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Abstract

Summary: Perturbations in the environment lead to distinctive gene expression changes within a

cell. Observed over time, those variations can be characterized by single impulse-like progression

patterns. ImpulseDE is an R package suited to capture these patterns in high throughput time series

datasets. By fitting a representative impulse model to each gene, it reports differentially expressed

genes across time points from a single or between two time courses from two experiments. To opti-

mize running time, the code uses clustering and multi-threading. By applying ImpulseDE, we demon-

strate its power to represent underlying biology of gene expression in microarray and RNA-Seq data.

Availability and Implementation: ImpulseDE is available on Bioconductor (https://bioconductor.

org/packages/ImpulseDE/).

Contact: niryosef@berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

When cells are challenged with a certain stimulus, a typical form of

transcriptional response is a single impulse-like progress, where the ex-

pression of genes goes through an initial change (either rises or drops)

and then settles at a second steady-state level (Chechik and Koller,

2009; Yosef and Regev, 2011). This pattern is different from other

classes of temporal responses (Bar-Joseph et al., 2012), where genes

for example respond in an oscillating modality as classically observed

during cell cycle (Yosef and Regev, 2011). Whereas specific methods

were introduced for cell cycle data based on Fourier transformations

(Kim et al., 2013; Murthy and Hua, 2004), a particular parametric

model was developed that captures an impulse-like behavior as a con-

tinuous function with six free parameters (Chechik and Koller, 2009).

Separately, a method for differential expression analysis termed EDGE

was proposed that uses continuous representations of time course data

rather than expression levels directly (Storey et al., 2005). By incorpo-

rating the more realistic impulse model into a significance analysis pro-

cess similar to EDGE, we have previously identified genes crucial to T

cell function, comparing two time series of gene expression levels

(Yosef et al., 2013). Here, we present ImpulseDE – a software tool im-

plemented as an R package that conducts this analysis and generalizes

upon it. It executes comparative analysis of two time courses or differ-

ential expression analysis across time (single time course). Using the

impulse model fits based on the available data, it also allows to impute

values for unmeasured time points. Additionally, in contrast to other

methods being specifically designed for example for RNA-Seq data

(€Aijö et al., 2014), ImpulseDE can be applied on any kind of high

throughput gene expression data. We demonstrate this by systematic-

ally comparing differential expression analysis results (Soneson and

Delorenzi, 2013) to the ones obtained by other approaches and by

highlighting canonical genes and functional outcomes being identified

by our method. Furthermore, ImpulseDE is based on a novel efficient

implementation, leading to substantial reduction of running time.

2 Tool description

The ImpulseDE pipeline consists of a five-step workflow (Fig. 1A),

explained in detail in the supplementary information. The input is
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either one time course (differential behavior over time) or two (com-

parative analysis) with at least six time points. The genes are first

grouped into a limited number of clusters (step 1), and then the par-

ameters of the impulse model are fit to the mean expression profile

of each cluster (optimization problem, step 2). The three best sets of

parameters (determined by minimizing the sum of squared error;

SSE), are finally used as starting points to fit the model to each gene

separately (step 3). To determine the significance of rejecting the

null hypothesis, random sampling (Storey et al., 2005) and the boot-

strap (Efron and Tibshirani, 1994) are used (step 4). The resulting

P-values are FDR-corrected (q-value) to account for multiple testing

(Benjamini and Hochberg, 1995) enabling the identification of sig-

nificantly differentially expressed genes (step 5). Additionally, our

implementation makes use of multi-threading to further reduce run-

ning time.

3 Case study

As a proof of principle, ImpulseDE was applied to a microarray data-

set (GSE43955) of TH0 (control) and TH17 (case) T cells observed at

18 different time points (0.5–72 h), focusing on a pre-filtered list (sup

plementary information) of 7526 probesets (Yosef et al., 2013). The

complete run took about 5 hours performed on a Desktop Computer

(Intel(R) Core(TM) i7 Processor with 32 GB RAM) utilizing 6 cores

and default options otherwise. We identified 921 probesets as differ-

entially expressed (DE) between TH17 and TH0 using a q-value cutoff

of 0.01. We then evaluated the performance of ImpulseDE in multiple

contexts. First, we compared to the results obtained from the original

much slower version missing the clustering step, where every gene is

fit separately instead using the same number of iterations. While the

running time was about 7 fold longer (supplementary information),

the improvements of fitting accuracies were marginal (Supplementary

Fig. S1A–C), justifying the value of the much faster clustering proced-

ure. In line with this, decreased q-value cut offs compensated the dis-

crepancies in numbers of overlapping DE genes (Fig. 1B).
Second, we applied EDGE (https://github.com/jdstorey/edge;

Storey et al., 2005) as an alternative method on the microarray data

using 2, 6 and 16 as three different spline basis dimensions (spd),

the optimal discovery procedure (Storey, 2007) and all default op-

tions otherwise. Based on the same q-value cutoff of 0.01, we found

an overlap of 456 probesets identified as DE by all three EDGE

approaches as well as ImpulseDE (Fig. 1C). However, we also

observed several differences. 45 probesets (marked in yellow in Fig.

1C) were exclusively called as DE by ImpulseDE, including the ca-

nonical TH17 genes Il21 (Figs. 1D, S2A) and Socs3 (Supplementary

Fig. S2B) (Ciofani et al., 2012; Yosef et al., 2013). Furthermore, the

classical TH17 marker genes Il17a (Supplementary Fig. S2C) and

Il9 (Supplementary Fig. S2D) (Ciofani et al., 2012; Yosef et al.,

2013) were detected by both ImpulseDE and EDGE spd¼2

(marked in grey in Fig. 1C), where the latter however clearly

seemed to underfit the data. In line with this and as expected from

the varying numbers of parameters, we observed that the spd-16

model resulted in a better fit to the time course data compared to

ImpulseDE, and that the latter provided a better fit than the lower-

dimensionality spline functions (Supplementary Fig. S3A, B).

Clearly, the accuracy of fits to the time course data might imply

overfitting (Fig. 1D), as may be discerned by the non-smooth

profiles of the spd-16 model. To test that, we compared the ability

of all methods to impute expression data for missing measurements.

We used ImpulseDE and according spline models as used in EDGE

to fit time courses with missing data, each time hiding a segment of

four consecutive time points. We then measured the model’s accur-

acy as the SSE between the imputed values and the true but hidden

measurements for each block of time points separately. In terms of

imputation accuracies, ImpulseDE performed best for 9 out of 13

time point blocks compared to all three EDGE methods

(Supplementary Fig. S3C, D), supporting its ability to model under-

lying dynamic behavior.

Additionally, we ranked the genes by their normalized dispersion

over time (Fano Factor) across the TH17 data (considered as a sin-

gle time course by ignoring TH0). Although the ranking was over-

all consistent with ImpulseDE and the EDGE approaches

(Supplementary Fig. S4A–D), the simplistic time-agnostic method

missed genes with an obvious temporal trend that is captured by

ImpulseDE and EDGE (Supplementary Fig. S4E).

As another proof of principle, we applied ImpulseDE on a RNA-

Seq dataset of primary dendritic cells (Jovanovic et al., 2015) stimu-

lated with LPS (case) or with a mock stimulus (control) covering 6

time points (GSE59784). The same options and cutoffs were used as

mentioned above. Of 3,147 TPM (transcripts per million) normal-

ized (Li et al., 2010) and filtered genes (Jovanovic et al., 2015), we

identified 1499 to be DE between LPS and mock stimulation.

Among those we found canonical LPS response genes (Shalek et al.,

2014; Torri et al., 2010), including Nfkb1, Stat5a, Cd38, Cd40,

Tap1 and Map2k1 (Supplementary Fig. S5A). Additionally, Gene

Ontology Enrichment Analysis (GOEA) based on the up- (395) and

down-regulated (1104) genes identified by ImpulseDE confirmed

functions typically associated with LPS stimulation (Supplementary

Fig. S5B), including for example the response to lipopolysaccharide

(LPS) or bacterium, as well as induced immune and inflammatory

responses (Granucci et al., 1999).

Fig. 1. Performance of ImpulseDE. (A) Analysis workflow. (B) Heatmap of

overlapping differentially expressed (DE) genes between ImpulseDE applied

with and without clustering for q-values ranging from 0 to 0.1. Overlaps were

determined using the Jaccard-Coefficient. Colors range from white (no) to

red (large overlap). (C) Venn Diagram showing the qualitative partitioning of

genes into distinct groups of overlapping probesets (identified as DE using a

q-value cutoff of 0.01) between four approaches. (D) Impulse model (thick)

and EDGE based natural cubic spline (thin dashed lines) fits for gene Il21. The

latter is based on a spline basis dimension (sbd) of 16. Expression values and

model fits are on log2-scale. Combined data refers to the union of the TH17

and TH0 datasets, where the class affiliations (case or control) were ignored
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The representation of temporal expression profiles as continuous

impulse functions has already proven useful to describe the kinetics

of down-stream processes such as protein expression (Yosef et al.,

2013) and RNA degradation (Rabani et al., 2014). Importantly,

ImpulseDE can be applied on any type of temporal data exhibiting

an impulse-like behavior, including for example changes in chroma-

tin accessibility and histone marks (Lara-Astiaso et al., 2014,

Weiner et al., 2015). Therefore, ImpulseDE provides differential ex-

pression analysis, imputation and modeling for a broad range of

high throughput datasets.
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