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Abstract 

Representations of numerical value have been assessed using 
bounded (e.g., 0-1000) and unbounded (e.g., 0-?) number-line 
tasks, with considerable debate regarding whether one or both 
tasks elicit unique cognitive strategies (e.g., addition or 
subtraction) and require unique cognitive models. To test this, 
we examined 86 5- to 9-year-olds' addition, subtraction, and 
estimation skill (bounded and unbounded). Against the 
measurement-skills hypothesis, estimates were even more 
logarithmic on unbounded than bounded number lines and 
were better described by conventional log-linear models than 
by alternative cognitive models. Moreover, logarithmic index 
values reliably predicted arithmetic scores, whereas model 
parameters of alternative models failed to do so. Results 
suggest that the logarithmic-to-linear shift theory provides a 
unified framework for numerical estimation with high 
descriptive adequacy and yields uniquely accurate predictions 
for children’s early math proficiency.  

Keywords: cognitive development; numerical cognition; 
number-line estimation; psychophysical function 

Introduction 
    In this paper, we sought to resolve a debate on what gives 
rise to developmental changes in numerical estimation and 
provide a unified framework for understanding seemingly 
irreconcilable data regarding the psychophysical functions 
that link numbers to their magnitude estimates (Barth & 
Paladino, 2011; Cohen & Sarnecka, 2014; Opfer, 
Thompson, & Kim, 2016; Siegler & Opfer, 2003; Slusser, 
Santiago, & Barth, 2013). 
    Conventionally, developmental changes in numerical 
estimation have been viewed as following a logarithmic-to-
linear shift in representations of numeric magnitude (Siegler 
& Opfer, 2003; Siegler, Thompson, & Opfer, 2009). This 
shift was first observed on a number-line task, in which a 
target number was estimated on a line flanked by a number 
at each end (Fig. 1A). On this task, young children's 
placement of numbers typically follows an approximately 
logarithmic function (Siegler & Booth, 2004; Siegler & 
Opfer, 2003; Opfer & Siegler, 2007; Opfer, Siegler, & 
Young, 2011; Thompson & Opfer, 2008), but this 
logarithmic pattern changes to a linear one later with age 
and experience, with timing depending on the number 
ranges tested (Siegler, Thompson, & Opfer, 2009). For 
example, on a 0-100 number line, where estimates of 
kindergarteners are logarithmic, second graders produce 
linear estimates (Booth & Siegler, 2006), while they 

estimate numbers on a log scale on a 0-1000 number line 
(Siegler & Opfer, 2003). That logarithmic-to-linear 
transitions appear at different times in development suggests 
that logarithmic and linear representations can co-exist and 
compete in the same child. Thus, a simple model of 
numerical estimation is thought to be a mixed log-linear 
model (MLLM), in which estimates are predicted as a 
weighted sum of logarithmic and linear transforms of the 
number to be estimated (Anobile et al., 2012; Opfer et al., 
2016)  
    Recently, two related challenges to the logarithmic-to-
linear shift theory have been raised. The first challenge 
argued that children's estimates reflect one of three 
proportional reasoning strategies (Barth & Paladino, 2011; 
Cohen & Blanc-Goldhammer, 2011; Cohen & Sarnecka, 
2014; Slusser, Santiago, & Barth, 2013), which had been 
modeled in adults using three different cyclic power models 
(Hollands & Dyre, 2000). By comparing multiple 
extensions of the cyclic power model (CPM) to a log or 
linear model, Slusser et al. (2013) showed that one of the 
power models showed better fits for a majority of 5- to 10-
year-olds’ estimates than did the logarithmic model.  
    However, a recent study by Opfer and colleagues (2016) 
provided evidence against this account, showing that the fit 
of the cyclic power models was an artifact of an unusual 
anchoring procedure used by Slusser et al. (2013) that did 
not characterize estimates using the standard "free" 
numerical estimation procedure. Further, Opfer et al. (2016) 
found that both free and anchored estimates were better fit 
by MLLM than a mixed cyclic power model (MCPM) that 
included all variants of the CPMs proposed. Within this 
MLLM, the effect of anchoring could be traced to 
decreasing the logarithmicity of estimates without any need 
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Figure 1. Illustration of the bounded and unbounded 
number-line task. 
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for positing unique estimation strategies. 
    A second challenge to the logarithmic-to-linear shift 
account was the measurement-skills account proposed by 
Cohen and colleagues (2011, 2014). Here, log-like patterns 
in estimates are proposed to arise because conventional 
number-line tasks are "bounded" by two numbers, thereby 
requiring sophisticated arithmetic skills, like subtraction, 
which young children may not have acquired (Fig. 1A). In 
this account, when a target number such as 70 is given on a 
0-100 number line, a participant may need to consider both 
the number 70 and the difference 30 after subtracting 70 
from 100. In contrast, estimation of numbers on a number 
line "unbounded" by the larger endpoint is thought to 
require only addition (Fig. 1B), is thought to more 
accurately reveal numeric magnitude judgments, and is 
thought to be best modeled using three more variants of 
power models called “scallop power models” (SPM) (Cohen 
& Blanc-Goldhammer, 2011). 
    To test this second challenge, Cohen and Sarnecka (2014) 
tested the effects of boundedness in number-line tasks by 
giving both bounded and unbounded tasks to 3- to 8-year-
olds. Model fits of a log or linear function were compared to 
those of multiple variations of the CPM for the bounded 
estimates and to those of multiple SPMs for the unbounded 
estimates. In the bounded condition, the extensions of cyclic 
models provided better fits to estimates, and the response 
bias parameters (βs) changed with age. For the unbounded 
number-line estimates, in contrast, one of three scallop 
power models predicted the estimates better, but the 
estimation bias parameters (βs) stayed constant across age 
groups. These findings led the researchers to conclude that 
there were no such things as log-to-linear shifts in numerical 
representation, but these changes stemmed from the poor 
use of arithmetic strategies. Also, they suggested that 
numerical estimation be made on an unbounded number line 
for a better assessment of number representations. 

The Current Study 
    In this paper, we tested three rival hypotheses regarding 
bounded and unbounded numerical estimation. The primary 
hypothesis is that the cognitive process of estimation in the 
two tasks is essentially similar and does not require positing 
six estimation strategies associated with six unique 
psychophysical functions. From this perspective, bounded 
and unbounded numerical estimates -- like free and 
anchored numerical estimates -- are best viewed as 
reflecting children's representations of numeric magnitude 
and best modeled using the same mixed log-linear model. 
The second hypothesis is that both tasks are equally well 
suited for characterizing numerical magnitude estimates, 
with the parameters of the MLLM derived from each task 
providing better predictors of children's use of numbers in 
other contexts (such as addition and subtraction) than even 
the models that allegedly track addition and subtraction 
skill. Finally, because number-line estimation tasks do 
assess children's representations of numeric magnitude, 
providing children with more numbers against which to 

anchor their estimates will result in improved performance, 
leading to bounded numerical estimates being more accurate 
and more linear than unbounded estimates. 

To test these hypotheses, we nearly replicated the 
procedure used by Cohen and Sarnecka (2014) with the only 
exception being to use a fully-balanced design that could 
detect order effects and the administration of a battery of 
math tests (addition and subtraction). Then, we pit the 
MLLM tested by Opfer et al. (2016) against the MCPMs for 
bounded number-line tasks and against the mixed scallop 
power model (MSPM) for unbounded number-line tasks.  
    The MLLM consists of logarithmic and linear 
components and is defined as: 

𝑦 =  𝑎 𝜆
𝑈

ln 𝑈
ln 𝑥 +  1 − 𝜆 𝑥 , (1) 

in which y indicates an estimate of number x on a 0-U 
number line. Also, a denotes a scaling parameter, and λ	is	a	
logarithmicity	 index that measures the degrees of 
logarithmic compression in estimates.	 If	 estimation	 is	
perfectly	 linear,	 a	 λ	 value	 converges	 to	 0,	 whereas	 the	
value	 of	 the	 logarithmicity	 index	 gets	 close	 to	 1	 as	
estimation	shows	more	logarithmic	compression.		

The MCPMs were formulated as proposed by Hollands 
and Dyre (2000) (also see Opfer, Thompson, & Kim, 2016, 
for details). The first MCPM (MCPM1) is formalized based 
on Slusser et al. (2013)’s study that hypothesized that the 
number of reference points used for estimation changes in 
development: children with poor proportion skills would 
only use a single reference point, i.e., the lower bound, (0 
cyclic power model), and then learn to use the lower and 
upper bounds (1 cycle power model) and the middle point 
with the two endpoints (2 cycle power model) as they 
become more familiar with the number range. The MCPM1 
is defined as: 

𝑦 =  𝑤! ∙ 0CPM +   𝑤! ∙ 1CPM +   𝑤! ∙ 2CPM, (2) 
where each of w1, w2, and w3 denotes a weight for each 
variant of the CPM respectively. Each weight and the sum 
of weights are constrained to be between 0 and 1, so that 
contribution of three models in a response can be assessed 
individually. The MCPM2 is identical to the MCPM1 
except that 0CPM is replaced with the subtraction bias 
cyclic model (SBCM) in the MCPM2 as proposed by Cohen 
& Sarnecka (2014). The SBCM was similar to 1CPM, but 
includes an additional parameter (s) that is associated with 
the subtraction bias. 
    The MSPM for unbounded number-line tasks is also 
formed in the same manner based on Cohen and Blanc-
Goldhammer (2011)’s assumption that the unbounded tasks 
are solved using an addition strategy. The following is the 
formalization of the mixed model: 

𝑦 =  𝑤! ∙ 1SPM +   𝑤! ∙ 2SPM +   𝑤! ∙MSPM. (3) 
In the model, 1SPM indicates the single scallop model, 
2SPM the dual scallop model, and MSPM the multiple 
scallop model. The same constraints set on weights in the 
mixed CPM are set in this model.  

753



    After obtaining model fits and parameter estimates from 
each of the models, we next compared fits of the MLLM 
with the MCPMs for the bounded condition and with the 
MSPM for the unbounded condition to examine the best-
fitting model for each number-line task. Whereas the 
alternative functions are task-specific, the MLLM is 
theoretically applicable to both bounded and unbounded 
conditions. Therefore, if the MLLM is an unifying, 
generalizable function that captures numerical 
representations regardless of number-line boundedness, the 
MLLM should not only describe the bounded estimates 
better (Opfer et al., 2016), but also predict data from the 
unbounded condition better. Also, we examined whether 
model parameters, such as subtraction bias (s) in the 
MCPM2 and logarithmicity (λ) in the MLLM, actually 
predict addition and subtraction accuracy. If compressive 
estimates appear due to a lack of subtraction skills in the 
bounded number-line tasks, significant correlation between 
subtraction	bias	(s)	and	actual	subtraction	performance	
should	be	observed.	On	the	other	hand,	if	compression	in	
estimates	 reflects	 logarithmic	 representations	 of	
numbers,	 the	 logarithmicity	 index	 (λ) should	 predict	
both	 addition	 and	 subtraction	 achievement	 better	 than	
other	arithmetic-strategy	or	estimation	bias	parameters. 

Experiment 

Methods 
Subject Thirty 5- to 6-year-old kindergarten, 30 first grade, 
and 26 second grade students were recruited in Columbus, 
OH (kindergarteners: 17 female children, M = 5.90 years, 
SD = .32 years; first graders: 19 female children, M = 6.74 
years, SD = .39 years; second graders: 21 female children, 
M = 7.91 years, SD = .46 years). 
 
Materials and Procedure Participants completed both 
bounded and unbounded number-line tasks given in a 
counterbalanced order. In the bounded condition, a number 
was shown for 2,000 ms above a number line flanked by 0 
and 30/100/1000 (Fig. 1A). On every trial, the mouse cursor 
was reset to be located at the 0 point and moved only 
horizontally on a number line. Participants were instructed 
to estimate a given number on a number line with the 
following instruction:  

 

Now we're going to play a game with numbers. This is a 
number line. In this game, each number line will have a 0 at 
one end and 30/100/1000 at the other end. There will be a 
number up here. Your job is to show me where that number 
goes on a number line like this one. When you decide where 
the number goes, you have to drag this little mark to where 
the number should go. When you're ready to go again, press 
the green bar (spacebar with a green sticker on) on the 
keyboard. 

 

    The unbounded number-line task was identical to the 
bounded one except that a single-unit line (0-1) was 
presented instead of the full range number line (Fig. 1B). An 
experimenter introduced the task with the following 

instruction that was created based on Cohen and Sarnecka 
(2014):   

Now we're going to play a game with numbers. This is a 
number line. In this game, each number line will have a 0 
here and 1 over here. All the other numbers go after 1. There 
will be a number up here. Your job is to show me where that 
number goes on a number line like this one. When you 
decide where the number goes, you have to drag this little 
mark to where the number should go. When you're ready to 
go again, press the green bar on the keyboard. 

 

The length between 0 and 1 was adjusted based on the 
ranges of number lines. In other words, a displayed length 
for 0-1 intervals was the shortest for a 0-1000 number line, 
whereas it was the longest in the 0-30 number line task. 
    Based on Slusser et al. (2013), different number ranges 
that would elicit compressive estimates were used 
depending on children’s grades. 5- and 6-year-old 
kindergarteners were given 0-30 number-line tasks with to-
be-estimated numbers sampled evenly from a 0-30 range: 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 27, 
28, 29, 30. For first graders, a 0-100 number line was used 
with 25 numbers between 0 and 100: 3, 4, 6, 8, 12, 17, 21, 
23, 25, 29, 33, 39, 43, 48, 52, 57, 61, 64, 72, 29, 81, 84, 90, 
96, 100. Second graders were asked to estimate numbers 
chosen between 0 and 1000 on a 0-1000 number line: 2, 5, 
18, 34, 56, 78, 100, 122, 147, 150, 163, 179, 246, 366, 486, 
606, 722, 725, 738, 754, 818, 938, 1000. In both bounded 
and unbounded conditions, the same target numbers were 
randomly presented. To keep children’s attention on the 
tasks, a neutral sound was produced once a stimulus was 
displayed or a response was made by mouse click. The tasks 
started after an instruction without any practice, and there 
was no feedback provided over trials. 
    Upon completion of the two number-line tasks, arithmetic 
performance was assessed with paper-and-pencil addition 
and subtraction tests. The addition test consisted of 50 one-
digit addend problems, such as 1+1 and 5+3. The 
subtraction items were generated by rearranging the 
addition. To be specific, the first addends in the addition test 
were used as subtrahends, while the second addends became 
the answers. For the questions like 1+1 = 2 and 5+3 = 8, 
they were rearranged to be 2-1 and 8-5 in the subtraction. 
Participants were given the tests in a random order and 
asked to solve as many problems as they could within 1 
minute for each test. 

Results 
    Whether cognitive process of estimation is qualitatively 
different between bounded and unbounded tasks was 
examined using psychophysical functions. For the bounded 
condition, individual data were fit by the MLLM, MCPM1, 
and MCPM2, whereas estimates on unbounded number 
lines were fit with the MLLM and MSPM. The model fits 
were then assessed by comparing AICc values.  
    Against the measurement-skills account, none of the 
MCPMs was the best fitting model for bounded number-line 
estimation. For 0-30 and 0-100 number-line estimates, most 
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children’s performance was better explained by the MLLM 
(Table 1). Estimates of 50% of participants on 0-1000 
number lines were also best fit by the MLLM. In the 
unbounded condition, across all the three number ranges, 
100% of children produced estimates that were better 
described by the MLLM than the MSPM. The results 
suggest that logarithmically distorted estimates in a number-
line task do not stem from a lack of proportion, subtraction, 
or addition skills, but come from representations of 
numerical magnitude that are well predicted with the mixed 
log-linear model. 
    Would variants of the power models based on arithmetic 
strategies predict children’s actual arithmetic performance? 
To address this question, we next correlated each child’s 
addition and subtraction performance with the best-fitting 
parameter values from the models. If response patterns in 
the bounded condition came from poor subtraction skills, 
parameters, such as βs of the MCPM1 & MCPM2 and s of 
MCPM2, would be expected to correlate with arithmetic 
scores. As presented in Table 2, however, none of the βs 
from the MCPMs was a reliable predictor for either addition 
or subtraction scores: only β1CPM of MCPM1 correlated with 
subtraction scores, but such correlation was not found in the 
subtraction bias parameter s of MCPM2. This correlation 
also remained insignificant if adjusted parameter values 
(absolute values of β-1 or s-1) were used for analyses. In 
contrast, the logarithmicity parameter λ of the MLLM 
reliably predicted both addition and subtraction 
performance, r(84) = -.42, p < .001 for addition; r(84) = -
.36, p < .01 for subtraction. The finding suggests that the 
more logarithmic their estimates were in bounded tasks, the 
worse performance in arithmetic tests was observed.  
       We also examined relations between the parameter βs 
of the MSPM and arithmetic achievement in the unbounded 
tasks. According to the measurement-skills account, these 
parameters in the scallop models should reflect 
representation of numeric magnitude most accurately of all 
because the task is supposedly pure of the sins of 
boundedness and the model is correct. Against this idea, 
however, none of the parameter βs were significantly 
correlated with arithmetic performance, whereas the MLLM 
parameter λ again showed a significant correlation with 
addition and subtraction, r(84) = -.33, p < .01 for addition; 
r(84) = -.34, p < .01 for subtraction (Table 2). These 
findings again support the idea that logarithmic estimates on 
a number line should be viewed as a reflection of 
logarithmic representation of numbers, which interferes with 
use of numbers in other contexts. 

     The final issue we examined was to quantify the effect of 
boundedness on numerical estimation. If the bounded 
number-line tasks required more challenging measurement 
skill, the bounded tasks would be expected to elicit more 
erroneous and compressive estimates. On the other hand, if 
the two endpoints provide better anchors against which to 
judge large numbers, estimates in the bounded condition 
would be expected to yield less logarithmic and more 
accurate estimates. Consistent with the latter account, on all 
the 0-30/100/1000 number-line tasks, percent absolute 
errors (PAE) in median estimates were always greater in the 
unbounded than bounded conditions (bounded M = 12%, SD 
= 5%, unbounded M = 17%, SD = 7% for 0-30 range; 
bounded M = 12%, SD = 4%, unbounded M = 14%, SD = 
7%, for 0-100 range; bounded M = 20%, SD = 12%, 
unbounded M = 24%, SD = 14%, for 0-1000 range).  
    Additionally, as shown in Figure 2A, in all the three 
number ranges, the values of the logarithmicity parameter 
(λ) were greater for median estimates in the unbounded 
condition than those in the bounded condition (bounded λ = 
.30, unbounded λ = .76 for 0-30 range; bounded λ = .42, 
unbounded λ = .55 for 0-100 range; bounded λ = .73, 
unbounded λ = .75 for 0-1000 range). These results do not 
support the measurement-skills prediction that unbounded 
number-line tasks are easier and require less advanced 
mensuration skills than conventional bounded tasks.   
    Finally, the same analyses were repeated on individual 
children's data. For the 0-30 number-lines, greater PAEs 
were again observed in the unbounded than bounded 
condition (M = 17%, SD = 7% for bounded; M = 21%, SD = 
7% for unbounded), t(29) = 3.82, p < .001. For the 0-100 
number-lines, greater PAEs were also observed in the 
unbounded than bounded condition (M = 15%, SD = 7% for 

   Addition Subtraction 
Bounded MLLM λ -.42*** -.36** 
     
 MCPM1 β0CPM -.01 -.10 
  β1CPM .17 .27* 
  β2CPM -.08 .10 
     
 MCPM2 s .13 .06 
  βSBCM .02 -.09 
  β1CPM .17 .14 
  β2CPM -.06 -.13 
     
Unbounded MLLM λ -.33** -.34** 
     
 MSPM β1SPM -.05 .00 
  β2SPM .19 .01 
  βMSPM .16 .15 

 Bounded   
 Unbounded 

 MLLM MCPM1 MCPM2  MLLM MSPM 
0-30 96.67 .00 3.33  100 .00 
0-100 80 10 10  100 .00 
0-1000 50 3.85 46.15  100 .00 

Table 1. Percent of participants best fit by each model. 

 
Table 2. Correlation between parameter values and 
arithmetic performance after number-line ranges were 
controlled for. 
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bounded; M = 19%, SD = 9% for unbounded), t(29) = 3.51, 
p < .01. And for 0-1000 number-lines, greater PAEs were 
again observed in the unbounded than bounded condition 
(M = 20%, SD = 8% for bounded; M = 27%, SD = 11% for 
unbounded), t(25) = 5.21, p < .001. Therefore, for all the 
three number ranges, conventional number lines with two 
bounds elicited more accurate responses than unbounded 
number lines. These results are not at all consistent with the 
measurement-skills account.  
    Although number-line tasks without an upper bound 
produced more erroneous estimates, it is not clear whether 
the unboundedness increased random noise or logarithmic 
compression in estimates. To address this issue, individual 
children’s degrees of logarithmicity were obtained with the 
MLLM fitting.  
    As shown in Figure 2B, in all the three number ranges, 
the values of the logarithmicity measure were greater for a 
number line without bounds. In 0-30 and 0-100 number-line 
tasks, estimates in the unbounded condition showed 
significantly greater logarithmic compression in the 0-30 
range (M = .51, SD = .38 for bounded; M = .76, SD = .31 for 
unbounded), t(29) = 4.33, p < .001, and in the 0-100 range 
(M = .51, SD = .31 for bounded; M = .65, SD = .30 for 
unbounded), t(29) = 3.37, p < .01. Although logarithmicity 
was slightly greater for the unbounded 0-1000 number-line 
task than for the bounded one, the difference was not 
statistically significant (M = .70, SD = .32 for bounded; M 
= .74, SD = .32 for unbounded), p > .05. Against the 
arithmetic strategy hypothesis, negatively accelerating 
patterns in estimates were observed in both bounded and 
unbounded number-line tasks, and these patterns were 
stronger when the number line did not have a right-end 
bound. Even if the number-line task without the right 
endpoint revealed more accurate representation of numbers 
as the measurement-skills account claimed, what it revealed 
in the unbounded task was more logarithmic compression.  

Discussion 
    In this paper, we attempted to address the nature of 
developmental changes in numerical estimation and to 
provide a unified framework for seemingly irreconcilable 

data regarding the psychophysical functions that link 
numbers to their magnitude estimates (Barth & Paladino, 
2011; Cohen & Sarnecka, 2014; Opfer, Thompson, & Kim, 
2016; Siegler & Opfer, 2003; Slusser, Santiago, & Barth, 
2013). Specifically, we wished to see whether the 
logarithmic-to-linear shift existed on both bounded and 
unbounded number lines. As Cohen and Sarnecka (2014) 
stated, “For those children whose data are best fit by the 
logarithmic function, we are skeptical that this reflects a 
logarithmically organized quantity representation. If it did, 
we should expect to see the same pattern on the unbounded 
task….” (p. 1650). 
    In the teeth of this skepticism, we found robust evidence 
for a logarithmically organized quantity representation on 
the unbounded task, as well as the bounded task. Evidence 
came from multiple sources. First, the MLLM—which had 
previously unified discrepant data from free and anchored 
numerical estimation (Opfer et al., 2016)—predicted data 
from bounded and unbounded tasks better than rival 
psychophysical models. Additionally, for both tasks, the 
logarithmicity parameter was significantly greater than zero 
in each of the three age groups tested. This success of a 
single simple model over many competing complex models 
suggests there may be a simple cognitive process lurking 
behind many varieties of numerical estimation.  
    Second, individual differences were stable across the two 
tasks: children whose estimates were most logarithmic in 
the bounded task were also most logarithmic patterns in the 
unbounded task, r(84) = .73, p < .001. This wouldn't be 
expected if the two tasks elicited radically different 
estimation strategies or if only one of the tasks provided an 
accurate picture of children's numeric magnitude judgments. 
    Third, although the two tasks differed in overall accuracy, 
it was not in the direction predicted by the measurement-
skills account: PAEs and logarithmicity values of both 
median and individuals’ estimates were always greater for 
the unbounded condition across all three number ranges. 
Therefore, even if the more difficult unbounded tasks 
provide a better picture of the internal mental number line, 
what they show is stronger evidence for logarithmic 
representation of numbers.    
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   Finally, the parameters expected by the measurement-
skills account to track arithmetic biases unique to each task 
never predicted actual arithmetic performance, calling into 
question the psychological meaning of these parameters 
(Table 2). In contrast, the logarithmicity component of the 
MLLM reliably predicted children's arithmetic proficiency 
regardless of whether bounded or unbounded number lines 
were used, which is wholly inconsistent with the idea that 
bounded number lines require greater arithmetic skills than 
unbounded ones. 

Why might our results have differed so strongly from 
those of Cohen and colleagues (2011, 2014)? Two 
reasons—methodological and analytical—seem likely. First, 
unlike Cohen and Sarnecka (2014), we counterbalanced the 
order of bounded and unbounded tasks so that any effects of 
task order would not influence our overall results. 
Counterbalancing also made it possible to test the presence 
of order effects. And we found that the order of tasks 
sometimes influenced estimates. For example, on the 0-
1000 task, more erroneous estimates were produced in both 
tasks if the unbounded task was first presented, F(1, 24) = 
9.79, p < .01, ηp

2 = .29, suggesting that the greater difficulty 
of the unbounded task resulted in fatigue or confusion for 
the second task. This is critical because it suggests that 
unbounded tasks are not intrinsically easier for children – 
quite the opposite.  

 Another important difference came from the analytic 
strategies employed. Cohen and Sarnecka (2014) tested the 
log or linear model against the 0CPM or 1CPM or 2CMP 
model. Because the number of or’s corresponds to greater 
overall model complexity (i.e., greater degrees of freedom), 
a poorer fit for one of two family A models than one of 
three family B models is ambiguous. Our own analytic 
strategy, in contrast, was to explicitly include all of the same 
family of models in the same equation (e.g., MLLM, 
MCPM1&2, MSPM), and thereby include the correct 
number of degrees of freedom. This strategy allowed us to 
improve the validity of our model comparison. Additionally, 
it yielded two unique insights: that individual differences in 
the logarithmicity of estimates were stable across tasks and 
that individual differences in logarithmicity of estimates 
predicted math skills better than alternative models. These 
findings directly contradicted the predictions of the 
measurement-skills account and could not be tested using 
the analytic strategy of Cohen and Sarnecka (2014). 
     In conclusion, the present study shows that the log-to-
linear shift theory provides a framework for numerical 
estimation that is high in descriptive adequacy for both 
bounded and unbounded number lines and is reliably 
predictive of children’s mathematics performance. An 
interesting question for future studies is whether the same 
framework provides a good account of magnitude 
estimation more broadly. 
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