distribution structure resistant to demand uncertainty. However, it is essential to note that 
using independent contractors may result in less reliable performance than company-owned 
delivery vehicles. To this end, the e-retailer may need to offer higher incentives to drivers to 
improve reliability. And thus, the e-retailer must carefully consider the relationship between 
viability and reliability of last-mile distribution when crowdshipping. Moreover, the e-retailer 
must also consider the potential impact of crowdshipping on environmental efficiency and 
social equity associated with urban goods flow.  

In addition to these single-echelon distribution strategies, this study investigated opportunities 
and challenges with multi-echelon distribution strategies. One such multi-echelon distribution 
strategy includes using consolidation facilities and light-duty delivery vehicles. This study found 
such a distribution strategy less cost-effective and less resistant to demand uncertainty than 
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other distribution strategies due to the additional handling and transportation required to 
move packages between the consolidation facilities and the final delivery location. Yet, despite 
this additional goods flow in the urban environment, using cargo bikes for last-mile delivery can 
substantially reduce exposure to harmful criteria pollutants for individuals living in such dense 
urban environments. 

Nonetheless, to cope with additional handling and transportation costs, the e-retailer can 
outsource a last-mile segment and have customers collect packages at collection points. This 
study found the e-retailer to establish cost-effective goods flow and resistance to demand 
uncertainties. However, customers traveling to self-collect necessitates vehicle travel, thus 
increasing negative externalities from urban goods flow. To this end, the e-retailer can co-
locate collection points near significant traffic generators and mitigate the need for customers 
to travel further to collect a package. 

Further, the authors investigated the potential for using autonomous delivery robots and 
unmanned aerial delivery vehicles from a delivery van acting as a mobile micro-hub. The results 
highlight the advantage of aerial delivery vehicles over delivery robots owing to faster last-foot 
operations. In addition, the authors showcase the potential for such a distribution strategy to 
absorb uncertainty in last-mile distribution. Nonetheless, issues about theft, damage, privacy, 
and, more importantly, limited operational range remain, narrowing down the use case of such 
new and innovative distribution strategies. 

These findings provide valuable insights for e-retailers looking to optimize their last-mile 
distribution operations and balance sustainability and reliability to cater to a market demanding 
increasingly consumer-focused services. 
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7. Conclusions 

This study developed a last-mile network design (LMND) problem for an e-retailer to configure 
and optimize distribution structure for last-mile delivery in a service region with a stochastic 
and dynamic daily customer demand requesting delivery within time windows. To this end, the 
authors formulated a dynamic-stochastic two-echelon capacitated location routing problem 
with time windows (DS-2E-C-LRP-TW). Consequently, this work developed a state-of-the-art 
adaptive large neighborhood search (ALNS) metaheuristic algorithm to address the problem.  

In doing so, the authors established a comprehensive analysis of the sustainability of various 
last-mile distribution structures, considering the recent turn towards consumer-focused trends 
in e-commerce. This analysis accounted for economic viability, environmental efficiency, and 
social equity of last-mile distribution with fixed and operational distribution costs. The 
parameter values employed in this analysis reflect the industry structures, regulations, 
geographies, urban forms, and consumer behaviors in the Los Angeles region.  

However, future work must address this work's limitations to develop a robust understanding 
of the sustainability of last-mile distribution. Future work must consider intra-route re-fueling 
for delivery vehicles to model last-mile operations comprehensively. Further, future work must 
model the willingness of crowdsourced drivers to engage in last-mile delivery and, in doing so, 
account for any supply constraints in crowdshipping. Similarly, future work can model the 
willingness of customers to collect package accounting for customers’ value of time. 
Importantly, future work must consider synchronization between the different echelons to 
model the last-mile operations in a multi-echelon distribution structure thoroughly. Further, 
considering that this work assessed the sustainability of last-mile distribution accounting for 
high-probability low-severity fluctuations in the delivery environment, future work can extend 
this analysis to assess reliability of last-mile distribution accounting for low-probability high-
severity disruptions in the delivery environment. 

Yet, despite such limitations, this work develops significant insight highlighting the 
opportunities and challenges in e-commerce last-mile distribution for the different distribution 
structures considering the recent consumer-focused trends in e-commerce. 



 

 37 

8. References 

AAA, 2019. State Gas Price Averages. 

Ahmadi-Javid, A., Seddighi, A.H., 2013. A location-routing problem with disruption risk. 
Transportation Research Part E: Logistics and Transportation Review 53, 63-82. 

Ahmadi Javid, A., Azad, N., 2010. Incorporating location, routing and inventory decisions in 
supply chain network design. Transportation Research Part E: Logistics and Transportation 
Review 46(5), 582-597. 

Aksen, D., Altinkemer, K., 2008. A location-routing problem for the conversion to the “click-and-
mortar” retailing: The static case. European Journal of Operational Research 186(2), 554-
575. 

Albareda-Sambola, M., Fernández, E., Nickel, S., 2012. Multiperiod Location-Routing with 
Decoupled Time Scales. European Journal of Operational Research 217(2), 248-258. 

Arslan, A.M., Agatz, N., Kroon, L., Zuidwijk, R., 2019. Crowdsourced delivery—a dynamic pickup 
and delivery problem with ad hoc drivers. Transportation Science 53(1), 222-235. 

Barreto, S., Ferreira, C., Paixao, J., Santos, B.S., 2007. Using clustering analysis in a capacitated 
location-routing problem. European Journal of Operational Research 179(3), 968-977. 

Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B., 2017. Julia: A fresh approach to numerical 
computing. SIAM review 59(1), 65-98. 

Browne, M., Allen, J., Leonardi, J., 2011. Evaluating the use of an urban consolidation centre 
and electric vehicles in central London. IATSS Research 35(1), 1-6. 

Burke, A., Miller, M., 2020. Zero-Emission Medium-and Heavy-duty Truck Technology, Markets, 
and Policy Assessments for California. 

Caballero, R., González, M., Guerrero, F.M., Molina, J., Paralera, C., 2007. Solving a 
multiobjective location routing problem with a metaheuristic based on tabu search. 
Application to a real case in Andalusia. European Journal of Operational Research 177(3), 
1751-1763. 

Cairns, S., 2005. Delivering supermarket shopping: more or less traffic? Transport Reviews 
25(1), 51-84. 

California Air Resource Board, 2018. EMFAC2017 Web Database. 

Caltrans, 2016. Vehicle Operation Cost Parameters. 

Caltrans, 2017. California Life-Cycle Benefit/Cost Analysis Model (Cal-B/C). 

Contardo, C., Hemmelmayr, V., Crainic, T.G., 2012. Lower and upper bounds for the two-
echelon capacitated location-routing problem. Computers & operations research 39(12), 
3185-3199. 



 

 38 

CoStar, 2020. 

Crainic, T.G., Sforza, A., Sterle, C., 2011. Location-routing models for two-echelon freight 
distribution system design. CIRRELT Montréal. 

De Ruyter, A., Brown, M., Burgess, J., 2018. Gig work and the fourth industrial revolution. 
Journal of International Affairs 72(1), 37-50. 

Derbel, H., Jarboui, B., Hanafi, S., Chabchoub, H., 2012. Genetic algorithm with iterated local 
search for solving a location-routing problem. Expert Systems with Applications 39(3), 2865-
2871. 

Dolati Neghabadi, P., Evrard Samuel, K., Espinouse, M.-L., 2019. Systematic literature review on 
city logistics: overview, classification and analysis. International Journal of Production 
Research 57(3), 865-887. 

Drexl, M., Schneider, M., 2015. A survey of variants and extensions of the location-routing 
problem. European Journal of Operational Research 241(2), 283-308. 

Edwards, J.B., McKinnon, A.C., Cullinane, S.L., 2010. Comparative analysis of the carbon 
footprints of conventional and online retailing: A “last mile” perspective. International 
Journal of Physical Distribution & Logistics Management. 

Environmental Protection Agency, 1993. Regulation of Fuels and Fuel Additives: Controls 
Applicable to Gasoline Retailers and Wholesale Purchaser-Consumers; 10 Gallon Per Minute 
Fuel Dispensing Limit Requirement Implementation. 

Estrada, M., Roca-Riu, M., 2017. Stakeholder’s profitability of carrier-led consolidation 
strategies in urban goods distribution. Transportation Research Part E: Logistics and 
Transportation Review 104, 165-188. 

Farag, S., Krizek, K.J., Dijst, M., 2006. E-Shopping and its Relationship with In-store Shopping: 
Empirical Evidence from the Netherlands and the USA. Transport Reviews 26(1), 43-61. 

Fazayeli, S., Eydi, A., Kamalabadi, I.N., 2018. A model for distribution centers location-routing 
problem on a multimodal transportation network with a meta-heuristic solving approach. 
Journal of Industrial Engineering International 14(2), 327-342. 

Ferreira, K.M., de Queiroz, T.A., 2018. Two effective simulated annealing algorithms for the 
location-routing problem. Applied Soft Computing 70, 389-422. 

Ferrell, C.E., 2004. Home-based teleshoppers and shopping travel: Do teleshoppers travel less? 
Transportation Research Record 1894(1), 241-248. 

Figliozzi, M.A., 2007. Analysis of the efficiency of urban commercial vehicle tours: Data 
collection, methodology, and policy implications. Transportation Research Part B: 
Methodological 41(9), 1014-1032. 



 

 39 

Gao, S., Wang, Y., Cheng, J., Inazumi, Y., Tang, Z., 2016. Ant colony optimization with clustering 
for solving the dynamic location routing problem. Applied Mathematics and Computation 
285, 149-173. 

Govindan, K., Jafarian, A., Khodaverdi, R., Devika, K., 2014. Two-echelon multiple-vehicle 
location–routing problem with time windows for optimization of sustainable supply chain 
network of perishable food. International journal of production economics 152, 9-28. 

Guo, X., Jaramillo, Y.J.L., Bloemhof-Ruwaard, J., Claassen, G., 2019. On integrating 
crowdsourced delivery in last-mile logistics: A simulation study to quantify its feasibility. 
Journal of Cleaner Production 241, 118365. 

Hemmelmayr, V., Smilowitz, K., de la Torre, L., 2017. A periodic location routing problem for 
collaborative recycling. IISE Transactions 49(4), 414-428. 

Hendel, G., 2022. Adaptive large neighborhood search for mixed integer programming. 
Mathematical Programming Computation 14(2), 185-221. 

Herazo-Padilla, N., Montoya-Torres, J.R., Nieto Isaza, S., Alvarado-Valencia, J., 2015. Simulation-
optimization approach for the stochastic location-routing problem. Journal of Simulation 
9(4), 296-311. 

Hofer, K., Flucher, S., Fellendorf, M., Schadler, M., Hafner, N., 2020. Estimation of changes in 
customer’s mobility behaviour by the use of parcel lockers. Transportation Research 
Procedia 47, 425-432. 

Hofferth, S.L., Flood, S.M., Sobek, M., Backman, D., 2020. American Time Use Survey Data 
Extract Builder: Version 2.8 [dataset], College Park, MD: University of Maryland and 
Minneapolis, MN: IPUMS. 

Hu, Y., Zhang, K., Yang, J., Wu, Y., 2018. Application of hierarchical facility location-routing 
problem with optimization of an underground logistic system: a case study in China. 
Mathematical Problems in Engineering 2018. 

Isa, S.S., Lima Jr, O.F., Vieira, J.G.V., 2021. Urban consolidation centers: Impact analysis by 
stakeholder. Research in Transportation Economics, 101045. 

Iwan, S., Kijewska, K., Lemke, J., 2016. Analysis of Parcel Lockers’ Efficiency as the Last Mile 
Delivery Solution – The Results of the Research in Poland. Transportation Research Procedia 
12, 644-655. 

Jaller, M., Pahwa, A., 2020. Evaluating the environmental impacts of online shopping: A 
behavioral and transportation approach. Transportation Research Part D: Transport and 
Environment 80. 

Jamil, M., Batta, R., Malon, D.M., 1994. The traveling repairperson home base location problem. 
Transportation Science 28(2), 150-161. 



 

 40 

Janjevic, M., Merchán, D., Winkenbach, M., 2021. Designing multi-tier, multi-service-level, and 
multi-modal last-mile distribution networks for omni-channel operations. European Journal 
of Operational Research 294(3), 1059-1077. 

Klibi, W., Lasalle, F., Martel, A., Ichoua, S., 2010. The stochastic multiperiod location 
transportation problem. Transportation Science 44(2), 221-237. 

Koç, Ç., 2016. A unified-adaptive large neighborhood search metaheuristic for periodic location-
routing problems. Transportation Research Part C: Emerging Technologies 68, 265-284. 

Koç, Ç., 2019. Analysis of vehicle emissions in location-routing problem. Flexible Services and 
Manufacturing Journal 31(1), 1-33. 

Laporte, G., Nobert, Y., Taillefer, S., 1988. Solving a family of multi-depot vehicle routing and 
location-routing problems. Transportation science 22(3), 161-172. 

Lee, C., 2017. A GA-based optimisation model for big data analytics supporting anticipatory 
shipping in Retail 4.0. International Journal of Production Research 55(2), 593-605. 

Lemardelé, C., Estrada, M., Pagès, L., Bachofner, M., 2021. Potentialities of drones and ground 
autonomous delivery devices for last-mile logistics. Transportation Research Part E: Logistics 
and Transportation Review 149, 102325. 

Lewis, P.H., 1994. Attention shoppers: Internet is open, The New York Times. The New York 
Times. 

Li, S.R., Keskin, B.B., 2014. Bi-criteria dynamic location-routing problem for patrol coverage. 
Journal of the Operational Research Society 65(11), 1711-1725. 

Lin, C., Kwok, R., 2006. Multi-objective metaheuristics for a location-routing problem with 
multiple use of vehicles on real data and simulated data. European journal of operational 
research 175(3), 1833-1849. 

Lin, S.-W., Vincent, F.Y., Lu, C.-C., 2011. A simulated annealing heuristic for the truck and trailer 
routing problem with time windows. Expert Systems with Applications 38(12), 15244-15252. 

Mara, S.T.W., Kuo, R., Asih, A.M.S., 2021. Location-routing problem: a classification of recent 
research. International Transactions in Operational Research 28(6), 2941-2983. 

Marinakis, Y., 2015. An improved particle swarm optimization algorithm for the capacitated 
location routing problem and for the location routing problem with stochastic demands. 
Applied Soft Computing 37, 680-701. 

Marten, A.L., Newbold, S.C., 2012. Estimating the social cost of non-CO2 GHG emissions: 
Methane and nitrous oxide. Energy Policy 51, 957-972. 

Melechovský, J., Prins, C., Calvo, R.W., 2005. A metaheuristic to solve a location-routing 
problem with non-linear costs. Journal of Heuristics 11(5), 375-391. 

Merchán, D., Winkenbach, M., 2018. High-Resolution Last-Mile Network Design. City Logistics 3: 
Towards Sustainable and Liveable Cities, 201-214. 



 

 41 

Mokhtarian, P.L., 2004. A conceptual analysis of the transportation impacts of B2C e-
commerce. Transportation 31(3), 257-284. 

Nadizadeh, A., Nasab, H.H., 2014. Solving the dynamic capacitated location-routing problem 
with fuzzy demands by hybrid heuristic algorithm. European Journal of Operational 
Research 238(2), 458-470. 

Nicholas, M., 2019. Estimating electric vehicle charging infrastructure costs across major US 
metropolitan areas. 

Pahwa, A., 2022. LML, v1.0 ed. 

Pahwa, A., Jaller, M., 2022. A cost-based comparative analysis of different last-mile strategies 
for e-commerce delivery. Transportation Research Part E: Logistics and Transportation 
Review 164, 102783. 

Pahwa, A., Jaller, M., In Review-a. Assessing last-mile distribution resilience under demand 
disruptions. Transportation Research Part E: Logistics and Transportation Review. 

Pahwa, A., Jaller, M., In Review-b. Opportunities and challenges in freight eco-routing for 
stakeholders involved in urban freight. Transportation Research Part D: Transport and 
Environment. 

Peng, Z., Manier, H., Manier, M.-A., 2017. Particle swarm optimization for capacitated location-
routing problem. IFAC-PapersOnLine 50(1), 14668-14673. 

Pirkwieser, S., Raidl, G.R., 2010. Variable neighborhood search coupled with ILP-based very 
large neighborhood searches for the (periodic) location-routing problem, International 
Workshop on Hybrid Metaheuristics. Springer, pp. 174-189. 

Pourrahmani, E., Jaller, M., 2021. Crowdshipping in Last Mile Deliveries: Operational Challenges 
and Research Opportunities. Socio-Economic Planning Sciences, 101063. 

Prins, C., Prodhon, C., Calvo, R.W., 2006. A memetic algorithm with population management 
(MA| PM) for the capacitated location-routing problem, European Conference on 
Evolutionary Computation in Combinatorial Optimization. Springer, pp. 183-194. 

Prodhon, C., 2011. A hybrid evolutionary algorithm for the periodic location-routing problem. 
European Journal of Operational Research 210(2), 204-212. 

Prodhon, C., Prins, C., 2014. A survey of recent research on location-routing problems. 
European Journal of Operational Research 238(1), 1-17. 

Quak, H., Tavasszy, L., 2011. Customized solutions for sustainable city logistics: the viability of 
urban freight consolidation centres, Transitions towards sustainable mobility. Springer, pp. 
213-233. 

Rabbani, M., Heidari, R., Yazdanparast, R., 2019. A stochastic multi-period industrial hazardous 
waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation. European 
Journal of Operational Research 272(3), 945-961. 



 

 42 

Rabbani, M., Navazi, F., Farrokhi-Asl, H., Balali, M., 2018. A sustainable transportation-location-
routing problem with soft time windows for distribution systems. Uncertain Supply Chain 
Management 6(3), 229-254. 

Rautela, H., Janjevic, M., Winkenbach, M., 2021. Investigating the financial impact of collection-
and-delivery points in last-mile E-commerce distribution. Research in Transportation 
Business & Management, 100681. 

Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup 
and delivery problem with time windows. Transportation science 40(4), 455-472. 

Salhi, S., Nagy, G., 1999. Consistency and robustness in location-routing. Studies in Locational 
Analysis(13), 3-19. 

Schiffer, M., Walther, G., 2018. An adaptive large neighborhood search for the location-routing 
problem with intra-route facilities. Transportation Science 52(2), 331-352. 

Schwengerer, M., Pirkwieser, S., Raidl, G.R., 2012. A variable neighborhood search approach for 
the two-echelon location-routing problem, European conference on evolutionary 
computation in combinatorial optimization. Springer, pp. 13-24. 

Siikavirta, H., Punakivi, M., Kärkkäinen, M., Linnanen, L., 2002. Effects of e-commerce on 
greenhouse gas emissions: a case study of grocery home delivery in Finland. Journal of 
industrial ecology 6(2), 83-97. 

Singh, S., Kumar, R., Panchal, R., Tiwari, M.K., 2021. Impact of COVID-19 on logistics systems 
and disruptions in food supply chain. International Journal of Production Research 59(7), 
1993-2008. 

Snoeck, A., Winkenbach, M., Mascarino, E.E., 2018. Establishing a Robust Urban Logistics 
Network at FEMSA through Stochastic Multi-Echelon Location Routing. City Logistics 2: 
Modeling and Planning Initiatives, 59-78. 

Srinivas, S.S., Marathe, R.R., 2021. Moving towards “mobile warehouse”: Last-mile logistics 
during COVID-19 and beyond. Transportation Research Interdisciplinary Perspectives 10, 
100339. 

Sun, J.U., 2015. An endosymbiotic evolutionary algorithm for the hub location-routing problem. 
Mathematical Problems in Engineering 2015. 

Ting, C.-J., Chen, C.-H., 2013. A multiple ant colony optimization algorithm for the capacitated 
location routing problem. International Journal of Production Economics 141(1), 34-44. 

Tunalıoğlu, R., Koç, Ç., Bektaş, T., 2016. A multiperiod location-routing problem arising in the 
collection of Olive Oil Mill Wastewater. Journal of the Operational Research Society 67(7), 
1012-1024. 

U.S. Census Bureau, 2022. Estimated Quarterly U.S. Retail Sales (Adjusted): Total and E-
commerce. 



 

 43 

van Duin, J.R., Wiegmans, B.W., van Arem, B., van Amstel, Y., 2020. From home delivery to 
parcel lockers: A case study in Amsterdam. Transportation Research Procedia 46, 37-44. 

Van Loon, P., Deketele, L., Dewaele, J., McKinnon, A., Rutherford, C., 2015. A comparative 
analysis of carbon emissions from online retailing of fast moving consumer goods. Journal of 
Cleaner Production 106, 478-486. 

Veenstra, M., Roodbergen, K.J., Coelho, L.C., Zhu, S.X., 2018. A simultaneous facility location 
and vehicle routing problem arising in health care logistics in the Netherlands. European 
Journal of Operational Research 268(2), 703-715. 

Wang, Y., Assogba, K., Liu, Y., Ma, X., Xu, M., Wang, Y., 2018. Two-echelon location-routing 
optimization with time windows based on customer clustering. Expert Systems with 
Applications 104, 244-260. 

Zenezini, G., De Marco, A., 2016. A review of methodologies to assess urban freight initiatives. 
IFAC-PapersOnLine 49(12), 1359-1364. 

Zhang, C., Zhao, Y., Leng, L., 2019. A hyper heuristic algorithm to solve the low-carbon location 
routing problem. Algorithms 12(7), 129. 

Zhou, L., Lin, Y., Wang, X., Zhou, F., 2019. Model and algorithm for bilevel multisized terminal 
location-routing problem for the last mile delivery. International Transactions in Operational 
Research 26(1), 131-156. 

  



 

 44 

Data Summary 

Products of Research  

Socio-demographic data - The team used publicly available data from the U.S. Census Bureau. 
This data generated a synthetic population for the empirical analyses and during model 
development. 

LML v1.0 - The team developed and deployed Julia project LML v1.0. 

Data Format and Content  

Socio-demographic data. The files used will be saved in Comma-delimited (csv) format. 

LML v1.0 - The Julia code will be available in the. jl format. 

Data Access and Sharing  

The project uses publicly available information. Any dataset compiled during the project using 
the various data sources follows the same access and sharing policies as the original data. The 
team will make available the datasets used in this work. The research team does not anticipate 
the use of any data with private or confidential information. Any other user should reference 
the research team and this project as directed by the National Center for Sustainable 
Transportation and the Pacific Southwest Region UTC. 

Reuse and Redistribution  

Any user should follow the copyright guidelines of the original datasets. For other sets 
produced by the research team, third-party users should cite the work and email the PI, 
mjaller@ucdavis.edu, to inform about the use of the data. The data may be cited as follows: 

Pahwa, Anmol; Jaller, Miguel (2023), Coping with the Rise of E-commerce Generated Home 
Deliveries through Innovative Last-mile Technologies and Strategies, Dryad, Dataset, 
https://doi.org/10.25338/B8W93S 

https://doi.org/10.25338/B8W93S
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