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Abstract

Electroencephalographic (EEG) microstates can provide a unique window into the

temporal dynamics of large-scale brain networks across brief (millisecond) timescales.

Here, we analysed fundamental temporal features of microstates extracted from the

broadband EEG signal in a large (N = 139) cohort of children spanning early-

to-middle childhood (4–12 years of age). Linear regression models were used to

examine if participants' age and biological sex could predict the temporal parameters

GEV, duration, coverage, and occurrence, for five microstate classes (A–E) across both

eyes-closed and eyes-open resting-state recordings. We further explored associa-

tions between these microstate parameters and posterior alpha power after removal

of the 1/f-like aperiodic signal. The microstates obtained from our neurodevelopmen-

tal EEG recordings broadly replicated the four canonical microstate classes (A to D)

frequently reported in adults, with the addition of the more recently established

microstate class E. Biological sex served as a significant predictor in the regression

models for four of the five microstate classes (A, C, D, and E). In addition, duration

and occurrence for microstate E were both found to be positively associated with age

for the eyes-open recordings, while the temporal parameters of microstates C and E

both exhibited associations with alpha band spectral power. Together, these findings

highlight the influence of age and sex on large-scale functional brain networks during

early-to-middle childhood, extending understanding of neural dynamics across this

important period for brain development.

K E YWORD S

age, alpha power, biological sex, brain networks, EEG, microstates, neurodevelopment,
neuroimaging

1 | INTRODUCTION

During early-to-middle childhood, the human brain undergoes exten-

sive growth and reorganisation enabling the development of higher

order cognitive functions, language, and social and emotional

processes (Bunge & Wright, 2007; Chai et al., 2017; Gilmore

et al., 2018; Long et al., 2017). Non-invasive functional neuroimaging

of spontaneous (i.e., ‘task free’) neural activity patterns have enabled

critical insight into brain dynamics across neurodevelopment. For

example, resting-state functional magnetic resonance imaging (fMRI)
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studies have revealed that as children develop, there is a shift in func-

tional network architecture from locally focussed to more distributed

patterns of neural communication (Fair et al., 2009; Long et al., 2017;

Vogel et al., 2010). Further, longitudinal studies highlight increases in

the strength of default mode network (DMN) connections throughout

childhood and early adolescence (Fan et al., 2021; Sherman

et al., 2014), which serve to facilitate maturation of complex neuro-

cognitive abilities that are linked to both the DMN activity and con-

nectivity strength (Hampson et al., 2006; Smallwood et al., 2021).

However, the reliance of fMRI on the relatively slow (seconds) hae-

modynamic response limits its temporal precision precluding insight

into more rapidly evolving alterations in brain dynamics. Further, the

fMRI blood-oxygen-level-dependent (BOLD) signal provides only an

indirect measure of neuronal activity and its exact relationship to

underlying neurophysiology remains unclear (Ekstrom, 2010;

Singh, 2012). Faster variations in neural activity, which are likely to

provide additional complementary information on age-related changes

in brain function can be assessed using electroencephalographic (EEG)

recordings of electrical signals from neuronal ensembles (Buzsáki

et al., 2012; Olejniczak, 2006). Despite lacking the spatial precision of

fMRI, EEG benefits from extremely high (millisecond) temporal resolu-

tion, enabling analysis of highly transitory cortical activity, providing a

powerful lens through which to examine functional network dynamics

across neurodevelopment (Cohen, 2017; John et al., 1980; Uhlhaas

et al., 2010). EEG is also silent, relatively inexpensive, easy to adminis-

ter, and in the case of resting-state recordings, requires relatively little

participant cooperation, thus making it very well suited to the collec-

tion of functional brain data in children.

EEG microstates provide a novel, and potentially powerful, ave-

nue for examining spatio-temporal network dynamics across the life-

span. Microstates represent temporally discrete cortical activation

patterns in the spatial dimension that remain quasi-stable for brief

(�60–120 ms) time periods before rapidly transitioning to a different

spatial configuration of cortical activation (Lehmann et al., 1987;

Michel & Koenig, 2018). Each distinct topographical pattern of cortical

activity, or microstate ‘class’, represents a transient period of global

network activity, with shifts between microstate classes over the milli-

second time space of the EEG recording indicative of large-scale

changes in functional brain organisation (Michel & Koenig, 2018;

Zanesco et al., 2020). It has been shown that spontaneous EEG

recorded at rest can be characterised by a relatively small number of

microstates, typically four (labelled by previous research as canonical

classes A, B, C, and D; see Figure 1), which can explain between

�65% and 85% of the total topographic variance on the EEG record

(Khanna et al., 2015; Michel & Koenig, 2018). The temporal features

at these microstate classes demonstrate high test–retest reliability

(Khanna et al., 2014), and appear to be relatively consistent across the

adult lifespan (Khanna et al., 2015; Koenig et al., 2002), with more

recent studies also beginning to establish additional classes beyond

the canonical four (Das et al., 2022; Tarailis et al., 2023). The topo-

graphical features of several EEG-derived microstates have also been

shown to overlap with well-defined fMRI-derived resting-state

networks (RSNs) (Britz et al., 2010; Custo et al., 2017; Musso

et al., 2010).

Microstates are classically assessed in terms of their specific tem-

poral parameters. These include the global explained variance (GEV),

which reflects the percentage of total variance in the data explained

by a given microstate class; average duration of time the microstate

remains stable; the microstate's coverage, that is, the total amount of

time it is present across the EEG recording; and its frequency of occur-

rence per second (Khanna et al., 2015; Lehmann et al., 1987). The use

of these metrics to explore alterations in large-scale network activity

F IGURE 1 Graphical overview of the microstate analysis
workflow. The spontaneous EEG recordings (a) were cleaned using
the RELAX automated pre-processing pipeline (b). Data from sections
of the EEG signal representing maximal global field potentials (GFP; c)
were entered into the modified k-means clustering algorithm (d) to
enable grouping into microstate classes based on topographic
similarity (i.e., microstate prototypes; (e). Microstate prototypes were
then back-fit to all of the EEG data (f). Finally, key microstate features
(global explained variance, duration, coverage, and occurrence) were
calculated (g).
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during typical neurodevelopment, however, remains limited; to our

knowledge, only four studies having specifically examined age-related

changes in typically developing children (Bagdasarov et al., 2022;

Koenig et al., 2002; Takarae et al., 2022; Tomescu et al., 2018). Initial

work by Koenig et al. (2002) explored the four canonical (A-D) micro-

states extracted from spontaneous (eyes-closed) EEG recordings

across individuals spanning a wide age-range (6–80 years). Partici-

pants were further broken into several putative developmental stages:

childhood (defined as <12 years of age), early adolescence (12–

16 years), late adolescence (>16 and <21 years), and adulthood

(>21 years). The authors found a relatively undifferentiated pattern of

microstate features across age in the childhood sample. However,

qualitatively, average microstate durations did decline with increasing

age, while each microstate's frequency of occurrence indicated a sub-

tle upward trend. A later study by Tomescu et al. (2018), which also

analysed eyes-closed spontaneous EEG across a wide age range (6–

87 years), found that, overall, compared to females, males showed

increased occurrence of microstate D and shorter duration of micro-

state C. Of note, females showed a relatively constant increase in the

duration of microstate C from childhood into adulthood; while, despite

showing increases in duration from childhood to adolescence (as well

as during adulthood), the duration of microstate C showed a subtle

reduction from adolescence to young adulthood in males. In contrast,

microstates A and B were not found to differ between sexes.

In a study of eyes-open resting-state EEG comprising both typi-

cally developing and autistic children and adolescents (age-range: 7–

19 years), Takarae et al. (2022) found a positive association between

age and the duration of microstate C, which only reached significance

in the typically developing sub-sample. As microstate temporal param-

eters have shown associations with the power of alpha oscillations

(Croce et al., 2020; Milz et al., 2017), with these oscillations also dem-

onstrating alterations in autism (Wang et al., 2013), Takarae et al.

(2022) further explored potential links between EEG microstates

extracted from the broadband EEG signal (0.5–40 Hz) and alpha

power. These authors found a negative association between micro-

state C duration and alpha power and a positive association between

microstate C occurrence and alpha power. These findings are the first,

to our knowledge, to indicate a relationship between alpha oscilla-

tions, which represent the dominant cortical rhythm during relaxed

wakefulness (Niedermeyer, 1999), and EEG microstates in children.

This extends research in adults that has indicated an association

between the temporal parameters of various microstate classes and

alpha power (Croce et al., 2020; Milz et al., 2017). However, as these

authors analysed the entire EEG signal, which is known to contain a

mix of both neuronal oscillations and broadband aperiodic (i.e., 1/f-like

non-oscillatory) activity (Donoghue, Haller, et al., 2020; He, 2014) it is

likely that their measures of spectral power actually captured both

periodic and aperiodic activity (Donoghue et al., 2021; Donoghue,

Haller, et al., 2020; He, 2014). Work is therefore needed to assess this

potential association after first disentangling the periodic and aperi-

odic signal to ensure power values capture true oscillatory activity.

Finally, recent work by Bagdasarov et al. (2022) using eyes-closed

resting-state EEG in 4–8-year-old children found associations

between microstates C and D and children's' age and biological sex.

Specifically, microstate C duration was greater in males compared to

females. Additionally, GEV, coverage and occurrence for microstate D

all decreased with increasing age in males, but not females; while

duration decreased with age in males, while increasing for females.

Building on these past observations, the primary aim of this study

was to extend research investigating EEG microstates during neurode-

velopment by conducting a comprehensive analysis of spontaneous

EEG activity captured across a large sample of children spanning

early-to-middle childhood. To achieve this, we analysed both eyes-

closed and eyes-open resting-state EEG recordings from 139 children

ranging from 4 to 12 years of age. Differences in microstate temporal

parameters were explored separately for both recordings, thus

enabling us to investigate resting-state dynamics across these two

perceptual states, which are known to induce changes in neural oscil-

lations and brain network activity (Agcaoglu et al., 2019; Li, 2010). We

further assessed associations between these features and participants'

age and biological sex. Finally, we also explored associations between

microstate parameters and alpha power after first removing the aperi-

odic signal through spectral parameterisation (Donoghue, Haller,

et al., 2020). As this was an exploratory study, we did not have spe-

cific directional hypotheses. However, we broadly predicted that

microstate features would: (i) show changes across the 4–12 year age

range, (ii) differ between sexes, and (iii) show an association with

aperiodic-adjusted alpha power.

2 | METHODS

2.1 | Participants

The sample comprised 139 English speaking children (67 female; aver-

age age = 9.41 years, SD = 1.95; age range: 4–12 years [female:

9.11 years; SD = 1.96; male: 9.69 years; SD = 1.91]). Participants

were described as being typically developing by their primary care-

giver, with no child in the dataset having been diagnosed with any

neurological, psychiatric, or genetic disorder. Ethical approval was pro-

vided by the Deakin University Human Research Ethics Committee

(2017–065), and approval to approach public schools was granted by

the Victorian Department of Education and Training (2017_003429).

2.2 | Procedure

EEG data were collected during a single recording session for each

child at Deakin University, or in a quiet room at the participants'

school. Written consent was obtained from the parent or legal guard-

ian of each child prior to the study commencing. Key details of the

experimental protocol were also verbally explained to each child who

then agreed to participate. Data reported in this study were collected

as part of a larger investigation into the development of the social

brain in childhood (for further information see Bigelow et al., 2022;

Hill et al., 2022).
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2.3 | EEG acquisition

EEG data were recorded at rest via a 64-channel HydroCel Geodesic

Sensor Net (Electrical Geodesics, Inc., USA) containing Ag/AgCl elec-

trodes surrounded by electrolyte-wetted sponges. Data were

recorded in a dimly lit room using NetStation software (version 5.0)

via a Net Amps 400 amplifier using a sampling rate of 1 KHz, with an

online reference at electrode Cz. Electrode impedances were checked

to ensure they were < 50 KOhms prior to recordings commencing.

EEG was recorded for 2 min with eyes-open (participants seated with

their gaze directed at a fixation cross on a computer monitor), and

2 min while participants had their eyes-closed.

2.4 | EEG pre-processing

Data were pre-processed in MATLAB (R2020a; The Mathworks, Mas-

sachusetts, USA) using the EEGLAB toolbox (Delorme & Makeig,

2004) and custom scripts. The Reduction of Electroencephalographic

Artifacts (RELAX) software (Bailey, Biabani, et al., 2023; Bailey, Hill,

et al., 2023) was used to clean each EEG file. This automated pipeline

uses empirical approaches to identify and reduce artefacts within the

data, including the use of both multi-channel Wiener filters and wave-

let enhanced independent component analysis (ICA). Briefly, data

were bandpass filtered (0.5–80 Hz) using a fourth-order Butterworth

filter with zero-phase. Data were then notch filtered (47–53 Hz) to

remove line noise, and any bad channels were removed using a multi-

step process incorporating the ‘findNoisyChannels’ function from the

PREP pipeline (Bigdely-Shamlo et al., 2015). Multi-channel Wiener fil-

tering (Somers et al., 2018) was used to initially clean blinks, muscle

activity, horizontal eye movement and drift, followed by robust aver-

age re-referencing (Bigdely-Shamlo et al., 2015), and wavelet-

enhanced ICA (Castellanos & Makarov, 2006), with components for

cleaning identified using the automated independent component

(IC) classifier IClabel (Pion-Tonachini et al., 2019). As a final step, all

pre-processed data files were also visually inspected to further assess

recording quality and check for any electrographic signs of excessive

somnolence. Additional details on the data pre-processing procedure

can be found in Hill et al. (2022).

2.5 | Microstate analysis

Prior to running the microstate analyses, the EEG data were bandpass

filtered between 1 and 40 Hz (fourth order zero-phase Butterworth

filter) and were down-sampled to 250 Hz to reduce computational

burden (Bochet et al., 2021). Microstate analysis was conducted in

MATLAB implementing the open-source Microstate EEGLAB toolbox

(version 1.0) (Poulsen et al., 2018). First, the global field power (GFP),

which represents the standard deviation of the EEG signal across all

electrodes (Lehmann & Skrandies, 1980), was calculated for each par-

ticipant from the spontaneous EEG recordings. Datapoints

corresponding to GFP maxima (i.e., maps containing high signal-

to-noise ratio) were then entered into the modified k-means clustering

algorithm (Koenig et al., 2002; Pascual-Marqui et al., 1995), which was

used to find from 3-to-8 microstate prototypes. The modified k-

means method is polarity invariant meaning that no distinction is

made between proportional, but opposite, topographical maps when

assigning microstate clusters (Pascual-Marqui et al., 1995). The cluster

analysis was set to undergo 50 random initialisations with the maxi-

mum number of iterations set to 1000. 1000 GFP peaks per subject

entered the segmentation, with the minimum distance between peaks

set to 10 ms, as advised by Poulsen et al. (2018). Based on visual

inspection of the topographies and measures of fit (global explained

variance [GEV] and cross-validation [CV] criterion) (Poulsen

et al., 2018), for the EEG clustered with between 3-and-8 microstates,

we identified five prototypical microstate maps (A to E) that ade-

quately described the data for both the eyes-closed and eyes-open

recordings (Figure 2; see Figure S1 for plots of GEV and CV values for

the data). This also represented a pragmatic compromise between the

requirement for both specificity and generalisability, the former typi-

cally benefitting from an increasing number of microstates, and the

latter benefitting from a relatively low number of microstates

(Michel & Koenig, 2018). These microstate classes were then back-

fitted to each participant's EEG data. As spontaneous EEG recordings

frequently contain unwanted noise, which can contribute to short

microstate segments that emerge after clustering or backfitting of the

data (Musaeus et al., 2019; Poulsen et al., 2018), we applied

the default ‘small segment rejection’ temporal smoothing approach

from the Microstate EEGLAB Toolbox (Poulsen et al., 2018) to redis-

tribute segments <30 ms to the next best fitting microstate. Finally,

the temporal parameters GEV, duration, coverage, and occurrence were

calculated for each microstate class (see Figure 1 for microstate analy-

sis overview).

2.6 | Calculation of alpha power

Alpha power was calculated to enable exploration of its potential

association with microstate temporal parameters. The EEG data were

first converted to the frequency domain using the Welch power spec-

tral density (PSD) method in MATLAB (2-second Hamming window

with 50% overlap). In order to obtain alpha power values for each par-

ticipant we used a spectral parameterisation approach implemented

via the Fitting Oscillations and One Over f (FOOOF) toolbox (version

1.0.0; https://fooof-tools.github.io/fooof/) (Donoghue, Haller,

et al., 2020). This model-driven approach has the benefit of obtaining

alpha peaks within the EEG spectra in terms of their specific centre

frequency for each individual, while also controlling for the aperiodic

(i.e., non-oscillatory) broadband signal (Donoghue, Haller, et al., 2020;

Ostlund et al., 2022). Algorithm settings were set as: peak width

limits = [1,12]; maximum number of peaks = 8; minimum peak

height = 0.0; peak threshold = 2; and aperiodic mode = fixed. Power

spectra were parameterised across the frequency range 1 to 40 Hz
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(for power spectra plots see Figures S2 and S3). Alpha power was

then extracted from the midline parieto-occipital electrode (POz) for

the peak within the 7–13 Hz range. This electrode was selected based

on its posterior location where alpha power is often maximal

(Klimesch et al., 2005), with the majority (>94%) of participants dem-

onstrating a detectable alpha peak in this region over-and-above the

aperiodic signal.

2.7 | Statistical analysis

Statistical analyses were conducted using R (R Core Team, 2020).

Prior to running the analyses, the data were screened for outliers

and any extreme values (larger/smaller than 1.5*IQR above or below

the upper and lower interquartile ranges, respectively) were

removed. Power analysis indicated that our sample size was well

powered (1 � β = 0.92) to detect a regression slope using a multiple

linear regression with two predictors with a small-to-moderate

effect size (f2 = 0.1) and α = 0.05 (Faul et al., 2007). Multiple linear

regression models were used to assess the ability for age and sex to

predict GEV, duration, coverage, or occurrence for each of the five

microstate classes. Analyses were run separately for the eyes-closed

and eyes-open EEG data. Multiple comparison corrections were

applied to the overall regression models using the Bonferroni–Holm

method (Holm, 1979) to account for the five microstates classes

examined. Individual predictors (i.e., age and sex) were only exam-

ined if the overall model showed significance after correction and

were further corrected to account for the four microstate parame-

ters (corrected alpha = 0.0125). Associations between microstate

parameters and alpha power were explored using non-parametric

(Spearman) correlations. These were run separately for each tempo-

ral parameter for each of the five microstates for both the eyes-

closed and eyes-open conditions (Bonferroni corrected). Additional

one-way repeated measures ANOVAs were also run to compare dif-

ferences in GEV, duration, coverage, and occurrence between the five

microstate classes for the eyes-closed and eyes-open data with

post-hoc analyses of simple main effects performed using pairwise

comparisons (Bonferroni corrected) and are reported in the Data S1.

Finally, we also computed Pearson's spatial correlations for each of

the five microstate classes between the eyes-closed and eyes-open

recordings to assess for topographic similarity between the two

conditions.

3 | RESULTS

Four of the microstate maps obtained for both the eyes-closed and

eyes-open conditions strongly resembled the canonical microstates A,

B, C, and D previously reported in the literature (Khanna et al., 2015;

Michel & Koenig, 2018; Tarailis et al., 2023), while the fifth map

resembled the more recently described microstate E (Custo

et al., 2017; Das et al., 2022; Ke et al., 2021) (sometimes also referred

to as microstate F (Tarailis et al., 2023); Figure 2; scalp field potential

data pertaining to each microstate template map is also provided in

Table S2). Together, the five microstates explained 69.2% (eyes-

closed) and 68.4% (eyes-open) of the total global variance, which is

broadly in line with previous reports (Custo et al., 2017; Michel &

Koenig, 2018) (plots indicating GEV and cross validation criterion

[CV] values for microstate clusters are provided in Figure S2). No dif-

ferences in age were apparent between male and female participants

(t(135.63) = 1.77, p = 0.080). Figure 3 provides an overview of partic-

ipants' age and sex via density plots and Figure 4 provides an over-

view of the temporal parameters for each microstate separately for

the eyes-closed and eyes-open recordings. Descriptive statistics of

F IGURE 2 Topographic plots of the five EEG microstate classes (a–e) for the eyes-closed and eyes-open conditions. These closely resembled
the orientations previously reported in adults, specifically, Microstate A: right anterior to left posterior; Microstate B: left anterior to right
posterior; Microstate C: frontal to occipital; Microstate D: medial anterior to occipital; Microstate E: left to right. Microstates were derived using a
polarity invariant (modified K-means) clustering algorithm.
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the temporal features for each of the five microstate classes are pro-

vided in Table 1. Spatial correlations indicated that the microstate

maps extracted from the eyes-closed and eyes-open recordings

showed relatively strong similarity, overall (r = 0.83, 0.88, 0.92, 0.93,

0.71 for maps A to E, respectively; Figure 5). We further ran spatial

correlations between microstate maps run after also extracting micro-

states for males and females separately on both the eyes-closed and

eyes-open recordings. These results are provided in Figure S4.

3.1 | Age and sex effects on microstate
parameters

Multiple linear regression models with participants' age and sex as

predictor variables, and microstate parameter (either GEV, duration,

coverage, or occurrence) as the outcome variable were run separately

for the eyes-closed and eyes-open conditions. Results are summarised

in Table 2, with key findings also highlighted below.

3.1.1 | Microstate A

For the eyes-closed data, the overall regression model was significant

for all four microstate parameters (GEV, duration, coverage, and occur-

rence). In each instance, of the two predictors, only sex was found to

significantly contribute to the model. Specifically, on average, females

had a higher GEV (t(131) = �4.871, p < 0.001), duration (t(131)

= �3.684, p < 0.001), coverage (t(131) = �4.978, p < 0.001), and

occurrence (t(134) = �5.271, p < 0.001) than males. For the eyes-

open data, the overall model was significant for all four microstate

parameters. As with the eyes-closed data, only sex significantly con-

tributed to the model. On average, females had higher GEV, (t(126)

= �5.314, p < 0.001), duration, (t(127) = �4.125, p < 0.001), coverage,

(t(128) = �5.035, p < 0.001), and occurrence, (t(134) = �5.846,

p < 0.001), than males.

3.1.2 | Microstate B

For the eyes-closed recordings, the overall regression model was not

significant for any of the microstate parameters. For the eyes-open

F IGURE 4 Violin plots showing the values for GEV, duration, coverage, and occurrence for each of the five microstate classes (A–E) separately
for the eyes-closed and eyes-open recordings.

F IGURE 3 Density plot showing the age distribution for both
females and males. Dashed vertical lines indicate mean age for each
group. Age did not significantly differ between the two
sexes (p > .05).
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recordings, the model reached significance only for occurrence; how-

ever, neither age (t(125) = �1.370, p = 0.173), nor sex (t(125)

= �1.842, p = 0.068), significantly contributed to the model.

3.1.3 | Microstate C

For microstate C, the overall model did not reach significance for any

microstate parameter for the eyes-closed dataset. However, for the

eyes-open recordings, the model was significant for GEV, coverage,

and occurrence. On average, females had higher GEV (t(131)

= �4.248, p < 0.001), coverage (t(133) = �3.090, p = 0.002), and

occurrence (t(134) = �2.960, p = 0.004) than males. Age did not con-

tribute to the model for any parameter.

3.1.4 | Microstate D

For microstate D, the overall model was significant for all four micro-

state parameters for the eyes-closed condition, and in all instances,

sex was found to be the only significant contributor to the model.

Specifically, on average, males had higher GEV (t(130) = 9.247,

p < 0.001), duration (t(130) = 8.701, p < 0.001), coverage (t(133)

= 9.162, p < 0.001), and occurrence (t(136) = 10.254, p < 0.001) than

females. For the eyes-open data, the overall model was also signifi-

cant for all parameters. On average, males had higher GEV (t(130)

= 8.348, p < 0.001), duration (t(134) = 9.427, p < 0.001), coverage (t

(135) = 10.995, p < 0.001), and occurrence (t(136) = 11.700,

p < 0.001) than females.

3.1.5 | Microstate E

For the eyes-closed data, the overall regression model was significant

for all four microstate parameters. Only sex significantly contributed

to the model. On average, females had a higher GEV (t(130)

= �3.574, p < 0.001), duration (t(129) = �2.921, p = 0.004), coverage

(t(131) = �3.312, p = 0.001), and occurrence (t(131) = �3.605,

p < 0.001) than males. For the eyes-open data, both age and sex con-

tributed. For GEV, only sex contributed to the model (t(130)

= �2.979, p = 0.003), with females having higher values than males.

For duration, age was the only significant contributor (t(130) = 2.600,

p = 0.010). For coverage, neither predictor significantly contributed

after multiple comparison correction, with age falling just above the

Bonferroni corrected alpha (p = 0.0152 [Bonferroni alpha = 0.0125]).

F IGURE 5 Spatial correlations (absolute correlation coefficient)
between the eyes-closed and eyes-open microstate topographies.
Note, as the polarity invariant modified k-means clustering algorithm
was used, microstate polarity can be ignored.

TABLE 1 Microstate descriptive statistics.

Measure Microstate A Microstate B Microstate C Microstate D Microstate E

GEV

Eyes-closed mean (SD) 0.13 (0.07) 0.10 (0.05) 0.14 (0.07) 0.13 (0.10) 0.09 (0.05)

Eyes-open mean (SD) 0.11 (0.08) 0.12 (0.06) 0.13 (0.08) 0.13 (0.10) 0.10 (0.06)

Duration (ms)

Eyes-closed mean (SD) 76.66 (13.89) 73.18 (8.27) 77.24 (10.55) 77.54 (17.72) 73.50 (9.68)

Eyes-open mean (SD) 75.75 (13.27) 74.95 (8.77) 78.15 (12.15) 78.00 (17.94) 76.45 (16.95)

Coverage (%)

Eyes-closed mean (SD) 0.21 (0.08) 0.19 (0.06) 0.21 (0.07) 0.21 (0.12) 0.19 (0.07)

Eyes-open mean (SD) 0.20 (0.09) 0.19 (0.07) 0.21 (0.08) 0.20 (0.12) 0.20 (0.08)

Occurrence (/s)

Eyes-closed mean (SD) 2.62 (0.59) 2.48 (0.57) 2.68 (0.63) 2.54 (0.95) 2.46 (0.67)

Eyes-open mean (SD) 2.52 (0.61) 2.52 (0.66) 2.58 (0.70) 2.38 (1.01) 2.53 (0.58)
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TABLE 2 Multiple linear regression analyses examining the effects of participants' age and sex on the four microstate parameters.

GEV Duration Coverage Occurrence

Microstate A

Eyes

closed

F(2,131) = 12.37, R2 = 0.159,

p < 0.001

F(2,131) = 7.109, R2 = 0.098,

p = 0.005

F(2,131) = 12.690,

R2 = 0.162, p < 0.000

F(2,134) = 14.210,

R2 = 0.175, p < 0.001

Age �0.000 (0.002) �0.053 (0.332) 0.000 (0.002) �0.000 (0.023)

Sex �0.039 (0.008)** �4.775 (1.296)** �0.047 (0.009)** �0.466 (0.088)**

Eyes

Open

F(2,126) = 14.35, R2 = 0.186,

p < 0.001

F(2,127) = 8.595, R2 = 0.119,

p = 0.001

F(2,128) = 12.700,

R2 = 0.166, p < 0.000

F(2,134) = 17.090,

R2 = 0.203, p < 0.001

Age 0.003 (0.002) 0.056 (0.281) 0.002 (0.002) 0.0218 (0.023)

Sex �0.037 (0.007)** �4.597 (1.114)** �0.045 (0.009)** �0.534 (0.091)**

Microstate B

Eyes

closed

F(2,131) = 3.261, R2 = 0.047,

p = 0.078

F(2,130) = 2.305, R2 = 0.034,

p = 0.208

F(2,131) = 3.148, R2 = 0.046,

p = 0.092

F(2,135) = 2.482, R2 = 0.035,

p = 0.175

Age �0.004 (0.002) �0.577 (0.279) �0.005 (0.002) �0.053 (0.024)

Sex �0.006 (0.007) �0.305 (1.101) �0.001 (0.009) �0.012 (0.095)

Eyes

open

F(2,133) = 0.771, R2 = 0.011,

p = 0.465

F(2,135) = 1.049, R2 = 0.015,

p = 0.353

F(2,127) = 1.655, R2 = 0.025,

p = 0.195

F(2,125) = 3.137, R2 = 0.048,

p = 0.047

Age �0.003 (0.002) �0.446 (0.362) �0.003 (0.002) �0.028 (0.020)

Sex �0.003 (0.009) 1.333 (1.413) �0.012 (0.009) �0.150 (0.091)

Microstate C

Eyes

closed

F(2,134) = 3.323, R2 = 0.047,

p = 0.078

F(2,132) = 1.524, R2 = 0.023,

p = 0.222

F(2,135) = 1.523, R2 = 0.022,

p = 0.222

F(2,134) = 1.108, R2 = 0.016,

p = 0.333

Age 0.000 (0.003) 0.019 (0.380) 0.000 (0.003) 0.011 (0.026)

Sex �0.027 (0.011) �2.560 (1.473) �0.021 (0.012) �0.147 (0.1000)

Eyes

open

F(2,131) = 9.288, R2 = 0.124,

p = 0.001

F(2,133) = 3.692, R2 = 0.053,

p = 0.055

F(2,133) = 4.806, R2 = 0.067,

p = 0.029

F(2,134) = 4.397, R2 = 0.062,

p = 0.039

Age �0.000 (0.003) �0.037 (0.427) 0.001 (0.003) 0.007 (0.028)

Sex �0.045 (0.011)** �4.458 (1.666)* �0.0393 (0.0127)* �0.326 (0.110)*

Microstate D

Eyes

closed

F(2,130) = 43.030,

R2 = 0.398, p < 0.001

F(2,130) = 37.900,

R2 = 0.368, p < 0.001

F(2,133) = 42.25, R2 = 0.389,

p < 0.001

F(2,136) = 53.38, R2 = 0.440,

p < 0.001

Age �0.001 (0.003) �0.371 (0.489) �0.002 (0.004) �0.009 (0.032)

Sex 0.099 (0.011)** 16.547 (1.902)** 0.132 (0.014)** 1.260 (0.123)**

Eyes

open

F(2,130) = 34.86, R2 = 0.349,

p < 0.001

F(2,134) = 44.460,

R2 = 0.399, p < 0.001

F(2,135) = 60.480,

R2 = 0.473, p < 0.001

F(2,136) = 68.46, R2 = 0.502,

p < 0.001

Age �0.004 (0.003) �0.993 (0.577) �0.006 (0.004) �0.053 (0.032)

Sex 0.103 (0.012)** 21.022 (2.230)** 0.157 (0.0143)** 1.447 (0.124)**

Microstate E

Eyes

closed

F(2,130) = 6.843, R2 = 0.095,

p = 0.003

F(2,129) = 5.502, R2 = 0.079,

p = 0.015

F(2,131) = 5.738, R2 = 0.081,

p = 0.020

F(2,131) = 6.611, R2 = 0.092,

p = 0.006

Age �0.001 (0.002) �0.288 (0.273) �0.000 (0.002) 0.001 (0.026)

Sex �0.022 (0.006)** �3.132 (1.072)* �0.032 (0.010)* �0.367 (0.102)**

Eyes

open

F(2,130) = 6.431, R2 = 0.090,

p = 0.004

F(2,130) = 4.426, R2 = 0.064,

p = 0.041

F(2,132) = 4.826, R2 = 0.068,

p = 0.029

F(2,135) = 4.465, R2 = 0.062,

p = 0.039

Age 0.004 (0.002) 0.854 (0.329)* 0.006 (0.003) 0.062 (0.025)*

Sex �0.021 (0.007)* �2.302 (1.277) �0.022 (0.010) �0.185 (0.095)

Note: For the overall regression model, alpha values shown are after Bonferroni–Holm multiple comparison corrections for the five microstate classes (A–
E). Values for age and sex are the coefficient estimate, with standard error in parentheses and stars denoting significance after multiple comparison

correction (*p < .01, **p < .000).
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Finally, for occurrence, age was the only significant predictor (t(135)

= 2.552, p = 0.012). Scatterplots depicting the positive associations

between age and each of the temporal parameters for microstate E

are shown in Figure 6.

3.2 | Associations with alpha power

Significant associations were observed between aperiodic-adjusted

alpha power and microstates C and E. Specifically, for the eyes-closed

data, significant positive correlations were obtained between alpha

power and microstate C GEV (rho = 0.264, p = 0.002), duration

(rho = 0.225, p = 0.009), coverage (rho = 0.280, p < 0.001), and

occurrence (rho = 0.276, p = 0.001). Conversely, significant negative

associations were observed between microstate E and alpha power

for GEV (rho = �0.257, p = 0.003), coverage (rho = �0.264,

p = 0.002), and occurrence (rho = �0.300, p < 0.001). For the eyes-

open recordings, significant correlations were present across all four

parameters for microstate C: GEV (rho = 0.258, p = 0.004), duration

(rho = 0.239, p = 0.007), coverage (rho = 0.360, p < 0.001), and

occurrence (rho = 0.382, p < 0.001). No other significant correlations

were observed. Associations between alpha power and temporal

parameters for each microstate are additionally provided in Table S1,

with scatterplots showing key associations shown graphically in

Figure 7.

4 | DISCUSSION

We have presented evidence that EEG-derived microstates recorded

across early-to-middle childhood demonstrate similar topographies to

those observed in adults, while regression models also indicated that

participants' age and biological sex could predict several specific

microstate temporal features. Finally, we further found associations

between aperiodic-adjusted alpha power and microstates C and

E. Brain network architecture is known to change substantially across

the lifespan (Betzel et al., 2014; Chai et al., 2017). This is particularly

apparent during neurodevelopment, where RSNs demonstrate consid-

erable reorganisation and functional segregation (Gu et al., 2015;

Power et al., 2010). It is therefore likely that the spatio-temporal prop-

erties of large-scale cortical network activity, as reflected by micro-

states, might also change throughout early-to-middle childhood in line

with known structural and functional network alterations that occur

during neurodevelopment (Casey et al., 2005; Huang et al., 2015). We

found that both the eyes-closed and eyes-open EEG recordings

yielded microstate topographies in this cohort of children resembling

the canonical microstate classes A to D frequently reported in adults

(Khanna et al., 2015; Michel & Koenig, 2018; Tarailis et al., 2023), with

the addition of the more recently described microstate E (e.g., Baldini

et al., 2023; Brechet et al., 2019; Custo et al., 2017; Das et al., 2022).

These observations corroborate similar recent findings from eyes-

closed resting-state recordings in children spanning a similar develop-

mental period (4–8 years) (Bagdasarov et al., 2022), while also further

extending this finding to spontaneous eyes-open EEG data. This lends

support to the relative stability of broad microstate topographies

across age, despite observations of age-related alterations to specific

microstate temporal features such as duration, coverage, and occur-

rence. Age-related changes in specific temporal parameters of micro-

states have been previously reported elsewhere (Koenig et al., 2002;

Tomescu et al., 2018) and have also been shown be altered across

several neurodevelopmental, psychiatric, and neurological illnesses

(Andreou et al., 2014; Baldini et al., 2023; Bochet et al., 2021; da Cruz

et al., 2020), thus highlighting their clinical relevance. More broadly,

these findings appear to parallel previous fMRI work characterising

functional brain organisation and development in children spanning a

similar ages (e.g., 7–9 years; Supekar et al., 2009).

4.1 | Age effects on microstate features

Out of the five microstates, only microstate E showed significant

associations with age in the present cohort, with these associations

only apparent in the eyes-open condition. Specifically, while all four of

the microstate parameters (GEV, duration, coverage, occurrence) were

seen to increase as a function of age (Figure 6), age was only found to

significantly contribute to the model for duration and occurrence after

multiple comparison corrections were applied. We also note that,

while we refer here to the topography with left-to-right configuration

F IGURE 6 Scatterplots showing the association between age and GEV, duration, coverage, and occurrence for microstate E (eyes-open
recordings). Of the four parameters, age significantly contributed to the regression model only for duration and occurrence after multiple
comparison correction.
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as microstate E, in line with other studies (e.g., Baldini et al., 2023;

Brechet et al., 2019; Custo et al., 2017; Das et al., 2022; D'Croz-Baron

et al., 2019; Ke et al., 2021; Takarae et al., 2022; Tarailis et al., 2021),

inconsistent microstate labelling across studies has also seen this

microstate labelled as microstate F (see Tarailis et al. (2023) for a

recent in-depth review of resting-state EEG microstates). As micro-

state E is relatively newly described, only limited information pres-

ently exists on its functional relevance (Tarailis et al., 2023). However,

using an approach that enabled source localisation of the microstate

topographies, Custo et al. (2017) were able to establish that micro-

state E demonstrated activity associated with key regions of the

DMN, such as the anterior cingulate cortex (ACC), posterior cingulate

cortex (PCC), and precuneus; while Brechet et al. (2019) found the

strongest activity for microstate E in the medial prefrontal cortex,

which also represents a key cortical area of the DMN (Raichle, 2015).

While still speculative at this stage, it is possible that the age-related

increases in these temporal parameters observed in the present study

might reflect maturational changes in regions of the DMN related to

spontaneous cognition, theory of mind, and self-referential processing

(Buckner et al., 2008; Padmanabhan et al., 2017; Tarailis et al., 2023).

However, why these specific associations were not also reflected in

the eyes-closed condition remains uncertain. Future studies aimed at

directly examining possible links between microstate E parameters

and DMN-salient cognitive processes in developmental cohorts could

be useful for investigating this in more detail.

Consistent with past research, our results also indicate that age-

related changes in microstate features are dependent on the specific

microstate class (Koenig et al., 2002). The tendency for an increase in

occurrence with increasing age differs from findings by Tomescu et al.

(2018) who reported a tendency for reduced microstate occurrence

with increasing age; although, microstate D showed a reverse effect

(i.e., occurrence increased with age). However, it is important to note

that these authors only analysed eyes-closed EEG recordings,

included participants spanning a much wider age range (6–87 years),

and only investigated the four canonical microstates A-D. These

methodological differences might have potentially contributed to

these differing observations. In particular, the inclusion of adult and

elderly participants by Tomescu et al. (2018) might have reduced the

potential to detect associations specific to the childhood age group,

which was the focus of our present study. Indeed, we also did not find

any associations between age and any of the microstate parameters

in the eyes-closed condition. A more recent study by Bagdasarov

et al. (2022), which explored spontaneous microstate dynamics in par-

ticipants of similar age to our present cohort (4–8 years) using eyes-

closed recordings, did report relationships between parameters of

microstates C and D and age and sex; however, their study also only

F IGURE 7 Associations between EEG alpha power and temporal parameters for microstates C and E. (a) Plots of the aperiodic-adjusted EEG
spectra taken from the posterior (POz; red circle) electrode with topographic plots showing the overall scalp distribution of alpha power.
(b) Correlations between alpha power and microstates C (eyes-closed, eyes-open) and microstate E (eyes closed). Alpha power was significantly
positively associated with all four microstate features (GEV, duration, coverage, occurrence) for microstate C in the eyes-closed and eyes-open
recordings. Significant negative associations were also observed for alpha power and microstate E GEV, coverage, and occurrence in the eyes-
closed condition.
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extracted the four canonical microstates (A–D), thus prohibiting direct

comparisons with our findings for microstate E. Future studies in

developmental cohorts using a broader range of microstates is there-

fore warranted to further investigate associations with age.

4.2 | Sex effects on microstate features

Overall, our results indicate strong associations between microstate

parameters and biological sex, with four of the five microstate classes

(A, C, D, and E) having at least one feature that was predicted by sex.

For microstates A, C, and E, there was an overall tendency for females

to demonstrate higher values for the various microstate parameters.

This was most apparent for microstate A, where females scored

higher than males for all parameters across both the eyes-closed and

eyes-open conditions, but similar patterns were also frequently seen

for microstates C and E. In contrast, males tended to show higher

values than females for microstate D (see Table 2; scatterplots com-

paring each of the microstate parameters against age are also pro-

vided Figure S6).

To our knowledge, only two previous studies have investigated

sex-related differences in microstate parameters in developmental

cohorts, both of which used eyes-closed EEG recordings only. In

opposition to our findings, Bagdasarov et al. (2022) found longer dura-

tions of microstate C in males compared to females in a cohort of chil-

dren ages between 4 and 8 years. However, in contrast, Tomescu

et al. (2018) reported shorter microstate C durations in males com-

pared to females, but this study comprised individuals across a broad

age-range (6–87 years). Our present finding of longer duration in

females for microstate C therefore most strongly aligns with Tomescu

et al. (2018) who also reported more prolonged durations of this

microstate class in females. However, a noteworthy difference is that

we observed this only in the eyes-open recordings. In addition, our

results further extended this observation to GEV, coverage, and occur-

rence. Similarly, our finding of higher occurrence of microstate D in

males also aligns Tomescu et al., who reported microstate D to occur

more frequently in males than females. However, as with

microstate C, differences in the present study also extended to other

microstate parameters. Although the precise functional significance of

microstate C remains uncertain (Tarailis et al., 2023), there is some

evidence to suggest a relationship with brain regions forming part of

the DMN, a task-negative system well characterised in fMRI literature

(Custo et al., 2017; Seitzman et al., 2017; Tarailis et al., 2023). For

instance, source localisation of microstate C highlights cortical genera-

tors in the PCC and precuneus that belong to the DMN (Custo

et al., 2017). This might suggest that females tend to spend more time

in states related to DMN activation such as emotional processing,

self-referential mental activity, and recollection of prior experiences

(Raichle, 2015). However, microstate C has also been associated with

regions of the saliency network (Britz et al., 2010) and there is recog-

nition that further studies are required to better elucidate the underly-

ing functional networks associated with microstate C (Michel &

Koenig, 2018). Microstate D has been associated with the dorsal

attention network, which includes regions in the right superior and

middle frontal gyri, as well as the right inferior and superior parietal

lobules (Britz et al., 2010; Custo et al., 2017; Tarailis et al., 2023).

Hence, while speculative, our finding of higher occurrence for micro-

state D in males compared to females might be interpreted as males

in general more frequently engaging this network, and as also noted

by Tomescu et al. (2018), males often outperform females on visuo-

spatial processing tasks reliant on predominantly parietal brain regions

(Gur et al., 2012; Seydell-Greenwald et al., 2017; Weiss et al., 2003).

However, an important caveat here is that present study's findings

were extracted from brain activity recorded at rest.

In contrast to these previous studies, we also found additional

sex-related effects for microstates A and E. Specifically, females were

shown to have greater values for all parameters for microstate A for

the eyes-closed and eyes-open recordings, as well as for all parame-

ters for the eyes-closed recordings for microstate E. The precise neu-

robiological mechanisms responsible for these sex-related differences

remain unclear. However, while speculative, these might point to dif-

ferential maturation of functional network architecture between

males and females in keeping with findings from the broader literature

(Gilmore et al., 2018; Sacher et al., 2013).

4.3 | Associations with alpha power

We found a positive association between all four microstate parame-

ters and the aperiodic-adjusted alpha power for microstate C (eyes-

closed and eyes-open recordings), as well as a negative association

between alpha power and GEV, coverage, and occurrence for micro-

state E in the eyes-closed condition (Figure 7). We cautiously interpret

this finding as indicating that the neural generators of microstate C

show increased activation during periods of greater alpha power, in

line with other authors (Croce et al., 2020), while, to a lesser extent,

the generators of microstate E show reduced activation with higher

alpha power. If microstate C does indeed represent a task-negative

state, as suggested by research linking it to the DMN (Custo

et al., 2017; Seitzman et al., 2017; Zappasodi et al., 2019), the positive

association with alpha power appears rational, given links between

alpha oscillations and cortical idling (Pfurtscheller et al., 1996) and

DMN activation (Knyazev et al., 2011). Indeed, the underlying cortical

sources of microstate C have been shown to overlap with key regions

of the DMN (Custo et al., 2017). Research using simultaneous EEG-

fMRI, has also demonstrated that visual alpha power is positively cor-

related with DMN BOLD activity (Mo et al., 2013), while a recent

study by Clancy et al. (2022) showed that augmentation of alpha oscil-

lations through non-invasive neuromodulation was able to strengthen

connectivity of the DMN thus providing a compelling mechanistic

association between alpha oscillations and DMN activity. This also

appears to align with research showing increased prominence of

microstates C and D during resting-state, compared to cognitive tasks,

i.e., when the brain is disengaged from the sensory environment (Milz

et al., 2016). However, further work is certainly required to clarify this

association, as microstate C has also been linked to activation of the
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saliency network (Britz et al., 2010). Similarly, while far less is cur-

rently known about the functional significance of microstate E, it is

likely to also form part of the DMN (Brechet et al., 2019; Custo

et al., 2017; Tarailis et al., 2023), yet here was negatively associated

with alpha power.

Previous study has established oscillations within the alpha fre-

quency band as a strong driver of microstate spatio-temporal dynam-

ics. For example, using source-localised EEG data, Milz et al. (2017)

reported that intracortical alpha oscillations primarily account for the

various microstate classes. In line with our present results, a recent

study conducted in adults by Croce et al. (2020) further found a posi-

tive association between alpha power and microstate C duration,

while Antonova et al. (2022) also reported relative alpha power to be

positively correlated with duration across the four canonical micro-

states (A–D; taken from EEG recorded during either mind wandering,

or verbal/visual processing). Recently, Zulliger et al. (2022) also

reported systematic alterations in local EEG spectral power that were

associated with several microstate features (duration, contribution, and

occurrence). In particular, it was noted that the spatial variance shared

between time-varying microstate features and spectral power was

particularly high in the alpha band for microstate class C (but shared

spatial variance was also present between microstate class C and the

theta and beta bands, as well as for other microstate classes).

Within a neurodevelopmental setting, our present findings also

partially align with Takarae et al. (2022) who, using eyes-open resting-

state EEG recordings form children and adolescents between seven

and 19 years of age, found a positive association between microstate

C occurrence and alpha power. However, these authors also found a

negative association between microstate C duration and alpha power,

which we did not observe in the present study. It is important to note,

however, that here we calculated alpha power after first removing the

aperiodic (i.e., non-oscillatory) broadband signal from the recording.

As neural oscillations co-exist with aperiodic activity in the EEG signal,

not accounting for their presence therefore risks conflating oscillatory

and aperiodic components potentially leading to invalid or inaccurate

interpretation of results (Donoghue et al., 2021; Donoghue, Domin-

guez, & Voytek, 2020). This is a particularly important consideration

for neurodevelopmental cohorts where age-related changes in aperi-

odic activity can be strikingly apparent (Cellier et al., 2021; He

et al., 2019; Hill et al., 2022). It is therefore possible that this method-

ological difference, along with other factors such as age, might have

led to discrepancies between our present findings and previous obser-

vations. Exploring potential associations between various microstate

spatio-temporal features and neuronal oscillations across different

frequencies, after accounting for the aperiodic signal could be an

interesting future research endeavour.

4.4 | Potential limitations and future directions

It is important to highlight some potential limitations of the present

study. First, our microstate analyses were conducted on the broad-

band EEG signal (1–40 Hz), spanning a range of neural oscillatory

frequencies (i.e., delta through low gamma). While this is a very com-

mon approach taken in contemporary microstate analysis it prevents

examination of the specific influence of individual discrete frequency

bands. It is possible that more fine-grained information might be able

to be captured through the analysis of microstates across discrete nar-

row frequency bands (Ferat et al., 2022). Future study might therefore

benefit from investigating spectrally specific microstate analyses in

developmental cohorts. Second, given the limited research investigat-

ing EEG microstates in neurotypical children, our study was explor-

atory in nature and requires replication by additional studies, ideally

using longitudinal designs and including additional microstates beyond

the four canonical topographies (A–D). Finally, as we did not perform

any source-localisation of the EEG signal, we cannot comment on spe-

cific cortical generators of the microstate classes. We chose not to

perform source estimation as we did not have individual participant

MRI scans, or high-resolution EEG recordings (i.e., >128 channels),

which are typically required for accurate source reconstruction

(Brodbeck et al., 2011; Song et al., 2015). Future study using high-

density EEG and structural MRI scans for each participant might be

valuable for further pinpointing specific cortical regions and networks

underlying various microstate topographies.

4.5 | Conclusion

Since their establishment in the 1970's, there has been growing inter-

est in the use of EEG-derived microstates as a means of understand-

ing large-scale brain dynamics in both health and disease. Here, we

have explored temporal features of five microstate classes (A–E) taken

from both eyes-closed and eyes-open recordings and their associa-

tions with age, biological sex, and alpha oscillatory power in a large

cohort of typically developing children. Our results provide important

insight into functional brain dynamics during this critical neurodeve-

lopmental period and significantly extend previous research con-

ducted in adult populations. This provides an important framework for

future research, which could extend these analyses to examine how

various microstate parameters are disrupted in neurodevelopmental

and neuropsychiatric disorders associated with alterations in large-

scale brain network architecture such as autism, depression, and

schizophrenia.
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