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RESEARCH ARTICLE
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Abstract
Purpose: The aim of this study was to investigate the longitudinal positron emission tomography
(PET) metabolic changes in the elderly.
Procedures: Nineteen nondemented subjects (mean Mini-Mental Status Examination 29.4±0.7
SD) underwent two detailed neuropsychological evaluations and resting 2-deoxy-2-[F-18]fluoro-
D-glucose (FDG)-PET scan (interval 21.7±3.7 months), baseline structural 3T magnetic
resonance (MR) imaging, and apolipoprotein E4 genotyping. Cortical PET metabolic changes
were analyzed in 3-D using the cortical pattern matching technique.
Results: Baseline vs. follow-up whole-group comparison revealed significant metabolic decline
bilaterally in the posterior temporal, parietal, and occipital lobes and the left lateral frontal cortex.
The declining group demonstrated 10–15% decline in bilateral posterior cingulate/precuneus,
posterior temporal, parietal, and occipital cortices. The cognitively stable group showed 2.5–5%
similarly distributed decline. ApoE4-positive individuals underwent 5–15% metabolic decline in
the posterior association cortices.
Conclusions: Using 3-D surface-based MR-guided FDG-PET mapping, significant metabolic
changes were seen in five posterior and the left lateral frontal regions. The changes were more
pronounced for the declining relative to the cognitively stable group.

Key words: Positron emission tomography (PET), Alzheimer's disease (AD), Mild cognitive
impairment (MCI), Cognitive decline

Introduction

Clinical progression to dementia may be viewed as a
continuum in which cognitively normal subjects grad-

ually decline over time until they reach the functionally and

This original article introduces a new powerful technique for analysis of
FDG-PET data, representing the first application of PET surface feature-
guided analysis to cognitive aging and dementia.
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cognitively compromised state of dementia. Alzheimer's
disease (AD) is the most common form of dementia
worldwide. Given that only symptomatic AD therapy is
currently available, researchers are focused on the develop-
ment of disease-modifying agents and on studying the
preclinical trajectory of those predestined to develop AD.
As therapeutic disease reversal seems unlikely in the near
future, disease biomarkers and innovative imaging strategies
are required to show the precursor dementia changes in the
human brain. These developments are crucial for a better
understanding of the disease process and for early diagnosis,
prognosis, and treatment [1–3].

Functional neuroimaging offers the opportunity to dem-
onstrate brain dysfunction in the earliest stages of neuro-
degeneration. Positron emission tomography (PET) is well
established as a sensitive and a specific prognostic tool for
future cognitive decline [4–6]. Subjects with mild cognitive
impairment (MCI) who later convert to AD are consistently
reported to show temporoparietal and posterior cingulate
hypometabolic changes [5, 7–11]. A pre-MCI hypometa-
bolic pattern in the entorhinal cortex has likewise been
reported in cognitively normal elderly [12].

In the current study, we used longitudinal cognitive and
2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-PET data from 19
elderly subjects who did not meet National Institute of
Neurologic and Communicative Disorders and Stroke-AD
and Related Disorders Association (NINCDS-ADRDA)
criteria for dementia at baseline. We hypothesized that those
who decline cognitively would show changes over time in
PET metabolic activity in the medial and lateral temporal,
lateral parietal, and posterior cingulate/precuneal cortical
areas. In addition, we used a method to align PET data
across subjects that increases statistical power by controlling
for the large intersubject variations in cortical surface shape
and gyral patterning. Each subject's PET data were projected
onto their 3-D hemispheric surface models from the
corresponding co-registered magnetic resonance image
while using surface landmarks to guide accurate imaging
data integration. In the resulting surface projection maps,
functional deficits can be localized with respect to gyral
anatomy, which is not resolved in standard functional image
averaging methods.

Materials and Methods
Subjects
We analyzed data from 19 nondemented subjects, recruited through
media advertisement and physician referrals. All subjects provided
informed consent for participation. The analyses were approved by
University of California at Los Angeles Institutional Review Board.
Subjects between the ages of 50–85 years, who did not have
dementia or mild cognitive impairment, were recruited. Criteria for
dementia were based on Diagnostic and Statistical Manual of
Mental Disorders, fourth edition (DSM-IV) [12] and NINCDS-
ADRDA [13]; criteria for MCI were based upon nondemented
subjects either having a clinical evaluation identifying cognitive

difficulties greater than expected for age or by performance on a
formal neuropsychologic panel (see below), identifying scores
falling at least one standard deviation below age-adjusted norms on
at least one half of the memory tests. The neuropsychological
evaluation consisted of Wechsler Adult Intelligence Scale-III
(subtests administered: digit span forward and backward, similar-
ities, block design, digit symbol substitution) [13], Buschke
Selective Reminding test [14], Wechsler Memory Scale-III (subt-
ests administered: Logical memory I and II, paired associates) [15],
Rey-Osterrieth Complex Figure test-copy and reproduction [16],
Benton Visual Retention Test [17], Boston Naming test [18],
Controlled Oral Word Association test [19], Trailmaking A and B
[20], Wisconsin Card Sorting test [21], and Stroop test A, B, and C
[22, 23]. Subjects were classified as having undergone cognitive
decline if they went from having no neuropsychologic test score
falling 1.5 SD below the age- and education-adjusted norms at
baseline to one or more scores falling below that level at 2-year
follow-up without meeting criteria for dementia (e.g., preserved
activities of daily living) or if they went from having one or more
scores in that range at baseline without dementia to meeting criteria
for dementia at the 2-year follow-up. The 1.5 SD threshold was
selected in assessing meaningful decline because of its use in many
prior longitudinal PET studies as a criterion for cognitive
impairment [4, 6, 7, 9, 10, 25].

All subjects received a 3 T baseline structural magnetic
resonance imaging (MRI) scan, baseline and follow-up FDG-PET
scans, genetic screen for the apolipoprotein E epsilon 4 allele
(ApoE4), and detailed clinical, neuropsychological, and psychiatric
evaluation documenting the absence of dementia or another
neurological or psychiatric disorder. The average time to follow-
up was 21.7±3.7 months (range 16.3–31.9 months).

Structural MRI Acquisition and Processing
Baseline double-echo fast-spin echo structural MRI data were
acquired on a 3 T General Electric Signa magnet using the
following protocol: time to repetition TR=6,000 ms, time to echo
TE=17/85 ms, matrix 256×256, 3 mm slice thickness, with 0 gap
and 24 cm field of view. Images were first linearly aligned to the
ICBM53 average brain template using a nine-parameter transfor-
mation [24]. A correction for image intensity inhomogeneities was
performed with a regularized tricubic B-spline method [25, 26]. An
automated whole-brain mask was created with a software package
called Brainsuite, freely available at http://www.loni.ucla.edu/
Software/Software_Detail.jsp?software_id=19 [26]. The whole-
brain mask was split into two hemispheric masks, and all
misclassified tissue (brain vs. nonbrain) was manually corrected.
The hemispheric masks were then used for hemisphere extraction,
followed by an automated 3-D hemispheric reconstruction [27].
The automated hemispheric reconstruction (extraction) is achieved
by continuous deformation of a mesh-like surface to fit a threshold
intensity value that best differentiates gray matter from cerebrospi-
nal fluid. The intensity threshold was defined as the MRI signal
value that best differentiated cortical cerebrospinal fluid on the
outer surface of the brain from the underlying cortical gray matter.
The resulting 3-D hemispheric reconstruction represents a high-
resolution mesh of 131,072 surface triangles spanning 65,536
surface points. Thirty-six individual sulcal lines were manually
drawn on the medial and lateral hemispheric surfaces using an in-
house validated sulcal delineation protocol [28, 29]. On the lateral
brain surface, these included: the Sylvian fissure; central, pre-
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central, and post-central sulci; superior temporal sulcus (STS) main
body; STS ascending branch; STS posterior branch; primary and
secondary intermediate sulci; inferior temporal, superior and
inferior frontal, intraparietal, transverse occipital, olfactory, occi-
pito-temporal, and collateral sulci. On the medial surface, these
included: the callosal sulcus, the inferior callosal outline, the
paracentral sulcus, anterior and posterior cingulate sulci, the outer
segment of a double parallel cingulate sulcus, the superior and
inferior rostral sulci, the parieto-occipital sulcus, the anterior and
posterior calcarine sulci, and the subparietal sulcus. In addition to
contouring the major sulci, a set of six midline landmark curves
bordering the longitudinal fissure was outlined in each hemisphere
to establish hemispheric gyral limits. Ambiguities in sulcal
determination were resolved with the help of the individual's
spatially registered 3-D MRI volume simultaneously visualized in
three planes (axial, coronal, and sagittal). The hemispheric surfaces
and the sulcal maps were mathematically flattened into a 2-D plane.
The left and right sulcal maps for all 19 subjects were used to create
a study-specific average sulcal map, and the deformation fields
needed to transform each individual sulcal map into the study
average sulcal map were recorded. The flattened cortical surfaces
were then warped following the individual deformation fields
resulting from the transformation needed for the alignment of the
individual sulcal lines to the group average. 3-D parametric mesh
hemispheric models were created. This procedure, termed cortical
pattern matching [30], removes as much as possible the confound-
ing effects of cross-subject anatomical variance, whereas it
empowers detection of disease effects. The computational matching
of sulci avoids destructive cancellation of features that results from
direct averaging of images together and ensures that common
features are reinforced in the group average and appear in their
group mean anatomic location. Associated local measures of gray
matter density or in this case PET signal intensity may be
convected along with these warps and plotted on the average
cortex, prior to statistical analysis.

FDG-PET Data Acquisition and Processing
Baseline and follow-up resting FDG-PET data were acquired
40 min after intravenous injection of 370 MBq FDG on a CTI/
Siemens HR+ scanner (Siemens, Hoffman Estates, IL, USA). Scans
were acquired parallel to the canthomeatal line. The PET data were
first normalized to the whole brain global mean. Each subject's
baseline and follow-up PET scans were rigidly aligned to the
respective International Consortium for Brain Mappin (ICBM)
aligned baseline MRI scan. To assign FDG-PET signals to vertices
on the cortical surface, it is advantageous to sample the data using a
small spherical kernel. Kernel sizes in the range 10–15 mm give
average surface values in good agreement with conventional region
of interest measures from each lobe of the brain (unpublished data,
[31]). In the present study, we used a 15-mm kernel to map the
individual FDG-PET activity onto each surface vertex of the
individual hemispheric models. As described above, we convected
the FDG-PET data along the warping deformations computed in the
cortical pattern-matching procedure, assuring as accurate as possible
between-subjects anatomic correspondence in the final group
average maps. Average baseline and follow-up 3-D PET maps were
computed. We used linear regression models to regress PET
intensity at each surface point against scanning time point (e.g.,
baseline vs. follow-up) [32]. These maps were corrected for multiple
comparisons using permutation testing on the area of the statistical

maps thresholded at pG0.01 [30]. Quantitative ratio and percent
change maps for baseline vs. follow-up changes were created for
decliners, nondecliners, and ApoE4 carriers and noncarriers [33].

We also used two region-of-interest (ROI) approaches to
validate our findings. We first applied an automated ROI
probabilistic atlas-based approach to obtain mean lobar PET
activity. This approach, described in detail previously [34], is
similar to a traditional voxel-based ROI analysis. In addition, we
also used manually created lobar ROIs to derive mean lobar PET
activity from the 3-D PET hemispheric models.

Statistical Methods
We used two-tailed independent sample Student's t tests for
continuous and chi-square tests for dichotomous variables as we
compared age, gender, ApoE4 genotype, and Mini-Mental Status
Examination (MMSE) at baseline and follow-up between future
decliners vs. nondecliners at baseline.

The 3-D maps showing the significance of changes between
baseline and follow-up PET scans were corrected for multiple
comparisons using the permutation method [35]. This technique
controls for spurious associations by computing the probability that
the statistically significant (below a predefined threshold) regions in
any given statistical map would occur by chance alone. The
algorithm randomly reassigns group membership to the participat-
ing subjects in each statistical comparison, while keeping the total
number of subjects per group the same, and recomputes the p value
at each vertex at each iteration. We used 100,000 permutations to
compute the corrected statistical significance for the hemispheric
maps as well as for the individual lobes. The latter was
accomplished by using a lobar mask to narrow the region of
interest for permutation testing. The lobar masks included the
whole lobes inclusive of their medial, lateral, and inferior surfaces
as appropriate. The voxel-level threshold for all permutation tests
was set at pG0.01 [30]. The ROI measures were compared using
paired and unpaired Student's t test as appropriate.

Results
Demographic, Genetic, and Cognitive
Comparisons

Demographic data are listed in Table 1. At baseline, the
study group consisted of 19 cognitively intact elderly
subjects. At follow-up, four subjects met the criteria for
cognitive decline as outlined in the “Materials and Methods”
section. The decliners did not show a change in mean
MMSE score from baseline to follow-up, while nondecliners
showed an interim decline of 0.6 points from 29.3 to 28.7
points.

Whole-Group 3-D Baseline PET vs. Follow-up
PET Comparisons

We first compared baseline PET vs. follow-up PET activity
for the whole group (Fig. 1). We observed significantly
lower metabolic activity in the bilateral posterior cingulate,
posterior temporal, inferior parietal, and temporo-parieto-
occipital cortices, as well as the precuneus and posterior
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middle and inferior frontal gyrus on the left. After correction
for multiple comparisons using a threshold of pG0.01, the
global p value for the left hemisphere was trend-significant
(p=0.057). The right did not reach global significance at this
threshold (p=0.22). After restricting the permutation regions
to specific lobes, statistically significant differences were
present in all three lobes of interest on the left (left parietal
lobe p=0.011, left temporal lobe p=0.049, and left occipital
lobe p=0.04), while only the occipital lobe showed
significant difference on the right (p=0.048).

Whole-Group ROI Baseline PET vs. Follow-up
PET Comparisons

Using the probabilistic atlas-based automated ROI method,
only the parietal lobes showed trend-significant change from
baseline and follow-up across the full sample (p=0.08).
Using the ROI-derived mean lobar activity from the 3-D
PET models, significant baseline-to-follow-up change was
seen for the left frontal (p=0.039), left temporal (p=0.015),
left parietal (p=0.001), right parietal (p=0.006), and right
occipital (p=0.026) lobes. A trend for significance was
observed for the left occipital lobe (p=0.06). No statistically
significant differences were observed with either method
between decliners and nondecliners or between ApoE4-

positive and ApoE4-negative subjects at baseline or in
follow-up.

Within-Group Longitudinal Changes in Metabolic
Activity

Figure 2 shows the percent change in PET metabolic
activity in the cognitively stable group (top) and the
declining group (bottom). Relative to baseline FDG
uptake, decliners had 5–15% less uptake in the posterior
association cortices including the posterior cingulate,
precuneus, lateral parietal, posterior temporal, and occipi-
tal regions and 2.5–5% decline in the entorhinal/para-
hippocampal, inferior temporal, and lateral frontal regions
in follow-up (Fig. 2, bottom). Nondecliners demonstrated
a similar posterior predominant pattern, but the changes
were not as pronounced (2.5–5%). The temporo-parieto-
occipital junction showed the most pronounced FDG
uptake differences between baseline and follow-up in
both groups.

Five subjects were heterozygous for ApoE4, while 14
were ApoE3 homozygous. The ApoE4 group had predom-
inantly posterior interval changes encompassing the lateral
and medial temporal and occipital, and the lateral parietal
lobes. Quantitatively, the decline in mean FDG uptake

Table 1. Demographic data

Variable All (N=19) Nondecliners at baseline (N=15) Future decliners at baseline (N=4) Test statistic p value

Age, years (mean, SD) 60.6 (8.0) 59.3 (8.3) 65.2 (4.4) t test 0.09
Gender (M:F) 10:9 8:7 2:2 Chi-square 0.9
ApoE4 (pos/neg) 6:13 4:11 2:2 Chi-square 0.25
MMSE baseline (mean, SD) 29.4 (0.7) 29.3 (0.7) 29.8 (0.5) t test 0.23
MMSE follow-up (mean, SD) 29 (1.1) 28.7 (1.2) 29.8 (0.5) t test 0.033

Fig. 1. Statistical maps comparing baseline and follow-up PET data. Several cortical regions including the posterior cingulate,
precuneus, lateral temporal, and parietal cortices and left frontal cortex show decline in the uptake of 18F-FDG.
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varied between 2% and 15%. Largest differences were
observed in the lateral temporo-occipital and occipital
association cortices (Fig. 3, bottom). The ApoE3 group
showed decline over the interval in FDG uptake in a more
extensive region of the cortex. The greatest decline (5–10%)
was observed in the posterior cingulate, precuneus, and
temporo-occipital association cortices bilaterally as well as
the left inferior frontal gyrus (Fig. 3, top).

Discussion
Neurodegenerative disorders are a large group of diseases
characterized by progressive regionally specific pathologic
changes. The most common neurodegenerative disorder
among the elderly is AD. AD typically presents with

cognitive decline, most notably in verbal and visual memory
and in the visuospatial domain, as a result of progressive
deterioration of the posterior association cortices and the
hippocampal formations.

Unlike brain atrophy, PET metabolic changes are not
considered to be a normal part of aging. Our study included
19 cognitively normal subjects who were initially evalu-
ated and re-evaluated approximately 2 years later with
cognitive examinations and PET imaging. The longitudi-
nal changes localized to the lateral posterior association
cortices, the posterior cingulate and precuneus bilaterally,
and the left middle and inferior frontal gyrus. While both
the decliners and nondecliners experienced relative meta-
bolic decline, the former demonstrated greater changes in
the areas discussed above (e.g., 5–15% vs. 2.5–5%).
ApoE4 carriers showed greater metabolic decline in

Fig. 3. Percent difference maps in FDG-PET uptake be-
tween baseline and follow-up among ApoE4-negative (top)
and ApoE4-positive elderly (bottom).

Fig. 2. Percent difference maps in FDG-PET uptake be-
tween baseline and follow-up among cognitively stable (top)
and cognitively declining elderly (bottom).
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posterior brain regions, as is typically seen in patients
with early AD. The quantitative differences between
decliners and nondecliners and ApoE4 carriers and non-
carriers did not however reach statistical significance
likely because of limitations imposed by our low sample
size.

So far, several research groups have reported that
metabolic decline in the temporal [5, 7, 8, 36] and/or
parietal [5, 10, 36] areas is predictive of clinical diagnosis of
AD within a follow-up period ranging from 12 to 36 months
on average. Posterior hypometabolism in ApoE4 carriers
relative to noncarriers was also noted in several studies [10,
37–39]. One group conducted 3-year follow-up of cogni-
tively normal individuals and reported entorhinal hypome-
tabolism in normals that converted to MCI in follow-up and
newly developed hippocampal and lateral and inferior
temporal hypometabolism in follow-up (e.g., in the MCI
stage) [12]. By using a sensitive computational anatomy
technique to map progressive metabolic changes, our study
extends these findings by reporting more widespread
progressive changes encompassing the association cortices
of the posterior temporal, superior, and inferior lateral
parietal, occipital, precuneus, and posterior cingulate. The
lateral but not the medial cortical changes also showed
linkage with the presence of an ApoE4 allele in the present
study.

A major strength of this study is its prospective
longitudinal design coupled with a sensitive surface
mapping technique well suited for assessing intra-individual
longitudinal change. Surface feature-guided cortical align-
ment improves the comparison of corresponding cortical
areas between individuals and results in greater statistical
power to detect disease-induced changes. Similar to
several other longitudinal studies in normal elderly and
MCI [8, 10, 11, 36], we normalized the individual
average PET intensity to the group average global brain
intensity, which may lead to underestimation of the
regional changes [40]. The diagnostic criteria for cogni-
tive decline used in the present study are similar to those
used in some [5, 7, 8, 10, 11, 36] but not all [12]
longitudinal PET studies of cognitively normal elderly
and mild cognitive impairment subjects.

Conclusions
Our advanced technique based on 3-D surface-based MR-
guided FDG-PET mapping helped us detect significant interim
metabolic changes in five posterior and the left lateral frontal
regions in cognitively normal elderly. These areas are known to
be affected early by AD pathology. Head-to-head comparison
of ROI analyses without and with cortical pattern matching
demonstrates improved sensitivity to metabolic changes after
explicit matching of homologous cortical areas. This results
from minimizing cortical mismatch due to inter-individual
differences in cortical morphology. Using advanced surface-
based techniques to map progressive metabolic cortical

changes in subjects with neurodegenerative diseases may help
the identification of subtle changes which may be potentially
useful for early and eventually pre-symptomatic detection,
diagnosis, and treatment.
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