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Abstract A real-time, dynamic, early-warning model (EP-risk
model) is proposed to cope with sudden water quality pollution
accidents affecting downstream areas with raw-water intakes
(denoted as EPs). The EP-risk model outputs the risk level of
water pollution at the EP by calculating the likelihood of
pollution and evaluating the impact of pollution. A generalized
form of the EP-risk model for river pollution accidents based on
Monte Carlo simulation, the analytic hierarchy process (AHP)
method, and the risk matrix method is proposed. The likelihood
of water pollution at the EP is calculated by the Monte Carlo
method, which is used for uncertainty analysis of pollutants’
transport in rivers. The impact of water pollution at the EP is
evaluated by expert knowledge and the results of Monte Carlo
simulation based on the analytic hierarchy process. The final
risk level of water pollution at the EP is determined by the risk
matrix method. A case study of the proposed method is illus-
trated with a phenol spill accident in China.

Keywords Water quality . Earlywarning . Risk assessment .

Monte Carlo simulation . Analytic hierarchy process

Introduction

With rapid economic development and the growth of human
activities, environmental problems have become one of the
most serious issues confronted by society. Among these

problems, sudden water pollution accidents frequently occur,
especially those that affect upstream sources of drinking water
(rivers and lakes), such as factory explosions (Zhang et al.
2011), traffic accidents (Hou et al. 2013), and capsized ships
(Duarte et al. 2013), which can adversely affect people’s health
in downstream areas through pollutant advection and diffusion.
These accidents possess the following features: (1) they are
sudden or unpredictable, (2) they are uncertain or difficult to
predict accurately with changes in hydrological and meteoro-
logical conditions, and (3) they are catastrophic or leading to
grave social consequences.

When a severe water pollution accident occurs in the
upstream reaches of a river that threatens downstream area
with raw-water intakes (herein called early-warning point or
EP), there is a strong need to continually evaluate and report
the pollution risk until the pollutant plume no longer threatens
the water intakes. There are four key questions of interest
about river pollution concerning the downstream EPs as fol-
lows: (1) how large is the concentration of the pollutant now
and how large will it be in the future? (2) What will the peak
value of the pollutant be? (3) When will the pollutant arrive at
the EP, and how long will it take for it to no longer pose a
threat? (4) Can the water treatment plant (WTP) at the EP
remove the pollutants and produce safe drinking water?

Several available water quality models, early-warning
models, and early-warning systems could be applied to answer
these four questions for eliminating or decreasing the impacts of
water pollution accidents. In previous research, sudden water
pollution warning models were designed to quickly assess
emergency situations, particularly on predicting pollutants’
concentrations at locations downstream from a pollution site.
Many studies have been conducted to establish mathematical
models by employing the principles of mass balance, chemical
thermodynamics, and transport phenomena, along with suffi-
cient knowledge of the physical–chemical properties of
chemicals and the hydrological and sedimentation characteris-
tics of the receiving environment (Di Toro et al. 1983; Brown
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and Barnwell 1987; Runkel 1998; Connolly et al. 2000). In
recent years, several models for organic chemicals have been
developed to simulate and predict the transport of organic
chemicals in water (Warren et al. 2002; Malve et al. 2003;
Wang et al. 2012). Various systems have been researched and
developed to produce early warnings and trigger emergency
responses to sudden water pollution accidents. For example, a
water quality early warning system was implemented by the
Ohio River ValleyWater Sanitation Commission (ORSANCO)
to monitor the water quality of the Ohio River in the US
(Grayman et al. 2000). An emergency early warning system
designed by researchers in Germany, Austria, and seven other
countries for the Danube River was established to provide risk
assessment and emergency response to water pollution inci-
dents (Jansky et al. 2004). River Spill is a GIS-based software
package that calculates the time of travel and concentration of
contaminants in streams and rivers (Samuels et al. 2006).
Combined with its GIS spatial environment to communicate
propagation risks and locate response resources, SMIS 2.0 is a
state-of-the-art, 3D hydrodynamic, chemical spill modeling
system tool that possesses improved capability to predict spills
and chemical transport (Camp et al. 2010). These systems offer
valuable tools for response, planning, and training to protect
regional sources of surface drinking water. They can also
manage and display data with GIS. However, most of the
existing research about sudden water pollution models or early
warning systems possess the following limitations: (1) they
mainly focus on modeling the transport of contaminants in
water; (2) they mainly focus on raw water and the water
environment, and rarely on drinking water quality; (3) they
employ water quality models with limited consideration of the
uncertainties caused by boundary conditions, model parame-
ters, and the physical properties of the river; and (4) they do not
involve real-time, effective risk assessment.

Various uncertainty analysis and risk assessment methods
for hydrologic and water quality modeling have been devel-
oped over the years. The uncertainty analysis methods are
mainly applied to evaluate or predict water quality characteris-
tics. Among these methods, stochastic differential equations are
commonly used to describe the changes in water quality char-
acteristics of a system using the actual distribution of the
observed (or perceived) values of model coefficients instead
of their average values to investigate the statistical properties of
equations and a variety of possible outcomes (Wendroth et al.
1999;Whitehead et al. 1981; Finney et al. 1982; Hamed and El-
Beshry 2004). Other studies on uncertainty analysis have been
conducted based on black system theory via artificial neural
networks, fuzzy theory, and gray system theory (Maier and
Dandy 1996; Huang and Xia 2001; Fan et al. 2003).

Risk assessment methods have also received considerable
attention in early warning models of human health, natural
hazards, and environmental pollution accidents (Merkhoher
1993). The four-step risk assessment framework for human

health (US National Research Council 1983) and the risk assess-
ment methodology for process plants (Salvi and Debray 2006)
are two examples of risk assessment methodologies. These
methods facilitate risk planning by governments or factories to
prevent sudden accidents and decrease risks to an acceptable
level. In the field of water pollution, risk assessment is also
widely used and most research focuses on in-advance risk as-
sessment, that is, on assessing the impact/consequence and the
occurrence probability of pollution (Xu et al. 2004; Liu et al.
2013). Jiang et al. (2012) developed a real-time, generic “four-
step-three-mode” method for river chemical spills. This method
links risk areas threatened by chemical spills into rivers to
geographic information systems (GIS) and models on the basis
of risk assessment in real time. Bi and Si (2012) presented a
dynamic risk assessment framework of oil spill accidents based
on numerical simulation.Most previous risk assessmentmethods
for dealing with pollution accidents tend to focus on the assess-
ment of impacts/consequences, and uncertainty analysis has not
been incorporated into these methods.

The introduction of uncertainty analysis and risk assess-
ment methods greatly improve the capacity of early warning
for sudden water pollution. However, that type of research
was limited by the following issues: (1) they do not combine
the likelihood of pollution with the possible consequences of
accidents in downstream areas, thus do not produce a com-
prehensive risk assessment; (2) they do not emphasize the
impact of pollutants on the capacity of WTPs, which provide
drinking water to cities, and (3) they do not provide a contin-
uous, dynamic analysis to report pollution alarms for the EPs.

Because of the current lack of an efficient warning model
for sudden water pollution, the primary objective of the pres-
ent study is to develop a real-time, dynamic early-warning
model for sudden water pollution, based on uncertainty anal-
ysis and risk assessment. The model is applicable to sudden
water pollution accidents that occur upstream of water intakes
that have not yet being polluted. The model produces a com-
prehensive risk assessment that combines the likelihood of
pollution and the possible consequences of pollution on the
basis of the uncertainty of pollutant advection/diffusion down-
stream. The Monte Carlo (MC) method, analytic hierarchy
process (AHP), and 1Dwater quality simulation are combined
to support the model, which is tested with a sudden water
pollution accident that occurred in the Qiantang River, China.

Methodology

Definition of risk

Pollution risk

There are different definitions of pollution risk in the technical
literature. In the early days, pollution risk was often defined as
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the likelihood/probability that pollution will occur, or the
impact/consequence of the pollution, as follows:

Risk ¼ L or Risk ¼ I ð1Þ

where L is the likelihood/probability of a pollution event
occurring, I is the impact/consequence caused by the pollution
event.

In some cases, pollution risk was also defined as “a com-
bined measure of the degree of detriment to society or the
aquatic ecosystem caused by a defined event (or combination
of events), and the probability of that event occurring”
(EUREAU 1999; McIntyre et al. 2003). Therefore,

Risk ¼ L⊗I ð2Þ

where ⊗ is the product operator of the likelihood L and the
impact I. Pollution risk is usually categorized into a small
number of levels because neither the likelihood nor the impact
of pollution can be estimated with accuracy and precision.
Risk matrix is frequently used to define the various levels of
risk as the product of the harm likelihood categories and harm
impact categories. This is a simple and commonmechanism to
increase the visibility of risks and assist decision making
(Henriksen et al. 2009). Equation (2) is an in-advance risk
assessment method and cannot evaluate past accidents.

EP risk

In practice, after a severe water pollution accident has oc-
curred in a river basin upstream, a emergency response plan
will be quickly launched. Several emergency sampling sites
will be deployed temporarily along the river to monitor the
concentration of leaked pollutants. Before the pollutants travel
to the EP, there is still enough response time to evaluate the
potential risk of the accident for the downstream EP. Based on
the potential risk, some decision will be made for the EP or
river reaches. A schematic of a river pollution accident and its
emergency response is shown in Fig. 1, which is adapted from
the earlier paper of Grayman and Males (2002).

For realizing real-time and dynamic risk assessment at the
downstream EPs, and considering the uncertainty of the trans-
port of pollutants, the pollution risk at a given EP is redefined
as follows:

EPRisk ¼ L⊗I ð3Þ

where L is the likelihood that pollution will occur at a given
EP (hereinafter called EP likelihood) when a sudden water
pollution accident has occurred upstream. This value is

quantitatively evaluated by the uncertainty analysis method,
using information about the accident and numerical simula-
tion of pollutant concentration that is compared with the alarm
threshold of a pollutant (set by national standards, or by
commonly-recognized criteria, or user-defined concentration
of pollutant based on the treatment capacity of the water
treatment plant at the EP); I is defined as the potential impacts
of river pollution at the given EP (hereinafter called EP
Impact, over the entire area served by the WTP). It includes
social, economic, and environmental losses caused by the
pollution accident; ⊗ is an operator applied to L and I based
on the risk matrix. Generally, there may be one or more
downstream EPs along the river that might be affected by
pollution spills.

Framework for EP-risk assessment based on uncertainties

Risk assessment is one of the most important components in
the analysis of sudden water pollution accidents. It is a tool
used by managers to monitor and implement activities to cope
with harmful events. When a sudden water pollution accident
occurs in an upstream river reach, confirming the risk at the
downstream EP involves uncertain information. Therefore, a
four-step model (hereinafter called EP-risk model) was devel-
oped for risk assessment of sudden water pollution accidents
(Fig. 2).

The first step is implemented by pollutant transport simu-
lation based on uncertainty analysis, and considering water
quality data, hydrological data, and meteorological data that is
updated with time. The EP likelihood L (step 2) and EP impact
I (step 3) at the downstream EPs were obtained from the
simulation results of step 1. Step 4 is used to assess the EP
risk using risk assessment methods. In practice, steps 1 to 4
can be executed continuously and their execution is triggered
by new input data. Therefore, the EP-risk model can be used
as a dynamic approach to evaluate the real-time EP risk.

Based on the four-step EP-risk model depicted in Fig. 2, a
generalized form/framework of EP-risk model for river pollu-
tion accident is proposed based on Monte Carlo (MC) simu-
lation and the analytic hierarchy process (AHP; see Fig. 3).

In this study, the probability distribution of the peak con-
centration and the duration of the pollution (the duration in
which the pollutant concentration exceeds the given alarm
threshold) at the EP can be obtained by a set of random MC

Fig. 1 Schematic representation of river pollution and its emergency
response. WTP water treatment plant
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simulations based on a 1D water quality model. The EP
likelihood is calculated based on the probability distribution
of the peak concentration. The analytic hierarchy process
(AHP) combined with risk matrix method was employed to
assess EP risk. The concrete steps of the methodology graphed
in Fig. 3 will be described in the next sections.

Step 1: MC simulation based on 1D water quality model

MC simulation

Uncertainty in a water quality simulation model is inevitable
because of the difficulty in fully capturing all the nuances (i.e.,
hydrological information and parameter values) present in
river transport. Although there is extensive knowledge avail-
able on water quality processes from laboratory experiments,
the extrapolation of this knowledge to models of the real
environment has consistently proven to be difficult.

The MC method is the most commonly used probabilistic
technique to propagate uncertainty in simple or complex
models. The MC method is effective in characterizing risks
and uncertainty in circumstances in which a considerable
amount of data that describe system dynamics is available
(Vose 2008). Numerous studies related to the practical appli-
cations of the MC method for risk assessment have been
conducted (Harris and Jones 2008; Lee et al. 2011; Qu et al.
2012). A typical Monte Carlo simulation of a physical process
has four stages as follows (Raychaudhuri 2008):

1. Static model generation
Every Monte Carlo simulation starts by developing a

deterministic model which closely resembles the real
scenario (in our case, pollutant transport in the river). This
deterministic model represents mathematical relations
which use the values of the input variables, and transforms
them into the desired output.

2. Input distribution identification
When the deterministic model is adopted, the risk

components are added to the model. Asmentioned before,
since the risks originate from the stochastic nature of the
input variables, the underlying distributions, if any, which
govern the input variables need to be identified. This step
needs historical data for the input variables. There are
standard statistical procedures to identify input
distributions.

3. Random variable generation
After the underlying distributions for the input vari-

ables are identified, a set of random numbers (also called
random variables or random samples) are generated from
these distributions. One set of random numbers,
consisting of one value for each of the input variables,
will be used in the deterministic model to provide one set
of output values. This process is repeated by generating
more sets of random numbers, one for each input distri-
bution, and collect different sets of possible output values.
Usually, the number of sets of inputs (iterations) is large,
and how large it should be depends on characteristics of
the phenomenon being simulated. The generation of mul-
tiple sets on input values for model simulations constitutes
the core of Monte Carlo simulation.

4. Analysis and Decision Making
After a sample of output values is collected from the

simulation, statistical analysis is performed on those
values (in our case, the probability distributions of peak
concentration and pollution duration at the EP). This step
provides statistical confidence for the decisions that the
analyst makes after running the simulation.

The MC simulation has been widely used in water quality
modeling and risk assessment. Deway proposed a stochastic
dissolved oxygen river model by using the MC method
(Dewey 1984). Sohn et al. developed a Bayesian MC method
for assessing and reducing the uncertainty of groundwater
flow and chemical pollutants prediction (Sohn et al. 2000).
Arabi proposed a computational framework for analyzing the
uncertainty inmodel estimates of water quality benefits of best
management practices (BMPs) in two small watersheds in
Indiana (Arabi et al. 2007). Grayman and Males proposed a
risk-based modeling of early warning systems for river pollu-
tion accidents (Grayman and Males 2002). The MC simula-
tion technique is used to generate random spills events (dif-
ferent locations, substances, magnitudes and duration, etc.) to
test early warning systems, and to aid in development of EWS
policies and design criteria. However, it remains largely in-
advance (or a priori) method of analysis but not a real-time
early-warning model. This work implements the MC method
as a real-time analysis tool.

Fig. 2 Schematic of a four-step EP-risk early warning model
Fig. 3 A generalized form of the EP-risk model for river pollution
accident. CP is the peak concentration of pollution at the EP, D is the
duration of pollution at the EP, fCP

xð Þ and fD(x) is the probability density
function ofCP andD, respectively, andCT is the alarm threshold at the EP

Environ Sci Pollut Res (2014) 21:8878–8892 8881



In the study, MC simulation is used when a specific river
pollution accident has occurred upstream. A set of random
parameters (flow velocities, decay rate coefficient, and diffu-
sion coefficients, etc.) is first generated as inputs to the 1D
water qualitymodel. After a user-defined number of iterations,
one set of output values (such as concentration of river pol-
lutant) is provided to calculate the probability distributions of
peak concentration and pollution duration at the downstream
EP. The latter two probability distributions are then calculated
as the output of theMC simulation for the next risk assessment
stage. Figure 4 shows the flowchart of MC simulation based
on 1D water quality model.

1D water quality model

The diffusion and distribution problem of pollutants in water
is essentially a complex 3D problem that is difficult and time
consuming to solve. For a long river, its depth and width are
very small compared with its length, so the pollutants
discharged into the river will be mixed in the cross section
after they flow at a certain distance away from the leak point.
For many rivers (especially river segments), the problem of
calculating water quality can therefore be simplified as a 1D
chemical transport problem, which assumes that the pollution
concentration in the cross section is homogeneous and chang-
es only with the flow direction.

A common finite-difference form of 1D river chemical
transport is as follows (Zhang et al. 2011):

Ci
jþ1 ¼ Ci

j þ Ei
Ciþ1

j þ Ci−1
j

Δx2
þ ui

Ci−1
j

Δx

� �
Δt−

Ei
2Ci

j

Δx2
þ ui

Ci
j

Δx
Δt þ KiCi

j

� �
Δt

ð4Þ

where Ci
j (mg/m3) is the cross-section average concentration

of pollutant at section i (i=1, 2, ..,M,M is the total number of
sections in the river) at time j (j=1, 2,…, P, see Eqs. (6–7)); Ei
(m2/s), ui (m/s), and Ki (s

−1) are the diffusion coefficient, the
vertical flow velocity, and the decay rate coefficient at section
i on the river;Δx (m) is the distance step in the x-direction, and
Δt (s) is the time step.

Based on Eq. (4) and simplifying assumptions, the pollut-
ant concentration of any section in the river at any moment Ci

j

can be estimated by the time series of pollutant concentration
{C1

j } at the first (upstream) section (leak point), and the model
parameters Ei, ui, and Ki. In most previous studies, Ei, ui, and
Ki are simplified as constants E, u, and K, which are obtained
by the parameter calibration method (for example, least
squares method) using historical data and then taken as certain
parameters of Eq. (4) for model calculation. Due to the com-
plexity of pollution and water environments, E, u, and K are

taken as uncertain parameters for evaluating the unknown
pollutant concentration Ci

j in this study.
As shown in Fig. 3, the water quality data, hydrological

data, and meteorological data from upstream monitoring sta-
tions and emergency sampling sites can be used in the EP-risk
model. In this paper, the flow-velocity data from upstream
monitoring stations is used to estimate the possible distribu-
tion of the vertical flow velocity u (see MC simulation); the
pollutant concentration data from emergency sampling site at
the first section (leak point) is used to predict the time series of
pollutant concentration {{C1

j }}, which is an important
boundary-condition input to the 1D water-quality model,
and can be obtained by polynomial curve fitting with a least-
square calculation on the basis of the limited pollutant con-
centration data from emergency sampling points after the
pollution accident has occurred.

The simplified 1D water quality model used in this paper
has its limitations. For example, the simplified model cannot
address issues related to multispecies contaminant fate and
transport in the river systems. Also, the simplified model only
addresses the soluble component of the spill, not suitable for
the LNAPL (or DNAPL) risks and their unique mass transfer
characteristics. In order to better describe the proposed EP-
risk model and reduce computational complexity, the simpli-
fied model is used. It should be noted that besides the simpli-
fied 1D water quality model, other water quality models can
be alternatives to be applied in the EP-risk model. By doing
so, the complexity and the computation burden of model
calculation may increase dramatically.

Generation of the random variable of model parameters

Due to the complexity of pollution and water environments,
the model parameters E, u, and K are taken as uncertain
parameters in this study. The probability distribution of E, u,
and K can be characterized by their cumulative distribution
functions (CDF), FE(x)=P{E<x}, Fu(x)=P{u<x}, and
FK(x)=P{K<x} for x∈ R (R is the set of real numbers), or
corresponding probability density functions (PDF) fE(x), fu(x),
and fK(x) for x∈ R.

The CDF or PDF of E, u, and K can be determined by
experience, or identified by numerical methods, for example,
maximum likelihood, which are used to fit the data to one
theoretical discrete or continuous distribution. The methods for

Fig. 4 Flowchart of MC simulation based on 1D water quality model. N
is the total number of iterations for MC simulation
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fitting PDFs are discussed in other papers (see for example,
Raychaudhuri 2008).

After the underlying distributions for the uncertain param-
eters of the water quality model are determined, random
variables are generated from these distributions by the inverse
transformation method that uses the inverse of the PDF to
convert a random number between 0 and 1 to a random value
(Raychaudhuri 2008). The generated random variables are
denoted by RandE, Randu, and RandK, which are taken as
the model parameters of a single iteration in MC simulation.
Equation (4) is redefined as follows:

Ci
jþ1 ¼ Ci

j þ RandE
Ciþ1

j þ Ci−1
j

Δx2
þ Randu

Ci−1
j

Δx

� �
Δt−

RandE
2Ci

j

Δx2
þ Randu

Ci
j

Δx
Δt þ RandKCi

j

� �
Δt ð5Þ

Calculation of the probability distributions of Cp and D

Based on Eq. (5), the peak concentration CP and the pollution
duration D at the EP are calculated as follows:

CP ¼ max
j¼1;2;…;P

C j
i jEP

� � ð6Þ

D ¼ count
j¼1;2;…;P

C j
i jEP≥CT

� � ð7Þ

whereCi
j|EP is the concentration of the nearest section from the

intake within the EP at time j; CT is the alarm threshold at the
EP; P denotes the time at which the pollutant plume has
thoroughly passed through the EP, which can be estimated
by the experience, or the trend of Ci

j|EP.
The results of the output variables of the 1D water quality

modelCP andD afterMC simulation are typically subjected to
statistical analysis. Aggregating the output values into groups
by size and displaying the values as a frequency histogram
provides the approximate shape of the probability density
function of an output variable.

Define Frequency(h) as the total number of the observa-

tions in the hth bin, satisfying N ¼ ∑
h¼1

H
Frequency hð Þ (H is

the total number of the bins), the density of the statistical
variables in the hth bin is s follows:

Density hð Þ ¼ Frequency hð Þ
s⋅N

ð8Þ

where s is the width of the bin; N is the total number of the
output values (the total iterations times of MC simulation).

Base on Eq. (8), the density distribution of CP and D are
calculated, which can be fitted to a probability distribution if s
is small enough and N is large enough. The fitted PDF and
corresponding CDF of CP and D can be expressed as follows:

FCP xð Þ ¼ P CP ≤xf g ¼
Z x

0
f Cp tð Þdt ð9Þ

FD xð Þ ¼ P D≤xf g ¼
Z x

0
f D tð Þdt ð10Þ

Step 2: calculation of the EP likelihood

In this study, the EP Likelihood, L, is defined as the probabil-
ity that the peak concentration CP be greater than or equal to
the alarm threshold CT in the given EP based on the results of
MC simulation, as follows:

L ¼ P CP ≥CTf g ¼ 1−P 0≤CP < CTf g ¼ 1−
Z CT

0
f CP

tð Þdt
ð11Þ

or resorting to an approximate statistical expression,

L ¼
count
i¼1;2;::;N

CPi≥CTf g

N
� 100% ð12Þ

where CPi is the peak concentration of ith iteration of MC
simulation.

Equations (11) and (12) imply that the higher the probabil-
ity of peak pollution, the higher the likelihood of pollution at
the EP is.

Step 3: calculation of the EP impact

The analytic hierarchy process (AHP) method is adopted in
this study to evaluate the EP impact during a water contami-
nation accident. AHP provides a flexible tool to analyze
complex problems (Golden et al. 1989). It simplifies problems
by building a criteria and subcriteria hierarchy structure with a
series of pairwise comparisons to evaluate the performance of
alternatives against criteria and criteria weights (Saaty 1980;
Saaty 1990). The AHP method has been used in a wide range
of applications (Tiwari and Banerjee 2001; Chiang and Lai
2002; Ocampo-Duque et al. 2006; Bertolini et al. 2006;
Martin-Ortega and Berbel 2010; Naddeo et al. 2012).
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The EP impact is decomposed into specific events in a way
that the events of a certain level will cause the events of the level
above it. Events at the bottom level of the diagram describe
categories of causes that contribute to increase the adverse con-
sequence. Based on the relative importance of contributing
events, the global weight of each event in the entire consequence
can be obtained. The water supply impact, social impact, health
impact, and financial losses are the events that directly contribute
to the EP impact shown in Fig. 5.

The concentration of pollutant, the duration of pollution,
and the type of pollutant are considered to affect the treatment
capacity of the water supply system at the EP. Three events
influence the social impacts of river pollution as follows: the
sphere of influence, human resources, and the effectiveness of
government action. Health impacts measure the negative ef-
fects to human health, such as death, injury, water toxicity, and
aquaculture poisoning. Financial losses include emergency
handling losses, accident losses, and pollution remediation.
It should be noted that the evaluations of the events considered
in this study are limited to the EP area, but not the entire river
basin as done in other studies. Furthermore, the AHP method
is used to evaluate the potential impact of the events, but not
the current impact of the events.

For evaluating the global EP impact, the degree of impact
and weight of each event are determined by experts based on
their knowledge, from historical data, or from MC simula-
tions. If criteria A consists of n subcriteria Ai (i=1, 2,…, n) in
the next rank, the expression of the judgment matrix for
criteria A is described as follows (Saaty 1980):

B ¼
b11 b12 … b1n
b21 b22 … b2n
⋮ ⋮ bij ⋮
bn1 bn2 … bnn

2
664

3
775 ð13Þ

where bij denotes the relative importance between subcriteria
Ai and Aj (i,j=1,2,…,n), with the constraints that bij=1/bji, for

i≠j, and bii=1, for all i. The determination of bij is made based
on the knowledge of experts and the consistency analysis of
the judgment matrix B (Saaty 1980).

The local weight of subcriteria Ai is denoted as LWi, and is
calculated as follows:

LWi
�¼

ffiffiffiffiffiffiffiffiffiffiffiffi
∏
j¼1

n

bij
n

s
; i ¼ 1; 2;…; n ð14Þ

LWi ¼ LWi
�

X
i¼1

n

LW i
�; i ¼ 1; 2;…; n ð15Þ

If a subcriteria Ai consists of m sub subcriteria (hereinafter
called event) Aik (k=1, 2,…, m) in the next rank, and the local
weights of each event Aik are calculated by Eqs. (14) and (15),
the global weight of each event Aik is defined as follows:

GWik ¼ LWi � LWik ð16Þ

The impact degree of Aik is denoted as IDik, which is
periodically evaluated by experts after the accidents,
based on their subjective experience and the objective
results from real-time, dynamic MC simulations. In this
study, the impact degree ranges from 1 to 5, where 1
represents the smallest impact degree and 5 represents
the greatest impact degree. For example, the impact
degree of event “duration of pollution” ID12 is deter-
mined by the average value of the pollution duration D
after MC simulation and the grading of experts; the
impact degree of event “effectiveness of government”
ID23 is determined by the experience of experts.

Fig. 5 Hierarchy tree to evaluate
the impact of pollution at the EP
during a water contamination
accidents
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After all impact degrees IDik and weights GWik are obtain-
ed, the quantitative value of the global EP impact is derived as
follows:

I ¼
X
i

X
k

GWikIDik ð17Þ

Step 4: calculation of the EP risk

Risk assessment is the identification and analysis of the like-
lihood and severity of the potential loss of a process. Avariety
of risk-assessment methodologies have been developed and
used. Risk assessment methods are classified into qualitative,
semiquantitative, and quantitative categories (Montague
1990). The risk matrix is a semiquantitative risk assessment
method that includes two elements (i.e., likelihood of occur-
rence and severity of the consequences) to determine the risk.

In this study, the risk matrix method was adopted to quantize
the EP risk (Henriksen et al. 2009).

When a pollution accident occurs in an upstream reach of a
river, a continuous, dynamic risk assessment of the given EP
can provide additional time for WTPs or local governments to
take remedial and protective measures and thus minimize
losses. The EP risk levels (low, medium, high) obtained as
products of EP likelihood levels (low, moderate, high, very
high) and EP impact levels (small, moderate, severe,
catastrophic) are defined, and illustrated in a two-
dimensional risk matrix, as shown in Table 1. The EP likeli-
hood levels are obtained by rating the values of the EP
likelihood L, and the EP impact levels are correspondingly
obtained by rating the values of the EP impact I.

The EP risk level high means not acceptable potential risk
for the EP. If no mitigation actions or risk reducing treatments
are taken (for example, control of pollution emissions, dis-
charge of water from upstream reservoirs, and effective water
treatment by WTPs) before the pollutants arrive at the intake,
the WTPs at the EP have to stop their service to ensure safe
water supply in the EP area. The EP risk level mediummeans
acceptable potential risk for the EP, but the development of the
accident must be monitored and analyzed on a regular basis,
considering whether or not further response measures have to
be implemented. The EP risk level low means acceptable risk
for the EP. The WTPs are capable of dealing with the identi-
fied pollutant, but the accident must be monitored to ensure
the detection of changing conditions that might increase the
risk level.

Fig. 6 The locations of the
phenol leak point and five EPs
along Qiantang River. The
enlarged map is the key areas
between EP-C and EP-E

Table 1 Risk matrix for the EP risk

EP Impact level
EP likelihood level

Small Moderate Severe Catastrophic

Low Low Low Low Medium

Moderate Low Low Medium High

High Low Medium High High

Very high Medium Medium High High
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Case study

General background

Qiantang River is situated in East China. Originating from
Anhui Province and running through the northwest part of
Zhejiang Province. It runs for 459 km (285 mi) through
Zhejiang province, passing through the provincial capital
Hangzhou, before flowing into the East China Sea through
Hangzhou Bay. It is the main source of drinking water for
several cities in Zhejiang, including the capital city of
Hangzhou.

On the midnight of June 4, 2011, a tanker truck traveling
along a highway rolled and leaked about 20 t (1 t=1,000 kg)
of toxic chemical phenol, also known as carbolic acid. Be-
cause the accident site is near Qiantang River and it was
raining heavily at the time, a large amount of phenol flowed
into the river along the drains. The accident site is approxi-
mately 150 km (90 mi) upstream from Jiuxi Water Treatment
Plant, which is the main source of drinking water for Hang-
zhou. Millions of people’s lives were threatened by the acci-
dental spill event.

After the spill occurred, an emergency response team was
organized by the local government and eight water sampling
sites were deployed temporarily along the Qiantang River
from the accident site to Jiuxi, Hangzhou (with a sampling
frequency of about one sample per hour at each site). The
details of emergency response for the phenol spill has been
presented in a previous paper by the authors (Hou et al. 2013).
In this paper, the proposed EP-risk model is applied to eval-
uate the real-time EP risk of the phenol spill using MC
simulation, AHP method, and risk matrix method.

MC simulation

The 1D river water quality model (Eq. 4) was used to simulate
the chemical transport following the phenol spill accident. The
river reach under study, which is 160-km long, was equally
divided into 320 segments (0.5 km each).

The time series of pollutant concentration {C1
j } in the first

section (at the accident site) are obtained by polynomial curve
fitting with a least-square calculation using the pollutant con-
centration data from emergency sampling.

The vertical flow velocity u, vertical diffusion coefficient
E, and decay rate coefficient K are regarded as uncertain
parameters. The possible distributions of u, E, and K are
important to the MC simulation.

The vertical diffusion coefficient E is mainly affected by
flow conditions, section characteristics, and channel forms.
Researchers have proposed some empirical formulas to esti-
mate the vertical diffusion coefficient (McQuivey and Keefer
1974; Seo and Cheong 1998). In this study, the possible range
of E is determined on the basis of the empirical formula

proposed by Seo and Cheong (1998). The empirical and
existing data of the calculation reaches are also considered.

The decay rate coefficient K is related to river hydraulics,
pollutant characteristics, water temperature, bed roughness,
and several other factors. In the MC simulation, the possible
range of K is determined by empirical data and existing
research results on hydrological parameters. Other factors
are considered, such as pollutant characteristics, water tem-
perature, and velocity. The report “National Technical Manual
of Water Environmental Capacity Calculation” (CAEP 2003)
was also used in the determination of K.

The possible distribution of the vertical flow velocity u is
estimated by historical hydrological data.

It is herein assumed that (1) the vertical flow velocity u
ranges from 0.1 to 0.8 m/s with a normal distribution, (2) the
vertical diffusion coefficient E ranges from 100/s to 300 m2/s
with a uniform distribution, and (3) the decay rate coefficient
K ranges from 0.05 to 0.15 day−1 with a uniform distribution.

Using the inverse transformation method based on their
distribution characteristics, the random variables u, E, and K
are generated and taken as the model parameters of a single

Fig. 7 Density and the fitted PDF of peak concentration CP at the five
EPs 36 h after the accident occurred
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iteration in MC simulation. One thousand times of random
iterations are conducted to obtain the statistical properties of
peak concentration CP and pollution duration D at the given

EP. This number of MC iterations is a tradeoff between
computing time and computational accuracy (see System
Implement). For calculating D, the alarm threshold CT is set

Fig. 8 Frequency histograms of pollution durationD. a Frequency histograms of pollution durationD at different EPs 36 h after the accident occurred; b
frequency histograms of pollution duration D at the EP-C after different hours of the accident occurred

Fig. 9 a Top 3D diagram of the
dynamic probability distribution
of peak concentration CP at the
EP-E (Jiuxi). Each horizontal
section presents the probability
density function of the peak
concentration at the
corresponding time t (day) with
one time MC simulation. b
bottom Contour plot of the
dynamic probability density
function of the peak concentration
CP at the EP-E (Jiuxi)
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to 0.005 mg/l, which is the criteria for volatile phenol in
China’s environmental quality standards for surface water
(2002).

In this case, five EPs were used for testing of the MC
simulation as follows: EP-A, EP-B, EP-C, EP-D, and EP-E
(Jiuxi). The locations of the five EPs are shown in Fig. 6.

Figure 7 shows the relationship between the location of the
EP and the PDF of CP. The simulation results for CP at
different EPs 36 h after the accident occurred were used. In
Fig. 7, the abscissa represents the peak concentration CP, and
the ordinate is the density and the fitted PDF of the corre-
sponding peak concentration CP. The different curves show
the PDF of CP at different EPs located at different lengths
from the accident site. Figure 7 shows that the farther the
distance from the accident site is, the smaller the maximum
of the peak concentration CP is.

Figure 8a shows the relationship between the frequency of
D (pollution duration) and the location of EP in one MC
simulation. It can be concluded that in this case, the longer
distance between EP and the accident site is, the smaller the
probability of longer pollution duration is. Because the pollu-
tion duration D is defined as the duration of the pollutant
concentration being larger than the given alarm threshold at
the EP (see Eq. (7)), as the spill moves downstream the peak
concentration CP is gradually attenuated, approaching and
even becoming less than the alarm threshold CT (0.005 mg/
l). Therefore, the probability of longer pollution duration D
decreases with distance from the accident site.

Figure 8b shows that as time goes on, the frequency distri-
butions of D at the same EP vary. The reason is because more
and more pollutant sampling data, hydrological data, and

other useful information are obtained, which change the mod-
el inputs to the MC simulation. The more information about
the accident is used, the better the accordance of water quality
model with actual conditions is, and the higher the confidence
of the prediction that can be obtained.

To demonstrate the different outputs from the MC simula-
tion at different moments, a 3D diagram of the dynamic
probability distribution of peak concentration CP at the EP-E
is presented in Fig. 9. The three dimensions are current time t,
peak concentration CP, and the PDF ofCP, respectively. In this
case, Fig. 9 shows that as time goes on, the range of peak
concentration decreases gradually, and the distribution of the
peak concentration is relatively concentrated. The 3D diagram
of dynamic probability distribution provides insight into the
development trends of the accident and is helpful in making
good decisions for emergency response.

Risk assessment

Assessing the risk level of a given EP is helpful for the emer-
gency response agencies in taking mitigation actions and com-
municating effectively with the public. The EP-E is the key area
of the accident because Jiuxi WTP is the main drinking water
supplier to the City of Hangzhou. If the EP-E is under threat, the
emergency agencies must take immediate measures because
water supply pollution or shortage will result in serious effects
to the city. In this study, the EP likelihood at the EP-E is
calculated first, the impact weight and degree of each event in
the AHP tree is then evaluated by experts, and the final risk
level is determined using the risk matrix method.

Table 2 EP Likelihood L at the different EPs 18 to 54 h after the accident occurred

Time after accident (h)
EP name

18 24 30 36 42 48 54

EP-A 5.2 % 95.2 % 94.6 % 99.0 % 100 % 100 % 100 %

EP-B 0 66.0 % 60.0 % 81.0 % 95.8 % 99.6 % 100 %

EP-C 0 27.6 % 20.8 % 41.0 % 56.2 % 80.0 % 95.0 %

EP-D 0 10.2 % 6.4 % 14.2 % 18.2 % 32.2 % 61.2 %

EP-E (Jiuxi) 0 2.2 % 1.6 % 5.2 % 5.9 % 8.0 % 25.6 %

Table 3 Calculation of the local weights of events A1–A4

A1 A2 A3 A4 LWi CR

Water supply impact A1 1 4 1/3 5 0.29 0.06<0.1
Societal impact A2 1/4 1 1/5 2 0.11

Health impact A3 3 5 1 5 0.53

Financial loss A4 1/5 1/2 1/5 1 0.07

CR consistency ratio, LW local weight

Table 4 Calculation of the local weights of events A11–A13

A12 A12 A13 LW1k CR

Concentration of pollutant A11 1 3 2 0.54 0.07<0.1
Duration of pollution A12 1/3 1 2 0.27

Type of pollutant A13 1/2 1/2 1 0.19

CR consistency ratio, LW local weight
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EP likelihood

The EP likelihood L is defined as the probability of the peak
concentration CP being greater than or equal toCT at the given
EP based on the results of MC simulation (see Eqs. (11–12)).

Table 2 shows the EP likelihood L at five EPs at different
times after the accident occurred at an upstream location in the
river. Obviously, EPs closer to the spill site have a greater
probability of pollution (exceedance criteria event) than EPs
farther downstream. As time goes on, the values of EP likeli-
hood L become larger, that means the possibility of pollution
at the five considered EPs increases.

EP impact

Based on the AHP method, the EP impact at different EPs is
evaluated continuously after the accident. The EP-E (Jiuxi) is
used to exemplify the impact weight and impact degree of
each event, and then calculating the EP impact I, which is used
to obtain the final risk level at EP-E (Jiuxi).

Firstly, the impact weight of each event is determined by
experts using AHP hierarchy tree (Fig. 5). The relative impor-
tance between two events in the same hierarchy is identified
with the judgment of experts. The calculation of the local
weights of events A1–A4 is shown in Table 3. The health
impact is the main contributor to the EP impact. The water
supply impact is also important, whose local weight is 0.29.
The social impact contributed 0.11 to the EP impact, and the
local weight of financial losses is 0.07. Similarly, the calcula-
tion of the local weights of water supply events A11–A14, social
events A21–A24, health events A31–A34, and financial events
A41–A44 is shown in Tables 4, 5, 6, and 7. The CR in Tables 3,
4, 5, 6, and 7 means the consistency ratio. If CR<0.1, the
weight calculation result is acceptable; otherwise, the judgment
matrix has to be modified and recalculated (Saaty 1980). The
global weight of each event is obtained by Eq. (16).

In the dynamic risk assessment process, the impact weight
of each event is predetermined by experts, but the impact
degree of each event should be modified occasionally by
experts based on the results of dynamic MC simulation and
the real-time monitoring data/information. In this case, we
take the time 24 h after the accident as an example to inves-
tigate the calculation of the impact degree IDik (Table 8). The
EP impact I at the EP-E 24 h after the accident occurred is
obtained as 2.00 based on Eq. (17).

EP risk

After the EP likelihood L and EP impact l are determined, the
real-time, dynamic risk level are obtained based on the risk
matrix method.

In this case, the EP likelihood levels low, moderate, high,
and very high are classified into nonoverlapping categories
L<5 %, 5 %≤L<15 %, “15 %≤L<40 %,” and “L≥40 %,” and
the EP impact levels small,moderate, severe, and catastrophic
are classified into “I<0.5,” “0.5≤I<1.5,” “1.5≤I<3.0,” and
“I≥3.0.”

Taken the time 24 h after the pollution spill occurred as an
example, the EP likelihood L is equal to 2.2 % (Table 2), and
the EP Impact I is equal to 2.00 (Table 8). Hence, the EP
likelihood level is evaluated as low, and the EP impact level is
evaluated as severe. Based on the risk matrix for the EP risk,

Table 5 Calculation of the local weights of events A21–A23

A21 A22 A23 LW2k CR

Sphere of influence A21 1 5 4 0.65 0.08<0.1
Human resource A22 1/5 1 1/4 0.10

Effectiveness of government A23 1/4 4 1 0.25

CR consistency ratio, LW local weight

Table 6 Calculation of the local weights of events A31–A33

A31 A32 A33 LW3k CR

Death or injury A31 1 5 5 0.69 0.07<0.1
Water toxicity A32 1/5 1 3 0.21

Poisoning aquaculture A33 1/5 1/3 1 0.10

CR consistency ratio, LW local weight

Table 7 Calculation of the local weights of events A41–A43

A41 A42 A43 LW4k CR

Accident loss A41 1 3 2 0.53 0.03<0.1
Emergency handing loss A41 1/3 1 1/3 0.14

Pollution remediation A43 1/2 3 1 0.33

CR consistency ratio, LW local weight

Table 8 Calculation of the EP impact I

Ai Aik GWik =
LWi *LWik

IDik EP
impact I

Water supply
impact

Concentration of pollutant 0.1566 3 2.00
Duration of pollution 0.0783 2

Type of pollutant 0.0551 3

Social impact Sphere of influence 0.0715 3

Human resource 0.011 1

Effectiveness of government 0.0275 4

Health impact Death or injury 0.3657 1

Water toxicity 0.1113 2

Poisoning aquaculture 0.053 1

Financial loss Accident loss 0.0371 3

Emergency handing loss 0.0098 3

Pollution remediation 0.0231 4

ID impact degree, GW global weight, LW local weight
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the final risk level at the EP-E 24 h after the accident occurred
is evaluated as low. It means a low-risk level at the EP-Ewith a
low likelihood of pollution in the future. Using the same risk
assessment method, the risk level at the EP-E 36 h after the
pollution accident occurred is modified asmedium because of
the rising likelihood of pollution. The identified results of EP
risk are used for the early warning of potential threats, for
decision making of emergency-response agencies, and for
disseminating event messages to the public. One type of visual
display of the EP risk is shown in Fig. 10. Different colors
denote different levels of EP risk.

System implement

System integration

The EP-risk model is integrated into an early-warning infor-
mation system named DEWS (Hou et al. 2013). The data from
upstream monitoring stations and emergency sampling sites
are stored into the database of DEWS and can be accessed by
the EP-risk model service. When the data is ready and the
model parameters (for example, alarm threshold CT,

distribution of uncertain parameter E, u, and K, and iterations
of the MC simulation) are determined, the MC simulation can
be triggered to calculated the EP likelihood Land the distribu-
tion of pollution duration D. A user interface with the results
of the MC simulation and real-time monitoring information is
provided to the experts in the emergency response team to
input or modify the impact degrees of 12 AHP events (see
Table 8) to obtain the EP impact I and final EP risk level for
further decision making. The impact degree ranges from 1 to
5, where 1 represents the smallest impact degree and 5 repre-
sents the greatest impact degree.

Computing time/early-warning interval

During a spill event, it is essential that information be proc-
essed quickly and that predictions be provided to downstream
EPs promptly so that appropriate actions can be taken before
the contamination reaches the intakes. A complex MC simu-
lation may need long computing time, and the more iterations
of MC simulations are implemented, the more accurate the
result estimates would be. Once again, there is a tradeoff
between computing time and the computational accuracy of

Fig. 10 Map display of the EP
Risk levels in the key area after a
24 h and b 36 h of the accident
occurred

Fig. 11 PDF curves of CP with
different number of iterations
used in the MC simulation
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an MC simulation, which is exacerbated by the need to com-
municate results promptly for emergency response.

A test was conducted to assess the worth of iterations (k=1,
2, …, N) of MC simulation for the real-time early warning
system. Figure 11 shows that the PDF curves of CP at the EP-
E after 36 h are different for 100, 250, 500, 1,000, 5,000, and
10,000 iterations of MC simulation. It can be seen that the
results for 100, 250, and 500 iterations are not stable com-
pared with 5,000 and 10,000 iterations of MC simulation. The
1,000 iterations of MC simulation (the red curve) is relatively
acceptable and represents a reasonable tradeoff value with
which to achieve accurate results with acceptable computing
time.

With the available computational engine (Intel core i7
3520@2.90, 8G RAM), each iteration costs about 13 s and
each MC simulation with 1,000 iterations cost about 3.61 h.
Therefore, the recommended early-warning interval is 4 h in
this case. Certainly, the computing time and early-warning
interval can be shorten in the future by providing more com-
puting capacity or with parallel computing schemes.

Discussion

This paper has described a real-time, dynamic early-warning
model, named EP-risk model, for coping with sudden water
pollution accidents. This model outputs the risk level for any
chosen key downstream area (EP) with raw-water intakes by
calculating the likelihood of pollution and evaluating the
impact of pollution at the EP. A generalized form of EP-risk
model for river pollution accident based on MC simulation,
AHPmethod, and riskmatrixmethodwas proposed and tested
with a phenol spill accident. The proposed method has the
following capabilities during a sudden water-pollution acci-
dent: (1) calculates the probability distribution of peak con-
centration and pollution duration at chosen EPs, (2) predicts
the likelihood of pollution (exceedance-criteria of pollutant) at
chosen EPs, (3) evaluates the impact or consequence of po-
tential pollution at chosen EP, and (4) assesses the risk level of
EP combing the likelihood and impact of potential pollution at
chosen EPs for further decision making.

Compared with previous early-warning models for sudden
water quality accidents, the proposed method provides a con-
venient tool with different capabilities to determine the risk
level for those areas that are exposed to pollution threats and
have urgent needs of evaluating their carrying capacity during
pollution events on a real-time basis. Considering the various
uncertainties in riverine environments, the continuous data
updating from sampling and monitoring station coupled with
recursive MC simulation provides more reliable probabilistic
water pollution predictions for decision makers than water
quality models with fixed model parameters. The proposed
method is theoretically reasonable and practically feasible.

The effectiveness of the proposed method require further
testing in view of the small number of severe water contam-
ination events that are known or reported.

Future research efforts concerning the proposed method
include the following: (1) dynamically optimizing the distri-
bution of model parameters based on real-time data; (2) re-
ducing the influence of the subjective factors in the AHP
method, for example, by uncertainty analysis or fuzzy theory;
(3) improving the credibility of the classifying strategies of the
risk matrix; and (4) reducing the computing time of MC
simulations.

The EP-risk model is a general framework for dynamically
evaluating the risk level at the EP during sudden water pollu-
tion accidents. Various water-quality models and risk assess-
ment methods can be applied in the EP-risk model. Corre-
spondingly, the complexity and computation burden of model
calculation may increase. The exploration of combing other
water quality models, uncertainty analysis theories, and risk
assessment methods into EP-risk model for more reasonable
risk assessment during a sudden water-pollution accident has
important significance and high research value.
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