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Using a hydrodynamic model, we predict the transverse

momentum dependence of the spectra and the elliptic ow

for di�erent hadrons in Au+Au collisions at
p
s = 130AGeV.

The dependence of the di�erential and pt-integrated elliptic

ow on the hadron mass, equation of state and freeze-out

temperature is studied both numerically and analytically.

PACS numbers: 25.75-q, 25.75.Ld
Keywords: Relativistic heavy-ion collisions; Elliptic

ow; Hydrodynamic model

1. Introduction.{ One of the �rst observables measured
at the Relativistic Heavy Ion Collider (RHIC) was the
so-called elliptic ow [1]. It describes the azimuthal mo-
mentum space anisotropy of particle emission from non-
central heavy-ion collisions in the plane transverse to the
beam direction. Elliptic ow is characterized by the sec-
ond harmonic coe�cient v2(y; pt) of an azimuthal Fourier
decomposition of the momentum distribution [2,3]. We
here discuss elliptic ow at midrapidity, y = 0; its pt-
averaged value is denoted simply by v2.
Elliptic ow is a fundamental observable since it di-

rectly reects the rescattering among the produced parti-
cles. Rescattering transfers the initial spatial anisotropy
of the nuclear overlap region in the transverse plane to
the observed momentum distribution. For a given initial
spatial deformation, the largest elliptic ow coe�cient is
obtained in the hydrodynamic limit where rescattering is
so intense that the matter in the reaction zone reaches
a state of local thermal equilibrium. Since the spatial
anisotropy is largest at the beginning of the evolution, el-
liptic ow is especially sensitive to the early stages of sys-
tem evolution [5,6]. A measurement of v2 thus provides
access to the fundamental thermalization time scale in
the early stages of a relativistic heavy-ion collision [7,8].
In a preceding Letter we showed [9] that the �rst

measurements at RHIC of the elliptic ow of charged
particles can be satisfactorily described by a hydrody-
namical model, with initial and freeze-out conditions ob-
tained by a straightforward extrapolation from a simi-
lar analysis of Pb+Pb collisions at the SPS [6,8]. The
data deviate, however, from the hydrodynamical predic-
tion at large impact parameters b>�7 fm, where the reac-
tion volumes become small, and at large transverse mo-

menta pt
>�1:5GeV/c. At the lower SPS energies (

p
s =

17AGeV) the available data [10,11] are less conclusive,
but indicate discrepancies with the hydrodynamic ap-
proach for all but nearly central collisions [9,12]. Whereas
in [1,9] the deviations from hydrodynamic predictions
were interpreted to signal incomplete thermalization, the
authors of [12] suggest (at least in connection with the
SPS data) that they may be due to the transition from
an early hydrodynamic to a late hadronic kinetic stage,
modeled by a hadronic cascade (RQMD) which leads to
an earlier saturation of both radial and elliptic ow.
In the present paper we present hydrodynamic pre-

dictions at
p
s = 130AGeV for the shape and impact

parameter dependence of the single particle spectra and
for the magnitude and pt-dependence of the elliptic ow
for a variety of hadron species. Such data should soon
become available. They will not only provide evidence
for the degree of thermalization of other hadronic species
and thus provide valuable input for the discussion of the
two di�erent interpretations just mentioned [9,12], but
also help to select between the di�erent combinations of
initial and freeze-out conditions and equations of state
studied in [9].
2. Hydrodynamic Results.{ The hydrodynamic code,

its initialization and the calculation of �nal state spec-
tra and elliptic ow coe�cients are described in [8,9].
We here use the parameter sets given in the last three
columns of Table I in [9] and label the results accord-
ingly by EOS Q(120), EOS Q(140), and EOS H(140),
respectively. EOS H is a hadron resonance gas equation
of state with sound velocity cs �

p
0:15; EOS Q includes

a �rst order phase transition to an ideal quark-gluon gas
(cs =

p
1=3) at Tc = 164MeV with a latent heat of

1.15 GeV/fm3 [13]. In the energy region studied here,
EOS Q is e�ectively softer than EOS H, since the ex-
pansion is largely controlled by the soft phase-transition
region [8]. Freeze-out is implemented along a surface of
constant energy density; the numbers in brackets denote
the approximate freeze-out temperature in MeV on this
surface.
Radial ow and single-particle spectra: The transverse

momentum spectra for negative hadrons, neutral pions
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and protons are shown in Figure 1. All decay prod-
ucts from strong or electromagnetic decays of unstable
resonances up to 1.4 GeV mass are included. These pt-
spectra are considerably atter than the corresponding
SPS spectra; the thin solid lines show our earlier �ts [6,8]
to the data from Pb+Pb collisions at

p
s = 17AGeV

[14]. This reects the stronger radial ow at RHIC which
hydrodynamics predicts as a result of the higher initial
energy density [8]. The crosses in Figure 1 show that the
hadronic cascade code UrQMD [15] gives much steeper
spectra [16]; in fact, the UrQMD spectra at RHIC ener-
gies are slightly steeper than the measured spectra at SPS
energies. Apparently the scattering mechanisms built
into UrQMD are not e�cient enough to build a su�-
cient amount of radial ow. On the other hand, the at-
ter slopes of hydrodynamic pion spectra are consistent
with �rst preliminary data on negative hadron spectra at
midrapidity [17]. The �nal data are expected to be accu-
rate enough to distinguish between the three parameter
sets shown in Figure 1 (or exclude all of them).

FIG. 1. The pt spectra of neutral pions (upper left), nega-

tive hadrons (upper right), and protons (lower left) for the 6%

most central Au+Au collisions at
p
s = 130AGeV, for di�er-

ent equations of state and freeze-out temperatures (see text).

The crosses show UrQMD results for neutral pions and pro-

tons at
p
s = 200AGeV [16] for comparison. Also shown are

the corresponding hydrodynamic spectra at
p
s = 17AGeV

for EOS Q(120) (thin solid lines).

Figure 2 shows mt-spectra for pions, kaons, protons
and 
 hyperons at di�erent collision centralities. For
peripheral collisions the spectra get steeper, due to a de-
crease of the average radial ow velocity hv

?
i as a result

of a lower initial energy density and a shorter lifetime of
the reaction zone. The comparison between theory and
experiment will be particularly interesting in the region
of large impact parameters where the measured elliptic
ow [1] lags behind the hydrodynamical results [9]. As

discussed in the Introduction, the single-particle spectra
may help to understand whether the origin of this dis-
crepancy is incomplete thermalization at an early or late
stage of the evolution.

FIG. 2. The mt-spectra of negative pions (upper left),

kaons (upper right), protons (lower left) and 
 baryons (lower

right) for Au+Au collisions at
p
s = 130AGeV, for colli-

sion centralities (top to bottom) b < 5:4, 5:4 < b < 9:9 and

9:9 < b < 13:5 fm. For clarity the spectra for di�erent cen-

trality bins are separated by factors of 10. The calculations

were done with EOS Q. The 
 distribution is also shown for

Tf = 164 MeV to simulate decoupling at the phase transition.

EOS Q Q H
Tf (MeV) � 120 140 140
�� 4.4% 3.6% 4.2%
K+ 5.3% 4.7% 5.7%
p 5.9% 5.3% 6.6%
� 6.2% 5.6% 6.9%
�(Tf=164MeV) 3.8% 3.8% -
� 6.1% 5.6% 7.0%

 6.5% 6.2% 7.7%

(Tf=164MeV) 4.4% 4.4% -

Table 1. Elliptic ow coe�cient v2 at midrapidity for various

hadron species from minimum bias Au+Au collisions at
p
s =

130AGeV. The pt-average was taken over the full spectrum.

Elliptic ow. The impact parameter and pt depen-
dence of the elliptic ow coe�cient v2 for charged par-
ticles from Au+Au collisions at

p
s = 130AGeV was

discussed in [9]. Table 1 shows predictions for the pt-
integrated elliptic ow of a variety of identi�ed hadrons
in minimum bias collisions, for the same three parame-
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ter sets as studied in that paper. For the � meson and
the 
 hyperon we include two values, one for simulta-
neous freeze-out with all other hadrons, the other for
freeze-out directly after hadronization at Tc = 164MeV.
The latter option accounts for the expectation that the
heavy and weakly coupled 
 is not likely to participate
after hadronization in any modi�cations of the previ-
ously established ow pattern [18]. Similar arguments
hold for the � meson. Even though at RHIC energies
a large fraction of the ow is already established be-
fore hadronization [8], the additional ow generated af-
terwards by hadronic rescattering is seen to a�ect the

 quite strongly, for both v2 (Table 1) and the single-
particle slope (Figure 2).
For identi�ed pions the dependence of v2 on EOS and

Tf is similar as for the sum of all charged hadrons (see
[9]): Lower freeze-out temperatures and harder EOS lead
to atter single particle spectra and thereby to larger pt-
integrated elliptic ow. For identi�ed hadrons we see
that, as their mass increases, there is stronger sensitivity
to the EoS than that to Tf (see also Figure 4 below).

FIG. 3. pt-di�erential elliptic ow at midrapidity for vari-

ous hadrons from minimum bias Au+Au collisions at
p
s =

130AGeV for EOS Q(120).

Figure 3 shows the di�erential momentum anisotropy
v2(pt) for di�erent hadron species for EOS Q and Tf �
120MeV. At a given value of pt, the elliptic ow is seen to
decrease with increasing particle mass. This is a conse-
quence of rest-mass-dependent radial ow e�ects on the
shape of the single-particle pt-spectrum, as will be ana-
lytically discussed in the following section.
The smaller di�erential anisotropy at �xed pt does not

contradict the results in Table 1 which generically give
larger pt-averaged elliptic ow for heavier particles. This
is a consequence of the fact that radial ow leads to a
attening of the pt-spectra of heavier particles [19,20],
whose pt-averaged v2 thus receives more weight from the
high-pt region where v2(pt) is larger. Whether this larger

spectral weight for high pt wins over the reduction of
v2 at �xed pt depends on the details of the expansion
dynamics.
The e�ect of the EOS and the freeze-out temperature

on the di�erential elliptic ow of pions and protons is
demonstrated in Figure 4. The EOS a�ects v2(pt) for
all hadrons in the same way: the sti�er EOS H leads to
larger v2 at low pt and to smaller v2 at high pt than the
softer EOS Q. The e�ect of the freeze-out temperature
on v2(pt) is more delicate: for pions the e�ect is small,
and for EOS Q an increase in the freeze-out tempera-
ture decreases both the pt-averaged and the di�erential
elliptic ow. The heavier protons behave oppositely: the
di�erential anisotropy increases with increasing freeze-
out temperature. The origin of this behaviour will be
studied in the following section. Clearly, the di�erent
Tf-dependence of v2(pt) of di�erent particles can be used
to constrain the freeze-out temperature independently of
the EOS.

FIG. 4. The e�ect of the EOS and the freeze-out tem-

perature on the elliptic ow of midrapidity pions (left) and

protons (right) from minimum bias Au+Au collisions atp
s = 130AGeV.

In view of the observed deviations from hydrodynamic
behaviour of charged particle elliptic ow at large impact
parameters [1] it will be interesting to study the central-
ity dependence of v2 separately for a variety of hadron
species. Corresponding hydrodynamic predictions are
shown in Figure 5 (again including the option that the 

freezes out early at Tf = Tc). Particle-speci�c deviations
from these predictions should provide valuable insights
into the thermalization and freeze-out mechanisms.

3. Analytical results.{ In the remainder we try to un-
derstand the hydrodynamic behaviour of v2(pt) and its
dependence on the hadron mass and freeze-out tempera-
ture, using a simple analytical model. Before going into
the technical details we give a simple intuitive argument
why, at small pt, the elliptic ow of heavier particles is
smaller than for lighter ones. It is well-known that radial
ow shifts the pt-distributions to larger values of pt, and
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that for nonrelativistic pt < m this e�ect increases with
the particle mass m and the radial ow velocity hv

?
i. In

the extreme case of a thin shell expanding at high veloc-
ity, the spectrum actually develops a relative minimum
at pt = 0 and a peak at nonzero pt (\blast wave peak"
[19]), and with increasing mass and hv

?
i the peak shifts

to larger pt. Relative to the case without radial ow, the
spectrum is thus depleted at small pt, and the depletion
as well as the pt range over which it occurs increase with
m and hv

?
i.

FIG. 5. The pt-di�erential elliptic ow of negative hadrons

(upper left), pions (upper right), protons (lower left)

and omega baryons (lower right) for Au+Au collisions atp
s = 130AGeV for collision centralities (top to bottom)

9:9 < b < 13:5, 5:4 < b < 9:9 and b < 5:4 fm. The cal-

culations were done for EOS Q.

If, as in the case of fully developed elliptic ow, the
radial velocity is larger in x than in y direction, jvxj >
jvyj, the same is true for this relative depletion e�ect. It
counteracts the excess of particles with pt in x-direction
over those with pt in y-direction which is the origin of
v2 > 0. Thus it reduces v2 at small pt. This reduction
and the pt-range over which it occurs both increase with
the particle mass m and the average radial ow hv

?
i.

A quick graphic sketch shows that in the extreme case,
where the single-particle spectrum develops a \blast wave
peak" [19], v2 even turns negative at low pt, due to the
shift of the peak to larger pt in x than in y direction if
jvxj > jvyj.
When looking for a simple model which allows to show

this analytically, a generalization of the \blast wave"
model [19] comes to mind, in which thermalized mat-

ter of temperature Tf , approximated by a boosted Boltz-
mann distribution, freezes out on a thin cylindrical shell
along which the radial ow shows an azimuthal modula-
tion with jvxj > jvyj. Assuming boost-invariant longitu-
dinal expansion and freeze-out at constant proper time,
the Cooper-Frye freeze-out spectrum can be calculated
by trivially generalizing the derivation given in [21,22].
In the Boltzmann approximation1 one �nds, up to irrel-
evant constants,

dN

dy dm2
t
d�p

�
Z 2�

0

d�sK1(�t(�s)) e
�t(�s) cos(�s��p) ; (1)

where �s; �p are the azimuthal angles in coordinate
and momentum space, and the arguments �t(�s)=
(pt=T ) sinh(�(�s)), �t(�s)=(mt=T ) cosh(�(�s)) [22] now
depend on a �s-dependent radial ow rapidity �(�s).
The elliptic ow coe�cient is obtained by taking the az-
imuthal average over cos(2�p) with this spectrum, v2 =
hcos(2�p)i. The �p-integral can be done analytically:

v2(pt) =

R 2�

0
d�s cos(2�s) I2(�t(�s))K1(�t(�s))R 2�

0
d�s I0(�t(�s))K1(�t(�s))

: (2)

Making the Ansatz � = �0+�a cos(2�s) we checked that,
for a suitable choice of the average radial ow rapidity
�0 and its azimuthal modulation amplitude �a, Eq. (2)
reproduces all relevant features of the full hydrodynamic
results almost quantitatively. The �s-independent ver-
sion of Eq. (1) [20] has been used very successfully by
many groups to �t single-particle spectra from central
heavy-ion collisions in order to extract the average tem-
perature and radial ow velocity at freeze-out. Similarly,
Eqs. (1) and (2) can be used to �t the spectra and elliptic
ow from non-central collisions in order to extract also
the average azimuthal ow modulation.

n�

�vx
n-

vx

n
6vy

n

?

�vy

FIG. 6. Simple source of four �reballs.

Unfortunately, the remaining angular integral in (2)
cannot be done analytically. To reach a fully analytical

1For Bose-Einstein or Fermi-Dirac distributions, one simply

substitutes Eq. (1) by a sum of terms with T replaced by T=n,

n = 1; 2; : : :, and weighted with (�1)n [21].
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understanding of many of the features observed in the
previous section one can exploit an even simpler model
which still captures the main e�ects qualitatively, but no
longer quantitatively. It consists of four non-expanding
�reballs of equal volume, freezing out instantaneously
and simultaneously in the laboratory frame, whose cen-
ters move in the transverse plane without longitudinal
velocity component (see Fig. 6). What matters for the
observed particle ow pattern are the velocities of the
four �reballs, as indicated in the �gure, but not their
positions nor the size of their common laboratory frame
volume.
For this model one �nds, again in the Boltzmann ap-

proximation, the simple expression

v2(y; pt) =
I2
�
xvxpt

T

�
� e

E
T
(x�y)I2

�
yvypt

T

�
I0
�
xvxpt

T

�
+ e

E
T
(x�y)I0

�
yvypt

T

� : (3)

In this equation the particle mass enters only in the term
e
E
T
(x�y), and it is easy to see that if all other variables

are held �xed, v2 decreases with increasing mass. Fig-
ure 7 shows that our schematic source also reproduces the
feature of negative v2 for protons at small pt which was
anticipated above from the \blast wave" model. (This
feature is also preserved by the cylindrical shell model,
Eq. (2).) The \blast wave peak" in the single-particle
spectrum is known to disappear when the constant ex-
pansion velocity is replaced by a realistic radial velocity
distribution [20]; we therefore then also expect the dip of
v2 to negative values to be washed out, in agreement with
Figs. 3 and 4. On the other hand, the UrQMD calcula-
tions reported in [23] do show negative v2 for midrapidity
protons at small pt; it would be interesting to further in-
vestigate the origin of this e�ect in that model. It may
be worth pointing out that a similar interplay between
radial ow, random thermal motion and a directed ow
anisotropy (�rst instead of second harmonic modulation)
has been shown [24] to be responsible for negative di-
rected ow coe�cients v1 at low pt [10].

FIG. 7. Transverse momentum dependence of elliptic ow

for midrapidity pions and protons from the schematic source

in Figure 6, for T = 140MeV, vx = 0:6, and vy = 0:5.

Our schematic source also permits us to understand
the approximately linear pt-dependence of v2 in the in-
termediate pt region. Expanding the Bessel functions in
(3) for large arguments and keeping only the leading term
gives for midrapidity (y=0) particles

v2(pt) � tanh

�
1

2

�
�pt � �mt

T
+ �

��
; (4)

where � = xvx� yvy, � = x� y and � = ln(
q

xvx

yvy
).

Since � > � for jvxj > jvyj, we get for pt � m the simple
form v2(pt) � tanh(�pt) with � = (� � �)=2T . For the
example in Fig. 7, � � 5GeV, and v2 begins to turn
over at pt > 2:5GeV, saturating at v2 = 1 as pt ! 1.
This consideration also shows that the scale at which v2
changes from its required quadratic pt-dependence at low
pt [25] (with a positive or negative coe�cient) to a linear
behaviour at intermediate pt is given by the particle rest
mass m, multiplied by a prefactor of order 1 which is
governed by the average radial ow velocity hv

?
i.

We �nally discuss the dependence of v2 on the freeze-
out temperature. Taking the temperature derivative of
Eq. (4) we get (again at y=0)

@v2

@T
(pt) �

�mt � �pt

2T 2

1

cosh2
�
1
2

�
�pt��mt

T
+ �

�� : (5)

With � > � one sees that at �xed pt the sign of the deriva-
tive depends on the particle mass and that, for increasing
Tf , v2(pt) may thus decrease for pions while increasing for
protons, as seen in Fig. 4.2

4. Summary.{ We have presented a variety of pre-
dictions for the elliptic ow and single-particle spectra
for di�erent hadron species produced in Au+Au colli-
sions at

p
s = 130AGeV, using a relativistic hydrody-

namic model. We have studied the sensitivities to the
equation of state and freeze-out temperature and showed
that these can be used to further constrain the model pa-
rameters and test the approach on a quantitative level.
A simple expression for �tting spectra and elliptic ow
data in order to extract the average radial ow and ow
anisotropy has been given. Crucial features of the pt-
dependence of the elliptic ow have been elucidated with
a simple schematic model. Testing the predicted pt-
dependence of v2 for many di�erent hadron species will
clarify the validity of the picture of a thermalized expand-
ing source with a common ow velocity for all hadrons
at RHIC energies.

2Of course, in a full hydrodynamic calculation Tf cannot be

varied independently of the ow velocities, and the latter are

not �xed, but vary over the freeze-out surface. Eq. (5) can

only give a qualitative impression.

5



Acknowledgments: Fruitful discussions with M. Blei-
cher, H. Heiselberg, T. Hirano, V. Koch, A. Poskanzer,
R. Snellings, and N. Xu are gratefully acknowledged.
This work was supported by the Director, O�ce of Sci-
ence, O�ce of High Energy and Nuclear Physics, Divi-
sion of Nuclear Physics, and by the O�ce of Basic En-
ergy Sciences, Division of Nuclear Sciences, of the U.S.
Department of Energy under Contract No. DE-AC03-
76SF00098.

[1] K.H. Ackermann et al. (STAR Collaboration), Phys.

Rev. Lett. 86 (2001) 402.

[2] J.-Y. Ollitrault, Phys. Rev. D 46 (1992) 229.

[3] S.A. Voloshin and Y. Zhang, Z. Phys. C 70 (1996) 665.

[4] S.A. Voloshin and A.M. Poskanzer, Phys. Lett. B 474

(2000) 27.

[5] H. Sorge, Phys. Rev. Lett. 78 (1997) 2309; 82 (1999)

2048.

[6] P.F. Kolb, J. Sollfrank and U. Heinz, Phys. Lett. B 459

(1999) 667; P.F. Kolb, J. Sollfrank, P.V. Ruuskanen, and

U. Heinz, Nucl. Phys. A661 (1999) 349.

[7] S.A. Voloshin and A.M. Poskanzer, Phys. Lett. B 474

(2000) 27.

[8] P.F. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev. C 62

(2000) 054909.

[9] P.F. Kolb, P. Huovinen, U. Heinz, and H. Heiselberg,

hep-ph/0012137, Phys. Lett. B, in press.

[10] H. Appelsh�auser et al. (NA49 Collaboration), Phys.

Rev. Lett. 80 (1998) 4136 and the NA49 home page

http://na49info.cern.ch/na49/Archives/Images/Publica-

tions/

[11] A. Poskanzer and S. Voloshin for the NA49 Collabora-

tion, Nucl. Phys. A661 (1999) 341c.

[12] D. Teaney, J. Laurent, and E.V. Shuryak, nucl-th/

0011058.

[13] J. Sollfrank et al., Phys. Rev. C 55 (1997) 392.

[14] H. Appelsh�auser et al. (NA49 Collaboration), Phys. Rev.

Lett. 82 (1999) 2471.

[15] S.A. Bass et al., Prog. Part. Nucl. Phys. 41 (1998) 225;

M. Bleicher et al., J. Phys. G 25 (1999) 1859.

[16] M.J. Bleicher et al., Phys. Rev. C 62 (2000) 024904.

[17] Preliminary results reported by the STAR Collaboration

at DNP2000, see http://www-rnc.lbl.gov/STAR/conf/

talks2000/dnp/ullrich.html

[18] H. van Hecke, H. Sorge, and N. Xu, Phys. Rev. Lett. 81

(1998) 5764.

[19] P.J. Siemens and J.O. Rasmussen, Phys. Rev. Lett. 42

(1979) 880.

[20] K.S. Lee, U. Heinz, and E. Schnedermann, Z. Phys. C 48

(1990) 525.

[21] P.V. Ruuskanen, Acta Phys. Pol. 18 (1988) 551.

[22] U. Heinz, K.S. Lee, and E. Schnedermann, in: Quark-

Gluon Plasma (R.C. Hwa, ed.), Advanced Series on Di-

rections in High Energy Physics, Vol. 6, p. 471 (World

Scienti�c, Singapore, 1990).

[23] M. Bleicher and H. St�ocker, hep-ph/0006147.

[24] S.A. Voloshin, Phys. Rev. C 55 (1997) 1630.

[25] P. Danielewicz, Phys. Rev. C 51 (1995) 716.

6




