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Executive functions are a diverse and critical suite of cognitive abilities that are often disrupted

in individuals with psychiatric disorders. Despite their moderate to high heritability, little is

known about the molecular genetic factors that contribute to variability in executive functions

and how these factors may be related to those that predispose to psychiatric disorders. We

examined the relationship between polygenic risk scores built from large genome-wide associa-

tion studies of psychiatric disorders and executive functioning in typically developing children.

In our discovery sample (N = 417), consistent with previous reports on general cognitive abili-

ties, polygenic risk for autism spectrum disorder was associated with better performance on the

Dimensional Change Card Sort test from the NIH Cognition Toolbox, with the largest effect in

the youngest children. Polygenic risk for major depressive disorder was associated with poorer

performance on the Flanker test in the same sample. This second association replicated for per-

formance on the Penn Conditional Exclusion Test in an independent cohort (N = 3681). Our

results suggest that the molecular genetic factors contributing to variability in executive func-

tion during typical development are at least partially overlapping with those associated with psy-

chiatric disorders, although larger studies and further replication are needed.
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1 | INTRODUCTION

Executive functions encompass diverse cognitive abilities, including

flexibility, inhibitory control, abstraction, fluency, selective attention

and working memory. The quintessentially human instantiation of

these skills not only sets us apart from the rest of the animal kingdom,

but also plays an integral role in cognitive development. Perhaps

because they exhibit protracted maturation, executive functions are

particularly variable and vulnerable during childhood and adolescence.

Furthermore, deficits in executive functioning are widely reported in

psychiatric populations including those affected by attention deficit/

hyperactivity disorder1,2 (ADHD), autism spectrum disorder1 (ASD),

bipolar disorder3 (BIP), major depressive disorder4 (MDD), schizophre-

nia5 (SCZ) and others.6 Whether factors associated with risk for

Data used in preparation of this article were obtained from the Pediatric Imag-
ing, Neurocognition and Genetics (PING) study database (http://ping.chd.ucsd.
edu). As such, the investigators within PING contributed to the design and
implementation of PING and/or provided data but did not participate in analysis
or writing of this report. A complete listing of PING investigators can be found
at https://ping-dataportal.ucsd.edu/sharing/Authors10222012.pdf.
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psychiatric disorders and resulting executive function disruptions also

correlate with executive function performance during typical develop-

ment remains unknown.

Heritability estimates are moderate to high, ranging from 0.29 to

0.76, for performance on many individual executive function tests.7–9

Correlations in performance across tests are often summarized as hav-

ing “unity and diversity”10 to note both a task-domain general perfor-

mance factor that cannot be explained by general cognitive abilities

(unity) and also task-domain specific factors (diversity).11,12 The herita-

bility of executive function exhibits this same pattern. Twin and family

studies suggest domain-general and domain-specific genetic contribu-

tions that appear separable from those affecting general cognitive abili-

ties. Estimates of heritability for some of these latent factors has been

as high as 1.7–9 Contrary to quantitative genetics reports, molecular

genetic studies are less revealing. A number of candidate genes have

been proposed13 but single gene studies provide mixed results and their

reliability in small to moderate samples is questionable.14 Genome-wide

association studies (GWASs) aiming to scan all common genetic variants

are also yet to add significantly to our understanding of individual dif-

ferences in executive functioning.15–18 It appears that the genetic archi-

tecture of executive functions, like other complex cognitive

phenotypes,19,20 is diffuse across very many variants (polygenic).

Extremely large sample sizes for reliable single variant studies or alter-

native approaches will be needed to advance understanding of the

molecular genetic contributions to executive functioning.

The use of polygenic risk scores (PRSs) is a powerful approach for

gaining insights into the genetic architecture of cognitive pheno-

types.21,22 PRSs are quantitative scores that index, for each individual

subject in a study sample, their aggregate genetic risk for a trait of

interest. Specifically, a PRS is computed as the weighted sum counting

all risk alleles for a selected set of single nucleotide polymorphisms

(SNPs) carried by an individual. The weight used for each risk allele is

the SNP log odds ratio estimated out of sample in a large GWAS of

the given trait. PRSs are demonstrated to be powerful and reliable

indicators not only for genetic contributions to single traits but also

for genetic correlations between traits.22 Associating psychiatric PRS

with cognitive performance in healthy populations may advance our

understanding of the overlap among genetic factors contributing to

cognitive deficits emerging through psychiatric illness and those

affecting variability in unaffected individuals.23 Although PRSs do not

provide the molecular specificity of single locus studies, they can pro-

vide important insights into broader aspects of genetic architectures.

These broader relationships are important for informing newer ana-

lytic approaches exploiting functional hypotheses for improved power

at finer scales.24,25

A growing body of work has begun investigating the association

between psychiatric PRS and measures of cognitive performance in

the general population. Higher ADHD PRSs have been associated

with lower performance in IQ, educational achievement, working

memory, and language skills in children26–28 and lower IQ, educational

attainment and verbal-numerical reasoning in adults.28–30 A number

of reports link increased SCZ PRS with lower IQ across the age

range,31 but also include negative correlations with attention, reaction

time, memory and verbal numerical reasoning in adults30,32 and lan-

guage skills, verbal reasoning and social cognition in children.33,34 In

adults,30 MDD and BIP PRS were negatively associated with reaction

time and memory, while MDD was additionally associated with worse

verbal-numerical reasoning. While reported PRS for ADHD, BIP,

MDD and SCZ have typically produced negative correlations with

cognitive performance, ASD is an exception. ASD PRS has been asso-

ciated with higher IQ in children and adults35,36 and higher educational

attainment, memory and verbal fluency in adults.30,35 Although inter-

esting relationships are emerging the results are not yet definitive as

inconsistencies exists31,37 and only a limited number of domains have

been considered.

Only 2 studies, to our knowledge, have examined the association

between PRS for psychiatric outcomes and executive function, per

se. Germine et al33 considered the relationship between SCZ PRS and

performance on a suite of tests, including 1 executive task. However,

in a population of children ascertained from hospitals (Philadelphia

Neurodevelopmental Cohort [PNC], described below) only associa-

tions with other domains were reported as significant (see above), but

a nominally significant trend for SCZ PRS and speed performance on

an executive task was observed. Benca et al38 used a population sam-

ple of young adults to consider the relationship between PRS for

5 psychiatric disorders and 3 latent executive factors derived from

performance on 9 executive tasks. Although the authors did not

declare any findings significant study-wide, they did report nominally

significant trends for MDD, ADHD and SCZ PRS. While the frequency

of studies using PRS to probe the genetic architecture of cognition is

growing, their associations with executive functions during typical

development, in particular, remain speculative.

The aim of this study was to investigate the association between

PRS for psychiatric disorders and executive function performance in

typically developing children and adolescents. We used the results

from GWAS of 5 psychiatric conditions (ADHD, ASD, BIP, MDD and

SCZ) provided by the Psychiatric Genomics Consortium (PGC) to com-

pute disorder-specific PRS. In our primary hypothesis test, we exam-

ined the aggregate effects of all psychiatric PRS and their interactions

with age on executive function in 417 typically developing individuals

from the Pediatric Imaging, Neurocognition and Genetics (PING)

study. Because of “unity and diversity” described by quantitative

genetic studies, we followed our primary analysis with descriptive,

post hoc analyses. The goal of these analyses was to generate novel

hypotheses about the potential specificity of the strongest disorder-

specific PRS to each of 2 executive function tasks and their indepen-

dence from effects on more general cognitive abilities. Finally, we

selected our strongest findings for replication in a second, complimen-

tary cohort, the PNC. We hypothesized that multiple PRSs would

show associations with variability in executive functions, revealing

plausible evidence for domain specificity. Importantly, we also

explored the understudied, moderating effect of age.

2 | MATERIAL AND METHODS

2.1 | Psychiatric GWAS

The PGC published per SNP summary statistics for GWAS of 5 psychiat-

ric conditions (https://www.med.unc.edu/pgc/results-and-downloads).
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We obtained the statistics for ADHD39ADHD, ASD40, BIP41, MDD42

and SCZ43 GWAS. The numbers of cases/controls in each study was

2960/4519 (ADHD), 3303/3428 (ASD), 7481/9250 (BIP), 9240/9519

(MDD) and 34 241/45 604 (SCZ). The statistics provide per SNP odds

ratios for 1 206 462, 9 499 590, 2 427 221, 1 235 110 and 9 444 231

SNPs, respectively. Odds ratios were natural log transformed (reconsti-

tuting the beta estimate from a logistic regression) for downstream

analysis. Table 1 describes these data.

2.2 | The PING cohort

The PING study (http://pingstudy.ucsd.edu/Data.php)52 created a

comprehensive, publicly shared, data resource for studying standard-

ized assessments of neurocognition, neuroimaging and genetics in

typically developing children. Cross-sectional measurements on 1493

individuals ranging in age from 3 to 21 years were aggregated from

sites across the United States. The cohort is described fully else-

where.52,53 Relevant to this study, subjects were excluded only for

known history of neurological disorders, head trauma, preterm birth,

severe psychiatric diagnosis (autism spectrum, SCZ or BIPs), intellec-

tual disability, pregnancy, maternal daily drug or alcohol use during

pregnancy or incompatibility with MRI (i.e. braces, pregnancy, claus-

trophobia, etc.). ADHD, general or specific learning disabilities, and/or

depression, confirmed or suspected, were not exclusionary as these

are fairly common in developing populations. However, no testing

was conducted to screen for these conditions and therefore verifica-

tion of a diagnosis or identification of additional participants who may

have met criteria was not possible. Subjects were enrolled from the

greater metropolitan areas of Baltimore, Boston, Honolulu, Los

Angeles, New Haven, New York, Sacramento and San Diego. Each

subject's medical, developmental, behavioral history, as well as family

medical history and environment were obtained from parental ques-

tionnaires. Socioeconomic status (SES) was recorded as a 7-point scale

rating parental education from “less than seven years” to “professional

degree,” and a 12-point scale rating annual familial income from “less

than $5,000” to “over $300 000.”

Neurocognitive performance was assessed using the NIH Toolbox

Cognition Battery (NTCB, http://www.nihtoolbox.org/,53,54), a com-

puterized battery designed for administration across the life span. The

NTCB includes 8 subtests spanning 6 domains. In this study, we

included the 2 measures of executive function, the Flanker Inhibitory

Control and Attention test (Flanker) and the Dimensional Change Card

Sort (DCCS) test, and the 2 language measures, the Picture Vocabu-

lary and Oral Reading Recognition tests. Intraclass correlation coeffi-

cients of 0.92 for both the DCCS and Flanker tests,55 0.97 for Oral

Reading Recognition, and 0.81 for Picture Vocabulary56 indicate that

all 4 NTCB tests show excellent test-retest reliability. Test scores

were adjusted by Blom rank order normalization.57 The executive

function composite (EFC) score is the average of DCCS and Flanker

scores and the verbal composite (VC) score is the average of the Pic-

ture Vocabulary and Oral Reading Recognition scores. Details on the

Flanker and DCCS are in the Appendix S1, Supporting Information.

A total of 550 000 SNPs were genotyped from saliva samples

using the Illumina Human660W-Quad BeadChip. Genotyped SNPs

were imputed58 to 6 492 742 expected allelic dosages. Imputations

were performed with MaCH,59 minimac60 and phased haplotypes

from European subjects in 1000 Genomes Project Phase 1.61 Included

dosages had r2 quality >0.3, minor allele frequency >1%, per subject

TABLE 1 GWAS summaries

Trait GWAS SNPs for PRS

GWAS h2 h2chip PRS r2 Cases Controls SNPs PING PNC

ADHDa 0.76f 0.28k 0.001l 2960 4519 1 206 462 5363 —

ASDb 0.90g 0.17k *0.008m 3303 3428 9 499 590 10 179 3787

BIPc 0.90h 0.25k 0.028 7481 9250 2 427 221 13 965 —

MDDd 0.31-0.42i 0.21k *0.006 9240 9519 1 235 110 5622 3752

SCZe 0.81j 0.23k 0.184 34 241 45 604 9 444 231 17 119 —

The heritability (h2) and chip heritability (h2chip) are representative values for each disorder and suggest a large contribution of common genetic factors to
disease liability. The within-trait PRS predictive power (PRS r2) of the GWAS results varies approximately according to the sample sizes. *Note that the VE
by PRS reported here are likely underestimates for the PRS used here. The ASD and MDD GWAS used in these studies to create PRS were subsets (40%
and 80%, respectively) of the sample used for this study.

a Neale et al39.
b Cross-Disorder Group of the Psychiatric Genomics40.
c The Psychiatric GWAS Consortium Bipolar Disorder Working Group41.
d Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium et al42.
e Schizophrenia Working Group of the Psychiatric Genomics Consortium43.
f Faraone and Mick44.
g Freitag45.
h Craddock and Sklar46.
i Sullivan et al47.
j Sullivan et al48.
k Cross-Disorder Group of the Psychiatric Genomics Consortium et al49.
l Hamshere et al50.
m Anney et al51.
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missingness <1%, were autosomal, and had unambiguous strand align-

ment (A/T, C/G SNPs removed). Of the 1493 subjects, 1019 had

acceptable NTCB, genotype and covariate data.

Analyses were restricted to PING subjects of European genetic

ancestry (the same as the psychiatric GWAS) with no familial relation-

ships. Genetic ancestry was determined using smartPCA routines in

EIGENSTRAT62 on the 1019 PING subjects combined with 1224 indi-

viduals with known genetic ancestry. Reference individuals sampled

HapMap,63 1000 Genomes61 and IntraGen64 databases. Subjects with

European genetic ancestry had scores on the first 10 principal compo-

nents (PCs) of genetic similarity within 5 SDs of the mean of reference

individuals with known European ancestry, leaving 463 subjects

(Figure S1). Familial relatedness was determined from estimates of

genome-wide identity by descent (IBD) among the remaining subjects

using GCTA.65 The 417 final subjects (191 female) were selected such

that no pair had estimated IBD above 0.08 (Figure S2). The first

10 PCs recomputed with smartPCA on the final subjects were kept as

covariates for residual genetic ancestry.62

PRSs were computed for each psychiatric GWAS following a

standard approach22 with parameters chosen to mimic a recent exem-

plar.43 We intersected the 6 492 742 imputed SNPs in PING with

each GWAS, randomly pruning the 5 sets so no pair of SNPs within

500 kb had r2 linkage disequilibrium above 0.1. Only those with a

P value <.05 in the GWAS were retained leaving 5363 (ADHD),

10 179 (ASD), 13 965 (BP), 5622 (MDD) and 17 119 (SCZ) SNPs. For

each subject, we computed PRS as the log odds weighted sum of

imputed SNP minor allele counts, for each psychiatric GWAS as the

PRS. Computations were carried out with the “score” function in

plink1.9.66,67 Correlations among scores are in Figure S5.

Associations were performed using R version 3.1.68 A “baseline”

regression model predicted EFC from 23 covariates: age at neuropsy-

chological testing, age squared, gender, 8 dummy variables for 9 acqui-

sition sites, the 2 SES measures and 10 ancestry PCs. The “full” model

included the 23 covariates plus all PRSs and their interactions with

age and age squared (15 additional terms). Coefficient estimates are

reported from the full model. Age, age squared and PRS were mean-

centered prior to fitting. The primary hypothesis test was a likelihood

ratio test (LRT) comparing the full model with the baseline model. For

descriptive purposes, the covariates and PRS terms are divided into

categories and presented hierarchically in Table 2 with P values from

LRTs on nested hierarchical models.

Post hoc tests were conditional on significance in the primary test

and presented to describe the effects of specific PRS along with age

and age squared interactions. Variables with P < .1 in the full model

were selected for follow-up. These analyses (Figure 1) depict the dif-

ferences in variance explained (VE) (r2) when adding the PRS or PRS

plus interaction terms to the baseline model, with P values reported

from nested LRTs. Analyses were repeated including VC in the base-

line model according to the same procedure. Post hoc test P values

are presented uncorrected for multiple testing. The tests are depen-

dent on significance in the primary test, highly intercorrelated (i.e. the

ASD PRS effect on DCCS with and without VC are essentially redun-

dant tests) and meant to be interpreted as descriptive, generating

novel hypotheses to be confirmed in independent studies.

2.3 | The PNC cohort

The PNC was accessed through dbGAP (accession number

phs000607.v1.p1). Full descriptions of the cohort, subject acquisition

and protocols are available elsewhere.69,70 Briefly, 8741 subjects ages

8 to 21 were selected from approximately 50 000 recruited from the

Children's Hospital of Philadelphia or affiliated clinics in the greater

Philadelphia area. Inclusion required only an ability to consent and

complete interviews and testing. A computerized structured screen

modeled after the Kiddie-Schedule for Affective Disorders and

Schizophrenia71 was administered to each subject to assess the symp-

toms of potential psychopathology including mood, anxiety, behav-

ioral, eating, psychosis or substance use issues. Subjects were given a

medical rating derived from this interview to summarize the relative

severity of symptom reports from none (0) or minor without CNS

impact (1) to major (4). Clinical administered medical diagnoses for

psychiatric conditions, however, were not available.

Neurocognitive abilities were assessed using the Penn Computer-

ized Neurocognitive Battery.69,72,73 Executive function was assessed

by the Penn Conditional Exclusion Test (PCET; details in Supporting

Information).74 Direct measures of reliability are not currently avail-

able for the PNC version of the PCET. Scores from the Reading subt-

est from the Wide Range Achievement Test (WRAT Reading score)

were also available for each subject.

TABLE 2 Primary hypothesis test

Model Res. DF RSS DF SS R2 P (LRT)

Intercept only 416 384.5

+Age 414 119.8 2 264.61 0.6883 3.16 × 10−199

+Gender 413 119.8 1 7.19 × 10−5 0.6883 0.9874

+Environment 403 111.1 10 8.71 0.711 4.7 × 10−4

+Genetic background 393 105.1 10 6.01 0.7266 0.0128 4.92 × 10−206

+PRS main effects 388 102.1 5 3.07 0.7346 0.0397

+PRS age interactions 378 97.6 10 4.5 0.7463 0.0654 0.0147

−Omitted PRS terms 389 101.3 −11 −3.72 0.7366 0.2117

Adding the joint effects of the 5 PRS (+PRS main effects, +PRS age interactions) is a significant improvement to the explanatory power of the model when
compared to the baseline model (intercept, +age covariates, +gender covariates, +environmental covariates, +genetic background covariates). Breaking
down the terms into themed groups suggests all covariates except gender are important aspects of the baseline model and the main effects of the PRS are
more predictive than their age interactions. Removing the terms not considered for post hoc analysis (−omitted PRS terms) did not significantly reduce the
fit of the model.
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Six arrays were used for genotyping: Affymetrix Human SNP

Array 6.0 (N = 65, SNPs = 826 525), Affymetrix Axiom Genotyping

Array (N = 711, SNPs = 517 744), Illumina Omni Array (N = 1653,

SNPs = 699 239), Illumina Human 610 (N = 3702, SNPs = 480 247),

Illumina Human Hap 550v1 (N = 548, SNPs = 522 609) and Illumina

Human Hap 550v3 (N = 1861, SNPs = 488 715). We excluded sub-

jects genotyped on the Affymetrix arrays for low numbers and low

SNP overlap and subjects with the Illumina Human Hap 550v1 array

for unresolvable artifacts. The same smartPCA and GCTA routines

selected unrelated, European genetic ancestry subjects (Figure S3)

and created ancestry covariate PCs. A total of 3681 subjects (1884

female) with 224 444 overlapping genotypes were used for replica-

tion. ASD and MDD PRS were computed according to the same pro-

tocol as above from 3787 and 3752 SNPs, respectively.

The PNC “baseline” model included 17 covariates: age at neuro-

psychological testing, age squared, gender, 4 dummy variables for

5 medical ratings and 10 genetic ancestry PCs. Age, age squared and

PRS were centered prior to fitting. Replication tests followed the same

procedure as in the discovery phase, comparing the fit of the PRS with

baseline and interaction with PRS + baseline, sequentially. Coeffi-

cients are reported from the most saturated model. Analyses were

repeated with the WRAT Reading score in the baseline model.

3 | RESULTS

Tested in aggregate, the PRS for ASD, ADHD, BIP, MDD and SCZ and

their interactions with linear and quadratic age explained a small but

significant proportion of variance in composite executive function

among PING subjects (VE = 1.97%; LRT with 15 degrees of freedom

(DF) P = .01; Table 2). Variables in the full model (Table S1) with

P < .10 were chosen for follow-up: the main effect of MDD PRS (β =

−0.0429, SE = 0.0167, P = .011), the main effect of ASD PRS (β =

0.0269, SE = 0.0107, P = .012) and the linear (β = 0.0210, SE =

0.0119, P = .078) and quadratic (β = −0.0009, SE = 0.0004, P = .064)

age interactions with ASD PRS. Removing all PRSs but these from the

full model did not result in a significant loss of fit, suggesting that

results of the primary analysis are driven by the ASD, ASD × Age and

MDD variables (VE = −1%, LRT with −11 DF P = .21; Table 2).

Comparative post hoc analyses examined the specificity of PRS

effects across tasks and independence from more general cognitive

abilities (Figure 1). ASD PRS and PRS-age interactions were signifi-

cantly associated with performance on the DCCS task (PRS: VE =

0.6%, LRT with 1 DF P = .006; Interactions: VE = 0.5%, LRT with

2 DF P = .038), but not the Flanker (PRS: VE = 0.1%, LRT with 1 DF

P = .31; Interactions: VE = 0.1%, LRT with 2 DF P = .57). An

increased ASD PRS was associated with better performance on both

the DCCS (β = 0.0325, SE = 0.0119), and although not significant, the

Flanker (β = 0.0126, SE = 0.0125) in the ASD PRS and interactions

models. The ASD age interaction suggests a larger effect in the youn-

ger subjects (Figure S6). The effect size and direction of the ASD PRS

were essentially unchanged when adding VC to the baseline model

for both the main effects of ASD PRS (DCCS: VE = 0.5%, LRT 1 DF

P = .009; β = 0.0308, SE = 0.0118; Flanker: VE = 0.1%, LRT 1 DF

P = .33; β = 0.0120, SE = 0.0125) and the age interactions (DCCS:

VE = 0.5%, LRT 2 DF P = .046; Flanker: VE = 0.1%, LRT

2 DF P = .60).

The MDD PRS was significantly associated with Flanker perfor-

mance (VE = 0.7%, LRT with 1 DF P = .005), but not DCCS

(VE = 0.1%, LRT with 1 DF P = .21) where increased PRS coincided

with decreased performance on the tasks (Flanker: β = −0.0542, SE =

0.0194; DCCS: β = −0.0236, SE = 0.0190). These associations were

also essentially unchanged by including VC in the baseline model

(DCCS: VE = 0.1%, LRT 1 DF P = .25; β = −0.0217, SE = 0.0188;

Flanker: VE = 0.7%, LRT 1 DF P = .006; β = −0.0535, SE = 0.0194).

The power of our discovery tests is described in the Supporting

Information Note and in Figures S10 and S11, and sensitivity analyses

were conducted to examine the effect of reported ADHD and learning

disability diagnoses on our results (Supporting Information Note,

Tables S14-S19).

Replication (Figure 2) in the PNC showed a significant association

between MDD PRS and performance on the PCET (VE = 0.1%, LRT

with 1 DF P = .026) with increased MDD PRS corresponding to

decreased executive function performance (β = −74.15, SE = 33.31).

Neither the main ASD PRS effect (VE = 0%, LRT with 1 DF P = .99),

nor the age interactions (VE = 0.01%, LRT with 2 DF P = .82) signifi-

cantly associated with PCET performance. When including WRAT

Reading scores into the baseline model, the main effect of MDD PRS

remained significant (VE = 0.1%, LRT with 1 DF P = .034, β = −69.63,

SE = 32.85), and the ASD main effect (VE = 0%, LRT with 1 DF

P = .81) and interactions (VE = 0.01%, LRT with 2 DF P = .79)

remained nonsignificant. Statistics from all models are provided in

Tables S2-S13.
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4 | DISCUSSION

In this study, we report an initial association between PRS for MDD

and executive functioning during typical development using perfor-

mance on a test of inhibition (the Flanker task). We replicated this

association in an independent developmental cohort via performance

on a test of cognitive flexibility/shifting (the PCET). This across-

domain replication may be supported by the “unity and diversity”

model of executive functions where latent factor heritability analyses

have suggested genetic effects on inhibition are redundant with a

common executive factor.11 Our result finds published support in a

negative relationship between MDD PRS and inhibition using reaction

time performance on a “Go/No-Go” task as reported by Hagenaars

et al30 in a sample of 111 484 adults. In a similar study, Benca et al38

tested PRS for the same 5 disorders for associations with latent exec-

utive factors derived directly from the unity and diversity framework

in a population sample of young adults that was similarly modest

(n = 398). Although not declared significant at the experiment-wide

threshold, they did report a nominal trend between the common exec-

utive factor and MDD PRS; however, it was in the opposite direction

of our report. These results highlight a trend in the current literature

describing the PRS effects on cognition where large samples often

employ limited cognitive batteries and deeply phenotyped studies are

limited by moderate sample sizes and power. While our result sug-

gests a common, across-domain effect of genetic risk for major

depression on executive functions during typical development, our

sample size and the sparse published support necessitate further

investigations.

We also report a positive association between ASD PRS and per-

formance on the DCCS task in the PING cohort, however this effect

did not replicate for performance on the PCET in the PNC, despite

both targeting flexibility/shifting. In the only other study to directly

consider this relationship, Benca et al38 also reported null associations

between ASD PRS and all 3 of common executive, updating specific

and shifting specific latent factors. These mixed results are contrasted

by more consistent reports in larger samples using PRS30,35 and

genetic correlations30,36,75,76 suggesting a positive correlation

between genetic risk for ASD and higher cognitive functioning in

unaffected individuals; although a few null reports exist as well.36,37

Given these mixed results, our initial associations should be repli-

cated and a few important features of the executive function study

cohorts, in particular, could add context and motivate further

research. First, PING, the PNC and Benca et al each employed differ-

ent instruments to measure executive function and direct compari-

sons of the overlap in genetic contributions to each have not been

performed. It is possible that the test-retest reliability of the PCET

could be lower than for the battery used in PING,55 reducing the

power in our replication sample, although the most informative data

to this point are currently lacking. “Task impurity” has been noted for

measures of executive function12 and quantitative genetics studies

show cognitive tests targeting the same domain can have different

sensitivities to underlying genetic effects.11,77 For example, the posi-

tive correlation between general cognitive abilities and ASD PRS is

present in our discovery data (Appendix S1; Figure S9) but the effect

appears to be driven by a shifting/flexibility executive function com-

ponent as measured by the DCCS. We cannot, however, rule out dif-

fering contributions of nontargeted domains among the studies. In

this regard, the latent factor design of Benca et al38 is the strongest.

Second, each study targets a different age range, with PING extending

to the youngest population where, for the ASD result, a trending PRS

× age interaction suggests the effects are largest. The sensitivity of

neuropsychological tests to particular subdomains likely changes with

age78 which could compound concerns of task impurity. As such, the

differing ages of participants could obscure the expected homology

across cohorts. Third, the sample sizes of each cohort are modest by

current standards. In this context, the absence of an association

should not be taken as a definitive null finding, although it is unlikely

large effects exist. It remains possible that psychiatric risk for multiple

disorders is associated with cognitive performance broadly or with

varying specificity and future studies with wide-reaching cognitive

batteries and larger samples will be needed to definitively characterize

these effects. Finally, larger and more informative GWAS of psychiat-

ric conditions are also needed. The sensitivity and specificity of PRS

vary due to differences in sample size, power and reliability of odds

ratios taken from training GWAS (Table 1) which also limits the power

of current studies for defining the connections between genetic liabil-

ity to psychiatric disorders and cognitive endophenotypes in the gen-

eral population.

Broadly, our findings are consistent with well-established trends

in research on learning (dis)abilities that suggest extensive overlap

among the genetic factors contributing to normal variability in neuro-

cognitive performance and those associated with learning disability
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diagnoses.23 The presence of so-called Generalist Genes23 among

psychiatric disorders, both in terms of quantitative co-heritability49

and shared molecular genetic factors40 has been widely reported, as

has extensive pleiotropy among cognitive abilities, most succinctly

captured by the extremely high heritability of the “g” construct.79

Relationships among genetic factors affecting variability in cognitive

abilities in healthy individuals and those associated with psychiatric

disease are only more recently emerging.22,30,35,80 Because our results

were not dependent on the presence of any disorder, we feel they

can speak to 2 important themes in this discussion. First, it appears

there is some overlap among molecular genetic factors contributing to

differences in executive functioning and risk for disorders with execu-

tive functioning atypicalities. Second, perhaps executive brain systems

dysfunctional in psychiatric disorders are components of a primary

neurodevelopmental basis in which susceptibility arises, as opposed to

targets of upstream dysfunctions defining the affected states.

Given the opposite directions for the PRS relationships observed

in PING and described in previous reports, one could speculate that

genetic and/or neurodevelopmental architectures creating ASD and

MDD susceptibility may be qualitatively dissimilar. A negative associa-

tion of MDD PRS and executive function performance is consistent

with observations in affected individuals4 and their unaffected family

members.81 ASD PRS, however, associates paradoxically in the oppo-

site direction as reported for affected individuals,1 unaffected family

members82 and healthy carriers of rare, large effect, often de novo

copy number variants.83 PRSs capture only a small portion of genetic

liability for ASD (Table 1) and the directional inconsistency could

resolve with more informative genetic instruments. An alternative

hypothesis is that components of ASD risk captured by PRS (common

polygenic risk) interact with rare genetic risk factors, altered neurode-

velopment or environmental exposures to induce dysfunction in the

ASD affected state. That ASD results from an imbalance or interaction

among individually performance enhancing neurodevelopmental fea-

tures has been proposed by others.84

Finally, new association methods prioritize single gene and single

variant associations based on explicit pleiotropic hypotheses. For

example, a proxy-phenotype approach used reports of genetic overlap

between general cognitive abilities and educational attainment24 to

identify novel candidate associations for cognitive ability. Likewise,

conditional approaches have suggested novel candidates by exploring

genetic overlap of intuitively and unintuitively related

phenotypes.85–87 Our results suggest these approaches may aid stud-

ies of executive function, especially with smaller samples and exten-

sive neurocognitive testing.
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Supporting Note: Extended Methods 
 
 
NIH Toolbox Cognitive Battery: Dimensional Change Card Sort Task 
 
 

The NTCB dimensional change card sort task (DCCS) measures cognitive flexibility and set-shifting in a 

computerized version of a test used to study executive function in children(1, 2).  Participants are presented 

three picture stimuli on a touch screen monitor and instructed to touch the peripheral picture that matches the 

center target picture on a specified dimension (color or shape).  Trials are presented sequentially in four blocks.  

Subjects begin with a training block to introduce the task.  Next, a pre-switch block is administered consisting of 

five trials where subjects are told to match according to the same dimension as the last training block.  A post-

switch block follows and consists of five trials where subjects are told to match according to the other 

dimension. Finally, subjects perform a mixed block where the matching dimension is specified visually and 

audibly before each target appears.  Mixed blocks consist of 40 dominant (same dimension as the post-switch 

block) and 10 non-dominant (same dimension as the pre-switch block) trials presented in a pseudorandom 

order.  Performance is computed as the sum of a five-point accuracy and five-point reaction time score, with 

the reaction time score set to zero for subjects with < 80% accuracy.  

 
NIH Toolbox Cognitive Battery: Flanker Inhibitory Control Test 
 

The NTCB flanker inhibitory control and attention test (Flanker) measures inhibitory control in the 

context of selective attention and is a computerized adaptation of the Eriksen flanker test(3) adapted from the 

Attention Network Test(4).  Subjects report the left-right orientation of a stimulus embedded centrally within a 

series of surrounding (flanker) stimuli.  The flanker stimuli are either presented in the same orientation, 

congruous trials, or opposite orientation, incongruous trials.  Subjects perform two blocks of 25 trials, 16 

congruous and 9 incongruous, presented in a pseudorandom order, with the first block having fish stimuli and 

the second arrows.  Like the DCCS, Flanker performance is recorded as the sum of a five-point accuracy and five-

point reaction time score.  



 

Penn Computerized Neurocognitive Battery: Penn Conditional Exclusion Test (PCET) 

 

The PCET uses an “odd man out” paradigm in which subjects are presented four objects on a computer 

screen and instructed to select the one that does not belong.  Objects vary on three sorting principles (shape, 

size or line type).  Participants are not told which criterion to sort on, but are guided by feedback after each 

response.  After ten consecutive correct responses the category is achieved and the sorting rule changes 

implicitly.  Trials end when all three categories are achieved or a subject fails to achieve a category after 144 

trials.  Performance is scored as the proportion of correct responses multiplied by one plus the number of 

categories achieved. Age-adjusted performance a Reading subtest from the Wide Range Achievement Test-

Fourth Edition (WRAT)(5) was used as the analogous measure to the VC in PING. 

 
Replication and Comparison of ASD effects on General Cognitive Abilities 
 
 
 Previous reports have shown a positive correlation between ASD RPS and general cognitive abilities.  This 

finding is reproduced in our data (Supporting Figure 9).  We define general cognitive performance in PING as 

the average performance of all tests in the battery, a general cognitive composite (GC).  To reproduce this 

finding, we fit our baseline covariate model with the GC as the dependent variable.  We report the increase in 

variance explained by adding the ASD RPS and ASD RPS by age interactions to the baseline covariates only model.  

Significance tests were, as in the main analysis, LRTs comparing the baseline model to the baseline plus RPS 

model and baseline plus RPS model to baseline plus RPS plus RPS by age interactions model.  To suggest 

specificity, we present the effect of ASD RPS on the general composite (GC), verbal composite (VC), fluid 

(performance) composite (FC), executive composite (EFC) and DCCS task alone (Supporting Figure 9, top panel), 

following the same model fitting and significance testing procedure as with the GC for each.  The effect is 

noticeably the largest on the DCCS.  Next, we asked if the effects on more general domains could be mediated 

by the DCCS or vice-versa (Supporting Figure 9, bottom panel).  Here we recomputed each composite, removing 



the DCCS test from the averaging procedure for those domains which included it (GC*, FC*, EF*).  For each 

composite, we re-ran the model testing procedure with the DCCS added to the baseline covariates model (GC* 

| DCCS, VC | DCCS, FC* | DCCS, EFC* | DCCS), displaying a test for independent effects of ASD that cannot be 

mediated by DCCS.      We contrast this with the summaries of the ASD-DCC model fit including the modified 

GC* into the baseline model (DCCS|GC*).  These models suggest that, in our data, the effect of ASD RPS on more 

general domains is completely mediated by its relationship with DCCS, but the opposite is not true.  There 

appears to be some aspects of the ASD-DCCS relationship that are shared among other domains (unity), but also 

a significant proportion that are unique to DCCS (diversity).  

 

Supporting Note: Power Analysis 

 The PING discovery sample is small relative to other investigations into common variant effects on 

complex traits such as performance on tests of cognitive function.  Also, the variance explained by many of the 

Psychiatric PRS is quite modest, even when predicting the same trait in an out of sample test (Main Text Table 

1).  As such, we describe the power of our discovery sample to detect various effects sizes for our primary 

omnibus test for aggregate effects of multiple PRS and for individual tests of single PRS.   

 We used hypothetical F-tests to assess the power of our study following the functions implemented in 

the R package “pwr” (6, 7).  F-tests and likelihood ratio tests (LRT) perform nearly identically in practice (although 

the LRT may have slightly more power) but the power calculations for F-tests may be easier to intuit as the 

variance explained (adjusted r2) is a key parameter.  We considered two scenarios to describe the power of the 

PING cohort in the context of this study: 1) mimicking the omnibus test estimating the significance of all PRS in 

aggregate and 2) mimicking a test for the effects of a single PRS. 

 In the first scenario, we investigated the power to detect a difference in the variance explained between 

two nested linear models in a sample of n=417.  As was observed in the PING cohort, a baseline model was 

defined as including 23 covariates and an intercept (p1=24) that explained 71% of variance (adjusted r2; r2.1). 

The full model included an additional 15 parameters (representing the PRS and PRS x Age terms; p2=39).  The 



power of an F-test on the difference in variance explained by an expanded (full) model when compared to a 

nested baseline model is defined by the non-central F distribution specified in terms of the residual variance 

from the full model, the additional variance explained by the full model over the baseline, and the degrees of 

freedom used to estimate the two quantities. For various levels of increased variance explained (r2.d), power 

can be computed according to the following equations instantiated in R code: 

alpha <- 0.05    # P-value Threshold for significance 
 
n <- 417    # sample size 
p1 <- 24    # parameters in model 1 (ie, "baseline" ) 
p2 <- 39     # parameters in model 2 (ie, "expanded" or "full" ) 
 
r2.1 <- 0.7105792   # Variance explained by the baseline model (adj. r^2) 
r2.d <- r2.d    # Additional Variance explained by the full model (adj. r^2) 
      ( examined over multiple hypothetical values) 
 
u <- p2-p1    # degrees of freedom for additional variance explained  
      ( ie, change in parameters )  
v <- n-p2    # degrees of freedom for the residual variance 
 
f2 <- ( r2.d )/( 1-r2.1-r2.d ) # effect size = Explained Variance / Unexplained Variance 
lambda <- f2 * ( u+v+1 )  # non-centrality parameter for the “true” F distribution  
      where f2, u and v are as defined for the chosen  
      alternative hypothesis 
 
Fcrit <- qf( alpha, u, v, lower = FALSE ) # critical value for the F-test under the null  
      # hypothesis of r2.d = 0, implying lambda = 0 
      # ie, F, such that P( Fu,v >= F | Null is True ) = alpha 
 
power <- pf( Fcrit, u, v, lambda, lower = FALSE )  # probability of observing F >= Fcrit under 
        a specific alternative hypothesis   
        defined by u, v, and r2.d 
 

 In the second scenario, we again considered the power to detect a difference in the variance explained 

by two nested linear models in a sample of n=417.  The baseline model was the same as in scenario one, but the 

full model included only one additional parameter (a single PRS; p2=25).  The power is estimated according to 

the same equations, replacing p2 with the new value.  The resulting power curves for scenarios one and two are 

presented in Supporting Figures 10 and 11, respectively. 

  From these analyses, we see that our discovery cohort has greater than 50% power to detect aggregate 

PRS effects explaining more than 0.8% of variance and 80% power to detect aggregate effects that explain more 

than 1.36% of variance.  Our study has greater than 50% power to detect a single PRS that explains more than 

0.28% of variance and 80% power to detect a single PRS that explains more than 0.57% of variance.   



 

Supporting Note: ADHD and Learning Disabilities Sensitivity Analysis 

 The PING sample was designed to collect a representative sample of children, more or less typically 

developing.  Major psychiatric conditions (schizophrenia, bipolar disorder, autism spectrum disorders, mental 

retardation) and neurological disorders were conditions for exclusion, but more common, “milder” conditions, 

including a history of depression, ADHD, or general and/or specific learning disabilities were not exclusionary.  

A parental or self-report survey was administered for/to each participant that provided some details on 

neuropsychological history, including a reported history of stimulant medication, diagnosed attention problem 

and diagnosed learning problems.  To probe the sensitivity of our results to sub-populations of subjects with 

ADHD or learning disabilities, we created two indicator variables.  We combined subjects with a reported history 

of either stimulant medication or diagnosed attention problems into an ADHD-like group and we used reported 

history of diagnosed learning problems as a learning disabilities-like group.  We repeated our three most 

important results, the primary aggregate test presented in Table 2 and Supporting Table 1, the DCCS-ASD result 

presented in Figure 1 and Supporting Table 2, and the flanker-MDD result presented in Figure 1 and Supporting 

Table 7, first, including the ADHD and learning disability group variables as covariates and, second, censoring 

these subjects all together. 

 Including the ADHD and learning disabilities variables improved the fit of the baseline, covariates only 

model for explaining the composite EF (change in variance explained (V.E.)  = 0.0068, degrees of freedom (d.f.) 

= 2, likelihood ratio test (LRT) p = 0.0067).  Thus, these groups have significant difference in executive 

performance.  Reproducing the aggregate PRS test from Table 2 including the diagnosis variables, the variance 

in composite EF explained by aggregate PRS was essentially unchanged (original: V.E. = 0.0197, d.f. = 15, LRT p 

= 0.0147; including diagnosis group variables: V.E. = 0.0197, d.f. = 15, LRT p = 0.0119). Censoring these subjects 

removed 53/417 subjects, reducing the sample size by ~12%, and produced a slightly reduced VE estimate 

(censoring subjects with diagnosis: V.E. = 0.0173, d.f. = 15, LRT p = 0.0663).  In both scenarios, individual 

regression estimates were highly consistent with the original result (Supporting Table 14-15). 



 Reproducing the ASD-DCCS results presented in Figure 1 and Supporting Table 2, including the diagnosis 

variables, the variance in DCCS explained by ASD PRS and ASD PRS by Age was also essentially unchanged 

(original: V.E. = 0.0113, d.f. = 3, LRT p = 0.0026; including diagnosis group variables: V.E. = 0.0114, d.f. = 3, LRT p 

= 0.0020). Censoring diagnosed subjects produced a slightly reduced VE estimate (censoring subjects with 

diagnosis: V.E. = 0.0084, d.f. = 3, LRT p = 0.0193).  Again, in both scenarios, individual regression estimates were 

highly consistent with the original result (Supporting Table 16-17). 

 As with the previous two analysis sets, reproducing the MDD-Flanker results presented in Figure 1 and 

Supporting Table 7 and including the diagnosis variables, the variance explained in Flanker performance by MDD 

PRS was consistent (original: V.E. = 0.0067, d.f. = 1, LRT p = 0.0052; including diagnosis group variables: V.E. = 

0.0066, d.f. = 1, LRT p = 0.0052). Censoring diagnosed subjects produced a slightly increased VE estimate 

(censoring subjects with diagnosis: V.E. = 0.0081, d.f. = 1, LRT p = 0.0032).  Here as well, both scenarios produced 

individual regression estimates that were highly consistent with the original result (Supporting Table 18-19).  

Taken together, these sensitivity analyses suggest that our results are not driven by a sub-cohort of subjects 

with ADHD or learning disabilities.  
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Supporting Figure 1: PING Study Genetic Ancestry PCA, PC1 vs PC2. The left plot is all PING subjects, the middle plot is all European subjects and the 
right plot shows the final individuals used for analysis.  Reference individuals are color coded according to continent of ancestry.  PING subjects are 
colored black.  Ashkenazi Jewish ancestry (AKJ); American northern and western European ancestry (CEU); Finnish ancestry (FIN); Great Britain 
ancestry (GBR); Iberian ancestry (IBS); Tuscan ancestry (TBS); African American ancestry (ASW); Luhya Kenyan ancestry (LWK); Maasai Kenyan 
ancestry (MKK); Yoruba Nigerian ancestry (YRI); Han Chinese ancestry (CHB); American Han Chinese ancestry (CHD); Japanese ancestry (JPT); 
American Gujarati Indian ancestry (GIH); Mexican American ancestry (MEX). 
 
 
 
 
 

 



 
 
Supporting Figure 2: PING Study Familial Relatedness.  The distributions of estimated IBD relationships among all, European ancestry and final 
subjects from the PING study. 
 
 
  



Supporting Figures 3: PNC Study Genetic Ancestry PCA, PC1 vs PC2  
 
 
 
 



 
 
Supporting Figure 4: PNC Study Familial Relatedness. The distributions of estimated IBD relationships among all, European ancestry and final 
subjects from the PNC study.



 
 

 
Supporting Figure 5: Correlation among 5 psychiatric RPS in the PING Study. Bipolar Disorder (BIP), 
Schizophrenia (SCZ), Attention Deficit-Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), Major 
Depressive Disorder (MDD). 
 
  



 
 
Supporting Figure 6: Visualized RPS effect: ASD-DCCS. The top panel plots the residuals of our model with the 
effects of age, age2, RPS, RPSxAge, and RPSxAge2 added back in (y-axis) against age (x-axis).  Curves show 
expected age trajectories for 10th, 50th and 90th percentile of the RPS. Data points are color coded according to 
the observed RPS.  The bottom panel plot the same residuals (y-axis) against RPS (x-axis) and projects various 
ages across the RPS range.   
 



 
Supporting Figure 7. Visualized RPS effect: MDD-Flanker. The top panel plots the residuals of our model with 
the effects of age, age2, RPS, RPSxAge, and RPSxAge2 added back in (y-axis) against age (x-axis).  Curves show 
expected age trajectories for 10th, 50th and 90th percentile of the RPS. Data points are color coded according to 
the observed RPS.  The bottom panel plot the same residuals (y-axis) against RPS (x-axis) and projects various 
ages across the RPS range.   
 
 
 



 
 
Supporting Figure 8. Visualized RPS effect: MDD-PCET.  The top panel plots the residuals of our model with the 
effects of age, age2, RPS, RPSxAge, and RPSxAge2 added back in (y-axis) against age (x-axis).  Curves show 
expected age trajectories for 10th, 50th and 90th percentile of the RPS. Data points are color coded according to 
the observed RPS.  The bottom panel plot the same residuals (y-axis) against RPS (x-axis) and projects various 
ages across the RPS range.   
 
 
 



 

 
Supporting Figure 9. Replication of ASD-GC and Comparison with ASD-DCCS.  The top panel shows the variance 
explained in four composite measures, general cognitive (GC), verbal composite (VC), fluid/performance 
composite (FC), and executive composite (EFC), as well as for the DCCS test alone.  For all of the domains that 
include the DCCS, there is a nominally significant association (p<0.05), including for the GC.  The bottom panel 
excludes the DCCS from the computation of each composite (denoted by the *) and includes it instead as a 
baseline covariate.  This essentially removed the RPS effect on the composite.  For the DCCS, the GC that did 
not include DCCS (GC*) is used as a covariate and shows while the effect is slightly reduced, it remains significant. 
  



 

 
 

 
Supporting Figure 10.  Power of the omnibus test to detect aggregate effects in the PING discovery sample.  
Here we present the power curve to detect aggregate PRS and PRS x Age effects explaining various 
proportions of variance at p < 0.05 in our discovery sample of 417 individuals.  The details on the power 
analysis are presented in above in the section “Supporting Note: Power Analysis.”  Red dots mark deciles of 
power and the labels present the variance explained corresponding to each decile of power. 
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Supporting Figure 11. Power to detect single PRS effects in the PING discovery sample.  Here we present the 
power curve to detect a single PRS explaining various proportions of variance at p < 0.05 in our discovery 
sample of 417 individuals.  The details on the power analysis are presented in above in the section “Supporting 
Note: Power Analysis.”  Blue dots represent to the variance explained by the ADHD, MDD, ASD and BIP PRS 
from within disorder out of sample tests presented in Table 1.  Red dots mark deciles of power and the labels 
present the variance explained corresponding to each decile of power.  
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 Beta S.E. t P 

(Intercept) -0.6408 0.2141 -2.99 0.0029 
Age 0.3457 0.0309 11.18 2.79 x 10-25 

Age2 -0.0074 0.0012 -6.01 4.48 x 10-9 
Gender (Male) 0.0275 0.0519 0.53 0.5960 
Site (Davis) -0.1166 0.1205 -0.97 0.3336 
Site (Hawaii) 0.2162 0.1441 1.50 0.1342 
Site (KKI) 0.0698 0.1143 0.61 0.5416 
Site (LA) 0.2419 0.1760 1.37 0.1700 
Site (MGH) 0.1727 0.1135 1.52 0.1290 
Site (UCSD) 0.0143 0.1066 0.13 0.8934 
Site (UMMS) -0.0195 0.1308 -0.15 0.8813 
Site (Yale) 0.0414 0.1222 0.34 0.7352 
Household Income 0.0296 0.0138 2.14 0.0327 
Highest Education 0.0568 0.0324 1.75 0.0805 
PC1 1.1927 0.7024 1.70 0.0904 
PC2 -0.6830 0.6154 -1.11 0.2678 
PC3 1.0086 0.5727 1.76 0.0790 
PC4 1.4537 0.6644 2.19 0.0293 
PC5 0.6136 0.6529 0.94 0.3479 
PC6 0.3668 0.6157 0.60 0.5516 
PC7 -0.6577 0.5816 -1.13 0.2588 
PC8 -1.1522 0.6080 -1.90 0.0588 
PC9 0.2591 0.6261 0.41 0.6792 
PC10 0.8166 0.6400 1.28 0.2028 
ADHD 0.0002 0.0006 0.36 0.7181 
ASD 0.0269 0.0107 2.53 0.0120 
BIP 0.0122 0.0173 0.70 0.4825 
MDD -0.0429 0.0167 -2.57 0.0106 
SCZ2 -0.0185 0.0180 -1.02 0.3063 
Age x ADHD 0.0004 0.0006 0.70 0.4873 
Age x ASD 0.0210 0.0119 1.77 0.0782 
Age x BIP -0.0093 0.0195 -0.48 0.6342 
Age x MDD 0.0042 0.0187 0.23 0.8207 
Age x SCZ2 -0.0222 0.0201 -1.10 0.2710 
Age2 x ADHD -1.61x10-5 2.62x10-5 -0.61 0.5402 
Age2 x ASD -0.0009 0.0005 -1.86 0.0640 
Age2 x BIP 0.0003 0.0008 0.35 0.7257 
Age2 x MDD -0.0005 0.0008 -0.72 0.4726 
Age2 x SCZ2 0.0012 0.0008 1.51 0.1320 

 
Supporting Table 1: Primary Test, Full Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) -0.5270 0.2386 -2.21 0.0278 
Age 0.3124 0.0344 9.07 5.9 x 10-18 

Age2 -0.0058 0.0014 -4.23 3.0 x 10-5 
Gender (Male) -0.0879 0.0580 -1.52 0.1301 
Site (Davis) -0.1190 0.1361 -0.87 0.3824 
Site (Hawaii) 0.0999 0.1624 0.62 0.5388 
Site (KKI) -0.0938 0.1279 -0.73 0.4636 
Site (LA) 0.1855 0.1979 0.94 0.3492 
Site (MGH) 0.2036 0.1273 1.60 0.1105 
Site (UCSD) -0.0568 0.1201 -0.47 0.6367 
Site (UMMS) -0.0199 0.1470 -0.14 0.8926 
Site (Yale) -0.0159 0.1375 -0.12 0.9081 
Household 
Income 0.0227 0.0152 1.50 0.1349 
Highest 
Education 0.0659 0.0357 1.84 0.0659 
PC1 1.0327 0.7672 1.35 0.1790 
PC2 -0.8433 0.6772 -1.25 0.2138 
PC3 1.2396 0.6441 1.92 0.0550 
PC4 1.5884 0.7473 2.13 0.0342 
PC5 0.7708 0.7096 1.09 0.2780 
PC6 0.2258 0.6900 0.33 0.7437 
PC7 -0.4411 0.6436 -0.69 0.4934 
PC8 -1.1768 0.6834 -1.72 0.0859 
PC9 0.1092 0.7018 0.16 0.8764 
PC10 0.8062 0.7213 1.12 0.2644 
ASD 0.0324 0.0119 2.72 0.0068 
Age x ASD 0.0301 0.0132 2.29 0.0227 
Age2 x ASD -0.0013 0.0005 -2.47 0.0138 

 
Supporting Table 2: ASD-DCCS without VC Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) -0.4596 0.2419 -1.90 0.0581 
Age 0.3108 0.0349 8.91 1.94 x 10-17 

Age2 -0.0057 0.0014 -4.13 4.47 x 10-5 
Gender (Male) -0.0922 0.0587 -1.57 0.1170 
Site (Davis) -0.1332 0.1374 -0.97 0.3331 
Site (Hawaii) 0.0579 0.1634 0.35 0.7233 
Site (KKI) -0.0943 0.1295 -0.73 0.4670 
Site (LA) 0.2104 0.2009 1.05 0.2956 
Site (MGH) 0.1705 0.1286 1.33 0.1856 
Site (UCSD) -0.0729 0.1216 -0.60 0.5492 
Site (UMMS) -0.0358 0.1489 -0.24 0.8102 
Site (Yale) -0.0340 0.1395 -0.24 0.8079 
Household 
Income 0.0265 0.0154 1.73 0.0849 
Highest 
Education 0.0531 0.0364 1.46 0.1454 
PC1 0.8579 0.7742 1.11 0.2685 
PC2 -0.8203 0.6837 -1.20 0.2309 
PC3 1.2766 0.6524 1.96 0.0511 
PC4 1.6338 0.7532 2.17 0.0307 
PC5 0.7332 0.7188 1.02 0.3083 
PC6 0.2842 0.6971 0.41 0.6837 
PC7 -0.5074 0.6524 -0.78 0.4372 
PC8 -1.0944 0.6945 -1.58 0.1159 
PC9 0.0020 0.7084 0.00 0.9978 
PC10 0.9024 0.7303 1.24 0.2174 
MDD -0.0236 0.0190 -1.25 0.2131 

 
 

Supporting Table 3: MDD-DCCS without VC Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) -0.3855 0.2422 -1.59 0.1122 
AgeNP 0.2474 0.0416 5.95 5.84 x 10-9 

AgeNP2 -0.0045 0.0014 -3.12 0.0019 
Gender (Male) -0.1069 0.0579 -1.85 0.0656 
Site (Davis) -0.1363 0.1351 -1.01 0.3137 
Site (Hawaii) 0.1276 0.1613 0.79 0.4296 
Site (KKI) -0.0905 0.1269 -0.71 0.4760 
Site (LA) 0.1660 0.1964 0.85 0.3986 
Site (MGH) 0.1787 0.1266 1.41 0.1587 
Site (UCSD) -0.0677 0.1192 -0.57 0.5702 
Site (UMMS) -0.0396 0.1460 -0.27 0.7864 
Site (Yale) -0.0300 0.1365 -0.22 0.8264 
Household 
Income 0.0192 0.0151 1.27 0.2054 
Highest 
Education 0.0506 0.0359 1.41 0.1591 
PC1 0.9191 0.7620 1.21 0.2285 
PC2 -1.0239 0.6748 -1.52 0.1300 
PC3 1.1228 0.6402 1.75 0.0802 
PC4 1.5192 0.7416 2.05 0.0412 
PC5 0.8531 0.7044 1.21 0.2266 
PC6 0.1349 0.6851 0.20 0.8440 
PC7 -0.4074 0.6383 -0.64 0.5237 
PC8 -1.1502 0.6779 -1.70 0.0905 
PC9 0.0215 0.6968 0.03 0.9753 
PC10 0.5818 0.7200 0.81 0.4195 
CC 0.1812 0.0660 2.74 0.0063 
ASD 0.0308 0.0118 2.60 0.0098 
Age x ASD 0.0278 0.0131 2.13 0.0340 
Age2 x ASD -0.0012 0.0005 -2.34 0.0198 

 
Supporting Table 4: ASD-DCCS with VC Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) -0.3151 0.2448 -1.29 0.1987 
Age 0.2416 0.0420 5.75 1.83 x 10-8 

Age2 -0.0043 0.0015 -2.98 0.0030 
Gender (Male) -0.1115 0.0585 -1.91 0.0575 
Site (Davis) -0.1500 0.1363 -1.10 0.2716 
Site (Hawaii) 0.0869 0.1622 0.54 0.5925 
Site (KKI) -0.0909 0.1283 -0.71 0.4788 
Site (LA) 0.1884 0.1992 0.95 0.3449 
Site (MGH) 0.1461 0.1276 1.14 0.2530 
Site (UCSD) -0.0840 0.1205 -0.70 0.4861 
Site (UMMS) -0.0558 0.1477 -0.38 0.7058 
Site (Yale) -0.0479 0.1383 -0.35 0.7292 
Household 
Income 0.0227 0.0153 1.49 0.1377 
Highest Education 0.0376 0.0364 1.03 0.3030 
PC1 0.7405 0.7681 0.96 0.3356 
PC2 -1.0021 0.6802 -1.47 0.1415 
PC3 1.1548 0.6477 1.78 0.0754 
PC4 1.5442 0.7469 2.07 0.0393 
PC5 0.8260 0.7128 1.16 0.2473 
PC6 0.1904 0.6914 0.28 0.7831 
PC7 -0.4691 0.6465 -0.73 0.4685 
PC8 -1.0762 0.6880 -1.56 0.1186 
PC9 -0.0780 0.7023 -0.11 0.9117 
PC10 0.6644 0.7282 0.91 0.3621 
CC 0.1929 0.0666 2.89 0.0040 
MDD -0.0217 0.0188 -1.15 0.2490 

 
Supporting Table 5: MDD-DCCS with VC Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) -0.6602 0.2499 -2.64 0.0086 
Age 0.3617 0.0361 10.03 3.36 x 10-21 

Age2 -0.0081 0.0014 -5.69 2.46 x 10-8 
Gender (Male) 0.1084 0.0607 1.79 0.0749 
Site (Davis) -0.1727 0.1425 -1.21 0.2263 
Site (Hawaii) 0.2478 0.1701 1.46 0.1459 
Site (KKI) 0.0968 0.1340 0.72 0.4703 
Site (LA) 0.1937 0.2073 0.93 0.3506 
Site (MGH) 0.0396 0.1333 0.30 0.7666 
Site (UCSD) 0.0007 0.1258 0.01 0.9953 
Site (UMMS) -0.1373 0.1540 -0.89 0.3730 
Site (Yale) 0.0753 0.1440 0.52 0.6015 
Household 
Income 0.0276 0.0159 1.74 0.0833 
Highest Education 0.0608 0.0374 1.62 0.1050 
PC1 0.3714 0.8036 0.46 0.6442 
PC2 -0.8383 0.7094 -1.18 0.2380 
PC3 0.9407 0.6747 1.39 0.1640 
PC4 1.4466 0.7828 1.85 0.0653 
PC5 1.1571 0.7433 1.56 0.1203 
PC6 0.3711 0.7227 0.51 0.6079 
PC7 -0.9556 0.6741 -1.42 0.1571 
PC8 -1.2565 0.7159 -1.76 0.0800 
PC9 0.3990 0.7351 0.54 0.5876 
PC10 0.4681 0.7555 0.62 0.5359 
ASD 0.0126 0.0125 1.01 0.3128 
Age x ASD 0.0140 0.0138 1.01 0.3123 
Age2 x ASD -0.0006 0.0006 -1.05 0.2926 

 
Supporting Table 6: ASD-Flanker without VC Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) -0.5891 0.2476 -2.38 0.0178 
Age 0.3582 0.0357 10.03 3.10 x 10-21 

Age2 -0.0080 0.0014 -5.68 2.60 x 10-8 
Gender (Male) 0.0995 0.0601 1.66 0.0984 
Site (Davis) -0.1899 0.1407 -1.35 0.1777 
Site (Hawaii) 0.2339 0.1673 1.40 0.1628 
Site (KKI) 0.1047 0.1325 0.79 0.4298 
Site (LA) 0.2310 0.2057 1.12 0.2621 
Site (MGH) 0.0387 0.1316 0.29 0.7690 
Site (UCSD) -0.0035 0.1245 -0.03 0.9777 
Site (UMMS) -0.1406 0.1524 -0.92 0.3569 
Site (Yale) 0.0496 0.1428 0.35 0.7285 
Household 
Income 0.0315 0.0157 2.00 0.0460 
Highest Education 0.0460 0.0372 1.24 0.2173 
PC1 0.4272 0.7925 0.54 0.5901 
PC2 -0.7431 0.6998 -1.06 0.2889 
PC3 1.0306 0.6678 1.54 0.1236 
PC4 1.4293 0.7710 1.85 0.0645 
PC5 1.1886 0.7357 1.62 0.1070 
PC6 0.4467 0.7135 0.63 0.5316 
PC7 -0.9093 0.6677 -1.36 0.1740 
PC8 -1.0903 0.7108 -1.53 0.1259 
PC9 0.4415 0.7251 0.61 0.5429 
PC10 0.5610 0.7475 0.75 0.4534 
MDD -0.0542 0.0194 -2.79 0.0055 

 
 

Supporting Table 7: MDD-Flanker without VC Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) -0.6050 0.2558 -2.37 0.0185 
Age 0.3364 0.0439 7.66 1.45 x 10-13 

Age2 -0.0076 0.0015 -5.04 7.04 x 10-7 
Gender (Male) 0.1010 0.0612 1.65 0.0994 
Site (Davis) -0.1794 0.1427 -1.26 0.2092 
Site (Hawaii) 0.2586 0.1704 1.52 0.1299 
Site (KKI) 0.0981 0.1340 0.73 0.4644 
Site (LA) 0.1861 0.2075 0.90 0.3702 
Site (MGH) 0.0299 0.1337 0.22 0.8230 
Site (UCSD) -0.0035 0.1258 -0.03 0.9777 
Site (UMMS) -0.1450 0.1542 -0.94 0.3475 
Site (Yale) 0.0698 0.1441 0.48 0.6284 
Household 
Income 0.0262 0.0160 1.64 0.1012 
Highest Education 0.0549 0.0379 1.45 0.1484 
PC1 0.3271 0.8047 0.41 0.6846 
PC2 -0.9087 0.7127 -1.27 0.2031 
PC3 0.8951 0.6761 1.32 0.1863 
PC4 1.4196 0.7832 1.81 0.0707 
PC5 1.1892 0.7439 1.60 0.1107 
PC6 0.3357 0.7235 0.46 0.6430 
PC7 -0.9424 0.6742 -1.40 0.1629 
PC8 -1.2462 0.7159 -1.74 0.0825 
PC9 0.3648 0.7359 0.50 0.6203 
PC10 0.3807 0.7604 0.50 0.6169 
CC 0.0706 0.0697 1.01 0.3117 
ASD 0.0120 0.0125 0.96 0.3391 
Age x ASD 0.0131 0.0138 0.95 0.3450 
Age2 x ASD -0.0006 0.0006 -1.00 0.3193 

 
Supporting Table 8: ASD-Flanker with VC Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) -0.5363 0.2529 -2.12 0.0345 
Age 0.3329 0.0434 7.67 1.41 x 10-13 

Age2 -0.0075 0.0015 -5.03 7.55 x 10-7 
Gender (Male) 0.0925 0.0605 1.53 0.1270 
Site (Davis) -0.1961 0.1408 -1.39 0.1644 
Site (Hawaii) 0.2445 0.1676 1.46 0.1454 
Site (KKI) 0.1060 0.1325 0.80 0.4244 
Site (LA) 0.2229 0.2058 1.08 0.2794 
Site (MGH) 0.0298 0.1319 0.23 0.8215 
Site (UCSD) -0.0076 0.1245 -0.06 0.9516 
Site (UMMS) -0.1479 0.1526 -0.97 0.3329 
Site (Yale) 0.0445 0.1429 0.31 0.7556 
Household 
Income 0.0301 0.0158 1.91 0.0573 
Highest Education 0.0403 0.0376 1.07 0.2844 
PC1 0.3843 0.7935 0.48 0.6284 
PC2 -0.8095 0.7027 -1.15 0.2500 
PC3 0.9861 0.6692 1.47 0.1414 
PC4 1.3965 0.7716 1.81 0.0711 
PC5 1.2225 0.7364 1.66 0.0977 
PC6 0.4125 0.7143 0.58 0.5640 
PC7 -0.8953 0.6678 -1.34 0.1808 
PC8 -1.0837 0.7108 -1.52 0.1282 
PC9 0.4123 0.7256 0.57 0.5702 
PC10 0.4740 0.7523 0.63 0.5290 
CC 0.0705 0.0688 1.02 0.3064 
MDD -0.0535 0.0194 -2.76 0.0061 

 
Supporting Table 9: MDD-Flanker with VC Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) 2.0565 0.0292 70.48 0.000 
Age 0.1343 0.0243 5.52 3.68 x 10-8 

Age2 -0.0035 0.0009 -3.95 0.0001 
Sex (Male) 0.0718 0.0214 3.36 0.0008 
c1 -0.6130 0.6904 -0.89 0.3747 
c2 -0.8725 0.6958 -1.25 0.2100 
c3 0.6986 0.6979 1.00 0.3169 
c4 -0.6569 0.6982 -0.94 0.3468 
c5 1.0294 0.6963 1.48 0.1394 
c6 0.4345 0.6979 0.62 0.5336 
c7 -0.9557 0.7042 -1.36 0.1748 
c8 1.4591 0.6933 2.10 0.0354 
c9 -0.7383 0.6990 -1.06 0.2909 
c10 -0.3537 0.7001 -0.51 0.6135 
Medical Rating = 1 0.0031 0.0341 0.09 0.9274 
Medical Rating = 2 -0.0395 0.0333 -1.19 0.2349 
Medical Rating = 3 -0.0843 0.0362 -2.33 0.0200 
Medical Rating = 4 -0.0892 0.0515 -1.73 0.0834 
ASD -0.0254 27.1385 0.00 0.9993 
Age x ASD 39.7396 62.1200 0.64 0.5224 
Age2 x ASD -1.4234 2.2399 -0.64 0.5252 

 
Supporting Table 10: ASD-PCET without WRAT Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) 2.0559 0.0291 70.55 0.0000 
Age 0.1336 0.0243 5.50 4.07 x 10-8 

Age2 -0.0034 0.0009 -3.93 8.52 x 10-5 
Sex (Male) 0.0721 0.0214 3.38 0.0007 
c1 -0.7226 0.6913 -1.05 0.2960 
c2 -0.9057 0.6946 -1.30 0.1923 
c3 0.6883 0.6932 0.99 0.3208 
c4 -0.6057 0.6978 -0.87 0.3855 
c5 0.9405 0.6967 1.35 0.1771 
c6 0.4394 0.6970 0.63 0.5285 
c7 -0.9415 0.7027 -1.34 0.1804 
c8 1.5073 0.6924 2.18 0.0295 
c9 -0.7035 0.6979 -1.01 0.3135 
c10 -0.4370 0.7002 -0.62 0.5326 
Medical Rating = 1 0.0037 0.0340 0.11 0.9144 
Medical Rating = 2 -0.0381 0.0333 -1.14 0.2525 
Medical Rating = 3 -0.0843 0.0362 -2.33 0.0200 
Medical Rating = 4 -0.0882 0.0515 -1.71 0.0866 
MDD -74.1529 33.3097 -2.23 0.0261 

 
Supporting Table 11: MDD-PCET without WRAT Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) 1.2578 0.0828 15.19 1.34 x 10-50 
Age 0.1076 0.0241 4.46 8.44 x 10-6 

Age2 -0.0024 0.0009 -2.77 0.0056 
Sex (Male) 0.0599 0.0211 2.83 0.0046 
c1 0.2649 0.6860 0.39 0.6994 
c2 -0.4811 0.6871 -0.70 0.4839 
c3 0.5865 0.6882 0.85 0.3942 
c4 -0.8203 0.6886 -1.19 0.2336 
c5 1.0219 0.6865 1.49 0.1367 
c6 0.4113 0.6881 0.60 0.5501 
c7 -0.9501 0.6943 -1.37 0.1712 
c8 1.5614 0.6837 2.28 0.0224 
c9 -0.8466 0.6892 -1.23 0.2194 
c10 -0.4214 0.6903 -0.61 0.5416 
Medical Rating = 1 0.0100 0.0336 0.30 0.7659 
Medical Rating = 2 -0.0283 0.0328 -0.86 0.3891 
Medical Rating = 3 -0.0586 0.0358 -1.64 0.1020 
Medical Rating = 4 -0.0545 0.0509 -1.07 0.2847 
wrat_cr_std 0.0074 0.0007 10.29 0.0000 
ASD -6.8444 26.7661 -0.26 0.7982 
Age x ASD 41.9116 61.2490 0.68 0.4938 
Age2 x ASD -1.4667 2.2085 -0.66 0.5066 

 
Supporting Table 12: ASD-PCET with WRAT Model Statistics 
  



 
 Beta S.E. t P 

(Intercept) 1.2603 0.0827 15.24 6.79 x 10-51 
Age 0.1068 0.0241 4.43 9.61 x 10-6 

Age2 -0.0024 0.0009 -2.74 0.0061 
Sex (Male) 0.0602 0.0211 2.85 0.0043 
c1 0.1589 0.6871 0.23 0.8171 
c2 -0.5043 0.6860 -0.74 0.4623 
c3 0.5975 0.6836 0.87 0.3821 
c4 -0.7749 0.6883 -1.13 0.2603 
c5 0.9418 0.6870 1.37 0.1705 
c6 0.4189 0.6873 0.61 0.5422 
c7 -0.9284 0.6929 -1.34 0.1804 
c8 1.6057 0.6828 2.35 0.0187 
c9 -0.8178 0.6882 -1.19 0.2348 
c10 -0.4969 0.6905 -0.72 0.4718 
Medical Rating = 1 0.0105 0.0336 0.31 0.7546 
Medical Rating = 2 -0.0269 0.0328 -0.82 0.4130 
Medical Rating = 3 -0.0585 0.0358 -1.64 0.1021 
Medical Rating = 4 -0.0537 0.0509 -1.05 0.2917 
wrat_cr_std 0.0074 0.0007 10.26 2.25 x 10-24 
MDD -69.6343 32.8481 -2.12 0.0341 

 
 
 

Supporting Table 13: MDD-PCET with WRAT Model Statistics 
  



 Beta S.E. t P 
(Intercept) -6.32E-01 2.12E-01 -2.984 0.00303 
Age 3.55E-01 3.07E-02 11.541 < 2.00 x 10-16 
Age2 -7.71E-03 1.22E-03 -6.297 8.49 x 10-10 
Gender (Male) 2.95E-02 5.14E-02 0.575 0.56575 
Site (Davis) -1.09E-01 1.19E-01 -0.916 0.36043 
Site (Hawaii) 2.52E-01 1.43E-01 1.76 0.07916 
Site (KKI) 9.67E-02 1.13E-01 0.853 0.3941 
Site (LA) 2.46E-01 1.74E-01 1.41 0.15936 
Site (MGH) 2.32E-01 1.14E-01 2.039 0.04213 
Site (UCSD) 4.64E-02 1.06E-01 0.438 0.66173 
Site (UMMS) -7.07E-03 1.30E-01 -0.055 0.95651 
Site (Yale) 6.63E-02 1.21E-01 0.547 0.58476 
Household Income 2.70E-02 1.37E-02 1.975 0.04901 
Highest Education 5.91E-02 3.21E-02 1.842 0.06631 
PC1 1.30E+00 6.96E-01 1.869 0.06234 
PC2 -5.98E-01 6.09E-01 -0.982 0.32694 
PC3 9.39E-01 5.67E-01 1.655 0.09883 
PC4 1.34E+00 6.58E-01 2.035 0.04257 
PC5 7.65E-01 6.48E-01 1.181 0.23832 
PC6 2.35E-01 6.11E-01 0.384 0.70102 
PC7 -5.60E-01 5.76E-01 -0.972 0.33187 
PC8 -1.07E+00 6.02E-01 -1.773 0.07698 
PC9 3.03E-01 6.19E-01 0.489 0.62495 
PC10 7.40E-01 6.36E-01 1.164 0.2451 
Dx_ADHD -2.28E-01 9.58E-02 -2.385 0.0176 
Dx_LearnDis -1.38E-01 1.09E-01 -1.262 0.20772 
ADHD 1.39E-04 5.82E-04 0.239 0.81133 
ASD 2.83E-02 1.06E-02 2.681 0.00766 
BIP 9.22E-03 1.71E-02 0.538 0.59107 
MDD -4.28E-02 1.65E-02 -2.593 0.00989 
SCZ2 -2.09E-02 1.79E-02 -1.171 0.24222 
Age x ADHD 3.21E-04 6.30E-04 0.509 0.61123 
Age x ASD 1.90E-02 1.18E-02 1.617 0.10679 
Age x BIP -6.17E-03 1.94E-02 -0.319 0.75002 
Age x MDD 4.97E-03 1.85E-02 0.268 0.78878 
Age x SCZ2 -2.34E-02 2.00E-02 -1.17 0.24261 
Age2 x ADHD -1.03E-05 2.60E-05 -0.398 0.69079 
Age2 x ASD -8.04E-04 4.76E-04 -1.69 0.09187 
Age2 x BIP 1.83E-04 7.83E-04 0.233 0.81565 
Age2 x MDD -5.71E-04 7.48E-04 -0.763 0.44594 
Age2 x SCZ2 1.24E-03 7.74E-04 1.603 0.10986 

 
Supporting Table 14: Full Primary Test Model Statistics, including diagnosis variables 
  



 Beta S.E. t P 
(Intercept) -6.94E-01 2.28E-01 -3.047 0.0025 
Age 3.54E-01 3.29E-02 10.743 < 2 x 10-16 
Age2 -7.59E-03 1.32E-03 -5.751 2.04 x 10-08 
Gender (Male) 8.25E-03 5.54E-02 0.149 0.8816 
Site (Davis) -1.00E-01 1.25E-01 -0.802 0.4229 
Site (Hawaii) 2.17E-01 1.55E-01 1.399 0.1627 
Site (KKI) 8.34E-02 1.20E-01 0.696 0.487 
Site (LA) 2.28E-01 1.78E-01 1.279 0.202 
Site (MGH) 2.06E-01 1.23E-01 1.67 0.0959 
Site (UCSD) 3.04E-02 1.11E-01 0.275 0.7838 
Site (UMMS) -7.12E-03 1.36E-01 -0.052 0.9583 
Site (Yale) 4.87E-02 1.26E-01 0.387 0.6988 
Household Income 3.73E-02 1.53E-02 2.445 0.015 
Highest Education 5.97E-02 3.49E-02 1.71 0.0882 
PC1 1.14E+00 7.57E-01 1.508 0.1326 
PC2 -8.19E-01 6.38E-01 -1.284 0.2 
PC3 9.56E-01 5.89E-01 1.624 0.1054 
PC4 1.37E+00 6.88E-01 1.985 0.048 
PC5 7.60E-01 6.80E-01 1.117 0.2646 
PC6 3.31E-01 6.53E-01 0.507 0.6126 
PC7 -5.20E-01 6.03E-01 -0.861 0.3897 
PC8 -9.20E-01 6.25E-01 -1.471 0.1422 
PC9 1.41E-01 6.46E-01 0.218 0.8277 
PC10 8.95E-01 6.64E-01 1.348 0.1785 
ADHD -1.51E-05 6.18E-04 -0.024 0.9805 
ASD 2.54E-02 1.16E-02 2.182 0.0298 
BIP 9.46E-03 1.86E-02 0.508 0.6118 
MDD -4.69E-02 1.83E-02 -2.567 0.0107 
SCZ2 -1.03E-02 1.94E-02 -0.531 0.5955 
Age x ADHD 3.41E-04 6.56E-04 0.519 0.6041 
Age x ASD 1.14E-02 1.29E-02 0.882 0.3785 
Age x BIP -1.87E-02 2.09E-02 -0.896 0.3711 
Age x MDD 1.35E-02 2.02E-02 0.669 0.5042 
Age x SCZ2 -2.49E-02 2.22E-02 -1.123 0.2621 
Age2 x ADHD -1.21E-05 2.71E-05 -0.448 0.6543 
Age2 x ASD -4.81E-04 5.20E-04 -0.925 0.3557 
Age2 x BIP 6.96E-04 8.46E-04 0.822 0.4116 
Age2 x MDD -9.20E-04 8.26E-04 -1.114 0.2661 
Age2 x SCZ2 1.24E-03 8.69E-04 1.427 0.1546 

 
Supporting Table 15: Full Primary Test Model Statistics, Censoring Diagnoses Individuals 
 
 
  



 Beta S.E. t P 
(Intercept) -0.5079106 0.2360347 -2.152 0.03203 
Age 0.3245949 0.0342601 9.474 < 2.00E-16 
Age2 -0.006223 0.0013574 -4.584 6.15E-06 
Gender (Male) -0.0863932 0.0573607 -1.506 0.13284 
Site (Davis) -0.1141955 0.1346391 -0.848 0.39687 
Site (Hawaii) 0.1412482 0.161043 0.877 0.38098 
Site (KKI) -0.0588996 0.1269374 -0.464 0.6429 
Site (LA) 0.1788296 0.1957516 0.914 0.36152 
Site (MGH) 0.2646386 0.1272532 2.08 0.03822 
Site (UCSD) -0.0214738 0.1192337 -0.18 0.85717 
Site (UMMS) -0.0129856 0.1456672 -0.089 0.92901 
Site (Yale) 0.0016668 0.136162 0.012 0.99024 
Household Income 0.019815 0.015044 1.317 0.18857 
Highest Education 0.0673182 0.0353447 1.905 0.05757 
PC1 1.1237015 0.7591607 1.48 0.13963 
PC2 -0.7110106 0.6713016 -1.059 0.29019 
PC3 1.1559833 0.6376891 1.813 0.07064 
PC4 1.457675 0.7404448 1.969 0.0497 
PC5 0.9463256 0.7042941 1.344 0.17985 
PC6 0.0805828 0.6837328 0.118 0.90624 
PC7 -0.3792536 0.6366667 -0.596 0.55173 
PC8 -1.0973647 0.6763712 -1.622 0.10552 
PC9 0.1829575 0.6944113 0.263 0.79233 
PC10 0.6562405 0.7155536 0.917 0.35966 
Dx_ADHD -0.1618092 0.1075495 -1.505 0.13326 
Dx_LearnDis -0.2792733 0.1233143 -2.265 0.02408 
ASD 0.034478 0.0118087 2.92 0.00371 
Age x ASD 0.0277903 0.0130437 2.131 0.03375 
Age2 x ASD -0.0012248 0.0005268 -2.325 0.02059 

 
Supporting Table 16: ASD-DCCS without VC Model Statistics, Including Diagnosis Variables 
  



 Beta S.E. t P 
(Intercept) -0.6267111 0.2525489 -2.482 0.0136 
Age 0.3189558 0.0363543 8.774 < 2.00E-16 
Age2 -0.0058594 0.0014475 -4.048 6.41E-05 
Gender (Male) -0.0962888 0.0618443 -1.557 0.1204 
Site (Davis) -0.1144122 0.1398837 -0.818 0.414 
Site (Hawaii) 0.131226 0.1743132 0.753 0.4521 
Site (KKI) -0.0925512 0.133545 -0.693 0.4888 
Site (LA) 0.1731788 0.1990557 0.87 0.3849 
Site (MGH) 0.2626021 0.1365375 1.923 0.0553 
Site (UCSD) -0.027176 0.1243205 -0.219 0.8271 
Site (UMMS) -0.0095173 0.1522461 -0.063 0.9502 
Site (Yale) -0.0254137 0.1410208 -0.18 0.8571 
Household Income 0.0322661 0.0167003 1.932 0.0542 
Highest Education 0.0734983 0.0384639 1.911 0.0569 
PC1 0.9972403 0.8199399 1.216 0.2247 
PC2 -0.9690806 0.7028563 -1.379 0.1689 
PC3 1.1899571 0.6599976 1.803 0.0723 
PC4 1.5865577 0.7703587 2.06 0.0402 
PC5 0.8835733 0.7282834 1.213 0.2259 
PC6 0.1548245 0.7280639 0.213 0.8317 
PC7 -0.4265134 0.6623842 -0.644 0.5201 
PC8 -1.1295033 0.6984545 -1.617 0.1068 
PC9 -0.1381187 0.7229752 -0.191 0.8486 
PC10 0.7977075 0.7426881 1.074 0.2836 
ASD 0.032367 0.0129515 2.499 0.0129 
Age x ASD 0.0240276 0.0141866 1.694 0.0912 
Age2 x ASD -0.0010623 0.0005714 -1.859 0.0639 

 
Supporting Table 17: ASD-DCCS without VC Model Statistics, Censoring Diagnoses Individuals 
  



 Beta S.E. t P 
(Intercept) -0.579392 0.246143 -2.354 0.01907 
Age 0.36541 0.03571 10.233 < 2.00E-16 
Age2 -0.008276 0.001415 -5.851 1.04E-08 
Gender (Male) 0.103225 0.059746 1.728 0.08483 
Site (Davis) -0.176075 0.139941 -1.258 0.20907 
Site (Hawaii) 0.257345 0.166744 1.543 0.12356 
Site (KKI) 0.121692 0.132149 0.921 0.35769 
Site (LA) 0.229584 0.20444 1.123 0.26213 
Site (MGH) 0.082154 0.132289 0.621 0.53495 
Site (UCSD) 0.021547 0.124239 0.173 0.8624 
Site (UMMS) -0.120124 0.151831 -0.791 0.42933 
Site (Yale) 0.069585 0.142189 0.489 0.62485 
Household Income 0.030016 0.01566 1.917 0.05601 
Highest Education 0.0465 0.03701 1.256 0.20972 
PC1 0.486268 0.788117 0.617 0.53759 
PC2 -0.623874 0.697272 -0.895 0.37148 
PC3 1.013778 0.664446 1.526 0.12788 
PC4 1.311201 0.767838 1.708 0.0885 
PC5 1.348746 0.734078 1.837 0.06692 
PC6 0.372245 0.710516 0.524 0.60064 
PC7 -0.863631 0.66405 -1.301 0.19418 
PC8 -1.017217 0.707155 -1.438 0.1511 
PC9 0.504229 0.721239 0.699 0.4849 
PC10 0.526998 0.745284 0.707 0.47992 
Dx_ADHD -0.27103 0.111693 -2.427 0.01569 
Dx_LearnDis -0.008177 0.128081 -0.064 0.94913 
MDD -0.053965 0.019293 -2.797 0.00541 

 
Supporting Table 18: MDD-Flanker without VC Model Statistics, Including Diagnosis Variables 
  



 Beta S.E. t P 
(Intercept) -0.585243 0.262848 -2.227 0.02663 
Age 0.368602 0.037755 9.763 < 2.00E-16 
Age2 -0.008385 0.001503 -5.58 4.91E-08 
Gender (Male) 0.075946 0.064313 1.181 0.23848 
Site (Davis) -0.171156 0.145106 -1.18 0.23901 
Site (Hawaii) 0.260369 0.179936 1.447 0.14882 
Site (KKI) 0.152282 0.138725 1.098 0.2731 
Site (LA) 0.227807 0.207768 1.096 0.27366 
Site (MGH) 0.065514 0.141843 0.462 0.64446 
Site (UCSD) 0.014456 0.129363 0.112 0.91109 
Site (UMMS) -0.138532 0.158542 -0.874 0.38285 
Site (Yale) 0.075353 0.147075 0.512 0.60874 
Household Income 0.038183 0.017267 2.211 0.02768 
Highest Education 0.039811 0.040023 0.995 0.32058 
PC1 0.384844 0.849282 0.453 0.65074 
PC2 -0.98465 0.72842 -1.352 0.17735 
PC3 0.903224 0.685315 1.318 0.1884 
PC4 1.259059 0.79834 1.577 0.1157 
PC5 1.603197 0.757441 2.117 0.03502 
PC6 0.372136 0.752054 0.495 0.62104 
PC7 -0.670917 0.689587 -0.973 0.33128 
PC8 -0.751432 0.72782 -1.032 0.3026 
PC9 0.395331 0.745994 0.53 0.5965 
PC10 0.673841 0.77218 0.873 0.38347 
MDD -0.062239 0.021114 -2.948 0.00342 

 
Supporting Table 19: MDD-Flanker without VC Model Statistics, Censoring Diagnosed Individuals 
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