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For Jimmy, who would certainly get a good laugh from this all. . .

Anyone who attempts to generate random

numbers by deterministic means is, of

course, living in a state of sin.

—John von Neumann
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We explore nonequilibrium collective behavior in large, spatially extended stochastic

systems. In Part I, we present a model of discrete, active, noisy phase oscillators suf-

ficiently simple to be characterized in complete detail in a host of diverse settings. In

Chapter 2, we introduce the model and detail its utility for the study of both contin-

uous and discontinuous phase transitions to macroscopic oscillations. In Chapter 3 we

analyze a locally coupled version of the model undergoing a continuous transition and

provide strong evidence that the inherently nonequilibrium system shows qualitative and

quantitative characteristics of a known class of equilibrium phase transitions. Chapter 4

offers an analysis of the discrete model in the face of quenched transition rate disorder,

where synchronization still occurs and depends on the degree of disorder in the popu-

lation. The final chapter of Part I, Chapter 5, details the microscopic underpinnings

of synchronization above threshold, including the counterintuitive relationship between

time-averaged frequency and the mean field oscillations. The second part of the disser-

tation begins with an introduction to generic relaxational models with field-dependent

kinetic coefficients, highlighting in particular the role of this class of models in the study

of noise-induced phase transitions. Using these systems as prototypical models of noise-

induced phenomena in spatially extended systems, we offer a comprehensive study of

static pattern formation in Chapter 7, while Chapter 8 provides a numerical study of
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coherent oscillatory dynamics induced purely by noise. Finally, Chapter 9 details an

analytical framework for studying the dynamics of these systems which is capable of

approximately describing both static and time-dependent phases associated with the

nonequilibrium transitions in these relaxational models.
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Introduction

Natural systems occurring in physical, chemical, biological, and social settings

often consist of a large number of interacting components. Whether composed of, for

example, reactive molecules, living cells, entire organisms or magnetic dipoles, these pop-

ulations serve as a battleground of sorts for the competition between the dynamics of

individual entities and the large scale cooperation favored in many cases by the nature of

their mutual interactions. This competition underlies a host of equilibrium phase transi-

tions where, generically speaking, independent thermal fluctuations oppose energetically

favorable macroscopic order–for example, the aligning of magnetic dipoles. But such an

interplay exists far beyond the traditional jurisdiction of equilibrium statistical physics

and applies to intrinsically nonequilibrium scenarios where cooperative phenomena may

be time-dependent and significantly more complex than their equilibrium counterparts.

In fact, while diverse mathematical abstractions facilitate the study of these systems, it is

worthwhile to recognize a single intuitively appealing and readily recognizable common-

ality: the emergence of macroscopic order which arises despite the potentially disruptive

tendencies of a system’s many degrees of freedom.

In this dissertation, we examine the large-scale cooperative behaviors–specifically,

the phase transitions–which occur in two fundamentally non-equilibrium settings. Part

I contains a detailed analysis of the nonequilibrium phase transition to synchronous

oscillations in large populations of stochastic, discrete, active phase oscillators. By in-

troducing a novel and simple phenomenological model of a generic noisy oscillator, we

provide evidence of the striking similarities between the emergence of time-dependent

1
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synchronous cooperativity in these systems and a class of equilibrium phase transitions.

In addition, our model offers a conceptually simple paradigm for exploring a number of

collective phenomena observed in these ubiquitous systems, including synchronization in

the face of quenched disorder and the existence of both continuous and discontinuous

phase transitions. Part II describes the ordering role of fluctuations in a prototypical

class of nonequilibrium relaxational models. In particular, we explore via extensive nu-

merical simulations and mean field analysis the counterintuitive role of noise in these

spatially-extended systems, highlighting especially its constructive role in static spatial

pattern formation as well as time-dependent oscillatory dynamics. In addition, we pro-

vide an analytical framework capable of approximately describing the dynamics of both

the static and time-dependent phases associated to the phase transitions in question.

While differing in focus, Parts I and II are unified by the shared theme of macroscopic

cooperation in large stochastic systems and, taken together, provide detailed characteri-

zation of such ordering phenomena in two general and physically relevant nonequilibrium

settings.



Part I

Synchronization
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Macroscopic Synchronization: A

New Approach

2.1 Introduction

The role of dissipative structures and self-organization in systems far from equi-

librium in the description of real and observable physical phenomena has been undisputed

since the experiments with the Belusov-Zhabotinsky reactions in the early 1960’s. The

breaking of time translational symmetry has since become a central and typical theme in

the analysis of nonlinear nonequilibrium systems. It is somewhat surprising that in the

later studies of spatially distributed systems, most of the interest shifted to pattern form-

ing instabilities, and little attention was devoted to the phenomenon of bulk oscillation

and the required spatial frequency and phase synchronization, especially in view of the

intense interest generated in the scientific and even broader community by the emergence

of phase synchronization in populations of globally coupled phase oscillators [1], with the

synchronous firing of fireflies being one of the most visible and spectacular examples. Be-

cause intrinsically oscillating units with slightly different eigenfrequencies underlie the

macroscopic behavior of an extensive range of biological, chemical, and physical systems,

a great deal of literature has focused on the mathematical principles governing the com-

petition between individual oscillatory tendencies and synchronous cooperation [2, 3, 4].

Many studies have focused on globally coupled units, leading to a mature understanding

4
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Figure 2.1: Single three state unit with generic transition rates g. From [9, 10, 11].

of the mean field behavior of several models, most notably the paradigmatic Kuramoto

oscillator. However, even the simplest models of coupled oscillators are typically based

on a large system of coupled nonlinear differential equations which become analytically

intractable and computationally extravagant following the inclusion of stochastic fluc-

tuations. For practical purposes, many models are rendered unmanageable for even a

modest number of units, and numerical studies of large, noisy systems are practically

nonexistent. As a result, the description of emergent synchrony has largely been lim-

ited to small-scale and/or globally-coupled deterministic systems [5, 6], despite the fact

that the dynamics of the physical systems in question likely reflect a combination of

stochasticity and large system sizes with finite range forces.

Here we introduce a far more tractable model consisting of discrete phase-

coupled oscillators. The simple structure renders it amenable to an extensive range of

studies, including detailed numerical analysis of the continuous phase transition (Chap-

ter 3), in addition to providing a conceptually appealing approach to some synchro-

nization phenomena in disordered populations (Chapter 4) and systems above threshold

(Chapter 5). Furthermore, the phase discretization reduces many of the typical mean

field problems to matrix algebra, eliminating the need for a continuous functional space

in describing large populations of oscillators.

The use of such minimal models is common in statistical physics, where micro-

scopic details can often be disregarded in favor of phenomenological macroscopic vari-

ables. As Landau theory [7] reminds us, macroscopically observable changes (those that

occur on length and time scales encompassing a magnificently large number of degrees of

freedom) occur without reference to microscopic specifics. In a sense, the distinguishing

features of even highly diverse systems become irrelevant for the description of coop-
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erative behavior at the level of a phase transition; instead, the underlying statistical

similarities give rise to classes of universal behavior whose members differ greatly at the

microscopic level. In the spirit of this universality, simple toy models have been de-

vised in hopes of capturing the essential qualitative features of phase transitions without

concern for the microscopic structure of the problem. With this in mind, we construct

the simplest model that exhibits global phase synchrony and contains the physical in-

gredients listed above, namely, stochastic variation within individual units and roughly

time-periodic dynamics. The simplicity of the model allows for relatively fast numerical

simulation and thus an extensive description of the phase transition in question (Chap-

ter 3), as well as a simplified analytical approach to a number of problems in the mean

field limit (Chapters 4, 5).

2.2 The Model

Our starting point is a three-state unit [8] governed by transition rates g, as

shown in Fig. 2.1. We interpret the state designation as a generalized (discrete) phase,

and the transitions between states, which we construct to be unidirectional, as a phase

change and thus an oscillation of sorts. The probability of going from the current state

i to state i + 1 in an infinitesimal time dt is gdt, with i = 1, 2, 3. We take i + 1 = 1

when i = 3; note that the unit steps unidirectionally among states in a semi-periodic,

probabilistic fashion, e.g. 1 → 2 → 3 → 1..., where here the integers designate the state.

For a single unit, g is simply a constant that sets the oscillator’s intrinsic frequency;

for many units coupled together, we will allow g for a given oscillator to depend on the

states of the other oscillators to which it is coupled. The choice of coupling, specified

below, is not unique, and different choices allow the model to be used in a host of

settings [9, 10, 11], as we shall see.

For a single unit we write the linear evolution equation

∂

∂t
P (t) = MP (t) (2.1)
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where

P (t) =




P1(t)

P2(t)

P3(t)


 , (2.2)

Pi(t) is the probability of being in state i at time t, and

M =




−g 0 g

g −g 0

0 g −g


 . (2.3)

The system clearly reaches a steady state for P ∗
1 = P ∗

2 = P ∗
3 = 1/3. The transitions

1 → 2, 2 → 3, 3 → 1 occur with a rough periodicity determined by g. The time evolution

of our simple model thus qualitatively resembles that of the discretized phase of a generic

noisy oscillator.

We are interested in the behavior that emerges when a large number of indi-

vidual units are coupled to one another by allowing the transition probability of a given

unit to depend on the states of the unit’s nearest neighbors in the spatial grid. The

phase at a given site is compared with those of its neighbors, and the phase of the given

site is adjusted so as to facilitate phase coherence. The expectation is to capture the

physical nature of synchronization. It is further expected that within certain restric-

tions (e.g., the coupling must surely be nonlinear), the specific nature of the coupling

is not important so long as we ultimately observe a transition to global synchrony at

some finite value of the coupling parameter. To say this another way, we are concerned

with observable macroscopic behavior without particular regard to the microscopic un-

derpinnings, so long as these underpinnings produce the appropriate long wavelength

features (e.g. a continuous or discontinuous phase transition in a large population).

We settle upon a particular exponential form below, Eq. (2.4), though we allow some

flexibility by leaving unspecified the real coefficients (U, V,W ) which completely deter-

mine the phase-coupling. Our choice of an exponential function is in no way unique,

though it does maintain a superficial similarity to the Arrhenius prototype transition

rate constant from chemical kinetics and, much more importantly, it provides a suffi-

ciently strong nonlinearity to induce large-scale cooperativity. As we shall see, linear

stability analysis confirms the existence of a Hopf bifurcation in the mean field limit
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for appropriate choices (U, V,W ). Particularly striking is the fact that (U, V,W ) can be

chosen to give either supercritical or subcritical Hopf bifurcations, indicating that the

model can be used to study both continuous and discontinuous phase transitions. This

is reminiscent of several recent generalized models of phase synchronization [12, 13, 14],

though it appears here in a much more transparent analytical and numerical context.

In what follows, we make specific choices (U, V,W ) for particular studies–and there are

both benefits and drawbacks to each–but the flexibility renders the model highly useful

for uncovering several aspects of synchronization [9, 10, 11].

More concretely, we specify that each unit may transition to the state ahead or

remain in its current state in a manner that depends on the states of the other units to

which it is coupled. For unit µ, which we take to be in state i, we choose the transition

rate to state i+ 1 as follows:

gi = g exp

[
a(UNi+1 + V Ni−1 +WNi)

n

]
, (2.4)

where i = 1, 2, 3 (and again i+1 = 1 when i = 3), a is the adjustable coupling parameter,

g is the transition rate parameter, n is the number of oscillators to which the unit in

question is coupled, and Nk is the number of units among the n that are in state k. Each

unit may transition to the state ahead or remain in its current state, and the propensity

for such a change depends on the states of its nearest neighbors. For now, we focus on

globally coupled arrays (n = N−1), though we later include the study of locally coupled

oscillators as well (Chapter 3).

For a population of N → ∞ identical units in the mean field (globally coupled)

version of this model we can replace Nk/(N−1) with the probability Pk, thereby arriving

at a nonlinear equation for the mean field probability,

∂P (t)/∂t = M [P (t)]P (t), (2.5)

with

M [P (t)] =




−g1 0 g3

g1 −g2 0

0 g2 −g3


 . (2.6)

Normalization allows us to eliminate P3(t) and obtain a closed set of equations for P1(t)

and P2(t). We can then linearize about the fixed point (P ∗
1 , P

∗
2 ) = (1/3, 1/3), yielding a
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Jacobian A(a, g, U, V,W ) with a set of complex conjugate eigenvalues which determine

the stability of this asynchronous state. Specifically, we find that

λ± = C
(
− 9 + 3a∆UW ± i

√
3(3 + a(U +W − 2V ))

)
, (2.7)

where C ≡ gea(U+V+W )/3/6 is a nonzero constant for all finite U , V , and W and we

introduce the abbreviation ∆mn ≡ m− n. The eigenvalues cross the imaginary axis at

ac = 3/∆UW , (2.8)

yielding

λ∗± = ±iω(U, V,W ) (2.9)

with

ω(U, V,W ) ≡ g
√

3(ea(U+V+W )/∆UW )
∆UV

∆UW
. (2.10)

For ∆UW 6= 0 and ω(U, V,W ) 6= 0 (that is, ∆UV 6= 0 and g 6= 0), ac represents a

Hopf bifurcation point, indicating the emergence of macroscopic oscillations indicative

of synchronization. Furthermore, we require that ∆UW > 0 to ensure the bifurcation

happens at a positive value of a. We note that in later chapters we will use (U, V,W ) =

(1,−1, 0), yielding ac = 3 and ω = 2g
√

3, and (U, V,W ) = (1, 0,−1), yielding ac = 1.5

and ω = g
√

3/2. In addition, we stress that while a range of models may prove useful

for exploring the phase transition behavior near threshold (see, for example, [9, 10] and

Chapter 3), only models with W = 0 provide physically appealing characteristics far

above threshold (see, for example, [11] and Chapter 4). Specifically, only for W = 0

does the frequency of a perfectly synchronized set of oscillators maintain a nonzero, finite

value (g) as coupling is increased. Below we explore in more detail the nature of the

Hopf bifurcation associated with the class of models described by the permitted values

(U, V,W ). We will come back to these points in later chapters.

2.3 First and Second Order Transitions to Synchrony

In the mean field limit, the order of the phase transition to synchrony is closely

tied to the nature of the Hopf bifurcation. Specifically, a subcritical Hopf bifurcation

corresponds to a discontinuous, first-order phase transition, while a supercritical Hopf
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Figure 2.2: In a single population of globally coupled oscillators, two physically distinct
Hopf transitions can be observed depending on the choices of U , V , andW . The top panel
represents (U, V,W ) = (1,−2, 0) and clearly shows characteristics of a first order tran-
sition, including hysteresis. Squares represent solutions starting from ordered (mostly
synchronized) initial conditions, while circles represent solutions starting from disordered
(random) initial conditions. The bottom panel represents (U, V,W ) = (2,−1, 0) and dis-
plays a second order transition with critical exponent β given by the classical value 1/2.
The inset shows a log-log plot near the critical point. For comparison, a dashed line with
a slope of 1/2 is shown along with the order parameter curve (solid line) to verify this
scaling relation. The order parameter r is a measure of synchronization and is defined
in Eq. 3.4.
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bifurcation indicates a continuous, second-order transition. As such, we place special

emphasis in this manuscript on the sign of l1, the first Lyapunov coefficient, which

provides information on the nature of the Hopf bifurcation and, by extension, on the

order of the phase transition.

In general, l1 can be calculated using the projection technique given in [15],

which relies on a multivariate Taylor expansion of the vector field describing the dynamics

in question about an equilibrium point. For a general n-dimensional dynamical system

ẋ = f(x, ε) with an equilibrium point x = xH undergoing a Hopf bifurcation at parameter

value ε = εH , l1 is given by [15]

l1 =
1

2ω
Re(〈p, C(q, q, q̄)〉 − 2〈p,B(q,A−1B(q, q̄))〉

+ 〈p,B
(
q̄, (2iωI −A)−1B(q, q)

)
〉),

(2.11)

where 〈., .〉 is the typical complex scalar product, I is the identity matrix, and p and q

are right and left eigenvectors of the Jacobian A = ∂f
∂x

∣∣
x=xH given by

Aq = iωq

AT p = −iωp.
(2.12)

Furthermore, p is chosen so that 〈p, q〉 = 1, and B(x, y) and C(x, y, z) are multilinear,

n-dimensional vector functions corresponding to the lowest order nonlinear coefficients

in the Taylor expansion of the vector field. That is,

B(u, v) =
n∑

j,k=1

∂2f(ψ, εH)

∂ψj∂ψk

∣∣∣∣
ψ=xH

ujvk,

C(u, v, w) =
n∑

j,k,l=1

∂3f(ψ, εH)

∂ψj∂ψk∂ψl

∣∣∣∣
ψ=xH

ujvkwl,

(2.13)

with xH indicating the equilibrium point of the vector field around which we expand and

εH the bifurcation parameter, ε, evaluated at the bifurcation point.

2.3.1 First and Second Order Transitions in a Single Population of

Identical Oscillators

For the case of a single population of oscillators described by Eqs. (2.4,2.6), l1

can be analytically calculated using the technique outlined above. Specifically, we set
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g = 1 (without loss of generality) and consider the equilibrium point P = (1/3, 1/3) at

εH ≡ ac and find q and p to be

q =

(
−1

2
+
i
√

3

2
, 1

)
,

p =

(
i−

√
3

3i+
√

3
,

2i

3i+
√

3

)
,

(2.14)

independent of U , V , and W . Then, calculating the multivariable functions B(u, v) and

C(u, v, w) with Eq. (2.13) and using ω as defined in Eq. (2.10) along with Eqs. (2.11,2.14),

we find after simplification that

l1 = −9
√

3(U + V − 2W )

4∆UW
. (2.15)

As a result, the nature of the Hopf bifurcation depends on the choices U , V , and W .

Specifically, if we assume U > V , we have

l1 < 0 for W <
U + V

2
;

l1 > 0 for W >
U + V

2
.

(2.16)

A similar result holds for U < V , but we shall here restrict ourselves to the intuitively

reasonable models positing U ≥ 0 and V ≤ 0; that is, the oscillators one state ahead of

the one in question can only increase (or not affect) the transition rate and those behind

can only decrease (or not affect) the transition rate. To verify these predictions, we show

numerical solutions to the mean field equations in Fig. 2.2; the top panel represents an

example in the subcritical regime ((U, V,W ) = (1,−2, 0)) while the bottom panel shows

an example in the supercritical regime ((U, V,W ) = (2,−1, 0)). The order parameter r

shown in the figures is defined and discussed in later chapters (see Eq. (3.4)), but for

now it is sufficient to consider it a measure of phase synchronzation. A clear distinction

can be made in the neighborhood of the critical point. We also note that the continuous

transition is characterized by the classical mean field exponent β = 1/2, which quantifies

the scaling of the order parameter near criticality. We return to these ideas in later

chapters.

We further observe that the choice (U, V,W ) = (1, 0,−1) leads to l1 = −27
√

3/4 ≈
−11.69, indicating a supercritical Hopf bifurcation and rendering the model applicable
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to studies of continuous phase transitions [9, 10]. With universality in mind, we stress

that any choice of parameters (U, V,W ) yielding a supercritical bifurcation should show

similar critical behavior. On the other hand, the choice (U, V,W ) = (1,−1, 0), while

physically appealing above threshold (see Chapter 4), falls at a singular point separating

the subcritical and supercritical cases (l1 = 0). The flexibility inherent in the choice of

coefficients U , V , and W speaks to the richness of our generic three-state oscillator and

highlights its utility in studying synchronization in both supercritical (see [9, 10]) and

subcritical regimes.

2.4 Discussion

We have developed a simple, discrete model for stochastic phase-coupled oscil-

lators. While providing certain analytical and numerical simplification to the study of

macroscopic synchronization in large populations of oscillators, our model retains suffi-

cient flexibility to capture complexities seen in a number of more complicated models as

well as experimental settings. At the same time, the simplifications arising from incorpo-

rating noise and periodicity in a discrete model allow us to characterize synchronization

in a detailed and transparent way, often providing results unattainable in more com-

plicated models. Most notably, our model provides flexibility to study both continuous

phase transitions [9, 10] as well as discontinuous transitions exhibiting hysteresis, a char-

acterstic seen in detailed theoretical models of, e.g., coupled Josephson junctions [14] but

only observed in significantly more complex coupled oscillator models [12, 13, 14]. In

what follows we study the model in three settings, yielding insight into the universal

behavior of the continuous transition to synchrony (Chapter 3), the complexity of syn-

chronization in disordered arrays of oscillators (Chapter 4), and finally, the nature of

phase synchronization above threshold (Chapter 5).
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3

The Universality of Synchrony

3.1 Introduction

As mentioned in Chapter 2, the breaking of time translational symmetry has

been a critical theme in the analysis of nonlinear nonequilibrium systems for several

decades, in no small part because it represents the prototype of a nonequilibrium phase

transition. While the theory of equilibrium critical phenomena is founded on the no-

tion of universality in large systems exhibiting most typically a change in symmetry of

static macroscopic phases, the emergence of cooperative synchronization in collections of

active coupled oscillators represents the breaking of an inherently time-dependent sym-

metry. Specifically, in the nonsynchronous phase, many individual oscillators exhibit

essentially independent behavior, meaning that macroscopic properties of the system

(e.g. the amplitude of collective oscillations) remain invariant under excursions along

the time axis. On the other hand, when the intrinsic interactions within the system are

chosen to facilitate long-wavelength cooperativity–that is, when macroscopic oscillations

emerge in a collection of oscillators–the thermodynamic-like synchronized phase exhibits

a periodicity that breaks the completely free translational symmetry in time apparent

for independent oscillators. Thus, even as large populations of interacting, oscillating

entities appear in a range of natural and physical settings [1, 2, 3, 4], such systems also

provide an illustrative and fundamental example of symmetry-breaking in an inherently

non-equilibrium setting.

Because of the widespread occurence of large scale synchronization phenomena
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in nature, it is not surprising that many studies have centered on populations of cou-

pled units. However, relatively little concerted effort has focused on the locally coupled

regime [5, 6, 7], where the analogy with an equilibrium phase transition is most clear.

In fact, models of locally coupled oscillators typically involve a prohibitively large col-

lection of interdependent nonlinear differential equations, thus preventing any extensive

characterization of the phase transition to phase synchrony. As discussed in Chapter 2,

the description of emergent synchrony has largely been limited to small-scale and/or

globally-coupled deterministic systems [8, 9], although the relevant physical systems are

perhaps better treated in a stochastic framework incorporating finite range forces. Two

recent studies by Risler et al. [10, 11] represent notable exceptions to this trend. Using an

elegant renormalization group approach, they provide analytical evidence that identical

locally-coupled noisy oscillators belong to the XY universality class–at least in terms of

classical critical exponents and upper and lower critical dimensions–and we here provide

the first empirical verification, numerical or otherwise, of their predictions.

Inspired by Landau theory [12], or perhaps more appropriately, by the wealth of

physical insight gleaned from toy models built upon the premise that macroscopically ob-

servable changes occur without reference to microscopic specifics, we examine the model

introduced in Chapter 2 as a model of a nonequilibrium phase transition. To be explicit,

we have constructed the simplest model that exhibits large scale phase synchrony and

contains the physical ingredients most relevant to the macroscopic phenomena, namely,

stochastic variation within individual units and local coupling. Our interest here is

twofold. First, we provide the first numerical evidence that noisy, coupled oscillators–

which constitute a highly ubiquitous physical system–undergo a phase transition marked

by signatures of a specific class of phase transitions. Second, we show that this funda-

mentally nonequilibrium phase transition shows a host of similarities with equilibrium

phase transitions, including diverging correlation lengths, large scale fluctuations near

criticality, and critical scaling as given by classical exponents β and ν.

The organization of the chapter is as follows. In Sec. 3.2 we briefly review

the model of a single unit as well as the coupling scheme between units. Section 3.3

presents numerical results confirming linear stability analysis in the mean field limit,

and Sec. 3.4 contains the finite-size scaling analysis that unveils the critical behavior of

the locally-coupled model. We conclude with a summary in Sec 3.5.
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Figure 3.1: Simulations with 5000 globally coupled units (bottom panel) agree well
with the numerical solution of the mean field equations (top panel). As predicted by
linearization, a Hopf bifurcation occurs near a = 1.5.

3.2 Three State Model

We begin with the three state model Eq. (2.1) introduced in Chapter 2. As

before, we allow transitions between states in a unidirectional, probabilistic manner,

hence preserving the analogy with the discretized phase of a generic active oscillator.

We specify here that each unit may transition to the state ahead or remain in its current

state depending on the states of its nearest neighbors. For unit µ, which we take to be

in state i, we choose the transition rate to state i+ 1 as follows:

gi = g exp

[
a(Ni+1 −Ni)

n

]
, (3.1)

where a is the coupling parameter,Nk is the number of nearest neighbors in state k,

and n is the total number of units to which the unit in question is coupled. For locally

coupled oscillators, which will be the focus of this chapter, n = 2d in d dimensions. The

transition rate is thus determined by the number of nearest neighbors of unit µ that

are one state ahead and in the same state as unit µ. We note that this corresponds

to (U, V,W ) = (1, 0,−1) in Eq. (2.4), a choice which guarantees a supercritical Hopf

bifurcation in the mean field limit. Specifically, for globally coupled units (n = N − 1)
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in the N → ∞ limit, Eq. (2.8) yields

ac = 3/∆UW = 3/2. (3.2)

The nature of the Hopf bifurcation is given by Eq. (2.15)

l1 = −9
√

3(U + V − 2W )

4∆UW
= −27

√
3/4. (3.3)

Table I shows the explicit transition rates in one dimension. While these rates are

somewhat distorted by their assumed independence of the number of nearest neighbors

in state i − 1 (e.g. in one dimension the transition rate from state i to state i + 1

is the same if both nearest neighbors are in state i − 1 and if one is in state i and

the other in i + 1), the form does lead to a continuous phase transition. We settle on

our choice (3.1) for two reasons. First, and most importantly, it provides the requisite

supercritical Hopf bifurcation indicative of a continuous transition. Second, the phase

transition we seek occurs for a relatively small value of the coupling constant a, and

therefore numerical simulations can be run with larger time steps. We note in passing

that we have also explored coupling with a sigmoidal function, which shows similar

qualitative behavior (that is, a supercritical Hopf bifurcation in the mean field limit and

an apparent synchronization transition in locally coupled simulations), but this again

occurs for a higher value of a, making simulations more cumbersome. We stress again

that universality suggests that such microscopic details should not substantially alter the

qualitative picture of the phase transition as long as the coupling is sufficiently nonlinear

and favors synchronization via a continuous bifurcation.

3.3 Mean-Field Theory Simulations

The globally coupled regime has been used to verify analytically the presence

of a supercritical Hopf bifurcation as a eclipses ac, indicating that the model breaks time

translational symmetry via a continous bifurcation for the coupling chosen, Eq. (3.1).

These predictions can be verified by numerically solving the mean field Eqs. (2.5, 2.6)

with coupling given by Eq. (3.1) in the mean field (Nj/(N −1) → Pj) limit. In addition,

these solutions agree well with direct lattice simulations of the multiple unit model
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Table 3.1: Transition rates in one dimension.

Neighbors Transition Rate

i− 1, i− 1 g

i− 1, i g exp(−a/2)
i− 1, i+ 1 g exp(a/2)

i, i− 1 g exp(−a/2)
i, i g exp(−a)
i, i+ 1 g

i+ 1, i− 1 g exp(a/2)

i+ 1, i g

i+ 1, i+ 1 g exp(a)

characterized by Eq. (3.1) if we consider all-to-all coupling rather than merely nearest-

neighbor coupling (Fig. 3.1). As such, the mean field equations accurately capture the

behavior of the nearest neighbor model in the high (spatial) dimensional limit. We note

that, similar to the examples shown in Chapter 2, our choice of coupling produces a

bifurcation which is clearly continuous and lacks hysteresis effects.

We have shown through both analytical arguments and numerical simulations

that our model indeed produces the desired macroscopic synchronization in the mean

field limit. In what follows, we characterize the breakdown of the mean field description

as spatial dimension is decreased, and characterize the phase transitions observed with

nearest-neighbor coupling.

3.4 Critical behavior of the locally coupled model

We now follow with a study of the locally coupled model. We perform sim-

ulations in continuous time on d-dimensional cubic lattices of various sizes. For all

simulations, we implement periodic boundary conditions. Time steps dt are taken to be

10 to 100 times smaller than the fastest possible local average transition rate, that is,

dt¿ e−a (we set g = 1 in our simulations). This estimate is actually quite conservative,

particularly because the fastest possible transition corresponds to a single unit in state i
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Figure 3.2: Absence of synchronization in 2D. Top left: a = 1.5. Top right: a = 2.5.
Bottom left: a = 3.5. Bottom right: a = 4.5. L = 100 for all plots. Even for very
large values of the coupling, highly synchronous oscillatory behavior is not present. As
discussed in the text and shown in the next figure, the intermittent oscillations apparent
for high values of a result from finite size effects.
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system size increases, verifying the absence of a transition in two dimensions. Even for
large values of the coupling, synchronous oscillations die away in the limit of infinite
system size.
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Figure 3.4: Snapshots of the system in d = 2 are shown for a = 1, a = 2.5, a = 4.5,
and a = 6.5. Upon close inspection, one can discern vortex-like structures, particularly
for the higher values of a. The three shades of gray represent units in the three possible
states.

with all 2d nearest neighbors in state i+1, a scenario which certainly does not dominate

the macroscopic dynamics. We have ascertained that differences between these simula-

tions and others run at much smaller time steps (500 to 1000 times smaller than e−a)

are very small. All simulations were run until an apparent steady state was reached.

Furthermore, we start all simulations from random initial conditions, and we calculate

statistics based on 100 independent trials. Although the simplicity of the model allows

for efficient numerical simulation, our results nevertheless represent a modest compu-

tational achievement; simulations required approximately 5 weeks on a 28-node dual

processor cluster.

To characterize the emergence of phase synchrony, we introduce the order pa-

rameter [8]

r = 〈R〉, R ≡ 1

N
|
N∑

j=1

eiφj |. (3.4)

Here φ is a discrete phase, taken to be 2π(k − 1)/3 for state k ∈ {1, 2, 3} at site j.

The brackets represent an average over time in the steady state and an average over

all independent trials. A nonzero value of r in the thermodynamic limit signifies the
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Figure 3.5: Log-log plots of r vs L−1 for d = 3. For a > ac, the order parameter r
approaches a finite value, even as the system size increases indefinitely. For a < ac, r
approaches zero in the thermodynamic limit.

presence of synchrony. We also make use of the corresponding generalized susceptibility

χ = Ld[〈R2〉 − 〈R〉2]. (3.5)

We begin by considering the model in two spatial dimensions. Here, as shown

in Fig. 3.2, we do not see the emergence of global oscillatory behavior. Instead, we

observe intermittent oscillations (for very large values of a) that decrease drastically

with increasing system size. In fact, as depicted in Fig. 3.3, r approaches zero in the

thermodynamic limit, even for very large values of a. We conclude that the phase

transition to synchrony cannot occur for d = 2. Interestingly, snapshots of the system

reveal increased spatial clustering as a is increased as well as the presence of defect

structures, perhaps indicative of Kosterlitz-Thouless-type phenomena (Fig. 3.4) [12].

Furthermore, the local clustering of synchronous activity invites comparisons with the

localized excitations seen in arrays of localized laser oscillators [13].

In contrast to the d = 2 case, which serves as the lower critical dimension, a

clear thermodynamic-like phase transition occurs in three spatial dimensions. We see

the emergence of global oscillatory behavior, which persists in the limit of large system

size, as a increases past a critical value ac (Figs. 3.5 and 3.6). This is consistent with
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Figure 3.6: Onset of synchronization in d = 3. Global oscillatory behavior emerges as
a is increased beyond ac, as indicated by the increasing value of r. The system size is
L = 80. Upper left inset: Fluctuations peak near the critical point, giving an estimation
of ac = 2.345± 0.005. Right insets: P1 and P2 undergo smooth temporal oscillations for
large a (upper right), while a lower value of a decreases temporal coherence (lower left).

the predictions of the mean field theory. For a < ac, r approaches zero as system size is

increased, and a disordered phase persists in the thermodynamic limit. As expected, for

a > ac the steady state dynamics of P1 and P2 exhibit smooth temporal oscillations (see

the lower insets in Fig. 3.6) similar to the mean field case beyond the Hopf bifurcation

point. In addition, Fig. 3.6 shows the behavior of the order parameter as a is increased

for the largest system studied (L = 80); the upper left inset shows the peak in χ at

a = 2.345 ± 0.005, thus providing an estimate of the critical point ac where fluctuations

are largest. Strictly speaking, we must extrapolate this peak to obtain a result in the

limit of infinite system size, but we see no change in the value ac at which the peak

occurs as system size is increased beyond L = 40, indicating that finite size effects are

small in the determination of ac in systems beyond this size. At any rate, such finite size

effects are within the range of our estimation. We tried to apply the Binder cumulant

crossing method [14] for determining ac more precisely, but residual finite size effects

and statistical uncertainties in the data prevent us from determining the crossing point

with more precision than that stated above. In any case, we are only interested in

determining the critical point with sufficient accuracy to determine the universality class
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only single peaks of varying widths, consistent with the expectations for a second order
phase transition.

of the transition. For this, as we show below, our current estimation suffices in three

dimensions as well as in higher dimensions. In addition, we note that the transition to

synchrony appears to be a smooth, second order phase transition. To rule out potential

multistability (and thus a discontinuous first order transition), we show histograms of

r for d = 4 given over all independent trials in Fig. 3.7. The histograms show no

evidence whatsoever of multiple peaks beyond the statistical fluctuations expected for

the relatively small sample size, and thus we can safely rule out a discontinuous transition,

in agreement with the findings of the mean field analysis. Similarly peaked histograms

are found in d = 3 (less sharply peaked but distinctly unimodal) and d = 5 (more sharply

peaked).

To further characterize this transition, we use a systematic finite size scaling

analysis. We start by assuming the standard form for r in a finite system,

r = L−β

ν F [(a− ac)L
1

ν ], (3.6)

where F (x) is a scaling function that approaches a constant as x → 0. This ansatz

suggests that near the critical point we should plot rL
β

ν vs. ( aac
− 1)L

1

ν , and data from
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different system sizes should collapse onto a single curve. To test our numerical data

against different universality classes we choose the appropriate critical exponents for

each, recognizing that there are variations in the reported values of these exponents. For

the XY universality class we use the exponents reported in [15] (β = 0.34 and ν = 0.66).

For the Ising exponents we use those given in [16] (β = 0.31 and ν = 0.64). In Fig. 3.8,

we see quite convincingly a collapse when exponents from the XY class are used. For

comparison, we also show the data collapse when 3D Ising exponents are used (Fig. 3.9).

Our data suggests that the model falls within the XY universality class, though the very

small differences between XY and Ising exponents makes it impossible to entirely rule

out Ising-like behavior. We should point out that while some reported values of the

Ising critical exponents differ from the XY values by more than those used above, others

differ by less (see [17] for an exhaustive collection of estimates). Note that this scaling

procedure was attempted for many values ac within the stated range of accuracy. In all

cases where a distinction could be made, the XY exponents provided a better collapse

than the corresponding Ising exponents.

To complete the analogy with the equilibrium phase transition, we explore

spatial correlations in d = 3. Specifically, we calculate C(l), the spatial correlation

function, given by

C(l) = 〈
N∑

j=1

3∑

n=1

exp (iφj) exp (−iφj+ln)〉 − r2. (3.7)

Here φj again indicates the discrete phase of the oscillator at site j, and ln denotes

the Cartesian components in the x, y, and z directions at distance l from site j. The

correlation function depends only on this distance. As seen in Fig. 3.10, correlations

develop for values of a near the critical point, while this correlation is absent away from

ac. The functional form of C(l) as a approaches ac is similar to that seen in equilibrium

transitions. Indeed, the lower inset is at the critical point (a = 2.345) and explicitly

shows power law decay of the correlation function. The upper inset is far from the

critical point (a = 1.8) and shows exponential decay.

In four spatial dimensions we also see a transition to synchrony characterized

by large fluctuations at the critical point. Here we estimate the transition coupling

to be ac = 1.900 ± 0.025 by again considering the peak in χ (see Figs. 3.11 and 3.12).
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Because we expect d = 4 to be the upper critical dimension in accordance with XY/Ising

behavior, we anticipate a slight breakdown of the scaling relation (3.6). An alternate

scaling ansatz valid at duc is given by (3.6) with the transformation L→ ln(L)L1/4 [18].

A priori it is not clear how strongly (3.6) will be violated in d = 4, nor is it clear that

the modified ansatz will better serve our purposes; therefore, we will use both forms of

scaling in testing for the mean field exponents ν = 1/2 and β = 1/2.

As shown in Fig. 3.13, the data collapse is very good with the mean field

exponents regardless of which scaling ansatz is used. As such, our simulations suggest

that d = 4 serves as the upper critical dimension; additionally, it appears that corrections

to finite-size scaling at d = 4 are not substantial, though a much more precise study would

be needed to investigate such corrections in greater detail.

To further support the claim that duc = 4, we consider the case d = 5. We

see a transition to synchrony which occurs at ac = 1.750 ± 0.015 (see Figs. 3.14 and

3.15). As expected, this value for ac is considerably closer than the critical coupling in

four dimensions to the value ac = 1.5 calculated by linear stability analysis in mean field

theory.

Finally, it is interesting to test the suggestion of Jones and Young [18] that
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above the critical dimension, d > duc, it is appropriate to modify the finite size scaling

ansatz (3.6) by the transformation L → Ld/4. We test this suggestion for d = 5. As

indicated in Fig. 3.16, the data collapse is excellent for both the original scaling and the

modified form of the ansatz. The collapse of the data with mean field exponents seems

slightly better using the modified ansatz, though a much more precise study would be

required to accurately capture the form of the modified scaling in d > duc. In any case,

our data suggest that the model exhibits mean field behavior in d = 5, verifying that

d = 4 serves as the upper critical dimension.

3.5 Discussion

We have introduced a simple discrete model for studying phase coherence in

spatially distributed populations of noisy coupled oscillators. This model lends itself to

numerical study even in the case of nearest neighbor coupling because each oscillator is a

simple three-state system rather than one of the usual continuum choices. The coupled

system is therefore much simpler than the usual set of coupled nonlinear differential

equations.
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The collapse of the data is quite convincing when the exact mean field exponents are
used.

A mean field treatment combined with linear stability analysis shows that the

globally coupled model undergoes a supercritical Hopf bifurcation to macroscopic syn-

chrony as the coupling parameter a is increased. We are able to determine the mean

field critical coupling constant analytically. For locally coupled units, numerical solution

of the system shows the emergence of a thermodynamic synchronous phase for d > 2,

indicating that the lower critical dimension is dlc = 2. As d is increased, the numerically

established critical value ac approaches that predicted by the mean field treatment of

the model. For d = 3, we give strong numerical evidence that the model falls into the 3D

XY universality class, while for d = 4 the critical exponents are those predicted by mean

field theory. The exponents in d = 5 also take on the mean field values, thus verifying

that d = 4 corresponds to the upper critical dimension duc.

While nonequilibrium phase transitions have a much wider diversity in univer-

sality classes than equilibrium ones [19], it is remarkable that the prototype of a nonequi-

librium transition, namely, a phase transition that breaks the symmetry of translation

in time, is described, at least for the critical exponents investigated in this paper, by

an equilibrium universality class. In particular, the Mermin-Wagner theorem, stating
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that continuous symmetries can not be broken in dimension two or lower, appears to

apply. Furthermore, the XY model is known to display a Kosterlitz-Thouless transition,

in which, beyond a critical temperature, vortex pairs can unbind into individual units

creating long range correlations. Preliminary results indicate that a similar transition

occurs in our model, though a detailed study is still beyond our reach. Finally, a note

of caution concerning the discreteness of the phase is in order. We first note that mi-

croscopic models often feature discrete degrees of freedom. For example, our model is

reminiscent of the triangular reaction model introduced by Onsager [20], on the basis of

which he illustrated the concept of detailed balance as a characterization of equilibrium.

Continuous phase models appear in a suitable thermodynamic limit. We stress that the

breaking of time translational symmetry can occur independently of whether the phase

is a discrete or continuous variable. It is, however, not evident whether continuous and

discrete phase models belong to the same universality class. The results found here seem

to support the latter thesis, but a renormalization calculation confirming this hypothesis

would be welcome.
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4

Effects of Disorder on

Synchronization of Discrete

Phase-Coupled Oscillators

4.1 Introduction

Starting with Kuramoto’s canonical model of nonlinear oscillators, simple, phe-

nomenological models of synchronization have proven useful in a variety of contexts [1,

2, 3, 4, 5, 6, 7, 8, 9], including the characterization of emergent synchronization as a

nonequilibrium phase transition (see Chapter 3). We have seen [8, 9] in Chapters 2

and 3 that a model of three-state identical phase-coupled stochastic oscillators is ideally

suited for studying the nonequilibrium phase transition to synchrony in locally-coupled

systems, owing in large part to its numerical simplicity. The utility of these studies

rests on the well-established notion of universality, that is, on the contention that mi-

croscopic details do not determine the universal properties associated with the breaking

of time-translational symmetry that leads to a macroscopic phase transition. Statistical

mechanics is thus enriched by simplistic, phenomenological models (the Ising model be-

ing the most ubiquitous example) whose microscopic specifics are known to be, at best,

substantial simplifications of the underlying quantum mechanical nature of matter, but

whose critical behavior captures that of more complex real systems. In this spirit, our

36



37

simple tractable model captures the principal features of the synchronization of phase-

coupled oscillators. In the globally coupled (mean field) case our model undergoes Hopf

bifurcation which can be either subcritical or supercritical. With appropriately chosen

nearest neighbor coupling, we have shown that the array undergoes a continuous phase

transition to macroscopic synchronization marked by signatures of the XY universality

class [10, 11], including the correct classical exponents β and ν, and lower and upper

critical dimensions 2 and 4 respectively.

In this chapter we focus on globally coupled arrays and expand our earlier

studies to the arena of transition rate disorder. We start with our three state model

(Eq. (2.1)), in which identical synchronized units are governed by the same transition

rates as individual uncoupled units. Then, in the spirit of the original Kuramoto prob-

lem [3], we explore the occurrence of synchronization when there is more than one tran-

sition rate and perhaps even a distribution of transition rates among the phase-coupled

oscillators. In particular, we explore the conditions (if any) that lead to a synchronization

transition in the face of a transition rate distribution, discuss the relation between the

frequency of oscillation of the synchronized array and the transition rates of individual

units, and explore whether or not the existence of units of different transition rates in

the coupled array may lead to more than one phase transition.

The chapter is organized as follows. In Sec. 4.2 we describe the model, including

our choice of coupling coefficients (U, V,W ) (see Eq. (2.4)) and the associated rationale,

for an array of identical units. In Sec. 4.3 we present results for a dimer composed of two

units of different intrinsic transition rates. While there is of course no phase transition

in this system, it is instructive to note that there is a probability of synchronization of

the two units that increases with increasing coupling strength. Section 4.4 introduces

disorder of a particular kind, useful for a number of reasons that include some analytical

tractability. Here our oscillators can have only one of N distinct transition rates, where

N is a small number. We pay particular attention to the dichotomous case, N = 2. This

simple disordered system reveals some important general signatures of synchronization.

We also consider the cases N = 3 and N = 4, but find that the N = 2 case already

exhibits most of the interesting qualitative consequences of a distribution of transition

rates. In particular, we are able to infer the important roles of the mean and variance of

the distribution. In Sec. 4.5 we generalize further to a uniform finite-width distribution
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Figure 4.1: The steady state probability P∗
A that both units of a dimer are in the same

state for a range of µ and a. Top: contour image. Bottom: a single curve for a = 2.2.
In the latter case, it is clear that as µ rises, synchronization rapidly decreases.

of transition rates and explore this inference in more detail. Section 4.6 summarizes our

results and poses some questions for further study.

4.2 The Model

Our point of departure is once again a stochastic three-state model governed

by transition rates g (see Fig. 2.1), where each state may be interpreted as a discrete

phase [8, 9]. The unidirectional, probabilistic nature of the transitions among states

assures a qualitative analogy between this three-state discrete phase model and a noisy

phase oscillator.

To study coupled arrays of these oscillators, we couple individual units by
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Figure 4.2: The steady state probability P∗
A that both units of a dimer are in the same

state for (γ1, γ2) = (0.5, 1.5) as a is increased. The points represent simulation results
averaged over 75 independent realizations, where P∗

A is measured as the fraction of time
that both units are fully synchronized. The error bars represent ± one standard deviation
over these realizations. The solid line is the analytical result.

allowing the transition rates of each unit to depend on the states of the units to which

it is connected. Specifically, for N identical units we choose the transition rate of a unit

ν from state i to state i+ 1 as

gi = g exp

[
a(Ni+1 −Ni−1)

n

]
, (4.1)

where a is the coupling parameter, g is the transition rate parameter, n is the number

of oscillators to which unit ν is coupled, and Nk is the number of units among the n

that are in state k. Note that this corresponds to Eq. (2.4) with (U, V,W ) = (1,−1, 0).

Each unit may thus transition to the state ahead or remain in its current state in a

manner dependent on the states of the remaining units to which it is coupled. In early

chapters we have considered the globally coupled system, n = N − 1, and also nearest

neighbor coupling in square, cubic, or hypercubic arrays, n = 2d (d = dimensionality).

Here we focus on the globally coupled array. We are led to the familiar set of mean

field equations given by Eqs. (2.5, 2.6) containing a coupling specified by Eq. (4.1). We

remind the reader that this model undergoes a Hopf bifurcation at a critical coupling of

ac = 3.

Our previous chapter used a different form of the coupling, with (U, V,W ) =

(1, 0,−1), which guaranteed a continuous phase transition. That earlier choice was
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also numerically advantageous because it led to a phase transition at a lower critical

value ac of the coupling constant (ac = 1.5 in the globally coupled array) than other

choices. A lower coupling in turn facilitates numerical integration of equations of motion

because the time step that one needs to use near the phase transition must be sufficiently

small, dt ¿ e−a/g. However, that previous coupling choice brought with it a result

that is undesirable in our present context (but was of no consequence before, where we

only dealt with behavior near criticality). In our earlier model, as the units become

increasingly synchronized above the transition point, the average transition rate of a

cluster becomes substantially dependent on the value of a; specifically, the transitions

and cluster oscillation frequency slow as a is increased due to an exponential decrease

in the transition probability. To cite an explicit example, consider a small subsystem

composed of units which are all in the same state at time t (that is, a cluster of units which

are perfectly synchronized). The previous form of the coupling yields an exponentially

small transition rate in this case, and hence the oscillation frequency of this microscopic

cluster approaches zero for high values of a. In fact, a similar problem arises for any

coupling with W 6= 0, indicating that these models are not appropriate for studies far

above threshold owing to an anomalous (and exponential) slowing down or speeding up

of oscillators.

Since here we specifically wish to analyze the effects of transition rate disorder,

it is desirable to deal with a model in which the average transition rate of identical

synchronized units depends only on their intrinsic transition rate parameter and not on

coupling strength. The form (4.1)–and in fact any choice with W = 0–reduces simply to

the constant g when the coupled units are perfectly synchronized, meaning our model

retains a finite, nonzero frequency in the strongly coupled limit. On the other hand,

the critical coupling in this new version is higher than in our earlier model and hence

it is numerically less efficient. In addition, the Lyapunov coefficient l1 vanishes for this

choice of coupling, so we can not be assured of a continuous phase transition. In fact,

we will see below that in certain cases the nature of the phase transition depends on

the level of disorder within the population. With that exception, we focus our attention

in this chapter on the requirements for macroscopic cooperativity, not the nature of the

corresponding transition.
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4.3 Dimer

Consider first the simplest “disordered array,” namely, a mutually coupled

dimer where one unit is characterized by g = γ1 and the other by g = γ2. In terms

of the states (phases) S1 and S2 of units 1 and 2, there are 9 possible dimer states,

(S1, S2) = (1, 1), (1, 2), . . . , (3, 3), but it is not necessary to seek the ensemble distribu-

tions for all of these states in order to decide whether or not the two units are synchro-

nized. We can directly write an exact reduced linear evolution equation for the 3 states

A, B, and C, where A corresponds to any situation where both units are in the same

state [that is, (S1, S2) = (1, 1), (2, 2), and (3, 3)], state B corresponds to a situation where

unit 1 is one state “ahead” [(S1, S2) = (2, 1), (3, 2), and (1, 3)], and state C corresponds

to a situation where unit 2 is one state “ahead” [(S1, S2) = (1, 2), (2, 3), and (3, 1)]. The

evolution equation for these states is the closed linear set

∂P(t)/∂t = AP(t), (4.2)

with P(t) the time dependent probability column vector (PA(t) PB(t) PC(t))T and

A =




−γ1 − γ2 bγ2 bγ1

γ1 −b−1γ1 − bγ2 b−1γ2

γ2 b−1γ1 −bγ1 − b−1γ2


 , (4.3)

and where we have introduced the abbreviation

b ≡ ea. (4.4)

This evolution equation is easy to derive from the definition of the coupling, Eq. (4.1).

For example, when the system is in state A, it can either go to state B, which happens

when unit 1 jumps ahead with transition rate γ1, or it can go to state C, which happens

when unit 2 jumps ahead with transition rate γ2. Similarly, when the system is in

state B, it can either jump to state A (when the lagging unit transitions forward) with

transition rate bγ2 or jump to state C (when the leading unit transitions forward) with

transition rate b−1γ1.

With normalization, Eq. (4.2) becomes a 2-dimensional equation having steady
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state solution

P∗
A =

b(γ2
1 + b2γ1γ2 + γ2

2)

(1 + b+ b2)(γ2
1 + γ2

2) + (2 + b3)γ1γ2
,

P∗
B =

b2γ2
1 + γ2(γ1 + γ2)

(1 + b+ b2)(γ2
1 + γ2

2) + (2 + b3)γ1γ2
.

(4.5)

The eigenvalues of the two-dimensional matrix obtained from A after implementing

normalization have negative real parts for all positive values of the parameters a, γ1,

and γ2, indicating that the fixed points given by Eq. (4.5) are stable. Hence, the system

asymptotically tends to this steady state solution. We are particularly interested in P ∗
A,

the probability for the system to be synchronized. In terms of the single relative width

parameter width/mean,

µ ≡ 2|γ1 − γ2|
(γ1 + γ2)

(4.6)

(0 ≤ µ ≤ 2), this probability is

P∗
A =

b

(2 + b)




1 + µ2 (2 − b2)

4(2 + b2)

1 + µ2 b(2 + 2b− b2)

4(2 + b2)(2 + b)


 . (4.7)

The probability of synchronization for a dimer of identical units (µ = 0) is thus P∗
A =

b/(2 + b) = ea/(2 + ea), which increases with increasing coupling. This is the maximal

synchronization; it is easy to ascertain that P∗
A decreases with increasing µ, as one would

anticipate. The full behavior of P∗
A as a function of the various parameters is shown

in Figs. 4.1-4.2. The gradual increase in synchronization probability with increasing

coupling turns into a sharp transition as a function of a in the infinite systems to be

considered below. The decreased synchronization probability when the frequencies of the

two units become more dissimilar (increasing µ) will also be reflected in the dependence

of the critical coupling on transition rate parameter disorder.

4.4 N Different Transition Rates

Next we consider globally coupled arrays of oscillators that can have one of N
different transition rate parameters, g = γu, u = 1, . . . ,N . To arrive at a closed set of

mean field equations for the probabilities we again go to the limit of an infinite number

of oscillators, N → ∞. However, we must do so while preserving a finite density of each
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of the N types of oscillators. The probability vector is now 3N -dimensional, P (t) =

(P1,γ1 P2,γ1 P3,γ1 · · · P1,γN P2,γN P3,γN )T . The added subscript on the components of

P (t) keeps track of the transition rate parameter. Explicitly, the component Pi,γu is the

probability that a unit with transition rate parameter g = γu is in state i. The mean field

evolution for the probability vector is the set of coupled nonlinear differential equations

∂P (t)/∂t = MN [P (t)]P (t), with

MN [P (t)] =




Mγ1 0 . . . 0

0 Mγ2 . . . 0

: : : :

0 . . . 0 MγN



. (4.8)

Here

Mγu =




−g1(γu) 0 g3(γu)

g1(γu) −g2(γu) 0

0 g2(γu) −g3(γu)


 , (4.9)

and

gi(γu) = γu exp

[
a

N∑

k=1

ϕ(γk) (Pi+1,γk
− Pi−1,γk

)

]
. (4.10)

The function ϕ(γk) is the fraction of units which have a transition rate parameter g = γk.

We focus on uniform distributions ϕ(γk) = 1/N , but subsequently take note

of the consequences of relaxing this assumption. For uniform distributions, probabil-

ity normalization again allows us to reduce this to a system of 2N coupled ordinary

differential equations. It is interesting to compare this setup with that of the original

Kuramoto problem with noise, where a continuous frequency distribution is introduced

and the governing equation is a nonlinear partial differential equation [the Fokker-Planck

equation for the density ρ(θ, ω, t)] [12]. The discretization of phase in our model results

instead in a set of 2N coupled nonlinear ordinary differential equations.

While it is nevertheless still difficult to solve these equations even for small N ,

we can linearize about the disordered state P (t) = (1/3 1/3 . . . 1/3)T and arrive at a



45

0.5 1 1.5 2

3.5

4

4.5

5

5.5

6

ac

0.25 0.5 0.75 1 1.25 1.5 1.75

1.75

2.25

2.5

2.75

3

3.25

1 2

ω

γ γ+

µ

µ

Figure 4.4: Upper panel: Critical coupling ac as a function of µ for a dichotomous (N =
2) array of globally coupled oscillators. The two curves represent the exact relationship
(lower curve) and the small µ approximation (upper curve), respectively. Lower panel:
The frequency of synchronous oscillation at the transition point. Lower curve is the
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2N × 2N Jacobian of the block matrix form

J =




J1(γ1) J2(γ1) J2(γ1) . . . J2(γ1)

J2(γ2) J1(γ2) J2(γ2) . . . J2(γ2)

: : : : :

: : : : :

J2(γN ) J2(γN ) . . . J2(γN ) J1(γN )




. (4.11)

The blocks J1(g) and J2(g) are given by:

J1(g) =


 −2g −g − ag/N

g + ag/N) −g + ag/N


 (4.12)

and

J2(g) =


 0 −ag/N
ag/N ag/N


 . (4.13)

While we explore this in more detail below only for small N , we note that in general the

Jacobian (4.11) has N pairs of complex conjugate eigenvalues, only one pair of which

seems to have a real part that becomes positive with increasing coupling constant a. This

implies that there is a single transition to synchrony even in the presence of the transition

rate disorder that we have introduced here. We go on to confirm this behavior for N = 2,

3, and 4.

4.4.1 Two transition rate parameters

For the N = 2 case, the four eigenvalues (λ+, λ
∗
+, λ−, λ

∗
−) of the Jacobian can

be determined analytically. We find

Reλ±
γ1 + γ2

=
1

8
[a− 6 ±B(a, µ) cos (C(a, µ))] ,

Imλ±
γ1 + γ2

=
1

8

[√
3(a+ 2) ±B(a, µ) sin (C(a, µ))

]
,

(4.14)

where

B(a, µ) ≡
√

2
[
a4 − 6a2µ2 + 3µ4(a2 + 3)

]1/4
,

C(a, µ) ≡ 1

2
tan−1

(
−
√

3(a2 − (a+ 3)µ2)

a2 + 3(a− 1)µ2

)
.

(4.15)
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Aside from an overall factor (γ1 + γ2), Eqs. (4.14) depend only on the relative width

variable as defined in Eq. (4.6), and therefore the critical coupling ac depends only on

µ. As illustrated in the upper panel of Fig. 4.12, one pair of eigenvalues acquires a

positive real part (i.e., crosses the imaginary axis) at a critical value a = ac, but the

other pair shows no qualitative change as a is varied. While this figure shows only the

particular transition rate parameter values (γ1, γ2) = (1, 3), the qualitative features of

these eigenvalues remain similar for the entire range of positive parameters. The upper

panel of Fig. 4.3 depicts the contour Reλ+ = 0 in (γ1, γ2, a) space; this contour represents

the critical surface and thus separates the synchronous and disordered phases.

The critical coupling is the value of a at which Reλ+ = 0 (Reλ− does not vanish

for any a). It is easy to ascertain that Imλ+ does not vanish at ac, so that the critical

point is a Hopf bifurcation. Furthermore, it is clear from Eq. (4.14) that ac depends

only on the relative width parameter µ, and it is also straightforward to establish that

ac increases with increasing µ, that is, a stronger coupling is necessary to overcome

increasingly different values of γ1 and γ2 (see lower panel of Fig. 4.3). Note, however,

that the dependence on µ implies that it is not just the difference in transition rates but

the relative difference or percent difference relative to the mean transition rate that is

the determining factor in how strong the coupling must be for synchronization to occur.

A small-µ expansion leads to an estimate of ac to O(µ2),

ac ≈
1

8

(
12 + 3µ2 +

√
3
√

(12 + µ2)(4 + 3µ2)
)
, (4.16)

a result that exhibits these trends explicitly. The upper panel in Fig. 4.4 shows that this

estimate is remarkably helpful even when µ2 is not so small.

The frequency of oscillation of the synchronized system at the transition is given

by ω = lima→acImλ+. From Eq. (4.14) it follows that ω depends on (γ1 + γ2) as well as

µ. The small-µ expansion leads to the estimate

ω = Im(λ±)|a→ac ≈ 1

4

√
3(γ1 + γ2)(4 + µ2), (4.17)

which works exceedingly well up to µ ∼ 1 (see Fig. 4.4).

To check the predictions of our linearization procedure, we numerically solve the

nonlinear N = 2 mean field equations. In agreement with the structure of the linearized

eigenvalues, all components of P (t) synchronize to a common frequency as the phase
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Figure 4.5: The components P1,γ1 and P2,γ1(two lighter or brown curves), and P1,γ2 and
P2,γ2(two darker or blue curves), of the vector P (t) vs time for γ = 1, ∆ = 0.125,
with a = 3.15, which is above the critical value ac ≈ 3.02 predicted by linearization.
The left inset shows the order parameter r(t) as it approaches its long-time limit. The
right inset shows the frequency spectrum of a component of P (t). The spectrum has a
dominant peak near ω ≈ 4, and is expected to approach the frequency ω ≈ 3.5 predicted
by linearization as we approach the transition point a→ ac.

boundary in (µ, a)-space) is crossed. Interestingly, the numerical solutions also give us

insight into the amplitude of the oscillations; that is, they allow us to explore the relative

“magnitude” of synchronization within the two populations. As we will see, the two

populations indeed oscillate with the same frequency, but with amplitudes and “degrees

of synchronization” that can be markedly different. Consider the order parameter r(t)

given by

r(t) ≡ 1

N

∣∣∣∣∣

N∑

ν=1

eiφν

∣∣∣∣∣ . (4.18)

Here φν is the discrete phase 2π(k-1)/3 for state k ∈ {1, 2, 3} at site ν. For phase

transition studies, one would likely average this quantity over time in the long time

limit, and also over independent trials. For our purposes here, though, we find the time-

dependent form more convenient. In the mean field case, where we solve for probabilities

to be in each state, the order parameter is easily calculated by writing the average in

Eq. (4.18) in terms of these probabilities rather than as a sum over sites. Specifically,
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Figure 4.8: Time-averaged order parameter r in the long-time limit vs ∆ for the indi-
vidual oscillator populations characterized respectively by the transition rate parameter
γ1 (stars) and γ2 (circles), and for the entire mixed array (squares). The insets show the
time evolution of the probability vector components P1,γ1 and P2,γ1 (lighter or brown
curves) and P1,γ2 and P2,γ2 (darker or blue curves) for widths 0.05 (upper inset), 0.5
(middle inset), and 0.9 (lower inset). Some of the curves are not visible because they
are so perfectly superimposed. While the degree of synchronization varies within each
population, the critical width for de-synchronization is the same for both, as predicted
by linearization. The coupling constant for all cases is a = 3.2 and the average transition
rate parameter γ = 1.5.
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Figure 4.9: Same as Fig. 4.8 but with γ = 3.5 and widths 0.1 (upper inset), 1.3 (middle),
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we have

r =

(
(

3∑

i=1

Pi cosφi)
2 + (

3∑

i=1

Pi sinφi)
2

)1/2

(4.19)

In subsequent figure captions we introduce the notation γ ≡ (γ1 + γ2)/2 (aver-

age transition rate parameter), and the difference ∆ ≡ |γ2−γ1| (note that µ = ∆/γ). As

shown in Figs. 4.5-4.9, the predictions of linearization accurately describe the onset of

macroscopic synchronization and provide an estimation of the frequency of these oscilla-

tions near threshold (see Fig. 4.7). Specifically, Figs. 4.5 and 4.6 show the macroscopic

oscillations for coupling a above threshold. All the oscillators, regardless of their intrinsic

transition rate parameter, oscillate in phase, but the degree of synchronization is greater

in the population with the larger γi (here γ2), as evidenced by the unequal amplitude

of the components of P (t) for the two populations. The “greater degree of synchroniza-

tion” is also apparent in the order parameter r(t) shown in the insets, which is larger for

the oscillators with the higher intrinsic transition rate. These results support the notion

that populations with higher transition rate parameters in some sense synchronize more

readily. We explore this behavior in more detail in Chapter 5. The figures also show

the frequency spectrum of any component of P (t). The peak occurs at the frequency

of oscillation of the synchronized array. As a → ac this frequency approaches the value

Imλ+ predicted by linearization, as shown in Fig. 4.7.
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P1,γ1=3.5 and P1,γ=4.5 when all units are globally coupled. Bottom right inset: the same
curves for populations that are uncoupled from one another (but still globally coupled
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Figures 4.8 and 4.9 illustrate the sudden de-synchronization (at fixed a and γ)

accompanying an increase in the difference ∆. This behavior is reminiscent of that of the

original Kuramoto oscillators, which become disordered as the width of the frequency dis-

tribution characterizing the population exceeds some critical value. The insets show the

components of P (t) and confirm that both populations undergo the de-synchronization

transition at the same critical value of the difference ∆. Comparing the two figures,

we see that the system with a higher average transition rate parameter (Fig. 4.9) can

withstand a larger difference ∆ before de-synchronization, again confirming our earlier

observations.

One last point to consider is the relation between the frequency of oscillation of

the synchronized array above ac and the frequencies of oscillation of the two populations

if they were decoupled from one another. As coupling increases, the oscillation frequency

ω moves closer to that of the population with the lower transition rate parameter. This

is illustrated in Fig. 4.10 for the same parameters used in Fig. 4.7.

Finally, a visually helpful illustration of these behaviors is obtained via a direct
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Figure 4.11: Long-time snapshots of a globally coupled system above and below thresh-
old. In both cases, (γ1, γ2) = (0.5, 1.5). On the left, a = 3.5 < ac while on the right,
a = 4.1 > ac. In both cases, all units are globally coupled. For visualization purposes,
the plot is arranged so that population γ1 consists of the first 2500 units (the top), while
population γ2 consists of the second 2500 units (the bottom). Global synchrony emerges
for a > ac. In addition, the population with the higher transition rate parameter is more
synchronized.

simulation of an array with a dichotomous population of oscillators. Since our oscillators

are globally (all-to-all) coupled, the notion of a spatial distribution is moot, and for

visualization purposes we are free to arrange the populations in any way we wish. In

Fig. 4.11 we display an equal number of γ1 and γ2 oscillators and arrange the total

population of N = 5000 so that the first 2500 have transition rate parameter γ1 and the

remaining 2500 have transition rate parameter γ2. In this simulation we have chosen

γ1 = 0.5 and γ2 = 1.5, so that γ = ∆ = 1. Although N = 5000 is not infinite, it is large

enough for this array to behave as predicted by our mean field theory. The left panel

shows snapshots of the phases (each phase is indicated by a different color) when a < ac

and the phases are random. The right panel shows the synchronized array when a > ac.

Clearly, all units are synchronized in the right panel, but the population with the higher

transition rate parameter (lower half) shows a higher degree of synchronization (higher

P (t)) as indicated by the intensity of the colors or the gray scale.
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Figure 4.12: Real parts of the complex eigenvalues for N = 2 (upper panel), N = 3
(middle panel), and N = 4 (lower panel) showing that in each case the real parts of only
a single pair of eigenvalues becomes positive, numerically tested up to very large coupling
constants (a ≤ 30). Upper panel: (γ1, γ2) = (1, 3); middle panel: (γ1, γ2, γ3) = (1, 2, 3);
lower panel: (γ1, γ2, γ3, γ4) = (1, 2, 3, 4).
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4.4.2 N = 3 and N = 4

We can carry out this analysis, albeit not analytically (at least in practice),

for any N . We have explored the cases N = 3 and 4. In both cases there appears to

be only one pair of eigenvalues whose real parts can become positive, suggesting that

synchronization occurs all at once and not in one population at a time (middle and

lower panels of Fig. 4.12). This occurs no matter the distribution of the 3 or 4 transition

rate parameters. For example, in the N = 4 case we have compared in some detail the

cases where the four transition rates are equidistant and where they are pairwise much

closer than the separation between the highest and lowest. In both cases there is a single

transition to synchrony, albeit not at exactly the same value of ac, indicating a more

complex dependence on the transition rate parameter distribution than just via its mean

and width. Furthermore, the basic trends of the dichotomous case broadly carry over,

mainly in that the critical value ac increases when the width of the distribution increases

relative to the mean (as one would expect). On the other hand, the inclusion of more

transition rates within a given range leads to a lowering of the critical coupling. Thus,

for example, the mean transition rate γ and the width ∆ are the same in the cases shown

in the upper and middle panels of Fig. 4.12 (γ = ∆ = 2), and yet ac is higher in the

former (3.95 for N = 2) than in the latter (3.6 for N = 3). Still, the mean and width of

the distribution provide a rough qualitative assessment of the behavior, particularly for

the case of a continuous uniform distribution, which we study in the next section.

In this analysis we have focused on disorder with a uniform distribution, that

is, each of the N frequency parameters is represented by a fraction 1/N of the popu-

lation of oscillators. How robust are our results to a change in this distribution? In

particular, if the frequency parameters are not equally represented, will there still be a

single transition to synchronization? Will the mean and width of the distribution still be

the principal measures of the qualitative behavior of the system? While we leave most

of this analysis to future work, we are willing to make a conjecture about the general-

ization of the principal finding of this work: that there will still be a single transition to

synchronization regardless of the distribution. In fact, we conjecture that the strongest

“conflict” for the system is posed by a uniform distribution, since any other will have

majority populations that are more likely to be more determinant of the behavior of the
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system. To support this conjecture, we present in Figs. 4.13 and 4.14 illustrative results

for nonuniform dichotomous populations. In Fig. 4.13 we show the stability boundary

for varying population ratios as a function of the coupling parameter. In Fig. 4.14 we

show the real parts of each of the two pairs of eigenvalues with increasing coupling for

a number of population ratios, as detailed in the caption. Again, only the real parts of

one pair of eigenvalues crosses from negative to positive, indicating a single transition to

synchronization for the entire system. Note that the critical coupling approaches ac = 3

at each population extreme (consistent with the fact that ac in an array of identical os-

cillators is independent of the frequency parameter [8, 9]), and that, as conjectured, the

strongest coupling is required for synchronization when the two populations are equally

represented. While Figs. 4.13 and 4.14 only show results for (γ1, γ2) = (1, 2), we obtain

similar results for other pairs of frequency parameters within the range of values used in

other figures in this chapter.
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frequency parameters γ1 = 1 and γ2 = 2. The population ratios ϕ(γ1)/ϕ(γ2) are 99/1,
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Figure 4.15: The first Lyapunov coefficient l1 is shown for Hopf bifurcations taking place
at εH = (ac(µ), µ). The bifurcation can be either subcritical and supercritical depending
on the relative width variable.
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4.4.3 First and Second Order Transitions in a Dichotomously Disor-

dered Population

Before continuing on to the more general case of a uniform distribution, we

return to the question of the nature of the bifurcation for the N = 2 dichotomously

disordered case. Interestingly, the dichotomously disordered system corresponding to

Eqs. (4.8) can undergo either a subcritical or supercritical bifurcation depending on

the value of µ characterizing the individual transition rates. The transition to synchrony

occurs at a single value of the coupling ac(µ) dependent on the relative width parameter,

as shown in Section 4.4.1. As such, a and µ are not truly independent parameters, and

we can in principle eliminate a and consider µ to be the bifurcation parameter of interest.

Then, using the machinery discussed in Section 2.3, it is a straightforward but tedious

exercise to numerically evaluate the first Lyapunov coefficient l1(µ) corresponding to

the Hopf bifurcation occurring at (µ, a(µ)). As shown in Fig. 4.15, the sign of l1 varies

depending on the relative width parameter (which in turn determines the critical coupling

ac). Hence, the phase transition to synchrony can appear continuous or discontinuous

depending on the relative difference between the transition rate parameters in the two

populations.

To verify these predictions, we solve the mean field equations numerically in

both the subcritical (µ = 3/4) and supercritical (µ = 7/4) regimes. In the former case,

we consider the case γ1 = 2.5, γ2 = 5.5. Fig. 4.16 clearly indicates that the transition

to synchrony is marked by a discontinuous change in the order parameter r (here time

averaged in the steady state) as a eclipses ac ≈ 3.55. In addition, a small region of

marked hysteresis appears just below threshold. Remarkably, this indicates that a stable

disordered solution coexist with a stable, synchronized solution (the stable limit cycle)

just before threshold.

By contrast, the case µ = 7/4 corresponds to a supercritical Hopf bifurcation

reminiscent of a continuous phase transition. As shown in Fig 4.17, the transition is

characterized by a continuously increasing order parameter; no hysteresis is evident. We

note also that the order parameter displays a power law increase near the onset of the

bifurcation marked by the mean field critical exponent β = 1/2. This is expected both

from the Hopf bifurcation theorem, which prescribes the (a − ac)
1/2 dependence of the
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Figure 4.16: A subcritical Hopf bifurcation occurs for µ = 3/4. Squares represent
solutions starting from ordered (mostly synchronized) initial conditions, while circles
represent solutions starting from disordered (random) initial conditions. Blue points
correspond to population one, γ1 = 2.5, and red points to population two, γ2 = 5.5.
The transition is clearly discontinuous as a eclipses ac ≈ 3.55. In addition, a region of
multistability and corresponding hysteresis exists just below threshold. Solid and dashed
lines are drawn to guide the eye.

limit cycle radius (closely related to r, the order parameter) near the onset of synchrony,

and also because of the analogy with phase transitions in an infinite-dimensional space

(see [8, 9]). Again, we note that the degree of synchronization–as measured by r–is

different in the two populations. We further specify the microscopic underpinnings of

this difference in Chapter 5.

Interestingly, these results indicate that the degree of spatial disorder may

fundamentally alter the nature of the phase transition to synchrony. In both the sub-

critical and supercritical cases, synchronization is marked by the destabilization of the

non-synchronous state at a single value of ac, giving rise to emergent oscillations in a

macroscopic variable (for example, P1,γi
(t)). As such, both cases retain the qualitative

features of synchronization in disordered populations discussed in this chapter; however,

the details of the onset of such cooperation distinguish the two cases. Again we note that

this behavior is reminiscent of that seen in a significantly more complicated setting, that

of Daido’s generalized continuous oscillators [13], where disorder can alter the continuity

of the transition.
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Figure 4.18: The probability that the synchronized array is in state 1 (lighter or brown)
and state 2 (darker or blue) as a function of time for a uniform distribution ϕ(g) on the
interval [1.5, 2.5] and coupling parameter a = 3.15. Insets show the order parameter r(t)
as well as time resolved snapshots of the system.

4.5 Uniform Distribution of Transition Rate Parameters

We now turn to globally coupled arrays where the transition rate parameter g

for each unit is chosen from a uniform distribution over a finite interval, ϕ(g). While

it is difficult to make direct analytical progress in this general case, the earlier dimer

analysis and the arrays of N = 2, 3, 4 different populations of units provide a framework

for understanding the properties of these more general systems. In particular, the earlier

results suggest that this “more disordered” system may also display a single transition

to synchronization. To explore these and other features in more detail, we simulate

N = 5000 globally connected units characterized by the transition rate parameter distri-

bution ϕ(g), and we make several observations. Firstly, we do observe a single transition

to macroscopic synchronization. Secondly, as suggested by the dichotomous case, syn-

chronization appears more readily (that is, for a lower value of a) if the distribution

φ(g) has a larger mean and smaller width. When the mean and width are varied inde-

pendently, the qualitative trends from the dichotomous case are observed here as well.

Thirdly, while synchronization in this system is again governed primarily by the mean

and width of the distribution ϕ(g), the critical value ac is considerably lower than that

of the finite N systems with the same mean and width (as expected).
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Two examples of our simulation results are shown in Figs. 4.18 and 4.19. In

Fig. 4.18 we present the first two components of the 3-dimensional vector P (t) whose

components Pi(t) represent the probability that all units of the entire synchronized array

are in state i. The probabilities P1(t) and P2(t) oscillate in time with slightly modulated

amplitudes and a constant relative phase, indicating global synchronization. The upper

left inset shows the order parameter r(t) and the upper right inset the time resolved

snapshot of the system, both indicating a high degree of synchronization. Note that the

coupling parameter a = 3.15 in the figure is below the critical value ac = 3.2 for the

dichotomous case with the same mean and width.

Figure 4.19 shows the steady state time-averaged order parameter r at constant

a as the width of the φ(g) distribution is increased for a fixed mean. Similar to the N = 2

population case, synchronization is destroyed as the width eclipses some critical value,

and that value increases as the mean of the distribution increases. In Fig. 4.20 we plot

the data from Fig 4.19 as a function of the relative width parameter µ. Recalling that for

the dichotomous array as well as for the dimer synchronization at a given a depends only

on µ, we might expect that the transition point µc (at constant a) is not significantly

mean-dependent, even when there is a distribution of transition rate parameters. In

fact, we can see that the curves approximately collapse onto one curve, indicating that

the relative width µ provides a useful control parameter for predicting synchronization.

Hence, the predictions of the linearization analysis for the N = 2 case provide qualitative

insight into the behavior of the disordered population.

4.6 Discussion

We have presented a discrete model for globally coupled stochastic nonlinear

oscillators with a distribution of transition rate parameters. Our model exhibits a range

of interesting dynamical behavior, much of which mimics the qualitative features of the

canonical Kuramoto oscillator [3] and even more generalized models [13], but with a

mathematically and numerically considerably more tractable model. Since our phase

variable is discrete (whereas the phase variable in the canonical problem is continuous),

a distribution of N different transition rates in our array leads to a set of 2N coupled

nonlinear ordinary differential equations instead of a single partial differential equation



64

for the probability distributions of interest. Linearization of our model around the criti-

cal point leads to a problem which at least for small N (specifically, for the dichotomous

disorder case) becomes analytically tractable. Distributions involving a large finite num-

ber of transition rate parameters, while not easily amenable to analytic manipulation

even upon linearization, reduce to a simple matrix algebra problem. For any distribution

of transition rate parameters, even continuous, the model is in any case readily amenable

to numerical simulation.

Our most salient conclusion is that such disordered globally coupled arrays

of oscillators, even in the face of transition rate parameter disorder, undergo a single

transition to macroscopic synchronization marked by a single Hopf bifurcation. This

bifurcation can be continuous or discontinuous, but in both cases the asynchronous so-

lution becomes unstable at a single value ac; that is, there are not multiple bifurcations

occurring, for example, within different subpopulations. While the coupling is entirely

different in the canonical Kuramoto model and therefore direct comparisons with our

model are not straightforward, we note that a single transition involving a single dis-

crete eigenvalue emerging from a continuous spectrum is observed for a continuum of

frequencies distributed unimodally and symmetrically [3, 12, 14, 15]. We have also shown

that the critical coupling ac for synchronization in our model depends strongly (but not

exclusively) on the width ∆ and mean γ of the transition rate parameter distribution,

specifically via the relative width µ = ∆/γ. This general feature is already apparent in

the synchronization behavior of a dimer of two oscillators with transition rate parameters

γ1 and γ2. An infinite array of two populations of oscillators, one with transition rate pa-

rameter γ1 and the other with γ2, displays a Hopf bifurcation, with ac determined solely

by µ. While a quantitative prediction of synchronization on the basis of the relative

width is not possible in all cases, it does determine qualitative aspects of the transition

for more complex transition rate parameter distributions. We have explored this asser-

tion for arrays with N = 2, 3, and 4 and with a uniform distribution of transition rates

over a finite interval, and we expect it to be appropriate for other smooth distributions

as well. In the Kuramoto model the distribution of frequencies is usually taken to be

Lorentzian for analytic tractability, and therefore determined by a single parameter that

precludes separate characterization in terms of two parameters (average frequency and

width).
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In addition, we note the remarkable result that even in the tractable case of

N = 2 (dichotomous disorder), the phase transition can switch between continuous

and discontinuous depending on the level of disorder. Similar behavior has been seen

in generalized continuous oscillators with bimodal frequency distributions [13], hence,

it appears our oscillator system produces many complexities seen in significantly more

complicated models.

A number of further avenues of investigation based on transition rate disorder

in our stochastic three-state phase-coupled oscillator model are in progress. One is

the exploration of the effects of transition rate disorder in locally coupled arrays. We

have succeeded in fully characterizing such arrays for identical oscillators [8, 9], and

would ideally like to extend this full characterization in terms of critical exponents and

upper and lower critical dimensions to the case of dichotomous disorder. In the locally

coupled system this “simple disorder” scenario is already considerably complicated by

the fact that the spatial distribution of the two populations may play a role. In addition,

the transition will presumably appear either supercritical or subcritical depending on

the distribution of parameters, meaning we can not simply apply the techniques from

Chapter 3, which are only appropriate for continuous transitions. In fact, the very nature

of critical exponents relies on a continuous scaling of the order parameter near criticality.

Perhaps most importantly, this chapter raises questions regarding the nature of

synchronization above threshold. In particular, in the case of dichotomously disordered

populations, what exactly is represented–in terms of individual oscillator behavior–by

variations in the degree of synchronization between two subpopulations? That is, why

does one population show a larger r than the other, given that both are experiencing a

coupling greater than ac required for the Hopf bifurcation? To these questions we turn

our attention in Chapter 5. Finally, we note that a two-state version of this model (which

of course does not lead to phase synchronization as discussed here) has recently been

shown to accurately capture the unique statistics of blinking quantum dots [16]. Such

wider applicability of the model, together with its analytic and numerical tractability,

clearly opens the door to a number of new directions of investigation.
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5

Synchronization Above Threshold

in Discrete Phase Coupled

Oscillators

5.1 Introduction

Following our analysis of synchronization in a variety of contexts in Chapters 2-

4, we conclude this part of the thesis with an analysis of the microscopic underpinnings of

synchronization above threshold in collections of globally coupled oscillators. We have

seen that macroscopic synchronization–distinguished by the onset of oscillations in a

macroscopic quantity (e.g. Pi) owing to a Hopf bifurcation–does not always occur by

the same mechanisms. The transition can be continuous or discontinuous, depending

on both microscopic features of the model and the level of transition rate disorder in

the system. In addition, a value of r < 1 indicates that synchronization is not perfect,

meaning that all oscillators are not in phase at all times. In this chapter, we explore the

microscopic foundations of this suprathreshold synchronization. In particular, we calcu-

late the time-averaged frequencies of individual oscillators and explore the relationship

between this quantity and the level of phase synchronization for coupling a above the

critical threshold ac. We do this for a specific model (both in single and dichotomously

disordered populations), but the principal results should hold for all U ,V , and W that
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give a Hopf bifurcation. In fact, only the nature of the bifurcation (near ac) is affected by

the choice (U, V,W ), and this chapter primarily deals with oscillators above threshold

and beyond any potential regions of hysteresis. That said, we note that as we move

far above threshold, other choices (U, V,W ) with W 6= 0 would lead to an anomalous

speeding or slowing of all oscillators, but given that the results of this analysis pertain

to slightly above threshold phenomena and furthermore, that this speeding or slowing

would affect all oscillators equally, it should in no other way affect the conclusions reached

here.

5.2 The Model

We begin by considering a stochastic three-state model governed by transition

rates g, where each state may be interpreted as a discrete phase [2, 3, 4]. Because the

transitions among states are unidirectional and do not conform to deterministic rate

laws, the model retains a qualitative link with a noisy phase oscillator.

Once again we couple individual units by allowing the transition rates of each

unit to depend on the states of the units to which it is connected. In this chapter, for

N identical units we choose the transition rate of a unit ν from state i to state i+ 1 as

gi = g exp

[
a(Ni+1 −Ni−1)

n

]
, (5.1)

where i = 1, 2, 3 and i+1 = 1 with i = 3, a is the coupling parameter, g is the transition

rate parameter, n is the number of oscillators to which unit ν is coupled, and Nk is the

number of units among the n that are in state k. As in Chapter 4, we choose a model

corresponding to (U, V,W ) = (1,−1, 0) to prevent the physically unrealistic speeding or

slowing of macroscopic oscillations as we move farther from threshold. Each unit may

thus transition to the state ahead or remain in its current state, and the propensity

for such a change depends on the states of the units to which it is coupled. Here we

focus entirely on globally coupled arrays, n → N − 1, with N sufficiently large that

Nj/(N − 1) → Pj .



71

1 2 3 4 5 6

500

1000

1 2 3 4 5 6
0

500

1000

C
ou

nt
s

1 2 3 4 5 6
−0.4

0.2 

1 2 3 4 5 6
0

500

1000

1 2 3 4 5 6
−0.4

0.2 

ω

P
(ω

 )

1 2 3 4 5 6
−0.4

0.2 

Figure 5.1: Each plot shows a histogram of time-averaged frequencies (in the steady
state), where the vertical axis represents the number of units (out of N = 3500 total
units) having the frequency ω̄. The power spectrum of P1,γ1 (blue) overlays each his-
togram. The top panel is below synchronization threshold (a = 2.65), the while the
middle (a = 3.05) and lower panels (a = 3.45) are both above threshold.

5.3 Microscopic Underpinnings of Synchronization

Having shown that synchronization might arise via both continuous and dis-

continuous transitions, we now explore in detail the microscopic subtleties underlying

synchronization above threshold. As detailed in [2, 3, 4] and mentioned above, synchro-

nization occurs in the mean field limit via the destabilization of a nonsynchronous fixed

point. Specifically, a single pair of complex conjugate eigenvalues corresponding to the

linearized fixed point cross the imaginary axis at ac, giving rise to stable oscillations

in the macroscopic variables characterizing the system (in our case, the components of

P (t)). While the onset of this behavior is dependent on the choice (U, V,W ) and also

the degree of disorder within the system (see Chapters 2 and 4), the qualitative features

of the synchronized state remain identical above threshold in both the subcritical and

supercritical cases, so long as we do not approach the infinite coupling limit. Hence, we

limit our attention to several illustrative cases, but note that our results hold also for

the supercritical case (and in fact the entire range of µ). Specifically, in what follows, we

take (U, V,W ) = (1,−1, 0) and consider a single population as well as a dichotomously

disordered population with µ = 3/4.
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Figure 5.2: Each plot shows a histogram of time-averaged frequencies (in the steady
state), where the vertical axis represents the number of units (out of N = 3500 total
units) having the frequency ω̄. Population one, characterized by γ1 = 2.5, is represented
by a dark shade (blue), while population two, characterized by γ2 = 5.5, is represented
by a light shade (red). Power spectra of P1,γ1 (dark or blue) and P1,γ2 (light or red)
overlay the histograms. The top panel is below synchronization threshold (a = 3.20),
while the middle (a = 3.60) and lower panels (a = 3.86) are just above threshold. For
esthetic purposes, the horizontal range is not chosen identically for all three panels, but
the size of the range remains the same in each plot.
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Figure 5.3: The central figure shows a histogram of step times T1step for a sampling of
N = 60 units once the steady state has been reached. The vertical black line indicates
the step time corresponding to the peak in the power spectrum of P1(t) (that is, the step
time corresponding to the frequency of the macroscopic oscillations). The insets show
similar histograms for a single unit a = 3.05 (above threshold), γ = 1 in all plots.
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Figure 5.4: The central figure shows a histogram of step times T1step for a sampling of
N = 30 units from each population once the steady state has been reached. The light
shade (blue) represents population one, while the light shade (red) represents population
2. The vertical black line indicates the step time corresponding to the peak in the
power spectrum of P1(t) (that is, the step time corresponding to the frequency of the
macroscopic oscillations). The insets show similar histograms for single units; the top
histogram is for a unit from population one, the bottom from population two. a = 3.60
(above threshold), γ1 = 2.5, and γ2 = 5.5 in all plots.
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In particular, threshold ac is marked by the onset of coherent temporal oscil-

lations in the components of P (t). We characterize the microscopic underpinnings of

these oscillations by considering ω̄i, the time-averaged frequency of oscillator i in the

steady state. We perform simulations on globally coupled lattices of N = 3500 units of

a single population with γ = 1 and also of a dichotomously disordered population with

γ1 = 2.5 and γ2 = 5.5. As shown in Figs. 5.1, 5.2, the distribution of frequencies ω̄i

clusters around the values prescribed by γ (or γ1 and γ2 for populations one and two,

respectively) far below threshold (top panels). Specifically, for a deterministic oscillator

with transition rate γ, ω̄i is given by 2πγ/3; when γ = 1 (or γ1 = 2.5 and γ2 = 5.5),

this gives the central peak of the histogram for the relevant population. As threshold is

eclipsed (middle panels), a peak arises in the power spectrum of the macroscopic variable

P1,γi
, though the frequency of this peak does not correspond with the individual ω̄i’s of

oscillators constituting the population. In the dichotomous case, this peak only roughly

corresponds with the time averaged frequencies from population two and completely ex-

ceeds even the maximum ω̄i characterizing population one. As a is further increased, the

discrepancy between the time-averaged frequency histograms and the macroscopic oscil-

lation frequencies decreases. In addition, in the disordered case, the histograms for the

two populations become increasingly narrow and closer to one another (bottom panel).

We note that as a becomes tremendously large, the histograms become extremely nar-

row and begin to overlap at a frequency determined by the frequency of the macroscopic

oscillations, as expected (indicative of perfect synchronization). Nonetheless, the behav-

ior for finite, intermediate a is quite counterintuitive and points to a rich microscopic

dynamics underlying the cooperative behavior.

To further explore these trends, we consider the stochastic variable T1 step, the

waiting time in a single state for an individual oscillator. T1 step represents the time the

oscillator spends in a single state i before transitioning to the subsequent state i + 1.

For computational efficiency, we record T1 step for a representative subpopulation of 60

units (30 units from each population, one and two, in the disorder case). Figs 5.3, 5.4

show histograms of the variable T1 step taken over this representative subpopulation

once steady state was reached. Clearly, all relevant subpopulations consist of oscilla-

tors whose steps most often correspond to the frequency of the macroscopic oscillation

(shown by the solid vertical line). That is, the peak of the histograms occur at a value T
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comensurate with the frequency peak in the power spectrum of the components of P (t).

However, Fig 5.3 shows that the distribution of T1 step is bimodal, with a significant

peak occurring at T1 step ≈ 2.2 which downward biases the time-averaged frequencies ωi

of individual units. We note that as coupling a increases significantly above threshold,

the distribution becomes unimodal with a peak at T1 step corresponding to the frequency

of macroscopic oscillation. In the disordered case, only population one, characterized

by significantly lower time-averaged ω̄’s, shows a bimodal distribution with a significant

peak at T1 step ≈ 0.45. In fact, these long wait times–while not the dominant macro-

scopic behavior–pervade the microscopic dynamics in such a way that the time-averaged

frequencies become downward biased and no longer accurately represent the macroscopic

dynamics. Interestingly, population two has become sufficiently synchronized that the

second peak is effectively nonexistent, and thus the frequencies overlap more closely

with the macroscopic ”mean field” frequency. The right insets of Figs 5.3, 5.4 show

histograms for single units chosen from the populations (or subpopulations). Again,

the unit chosen from the single population case shows a bimodal distribution with sig-

nificant ”anomalous” peaks near T1 step ≈ 2.2. In the disordered case, the unit from

population one shows a bimodal waiting time distribution characterized by occasional

wait times in the neighborhood of T ≈ 0.45 in addition to those corresponding to the

macroscopic oscillations. Finally, in Fig 5.5, we show the time evolution of the subpopu-

lations along with the macroscopic variable P1,γi
for each population. At any given point

in time, the majority of oscillators in each population are synchronized, leading to the

smooth oscillations of the macroscopic variable. However, isolated single units are prone

to long waiting times, particularly in the less synchronized population (population one,

left panel, in this example). These anamolously long waiting times, which serve to bias

the time averaged frequencies ω̄i of each individual unit, nevertheless do not substan-

tially disrupt the macroscopic oscillations, largely because the occurence of coincident

long waits is fairly uncommon. That is, the long waiting times do not appear in any

significantly correlated way among individual constituents of the population.
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Figure 5.5: The top panels show the evolution of a representative sub-system (N = 30
units of each population). The three shades of color (blue, green, and red) represent
states 1,2, and 3, respectively. The bottom panels show the macroscopic variable P1,γi

for each population. The left panels show correspond to population one (γ1 = 2.5), while
the right panels correspond to population two (γ2 = 5.5). a = 3.60 (above threshold) for
all plots.

5.4 Discussion

In this concluding chapter of Part I, we study the microscopic basis of phase

synchronization above threshold. It is initially counterintuitive that phase synchroniza-

tion, defined in terms of the Hopf bifurcation and temporal oscillations in the macro-

scopic variable P (t) (and measured in the order parameter r), is not contingent upon the

existence of overlapping distributions of ω̄i. That is, our results regarding the discrete os-

cillator model highlight the complexity of microscopic dynamics underlying macroscopic

cooperation and point to a potentially misleading subtlety. Whereas phase synchro-

nization is often considered a stronger condition than frequency entrainment–defined

using an order parameter built upon the notion that a fraction of units display identical

time-averaged frequencies in the oscillator population–we here report subtle microscopic

features which distinguish the two without establishing a clear hierarchy. For example,

Hong et al [6] show that for disordered populations of Kuramoto oscillators, the lower

critical dimension for frequency entrainment is lower than that for phase synchronization

in locally coupled oscillators, indicating the relative ease with which frequency entrain-
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ment is achieved. They note that the two transitions coincide in the case of globally

coupled units. Contrast that with our dichotomously disordered population, for which

phase synchronization occurs without any overlap in the frequency distributions: that

is, no oscillator from population one has the same frequency as any oscillator from pop-

ulation two. While a direct comparison is not plausible owing to the specific differences

between models and order parameters, we stress that any order parameter related to

time-averaged measurements of frequencies would be misleading and provide, for our

model, potentially counterintuitive results. The emergence of a nonzero r, which mea-

sures phase synchronization, corresponds with the loss of stability of the asynchronous

fixed point (the Hopf bifurcation). This does not guarantee similar distributions of

time-averaged frequencies in the two populations; in fact, we can readily see that syn-

chronization occurs while the frequency distributions are entirely distinct. Furthermore,

the frequency of the macroscopic oscillations of the mean field does not always coin-

cide with the time-averaged frequencies of the oscillators constituting the population

(or any subpopulation). Only when coupling is sufficiently large to substantially reduce

the anamolously long waiting times which bias ω̄i will the frequency distributions begin

to overlap one another and coincide with the frequency of the mean field oscillations.

Because these long waiting times appear more readily in the population with the smaller

γi, the time-averaged frequencies of the two populations are disproportionately affected,

meaning that the populations will appear to behave quite differently in terms of average

frequency. This in fact underlies the stark differences in the degree of synchronization

between two populations as measured by the order parameter r (see Chapter 4 for exam-

ples), and provides an intuitive description capable of explaining this discrepancy. Our

previous results show that completely disordered populations show qualitative similari-

ties with the dichotomously disordered case [4]; hence, we are led to cautiously speculate

that wholly disordered populations are also characterized by waiting times T1 step dis-

tributed with long tails, and hence time-averaged frequencies become downwardly biased,

meaning that the order parameter for frequency entrainment, in the typical sense, will

not accurately reflect the macroscopic cooperation. Further studies along these lines are

currently in progress.

Finally, the results of this chapter raise the following question: how dependent

is the above phenomenon on the choice of a discrete phase model? Would similarly
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counterintuitve results arise in continous phase oscillators? In fact, a recent study by

Rosenblum and Pikovsky [7] suggests that a similar–though not identical–state of par-

tial synchronization arises in continous oscillators coupled in a highly nonlinear fashion.

Specifically, they find that in globally coupled oscillators, phases exist in which certain

subpopulations are characterized by time-averaged frequencies which are not commensu-

rate with the oscillations of the mean field–that is, they are not locked with the macro-

scopic oscillations induced in the population. While once again the differences between

the models make direct comparison difficult, it is nevertheless clear that measurements

of time-averaged frequencies provide potentially counterintuitive results, even in globally

coupled arrays. In the case of our stochastic discrete oscillators, the behvavior is quite

transparent once viewed in terms of T1 step, though it is not clear whether a similar

mechanism underlies the phenomenon in the continous phase model. Uncovering the

relationship between the superthreshold phase in our model and that in the continous

oscillator model of [7] remains an open question, but even the superficial similarities

between the results motivate continued efforts along these lines.
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6

Noise-induced Phase Transitions

and Relaxational Models

6.1 Introduction

In Part I of this thesis, we have studied collective behavior in large populations

of coupled oscillators, paying particular attention to the role of temporal dynamics and

the analogy with nonequilibrium phase transitions. We have seen that coupling between

individual oscillators can be made sufficiently strong so as to overcome the inherent

randomness in their individual dynamics and even quenched disorder within the pop-

ulation itself. We now turn our attention to a different type of collective behavior in

large nonequilibrium systems, that induced by stochasticity. While maintaining many

parallels with Part I, including the reliance on simple phenomenological models, we dis-

tinguish this second Part by its dependence on a common theme: the ordering role of

randomness in nonequilibrium spatially extended systems.

6.2 The Order in Randomness

The concept of noise traditionally conjures images of disruption, as it is often

regarded as a background pollutant which unravels the natural order afforded by purely

deterministic dynamics. In fact, on a mesoscopic scale–where quantum fluctuations can

be safely neglected–the very underpinning of stochastic modeling arises from an assumed
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ignorance, or perhaps more appropriately, an admitted theoretical defeat, at the hands of

a complex dynamical interplay between a large system’s many degrees of freedom. While

systematically monitoring the dynamics of a physical system’s individual constituents

becomes quickly intractable with increasing system size, the concept of a thermodynamic

limit affords the theoretician the mathematical justification for appealing to statistical

concepts, and in some settings one can replace a host of deterministic variables with

a manageable set of stochastic, relevant degrees of freedom [1, 2]. The price of such a

drastic reduction is the introduction of purely probabilistic noise terms, and the ubiquity

of this approach has made popular the further mathematical investigation of the effects

these terms have on dynamical systems. Furthermore, the natural physical connection

between statistical concepts and many macroscopic systems as elucidated in the classical

theories of statistical mechanics and thermodynamics lends credence to the utility of the

non-deterministic approach and contributes largely to its wide-spread appeal in modern

theoretical physics.

Remarkably, recent studies have highlighted the counterintuitive effect noise can

have on nonlinear systems. In particular, many works have pointed to the qualitative

changes in dynamical behavior induced purely by conceptually uninteresting ”white”

noise (see, for example, [3, 4]). Such noise-induced transitions, even those limited to

zero-dimensional systems, provide striking evidence that stochasticity, when combined

with nonlinearity, offers a rich dynamic phenomenology far exceeding the bland superpo-

sition of statistically regular fluctuations upon predictable macroscopic dynamics. When

further decorated with spatial degrees of freedom, the interplay between noise and nonlin-

earity yields the potential for genuine non-equilibrium phase transitions, where extended

phases exist and can be characterized using notions and techniques from the correspond-

ing equilibrium theory.

Van den Broeck et al. [5] introduced the first example of a purely noise-induced

phase transition by positing the existence of a spatially dependent local order parameter,

here called ϕ(r̄), whose dynamics evolve under the combined influence of a judiciously

chosen nonlinearity and multiplicative noise. The spatial and temporal steady state av-

erage of the order parameter, taken over the entire system (which is assumed very large),

distinguishes between the ordered (|〈ϕ〉| 6= 0) and disordered (〈ϕ〉 = 0) phases. As the

intensity of the noise is increased, an instability in the local dynamics creates a tran-
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sient, locally-ordered state which, in the presence of sufficiently strong coupling, becomes

self-reinforcing and leads to a macroscopically ordered phase. This transition shares

commonalities with traditional equilibrium phase transitions, including a diverging cor-

relation length and a peak in fluctuations at the critical noise intensity, but nonetheless

relies on a particular mathematical interpretation of the noise and, furthermore, is dy-

namic in origin; the phase transition cannot be traced back to a nonequilibrium effective

potential which is fundamentally altered by tuning the control parameter.

Following this seminal work, Ibanes et al. later introduced a class of models

whose steady state probability distribution–and hence also the nonequilibrium effective

potential–can be found exactly, eliminating the need for a dynamic explanation of the

noise-induced phase transition. Inspired by the inverted phase diagrams seen in certain

polymer blends, Ibanes et al. modify a generic model for the relaxational flow of a

field ϕ(r̄), here corresponding to a local order parameter, in a potential to include field-

dependent kinetic coefficients. Specifically, the dynamics of ϕ(r̄) is given by

ϕ̇(r̄, t) = −Γ[ϕ(r̄, t)]
δF [ϕ(r̄, t)]

δϕ(r̄, t)
+ Γ[ϕ(r̄, t)]1/2ξ(r̄, t) (6.1)

where we use square brackets to indicate a functional, Γ[ϕ(r̄, t)] is the field-dependent

kinetic coefficient, F [ϕ] is an energy functional that depends on both a local potential

V [ϕ] and subsystem interaction terms, and ξ is zero mean Gaussian white noise with

correlation

〈ξ(r̄, t)ξ(r̄′, t′)〉 = σ2δ(r̄ − r̄′)δ(t− t′). (6.2)

σ2 is a control parameter which measures the intensity of the fluctuations. The form of

Eq. (6.1) is dictated by a Fluctuation-Dissipation relation which constrains the form of

the multiplicative noise term. The steady state probability distribution Pst[ϕ] takes an

exponential form

Pst[ϕ] ∝ e−2Veff/σ
2

, (6.3)

where Veff is an effective potential parametrically dependent on both a spatial coupling

parameter (which we later introduce and call K) and σ2. The existence of such a

nonequilibrium effective potential and its qualitative change with the varied control

parameter–a change which underlies the mechanism of the phase transition–distinguish

these noise-induced transitions from those in [5] and liken them to spatially extended

analogs of the zero-dimensional transitions.
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Figure 6.1: Generic local potentials Vi(ϕ) and field-dependent coefficients Γi(ϕ) as a
function of the field ϕ. Because the asymptotics of these functions is determined by
physical constraints, there are only two qualitative forms (represented by i = 1, 2) taken
by these functions as dictated by the convexity at the origin. The solid lines represent
i = 1, and the dotted lines i = 2. Specifically, the second derivatives (evaluated at
the origin) can be either positive or negative for each function. Here we show specific
functional examples, but stress that differences in scaling that do not affect the geometry
near the origin are of no consequence for the determination of phase diagrams.
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6.3 Phase Transitions in Relaxational Models

The relaxational models with field-dependent coefficients such as those in [6]

are generalizations of those seen often in the study of dynamic critical phenomena [7]. In

addition to the symmetries that underlie universality in static critical phenomena, uni-

versal behavior in dynamic quantities such as transport coefficients depends on a host

of additional ingredients, including known conservation laws. Many relaxational models

in common use offer toy examples embedded with the requisite symmetry and dynamic

requirements but otherwise stripped of complex microscopic details which may lead to

needlessly complicated relaxation dynamics. Indeed, the models typically rely on the

existence of a Lyapanov type functional whose global minima coincide with steady-state

dynamics. Relaxational dynamics, including those prescribed in [6], often rely on the

simplest possible (gradient) relaxational flow combined ad hoc with stochastic fluctua-

tions that both maintain equilibrium-like fluctuation dissipation relations and also assure

the eventual descent to a global minimum of the Lyapanov functional. Thus, we once

again appeal to the notion that microscopic details–while important for specific appli-

cations and small systems–are less important than maintaining macroscopic symmetries

and qualitative behavior, hence allowing us to study phenomenological models.

In addition to their general kinship with archetypical relaxational models in

equilibrium, the models with field-dependent coefficients introduced in [6] can be taken

as simplified prototypes for a class of noise-induced phase transitions out of equilibrium.

Because their analytical tractability affords an intuitive interpretation of the phase tran-

sition, these models are ideal for the study of a host of novel noise-induced spatial

phenomena, including static pattern formation and global oscillatory behavior. We note

that the models can be physically connected with inverted phase diagrams in polymer

blends [6, 9], where the high temperature phase is macroscopically ordered and the low

temperature phase disordered. However, our purpose is to elucidate novel noise-induced

phenomena in these models, not specify the exact physical setting in which these phe-

nomena will occur. Thus, we take these models as generic toy examples of complex

phenomena and aim to study in depth the interplay between stochastic, nonlinear, and

inhomogeneous spatial dynamics present even in these reduced schemes. Before contin-

uing with specifics, we note here that the models in question which undergo continous
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transitions reduce to a Ginzburg-Landau form upon expansion of the field–at least to

the lowest (relevant) orders–and hence we do not focus on universality classes of these

models. In fact, it has been shown [6] that the continous noise induced transitions do,

indeed, belong to the expected Ising class associated with Ginzburg-Landau dynamics.

While several studies have settled on specific functional forms for the kinetic

coefficients Γ[ϕ] and the local potential V [ϕ] and studied transitions to both homoge-

nous [6] and spatially-ordered [8] phases, Buceta and Lindenberg [10] focused on ho-

mogenous phases but considered the case with general Γ[ϕ] and V [ϕ]. Using a series of

analytical and symmetry arguments, they show that four phase diagrams are possible

depending solely on the geometric properties of V [ϕ] and Γ[ϕ] near the origin in ϕ-space.

As such, [10] provides a comprehensive treatment of phase transitions to homogenous

phases in these relaxational systems and offers the geometric architecture for studying

other noise-induced phenomena occurring in this general class of models. In what fol-

lows we briefly review the analytical results from [10] and then extend the theory based

primarily on numerical and steady-state analytical arguments to include general pattern-

forming systems [11] (Chapter 7) and transitions to globally oscillating phases [12, 13]

(Chapter 8). Finally, in Chapter 9, we develop a mean field analytical treatment capable

of dealing with transient dynamics in these general models, thereby yielding a simplified

dynamical description capable of dealing with time-dependent phenomena.

It is convenient to consider a discretized version of Eq. (6.1), defined on a

d-dimensional cubic lattice as

ϕ̇i(t) = −Γ(ϕi)
δF(ϕi)

δϕi(t)
+ Γ(ϕi(t))

1/2ξi(t) (6.4)

where we take Γ(ϕ) ≥ 0, φi ≡ φ1, ..., φN , i = 1, ..., N , the noise terms are uncorrelated

Gaussian variables with correlation functions

〈ξi(t)ξj(t′)〉 = σ2δijδ(t− t′), (6.5)

and F depends on a local potential V (ϕi) and a diffusive coupling

F [ϕ] =
∑

i


V (ϕi) +

K

4d

∑

〈ij〉

(ϕj − ϕi)
2


 . (6.6)

The leftmost sum in Eq. (6.6)runs over all lattice sites while the rightmost sum spans all

nearest neighbors of site i on a d-dimensional hypercubic lattice. Following [10], we focus
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on the coupling shown in Eq. (6.6) for the development of the analytic formalism, but

later extend these results to deal with morphological instabilities giving rise to spatial

structure (Chapter 7). To be explicit, we implement the functional derivative in Eq. (6.4)

to arrive at

ϕ̇i(t) = Γ(ϕi)

(
−∂V (ϕi)

∂ϕi
+ Lϕi

)
+ Γ(ϕi(t))

1/2ξi(t), (6.7)

with L the coupling operator which, given the form of Eq. (6.6), becomes a discrete

diffusion operator,

Lϕi =
K

2d

∑

〈ij〉

(ϕj − ϕi). (6.8)

Starting from a mean field treatment of Eq (6.7), Buceta et al. show that for functions

Γ(ϕ) and V (ϕ) of even parity (a condition required to preserve the disordered 〈ϕ〉 = 0

phase of the model), only four possible phase diagrams exist, each consisting of some

combination of (stable) ordered (〈ϕ〉 6= 0), (stable) disordered (〈ϕ〉 = 0), and multistable

phases. While we do not repeat the details of these calculations, we briefly mention the

results and stress that the nature of the phase diagram relies entirely on local geometric

properties of the functions Γ(ϕ) and V (ϕ), specifically, on the balance of convexities

near the origin. Consequently, only two generic types of each function exist, as shown in

Fig 6.1, meaning that the qualitative panorama of potential phase diagrams is limited

to four choices. A series of analytical and plausibility arguments lead in turn to four

possible phase diagrams (given in [10], which are verified numerically in the mean field

limit [10]. We delay until the subsequent chapter a detailed discussion of the phase

diagrams, as we shall see formally identical examples when the focus turns to pattern

forming systems.

A mean field treatment of Eq (6.7) involves replacing the sum over nearest

neighbors with a uniform, mean field with must be chosen self-consistently. We have

1

2d

∑

〈ij〉

ϕj(t) → 〈ϕ(t)〉 ≡ ϕ0(t), (6.9)

a relation which strips the problem of its spatial dependence and leads to the following

set of two equations, fully specifying the problem:

ϕ̇(t) = Γ(ϕ)

(
−∂V (ϕ)

∂ϕ
+K(ϕ0(t) − ϕ)

)
+ Γ(ϕ(t))1/2ξ(t),

ϕ0(t) =

∫ ∞

−∞
dϕρ(ϕ, t;ϕ0)ϕ.

(6.10)
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Here ρ(ϕ, t;ϕ0) is the probability distribution for ϕ which, because of the mean field

treatment, is parameterized by ϕ0. The second equation in (6.10) assures that ϕ0 is cho-

sen self-consistently. For now we limit ourselves to the stationary distribution ρst(ϕ;ϕ0),

easily found to be

ρst(ϕ;ϕ0) = N(ϕ0)Γ(ϕ)(α−1)e−(2/σ2)(V (ϕ)+K/2(ϕ0−ϕ)2), (6.11)

where N(ϕ0) is the normalization constant and α = 0 (α = 1/2) corresponds to the Itô

(Stratonovich) interpretation of the noise. As the phase transition does not qualitatively

rely on a particular interpretation of the noise, we typically choose α = 0 for simplic-

ity. The primary arguments for the structure of the phase diagrams, and the nature

of the phase transitions between different phases, rely on a qualitative analysis of the

possible solutions ϕ0 predicated on a geometric interpretation of Eqs. (6.10). Further

quantitative results can be obtained by analyzing the stability of the disordered solu-

tion (ϕ0 = 0), which turns out to depend only on cumulants of the probability density

ρst(ϕ, 0). Combined with rigorous analysis in the large and small coupling limits and

clever plausibility arguments in the intermediate regimes, this analysis yields the phase

diagrams, which are verified numerically [10]. While we defer to [10] for the full details,

we will utilize specific tools from this analysis in the subsequent extension of the work to

pattern-forming systems (Chapter 7). For now, we stress only that four possible phase

diagrams exist, and the nature of the phase diagram is wholly determined by the sign

of the derivatives of V (ϕ) and Γ(ϕ) near the origin. The four diagrams contain regions

of stable ordered, stable disordered, and multistable phases, and transitions between

phases can be continuous or discontinuous. We provide specific examples in the context

of pattern formation in the subsequent chapter.

6.4 Discussion

With a firm conceptual background in hand, we now consider relaxational mod-

els leading to a range of novel noise-induced phase transitions which include pattern-

formation and time-dependent oscillatory dynamics. Chapter 7 utilizes the machinery

developed in [10] and outlined above to explore noise-induced phase transitions to spa-

tially structured, time-independent phases. Chapter 8 considers the emergence of noise-
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induced oscillatory dynamics in systems with an added degree of freedom and finally,

Chapter 9 includes a further analytical treatment capable of dealing with both transient

and time-dependent phases. Taken together, these chapters represent an analytically

and numerically complete view of known noise-induced phase transitions in prototype

models of relaxational systems with field-dependent relaxational coefficients.
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7

Comprehensive Theory of Pattern

Formation in Relaxational

Systems

7.1 Introduction

As discussed in Chapter 6, the study of the interplay between fluctuations and

nonlinearities in spatially extended systems provides insight into the counterintuitive

and yet essential role of noise in many ordering transitions [1, 2, 3, 4, 5, 6, 7, 8]. In

these systems the intensity of the fluctuations serves as a control parameter dictating

the emergence of spatio-temporal structure. While the seminal model of noise-induced

phase transitions relied on the collective amplification of short-time instabilities and

required the presence of the so-called Stratonovich drift [2], we focus our attention on

members of another class of relaxational models (introduced in Chapter 6) which exhibit

such transitions in the absence of short-time instabilities [5, 6] and do not require a

Stratonovich drift. They rely instead on the existence of a noise dependent effective

nonequilibrium potential in the steady state whose qualitative behavior is impervious to

a particular interpretation of the noise.

In this chapter we extend to pattern formation phenomena the earlier com-

prehensive study of relaxational models for Ising-like phase transitions between homo-
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geneous states [6]. In addition to providing a broad characterization of these systems,

we offer here the first example (to our knowledge) of hysteresis and multistability in

a system exhibiting noise-induced spatial pattern-formation. In particular, we demon-

strate via a modulated mean-field approach that the phase diagram of the system can

be described by one of only four generalized portraits depending on generic geometric

properties of the local potential and field-dependent relaxational functions. In Sec. 7.2

we introduce the model and implement our modulated mean field theory, including a

semi-analytical characterization of the nature of the phase transitions between various

phases. In Sec. 7.3 the theory is complemented with numerical simulations to verify its

qualitative accuracy. We conclude with a summary in Sec. 7.4.

7.2 The Model and Modulated Mean Field Theory

We begin with the now familiar (see Chapter 6) generic evolution model of a

relaxational space and time dependent field ϕi(t) with field dependent coefficients given

in terms of the set of Langevin equations

ϕ̇i(t) = −Γ (ϕi(t))
δF ({ϕ})
δϕi(t)

+ [Γ (ϕi(t))]
1/2 ξi(t). (7.1)

Here i labels a lattice site, ({ϕ}) ≡ (ϕ1, . . . , ϕN ) denotes the entire set of fields, and

the relaxational function Γ(ϕ) and its square root [Γ(ϕ)]1/2 are both positive. The

fluctuations ξi are Gaussian white noises with zero mean and correlation functions

〈ξi(t)ξj(t′)〉 = σ2δijδ(t − t′). The functional F consists of a local potential V (ϕ) and

an interaction term, so that δF/δϕi(t) = −V ′(ϕi) + Lϕi. In the previous chapter, we

discussed the work of Buceta et al. [6], where the operator L was a d-dimensional nearest

neighbor interaction, that is, a discrete version of the Laplacian diffusion operator. Here

we will show that if L introduces a morphological instability and for appropriate choices

of V , Γ, the system undergoes noise-induced phase transitions between disordered, pat-

terned, and multistable phases.

A key ingredient for pattern formation is a competition between length scales.

In a nearest neighbor model there is only one scale (the nearest neighbor distance), and

so one needs to modify the interaction to introduce a second scale. We focus on a discrete

version of the Swift-Hohenberg operator [9, 10], L = −D
(
k2

0 + ∇2
)2

, but stress that this
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specific form is not important, so long as the coupling leads to a morphological instability

associated with pattern formation. We focus on the particular discretized form [5, 7]

L = −D
[
k2

0 +

(
2

∆x

)2 d∑

i=1

sinh2

(
∆x

2

∂

∂xi

)]2

, (7.2)

where ∆x is the lattice spacing and ∂/∂xi indicates a partial derivative with respect to

component i of the position vector r = (x1, x2, . . . , xi, . . . , xd). This form arises naturally

when one recalls the action of the translation operator exp(δx∂/∂x)f(x) = f(x + δx)

on any function f(x). We can obtain the discrete dispersion relation by applying the

operator (7.2) to a plane wave eik·r,

ω(k) = −D
[
k2

0 −
(

2

∆x

)2 d∑

i=1

sin2

(
∆x

2
ki

)]2

. (7.3)

Here ki denotes component i of the wave vector k = (k1, k2, . . . , ki, . . . , kd).

The most unstable modes are those that maximize ω(k). These modes charac-

terize the underlying spatial regularity indicative of pattern formation. In the continuum

these are the modes with k = k0. In the discretized system the magnitudes k∗ of the

most unstable modes are shifted from k0 and depend on direction. If k0∆x ≤ 1, then

the range of variation of these magnitudes is smaller than 3%. It is therefore only a mild

approximation to neglect the directional dependence of the solutions as long as one keeps

count of the number of modes that satisfy this condition. The count, detailed in [5, 7],

leads to the number n(k∗) = [dπd/2/Γ(d/2 + 1)](Nk∗/2π)d−1.

To capture a spatial structure we must make an ansatz about the modulated

behavior of the field at locations r
′ which are coupled to the focus point r by the operator

L [5]:

ϕr′ = A(k∗)
∑

{k∗}

cos
[
k · (r − r

′)
]
, (7.4)

where the sum is over wavevectors of magnitude k∗ and all modes are assumed to con-

tribute with equal weight A(k∗). The action of the coupling operator on the ansatz state

is detailed in [5], whence one arrives at the result Lϕr = D1 [n(k∗)A(k∗) − ϕr], with

D1 = D

[(
2d

(∆x)2
− k2

0

)2

+
2d

(∆x)4

]
. (7.5)
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Figure 7.1: Mean-field phase diagrams as a function of the local potentials and field-
dependent kinetic coefficients illustrated in Fig. 6.1. The labels D, O, and M within the
diagrams respectively denote disordered, ordered (patterned), and multistable phases
(in the latter, both the disordered and ordered phases are stable and can therefore in
principle coexist). The small open circle in the phase diagram for Γ1 and V1 where the
three phases merge indicates an isolated singular critical point (triple point) where a
continuous phase transition between disordered and ordered phases occurs (see [6]).

This then leads to an equation for the field that depends only on a generic site index r

that can simply be dropped:

ϕ̇ = Γ(ϕ)

{
−∂V (ϕ)

∂ϕ
+D1 [n∗A∗ − ϕ]

}
+ [Γ(ϕ)]1/2 ξ(t). (7.6)

We have set n(k∗) ≡ n
∗ and A(k∗) ≡ A∗. The noise ξ(t) is zero-centered, Gaussian, and

δ-correlated in time, 〈ξ(t)ξ(t′)〉 = [σ2/(∆x)d]δ(t− t′). We set ∆x = 1.

The mean amplitude A∗ must be chosen self-consistently to complete the so-

lution of the problem. The stationary probability density for our mean field stochastic

process is

ρst(ϕ; n∗A∗) = N [Γ(ϕ)](α−1)

× exp

{
− 2

σ2

[
V (ϕ) +

D1

2
(n∗A∗ − ϕ)2

]}
, (7.7)

where the normalization constant N depends on the amplitude. The constant α is 0 (1/2)

for the Itô (Stratonovich) interpretation of the noise. Self-consistency is implemented
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with the requirement that n
∗A∗ is the average value of the field at any point in space,

n
∗A∗ =

∫ ∞

−∞
ϕρ (ϕ; n∗A∗) dϕ, (7.8)

which is appropriate if the distribution is even in ϕ and thus A∗ = 0, or if n
∗A∗ is much

larger than the (appropriately phased) combined amplitudes of all the other modes. The

latter occurs if there is an instability that leads to the formation of a pattern.

The structure of the mean amplitude problem as given in Eqs. (7.7) and (7.8)

is formally identical to that obtained for the mean field problem with diffusive coupling,

Eq. (6.10), discussed in Chapter 6, as is the analytic characterization of the self-consistent

solutions. This realization serves as the primary analytical underpinning of our compre-

hensive study. In fact, while the mathematical structure is identical, the information

provided by the solutions is of course different: in previous work the analysis led to

the mean field that characterizes disordered and ordered global phases, whereas here it

leads to the amplitude of the least stable modes. There is no need to repeat the entirety

of that analysis, though we wish to reiterate the “bottom line” and further comple-

ment our study with numerical solutions to the mean field equation which reveal the

analytical insight leading to these results. We limit ourselves to potentials V (ϕ) and

relaxation functions Γ(ϕ) of even parity to ensure the existence of a disordered solution,

and furthermore, without loss of generality, require that V (0) = 0 and Γ(0) = 1.

The entire phase space panorama is captured by considering the four generic

combinations obtained by picking one of the two potentials and one of the two relaxation

functions illustrated in Fig. 6.1. While the specific choices

V1(ϕ) =
ϕ2

2
, V2(ϕ) =

ϕ4

4
− ϕ2

2
(7.9a)

Γ1(ϕ) =
1 + ϕ2

1 + ϕ4
, Γ2(ϕ) =

1

1 + ϕ2
(7.9b)

have been made in the figure, only their general asymptotic behavior and their behavior

around the origin is important, according to the detailed analysis in [6]. The four possible

combinations then lead to phase diagrams of the form shown in Fig. 7.1. These are

qualitatively identical to those considered in [6], though the numerical values differ.

These particular ones have been calculated for the specific functions chosen for Fig. 6.1

with the Itô interpretation in Eq. (7.7). The Stratonovich interpretation would merely

shift the boundaries between phases.
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Figure 7.2: The mean field theory predicts a discontinuous transition for V1(ϕ), Γ1(ϕ)
as σ2 is increased at constant coupling. The figures show the intersections of n

∗A∗ (thin
or black line) and the right-side of Eq. (7.8) (thick or blue curve). Vertical dark (red)
lines show the points of intersection corresponding to stable solutions, while vertical
light (green) lines correspond to unstable solutions. Notice that a stable solution exists
at the origin for the top three figures. Noise is increased from σ2 ≈ 0.75 to σ2 ≈ 6.0,
top to bottom. It is clear that a region of multistability exists in which both the stable
disordered solution at the origin and the stable patterned solutions coexist.



97

0.5 1 1.5
n* A*

0.5

1

1.5

0.5 1 1.5
n* A*

0.5

1

1.5

0.5 1 1.5
n* A*

0.5

1

1.5

0.5 1 1.5
n* A*

0.5

1

1.5

Figure 7.3: The mean field theory predicts a continuous transition for V1(ϕ), Γ2(ϕ) as
σ2 is increased at constant coupling. The figures show the intersections of n

∗A∗ (black)
and the right-side of Eq. (7.8) (blue). Vertical red lines show the points of intersection
corresponding to stable solutions. Noise is increased from σ2 ≈ 0.85 to σ2 ≈ 3.0, top
to bottom. It is clear from the geometric relationships between the two curves that the
transition is continuous.
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Figure 7.4: Relative power spectrum for the continuous disordering transition with
[V2(ϕ),Γ2(ϕ)] and D = 0.5. The snapshots on the right are steady-state configura-
tions for σ2 = 10, 1, and 0.25 from top to bottom. Insets show snapshots of the Fourier
structure of the field. Upper right inset: power spectrum S(k∗).

To reveal the nature of the phase transition taking place between different

phases, we numerically calculate the expression given by the right hand side of Eq. (7.8),

treating it as a function of the mean field parameter n
∗A∗. To ensure self-consistency,

n
∗A∗ must be chosen so that Eq. (7.8) holds; geometrically speaking, the function given

by the right hand side must intersect a line originating at the origin with slope 1. As

shown in Figs. 7.2 and 7.3, increasing the noise intensity (top to bottom) qualitatively

changes the nature of these intersections, leading to transitions which can be either

discontinuous (to or from multistable phases) or continuous (between disordered and

ordered phases). Fig 7.2 depicts a dicontinuous transition in which a stable solution

emerges (other than the origin) for some finite, nonzero value of the noise. This manifests

itself as a kink in the thick (blue) curve which intersects the thin (black) line. Notice that

the origin is still a stable solution. As noise is further increased, this point of intersection

splits into two points, one a stable (vertical dark (red) line) and one an unstable (vertical

light (green) line) solution. Eventually, the noise becomes sufficiently large that the

disordered solution–the solution at the origin–loses stability and only the large amplitude

patterned phase exists. By contrast, a continuous transition appears in Fig 7.3, where
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the intersection of the blue and black curves corresponding to a stable solution grows

continously from zero, indicating an increasingly ordered phase as noise increases. These

numerical portraits serve as the intuitive basis on which the the transitions between

phases in Fig 7.1 should be viewed.

7.3 Numerical Simulations

To test the qualitative features of the mean field analysis via numerical simu-

lations, we look for evidence of the three distinct transitions predicted by our theory:

(1) O → D (continuous transition from order to disorder); (2) D → O (continuous

transition from disorder to order); and (3) D → M (discontinuous transition from dis-

order to multistability). The distinction between transitions (1) and (2) is made so as

to highlight the drastically different consequences of noise in the various phases. We

do not separately consider the M → O transition since it is also marked by the desta-

bilization of the zero amplitude solution and therefore closely resembles transition (2).

To cover the three transitions we consider the three representative cases [V2(ϕ),Γ2(ϕ)],

[V1(ϕ),Γ2(ϕ)], and [V1(ϕ),Γ1(ϕ)], which should exhibit (1), (2), and (3), respectively,

as noise intensity is increased for an appropriate coupling coefficient D1 (see Fig. 7.1).

The case [V1(ϕ),Γ2(ϕ)] was considered in a previous work, but with the Stratonovich

interpretation for the noise [5].

We perform our simulations on a lattice of size L = N∆x = 128 with ∆x =

1, k0 = 1, and ∆t = 0.005. The magnitude of the least stable wavevectors is then

k∗ ∼ 1.035. With one exception (noted later), we use Neumann-Dirichlet boundary

conditions, that is, the field and its normal derivative are zero at the boundaries. We use

an adapted Heun-like algorithm appropriate for an Itô interpretation of the noise [11],

and in calculating order parameters we typically consider time averages obtained once

the system has reached a steady state. Our results are essentially identical for different

realizations of the noise, so that it is sufficient to present the time-averaged results for

any single realization.

There are different ways to characterize pattern formation. For this purpose

we introduce the Fourier transform ϕ̃k of the field ϕr, ϕ̃k = (1/Nd)
∑

r
ϕr exp(−ik · r).

One quantity commonly invoked for the characterization of patterns is the power spec-
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Figure 7.5: Power spectrum for the continuous disorder-order transition with
[V1(ϕ),Γ2(ϕ)] and D = 3. The snapshots on the right are the steady-state configu-
rations for σ2 = 3, 1.75, and 0.75 from top to bottom. Insets: Fourier transforms of the
field.

trum at wavevectors of magnitude k, S (k) =
∑

{k∗} φ̃kφ̃−k, where the sum runs over all

modes of magnitude k (in our discretized system, the sum includes all wavevectors whose

magnitude lies in a ring of width 2π/L centered on k). Another is the flux of convective

heat, J = (1/Nd)
∑

r
φ2
r. The functional relation between these two quantities is simply

J =
∑

k S (k), where the sum runs over the magnitudes of the modes. One order param-

eter is S(k∗) (or, more accurately, the average of S(k∗) over realizations of the noise but,

as noted earlier, we find that different realizations of the noise lead to essentially identi-

cal results), which reflects the total contribution of the most unstable modes to the flux

of convective heat. Our mean field theory provides the result S(k∗) = n(k∗)A2(k∗) [8].

Another order parameter is the relative power spectrum S(k∗)/J , which measures the

relative contribution of the least stable modes to the total flux. It provides information

on the coherence of the pattern that the simple order parameter S(k∗) can not provide.

The mean field theory gives J = S(k∗) since it only deals with the most unstable modes.

A meaningful prediction of J would require the ability to determine the power spectrum

for all wavevector magnitudes. We exhibit both order parameters as obtained from our

numerical simulations.
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Consider first the case (V2,Γ2). This is the least interesting case since it ex-

hibits patterns only at small noise intensities with a transition to a disordered state as

the noise intensity is increased. Nevertheless, this is a good example to illustrate the

information in the two different order parameters and, for that matter, one where the

limitations of the mean field theory become apparent. In the top right inset in Fig. 7.4

we see the initial decrease of S(k∗) to zero and the associated disappearance of spatial

structure, as predicted. While the mean field theory does not quantitatively predict the

transition parameter values, it does lead to the correct qualitative behavior. The order

parameter does not remain at zero after the transition, as the mean field theory would

predict, instead increasing again for larger values of the noise. However, note that as

seen in the insets showing the Fourier structure of the spatial configurations, in spite of

this increase in the order parameter, the system does not again become ordered with

increasing noise because modes other than those of magnitude k∗ become unstable as

well. The coherence of the pattern is seen to decrease as the ring of most unstable modes

becomes thicker, effectively eliminating the spatial structure visible at low values of the

noise. This incoherent configuration consisting of many modes is not captured by the

mean field theory, which is valid only near the bifurcation point. The increasing inco-

herence with increasing noise is evident in the other order parameter, S(k∗)/J , which

continues to decrease with increasing noise.

Next, consider the case (V1,Γ2), predicted to exhibit a continuous, pattern-

forming transition with increasing noise. In fact, as evidenced in Fig. 7.5, increasing

the noise for a given value of the coupling constant leads to increasingly visible spatial

structure and an ever-intensifying ring of unstable wavevectors. As predicted, the tran-

sition is continuous and points to the ordering role of noise in the development of spatial

structure.

Finally, we consider the more complex and interesting disorder-multistability

transition predicted with the combination (V1,Γ1). Our theory predicts the occurrence

of multistability and hysteresis characteristic of a first-order phase transition. To test

for the requisite memory of initial conditions, we perform simulations in two directions.

In one case, we start from a homogeneous zero field state and systematically increase

σ2. In the other, we start from the patterned steady state occurring for high noise

intensity and decrease σ2. In each instance, we use the steady state obtained for the
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Figure 7.6: Snapshots of the field for [V1(ϕ),Γ1(ϕ)] that illustrate hysteresis in the
discontinuous disorder-order phase transition with D = 5 and σ2 = 3.10. The initial
condition is uniform in the top panel and a strongly patterned state in the bottom panel.
Boundary conditions are periodic. See text for more detailed description of simulation
sequence. The insets show the power spectrum S(k) as a function of k.
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previous value of σ2 (either above or below the current one) as the initial state for the

subsequent simulation. In order to insure the timely appearance of a clear pattern,

in these simulations we have implemented periodic boundary conditions. Figure 7.6

demonstrates two clearly different states for the same values of the parameters depending

on the initial condition. Hysteresis is also apparent in the marked dependence of S(k∗)

on the initial condition. We have ascertained this same behavior for various realizations

of the noise, and have also ascertained that hysteresis is only observed in a limited range

of parameter values. In particular, for fixed D the uniform solution becomes unstable

with increasing noise and the system passes into the purely ordered phase.

7.4 Discussion

We have developed a comprehensive theory of noise-induced phase transitions

to patterned states in single-field relaxational systems with field-dependent coefficients.

Previous work on this subject focused on a particular system [5], which is here gen-

eralized to a broad classification of the geometric properties of the potential function

and the relaxational function that lead to one of four possible phase diagrams. Pat-

tern formation requires a length scale competition that we capture via a discrete version

of the Swift-Hohenberg coupling. Our comprehensive theory parallels that developed

for single field relaxational systems with nearest neighbor coupling [6]. The theoretical

analysis is carried out via a mean field theory modified from the simplest form by the

inclusion of spatial modulation. A linear stability analysis then yields the dispersion

relation from which one extracts the most unstable modes. Semi-analytical arguments

provide insight into the nature of transitions between various phases, and numerically

generated phase portraits confirm the qualitative validity of the theory. Finally, lattice

simulations agree with the mean field predictions, providing us evidence that a general-

ized characterization of pattern formation in this class of relaxational systems is fully in

hand. Of particular interest are the transitions to ordered or multistable pattern states

induced purely by noise, as they reveal the potentially counterintuitive role played by

stochasticity in nonequilibrium systems characterized by relaxation to the minimum of

an effective free-energy like functional. In closing this chapter, we also note that we

have thus far implicated noise as the sole source of order induced phenomena, both spa-
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tially uniform and spatially structured, in our generic class of relaxational models. The

next chapter begins our exploration of a different type of ordering phenomenon in these

systems, namely, the noise-induced oscillatory (and thus time-dependent) cooperativity.

Acknowledgements
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[11] O. Carrillo, M. Ibañes, J. Garćıa-Ojalvo,J.Casademunt, and J. M. Sancho, Phys.
Rev. E 67, 046110 (2003).

105



8

Noise-induced oscillatory

behavior in field-dependent

relaxational dynamics

8.1 Introduction

Simple models of relaxational dynamics–particularly those with field-dependent

kinetic coefficients–have been a subject of considerable recent interest [1, 2, 3, 4, 5, 6], and

we have discussed in Chapters 6 and 7 two general types of ordering phenomena in these

systems. Again, we remind the reader that such generic models have elicited significant

scientific interest for a number of reasons. First, these particular relaxational flows may

explain situations where inverted phase diagrams are obtained [5]. As in some polymer

mixtures where phase separation increases with temperature, in these flows one can find

phase diagrams where stronger noise leads to greater order. Second, and perhaps more

appropriate to our studies, these models provide a mechanism for noise-induced phase

transitions that neither require a Stratonovich drift [7, 8] nor depend entirely on short-

time dynamic instabilities. In fact, the presence of noise-induced phase transitions in

these systems does not depend on the noise interpretation and resembles, in some sense,

an equilibrium phase transition where the primary features of an effective potential are

altered through varying a control parameter, leading to qualitatively distinct macroscopic

106



107

phases. Third, in certain noise intensity regimes these systems may exhibit noise-induced

multistability phenomena and the associated hysteresis, such that the system can settle

into an ordered or a disordered state depending on the initial condition [9, 10]. The

comprehensive studies discussed in Chapters 6 and 7 have revealed that the occurrence

of these features simply depends on the balance of convexities between the relaxational

coefficients and the local potential of the model, and not on the particular form of these

functionals [9, 10]. In addition, we have provided the steady state mean field formulations

for these systems and numerically obtained phase diagrams which entirely support the

analytical arguments and match the results of lattice simulations.

Typically, these transitions between disordered and ordered or patterned states

have been studied in systems described by a single field. More recently, however, the

study of the constructive role of fluctuations in spatially extended systems has been ap-

plied to the case of two coupled fields [11]. It has been shown that in such systems, noise

may induce macroscopic limit cycles via pure noise-induced phase transitions. Again,

however, these studies specifically focused on dynamically induced phase transitions and

therefore depend on the Stratonovich drift, i.e., on the interpretation of the noise.

In parallel with that idea, herein we consider such behavior in systems where

the interpretation of the noise is irrelevant to the occurrence of the phenomenon. Thus,

we consider the role of an additional field in a relaxational dynamics with field dependent

coefficients. The additional field can be thought of as introducing inertial effects into

the relaxational dynamics, cf. below, and leads to noise-induced collective oscillatory

behavior. Moreover, our numerical simulations show that addition of an inertial contri-

bution to a relaxational model that displays noise-induced stationary pattern formation

also leads to oscillatory spatio-temporal structures.

In Sec. 8.2 we extend the models from previous chapters to include an addi-

tional degree of freedom or, equivalently, an inertial contribution at each lattice site, and

describe the resulting expected oscillatory behaviors of the system. Numerical results

that confirm this behavior are presented in Sec. 8.3. Finally, in Sec. 8.4 we summarize

our main conclusions. We note that because the noise-induced phenomenon considered

here involves an inherent time-dependence, we cannot resort to our static mean field

theories for analytical treatment. However, we return to this problem in Chapter 9.
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8.2 Two degrees of freedom per lattice site

A question posed in recent studies concerned the possibility of inducing collec-

tive oscillatory behavior in spatially extended systems that exhibit a purely noise-induced

phase transition [11]. The question was answered in the affirmative for a system in which

the transition is induced dynamically through a short-time instability that depends on

the so-called Stratonovich drift. Specifically, the introduction of inertia in that system

leads to a macroscopic limit cycle. Herein, we pursue a similar objective in systems with

field-dependent relaxational dynamics where the noise interpretation is not a relevant

component in the mechanism. As such, we depart from the generic relaxational models

from the previous chapters, and we consider below both the case of diffusive coupling

and the case leading to pattern-forming instabilities.

Before we begin, it should be noted that in this chapter, we make the particular

choice

Γ(ϕ) =
1 + ϕ2

1 + ϕ4
(8.1)

as a generic example of a relaxational coefficient with a minimum at the origin. Note

that this form of the coefficient leads to a maximum relaxation rate when |ϕi| is around

1, and that ∂2Γ(ϕ)/∂ϕ2
∣∣
ϕ=0

> 0. Note also the ordering role of the fluctuations as well

as the noise-induced multistability when K is sufficiently large. Chapters 6 and 7 remind

us that a number of different phase diagrams (and corresponding phase transitions) are

possible depending on the choice of Γ(ϕ); we here forego the full generality and settle

on Eq. (8.1), which provides sufficient complexity to induce interesting behavior, namely

noise-induced multistability and ordering phenomena.

Our starting point for the diffusive problem is our relaxational model with an

additional degree of freedom zi,

ϕ̇i = −Γ(ϕi)
δF({ϕ})
δϕi

+ [Γ(ϕi)]
1/2 ξi(t) − ωzi,

żi = ωϕi, (8.2)

where ω is a frequency and the interactions in F are chosen to produce nearest-neighbor

coupling. Equations (8.2) can be expressed as a single equation including an inertial

term, z̈i, as

z̈i + ω2zi = ωG({ϕ}), (8.3)
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Figure 8.1: Order parameter m = |〈ϕ〉| obtained from numerical simulations of the single
field model for K = 10 as a function of the intensity of the fluctuations. The insets show
a density plot of the field for two different sets of initial conditions and σ2 ≈ 3, where
the system presents multistabilty. From [9].

where

G({ϕ}) = −Γ(ϕi)
δF({ϕ})
δϕi

+ [Γ(ϕi)]
1/2ξi(t). (8.4)

In Eq. (8.3) it is understood that every ϕi on the right hand side is to be replaced by

żi/ω. Equation (8.3) is thus a closed second-order stochastic differential equation for the

variable set {zi}.
The mean field approximation description of the system reads

ϕ̇ = G(ϕ; 〈ϕ〉) − ωz,

ż = ωϕ, (8.5)

where

G(ϕ; 〈ϕ〉) = −Γ(ϕ)
δF(ϕ; 〈ϕ〉)

δϕ
+ [Γ(ϕ)]1/2ξ(t). (8.6)

Note that 〈G(ϕ; 〈ϕ〉)〉 = 0 is the stationary state condition for the relaxational dynamics

given by the globally coupled mean field equation. Moreover, if ω = 0 then the system

will reach a steady state since Eq. (8.2) becomes equivalent to the single field model, and
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Figure 8.2: Shown in gray scale are simulation results: 〈ϕ(t)〉 vs 〈ϕ̇(t)〉/ω. Depending
on the initial conditions, the system ends in a homogeneous state or in a limit cycle (see
text). The central black circle indicates the stable fixed point. The wide solid black
line is the stable limit cycle, and the thin black line the unstable limit cycle, obtained
from Eq. (8.7). The numerical simulations for two sets of initial conditions indicated by
arrows are plotted. The clouds of points indicate the values of ϕi(t) and ϕ̇i(t)/ω at four
times that cover a period of oscillation once the oscillatory stationary regime is reached.
The average values 〈ϕ(t)〉 and 〈ϕ̇(t)〉/ω of these clouds are given by the circles with a
superimposed cross.

inertia plays no role. Without the contribution G, the set (8.5) behaves as the simplest

possible oscillator, namely, the harmonic oscillator with frequency ω.

This mean field problem, while simple on the surface, proves remarkably chal-

lenging to solve in analytical detail. In particular, the interesting oscillations induced

in this system are fundamentally time-dependent, precluding the typical steady-state

self-consistent solution possible in the case of phase transitions to static states. While

Chapter 9 provides a method for analytically studying the time-dependent dynamics

of these phase transitions in certain limits, we first only describe the behavior that we

observe on the basis of our numerical simulations (next section). We find that provided
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the noise intensity is not too much greater than the critical value for the single-degree-

of-freedom problem, the mean values of the fields are well described by the simple forms

〈ϕ(t)〉 = 〈ϕ(t)〉ω=0 cos(ωt), 〈z〉 = 〈ϕ(t)〉ω=0 sin(ωt) (8.7)

where 〈ϕ(t)〉ω=0 is the mean value of the single-degree-of-freedom problem (see Chapter 6

and [9]). For simplicity, the phase has been set arbitrarily to zero. We thus find that

the oscillations occur according to the harmonic oscillator nature of the problem in the

absence of G in Eq. (8.5), with an amplitude determined by the relaxational dynamics

in the absence of the oscillatory behavior. This then means that the trajectory in the

space (〈ϕ(t)〉, 〈ϕ̇(t)〉/ω) is a circle of radius 〈ϕ(t)〉ω=0:

(
〈ϕ(t)〉2 +

〈ϕ̇(t)〉2
ω2

)1/2

= 〈ϕ(t)〉ω=0. (8.8)

We also find that as the noise intensity increases, the trajectories remain periodic but

that the circular shape becomes distorted so that there is an additional modulation of

the amplitude.

Consider now the inclusion of a second degree of freedom in the case of Swift-

Hohenberg coupling, when the single-degree-of-freedom system undergoes transitions to

patterned states with increasing noise intensity. Our extended system in one dimension

(to which we restrict our numerical simulations) reads

ϕ̇i = −Γ(ϕ)

([
1 +K

(
1 + 4 sinh2

(
1

2

∂

∂x

))]
ϕi

)

+ [Γ(ϕ)]1/2 ξi(t) − ωzi,

żi = ωϕi. (8.9)

We have again chosen a harmonic local potential. The particular form of the coupling

operator arises from the discretization of the Swift-Hohenberg operator [8, 10] and the

choice k0 = 1. In this case we find from our numerical simulations with the relaxational

function (8.1) that for noise intensities near the critical value the fields are now modulated

in space and in time and are simply given by

〈ϕ(x, t)〉 = 2A(k∗) cos(k∗x) cos(ωt),

〈ϕ(x, t)〉 = 2A(k∗) cos(k∗x) sin(ωt). (8.10)
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Figure 8.3: Spatial density plots of ϕi and ϕ̇i/ω at various times through a cycle for the
clouds shown in Fig. 8.2. The grey scale is the same for all plots: black (−2) to white
(+2). Note the oscillatory behavior and the phase difference between the two fields.
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Figure 8.4: Fourier transform of 〈ϕ(t)〉 for the numerical simulation results shown in
Fig. 8.2 in the case of oscillatory asymptotic behavior.

Again for simplicity we have set the spatial and temporal phases to zero.

Numerical simulations to illustrate these behaviors in detail are presented in

the next section.

8.3 Numerical simulations

As an example of the qualitative behavior of the one-degree of freedom system

with diffusive coupling, we show first in Fig. 8.1 numerical simulations implementing

periodic boundary conditions in two-dimensional 128×128 lattices, choosing the param-

eter values in Fig. 8.1, which correspond to a point of multistability for the single field

model. Here, as noise is increased, the disordered solution gives way to a multistable

regime and finally a completely stable, ordered solution.

When including a second degree of freedom, we focus on the case σ2 = 3 and

ω2 = 0.1. Figure 8.2 shows 〈ϕ(t)〉 vs 〈ϕ̇(t)〉/ω for two different sets of initial conditions.

The initial conditions are indicated by arrows. For one set of initial conditions the system

is driven toward the homogeneous state 〈ϕ(t)〉 = 〈ϕ̇(t)〉 = 0, while the other leads to an

oscillatory regime. Note how well the form (8.8) captures the behavior of the average

behavior of these trajectories. In the same figure we show the entire distribution of
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Figure 8.5: Density plot for ϕ(x, t) obtained from a numerical simulation of Eq. (8.9)
for a chain of 128 oscillators with periodic boundary conditions, K = 10, and σ2 = 3.
The diagonal solid line has a slope ω, and has been drawn to guide the eye. The spatial
patterns are of length 2πk∗ with k∗ ' 1.05.

(ϕi(t), ϕ̇i(t)/ω) at four different times during a period of oscillation once a stationary

oscillatory regime is reached. The average values are indicated by black circles with

superimposed crosses. The noisy dynamics spreads the points around the average values.

It is interesting to note that although some points fall within the attractor of the stable

fixed point, they are nevertheless driven to the oscillatory orbit because they are driven

by the average value and not by their individual dynamics.

In Fig. 8.3 we show spatial density plots for the values of ϕi(t) and ϕ̇i(t)/ω at

the centers of the clouds of points shown in Fig. 8.2. The oscillations of the field are

represented by variations in time of the grey scale. Note the phase difference between

the two fields.

In Fig. 8.4 we show the time Fourier transform of the field average 〈ϕ(t)〉 for

the data shown in Fig. 8.2 for the case of the initial conditions leading to oscillatory

behavior. As indicated in Eq. (8.7), the system presents the single frequency ω in its

dynamics.

For the case of Swift-Hohenberg coupling we have carried out numerical simu-

lations of Eq. (8.9) in a chain of N = 128 oscillators with periodic boundary conditions,

with coupling coefficient K = 10, noise intensity σ2 = 3, and k0 = 1. Since k∗ ' 1.05,
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the so-called aspect ratio is Λ = N/(2π/k∗) ∼ 20. That is, at any given time, we expect

approximately 20 wavelengths of the pattern. Figure 8.5 shows ϕ(x, t) by means of a

density plot. The diagonal solid line has been drawn to guide the eye and has a slope

ω. Note that in agreement with our earlier description, an oscillatory pattern develops

with temporal and spatial modulations ω and k∗ respectively.

Finally, we comment on the possibility of observing multistability. The phase

diagram indicates that for the values of the parameters used in our simulation the system

lies within a multistable region. We have explicitly shown this multistability in the single-

degree-of-freedom problem [10] and would expect that an oscillatory pattern develops

or not depending on the initial condition. While certain regions in Fig. 8.5 appear less

ordered than others and this might provide an indication of multistability, we did not

pursue this possibility in detail, our purpose here being mainly to present the nature of

the noise-induced spatio-temporal pattern.

8.4 Discussion

In this chapter we have shown the effects of inertia in relaxational systems

with field-dependent kinetic coefficients. As shown in previous studies of spatially ex-

tended systems with dynamically noise-induced phase transitions, inertia may induce

oscillatory behavior in spatially extended systems driven by noise [11]. We have here in-

troduced inertia in relaxational global order-disorder systems and in relaxational pattern-

forming systems. These systems are particularly interesting (and different from those

in which transitions are induced dynamically) because the transitions do not depend

on the Stratonovich drift and thus occur regardless of the interpretation of the noise.

They are also particularly interesting because there are multistability regimes where

the initial conditions determine whether the system is locked in a homogeneous state

or in an ordered or patterned state. In fact, we have shown that adding an additional

degree of freedom does not interrupt the capacity for these unique phase transitions,

but instead results in macroscopic oscillations whose radius closely mimics the order

parameter used in the single field case. Thus, the interesting features of the transi-

tion remain–including noise-induced ordering, pattern formation, and multistability–but

these macroscopic phases are no longer characterized by time-independent steady states,
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but instead by cooperative, large-scale oscillations. We have supported our conclusions

via numerical simulations. The challenge that remains is an analytic solution of the

problem, even in the mean field case, and we pursue this objective in Chapter 9 in a

more general setting.
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9

Dynamics of phase transitions in

field-dependent relaxational

models

9.1 Introduction

As we have seen in the previous chapters, the interplay of stochasticity and

nonlinearity often leads to a wide range of interesting and often counterintuitive behav-

iors, particularly in the form of nonequilibrium phase transitions in spatially extended

systems. We have focused specifically on “purely-noise-induced” transitions, which in-

clude the emergence of periodic spatial structures and pattern formation in increasingly

noisy systems [2] (see Chapter 7), and purely noise-induced collective oscillatory be-

havior in multi-field systems [4] (see Chapter 8). The transitions arise from a class of

generic nonequilibrium models whose dynamics arise entirely from an energy functional-

like relaxational dynamics, and not from short-time dynamic instabilities which become

strengthened and sustained by spatial coupling. As such, these models represent sys-

tems that, while decidedly nonequilibrium and potentially time-dependent in nature,

nevertheless maintain certain parallels with equilibrium statistical models, namely the

evolution towards the minimum of a (possibly time-dependent) effective potential. Our

focus in this chapter is on an analytical characterization of the dynamics underlying phase
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transitions in systems with field dependent relaxational dynamics, thus completing our

characterizations from Chapters 7 and 8.

Analytic work on these models has been fairly limited, with most of the in-

formation coming from numerical simulations. We are not aware of solvable analytic

theories for locally coupled (e.g. nearest neighbor) noisy extended systems in which

any sort of ordering transition is observed as the system or noise parameters are varied.

Globally coupled arrays have been more amenable to mean field theories based on the

analytic solution of a Fokker-Planck equation in the stationary state. This approach has

been successfully applied to systems that achieve a time-independent steady state. Such

mean field theories provide information about the nature of the steady state and the

conditions that lead to disordered vs ordered states. Thus, while quite useful for ascer-

taining asymptotic properties, these static theories provide no insight into the dynamical

evolution toward a steady state. Such insight is particularly important in multistable

systems.

Most strikingly, these theories fail to provide even a reasonable asymptotic de-

scription of phase transitions to collective time-dependent behavior, when the complexity

of the corresponding Fokker-Planck equation prohibits a self-consistent analytical treat-

ment [4] even in globally coupled arrays. The complicated behavior seen, for example, in

the transition to noise-induced limit cycles thus requires different methods for analytic

study [3].

Our purpose here is to provide an approximate analytical method supplemen-

tary to the mean field approach for studying the dynamics of noise-induced phase tran-

sitions in relaxational systems inspired by a related quantum field method [5]. By in-

troducing a Gaussian ansatz and a series expansion about the (time-dependent) mean

field values, we develop a time-dependent theory which captures the dynamics of these

systems in the limit of strong spatial coupling. In addition to providing new analyt-

ical insight into the evolution to the steady state in one-field systems, this treatment

yields a set of simple approximate ordinary differential equations detailing the oscilla-

tory dynamics and the approach to these dynamics in two-field systems. We note that

an alternative approach to the one adopted in this chapter is to generalize the proce-

dure developed in [3]–while also including a large coupling ansatz–that gives a set of

differential equations for the central moments.
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The chapter is organized as follows. In Sec. 9.2 we briefly recall the one- and

two-field relaxational models. The mean field equations and the Gaussian ansatz for

their solution are presented in Sec. 9.3. In Sec. 9.4 we analyze the one-field system and

test our Gaussian ansatz results in the steady state and in the dynamical approach to

the steady state, including regimes of multistability. The two-field system is examined

in Sec. 9.5, where we show that our theory captures the collective oscillatory behavior,

including regimes of multistability. In both Secs. 9.4 and 9.5 we explore approximate

solutions to the differential equations obtained with the Gaussian ansatz to successfully

reduce the problems to quadrature in some regimes. We conclude with a short summary

in Sec. 9.6.

9.2 The models

Again, we embark from the one-field and two-field relaxational models discussed

at length in the previous chapters. In the one-field case we introduced the Langevin

equation defined on a lattice [1],

ϕ̇i = −Γ(ϕi)
δF({ϕ})
δϕi

+ [Γ(ϕi)]
1/2ξi(t), (9.1)

where ϕi is the value of the scalar field at site i, Γ(ϕi) is the field-dependent kinetic

coefficient, F({ϕ}) is an energy functional, and ξi(t) is a spatio-temporal white noise

with zero mean and intensity σ2, 〈ξi(t)ξj(t′)〉 = σ2δijδ(t − t′). As the choice of noise

interpretation does not qualitatively affect the dynamics [1, 2, 4], we again choose the

Itô interpretation for convenience. The energy functional includes local potentials V (ϕi)

and a simple harmonic coupling between sites [1, 4]:

F({ϕ}) =
N∑

i=1


V (ϕi) +

K

4n

∑

〈ij〉

(ϕj − ϕi)
2


 . (9.2)

Here N is the number of lattice sites and K is the coupling strength. The sum
∑

〈ij〉 runs

over all n sites j coupled to site i. For nearest neighbor coupling n = 2d while for global

coupling n = N − 1. As we have seen, other forms of coupling can also be considered [2]

(see Chapter 7) but the structure of the mean field problem, following simplification,

remains identical in each case. As such, although the following formalism is presumably
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generalizable to the pattern-forming case, we restrict ourselves to the simpler diffusive

system given by Eq. (9.2). We have already seen that it is possible to analyze the steady

states for these systems analytically within a mean field approximation, and this leads

to a Fokker-Planck equation that can be solved in the steady state. As such, we were

able to establish the phase diagram detailing the steady state behavior, but we have thus

far obtained no dynamical information. In the case of phase transitions to static phases,

this does not preclude at least a semi-analytical treatment of the system; however, when

phases are time-dependent, the steady state formalism provides insufficient means for any

analysis beyond numerical simulation, including the determination of the phase diagram.

The addition of a second field to this problem was introduced in [4] (see Chap-

ter 8), where

ϕ̇i = −Γ(ϕi)
δF({ϕ})
δϕi

+ [Γ(ϕi)]
1/2ξi(t) − ωzi,

żi = ωϕi,

(9.3)

and ω is a frequency. This system undergoes a noise-induced phase transition to collective

oscillatory behavior when the noise exceeds a critical intensity. The mean field Fokker-

Planck equation for this two-field system can not be solved analytically because it remains

time dependent for all time. While substantial numerical work has been devoted to the

problem and a qualitative understanding of the system obtained based on these lattice

simulations, no analytical approximations have thus far been given for exploring the

dynamics critical to the phase transition.

Since our Gaussian ansatz method relies on the mean field evolution equations,

in the next section we briefly reemphasize the conceptual framework for the mean field

approximation, whose steady state solution was discussed at length in Chapters 6, 7. We

highlight here the role of the time-dependent Fokker-Planck equation and the associated

time-dependent probability density function, not merely its steady state form. As such,

the problem is easily generalized to include the two degree of freedom case (reminiscent of

Chapter 8) and the formulation provides a natural setting for introducing our Gaussian

ansatz. Ultimately, this ansatz can be combined with a large coupling approximation

to yield information on the dynamics underlying phase transitions in both one and two

field systems.
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9.3 The mean field and the Gaussian ansatz

In the mean field approximation the sum over neighbors connected to site i in

the derivative of the energy functional appearing in Eq. (9.1) or Eq. (9.3),

δF(ϕi)

δϕi
=
∂V (ϕi)

∂ϕi
−K


ϕi −

1

n

∑

〈ij〉

ϕj


 , (9.4)

is replaced by the mean field value,

1

n

∑

〈ij〉

ϕj(t) −→ 〈ϕ(t)〉 ≡ ϕ0(t). (9.5)

Since all the sites are then equivalent, the lattice index can be dropped and the set of

field equations reduces to a single equation (one-field system),

ϕ̇(t) = a(ϕ;ϕ0(t)) + [Γ(ϕ)]
1

2 ξ(t), (9.6)

or to two coupled equations (two-field system),

ϕ̇(t) = a(ϕ;ϕ0(t)) + [Γ(ϕ)]
1

2 ξ(t) − ωz,

ż = ωϕ,
(9.7)

where

a(ϕ;ϕ0(t)) ≡ −Γ(ϕ)

{
∂V (ϕ)

∂ϕ
−K[ϕ0(t) − ϕ]

}
. (9.8)

The unknown mean field ϕ0(t) must be determined self-consistently,

ϕ0(t) = 〈ϕ(t)〉ρ. (9.9)

Here 〈·〉ρ stands for the statistical average with respect to the probability density ρ

associated with Eq. (9.6) or Eq. (9.7).

The Fokker-Planck equation for the probability density ρ(ϕ, t;ϕ0(t)) in the one-

field case follows immediately from the Langevin equation (9.6),

∂

∂t
ρ = − ∂

∂ϕ
[a(ϕ;ϕ0(t))ρ] +

σ2

2

∂2

∂ϕ2
[Γ(ϕ)ρ] . (9.10)

We explicitly note the dependence of ρ on the unknown mean field ϕ0(t), which must

be determined via Eq. (9.9) using the solution of the Fokker-Planck equation. The time
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dependent probability density has not been found analytically. In the stationary state

the left side of Eq. (9.10) is set to zero and the equation can be solved, to yield the

steady state probability density

ρst(ϕ;ϕ0) = N(ϕ0)Γ(ϕ)−1e−(2/σ2)[V (ϕ)+ K
2

(ϕ0−ϕ)2]

= N(ϕ0)e
−(2/σ2)Veff (ϕ), (9.11)

where

Veff (ϕ) ≡ V (ϕ) +
K

2
(ϕ0 − ϕ)2 +

σ2

2
ln Γ(ϕ) (9.12)

and N(ϕ0) is the normalization constant. The mean field ϕ0 can then be found from

Eq. (9.9), which typically must be solved numerically and provides the phase diagrams

shown in previous chapters. A disordered stationary phase is associated with the solution

ϕ0 = 0, while a solution ϕ0 6= 0 corresponds to an ordered stationary phase. The phase

boundaries for different forms of V (ϕ) and Γ(ϕ) are detailed in [1, 2] for phase transitions

to homogeneous and patterned states, respectively, as we saw in Chapters 6 and 7. Note

that this procedure leads to a complete mean field stationary state analysis but does not

provide information about the dynamics of the approach to the steady state.

For the two-field case the Fokker-Planck equation for the probability density

ρ(ϕ, z, t;ϕ0(t), z0(t)) follows from the Langevin equation (9.7),

∂

∂t
ρ = − ∂

∂ϕ
[(a(ϕ;ϕ0(t)) − ωz) ρ]

−ωϕ ∂

∂z
ρ+

σ2

2

∂2

∂ϕ2
[Γ(ϕ)ρ] . (9.13)

This equation has not been solved analytically. Furthermore, since we know from nu-

merical simulations (Chapter 8) that the system supports collective oscillations, it is

necessary to solve the time-dependent problem even to find the long-time behavior.

To obtain time-dependent solutions to the one-field and two-field models, we

will assume a Gaussian form for the evolving probability density with time-dependent

parameters to be found self-consistently from the associated Fokker-Planck equation.

Thus, for the one-field problem we take

ρ(ϕ, t) = eA(ϕ−ϕ0)2+C , (9.14)
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where the time dependent mean field ϕ0(t) and inverse width parameter A(t) are to be

determined. The parameter C(t) is found from the normalization condition

∫
dϕρ(ϕ) = 1 (9.15)

to be given by

C(t) =
1

2
ln

(−A(t)

π

)
. (9.16)

It is immediately evident from a comparison of Eqs. (9.14) and (9.11) that (9.14) is at

best an approximate solution, but we will subsequently show that for sufficiently strong

coupling K this in fact provides an excellent approximation for the mean value and width

of the distribution. Note that Eq. (9.11) implies that in the mean field approximation

A = −V ′′
eff (ϕ0)/σ

2 for the stationary state. For the two-field case we posit the form

ρ(ϕ, z, t) = eA(ϕ−ϕ0)2+E(ϕ−ϕ0)(z−z0)+M(z−z0)2+C , (9.17)

where now z0(t), E(t) and M(t) are also to be determined. The normalization condition

∫
dϕdzρ(ϕ, z, t) = 1 (9.18)

fixes C(t),

C =
1

2
ln

(
4MA− E2

4π2

)
. (9.19)

Note that the Gaussian only has finite norm for 4MA− E2 > 0.

We expect these forms to work best for strong coupling. If coupling is too weak,

then there is no transition to collective behavior and a Gaussian ansatz is not appropriate.

As coupling becomes extremely strong, the distribution approaches a δ-function. This

provides the motivation for a narrow distribution, whose mean and width we assume to be

well captured by a Gaussian when coupling is strong. The Gaussian ansatz thus rests on

the observation that ϕ0(t) ∼ z0(t) ∼ A〈(δϕ)2〉 ∼ E〈δϕδz〉 ∼M〈(δz)2〉 ∼ O(K0) together

with the assumption that the second order moments 〈(δϕ)2〉 ∼ 〈(δz)2〉 ∼ O(1/K) and the

expectation that higher order moments are subleading for large K. Here δϕ ≡ ϕ−ϕ0 and

δz ≡ z− z0. In the following sections we show that these assumptions lead to consistent

results.



125

0 10 20 30

2

3

4

φ 0

time

0 2 4 6 8
−10

−8

−6

−4

−2

time

A

0 10 20 30

2

3

4

φ 0

time

0 0.5 1
−50

−40

−30

−20

−10

time

A

45 50

−25

−20

20 30

−4

−2

Figure 9.1: The time evolution of ϕ0 (top panels) and A (bottom panels), that give
the mean and the inverse width of the distribution, is shown for simulations of globally

coupled arrays of N = 4000 sites and compared to the numerical solution of Eqs. (9.20)
and (9.21). The left column represents modest coupling, K = 10, while the right column
shows K = 80; σ2 = 3.5 for all plots. The initial values −A(0) are chosen to be & K/σ2;
specifically, A(0) = −9.7 in the left column and A(0) = −58 in the right column. The
dark (blue) lines show data from lattice simulations, while the light (red) lines represent
theoretical predictions. The very light (brown) curves in the lower right panel and inset
represent the uncoupled dynamics given by Eq. (9.23) and the Riccati equation (9.22).
The lower left inset shows the simulation results and the prediction of the mean field
theory (solid black line) in the stationary state, which is exact when N → ∞. The inset
in the bottom right figure shows a close up of the late time evolution. Note the different
horizontal and vertical scales in the various panels.
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9.4 Single field

We start with Eqs. (9.14) and (9.16), substitute the Gaussian into the Fokker-

Planck equation (9.10), and implement a large-K expansion considering the previous

comments. We also recognize that the relaxation function and its derivatives, as well

as the local potential and its derivatives, are independent of K. The contributions to

leading orders in K then result in the set of equations

Ȧ = 2AΓ0(K + σ2A), (9.20)

ϕ̇0 = −Γ0V
′
0 −

(
3σ2

2
+
K

A

)
Γ′

0, (9.21)

For each function f(ϕ) we have adopted the notation f0 ≡ f(ϕ0), f
′
0 ≡ [df(ϕ)/dϕ]ϕ=ϕ0

,

etc. Note that it is clear from these two equations that the system evolves towards

A ∼ O(K) and ϕ0 ∼ O(1). We also point out that the normalization condition (9.16) is

consistent with the evolution equation one obtains for C(t), namely, Ċ = Γ0(K + σ2A).

The set of equations (9.20) and (9.21) is of course nonlinear and can not be solved exactly,

but it is merely a set of two ordinary differential equations whose numerical solution is

trivial.

Even so, we can make further analytic progress by noting that for large K,

and provided the initial value of A is of (negative) O(K), the evolution of A toward

its stationary state is clearly faster than that of ϕ0, thus allowing us to consider Γ0 as

nearly constant during the relaxation of A. In this approximation Eq. (9.20) is a Riccati

equation with solution

A(t) =
−K
σ2

1

1 −
(
1 + K

σ2A(0)

)
e−2Γ0Kt

. (9.22)

After the stationary state for A is reached, the evolution of ϕ0(t) is governed by

ϕ̇0 = −Γ0
dVeff (ϕ0)

dϕ0
. (9.23)

Before comparing the results of the theory with those of numerical simulations,

we note that in the stationary state where Ȧ = ϕ̇ = 0 we find from Eq. (9.20) or Eq. (9.22)

that A = −K/σ2, and that ϕ0 obtained from Eq. (9.21) or (9.23) is the solution of

the condition dVeff (ϕ0)/dϕ0 = 0. The latter is exactly the mean field solution to the
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Figure 9.2: The time evolution of the mean (top panels) and inverse width (bottom
panels) is shown for simulations of locally coupled two-dimensional arrays of N = 64×64
sites and compared to the numerical solution of Eqs. (9.20) and (9.21). The left column
represents modest coupling, K = 10, while the right column shows results for K = 80;
σ2 = 3.5 for all plots. The dark (blue) lines show data from lattice simulations, while
the light (red) lines represent theoretical predictions. The initial values are A(0) = −9.2
(left column) and −42 (right column). The inset in the bottom right panel shows a close
up of the early time evolution.
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Figure 9.3: The time evolution of the mean field (top panels) and the inverse width of
the distribution (bottom panels) is shown for both locally (dark or blue) and globally
(black) coupled simulations and compared to the numerical solution (light or red) of the
large K theory. Again, the left column is for K = 10 and the right for K = 80. Here
we choose |A(0)| < 1 (specifically, A(0) ∼ −0.1), and the transient dynamics are not
well-described for early times. The theory accurately captures the steady-state behavior
of the globally coupled simulations in the large K regime. N = 4000 (globally coupled)
and 64 × 64 (locally coupled), and σ2 = 3.5 for all panels.

problem, which is thus recovered from the Gaussian ansatz. The former differs from the

exact inverse width of the distribution (9.11) by contributions of O(1).

However, the ansatz takes us beyond the stationary solution to provide infor-

mation about the dynamics of the system as it approaches the steady state. In Fig. 9.1

we show four sets of results for the mean field ϕ0(t) and the inverse width parameter

A(t). One is the outcome of the direct simulation of globally coupled arrays for moderate

and for strong coupling K. The second is the result of integrating Eqs. (9.20) and (9.21),

the third is the outcome of Eqs. (9.22) and (9.23) that assume different relaxation rates,

and the fourth is the outcome of the mean field distribution (9.11). In these and all

subsequent figures we have made the representative choices

V (ϕ) =
ϕ2

2
, Γ(ϕ) =

1 + ϕ2

1 + ϕ4
, (9.24)

which were also used in our earlier work [1, 2, 4].

The first conclusion is that the time scale of relaxation and the steady state
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value of ϕ0 are correctly predicted by the large coupling theory, even for modest values

of K. The agreement is spectacular during the approach to steady state. In addition, we

note that the time scale separation between A and ϕ0 is quite evident for large K and

is a reasonable assumption also for modest values, K ≈ 10. Further discussion of the

results in this figure requires that we take note of the different horizontal and vertical

scales in the different panels. A small but consistent discrepancy between the Gaussian

theory results for A and simulation results for the inverse width of the distribution arises

at long times owing to neglected higher order contributions in the theory. In the lower

left panel we have expanded the vertical scale to make the difference clear, but note that

it is extremely small for large K (see lower right inset). The lower left inset confirms

that the simulation and mean field theory stationary widths are in fact identical, as they

should be for sufficiently large arrays. While we only show results for two values of K

and one lattice size, the results for a range of values of K (K = 20, 40, 60), of lattice sizes

(N = 250 up to N = 16000), and of initial conditions in which A(t = 0) ∼ −K follow

the patterns described above. We thus conclude that the Gaussian ansatz theory gives

quantitatively excellent results for the evolution of the globally coupled system toward

the steady state and for the steady state itself when the coupling is strong and the width

of the initial distribution is of the same order as that of the steady state.

Our theory is based on a mean field theory, and so the appropriate comparison

with simulations is as we have shown in Fig. 9.1, with a globally coupled array. However,

mean field theories are often used to describe locally coupled systems, and so we compare

our theoretical results with simulation results in which the units in a two-dimensional

array are connected only to their nearest neighbors. The results are shown in Fig. 9.2.

The theory accurately captures the behavior of ϕ0, including both the transient and

steady state dynamics, in the large and modest K regimes. However, the inverse width

of the distribution (as given indirectly by A) is underestimated by the theory, as it is by

the original mean field theory in this model. A discrepancy of this sort is a ubiquitous

feature of mean field theories, which are principally designed to capture the mean field

value.

The comparisons so far have relied on the initial value A(t = 0) being of (neg-

ative) O(K), that is, an initial distribution whose width is of the same order as that of

the steady state. When the initial width of the distribution is much larger than that of
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Figure 9.4: Multistability is captured by the large K theory. The left panel shows the
dynamics of the mean field and the inverse width of the distribution for initial conditions
leading to a disordered state (ϕ0(0) ≈ 0.5, A(0) = −29). The right panel shows the
corresponding plots for initial conditions leading to an ordered phase (ϕ0(0) ≈ 4, A(0) =
−55). The inset in the bottom left shows a close up of the steady state behavior. Dark
(blue): globally coupled simulations; light (brown): Gaussian ansatz theory; black: mean
field theory. In all plots, K = 80, σ2 = 3.0.

the steady state, i.e., when A(t = 0) is very different from (much smaller in magnitude

than) K, it becomes more problematic to capture the transient dynamics, although the

steady state behavior is still predicted accurately. This is shown in Fig. 9.3.

Finally and importantly, we note that the large coupling theory accurately

captures the multistable nature of the dynamics (Fig. 9.4). This is a new feature of

this theory that provides dynamical information not provided by the usual mean field

theory. In our earlier work we had established this multistability only through direct

numerical simulations of the array. For large K, the agreement between theory and

simulations both in the dynamical regime and in the steady state is quite remarkable for

initial conditions leading to the ordered state (right panel). While the mean field theory

of course predicts the width of the distribution exactly, the Gaussian ansatz slightly

overestimates the width for initial conditions leading to a disordered phase (left panel).

The disordered state is marked by a relatively broad distribution, and, not surprisingly,

given the underlying requirements stated earlier, the theory does not exactly capture

this prediction.
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9.5 Two fields

The more stringent test of the theory lies in the two-field system, where there are

only numerical simulation results. Now we begin with Eqs. (9.17) and (9.19), substitute

the assumed distribution into the two-variable Fokker-Planck equation (9.13), and again

implement a large-K expansion. This results in the set of equations for the coefficients

in the Gaussian,

Ȧ = 2AΓ0(K + σ2A),

Ṁ =

(
σ2

2
Γ0E + ω

)
E,

Ė = Γ0(K + 2σ2A)E + 2ω(A−M),

(9.25)

along with those for the mean values

ϕ̇0 = −Γ0V
′
0 −

(
3σ2

2
+
K

A

)
Γ′

0 − ωz0,

ż0 = ωϕ0.

(9.26)

Again, it is easy to ascertain that the normalization condition (9.19) is consistent with

the evolution equation obtained for C(t).

The solution we are interested in is a collective oscillatory mode, which of course

requires the time-dependent solution of the coupled sets of ordinary differential equations

(9.25) and (9.26), a task which is vastly simpler than the solution of the time-dependent

Fokker-Planck equation. However, as in the single field case, we can further simplify the

problem of finding the oscillatory long-time behavior of the mean values ϕ0 and z0 by

exploring the regime where the coefficients A, M , and E have reached a steady state,

that is, by setting the left hand sides in Eq. (9.25) equal to zero. There are two stationary

solutions, one of which is

A =
−K
σ2

, E = 0, M = A. (9.27)

The other solutions, (A, E, M) = (0, 0, 0), (A, E, M) = (−K/σ2, −2ω/(σ2Γ0), 0), and

(A, E, M) = (0, −2ω/(σ2Γ0), −K/σ2) do not satisfy the condition 4MA − E2 > 0

necessary for proper normalization, cf. Eq. (9.19), and are hence unphysical.
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For the long-time behavior, it now remains to substitute the stationary A into

Eq. (9.26) and solve the coupled set of just two equations,

ϕ̇0 = −Γ0
dVeff (ϕ0)

dϕ0
− ωz0,

ż0 = ωϕ0.

(9.28)

We note that this set has two stationary solutions, the disordered state (ϕ0, z0) = (0, 0),

and another solution, (ϕ0, z0) = (0,−Γ0V
′
eff (0)/ω). This second solution is easily seen

to be unstable. We can go even further toward the analytic oscillatory solution by

implementing a multiscale perturbation theory [6]. For this purpose we combine (9.26)

into a single second-order differential equation,

z̈ + ω2z = ωG(ϕ),

G(ϕ) = −Γ(ϕ)
dVeff (ϕ)

dϕ
,

(9.29)

with ϕ ≡ ż/ω. It is understood that the variables are the mean fields and should therefore

carry the 0 subscript, which we have omitted for economy of notation. We treat G as a

perturbation and write

z̈ + ω2z = εωG(ż/w), (9.30)

where ε is a small parameter. The solution is then expressed in terms of different time

scales, (T0, T1, . . . ),

z(t) = Z(T0, T1, · · · ) = Z0(T0, T1) + εZ1(T0, T1) +O(ε2), (9.31)

where Tn ∼ O(εnT0). For the time derivatives we have

dz

dt
=
∂Z

∂T0
+ ε

∂Z

∂T1
=
∂Z0

∂T0
+O(ε),

d2z

dt2
=
∂2Z

∂T 2
0

+ ε
∂2Z

∂T0∂T1
+O(ε2)

=
∂2Z0

∂T 2
0

+ ε
∂2Z1

∂T 2
0

+ ε
∂2Z0

∂T0∂T1
+O(ε2)

(9.32)

The evolution equation at zero order in ε is

∂2Z0

∂T 2
0

+ ω2Z0 = 0, (9.33)
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Figure 9.5: The time evolution of the limit cycle radius, r (top panels) and of the Gaus-
sian ansatz coefficients (three subsequent panels). The dark (blue) curves are appropriate
moment results from simulations of globally coupled arrays (N = 4000 sites), and the
light (red) curves are obtained from the solution of Eqs. (9.25) and (9.26). K = 10
in the left column and K = 80 in the right column. Initial values for left column:
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tensity σ2 = 3.5 in all panels. The dashed line in the top panels is the steady state radius
predicted by multiscale analysis.
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which has a solution

Z0(T0, T1) = R(T1) cos(ωT0) + S(T1) sin(ωT0). (9.34)

The coefficients R(T1) and S(T1) are determined by considering the evolution

equations at first order in ε,

∂2Z1

∂T 2
0

+ Z1 = − ∂2Z0

∂T0∂T1
+ ωG

(
1

ω

∂Z0

∂T0

)
. (9.35)

As always in multiscale perturbation theory, in order to avoid secular terms in the

solution R and S must be chosen in such a way that resonant terms do not appear in

the right hand side of Eq. (9.35), i.e.,

∫ ∞

−∞
dT0 cos(ωT0)

[
− ∂2Z0

∂T0∂T1
+ ωG

(
1

ω

∂Z0

∂T0

)]
= 0,

∫ ∞

−∞
dT0 sin(ωT0)

[
− ∂2Z0

∂T0∂T1
+ ωG

(
1

ω

∂Z0

∂T0

)]
= 0,

(9.36)

where from (9.34) it follows that

∂2Z0

∂T0∂T1
= − ∂R

∂T1
ω sin(ωT0) +

∂S

∂T1
ω cos(ωT0). (9.37)

This immediately leads to the equations for R and S,

∂R

∂T1
= −

∫∞
−∞ dT0 sin(ωT0)G

(
1
ω
∂Z0

∂T0

)

∫∞
−∞ dT0 sin2(ωT0)

,

∂S

∂T1
=

∫∞
−∞ dT0 cos(ωT0)G

(
1
ω
∂Z0

∂T0

)

∫∞
−∞ dT0 cos2(ωT0)

.

(9.38)

The quotients can be computed by introducing a cutoff Λ in the integrals,
∫ Λ
−Λ dT0 · · · ,

and subsequently taking the limit Λ → ∞.

We thus have theoretical predictions at three levels of approximation. The

most detailed is the five-equation set (9.25) and (9.26). This set of equations contains

the dynamical approach to the long time behavior. The second level is contained in

Eqs. (9.27) and (9.28). This yields the long-time oscillatory behavior of the mean field

and the width parameters of the distribution at long times. Finally, Eq. (9.27) together
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Figure 9.6: Same as Fig. 9.5, but now the simulations are for locally coupled arrays.
Initial values for left column: (A,E,M) = (−9.4, 4.4,−9.6); right column: (A,E,M) =
(−55, 5,−76).

with (9.35) and (9.38) (along with the second equation in (9.26)) provide a full long-time

solution in terms of quadrature. Note that this explicit solution presents a circular limit

cycle of the form z = S0 sin(ωt) with S0 constant [Z0 = S0 sin(ωT0) ], provided we have

∂R/∂T1 = 0 [directly satisfied for the choice in (9.24)] and ∂S/∂T1 = 0, i.e., if

0 = I(S0) =

∫ ∞

−∞
dT0 cos(ωT0)G(S0 cos(ωT0)). (9.39)

Since our numerical simulations [4] indicate an essentially circular limit cycle near the

onset of multistability, we expect that Eq. (9.39) may provide an accurate prediction of

the onset in the strong coupling limit.

We now proceed to test our multi-level theoretical predictions against direct

numerical simulations of the array. Again, we adopt the representative choices (9.24)

for the potential and relaxational functions. We concentrate on the multistability onset

regime by fixing the value of the noise intensity appropriately.

Figure 9.5 compares the results of simulations for globally coupled arrays with

those of our theory. The agreement is clearly excellent for the limit cycle radius as

well as the width parameters for all times. The time scale separation required for the

validity of the large K equations is clearly satisfied for K ∼ 80 and even for modest

values, K ∼ 10. Note that the width parameters reach the steady state very quickly
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Figure 9.7: Evolution of the theoretical probability distribution function as obtained
by substituting the numerical solution of Eqs. (9.25) and (9.26) into Eq. (9.17). The
distribution becomes symmetrical (circular) in ϕ0 and z0 prior to reaching its steady
state radius. The evolution is only shown for the short time leading up to relaxation
of the distribution shape. Over longer times, the distribution will continue a circular
trajectory whose radius eventually reaches its steady state value (see Fig. 9.8). K = 10
and σ2 = 3.5.

even when E is initially chosen to be of O(K). The theory very slightly overestimates

the steady state radius r ≡
√
ż2/(2ω2) + z2/2 for modest K = 10, and very slightly

underestimates the radius for large K = 80 (neither visible on the scale of the figures).

Again as expected, the agreement with the simulations for the locally coupled array is

less spectacular (Fig. 9.6), but the limit cycle radius is still captured very accurately

for all times. For visualization purposes, we also show the early time evolution of the

theoretical probability distribution function in Fig. 9.7.

Figure 9.8 confirms that the phase portrait of the limit cycle from the globally

coupled lattice simulations corresponds reasonably well to that predicted by the large K

equations, and that the frequency of the oscillations is also accurately predicted. The

dynamic evolutions of the simulation and of the theory do not match exactly because

the small error in the frequency implies an increasing dephasing with time. The figure

shows the case K = 80, but the results are only representative, and again the theory

holds well even for more modest values of K and for a range of initial conditions leading

to limit cycle behavior.
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Figure 9.8: The phase space portraits of lattice simulations (dark or blue) and the large
K equations (9.25) and (9.26) (light or red) show good agreement in terms of the steady
state limit cycle radius, though the theory slights underestimates r. Inset: oscillation
frequency. K = 80, σ2 = 3.5, and ω = 1.
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Figure 9.9: Comparison of the phase space portraits of lattice simulations (dark or blue)
and the large K equations (light or red) show that the latter correctly predict multistable
behavior. The right inset shows a close up of the indicated portion of the phase portrait.
The black curve is the unstable limit cycle obtained from the multiscale analysis. K = 80,
σ2 = 3.5, and ω = 1.
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Figure 9.10: The multiscale analysis predicts the onset of bistability to occur at σ2 ≈ 2.4.
Curves are, from thickest to thinnest, σ2 = 3.5, 3.0, 2.4, 2.0.

Finally, as in the single field problem, the large coupling theory predicts the

occurrence of multistable regions in parameter space. In our earlier work [4] we noted the

expectation of multistability, but did not explicitly pursue it in our simulations, nor did

we have a predictive theory as we now do. In Fig. 9.9 we show that the multistable nature

of the phase transition is fully captured by the large coupling theory. In particular,

different initial conditions lead to either a disordered phase or a limit cycle. To test

whether the theory correctly predicts the onset of multistability is more cumbersome,

but we can at least do it easily in the multiscaling (large K) regime on the basis of

Eq. (9.39). The value of the noise for onset of multistability in general depends on

coupling strength [1, 4], but this dependence greatly weakens with increasing K. For

example, our simulation results indicate that at K = 10 multistability first occurs at

roughly σ2 ≈ 3, with the noise value decreasing ever more slowly with increasing K (e.g.,

σ2 ≈ 2.6 for K = 20, σ2 ≈ 2.5 for K = 40). At K = 80 the transition occurs at σ2 ≈ 2.4.

Equation (9.39) is in fact independent of K. The function I(S0) is shown explicitly

in Fig. 9.10. The first zero is the disordered state and the second first appears when

σ2 = 2.4. As noise increases, an intermediate unstable solution also appears, illustrated

explicitly in Fig. 9.9. The multiscaling result thus accurately predicts not only the radius

r = S0 of the limit cycle but the noise for onset of multistability when coupling is strong,

and the increase in the limit cycle radius with increasing noise strength.
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9.6 Discussion

We have presented an analytical theory for the dynamics of relaxational sys-

tems with field dependent coefficients. Based on a Gaussian ansatz and an expansion

about the mean field values, we derive ordinary differential equations detailing the time

evolution of the field distribution means and widths. In the limit of large coupling,

the Gaussian ansatz equations provide a consistent, normalized approximation of the

relevant probability distributions which agrees with numerical lattice simulations. In

particular, our method allows us to study the dynamics of both one- and two-field relax-

ational systems, including those with oscillatory collective states previously beyond the

reach of the static mean field theories. This also provides an analytic access to initial-

condition-dependent multistable regimes for noise-induced phase transitions in spatially

extended systems.
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Conclusion

We have seen that macroscopic cooperation arises in a number of inherently

nonequilibrium settings. While it is clear that a myriad of physical systems consist

of entities whose dynamics range from largely independent to strikingly collective, the

mechanisms dictating such behavior can be quite distinct. In Part I, we explored time-

dependent synchronization in populations of phase-coupled, discrete oscillators and ob-

served the competing roles of statistical disorder (both quenched and time-dependent)

and coupling strength in dictating the dominant macroscopic behavior of the system.

By contrast, Part II provided a detailed analysis of systems exhibiting macroscopic or-

dering facilitated entirely by the constructive interplay between coupling and noise. It

is exactly this diversity–and perhaps also the counterintuitive behavior commonplace in

these systems–which assures the continued interest of the physics community in nonequi-

librium phase transitions. Combined with the tremendous natural ubiquity of large scale

cooperativity–particularly that arising away from equilibrium–these findings underscore

the importance and utility of simple models in reproducing and understanding the highly

complex behavior arising in systems with many degrees of freedom.
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