Lawrence Berkeley National Laboratory Recent Work

Title

BRANCHING RATIOS OF REACTIONS OF n"" MESONS STOPPED IN HYDROGEN AND DEUTERIUM

Permalink
https://escholarship.org/uc/item/5tc0t0zg
Author
Ryan, James.
Publication Date
1962-05-01

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng-48

BRANCHING RATIOS OF REACTIONS OF π MESONS STOPPED IN HYDROGEN AND DEUTERIUM

James Ryan
(Thesis)

May, 1962

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

BRANCIING RAITOS OF RRACIIONS OF π^{-}MESONS BIOPPRD IN HIMROGEN AND DEXVIERRIUM

Table of Contents
Abstract iv
I. Introduction and Purpose 1
II. Experimental Method 6
Panof aky ratio 6
Deuterium ratio 8 7
III. Eloperimental Equipment 8
A. Equipment set up 8
B. Meson-beam monitoring and optimization θ
C. Hydrogen and deuterium targets 10
D. The gammanray pair apectrometer 10

1. General features of the 180° deaiga.. 15
2. The magnetic fiela 16
3. Converters 17
4. Counters 17
E. Electronics. 26
IV. Experimental Procedures 29
V. Speatrometer Resolution and Detection Ericiency. 32
The resolution function $R(E, B)$ 32
Lateral detection efficiency 36
VI. Data and Analysia 42
A. Treatment of data 41
B. Spectrometer performance checks 44
C. Panofaky ratio calculation 46
D. Deuterita ratio 8 calculation 52
E. Error anelysis 56
VII. Results and DIscussion 61
VIII. Acknowledgementa 64
IX. Appendicies 65
A. Derivation of A and P 65
B. Calculation of $S(T, B)$ 68

Table of Contents, Continued
I. C. Spectrometer Detection Probability Calculation... T
D. Proof of Ionization Energy Loss Theorem............. 76
E. Description of Radiation Straggling calculations. T7
X. Definition of Symbols ... 79

XI, Tables,o... 8i
XII. References... 97

ABSTMACT

 and the branciang ratio $s=\omega\left(J^{+}+a \rightarrow n+n\right) / \omega\left(J^{-}+a \cdots \gamma+n+n\right)_{B}$ have been meabured by stopping π^{-1} mesoms in ILquid hycrogen and Liquid deuterium and detecting the gamm rays produced. A bigh resotution garmem ray opectrometer of the 180idegreemfocuasing trpe was employed. Sixtys. six Gelger tubes and nine scintilitation countera were used in the spectrometer to depine the electron-positron oxtits, providing an intrinsic instrument resolution of 0.8%. The values obtained for the branching ratios are:

$$
\begin{aligned}
& P=1.52 \pm 0.04 \quad \text { and } \\
& s=3.16 \pm 0.20
\end{aligned}
$$

Tais value fox P is in good agremext thth that obtained in previous measurements while the value fox is aigniplcantly larger than previous results. Fith regard to the conventional phenomanological anayma of S-wave pion physics, the Renofeiky rablo is la good agreament whereas the value obtained in this experiment for the branching ratio s is considerably Larger than predicted.

I. INTRODUCTION AID PURPOSE

When a π^{-}meson comes to reat $(\beta<0.01)$ in 1iquid hydrogen, nuclear capture occurs in approximately 10^{-12} seconds through one of the following channels:

$$
\begin{align*}
& \pi^{-}+p \rightarrow \pi^{\circ}+n \tag{1}\\
& \pi^{-}+p \rightarrow \gamma+n \tag{2}\\
& \pi^{-}+p \rightarrow e^{-}+e^{+}+n \tag{3}
\end{align*}
$$

Reaction (1), mesic capture, produces a 0.41 Mev neutron and a π° meson with $\beta=0.21$. The lifetime for decay of the π^{0} is approximately 2×10^{-16} seconds and leads to one of the following final atates:

$$
\begin{align*}
& n+\gamma+\gamma \tag{1a}\\
& n+\gamma+e^{+}+e^{-} \tag{1b}\\
& n+e^{+}+e^{-}+e^{+}+e^{-} \tag{lc}
\end{align*}
$$

The branching ratio of the internal conversion reaction (ib) to reaction (1a) has been calculated by Joseph ${ }^{1}$ to be 0.00710 . Due to motion of the π^{0} the gamma rays emitted are uniformily distributed in energy between 54.75 and 83.25 Mev .

Reaction (2), radiative capture, yields an 8.9 Mev neutron and a monoenergetic gamma ray of 129.4 Mev . Reaction (3) corresponds to internal conversion of this gama ray. The branching ratio $\frac{(3)}{(2)}$ is calculated as 0.01196 .

It is customary to define the Panofsky ratio, P, as the branching ratio between the mesic capture and radiative capture reaction rates with out regard for the low yield internal conversion processes, i.e. the ratio (1), which in practice has generaliy meant $\frac{(1 a)}{(2)}$. Howevex, it is more appropriate to derine as the ratio of the rate fior all strongly interacfing channels to the rate for all channels which are electromagnetic in origin 1.e.:

$$
\begin{equation*}
P=\frac{(1)}{(2)+(3)}=\frac{(1 a)+(1 b)}{(2)+(3)} . \tag{4}
\end{equation*}
$$

Since the manner of definition can lead to a difference of i\% in quoted value, we choose to give our results for P in terms of (4) above.

When π^{-}mesons come to rest in deutertum the following nuclear reactions occur:

$$
\begin{align*}
& \pi^{-}+d \rightarrow n+n \tag{5}\\
& \pi^{-}+d \rightarrow n+n+\gamma \tag{6}\\
& \pi^{-}+d \rightarrow n+n+\pi^{0} \tag{7}
\end{align*}
$$

Reaction (5) yields monoenergetic neutrons of 67.5 Mev . The radiative capture reaction (6) produces gamas rays with a aistribution of energies ranging from 0 to 131.5 Mev waich is peaked near the high energy end as a result of the $n-n$ interection. Reaction (7), mesic capture, gives a π^{0} meson with β ranging irom 0 to 0.12 which reaults in gaman rays distributed in energy between 60 and 76 Mev .

In their original experiment Panofaky et al. ${ }^{2}$ stopped π^{-}mesons in both hydrogen and deuterium and detected the nuclear gamma rays with a pair spectrometer. In addition to measuring the panofisy ratio, they also obtained values for the deuterium ratios S and R_{2} defined as:

$$
\begin{align*}
& s=\frac{\omega\left(\pi^{-}+d \rightarrow n+n\right)}{\omega\left(\pi^{-}+d \rightarrow n+n+\gamma\right)} \text { and } \tag{8}\\
& R=\frac{\omega\left(\pi^{-}+d \rightarrow n+n+\pi^{\sigma}\right)}{\omega\left(\pi^{-}+d \rightarrow n+n+\gamma\right)} \tag{9}
\end{align*}
$$

Since this initial work several additional measurements of the Panofsky ratio have been published. ${ }^{3-11}$ A 11st of these, the method employed and the values obtained are given in Table 1 . Previous measurements of g and $k^{2,12,13,14}$ are 1isted in Table 2.

Anderson and Femsi ${ }^{15}$ first pointed out that the Panof sky ratio serves as a connecting link between reactions in pion-nucieon scattering and pion photoproduction. Brueckner, Serber, and Watson ${ }^{16}$ completed the scheme outined in Figure 1 by relating the deuterium ratio 8 to pion production in nucleon-ancleon collisions and to the other interactions. In the figure, reactions deroted with the subscript b indicate bound state capture while those which have been measured at positive energies and extrapolated to threshold are underlined. These relationships provide a means of checking the intemal consistency of a large body of knowledge in low energy pion physics.

For the scheme outined in Figure 1 to be applicable it is necessary to know for the bound state reactions from what angular momentum states nuclear capture occurs. In the past most snalyses have bean made

Nomenclature

Pion Photoproduction

Fig. 2. Phenomenological outhine of smave pion physica.
on the basis of capture from the 18 state of the mesic atom. The mechanism for formation of the mesic atom was assumed to be as described by Kightman. 17 However, a recent measurement of the nuclear capture time in hydrogen by Fields et al. ${ }^{18}$ indicates that this previous description of the formation process is not completely correct and that capture does not take place from the 18 orbit. Although at the present time no direct experimentel measurement has defined the states from which capture does occur, recent work by G. A. Snow, ${ }^{19}$ Russell and Shew, ${ }^{20}$ and Day, Snow, and Sucher ${ }^{2 l}$ offers an explenation of the problem in terms of S-wave capture from higher a states of the mesic atom.

If it is assumed that capture does occur predominately from S states, the ratios P and S can be expressed as follows:

$$
\begin{align*}
& P=\frac{4 \pi}{9 R} \frac{v_{0}}{q} \frac{(1+\mu / M)^{2}}{(1+\mu / 2 M)^{2}} \frac{\left(a_{3}-a_{1}\right)^{2}}{\sigma\left(\gamma+p \rightarrow \pi^{+}+n\right)} \tag{10}\\
& S=\frac{1}{3 T^{\prime} R} \frac{1+\mu / M}{1+\mu / 2 M} \frac{M q}{q D} \frac{\sigma\left(p+p \rightarrow \pi^{+}+\alpha\right)}{\sigma\left(\gamma+p \rightarrow \pi^{2}+n\right)} \tag{11}
\end{align*}
$$

Hexe μ and M are the pion and nucleon rest masses, a_{3} and a_{1} are the s wave scattering leagths for isotopic spin states $3 / 2$ and $1 / 2$, respectively, v_{0} is the π° velocity relative to the neutron for the charge exchange re. action in hydrogen, while q and q are incident c.m. π^{-}momenta for the reactions in hydrogen and deuterium. In adaition, $T^{\prime}=T\left|\phi_{H}(0)\right|^{2} /\left|\phi_{D}(0)\right|^{2}$ where $\phi_{H}(0)$ and $\phi_{D}(0)$ are the wave functions for the respective hydrogen and deuterium mesic atom states from which capture occurs, both evaluated at the position of the nucleus. T and R are defined in Figure 1 . These equations follow from the relationships in Figure 1 and have been discussed previousiy. $4,5,15,16$ A simple derivation is presented in Appendix A.

Since Anderson and Fermi first published their paper, discrepancies between the calculated Panofsky ratio, Equation (10), and the measured value have stimulated a large amount of work both experimental and theoretical. At various times several different suggestions were offered to explain these discrepancies, including violation of charge independence in the pionnucleon system ${ }^{22}$ and even the existence of a new particle. ${ }^{23}$ However, due largely to the theoretical work of Baldin, ${ }^{23}$ Cini, Gatto, Goldwasser, and Ruderman, 24 and Hemilton and Woodcock ${ }^{25}$ plus more precise determinations
of the Panofiky ratio, no serious discrepencies now seem to exist. The chain of reactions in deuterium shown in Fisure 1 provides en independent check on the results in hydrogen. Because of the rolative1y large uncertainties in previous measurements of B and in knoriedge of the ratio T, this check has not been very useful.

In this experiment we have remeasured both the Panofsky ratio P and the deuterium ratio 8. Together with a recent more accurate evaluation of T^{26} a 11 three legs of the scheme outilned in Figure 1 axe now belleved to be known with comparable accuracy. In Table 3 the calculated and measured values of P and s are compared.

II. EXPERDMENTAL METHOD

Uncertainty in previous measurements of the Penofsky ratio has been due to statistics as well as the inability of the detection apparatus to adequately resolve the low and high energy ganma rays involved. Considering this and the fact that we also wished to determine the spectrum of gamma rays from the deuterium reaction with good resolution, a gamaras pair spectrometer was selected. The spectrometer is of the 180 -degree. focussing type and is discussed in detail in Section III.

Panofsky Ratio
If a laxge number of π^{\prime} mesons stop in hydrogen, the Panofaky ratio is equal to the ratio of the number of mesic capture reactions to the number of radiative capture reactions which occur. Let $N_{\gamma 1}$ and $N_{\gamma 2}$ be the number of gama rays from each of these reactions, respectively, which strike the converter of the spectrometer. If no losses occur in the target then the Panofiky ratio cen be written as

$$
\begin{equation*}
P=\frac{M_{\gamma 1}}{2 N_{\gamma 2}} \tag{12}
\end{equation*}
$$

Where the 2 compensates for the two gama rays produced in the mesic capture reaction. With the pair spectrometer these numbers are determined by detecting the electron-positron pairs produced in the converter.

Detection efficiency versus energy for the pair spectrometer is triangular in shape with maximam efficiency at the mean energy E and with energy width $(1 \pm 1 / 2)$ E. Due to these conditions the Panofsky ratio can be measured with optimum efficiency by using two different mean energy settings of the spectrometer, one corresponding to the enerey of the radiative capture gama $x a y$, the other to the mid-point energy of the distribution of mesic capture gamma rays. A special characteristic of the 180° design in regard to electron scattering (see paragraph III-D) makes this quite attractive since accurate calculations of absolute scattering losses are not necessary if the converter thicknesses are appropriately chosen.

For a fixed magnetic field setting the present spectrometer is capable of detecting the gama rays from both reactions but with reduced efficiency.

It was decided to make two independent measurements, one with a single fixed field, the other using two different fields. For the three field settings the convexter thicknesses were chosen such that scattering losses were equalized. Thereby, an absolute comparison of the gammaray yiela at different magnetic fields for each of the two reactions provided a rigorous check of the palr spectrometer.

Deuterium Ratio S
If a large number, N, of Π mesons stop in hydrogen end the same number in deuterium, we can write

$$
\begin{align*}
N & =N_{1}\left(\pi^{-}+p \rightarrow \pi^{0}+n\right)+N_{2}\left(\pi^{-}+p \rightarrow \gamma+n\right) \\
& =N_{3}\left(\pi^{-}+Q \rightarrow n+n\right)+N_{4}\left(\pi^{-}+a \rightarrow n+n+\gamma\right) \tag{13}
\end{align*}
$$

where $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$, and N_{4} are the numbers of interactions which occur in the respective channels. (The amall contributions from internal conversion processes axe neglocted.) alnce $P=\frac{N_{1}}{N_{2}}$ and $S=\frac{N_{3}}{N_{4}}$, Equation (13)
cestated as:

$$
\begin{align*}
& \mathrm{PN}_{2}+\mathrm{N}_{2}=3 \mathrm{~N}_{4}+\mathrm{N}_{4} \quad \text { or } \\
& \mathrm{s}=(1+\mathrm{P}) \frac{\mathrm{N}_{2}}{\mathrm{~N}_{4}}-1 \tag{14}
\end{align*}
$$

Since there is one gama ray emitted in each of these radiative capture reactions, then, if $\mathrm{N}_{\gamma 2}$ and NH 4 are the number of genman reys incident on the apectrometer converter from the respective reactions, s can be expressed as

$$
\begin{equation*}
S=(1+P) \frac{N_{\gamma 2}}{\mathbb{N}_{\gamma 4}}-1 \tag{15}
\end{equation*}
$$

Hence, this ratio can be deternined using the measured value for the Panofaky ratio and counting only the radiative capture ganma rays from hydrogen and deuterium.
III. EXPGRIMEIMAL EQUTHMENT
A. Eguipment Sei-up

Arrangement of the experimental equipment in the mon beam cave of the 184-inch Synchro-cyclotron is bhown in Figure 2. The meson beam is produced in a Be target bombarded in the cyolotron. Leaving the vacuum tank by a thin window, the beam pesses through an 8 -inch alameter quadrapole doublet and an 8 -foot diameter iron collimating Wheel with a 5 -inch square aperture. The beam is reduced in energy by passing through an aluminum degreder, the thickness of which in ohowen so that the mesons stop in the liquid hydrogen or deuterium riask.

A fraction of the gamus rays, produced by $\pi^{-\quad}$ mesons interacting in the liquid hydrogen, pair produce in the convarter of the pair apectrometer, M_{2}, and the resulting electronmpositron paire are detected.

Lead bricks forming a 6 -inch equare colitmating hole near the hydrogen target shield the converter from view of all portions of the target except the plask. The small magat M_{1} is employed to nweep awry charged particles which might otherwise enter the byectrometer entrance channel. In additiong a 4 foot thick concrete and ateel ahjelding wall Is located between the hydrogen target and the spectrometer in order to reduce background at the spectrometer.
B. Meson Beam Monitoring and Optimization

Two separate beam monitoring sybtems vere used. One, an $10 n$ chamber; was located near the cyclotion vacuum tank inside the shifelding wall and the ion current was continuously monitored. The other, ganman ray telescope, was located below the bydrogen target. Refar to Fisure 4. A coincidence between ccintillation counters 2, 3, and 4 combined with no count in counter 1 indicated pair converaion of a gemma rey in the $1 / 4$ " lead plate. The counting rate is proportional to the rate of atopping mesons.

The rate of mesons stopping in the target vas maximized by suitably loaating the internal cyclotron targot, selecting optimum coil currente in the focussing quadrapole, and choosing the optimm eluminum degrader thickness. See Figure 2. Counting rates of the gamm-ray teleacope described in the preceding paragraph were monitored during thif procedura.

Fig. 2. Equipment set-up in the meson-beam cave of the 184" Synchrocyclotron.

Figure 3 shows the measured gamam ray telescope counting rate versus degrader thickness with hydrogen in the target. The large peak in the curve is due to garma rays produced by nuclear reactions of stopped π^{-}mesons. The aluminum degrader thickness determined from this curve (5-5/8 inches) was used throughout the experiment.

C. Hydrogen and Deuterium Targets

A schematic drawing of the targets and target supporting stand is shown in Figure 4. The targets were rigidiy mounted on a carriage on which four flanged wheels engaged with a set of parallel rails near the top of the supporting stend. The carriage was moveable by hand to allow positioning either of the target flasks in the beam path. Mechanical. stops and clarps were used to hold the carriage securely in place.

A schematic diagram showing the target Plask, heat shield, and outer vacuum jacket is shown in Figure 5. Both the hydrogen and deuterium targets are of identical design. The elask shape is cylindrical with a 6 -inch diameter and 10 -inch avexage length. It is contoured on each end for strength and fabricated from 0.010 inch mylar. Ends of the heat shield are covered by 0.00025 inch aluninized mylar while the outer vacuum jacket is spun aluminum 0.035 inches thick. Not shown in the elgure are $3 / 8$ inch stainless steel fill tuoes which are rigidiy connected to the flask by contoured washers and nuts.

Although the lead collmator shields the pair spectroneter from gama rays origineting in the aluminum degrader, the copper heat shield, and other portions of the F_{2} target, a section of the hydrogen fill 1 nes 1s 'visiole". However, since only a fev percent of the incoming π " meson beam intercept these parts and also since 211 garma rays detected with the target empty can be ettributed to reactions in the residual H_{2} gas, no appreciable influence on the ratios being measured seems possible.

In order to guard against contamination of the liquid hydrogen, transfer of the hydrogen from devor to target was accomplished using hydrogen gas tuder pressure.

D. The Gamma ray Pair Spectrometer

A top view of the spectrometer with the upper half of the electromagnet removed is show in Figure 6. In this drawing the aluminum rack

Fig. 3. Monitor telescope counting rate vs energy degrader thickness.

MU-25917

Fig. 4. Schematic drawing showing H_{2} and D_{2} targets and supporting stand. (Monitor telescope also shown.)

Fig. 5. Diagram showing target and beam configuration.

Fig. 6. Top view of spectrometer with upper half of electromagnet yoke removed.
which supports the Geiger tubee is cut awdy to aflord an unobstructed view of the detecting array.

Gamm rays enter the spectrometer through a 6-inel $\times 7$-inch hole in the electromagnet yoke and pair produce in the converter. The lectron and positron produced are turned in a circular path by a unform magnetio field perpendicular to the plane of the drawing and detectal at the 180° position. An array of 33 Geiger tubes on each side of the converter plus nine scintiliation counters served to detect the paxticles and to determine the sum of their energies.

The distance between the centers of the detection region on both sides of the converter is 32 inches. As will be cescribed later, overlap of the Geiger tubes gives a 0.25 -inch channel width. Together these dimensions define an intrinsic instrument resolution of 0.8%.

1. General Featuree of the 180° Design

The principles of the 180° pair spectroneter were Pirst discussed by Walker and McDaniel ${ }^{29}$ and applied to an instrument with an energy range of 5 to 40 Mev. Latex, Kuehner, Merrison, and Toraabene ${ }^{6}$ used this type of design in a previous measurement of the Panof sicy ratio.

The important characteristics of the 180° deaign are deacribed In the following paragraphs:
Ehergy determination and lateral width focussing. For a particle of charge a and momentum p moving in unfform magnetic $f 181 d B$, tho quation of motion is

$$
\begin{equation*}
\frac{B e}{c}=\frac{p}{p} \tag{16}
\end{equation*}
$$

Where p is the radius of curvature and c the velocity of light, For a relativistic electron $p \approx E$ and hence.

$$
\begin{equation*}
\rho=\frac{p c}{B E}=\frac{E}{B e} . \tag{17}
\end{equation*}
$$

Now if an electron and positron of total anergy $\mathrm{E}^{-\prime}$ and F^{\dagger}, xespectively, are produced in the converter, we can write

$$
2\left(p^{-}+p^{+}\right)=\frac{2}{B \varphi}\left(E^{-\infty}+2^{+}\right)
$$

or

$$
\begin{equation*}
z^{\prime \prime}+{z^{+}}^{+} \frac{B \oplus}{2} 2\left(\rho^{-}+\rho^{+}\right) \tag{18}
\end{equation*}
$$

Therefore, the total electronmositron pair energy is proportional to
the distance between orbits at the 180° position and independent of the horizontal position of pair creation in the converter. This latter property is termed lateral width focusalag.
180° focussing. Various fectors cause the pair members to omerge from the converter with angular displacements from the normal. In the spectrometer described here multiple scattering is most important with minor contribution due to angular effects and the pair creation process. In the 180° desien horizontal displacement of the pair members at the focus line due to their angular displacements at the converter are minimized becauge of focussing to first order in the angle. Energy independence of scattering losses. If the projected scattering angle on leaving the converter is sufficientiy large, an electron will not intercept the detectors at the 180° poastion. This will be referred to as 'scattering out' or 'scattering loss'. If α ' is the rms projected scattering angle and the convertar thickness, α^{\prime} can be writien as

$$
\begin{equation*}
\alpha^{\prime}=c \frac{f(t)}{E} \tag{19}
\end{equation*}
$$

Where C is a constant and the function $f(t)$ is defined in Appendix B. Now the orbital path length for an electron moving from converter to detector is $\Pi \rho$ and hence the vertical displacement h at the detector for an electron with angle α^{\prime} is

$$
\begin{equation*}
h=\pi p \alpha^{\prime}=\pi \frac{E}{B_{\theta}} \frac{C f(t)}{E}=\frac{C \pi}{\theta} \frac{f(t)}{B} \tag{20}
\end{equation*}
$$

Hence, the vertical displacement is independent of E, and therefore the 'scattering losses' are independent of E , Equation (20) also indicates that for different values of B the thickness t can be appropriately chosen such that these losses are equalized.
2. The Magnetic Field

It is an obvious calculational advantage for a pair spectrometer to have a uniform magnetic field such that particle orbita are circular arcs. Also, because of limitations on the range of gamma ray energies detectable with such an instrument (in this case ($1 \pm 1 / 2$) E for a mean energy E), it is necessary to operate at various magnetic rifeld settings $1 f$ measurement of a broad gamm-ray spectrum is desired. For a measurement of the Panofaky ratio the detection efficiency is optimized if measurements are made at two mean energy settings corresponding to the rodiative capture gammarray peak and the central energy of the π° gaman ray alatribution.

For these reasons a program of magnetic fiela measurenents and shiming the apectrometor magnet was undertaken. The pole tip and ahim configuration adopted is shom in Fig. 7. 2hin poie tip maxeacehind not shown in the figure; were used in the denterium ratio measurament to provide more uniform fleld.

The magnetic fiela settinge B used in this axperiment are:

$\frac{\text { B(gauss) }}{5,538}$	Application 8,235
11,013	
10,500	
Panofoky ratio	
Panofy ratio ratio	
Deuterivm ratio	

Magnetic flela contoura for the magnet at these fiela nettings are nowa In Figures 8,9 and 10 where the valuea given rapresent the ifeld avaraged over 5 -inch deen region centered about the median jiane.

For tho least uniform ileld, B a 11, 013 gause, caloulation indicated that the maximus enargy ahift due to ilela variations mannts to $<0.25 \%$. This has been conflmed by comparing the position of the radiative capture $112 e$ for $B=10,500$ and $B=11,013$ gruas.
3. Converters

A converter assembly is ahown in Fig. II. The Lead converter $1 s$ mounted on a $0,060-1 n c h$ lucite backing vith piastio tape. Bmail Iuotte clemps mounted on the top suriece of a 0.060 -Inoh aiuminum plate rigidiy suppoxt the converter pexpendicular to the plata. SLota in a set of parallel gulde ralle acoept the edgen of the aluminum plate while a position stop detemminen the desired locstion of the front edge of the plate. With this azrongement the convextax could be located to uthin 0.015 Inch of the dasired location and converter assemblian coula be rayidiy incarchanged.

Bealdes the Lead end Iuoite backing, the converter gcintillation counter also forms pant of the onventer syatem. However, the effective thicknese for pair production in the converter countex in not known. The manner in which the data in trasted to account Pon thin is discuamed in paragraph VI-C.

Characteriatias and applicetion of the varloue convertern usod In thia experiment are deacribed in rable 4.
4. Countors

Fig. 7. Spectrometer pole tip and shim configuration.

Fig. 8. Magnetic field contours for central field $B_{0}=5538$ gauss.

Fig. 9. Magnetic field contours for central field $B_{0}=10500$ gauss.

-

Fig. 10. Magnetic field contours for central field $B_{o}=11013$
gauss.

Fig. 11. Converter assembly.

The counter cetection system consisted of 66 Geiger tubes and 9 scintillation counters arranged as shown in Figure 12. A coincidence between the gate counters (scintillators 1, $2-N$, and 3P) indicates the detection of an electron-positron pair created in the converter. The total energy of the peir is determined by those Geiger tubes and acintiliam tion counters, $4-N$ throuch $9-P$, which fire in coincidence with the gate counters. The scintillation counters served as a check on the Geiger tube Eystern and helped to derine events when extra Geiger tubes fired.

Geiger tube arrangement. The Geiger tubes employed (Victoreen type 1885) are cylindrical in shape with a 0.750 -inch diameter outer aluninum shell of thichess 0.007 inches. A fine 0.002 -inch wire along the axis of the cylinder forms the mode.

The present tube arrangement has been used previously, 30 overlapping tubes and requiring a coincidence for the overlap channels, a channel width of 0.250 inches is provided. In order to increase the active area of the channels, pairs of Gaiger tubes were arranged parallel end to end to provide total active length of nearly 5 inches. A alde View of the counter array 18 shown in Figure 13. Vertical overiap was erployed to compensate for the reduced efficiency near the tube end. The positions of the tubee were known to within 0.015 inch.

Identically numbered tubes in Figure 12 define a pair of paraliel
tubea wilch form a part of the same energy channels and are connected electrically to the same lead. Each tube numer N 1dentifies the radius p of an electron orbit which passes through the tube center and the center of the converter, perpendicular to it. For the left bank (electron side) $p^{-}=\frac{48-N^{-}}{4}$ and for the right bank (positron side) $p^{+}=\frac{N^{+}-48}{4}$ Hence, the totel diatance $2\left(\rho^{-}+\rho^{+}\right)$between a pair of electron and positron channels, which is related to the total pair eneres by Equation (28), is just

$$
\begin{equation*}
2\left(p^{-}+p^{+}\right)=\frac{N^{+}-N^{-}}{2}=\frac{2}{B E}\left(E^{+}+E^{-}\right) \tag{21}
\end{equation*}
$$

For the overlap channela, N^{+}and N^{+}refer to the average of the numbera Identifying the two overlappea tubes.
Scintillation counters. Dimensions of the pine scintillation counters are given in Table 5. Counters 2-N and 3-P are composed of tapered piecea of plastic scintillator and lucite bonded together with Epon to form a uniform 0.500 -inch thick atrip. The piece of bcintillator ranged in

Fig. 12. Schematic drawing showing counter locations and Geiger
tube numbering system.

MUB-827

Fig. 13. Side view of counter array.
thickness from 0.25 inches at the end closest to the phototube to 0.45 inches at the opposite end. This design was incorporated to reduce the veriation in pulse heicht with distance from the phototube and hence to insure that the detection efficiency was independent of electron energy.

Counters 4-N through 9-P form a complete separate nystem for defining the energy channels, with a resolution of 6%. Nowever, the usefulness of this bystem was Iimited due to the relatively large efficiency (5 to $10 \frac{\beta}{0}$) for detecting Cerenkov radiation in tha Jucite atrips. Counter Efficiency. The rma variation in efficiency of the Geiger tuben used in the present experiment has been dotermined to be eppraximately 4%. The absolute efficiency as determined from the results of the present experiment is between 85 and 90%. Calcuiations Indicate that the abolute efficiency should be nearly 100% however, tube end effects may cause this difference.

By observing which channel acintillation countern fire when specific Geiger channela fire for the present set-up, it was determined that the efflclency for eech solntillator channel (Refer to Figure 12.) was $>98 \%$.

E. Electronics

A schernatic drawing showing the electionics and related data recording inctrumentation is shown in Figure 14.

A coincidence avent (B, C, D, \bar{E}) in the coincidence unit $\mathrm{W}-1$ Bignifies a ganma ray has actuated the gamma-ray monitor teleacope. This counting rate is monitored by acalers $8-1(a)$ and $8-1(b)$.

The function of the remaining circuitry is to detect and indicate photographically those Geiger tuber and those gointillation aountery, 4-N through 9-P, which iire aimultaneously With the three gate countere (1, 2-N, and 3-P). Detection of a coincidence between the gate countera In the fast coincidence unit W-9 triggers the discriminator BW-2. The fast output pulae actuates the gate genezator G and also aemes as one Input to each of the 2-fold coincidence ciroults Wm through $\mathrm{K}-9$.

Relative time delays in the system are aljuated so that, it any of the epectrometer channel counters, 4-N through 9-F, fire inmitaneously with a coincidence of the gate counters, the corresponding coincidence units are triggered. Thase 2 fold coincidence events provide inputs to corresponding units of the"amplifier and pulse generator". Each of the 64 pair of parallel Ceiger tubes is also connected to the input of ane of these unita.

A 20-volt, 5-psea pulae from the gate generator: G; provides

Fig. 14. Schematic drawing of the electronics and related
a slow coincidence between the gate counters and the channel derining counters in the "amplifier and pulse generator" units. A neon lame is located in the output circuit of each unit. These lamph, whon fired, indicate coincidence eventa and are photographicaliy recorded.

The camera is a 35 mm Dumont type-modified to inciude an auto matic film edvance mechenism which is actuated by the gate prise. Low intensity lights within the hood insured firing of the neon lamps when voltage was applied.

IV EXPERTMENTAL PROCEDURE

Throughout the Panofaky ratio measurement the hydrogen target wat clamped firmiy in position. Cyclotron runs were made with various combinam tions of apectrometer converters and magnetic fields as indicated in Table 6. Panofsky ratios I and II refer to the two independent measurements perw formed as described in Section II, one utilizing a fixed magnetic field (II) and the other, two different fielda (I). The runs with comverter out determined the efiect of the converter counter. Additional background measurements not indicated in the table were made with the convertersboth In and out but with the bydrogen removed from the flask. In order to halp cancel systematic monitoring and background effects due to cyclotron operation a large number of individual muns were performed (130) altemnating between the various magnatic ileld and converter combinations.

During measurement of the deuterium ratio S, runs with the bydrow gen and deuterium taxgets were alternated. Nearly 20 one-hour mung vere performed with each target. Magnetic ileld and converter combinationa are shown in the table.

Frequent checks were made to ensure that the equipment was operam ting properly. All magnet currents and counter voltages were inspected every few hours. A closed circuit T.V. aystem permitted continuous monitor. ing of the hydrogen and deuterim target gaugen. Similariy, visual presentation on a wall recorder of the output Prom the Ion chamber monttor provided a continuous check on the cyclotron beam. In adaition, the equigment was pulsed through severad times during the experiment to make aure the timing had not changed or components had not failed.

Garma-rey Yield vi Hydrogen Density

In order to correct for the diffexence in ntopping power betwem the liquid hydrogen and deuterium, a measurement of gamamray yleld vg. hydrogen density was performed. Changes in density were made by altering the pressure in the hydrogen plask. The minimun and maximan pressurea attained were 3 psia and 30 psia, corresponding to a change of hydxogen density from 67 to $75 \mathrm{~mm} /$ 11ter. Values of density were determinced by temperature measurements.

A copper-constantan themocouple was used for the temperature measurements. One junction was located near the battom of the hydrogen target while the reference junction was located in a IIquid N_{2} bath.

Voltage measurements were made with a Leed's and Northrup K-2 potentiometer: With this system the temperature could be deternined to within 0.2 of a degree.

The test equipment used is shown in Figure 15. To acquire pressures above atmospheric the reservoir-flask system was closed off and the pressure allowed to rise. A relief. valye net for 15 paig was provided to retain the pressure at a set value until temperature equilibrium was established. However, because of the slow rate of pressure increase, approximate temperature equilibrium was constantly maintained; hence measurements were made at several different pressures. Measurementic comsiated of simultaneous recordings of the gammeray monitor rate and the thermocouple voltage. For pressures below atmospheric the vacuum puxp was connected directly to the hydrogen system. Measurements were performed as before for several pressures below atmospheric.

Fig. 15. Test equipment for hydrogen pressure test.
V. SPECTROMEHER RESOLUIION ARD DETECTION EFFICIENCY

Assume a gamme ray selected at random from a spectrum with enerey distribution $I\left(E_{\gamma}\right)$ is incident on a converter of thickness T. Then the probability that a paix is produced and detected with total energy between E and $E+\Delta \Psi$ can be written as

$$
\begin{align*}
& P(E) \Delta E=\gamma(T) S(T, B) \int_{E_{\gamma}}^{E_{\gamma}} I\left(E_{\gamma}\right) r\left(E_{\gamma}, E\right) d E_{\gamma} \Delta E \quad \text { or } \tag{22}\\
& P(E) \Delta E=\gamma(T) S(T, B) \int^{I\left(E_{\gamma}\right) R\left(E_{\gamma}, E\right) d E_{\gamma} \in(E) \Delta E}
\end{align*}
$$

where $\gamma(T)$ is the probability for pair production in the converter averaged over the apectrum of incident energies, $S(T, B)$ is the probability that the vertical positions for both particles at the 180° point of their orbits are within the detector vertical limite, $r\left(E_{\gamma}, E\right)$ and $R\left(E_{\gamma}, E\right)$ are resolution functions, and $\epsilon(E)$ is defined as the lateral detection efficiency. The integration extends over all gaman-ray energies occurring in the distribution $I\left(\mathrm{~F}_{\gamma}\right)$. These equations are derived in Appendix C. The Iunction $r\left(E_{\gamma}, E\right)$ describes thenersy distribution of pairs for which both particles enter the detector region, while $R(E, E)$ gives the complete energy alstribution of palrs emerging from the converter. The efificiency $\epsilon(E)$ compensates for this difference and specifies the fraction of pairs with total enerey E for which both particles enter the lateral indits of the datectors. $\in(\mathbb{E})$ can be written for a fixed \mathbb{E}_{γ} as

$$
\begin{equation*}
E(E)=\frac{r\left(E_{\gamma}, E\right)}{R\left(E_{\gamma}, E\right)} \tag{24}
\end{equation*}
$$

Due to the counter geometry and the thin converters employed in the present experiment $\in(E)$ can be determined to within a few percent of its true value by geometry considerations alone.

The Resolution Function $R\left(E_{\gamma}, E\right)$

$$
\begin{align*}
& \text { This Punction is defined as } \\
& \left.R\left(E_{\gamma}, E\right)=\int^{E_{0}} p\left(E_{\gamma}, E_{0}^{-}\right) \int^{T} W\left(E_{\gamma}, t, B\right)\right\rangle^{E_{1}{ }^{-}} F^{-}\left(E_{\gamma}, t, E_{0}^{-}, E_{1}{ }^{-}\right) \\
& x F^{+}\left(E_{\gamma}-E_{0}^{-}, t, E-E_{1}{ }^{-}\right) d E_{1}{ }^{\prime} d t d E_{0}^{-} \text {, } \tag{25}
\end{align*}
$$

Where the integrations extend over all values of the initial and final electron enereies, E_{0}^{-}and $E_{1}{ }^{-}$, and for which $\int_{0}^{E_{\gamma}} R\left(E_{\gamma}, E\right) d E=1$. The function $\mathrm{P}\left(\mathrm{E}_{\gamma}, \mathrm{E}_{0}^{-}\right)$denotes the dirtribution of electron energies occurring in pair production and is shown in Figure 16 for a ganma-ray energy of 129 Mev . The function $W\left(\mathrm{E}_{\gamma} \gamma, T, B\right)$ serves to welght slices of the converter with reapect to pair production yield and to scattering looses. For given inftial particle energies and position in the converter the functions F^{*} and F^{+}describe the distribution in ifnal electron and positron energles, $\mathrm{E}_{1}{ }^{-}$and EwE ${ }^{-}$, upon leaving the converter. These latter functions include contributions to the energy loss due to bremsstrahlung (or radiation straggling) and ionization as well as the Iine broadening due to the Geiger tube channel width. In the calculation of the resolution these three effects have been treated separately and the resulting distributions Folded together. For the chonnel width contribution this procedure is exact aince the energy width of all channels is the same due to the uniform magnetic fleld. Separate treatment of the radiation and ionization effects is also a good approximation since the fonization energy loss for relativistic electrons is neariy independent of energy while the radiation losses change very little over a range of particle energies compareble to the average lonization lose in the converters used.

The channel width distribution was celculated by folding together two uniform distributions both of energy width equal to a geiger channel, one corresponding to the electron side of the spectrometer, the other to the positron side. The result of this fold $1 s$ an equilateral triangle With base width equal to the fum of the channel widths and is ahown in Figure 17 for a magnetic field setting of 11,013 gause.

For ionization energy loases the Landau ${ }^{\text {31 }}$ aistribution was used uth the most probable energy lose corrected for the density effect as described by Sternheimer ${ }^{32}$ and experimentaliy verifled by Hudson. ${ }^{33}$

Since the Lonization energy lons for a relativistic electron Is nearly indepandent of initial particle energy, the diatribution function for the total energy loss by both pair members is obtained by sweraging the fold of the electron and positron dustributions over the converter thickness. However, in this case the fold for a given thickness is equivalent to the distribution resulting from a aingle particie treversing twie that thickness. This is proven in Appendix D. Therefore

MU-26181

Fig. 16. Distribution of electron energies in pair production for $E_{Y}=129 \mathrm{Mev}$.

Fig. 17. Channel width resolution for $B=10,500$ gauss.
the Lonization energy loss diatribution for the pair was celculated by averaging the Landau distribution for an electron over twice the thicisness of the actual convexter. In the averaging process the taile of the Lendou distribution for each converter alice were extended to an energy such that in the averaged distribution less than 1.5% of the pairs bad enexgles lower than this.

The averaged diatribution for lonization losses in converter P-3 is shown in Figure 18.

The radiation strageling distributions for electrons and positrons vere computed using the aum of the cross mections for bremastrablung in the Ilela of the nucleus as derived by Bethe, Davies, and Maximon ${ }^{34}$ and In the fleld of the atomic electrons as given by wheelerwlamb. 35 To obtain the integrated radiation atraggling as function of total pair energy the individual eiectron and positron radititon diatributions were integrated over final electron enerert converter thickness, and lutilal electron energy as indicated in Equation (25). The TBM 709 computer was programed for this calculation. An explanation of the computational procedure in given in Appendix E.

Whe integrated radation straggling diatribution for converter P-3 nad a gemma-ray mergy of 129 Mev is show in FLgure 19:
Laterel Detection Efficlency

For simplicity it is assumed that there is no scattering in the converter. the lateral detection efficiency $\in(E)$ is then the fraction of pairs produced with energy E which enter the detector region. For an extremely thin converter in which the electron and positron essentiaily lose no energy the total pair energy 18 equal to the incident gama-ray energy and hence the efficiency $\in(T)$ is determined entirely by the pais fraguent energy alstribution function $p\left(E_{\gamma}, E_{0}\right)$ and the geometry of the spectrometer. The values of this function for the range of particle energles detected by the spectrometer are quite close to the average value. Refer to Figuxe 16. Therefore, if a untform distribution 1s ascumed for $p\left(Z_{\gamma}, E_{0}\right)$, the detection effictency can be determined to within a few percent from the apectrometer geonetry by the equations

$$
\begin{equation*}
\epsilon^{\prime}(\mathrm{E})=\frac{\mathrm{E}^{+}-\mathrm{F}_{\alpha}^{\infty}}{E} \text { where } E=E^{+}+E_{\alpha}^{\infty} \text { and } E_{\alpha}^{+} \leq E^{+} \leq E_{\beta}^{+} \tag{26}
\end{equation*}
$$

and.

$$
\begin{equation*}
\epsilon^{\prime}(E)=\frac{E_{p}^{+}-E^{\prime \prime}}{E} \quad \text { Where } E=E_{P}^{+}+E^{*} \text { and } E_{\alpha}^{*} \leq E^{-} \leq \mathbb{E}_{P}^{*} \tag{27}
\end{equation*}
$$

MU-20183

Fig. 18. Ionization energy loss distribution for converter P-3.

MU. 26184

Fig. 19. Integrated radiation straggling distribution for converter $P-3$ and $E_{\gamma}=129 \mathrm{Mev}$.
for wisch $E_{\alpha}^{-}, E_{\beta}^{-}, E_{\alpha}^{+}$, and E_{β}^{+}are the energies of the minimum

and maximum orbits orisinating at the converter center.
Pairs produced in a "thick" converter by gamman rays of some arbitrary fired energy E_{γ} will emerge from the converter with a distribution of energies $E \leq E_{\gamma}$. The efficiency $\epsilon(E)$ for detecting these patrs, however, will not in general be the same as for pairs produced by earma rays of energy E in an extremely thin converter. This is because the efiiciency is determined both by the pair fragnent energy distribution for the Incident gama ray and by the distribution of energy losses for the electron and positron, However for the converters used in the experim ment and the gamn ray energien involved, the efficiency $G^{\prime}(E)$ as determined from Equations (26) and (27) still differs by only a few percent from the correct values obtained from Equation (24). Because of this and slace the correct efficiency $G(E)$ is dependent upon gaumanray energy, $\epsilon^{\prime}(E)$ was used to correct to the first approximation the measured data for the energy dependence of the datection system.

The energy dependence of the measured spectra $\Pi_{d}(\triangle E)$ for a monoenergetic gamma ray should bo equivalent to the calculated spectra $r\left(E_{\gamma}, E\right)$. Hence, if N_{d} is the number of pairs detected over a given energy interval and corrected for the energy dependence of the detection system with the efficiency $\epsilon^{\prime}(E)$, we can write

$$
\begin{equation*}
N_{d}=\sum \frac{n_{d}(\Delta E)}{\epsilon^{\prime}(E)} \leadsto \frac{r\left(E_{\chi}, E\right) \Delta E}{\epsilon^{\prime}(E)}=\sum R^{\prime}\left(E_{y}, E\right) \Delta E \tag{28}
\end{equation*}
$$

Since the correct expression is

$$
\begin{equation*}
\left[\mathrm{H}_{\mathrm{a}}\right]=\sum \frac{n_{a}(\Delta E)}{\epsilon(E)} \sim \sum \frac{r\left(E_{\chi}, E\right) \Delta E}{\epsilon(E)}=\sum R(E, E) \Delta E \tag{29}
\end{equation*}
$$

We obtain by forming the ratio of these expressions

$$
\begin{equation*}
\left[\mathbb{N}_{\mathrm{a}}\right]=\frac{\sum \mathrm{R}\left(E_{\gamma}, E\right) \Delta E}{\sum R^{\prime}\left(E_{\gamma}, E\right) \Delta E} \mathbb{N}_{\mathrm{d}}, \tag{30}
\end{equation*}
$$

which epecifies the correction fector to N_{d} For the monoenergetic radiative capture ganma rays from hyorogen both functions $x\left(E_{\gamma}, E\right)$ and $R\left(E E_{\gamma}, E\right)$ were calculated as a function of E using the computer program described in Appendix E and ϵ (E) vas determined. The correction fector was then evaluated for the enengy interval used in the analysis. For the cese of the π^{0} gama-ray spectrum this correction factor wa calculated for several geama-ray energies ond the results averaged over the diatribution.

VI. data and analysis

A. Treatment of Data

In scanning the film ail neon lomps which fired were recorded for each event in terms of the numbers identifying the corresponding Geiger tuben and scintillators. The total pair energy, $\mathrm{Eaf}_{\mathrm{E}} \mathrm{E}^{+}+\mathrm{E}$, was then calculated according to Equation (21), which can be written as

$$
\begin{equation*}
E=E^{+}+E^{-}=\frac{B}{2.313}\left(\rho^{+}+\rho^{*}\right)=\frac{B}{5.252}\left(N^{+}+N^{-}\right) . \tag{31}
\end{equation*}
$$

The data 1s presented in Tables 7, 8, 9, and 10. Table 7 indicates how all recorded events for each measurement were treated. In Tables 8,9 , and 10 the energy spectra of the accepteble events is tabulated,

The difference between the "Total gates" and "Total eveats recorded" columa in Table 7 is due primerily to accidental coincidences of the gate counters for which no ganma ray is involved.

For geometrical reasons a few channels in the spectrometer detection array were not used. The limits of the useful region are in alcated in Figure 12 by the minimum and maximum orbits. Events in which elther the electron or positron falls outside this region were rejected! The number of these is given under column A in Table 7 . In addition, for each measurement the data analysis was performed over a ilmited range of energies (column $E_{A} \rightarrow F_{B}$) of the detected pairs. Events felling outside this range are nated in column D. Because of the relatively small variations in efficiency of the Geiger tubes (see Paragraph III-D) and since In general many different pairs of electron and positron channels correspond to the same energy, it is assumed that the Geiger tube efficiency, averaged over all conemant energy channels, is independent of total pair energy. Therefore it is permissible to reject ail eventa in which Gelger tubes on one or both bides do not fire. The number of these is given under column B. Bince the efficiency of the channel scintiliation counters is quite Large (498% for each electron or positron channel) and again since in general several sets of electron and poaitron channela correspond to the same energy, it is also assumed that the efficiency of the scintillation counter bystem is independent of total pair energy. In order to eliminate any possible energy dependent background all scintillators overjapping the Geiger tube channel which fired were also required to fire. The number of events not meeting this requirement is given in colum C.

Acceptable events are classiffed es "good" or "extra." "Good" events are those for which either one Geiger tube or two overlapping ones fire on both electron and positron sides and for which the overlapping scintillator channel counters all fire. "Extra" events are those in which adaitional Geiger tubes fire and for which the scintillator and Geiger channels are in agreement.

In approximately 80% of the "extra" events less than 4 Geiger tubes fire on either side. For a large majority of these ovents the energy could be detexmined to within one or two Geiger channel widths. However, in nearly all cases the gama-ray group involved could be determined.

Several effects contribute to cause extra Geiger twobs to fire. These include; 1) Large angle scattering in the converter causing a pair member to either intercept the 180° position at some angle or strike the pole tip or Gelger holders and scatter back into the detectorsy 2) Multiple scattering in Geiger tubes or channel scintillators; 3) Accidentale;
4) Delta rays produced at the detectors and passing through near-by tubess and 5) Back acattering from energy degrader or gate acintiflaision counter. scattering calculations indicate contributions due to effect (1) are negligible. This has been confirmed by observing that the ratio of "extra" to "good" counts is independent of converter thicknegs T for values of T up to three times larger than the normal thickness. Since contributions from effects (2), (4), and (5) are energy dependent and due to particles traversing the detector region, it is necessary that these "extre" events be included.

The "uncertain events" in Table 7 are events in which extra Geiger tubes fired and for which either the gamma-ray group involved could not be determined or it could not be ascertained whether the incidant electron or positron passed through the acceptable detector channela. If these events are equally divided among the possible alternatives, no significant influence on the ratios being measured results. since the number of these events is small, we have chosen to ignore them,

Let a number of gama rays, in γ, be incident upon the converter. If $n_{d}(\Delta E)$ is the number of pairs detected in an energy channel of width ΔE, then

$$
\begin{equation*}
N_{\gamma}=\frac{n_{d}(\Delta E)}{P(\mathbb{E}) \Delta E} \tag{32}
\end{equation*}
$$

Which by substituting Equation (23) for $P(E) \triangle E$ can be rewritten as

$$
\begin{equation*}
N_{\gamma}=\frac{n_{d}(\Delta E)}{\epsilon(E)} / \gamma(T) s(T, B) \int^{E_{\gamma}} I\left(E_{\gamma}\right) R\left(E_{\gamma}, E\right) d E_{\gamma} \Delta E \tag{33}
\end{equation*}
$$

Since N_{γ} is independent of the energy interval over which the measurement Is made, for a interval between E_{A} and E_{B} we cen write

$$
\begin{equation*}
N_{\gamma} \mathrm{N}_{\mathrm{a}} / \gamma(\mathrm{T}) \mathrm{s}(T, B) \sum_{\mathrm{E}_{A}}^{E_{B}} \int^{E_{\gamma}} I\left(E_{\gamma}\right) R\left(E_{\gamma}, R\right) d E_{\gamma} \Delta E \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{d}=\sum_{E_{A}}^{B} N_{d}(\Delta E)=\sum_{\mathbb{E}_{A}}^{E_{B}} \frac{n_{d}(\Delta E)}{\in(E)} \tag{35}
\end{equation*}
$$

N_{d} is evaluated in rables 8,9 , and 10 for the varlous measurements. The measured spectra $N_{d}(\triangle \mathrm{E})$ are shown in Figures 21 and 22 for Panof aky ratio measurement I; in Figure 23 for measurement II, and in Figure 24 for the deuterium ratio measuremerit.

Background. The measured ylelds obtatned for each converter with the H_{2} removed irom the target were approximately 0.5% as large as the correspond ing yields with the H_{2} in. This is consistent with the assumption thet this yield is entirely due to interactions of the π^{-1} masons with the realdual H_{2} gas in the target.

The total enerey range of the spectrometer over which peira were detectable for each magnetic field setting is indicate below:

Field (Gauss)	$\frac{\text { Energy range (Mev) }}{5538}$
8235	$34.3-100.7$
10500	$51.0-149.7$
11013	$65.0-190.9$
	$68.2=200.2$

It can be seen from Table 7, Column D, that for the radiative capture reaction the number of events detected with energies Larger than the high energy cut off F_{y} is quite small. Although some of these ovents may be due to accidental background, the numbers are consiatent with what Is expected from radiative capture in plight. Bince the detectable energy range above F_{B} is quite appreciable as can be seen above, the Recidentel background is asswed negligible.

B. Gpectrometr Pariommee Chock

Gevaral checte were wade to insume that the gpectrometer operam thoa was 2.3 predtcted.

Whith the spectroncter field set at 10.500 gruss the yould from the reatative cepture recetion in hyragen was meacured for cevaral converter thickneases, whe "scsttering in" probability $5\left(\mathrm{I}_{8} \mathrm{~B}\right)$ for each thiclaces was then deternined accoxding to Equation (34). The zemits are given in Figure 20. In evaluating $\mathrm{g}(\mathrm{T}, \mathrm{B})$ the aniculated valuas for the resolution were used. However; as indicated in Paragraph VioC the colculated spectre do not agree exactiy with the measured spectra, Although the abcolute comections to $s(T, B)$ for this ffect are not know, the values for the greater thickneases abould be fncreased nomewhat. The solid curve in the Pisure repreaent the reaults of a scattering calculation in which it ia assumed that the aistribution of projected seattering angles 1s Gaismian This ealculation is deartibed in Appeadix B. It is noted that the calculated nealtio in the Figure have been compared fox aeverel converter thickness with remute obtained fros a Einilat indepeadent calculation using the eact Moltere theory and agree Hithin 2 to 2 percent.

The memaurea xatio of yield with converten in to yield with converter out for the panofaky ratio runs in compared in tabla 11 with that calculated using Dquation (34), tho onloulated ration includa reattering corrections gis detarmined Proan Figura 20. In adition the effective thicknestis of the converter counter han been token as 0.9 the totai thickness, while ean equivalent thickneas of 4 inches of asr ham bech adaed to all converterg to mecount for pair producetion in aix preceding the converter. Ihae calculated ration ave axpected to be Iower imitt. Although the atrerence in the retios for the high ifele in glightly greater ting one standard deviation, the reaulta are reasonsble ond provide good evidence that only pairs areated in the converter are datected.

Since the number of gexma raye incident upon the convexter, ny, if indepencent of magnetic field, comparicon of meanmee valuem
 check on eny magnetic pield effects. Ny Was deternined from Equation (34) using the Panofsly ratio data for the mesic capture ganma rays at

MU. 26185

Fig. 20. "Scattering in" probability $S(T, B)$ vs converter thickness for $B=10,500$ gauss.
the low and medium fields and the radativ capture gema rays at the modium and high ifelds. For this calculation an everage value for the summation \sum was used as dascribed in Paragraph VI-X The results aro given In Toble 12.

C. Panof sky Ratlo Calculation

The measured Panof sky ratio, Formila (12), can be rewritten In terms of Equation (34) to give

$$
\begin{equation*}
P=\left(\mathrm{MC}_{2} \mathrm{C}_{2} \mathrm{C}_{3}\right) \frac{\mathrm{N}_{\mathrm{dI}}}{2 \mathrm{~N}_{\mathrm{da}}} \frac{\gamma_{2}(\mathrm{~T})}{\gamma_{1}(T)} \frac{S_{2}(T, B)}{\mathrm{S}_{1}(T, B)} \frac{\sum_{2}}{\sum_{1}} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{1}=\sum_{E_{A 1}}^{E_{B I}} \quad R_{1}(E) \Delta E=\sum_{E_{A 1}}^{E_{B 1}} \int^{E_{\gamma}} I_{2}\left(E_{\gamma}\right) R_{1}\left(E_{y}, E\right) d E_{\gamma} \Delta E \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{2}=\sum_{\mathrm{E}_{\mathrm{A} 2}}^{\mathrm{E}_{\mathrm{B} 2}} \mathrm{R}_{2}\left(\mathrm{E}_{\gamma}=129 \mathrm{Mev}, \mathrm{E}\right) \Delta \mathrm{E} \tag{38}
\end{equation*}
$$

Subscripts 1 and 2 refer to the mesic capture and radiative capture gama rays, respectively, and $I_{1}\left(E_{y}\right)$ is the energy distribution frunction for the mesic capture gamm rays. The factor M normalires the yields from the two reactions to the same numbers of π^{-}menons etopping in the target. c_{1}, c_{2}, and C_{3} are correction factors. c_{1} compensatea for the fect that the lateral aetection efficfency used in evoluating N_{d} is not exact. This ic discuased in gection V. C_{2} adjusts the data for the internal conversion reactions while C_{3} coxxcts the measured mesic capture spectrum for the contribution resulting fron radiati, ve capture gaman raya.

The values detemnined for the quantitises in Equation (36) are givan in Table 13 for the Panofaky ratio measurements I and II.

The effect produced by the converter counter has been treated by aubtracting the measured yield with converter out from the yield with converter in. Thic can be writiten as

$$
\begin{equation*}
N_{d}=N_{d}(I n)-\left(\frac{M_{\text {in }}}{M_{\text {out }}} \beta\right) N_{d}(o u t) \tag{39}
\end{equation*}
$$

Where $M_{\text {in }}$ and $M_{o u t}$ are the monitor counte for converter in and out, respectively, and the factor β compensetes for the reduced number of pairs produced in the converter counter when the converter is in place. Values of N_{d} and are given in trable 7 .

With the pair spectrometer, electrons produced by gammaney Compton scattering in the converter are not detected. Considering this, the probability for pair production in the converter is given by

$$
\begin{equation*}
\gamma(T)=\frac{\sigma_{p}}{\sigma_{p}+\sigma_{c}}\left(1-e^{-P\left(\sigma_{p}+\sigma_{c}\right) T}\right) \tag{40}
\end{equation*}
$$

where ρ is the density and σ_{p} and σ_{c} are the cross sections for pair production and Compton scattering, respectively. The expression in the parenthesis is the total gama-ray absorption probobility while the ratio of cross sections defines the fraction of the total absorption aue to pair production. The cross sections are averages over the energy spectrum considered. The sum of the cross sections for pair production in the field of the nucleus and the field of the atomic electrons was used. For the nuciear contribution the results of Bethe, Davis, and Masamon? ${ }^{34}$ were employed with an enersy dependent correction foctor as aiscussed in NBS Circular 583. The contribution by the atomic electrons was determined from the xesults of Vortruba. ${ }^{36}$ For the Compton scettering cross cection the Klein-Nishina formia was used.

Although the thicknessee of the converters were selected to equalize the "scattering in" probability $S(\eta, B)$ for each field setting, the thickness of converier C-1 deviated alightiy from the required value. To compenate for this the ratio $\frac{S_{2}(T, B)}{S_{1}(T, B)}$ for measurement I was determined from the calculated curve of $\quad S_{1}(T, B) \quad s(T, B) V_{B} T$ for $B=11,013$ gauge corresponding to that in Figure 20, $S_{2}(T, B)$ is obtained directiy for a thickness corresponding to converter $C-3$ while $S_{1}(T, B)$ correquonds to the value given for that thickness such that the acattering is the same as for converter $C-1$ and $B=5,538$ gauss.

The calculated spectra $R_{1}(E)$ and $R_{2}(\mathbb{I})$, defined in Equations (37) and (38), reapectively, are shown in Figures 21 and 22 for measurement I. and in Pfgure 23 for measurement II. The corresponding measured spectra are also given. Slace the energy scales of the caloulated ppectra are absolute, the curved were fitted to the measured data merely by adjusting the helehts. For the radiative capture gama ray the calculated apectra was adjusted so that the areas in the peak between 124 and 130 Mov for both spectra vere equal. The Iimits of the energy intervals over which N_{d} and \sum have been evaluated are indicated in these ifgures by arrows. It will be noted in Figures 21, 22 , and 23 that the calculated spectra are consistently emaller in the tails than the measured rpecta.

Fig. 21. Mesic capture gamma-ray spectra for $B=5,538$ gauss,

MUB-976

Fig. 22. Radiative capture gamma-ray spectra for $B=11,013$ gauss.

Posaible reasons for this are discussed in Section VII. Because of this effect there is some uncertainty in determining the quantities \sum_{1} and \sum_{2} If it is assumed that the discrepancy between the calculated and measured spectra $1 s$ due to bremsstrahlung incompletely accounted for, then, since the tail of the calculated specta is almost entirely due to bremsatrablung, a correction to the calculated value for \sum is obtained by taking the relative discrepancy as constant from the lower cut-off energy down to zero. The value of \sum obtained in this manner is considered a lower limit. If the discrepancy 1 s caused by other energy loss effects, auch as ionization, it is believed the tall contribution would not be as great. Since the behavior in the tail is not known, the value of \sum calculated from theory 1 taken as the upper 1 imit. The upper and lower 11 mits for $\sum_{1} \sum_{2}$ and the ratio $\frac{\sum 2}{\sum 1}$ derived from this analysis are tabulated below.

	MEASUREMENT I		MEASUREMEMTI II	
	Upper 1 imit	Lower 11 mit	Upper 11mat	Lower 1/mit
\sum_{1}	. 991	.978	. 963	. 907
\sum_{2}	. 950	.913	. 970	. 948
$\frac{\sum 2}{\sum 1}$. 959	. 934	1.007	1.045

It is now assumed that the correct value for the ratio $\sum_{2} \sum_{1}$ lies with equal probability anywere between the upper and Lower Iimita. This assumption derines the values 11ated in Table 13.

The factor C_{2} adjusts the measured data so that the results for P are expressed in terms of the definition in Equation (4).

$$
\begin{equation*}
P=\frac{(1 a)+(2 b)}{(2)+(3)} \tag{4}
\end{equation*}
$$

In the present method of measurement reaction (Ib) is detected only half as efficientiy as (la) while reaction (3) is never detected; dua to this, C_{2} is calculated to be

$$
\begin{equation*}
0_{2}=\frac{1+j}{(1+j)(1+j / 2)} \tag{4x}
\end{equation*}
$$

where $j 1$ the branching ratio $\left(\frac{1 b}{1 a}\right.$ and g^{\prime} the ratio (3) Uaing the values for these ratios given in the Introduction C_{2} is determined to be 0.999.

D. Deuterium Ratio B Calculation

The measured deuterium ratio, Formula (15), written in texms of Equation (34) is

$$
\begin{equation*}
s=\left[M(1+P) \frac{N_{d 2}}{N_{d 4}} \frac{\gamma_{4}(T)}{\gamma_{2}(T)} \sum_{4}\right]_{-1} \tag{42}
\end{equation*}
$$

where
and

$$
\begin{equation*}
\sum_{2} \sum_{E_{A 2}}^{E} R_{R}\left(E_{\gamma}=129 \mathrm{Mev}, E\right) \Delta E \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{4}=\sum_{E_{A} / 2}^{E_{B}+} R_{4}(E) \Delta E=\sum_{E_{A 4}}^{E_{B 4}} \int_{\gamma}^{E_{\gamma}} I_{4}\left(E_{\gamma}\right) R_{4}\left(E_{\gamma}, B\right) d E_{\gamma} \Delta E \tag{44}
\end{equation*}
$$

Subscripts 2 and 4 refer to the lydrogen and deuteriun radiative capture reactions, respectively, while $I_{4}\left(E_{\gamma}\right)$ is the deuteriun gamna-ray energy alstribution. The ratio of the term in Equation (34) envolving $8(T, B)$ 13 unity and bas been onitted in Equation (42). In addition, corrections to the metarured spectra due to the lateral detection efficiency are nearIy identical and ro mastment to $81 s$ necessary. The values determined for the quantitios appearing in Equation (42) are listed in Table 14 to gether with the value calculated for S.

Spectrographie analysia of the deuteriwn ueed in the experimant; indicated a 2.25% contamination of hydrogen. In correcting for the effects of this it is mssumed that the yield due to the hydrogen is alrectiy proportional to the concentration of hydrogen. Calculations made by Cohen; Judd, and R土dali1 ${ }^{37}$ for μ^{-}mealc-atora gystens indicate that for a $\mu^{-} p$ atom moving with low energy through pure deuteriun the rate for treasfer of the μ^{-}meson to a deuterium atom is $\approx 10^{10} \mathrm{sec}^{-1}$. Hovever, the rate for nuclear capture of a π meson from a $7 \overline{1} \mathrm{p}$ mesic atom state is $>25 \times 10^{10} / \mathrm{sec} .^{18}$ since $1 t$ ic reasonable that the probability for capture of a π meson into a $\pi \bar{p}$ mesic atom atate is proportional to the concentration of hydrogen and that the above transfer rate is not very diferent for the π meson, our assumption is justified. The correction was made by aubtracting from the measured deuterium yield Wheas $_{\text {M }}$ the contribution due to the hydrogen contarination and then adding that contribution which would have resulted if the hydrogen had been deuterium.

The expression for this can be written as

$$
\begin{equation*}
N_{d 4}=N_{d 4}^{\text {Meas. }}-M(.0225) N_{d 2}+.0225 N_{d 4} \tag{45}
\end{equation*}
$$

which by rearranging terms becomes

$$
\begin{align*}
N_{d 4} & =\frac{1}{1-.0225}\left(N_{d_{4}}^{M e a s}-M(.0225) N_{d 2}\right) \tag{46}\\
& =1.0230\left(N_{d 4}-0.0268 N_{d 2}\right) \\
& =1.0230 \sum \frac{n_{d 4}(\Delta E)-0.0268 n_{d o}(\Delta E)}{\epsilon(E)} \tag{47}
\end{align*}
$$

${ }^{N}{ }_{d}$ is evaluated In Table 10.
The pair production probability for the deuterium germss-ray distribution $X_{4}(T)$, was calculated using for the cross section an average value weighted in terms of the gamna-ray distribution. The assumed form of the distribution was taken from the calculations of Watson and stewart ${ }^{38}$ for a value of the $n-n$ scattering length as determineed by Crow and Phillips. 39

In order to evaluate the ratio $\frac{\sum 4}{\sum 2}$, the relative contributions In the tails of the measured spectra below the low energy cut off must be determined. The measured distributions $N_{d}(\Delta E)$ for both the H_{2} and D_{2} gama rays are shown in Figure 24 where the distributions have been normalized to the same number of events. The cut-of energies are indicated by arrows. Since most of the contribution in the tall of the hydrogen distribution is due to radiation straggling, the contribution in the deuterium tail should be approximately 20% larger due to enhanced contributions from lower energy gamme-rays. After taking this into account the difference remaining in the two spectra at the lower cut-off energy was extrapolated linearly to zero energy. A contribution of 2.7\% of the total spectra was obtained. Since the shape of actual deuterium gamaray spectrum is expected to fall off with decreasing energy faster than lInearly, the value used for this contribution was taken as 1.4 ± 1.0. \sum_{4}, was calculated using this procedure for both the upper and lower lImits of Σ_{2} as determined in the manner discussed in Paragraph VI-C. The two results were averaged together to give

$$
\frac{\Sigma_{4}}{\Sigma_{2}}=0.97 \pm 0.01
$$

MU. 26240

Fig. 24. Measured radiative capture gamma-ray spectra for H_{2} and $\mathrm{D}_{2}(\mathrm{~B}=10,500$ gauss $)$.

In the nomalization term, M, it is necessary to include in adilition to the ratio of monitor counts a Pactor which compensates for tho difference in stopping power betreen H_{2} and D_{2}. The average tonimation energy loss for beavy charged parificies can be written

$$
\begin{equation*}
\frac{d x}{d x} \sim \frac{P z}{A v^{2}} \quad f(v, I) \tag{48}
\end{equation*}
$$

where p is the mass aensity, Z the otomic number, A the atomic velght, \checkmark the particlo veloaity, and I the averace ionization potential. Now Z is the sane and \vec{I} neariy so for both H_{2} and D_{2}. However P / A for D_{2} is nearly 15% largex then for H_{2} and hence the otopping power 15% Iaxger. However, since the energy spectrum of the π^{-}beem was not uniform, it was necessary to determine exporimentally the relative number of π^{-}menoñ stopping in the H_{2} and D_{2}. Two independent methode were employed.

In describing the first method let t be the thickness (in $\mathrm{gia} / \mathrm{cm}^{2}$ of H_{2} equivalent) of the energy degrader shown in Figure 25 and let x represent the range (in ga/ cm^{2} of H_{2}) of a typicel π^{-}meson. Then the residual range of a mean upon prasing through a thickness t is just $x-t$. Now th the function $P(x)$ denotes the renge alatribution of the π^{-}meson bean and if $q(x-t)$ xepresents the probability that a meson with reaidual range $r-t$ stops in the H_{2} target, we can write

$$
\begin{equation*}
F(t)=\int_{0}^{\infty} P(r) q(r-t) d x \tag{49}
\end{equation*}
$$

where the function $F(t)$ defines the fraction of the totel beam which stope in the H_{2} Por a glven t. This function is directly proportional to the range curve of Figure 3 with background subtrocted and is nown in Figure 25. If we now assume no scattering losse日 for the meson beom, then all mesons with range between t and $t+1.78 \mathrm{gm} / \mathrm{cm}^{2}$ will atop in the H_{2} target. This spectifies the function $q(x-t)$ as equal to 1 if $0<r-t$ <1.78 and 0 otherwise. Therefore, both functions $F(t)$ and $q(x-t)$ are know and the integrel in Equation (49) can be unfolded to give the function $P(x)$. $P(x)$ is shown in Figure 26.

If the degrader thickness t is now fised and the ${ }_{2}$ density increased, the target thickness in $\mathrm{cm} / \mathrm{cm}^{2}$ is increased and more of the meson range distrtbution $P(r)$ will lie uithin the target. Hence by calculating $F(t)$ for various H_{2} densitiea the relative number of mone
topping in the target as function of density is obteined. The reaults of this are shown by the smooth curve in Figure 27. The normal density of the hydrogen and the density of deuterium corresponding to the same stopping power are indicated.

In the second method, seversi different values of hydrogen density were obtoined by suitably pressurizing the liquid hydrogen system. see section IV. By monitoring the reaction rate with the garmaray telescope the relative π meson atopping rate as a function of density wos determined. The measured values are nhown in Figure 27.

The ratio of the number of $7^{\prime \prime}$ mesons atopping in the D_{2} terget to the nubber atopping in the H_{2} target as a result of the atopping power difference is determined from this figure as 1.13.

E. Error Analysis

The error assigned to the velue for P in measurements I and II Is calculated from the equation

$$
\begin{equation*}
\delta \mathrm{P}=\mathrm{P} \sqrt{\left(\frac{\delta\left(\frac{N_{d 2}}{N_{d a}}\right)}{\frac{N_{d 1}}{N_{d a}}}\right)^{2}+\left(\frac{\delta M}{M}\right)^{2}+\left(\frac{\delta\left(\frac{{\frac{\gamma_{2}}{}(T)}_{\gamma_{1}(T)}}{\frac{\gamma_{2}(T)}{\gamma_{1}(T)}}\right)^{2}}{{ }^{2}}+\left(\frac{\delta\left(\frac{\sum_{2}}{\sum_{1}}\right.}{\frac{\sum_{2}}{\sum_{1}}}\right)^{2}\right.} . \tag{50}
\end{equation*}
$$

The standard error on the ratio of $N_{d 1}$ to $N_{d a}$ is Just

$$
\begin{equation*}
\mathcal{E}\left(\frac{N_{d 1}}{N_{d 2}}\right)=\frac{N_{d 1}}{N_{d 2}} \sqrt{\left(\frac{\delta N_{d 1}}{N_{d 1}}\right)^{2}+\left(\frac{\delta N_{d 2}}{N_{d 2}}\right)^{2}} \tag{51}
\end{equation*}
$$

where δN_{d} and $\delta N_{\mathrm{d} 2}$ are the standard exrors on $N_{\mathrm{d} 1}$ and $N_{\mathrm{d} 2}$. Bince the e quantities are defined by Equation (39) in which $N_{d}(1 n)$ and N_{d} (out) are evoluated in accordance with Equation (35), $\delta \mathrm{N}_{\mathrm{d}}$ and $\delta \mathrm{N}_{\mathrm{d} 2}$ are deter. mined by the general expression

$$
\left.\delta N_{d}=\sqrt{\sum\left(\frac{n_{d}(\Delta E)}{\epsilon^{T}(X) e}\right)}\right)_{\text {in }}+\left(\frac{M_{1 n}}{M_{\text {out }}} \beta\right)^{2} \sum\left(\frac{n_{d}(\Delta E)}{\left.\epsilon^{\prime(E)^{2}}\right)}\right. \text { out . (52) }
$$

Due to the relatively mall background in the ganaamxay monttor telescope counting rate (see Figure 3), the accuracy of this monitor is limited by fluctuations in losees in the scaling syatem. These fluctuam tions were determined to be less than 2%. A comparison of the two

Fig. 25. Functions $F(t)$ and $q(r-t)$ used for range curve unfolding.

Fig. 26. Range distribution of π^{-}meson beam ($p(r)$ Vs r).

MU-24839

Fig. 27. Relative number of π^{-}mesons stopping in the hydrogen target Vs hydrogen density.
monitoring Eysteras used showed that the average fluctuations in the relative indications were of this same magnitude. Since more than 25 runs were performed for each converter-field situation and the various types of runa altemated, we astimate the monitoring error to be 0.3%.

The ratio of the pair production probeblilities can be approximated by

$$
\begin{equation*}
\frac{\gamma_{2}(T)}{\gamma_{1}(T)} \sim \frac{1-e^{-\rho \sigma_{2} T_{2}}}{1-e^{-\rho \sigma_{1} T_{2}}} \approx \frac{\rho \sigma_{2} T_{2}}{\rho \sigma_{1} T_{1}} \tag{53}
\end{equation*}
$$

since the probabilities are mmil compared to one. Therefore, the fractional error on the ratio of probebilities is fust the fractional error on the ratio of cross sections

$$
\begin{equation*}
\delta\left(\frac{\gamma_{2}(T)}{\gamma_{1}(T)}\right) / \frac{\gamma_{2}(T)}{\gamma_{1}(T)}=\delta\left(\frac{\sigma_{2}}{\sigma_{1}}\right) / \frac{\sigma_{2}}{\sigma_{1}} . \tag{54}
\end{equation*}
$$

The errors in σ_{1} and σ_{2} arise from the appraximation made in the colcum lations of Bethe; Davis, and Maximon. ${ }^{34}$ since the ratio oniy is involved here, the error should be small. He estimate a 2% error in the ratio.

The error asaigned to the deuterium ratio S is determined from the expression

$$
\begin{equation*}
\mathcal{A}=\mathrm{E} \sqrt{\left(\frac{\delta\left(\frac{N_{a 2}}{N_{d 4}}\right.}{\frac{N_{d 2}}{N_{a 4}}}\right)^{2}+\left(\frac{\delta(1+p)}{1+P}\right)^{2}+\left(\frac{\delta M}{N}\right)^{2}+\left(\frac{\delta\left(\frac{\sum_{4}}{\sum_{4}}\right)}{\frac{\sum_{2}}{L_{2}}}\right)^{2}} \tag{55}
\end{equation*}
$$

The expression for the standard error on the ratio of N_{d} to $\mathrm{N}_{\mathrm{d} 4}$ has the ceme form as Equation (51). However, $\delta N_{d 2}$ and $\delta N_{d 4}$ are evaluated In this case by the general expression

$$
\begin{equation*}
\sigma N_{d}=\sqrt{\left(\frac{n_{d}(\Delta E)}{\epsilon^{\prime}(\mathbb{E})}\right)} \tag{56}
\end{equation*}
$$

In adaition to a 0.3% error on the ratio of monttor counts as described previousig, a 1% error has been assigned to the ratio of the nuxubers of Π meaons stopping in B_{2} and D_{2} due to the aifference in stopping power. This exror arises from the uncertainty in the renge curve untolaing:

VII. RESULITS AND DISCUSSION

The final results for the Panofaky ratio and the deuterium ratio s are:

$$
\begin{aligned}
& P=1.51 \pm 0.04 \\
& S=3.16 \pm 0.10
\end{aligned}
$$

Here P is the weighted average of the values determined for measurements I and II in Paragraph VI-C.

Previous measurements of P are shown in Table 1. If each of these is weighted according to the quoted error, the value obtained is

$$
P=1.54 \pm 0.02
$$

Our result is in complete agreement.
The value of S obtained here is aignificantly higher than the results of previous measurements, which are shown in Teble 2. It is also considerably higher than that calculated from Equation 11, (See Table 3). Although the reason for this disagreement is not known, systematic errors on this measurement are believed to be quite small since the same converter and the ame magnetio field are used for both the mydrogen and deuterium runs and since both rediative capture gamam ray spectra are quite aimilar.

As was indicated in Paragraph VI-C a discrepancy exists between the shape of the theoretical spectra and the measured apectra. The values determined for P and s depend upon the agsumed cause of this discrepancy. In obtaining the above results we have assumed that the discrepancy is caused by energy losses of the electrons and positrons in the converter incompletely accounted for. In the following paragrapha we discuss the various causes of this effect which have been considered, and the probable magnitude of their contribution. These include:

1) Reduced energy gama rays entering the spectrometer; 2) apparent or real energy loss effects associated with the spectrometer design; and 3) uncertainties in the energy loss of high energy relativistic electrons.

The firat possible cause might involve either nuclear reaction in which lower energy eamma rays are produced or gemma rays with reduced
energy produced by Compton effect or shower formation on the collimator wells. It is noted that the measured hydrogen radiative capture spectrum cen be reconstructed very well with a combination of 82% of the theoretical hylrogen spectra plus 18% of the measured deuterium spectra. Since the hydrogen used bad the normal isotopic ebundence, then, if this apparent agreement were meaningful, it would imply a very high transfer rate of the π^{-}meeon between kydrogen and deuterium. However, as indicated in Paragraph VI-D the transfer rate even in pure deuterium is believed to be relatively small. This, together with the fact that the Π° gemma-ray spectra also displays the same effect, leads us to consider this explanam tion as quite improbable. Rough calculations of Compton scattering of gemma reys in the collimator walis indicate the contribution of reduced energy game rays due to this should be much smaller than the observed effect. It seems unlikely that this process or shower formation would yleld a gamm-rey spectrum required to explain the discrepancy. However, If Conpton scattering on the collimator walls were assumed to be the cause, from a comparizon of the measured and theoretical spectra it is eatinated that the quoted value for p would be reduced by 6% and S would renain essentially unchanged. Mhis reduced value for p_{p} however, would disagree signiffeantly with previous measured values of p.

With reapect to the second possible cauce, an electron undergoing a large andle scattering in the converter may enter the detector region with apparent lower energy. For an apparent energy decrease of a few Mev it is very probable that several Geiger tubes nould be triggered and the event classified as "extra," as dofined in Paragraph VI-A. However, the measured spectra is essentially the same whether these events are included or not. The scettering calculations also indicate that these large angle scattering eyents are too rare to explain the observed effect. They also indicate that the number of electrons scattered off the pole tip or the Geigex holders and back into the detector region aimulating a reduced energy electron is much too small to account for the observed resulta.

There are two processes by which the election and positron can lose energy in the converter, bremsstrahlung and ionization. The bremastrahlung cross section employed (see paragraph VI-C) is belleved to be accurate to within a few percent, but has not been experimentally verified. A summary of previous bremsstrahlung measurements is given In the reviev article by Koch and Motz. ${ }^{40}$ W1th respect to ionieation,
the tendow ionization enerey loss distribution for high energy electrons has been ohecked by Eudson ${ }^{33}$ who obtaina blight deviations in the shape of the Aistribution near the high enerey end and excellent agreement with respeat to the most probeble energy lons. However, very little experimental Information is available with regard to the tail of the aletrabution.
VIII. ACKNOKLEDCEMENYS

I would ilke to thank Professor Kenneth M. Crove for auggesta ing this problem and for his valuable guidance and assiatence.

Among the many persons who contributed to this experiment I would lice to thank especially the following for help during the experiment and from whom many valuable suggestions were offered: Bart Czirr, Hans Kruger, Bob Beck, TIn Maung, Phil Beilin, Cordon Binghem, Bob Shafer, John Whitsel and George Sheldon.

Many hours of steady beam were supplied by the cyclotron crew under the direction of J. Vale and L. Houser.

To Marianne White for typing the manuscript I wish to express my thanks.

I vould Ifke to especially thank my wife, mlen, for her patience and underctanding during my graduate career.

Work done under the auspices of the U. S. Atomic Energy Commission.

IX. APPENDICITS

A. Derivation of 8 and P

If it is assumed that the tronsition rate for nuclear capture from a bound atate meatc stom is proportional to the aquare of the pion wave Aunction at the position of the proton, then we can write

$$
\begin{equation*}
\omega_{b}\left(\pi^{-}+p \rightarrow \pi^{0}+n\right)=v\left|\phi_{H}(0)\right|^{2} \sigma\left(\pi^{-}+p \rightarrow \pi^{o}+n\right) \tag{57}
\end{equation*}
$$

where the relative velocity v and aross section σ correspond to the inflight process and $\phi_{\mathrm{R}}(0)$ is the wave function for the mesic atom state from rhich cepture occurs evaluated at the position of the proton. If charge independence in the pion nucieon interaction is assumed, the charge exchange croes section can be expressed as

$$
\begin{equation*}
\sigma\left(\pi+p-\pi^{0}+n\right)=\frac{8 \pi}{9} \frac{1}{q^{2}}\left(a_{3}-a_{1}\right)^{2} \tag{58}
\end{equation*}
$$

Where a_{3} and a_{1} are the 5 -wave scattering length for isotopic apin atetes $3 / 2$ and $1 / 2$, respectively, and q is the incident c.m. pion momentum. A first order correction due to the $\pi^{-} \omega \pi^{\circ}$ mass afference changes Equation. (58) to

$$
\begin{equation*}
\sigma\left(\pi+y \rightarrow \pi^{0}+n\right)=\frac{8 \pi}{9} \frac{1}{q^{2}} \cdot \frac{v_{0}}{v_{0}}\left(a_{3}-a_{1}\right)^{2} \tag{59}
\end{equation*}
$$

where v_{0} and v_{w} ere the c.m. velocities of the π° and π^{-}mesons w.r.t. the nucleons. Subetituting Equation (59) into (57) yields

$$
\begin{equation*}
\omega_{b}\left(\pi+p \rightarrow \pi^{c}+n\right)=\frac{8 \pi}{9} \frac{\nabla_{0}{ }^{v}}{q^{2} \nabla_{-}}\left|\phi_{\mathrm{H}}(0)\right|^{2}\left(a_{3}-a_{1}\right)^{2} \tag{60}
\end{equation*}
$$

In analogy to Equation (57) the bound state radiative capture reaction rate is

$$
\begin{equation*}
\omega_{b}\left(\pi^{-}+p \rightarrow \gamma+n\right)=v\left|\phi_{H}(0)\right|^{2} \sigma(\pi+p \rightarrow \gamma+n) \tag{61}
\end{equation*}
$$

Using detailed belancing the in-flight cross section can be expressed as

$$
\begin{equation*}
\sigma\left(\pi^{-}+p \rightarrow \gamma+n\right)=\frac{2 x^{2}}{q^{2}} \sigma\left(\gamma+n \rightarrow \pi^{-}+p\right) \tag{62}
\end{equation*}
$$

where k is the incident photon c.m. momentum. If R is defined as

$$
\begin{equation*}
R=\frac{\sigma\left(\gamma+n \rightarrow \pi^{-}+p\right)}{\sigma\left(\gamma+p \rightarrow \pi^{+}+n\right)} \tag{63}
\end{equation*}
$$

then Equation (62) may be rewritten as

$$
\begin{equation*}
\sigma\left(\pi^{-}+p \rightarrow \gamma+n\right)=\frac{2 x^{2}}{q^{2}} R \sigma\left(\gamma+p \rightarrow \pi^{+}+n\right) \tag{64}
\end{equation*}
$$

Substituting Equation (64) into (61) yields

$$
\begin{equation*}
\omega_{b}\left(\pi^{-}+p \rightarrow \gamma+n\right)=\frac{2 k^{2} v^{2}}{q^{2}} R\left|\phi_{H}(0)\right|^{2} \sigma\left(\gamma+p \rightarrow \Pi^{+}+n\right) \tag{65}
\end{equation*}
$$

By forming the ratio of Equations (60) and (65) we obtain for the Panofsky ratio,

$$
\begin{equation*}
P=\frac{4 \pi}{9 R} \frac{V_{0}}{v k^{2}} \frac{\left(a_{3}-a_{1}\right)^{2}}{\sigma\left(\gamma+p \rightarrow \pi^{++} n\right)} \tag{66}
\end{equation*}
$$

Since at threshold for the photoproduction reaction

$$
\begin{equation*}
k=\frac{1+\frac{\mu}{2 M}}{1+\frac{\mu}{M}} \tag{67}
\end{equation*}
$$

and we have

$$
\begin{equation*}
v=q \tag{68}
\end{equation*}
$$

Where μ and M are the pion and nucleon rest masses, Equation (66) can be rewritten in the final form as

$$
\begin{equation*}
P=\frac{4 \pi}{9 R} \frac{v_{0}}{q} \frac{(1+\mu)^{2}}{\left(1+\frac{\mu}{2 n}\right)^{2}} \frac{\left(a_{3}-a_{1}\right)^{2}}{\sigma\left(\gamma+p \rightarrow \pi^{7}+n\right)} \tag{69}
\end{equation*}
$$

In analogy wit Equation (57)

$$
\begin{equation*}
\omega_{b}\left(\pi^{-}+a \rightarrow 2 n\right) v^{D}\left|\rho_{D}(0)\right|^{2} \sigma\left(\pi^{-}+a \rightarrow 2 n\right) \tag{70}
\end{equation*}
$$

The in-flight cross section can be expressed using detailed balancing as

$$
\begin{equation*}
\sigma\left(\pi^{-}+d \rightarrow 2 n\right)=\frac{2}{3} \frac{P_{n}^{2}}{q^{D}} \cdot \sigma\left(n+n \rightarrow \pi^{-}+d\right) \tag{71}
\end{equation*}
$$

where P_{n} is the c.m. neutron momentum and q^{D} the c.m. pion moraention in the " π^{-}- d system. Now by charge symetry

$$
\begin{equation*}
\sigma\left(n+n \Rightarrow \pi^{-}+d\right)=\sigma\left(p+p \rightarrow \pi^{+}+d\right) \tag{72}
\end{equation*}
$$

and hence by substituting Equations (71) and (72) Into Equation (70), we obtain

$$
\begin{equation*}
\mathcal{W}_{b}\left(\pi^{-}+a \rightarrow 2 n\right)=\frac{2}{3} v^{D}\left|\phi_{D}(0)\right|^{2} \frac{P_{n}^{2}}{q^{D 2}} \sigma\left(p+p \rightarrow \pi^{+}+d\right) \tag{73}
\end{equation*}
$$

If the ratio it is defined according to

$$
\begin{equation*}
\omega_{b}\left(\pi^{-}+d \Rightarrow \gamma+2 n\right)=m w_{b}\left(\pi^{-}+p \rightarrow \gamma+n\right) \tag{74}
\end{equation*}
$$

and Equation (61) substituted Into (74), we can write

$$
\begin{equation*}
\omega_{b}\left(\pi^{-}+d \rightarrow \gamma+2 n\right)=T v\left|\phi_{H}(0)\right|^{2} \sigma\left(\pi^{-}+p \rightarrow \gamma+n\right) \tag{75}
\end{equation*}
$$

Using Equation (64), Equation (75) cen be expresced as

$$
\begin{equation*}
\omega_{b}\left(\pi^{-}+a \rightarrow \gamma+2 n\right)=\frac{2 x^{2} v}{q^{2}}\left|\phi_{H}(0)\right|^{2} R \sigma\left(\gamma+p \rightarrow \pi^{+}+n\right) \tag{76}
\end{equation*}
$$

By forming the ratio of Equations (73) and (76) the folloring expression for S is obtained

$$
\begin{equation*}
s=\frac{1}{3 I R} \cdot \frac{v^{D}}{v} \frac{q^{2}}{q^{D 2}} \quad \frac{\left|\phi_{D}(0)\right|^{2}}{\left|\phi_{H}(0)\right|^{2}} \frac{p_{n}^{2}}{k^{2}} \frac{\sigma\left(p+p \rightarrow \pi^{+}+a\right)}{\sigma\left(\gamma+p+\pi^{+}+n\right)} . \tag{77}
\end{equation*}
$$

By the relations

$$
\begin{aligned}
& T=T \frac{Q_{D}(0)^{2}}{P_{H}(0)^{2}} \\
& P_{n}^{2} \approx M \text { at threshold } \\
& v=q\left(1+\frac{\mu}{N}\right) \text { and } \\
& D=q^{D}\left(1+\frac{\mu}{M M}\right)
\end{aligned}
$$

S can be expressed in the final form,

$$
\begin{equation*}
s=\frac{M}{3 T^{1} R} \quad \frac{q}{q^{D}} \frac{1+\mu}{2+\frac{\mu}{2}} \quad \frac{\sigma\left(p+p \rightarrow \pi^{+}+d\right)}{\sigma\left(\gamma+p \rightarrow \pi^{+}+n\right)} \tag{78}
\end{equation*}
$$

$$
\text { B. Calculation of } S(T, B)
$$

The projected angle α is defined as that angle which the projection of the momentum vector (for an electron or positron leaving the converter) on a vertical plane perpendicular to the converter makes with the converter normal. Angles for which the momentum vector 1 s directed below the horizontal are considered negative.

The multiple scattering distribution for projected angles as derived by Moliere can be written as

$$
\begin{equation*}
I(\alpha) d \alpha=\frac{1}{\sqrt{\pi} \theta \sqrt{\beta}}\left[e^{\left.\left.-\frac{\alpha^{2}}{\theta_{1}^{2} \beta}+\frac{f_{1}(\alpha)}{\beta}+\cdots\right] d \alpha, ~ d \alpha\right] . .}\right. \tag{79}
\end{equation*}
$$

The first term is Gausaitm and normalized to one. The remaining terms are much smaller and cen be considered as corrections to the Gaussian term. The variable θ_{1} in Equation (79) is derined according to

$$
\theta_{1}^{2}=0.157 \frac{2(z+2)}{A} t_{L^{2}}\left(t \text { in } \frac{C_{G}^{2}}{2}, \text { E in Mev }\right)
$$

and β can be determined to better than ion from the formula

$$
\beta=21.81+2.37 q-0.02 q^{2}
$$

where

$$
q=\ln _{10}\left[z^{-2 / 3} \frac{t}{A} \frac{z^{2}}{2.12 \times 10^{4}+3.762 Z}\right] .
$$

Since a Gaussian approximation for multiple scattering is known to hold quite well for angles less than 2 or 3 times the rms width if the width is appropriately chosen, and because the Moliere distribution predicts quite accurately the scattering, the Gaussian tern in Equation (79) with rms width $\alpha^{\prime}=\frac{\theta_{1} \sqrt{\beta}}{\sqrt{2}}$ is used in this calculation and is rewritten below:

$$
\begin{equation*}
f(\alpha) d \alpha=\frac{1}{\sqrt{\pi \theta_{I}}} e^{-\alpha^{2} / \theta_{1}^{2} \beta} d \alpha=\frac{1}{\sqrt{2 \pi \alpha^{\prime}}} e^{-\alpha \hat{q} 2 \alpha^{2}} d \alpha \tag{80}
\end{equation*}
$$

The "scattering in" probability $S(T, B)$ is defined in Appendix C, Equation (92) as

$$
\begin{equation*}
s(T, B)=\frac{1}{\gamma(T)} \sum_{t=0}^{T} \gamma(t, T) s(t, B) \Delta t \tag{81}
\end{equation*}
$$

where $s(t, B)$ is given as

$$
\begin{equation*}
s(t, B)=\int^{z} z(z) \int_{h_{a}}^{h_{b}} P_{h^{\prime}}(t, z, B, h) d h \int_{h_{a}}^{h_{b}} P_{h^{\prime}}\left(t, z, B, h^{\prime}\right) d h^{\prime} d z \tag{82}
\end{equation*}
$$

These functions are all defined in Appendix C. Since $P_{h}(t, z, B, h)$ is the distribution function for vertical heights of the electrons at the detector, it can be written as

$$
P_{h}(t, z, B, h) d h=\int^{0.11} f(t, E ; \alpha) g(\alpha, z, \rho, h) d \alpha d h(83)
$$

where $f\left(t, E^{\prime \prime}, \alpha\right)$ is the distribution function in projected angle for an electron of energy E^{*} traversing a thickness t of material and $g(\alpha, z, p$, h) din if the probability that an electron originating in the converter at the vertical position z, having angle α and radius of curvature p will strike the detector with height between h and ah.

For mall scattering angles an electron with α and P will travel a distance $\Pi \rho$ from converter to the 180° orbit position as indicated in the diagram below.

Here the actual circular orbits are represented adistraight lines. The converter height is $2 z_{a}$ and the detector height is $2 h_{a}$. If the vertical position of the electron at the converter is z, then the vertical height h at the detector 1 s Just

$$
\begin{equation*}
h=\pi \rho \alpha+z \tag{84}
\end{equation*}
$$

This specifies the function $g(\alpha, z, p, h)$ as the Kronecker delta function

$$
\begin{equation*}
g(\alpha, z, P, h)=\frac{1}{\pi p} \delta\left(\alpha-\frac{h-z}{\pi \rho}\right) \tag{85}
\end{equation*}
$$

Substituting Equation (85) into (83) we obtain

$$
\begin{equation*}
P_{h}(t, 2, B, h) d h=\frac{1}{\pi \rho} \int^{11}\left(\alpha(t, E ; \alpha) \delta\left(\alpha-\frac{h-2}{\pi \rho}\right) d \alpha \quad d h=\frac{1}{\pi \rho} f\left(t, E, \frac{h-z}{\pi \rho}\right) d h .\right. \tag{86}
\end{equation*}
$$

It has been shown in Paragraph III mD of the text that this distribution is independent of electron energy. Therefore the electron and positron distribution functions P_{h} and P_{h} in Equation (82) are identical. Bub. stituting Equation (86) back into Equation (82) and using Equation (80), we obtain

$$
\begin{equation*}
S(t, B) \int_{-}^{a} z(z)\left[\int_{a}^{+h_{a}} \frac{1}{\pi \rho \sqrt{2 \pi} a_{a}} e^{-\frac{(h-z)^{2}}{2(\pi \rho)^{\prime}}} d h\right]^{2} \tag{87}
\end{equation*}
$$

Since gamma ray are incident uniformly over the converter, the function $Z(z)$ is just $\frac{1}{2 z_{a}}$ end if we let y a $\frac{h-z}{3 \pi(\alpha,}$, Equation (87) can be cevritton as

$$
s(t, B)=\frac{1}{2 \pi z_{a}} \int_{z_{a}}^{+z_{a}}\left[\int_{a-z / t} e^{n_{a}-y^{2}} d y \alpha^{2} d z\right.
$$

This equation was numerically integrated using the IBM 650 computer to obtain $S(t, B)$ as a function of t for the different magnetic flelde used. The "scattering in" probability $g(T, B)$ was then calculated from Equation (81).
C. Spectrometer Detection Probability Calculation

Let $P(E) d E$ be the probability that a gama ray selected at random from a spectrum with energy distribution $I\left(I_{\gamma}\right)$ will pair produce In the converter end the resuiting pairs be detected with total energy between E and $E+d E$.

$$
\begin{align*}
& P(E) d B=\int^{E_{\gamma}} \int^{z}\left(\int^{t} \int_{1}^{E_{m}^{m}} I\left(E_{\gamma}\right) Y(y) Z(z) \gamma\left(E_{\gamma}, t, T\right) P\left(E_{\gamma}, E_{0}\right)\right. \\
& x F^{*}\left(E_{\gamma}, t, E_{0}^{-\prime \prime}, E_{1}^{-}\right) F^{+}\left(E_{\gamma}-E_{0}^{T}, t_{\theta} E_{-} E_{1}^{-}\right) \tag{88}\\
& x G\left(E_{0}^{-}, E_{\gamma}-E_{0}^{-}, E_{1}^{-}, E E_{1}^{-}, t, y, z_{y} B\right) d E_{1}^{-} d E_{0}^{-} d t d a d y d E \gamma a E
\end{align*}
$$

where

Here \mathbb{E}_{γ} is the gama-ray energy, y the lateral converter poestion, z the vertical converter position, the thicknese of converter from the position of pair creation to the exit face, T the total converter thicknem, E_{0} - the initial electron energy, E_{1}. the final electron energy after traversing the converter, h and h ! the respective vertical helghts at the detector for electron and poaitron, r and r" the reapective Laterel positions at the detector for electron and pooitrong and B the magnetic field. The functions are defined at the end of this Appendix.

The distribution functions for vertical height the detector; P_{h} and P_{h} are derived in Appendix p and it is noted that for the geometry used these functions are independent of the particle energies.

Substituting Equation (89) into (88) we obtain

$$
\begin{align*}
& \left.P(\mathrm{E}) \mathrm{d}=\int_{\mathrm{E}_{-}}^{\mathrm{E}_{\gamma}} I\left(\mathrm{E}_{\gamma}\right)\right)^{\mathrm{y}} \mathrm{X}(y) \int^{\mathrm{E}_{0}} \mathrm{P}\left(\mathrm{E}_{\gamma},{B_{0}}_{0}\right)\left\{\begin{array}{l}
t \\
\left(E_{\gamma}, t, T\right)
\end{array}\right. \\
& x \int^{E_{1}} F^{-}\left(E_{\gamma}, t, E_{o}^{-}, E_{1}^{-}\right) H^{*}\left(E_{2}^{*}, y, B, x_{a}<x<x_{b}\right) Z^{+}\left(E_{\gamma}-E_{0}^{-}, t_{,} E_{-E_{2}^{-}}\right) \\
& x \quad B^{+}\left(E-E_{1}{ }^{-}, y, B, x_{a}<x^{\prime}<x_{b}\right) d E_{1} d E_{0} d y d E_{\gamma} \tag{90}\\
& x \int^{z} z(z) \int_{h_{h}}^{h_{b}} P_{h}(t, z, B, h) d h \int_{h_{b}}^{h_{b}} P_{h^{\prime}}\left(t, t, B, h^{i}\right) d h^{\prime} d z d t d z .
\end{align*}
$$

The underlined integral above is the probability that for a given t and B the vertical height for both electron and positron at the 180° orbit position 13 between ha and hb. Lat us call this the "scatter -ing-in" probability and refer to it as $s(t, \beta)$. Also let $\frac{\text { Ave over } E_{y}}{\gamma(E y, t, T)}=\gamma(t, T)$,
then we may rewrite (90) to give then we may rewrite (90) to give
$P(A) d B=\sum_{t=0}^{m} \gamma(t, T) S(t, B) d t \int^{B} I\left(E_{\gamma}\right) \int^{y} Y(y) \int_{0}^{E_{0}^{*}} P\left(E_{\gamma}, E_{0}^{*}\right)$

$$
\begin{aligned}
& x\left\{\frac{\gamma\left(E_{\gamma}, t, T\right) S(t, B)}{\sum_{t=0}^{m} \gamma(t, T) S(t, B) d t} \int^{E_{1}} E^{-\infty}\left(E_{\gamma}, t, E_{0}^{-}, E_{1}\right) M^{-}\left(E_{1}, y, B, x_{B}<x<r_{b}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& x \quad \mathrm{dE} \mathrm{o}^{-} \mathrm{dy} \text { dey } \mathrm{dE} \text {. } \tag{91}
\end{align*}
$$

Now if $s(T, B)$ is the probability for "scattering in" averaged over the converter thickness, we can write

$$
\begin{equation*}
s(T, B)=\frac{\sum_{t=0}^{T} \gamma(t, T) s(t, B) \Delta t}{\gamma(T)} \tag{92}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma(T)=\sum_{t=0}^{T} \quad \gamma(t, T) \Delta t \tag{93}
\end{equation*}
$$

is the total probability for pair production in the converter of thicie. ness T averaged over the energy spectrum considered. We define the weighting function $W\left(E_{y}, t, B\right)$ as

$$
\begin{equation*}
W\left(E_{\gamma}, t, B\right)=\frac{\gamma\left(E_{\gamma}, t, T\right) S(t, B)}{\sum_{t=0}^{T} \gamma(t, T) S(t, B) \Delta t}=\frac{\gamma\left(E_{\gamma}, t, T\right) B(t, B)}{\gamma(T) B(T, B)} \tag{94}
\end{equation*}
$$

Equation (91) can now be expressed as

$$
\begin{align*}
& P(E) d B \gamma(N) \delta(T, B) \int^{E} I\left(E_{\gamma}\right) \int^{y} Y(y) \int_{0}^{E_{0}} P\left(E_{\gamma}, E_{0}^{-}\right) \\
& x \int^{t} W\left(E_{\gamma}, t, B\right) \int^{E_{1}} F^{\prime \prime}\left(E_{\gamma}, t, E_{0}^{-} E_{1}^{-}\right) H^{-}\left(E_{1}^{-}, y, B, x_{a}<x<x_{b}\right) \\
& \text { x } \mathrm{F}^{+}\left(\mathrm{E}_{\gamma}-\mathrm{I}_{0}{ }^{-}, t, \mathrm{E}-\mathrm{E}_{1}^{*}\right) \mathrm{A}^{+}\left(\mathrm{E}-\mathrm{E}_{1}{ }^{-}, Y, B, \mathrm{r}_{\mathrm{a}}<\mathrm{r}^{\prime}<{r_{b}}\right) \mathrm{dB}_{1}{ }^{-} \\
& x \operatorname{dtaE}_{0}^{-} d y d x_{\gamma} d x . \tag{95}
\end{align*}
$$

If we define a resolution function $r\left(F_{\chi}, E\right)$ as

$$
\begin{align*}
& x\left(E_{\gamma}, E\right)=\int^{y} Y(y) \int_{0}^{E_{0}^{-}} P\left(E_{\gamma}, E_{o}^{-}\right) \int^{t} W\left(E_{\gamma}, t, B\right) \int^{E_{2}} F^{m} H^{+} H^{+} \\
& x d E_{1}^{-} d t d E_{0}^{-} d y, \tag{96}
\end{align*}
$$

Equation (95) can be rewritten as

$$
\begin{equation*}
P(\mathbb{E}) d E=\gamma(T) S(T, B) \int^{\mathbb{E}_{\gamma}} I\left(\mathbb{E}_{\gamma}\right) r\left(\mathbb{E}_{\gamma}, \mathbb{E}\right) d \mathbb{E}_{\gamma} d \mathbb{E} . \tag{97}
\end{equation*}
$$

The functions H^{-}and H^{+}occurring in $r(E \gamma, E)$ effectively serve to cut off the respective functions $F^{\prime \prime}$ and F^{+}at certain values of the energies $\mathrm{E}_{1}{ }^{\prime}$ and $E \mathrm{E}_{1}{ }^{\prime}$ corresponding to the detector lateral Imats. $I f \in(E)$ is called the lateral detection efficlency defined as the efficiency for both members of a pair of energy E to intercept the 180° position within the Lateral detector limite, Equation (97) can be fewritten as
where

$$
\begin{aligned}
R\left(E_{y}, E\right)= & \int_{0}^{E_{0}^{-}} P\left(E_{\gamma}, E_{0}^{-}\right) \int^{t} H\left(E_{\gamma}, t, B\right) \sum_{1}^{E_{1}^{*}} F^{*}\left(E_{\gamma}, T_{0} E_{0}^{*}, E_{1}^{*}\right) \\
& x F^{+}\left(E_{\gamma}-E_{0}^{\infty}, t, E_{-E_{1}}^{-}\right) \Delta E_{2}{ }^{*} d t d E_{0}^{-}
\end{aligned}
$$

This function $R\left(E_{\gamma}, E\right)$ is termed the energy adjusted resolution function.

Desinition of functions in Appendix C

$\left.E_{\gamma}\right) \partial E_{\gamma}$	Probebility that a garma roy has energy between E_{γ} and $\mathrm{E}_{\gamma}+\mathrm{d} \mathrm{E}_{\gamma}$.
$X(y) d Y$	Probability that a ganme ray is incident on the converter With lateral position between y and $y+d y$.
$z(z) \mathrm{d} z$	Probability that a gamaa ray is incident on the converter with vexticel position between z and $z+d z$.
$\gamma\left(E_{\gamma}, t, T\right) d t$	Probebllity that a gemma ray of energy E_{γ} incident on a colverter of thickness T will pair produce in a thickness interval between t and $t+d t$.
$\gamma(T)$	Totol probrbility for pais production in a thicknese T averaced over the incident gama-ray spectrum.
-	Probability that in pair production by a gamma ray of energy E_{y} the electron produced has an energy betiveen $E_{0}{ }^{-}$and $E_{0}{ }^{-}+a E_{0}{ }^{-}$.
$F^{-}\left(E_{\gamma}, t, E_{o}^{-}, E_{1}^{-}\right) d E_{1}^{-}$	
	Probability that an electron of initial energy E_{0} " produced by a gaman ray of enerey E_{γ} will have a final energy between $E_{2^{-}}$and $E_{1^{-}} \pm d E_{1^{-}}$after passing through a thickness t of material.
$\mathrm{F}^{+}\left(\mathrm{E}_{\gamma}-\mathrm{E}_{0}^{-}, t_{,} \mathrm{E}_{\left.-\mathrm{E}_{1}{ }^{*}\right)}{ }^{-}\right.$	
	Probability that a positron of initial enercy $\mathrm{E}_{\gamma}-\mathrm{E}_{0}^{-}$prom duced in pair production by a gama ray with $E \gamma$ will have a final energy between $E-E_{1}{ }^{-}$and $E E_{1}{ }^{\circ}+\mathrm{dE}_{2}{ }^{-}$after pasaing through a thickness t of material.
$\mathrm{P}_{\mathrm{h}}\left(\mathrm{E}_{0}^{*}, \mathrm{E}_{1}^{*}, t, z, B, h\right) \mathrm{Ch}$	
	Probability that an electron of initial energy E_{0} having converter vertical coordinate z and final energy E_{1} after passing through a thickness t of the converter will intercept the 180 degree orbit position with verticai height between h and $d h$.
$\mathrm{H}^{-\prime}\left(\mathrm{E}_{1}, \mathrm{Y}, \mathrm{B}, \mathrm{S}_{4}<\right.$	This function is equal to 1 if $r_{a}<\left(2.626 \frac{E_{1}}{B}+y\right)<r_{b}$ and 0 otherwise.

D. Proof of Ionization Energy Loss Theorem

It is assumed that the ionization energy loss distribution fox an electron or positron is independent of initial paxticle energy. Let $p(t, k)$ represent this distribution where $p(t, k) d k$ is defined as the probability that efther particle passing through a thickness t of material losess an enexgy between k and $k+d k$. If both particles go tbrough a thicirness t, the aistribution function representing the total energy loss by both paxilcles can be written in terms of the folding integral

$$
\begin{equation*}
F(t, K)=\int^{k} P(t, k) P(t, K-k) d k \tag{100}
\end{equation*}
$$

where $F(t, K) d K$ is the probability for a totel energy loss between K and $K+d K$. We wish to show that the distribution $F(t, K)$ is identical to thet for a single electron going throuch a thickness $2 t$ of the same material.

The fonization energy loss distribution for particle after passm ing half way through a converter of total thickness 2t is just $P(t, k)$. Since this function defines the distribution of energies entering the second half of the converter, we can write for the final energy loss a1stribution $F\left(t, K^{\prime}\right)$

$$
\begin{equation*}
F\left(t, K^{\prime}\right)=\int^{k} P(t, k) f\left(t, k, K^{\prime}\right) d k \tag{101}
\end{equation*}
$$

where $f\left(t, k, K^{\prime}\right) d K^{\prime}$ is the probability that an electron which has lost an enerey k in the first helf will have on additional energy loss between $K^{\prime}-k$ and $K^{\prime}-k+d K^{\prime}$ in the second halp. Howevor, since the energy $10 \beta 6$ is assumed Independent of initial energy

$$
f\left(t, k, K^{\prime}\right) \mathrm{AK} K^{\prime}=P\left(t, K^{\prime}-k\right) \mathrm{X} K^{\prime}
$$

and hence Equation (101) can be rewritten as

$$
\begin{equation*}
P\left(t, K^{\prime}\right)=\int^{k} P(t, k) P\left(t, K^{\prime}-k\right) d k \tag{102}
\end{equation*}
$$

Fine distributions in Equations (100) and (102) are 1dentical. Q.E.D.

E. Description of Rediation Straggilng Calculation

If bremsetrehlung energy losses alone are considered, the energy distribution $p\left(E_{\gamma}, E\right)$ of the patrs produced by a beam of gamma rays of enerey Iy incident upon the converter can be written es

$$
\begin{align*}
& P\left(E_{\gamma}, E^{B}\right)=\int_{0}^{E_{0}} P\left(E_{\gamma}, E_{0}^{-}\right) \int_{0}^{T} W\left(E_{\gamma}, t, B\right) \int^{E_{1}} F^{+}\left(E_{\gamma}-E_{0}^{-}, t, E-E_{1}^{-}\right) \\
& x F^{\prime}\left(E_{0}, t, E_{i}^{-}\right) d E_{1}^{*} d t d E_{0}^{*} \text {. } \tag{103}
\end{align*}
$$

This is fdentical in form with Equation (25) in the text; however, in Equation (103) the functions F^{*} and F^{+}pertain only to radiation straggling. It is noted that for a given t and injtial electron and positron energies the integral over $E_{1}{ }^{-}\left[1 . e\right.$. the function $\left.F\left(E_{0}^{-}, F_{\gamma}-E_{0}^{-}, t, E\right)\right]$ is the "folding" integral. Hence, $P(E y, E)$ is obtained by averaging this fold over the converter thickness end inftial electron energy.

The converter of thickness T was divided into

If slices as indicated above. For both electrons and positrons orisinating st the center of a slice with energy $E_{0}^{"}$ and $E_{\gamma}-E_{0}^{-}$, respectively, and traversing the residual thickness of converter the rediation straggling distribution was calculated. These two distributions were then folded together whith respect to the final electron energy $\mathrm{L}_{1}{ }^{*}$. This process was repeated for aty If slices and the resulting distribution averaged together With the weighting function $W\left(w_{y}, t, B\right)$. Thia procedure was repeated for a large number of values of F_{0}^{-}. Numerical integration over t P_{0} for many velues of E geve the distribution $\mathrm{P}\left(\mathrm{E}_{\gamma}, \mathrm{B}\right)$.

The radiation strageling distribution function $F^{*}\left(E_{0}^{*}, \Delta t, E_{1}^{*}\right)$ resulting from an electron of inftial energy E_{0} traversing a supficiently thin slice Δt can be written in terms of the bremsstrahlung (differential In encray) crosis section $\sigma_{E_{1}}\left(\mathbb{E}_{0}, \mathrm{E}_{1}^{\prime \prime}\right)$ as

$$
F^{\prime \prime}\left(E_{0}^{*}, \Delta t, E_{1}^{* \prime}\right) d E_{1}^{-}=N_{a} \sigma_{E_{1}}\left(E_{0}^{*}, E_{1}^{*}\right) \Delta t a E_{1}^{*}
$$

where I_{s} is the number of atoms per unit volume. For bremsstrahlung in the fiela of the nucleus the differentiel cross section as given by Davies, Bethe, and Maxinon ${ }^{3 / 4}$ is

$$
\begin{align*}
W_{E_{1}}\left(E_{0}^{-}, E_{1}\right)= & \frac{4 Z^{2} r_{0}^{2}}{37\left(E_{0}^{2}-E_{1}\right)}\left\{\left(1+\left(\frac{E_{1}}{E_{0}}\right)^{2}\right)\right. \\
& \times\left[\frac{\phi_{1}(\gamma)}{4}-\frac{1}{3} \ln 2-f(z)\right]-\left(\frac{2}{3} \frac{E_{1}}{E_{0}}\right) \\
& \left.\times\left[\frac{\phi_{2}(\gamma)}{4}-\frac{1}{3} \ln z-f(z)\right]\right\} \tag{104}
\end{align*}
$$

where $F(\%)$ is a coulomb correction term and $\phi_{1}(\gamma)$ and $\phi_{2}(\gamma)$ are functions given by Wheeler and Lamb. 35 The cross section used for electron-electron bremsstrahlung is similar in form to Equation (104): however, z^{2} is replaced by z and olightly different functions are used In place of $\phi_{2}(\gamma)$ and $\phi_{2}(\gamma)$. In determining the atragsiling diatribution for an electron oxiginating at the center of a slice and traversing the residual thickness, Δt was taken equal to half slice thickness. The distribution reculting from posoing through the first slice was then used as the input energy spectrum to the eecond half slice. In this half slice the energy diatributions were calculated for all input energies and the contributions to each final energy summed using the input distribution as the weighting function. This procedure was carried out for ell half alicea in the residual thickness.

The thickness of the slice Δt was determined in the following manner. For particular initial energies of the electron and positron the integrol of the fold with respect to the converiex thickness was evaluated for several values of alice thickness. The velue of the alstribution function obtained for a given energy E was then plotted againat slice thickness. From the asymptotic nature of the curve the slice thickness required for any desired accuracy of the distribution function could be detemined. For the converter thicknessea employed here $N=7$ alices proved adequate.

X. Definttion of Symbols

A	Atomic weight.
B	Magnetic field intensity.
c	Velocity of light.
e	Charge of electron.
8	Total electron-positron pair energy.
${ }^{E} A$	Low energy cut off used in analysis of measured and calculated spectra.
E_{3}	High energy cut off used in analysis of measured and calculated spectra.
$\mathrm{E}^{\text {\% }}$	mlectron energy.
$\mathrm{E}_{0}{ }^{-}$	Electron energy inmediately after pair production.
$\mathrm{E}_{1}{ }^{-}$	Electron energy at exit face of converter.
E+	Positron energy.
E_{\varnothing}	Gama ray energy.
h	Vertical height of particle at the 180 degree orbit position.
I	Average lonization potential.
M	Normalization factor.
M	Nucleon rest mass.
N_{8}	Number of gama rays incident on the converter;
	$\mathrm{N}_{1 \gamma}=$ number froin masic capture reaction,
	$N_{2 \gamma}=$ number from radiative capture reaction in H_{2}. $N_{4 \gamma}=$ number from radiative capture reaction in D_{2}.
$n_{d}(\Delta E)$	Number of pairs detected within the Geiger channel energy interval $\triangle \mathrm{E}$;
	$\begin{aligned} n_{\partial 1}(\Delta E)= & \text { number from the mesic capture reaction, } \\ n_{\partial 2}(\Delta E)= & \text { numbex from the radiative capture reaction } \\ & \text { in } H_{2} \end{aligned}$
	$n^{2,4}(\triangle E)=$ number from the radiative capture reaction in D_{2}.
N_{d}	Number of pairs detected in the energy interval $E_{A} \rightarrow E_{B}$ corrected for the lateral detection efficiency;
	$\mathbb{N}_{\text {dy }}=$ number from the mesic capture reaction,
	$\mathrm{N}_{22}=$ number from the radiative capture reaction in H_{2},
	$N_{\text {d } 4}{ }^{\prime \prime}$ number from the radiative capture reaction in D_{2},

	$N_{n}(\ln)=$ number with converter in,
[${ }^{\text {+ }}$	Gelicer tube location numer (electron slde).
Ni^{+}	Geiger tube location number (positron alds).
2	Particle monentum.
x	Range of π^{-}mason ($1 \mathrm{ngx} / \mathrm{cm}^{2}$ of H_{2}).
T	Totel converter thicknens.
t	Distance from position of pair creation in converter to exit face.
t	Meson beax degroder thickness ($\mathrm{ma} / \mathrm{cm}^{2}$ of H_{2} equiv.).
v	Velocity.
z	Atomic number.
α^{\prime}	Root mean square projected scattexing angle.
ρ	Radus of curvature.
p	mectron roalus of curvataves
ρ^{+}	Position radus of curvatura.
μ	Pion rest mass.
σ_{p}	Pair production cross section.
σ_{c}	Compton scattering cross nection.

XI. TABLES

Table I. Measurements of the Panofsky Ratio

Experinenter	Reference	Method	Panofaky ratio
Panofiky et al.	2	Pair Spectrometer	0.94 ± 0.30
Sargent et ai.	3	Cloud Chamber	1.10 ± 0.50
Cassels, et al.	4	Total absoxption Cerenkov detector	1.50 ± 0.15
Fiecher et al.	5	Total absorption Cerenkoy detector	1.87 ± 0.10
Kuehner et al.	6	Pair Spectromoter	1.60 ± 0.87
Koller	7	Total absorption Cerenkov detector	1.46 ± 0.10
Derrick et al.	8	Bubble Chamber	1.47 ± 0.10
Samios	9	Bubble Chamber	1.62 ± 0.06
Jones, et al.	10	Total ebsorption Cerenkor detector	1.56 ± 0.05
Cocconi et al.	11	Total absorption NaI detectó	1.533 ± 0.021
This Experiment		Pair Spectrometer	2.51 ± 0.04

Table 2. Measurements of the Deuterium Ratios (S and R)

Expeximent	Reference	Method	8	8
Panofeky et al.	2	Pair Spectrometer	2.36 ± 0.74	-0.003 ± 0.073
Chinowsiky and Steinberger	12	Counter detection of both reactions	1.5 ± 0.8	
Chinowiky and Steinberger	13			-.0034 ± 0.0043
Kuehner et al.	14	Pair Spectrometer	2.36 ± 0.36	
This Experiment		Pair Spectrometer	3.16 ± 0.10	

Table 3. Comperison of measured and calculated values for P and s

Table 4. Converter characteristics and applications

Converter Nomenclature	Thickness $\mathrm{gm} / \mathrm{cm}^{2}$		
	Pb	Lucite Backing (CR)	Applications
C-1	.2293	. 152	Panofaky ratio
C-2	.4781	. 152	Panofaky ratio
C-3	. 8102	. 152	Panofaky ratio and
C-4	1.527	. 252	Spectrometer checks
C-5	2.938	. 152	Spectrometer checks

Table 5. Gcintillation counter characteriatica

Plostic scintillation Counter	Dimenaions (Inches)			Noten
	Thickness	Length	Helght	
2	0.050	6	4	
2 N	0.500	17.5	5	Scintillator and Iucite tapered lengthwise
$3 P$	0.500	17.5	5	Scintillator and $1 u$ cite tapered lensthwise
4N	0.125	16	5	2-in. lengths of scintillator and lucite altermatad
5N	0.125	12	5	4 in. lensthas of seintilutator and lucite ancernated
6 N	0.125	8	5	
7	0.125	26	5	2 fa Rengtins of geinELtatiof ednd Lucite
8 P	0.125	12	5	4-2n. jongths of colntijlator and lucite siternated
9 P	0.125	8	5	

Table 6. Converter-field combinations used in cyciotron runs

Measurement	Converter	Mag. Fleid	H_{2} or D_{2}
Panofsky ratio I	Col	5538	${ }_{2}$
Panofisky ratio II	C-2	8235	${ }_{2}$
Panofisky ratio I	C-3	12.013	H_{2}
Panofaky ratio I	out	5538	H_{2}
Panofsky ratio II	out	8235	${ }_{4}$
Panofsky ratio I	out	11,013	H_{2}
Deuterium ratio	C-3	10,500	H_{2}
Deuterium ratio	C-3	10,500	b_{2}
Yiela vs. Thickness	C-1	10,500	F_{2}
Yield vs. Thickness	c-2	10,500	${ }_{2}$
Yield vs. Thicknese	C-4	10,500	H_{2}
Yield vs. Thickness	C-5	10,500	H_{2}

Measurement	Field	Converter	$\begin{aligned} & \mathrm{H}_{2} \text { or } \\ & \mathrm{D}_{2} \end{aligned}$	Relative Monitior	Total Gates	Total Events. Recorde		$\frac{\text { ents } x}{\text { B }}$	$\frac{\text { reject }}{\text { C }}$	Uncertain	Energy Interval $\mathrm{E}_{\mathrm{A}} \rightarrow \mathrm{E}_{\mathrm{B}}$		$\frac{p t a b l}{2 x t}$		N_{2}
anor̂sity atio I	5538	C-1	H_{2}	39.43	4954	4851	378	2458	210	11 (high) 6 (low)	40.182.2	2214	563	2777	7358
anofsty	5538	out	H_{2}	16.83	278	251	21	93	11	2(low) 2	$\begin{array}{r} 40.1- \\ 82.2 \end{array}$	92	30	122	324
anof ary atio I	11013	c-3	H_{2}	35.85	7051	6922	2437	1585		564 (low) $8(\mathrm{high})$	$\begin{array}{r} 87.5- \\ 131.5 \end{array}$	2475	513	2988	7057
anof sky atio I	11013	out	H_{2}	15.63	190	164	34	56	3	13(10w)	$\begin{aligned} & 87.5- \\ & 131.5 \end{aligned}$	51	7	58	130
anof̂sky atio II	8235	C-2	H_{2}	56.31 . 1	11376	11196	1682	3847	362	60(between) 41	$\begin{gathered} 51.4- \\ 83.5 \\ 90.5- \\ 130.5 \end{gathered}$	3445 959	$\begin{aligned} & 503 \\ & 283 \end{aligned}$	$\begin{aligned} & 3948 \\ & 1242 \end{aligned}$	17929 6385
anoî sky ratio II	8235	out	H_{2}	30.33	485	440	57	192		2(between) 3	$\begin{aligned} & 51.4- \\ & 83.5 \\ & 90.5- \\ & 130.5 \end{aligned}$	106 27	24 12	130 39	573 210
yeuterium catio S	10500	c-3	H_{2}	992.8	8517	84011	1673	1931	347	$\begin{gathered} 1062(\text { low }) \\ 6(\text { high }) \\ \hline 14 \end{gathered}$	88132	2787	580	3367	7542
Jeuterium ratio S	10500	c-3	D_{2}	1057.2	3916	3831	380	822	$20 I$	$\begin{aligned} & 77(\text { low }) \\ & 4(\text { high }) \end{aligned}$	$\begin{aligned} & 88- \\ & 132 \end{aligned}$	1987	352	2339.	5320

Table 8. Data (Panofbiky ratio I spectrum)

B - 5538 gaums					
		Converter C-1		Convorter out	
$\triangle E(\mathrm{Mev})$	$\epsilon^{\prime} E$	$n_{d}(\triangle E)$	$\frac{n_{2}(\Delta E)}{\epsilon^{\prime}(X)}$	$n_{d}(\Delta E)$	$\frac{n_{d}(\Delta E)}{\epsilon^{\prime}(E)}$
40.1-42.2	. 1664	5	30.0		
42.2-44.3	. 207	8	38.6	1	4.8
. 46.4	. 244	15	61.4		
-48.5	. 278	23	82.7	1	3.6
-50.6	.309	36	116.5	1	3.2
-52.7	. 337	53	157.2	4	11.9
-54.8	. 363	146	402.2	5	13.8
-56.9	. 387	193	498.7	7	18.1
-59.0	.394	208	527.9	1.0	25.4
-61.2	. 412	241	584.9	13	31.5
-63.3	. 432	225	520.8	10	23.1
-65.4	. 450	261	580.0	12	26.7
-67.5	. 468	235	502.1	12	25.6
-69.6	. 454	240	528.6	4	8.8
-71.7	.420	212	517.0	12	29.3
-73.8	. 370	190	513.5	10	27.0
-75.9	. 331	157	474.3	6	18,
-78.0	. 295	158	535.5	7	23.7
-80.1	. 260	119	457.6	3	11.8
-82.2	. 227	52	229.1	4	17.6
		2777	$\begin{gathered} 7358 \\ 11 \\ { }_{4}(1 n) \end{gathered}$	122	$\begin{aligned} & 32^{4} \\ & N_{8}^{1} \text { (out) } \end{aligned}$

Table 8. Data (Panofaky ratio I apectrum) Continued

$\Delta E(\$ y e v)$	$\epsilon^{\prime}(\mathbb{E})$	$B=11,013$ gauss			
		Converter C. 3		Converter Out	
		$\mathrm{n}_{\mathrm{d}}(\triangle \mathrm{E})$	$\frac{n_{d}(\Delta E)}{\epsilon^{T}(\mathrm{E})}$	$n_{d}(\Delta E)$	$\frac{n_{d}(\Delta z)}{\epsilon^{\prime}(B)}$
87.5-88.1	. 224	3	23.4		
88.1-92.3	. 244	32	131.1		
-96.5	. 278	44	158.3		
-100.7	. 309	51	165.0	1	3.2
-104.8	. 337	46	136.5	1	3.0
-109.0	. 363	72	195.6		
-113.2	.387	96	248.1		
-117.4	. 394	135	342.6	1	2.5
-119.5	.407	104	255.5		
-121.6	.417	120	287.7	1	2.4
-123.7	. 427	184	430.9	2	4.7
-125.8	.437	371	848.9		
-126.8	.444	376	846.8	3	6.8
-127.9	. 448	533	2189.7	10	22.3
-128.9	.453	519	1145.6	17	37.5
-130.0	.457	256	560.1	15	32.8
-131.0	. 462	43	93.1	7	25.2
-131.5	.465	4	8.6		
*		2988	$\begin{aligned} & 7057.5 \\ & N_{a}(\mathrm{in}) \end{aligned}$	58	$\begin{aligned} & 130.5 \\ & N_{d}(\text { out }) \end{aligned}$

Table 9. Data (Panofsky ratio II spectrum)

$\triangle E($ Mev)	$\epsilon^{\prime}(E)$	Converter C-2		Converter out	
		$n_{d}(\Delta E)$	$\frac{n_{d}(\Delta E)}{\epsilon^{\prime}(E)}$	$\mathrm{n}_{4}(\Delta \mathrm{E})$	$\frac{n_{\mathrm{d}}(\Delta E)}{\epsilon^{\prime}(E)}$
51.4-52.1	. 0153	2	130.7	1	65.4
52.1-52.9	. 0299	7	234.1		
-53.7	. 0442	13	294.1		
-56.4	. 0750	122	1626.6	3	40.0
-59.6	.1213	270	2225.9	3	24.7
-62.7	.1664	354	2127.4	9	54.1
-65.9	.2070	455	2198.1	11	53.1
-69.0	.244	486	1991.8	14	57.4
-72.1	.278	562	2021.6	28	64.7
-75.3	. 307	582	1895.8	22	71.7
-78.4	. 332	583	1756.0	25	75.3
-80.0	. 352	277	786.9	9	25.6
-81.5	. 364	181.	497.3	11	30.2
-83.5	. 377	54	143.2	4	10.6
		3948	$\begin{gathered} 27929.5 \\ 11 \\ N_{d}(1 n) \end{gathered}$	130	$\begin{aligned} & 572.8 \\ & 11 \\ & N_{d}(\text { out }) \end{aligned}$

Table 9. Data (Panof eky ratio II spectrum) Continued

$\Delta \mathrm{E}$ (Mev)	$\epsilon^{\prime}(E)$	Converter $\mathrm{C}-2$		Converter out	
		$n_{d}(\Delta x)$	$\frac{n_{\mathrm{a}}(\Delta \mathrm{E})}{E^{\prime}(\mathrm{E})}$	$n_{d}(\Delta E)$	$\frac{\mathbf{n}_{d}(\Delta B)}{E^{\prime}(E)}$
90.5-94.1	. 427	34	79.6	1	2.3
-97.2	.447	27	60.4		\because
-100.3	. 461	24	52.1	2	4,3
-103.5	. 446	32	71.7		
-106.6	. 403	44	109.2	2	5.0
-109.8	. 362	42	113.3	3	8.3
-112.9	. 324	51	157.4	1	3.1
-216.0	. 288	48	166.7	1	3.5
-119.2	. 253	36	142.3	1	4.0
-122.3	. 221	58	262.4		
-125.8	.1902	170	893.7	4	21.0
-126.6	.1707	139	814.2		
-127.4	.1636	165	1008.5	3	18.3
-128.2	.1564	200	1278.7	7	44.8
-129.0	. 1493	131	877.4	10	67.0
-129.7	.1424	35	245.8	4	28.1
-130.5	.1355	7	51.7		
,		1242	6385.1 $N_{d}^{\prime \prime}(\ln)$	39	$\begin{gathered} 209.7 \\ 11 \\ M_{a} \text { (out) } \end{gathered}$

Table 10. Data (Deuterium ratio S spectrum)

ΔE (Mev)	H_{2} In Target			D_{2} in Target		$\begin{aligned} & 0.0268 \\ & \mathrm{Xn}_{\mathrm{d} 2}(\triangle \mathrm{E}) \end{aligned}$	$\frac{0.0268 \mathrm{n}_{\mathrm{d} 2}(\Delta \mathrm{E})}{\epsilon(E)}$
	$\epsilon^{\prime}(\mathrm{E})$	$\mathrm{n}_{\mathrm{de}}(\Delta \mathrm{E})$	$\frac{n_{\partial L^{\prime}}(\Delta E)}{\epsilon^{\prime}(E)}$	$\mathrm{n}_{\mathrm{d} 4}(\Delta \mathrm{E})$	$\frac{n_{\mathrm{d} 4}(\Delta E)}{\epsilon^{\prime}(E)}$		
88-92	. 278	33	118.7	26	93.5	1	- 3.6
92-96	. 309	40	129.4	39	126.2	1	3.2
95-100	. 337	45	133.5	52	154.3	1	3.0
100-104	.363	56	154.3	59	162.5	2	5.5
104-108	.387	80	206.7	B5	219.6	2	5.2
108-112	. 394	98	248.7	127	322.3	3	7.6
112-116	. 412	145	351.9	180	436.9	4	9.7
116-318	. 427	97	227.2	152	356.0	3	7.0
128-120	.437	117	267.7	153	350.1	3	6.9
120-122	.446	151	338.6	239	535.9	4	9.0
122-124	.455	228	501.1	269	591.2	6	13.2
124-126	.464	580	1250.0	320	689.6	15	32.3
126-128	. 472	1154	2444.9	363	769.1	31	65.7
128-130	.465	528	1135.5	239	534.0	24	30.1
130-132	.443	15	33.9	36	81.3		
\therefore		3367	7542.1 11. N_{da}	2339	$\begin{aligned} & 5402.5 \\ & { }^{5}! \\ & { }_{\text {d } 4} \text { Meas. } \end{aligned}$	90	$\begin{gathered} 202.0 \\ 0.0263 \mathrm{~N}_{\mathrm{da}} \end{gathered}$

Table 11. Converter in-converter out ratios

Magnetic Field (gauss)	Reaction involved	Conv.		Converter in-out Ratios	

Table 12. Measurement of yield ve magnetic fiold

| Reartion
 Involved | Magnetic
 Eleld. | Conv. |
| :--- | :---: | :---: | :---: |

$\pi+p \rightarrow \Pi^{0}+n$	8235	C-2	613,500 \}	
$\pi^{\prime}+\mathrm{p} \rightarrow \pi^{\text {a }}+\mathrm{n}$	5538	C-1	614,100 $\}$	Ratio $=0.999 \pm 0.043$
$\pi^{-}+p \rightarrow \gamma+n$	$\bigcirc 3235$	C-2	191,400\}	Ratio $=0.948 \pm 0.041$
$\pi^{-}+p \rightarrow \gamma+n$	11013	C-3	202,000	

Table 14. Deuterium ratio S actermination

XII. REFIREIVCES

1. D. W. Joseph, Nuovo Cimento 16, 997 (1960).
2. W.K.H. Panofaky, R. L. Aanodt, and J. Hadley, Phys. Rev. 81, 565 (1951).
3. C. P. Sargent, R. Cornelius, M. Rinehart, L. M. Lederman and K. Rogers, Phys. Rev. 28, 1349 (1955).
4. J. M. Cassela, G. Fidecaro, A. Wetherell, and J. R. Wormald, Proc. Fhys. Soc. (London) A70, 405 (1957).
5. J. Fischer, R. March and L. Marshall, Phys. Rev. 109, 533 (1958).
6. J. Kuehner, A. W. Merrison, and B. Tornabene, Proc. Phys. Soc. (London) 73, 545 (1959).
7. L. Koller and A. M. Sachs, Phys. Rev, 116, 760 (1959).
8. M. Derrick, J. Tetkovich, T. Fielda and J. Deahl, Phys. Rev. 120, 1022 (1960).
9. N. P. Semios, Prys. Rev. Letters 4, 470 (1960).
10. D. P. Jones, P. G. Murply, P. L. 0^{\prime} Neill and J. R. Wormald, Proc. Phys. Soc. (Iondon) AT7. 77 (1961).
11. V. T. Cocconi, T, Tazzini, G. Fidecaro, M. Legros, N. H. Lipman and A. W. Merrison (submitted for publication in Nuovo Cimento).
12. W. Chinowsiky and J. Steinberger, Phys. Rev. 25, 1561 (1954).
13. W. Chinowaky and J. Steinberger, Phys. Rev. 100, 1476 (1955).
14. J. A. Kuehner, A. W. Merrison and 8. Tormabene, Proc. Phys. Boc. 73, 551 (1958).
15. H. L. Anderson and E. Fermi, Phys. Rev. 86, 794 (1952).
16. K. A. Brueckner, R. Serbir and K. M. Watson, Phys. Rev. 81, 575 (1951).
17. A. B. Wightman, Phys. Rev. I7, 521 (1950); and Ph.D. thesis, Princeton Univeraity (1949).
18. J. Fields, G. B. Yodh, M. Derfick and J. Tetkovich, Phys, Rev, Letteris 2, 69 (1960).
19. G. A. Snow, University of Meryiand, Physics Department, Technical Report, No. 196.
20. J. E. Russell and G. L. Shaw, Phys. Rev. Letters 4, 369 (1960).
21. T. I. Day, G. A. Snow and J. Sucher, Univerbity of Maryland, Phyaica Department, Techaicel Report No. 159,
22. H. P. Noyes, Phys. Rev. 101, 320 (1956).
23. A. Baldin, Nuovo Cimento 8, 569 (1958).
24. M. Cin1, R. Gatto, E. L. Goldwasser and M. Ruderman, Nuovo cimento 10, 243 (1958).
25. J. Hamilton and W. S. Woolcock, Phys. Rev. 118, 291 (1960).
26. R. Tracler, University of California Physice Department, (private communication).
27. W. P. Swanson, University of Califormia, Lawrence Radiation Laboram tory, UCRIm9194.
28. F. S. Crawford and M. L. Stevenson, Phys. Rev. 27, 1305 (1955).
29. R. L. Walker and B. D. MaDantel, Phys. Rev. 74,315 (1948).
30. K. M. Crowe and R. H. Phillips, Phys. Rev. 26, 470 (1954).
31. L. Landow, J. Phys. (U.S.S.R.) 8, 201 (1944).
32. F. M. Sternheimer, Phys. Rev. 103, 511 (1956).
33. A. M. Hudson, Plys. Rev. 105, I (1957).
34. H. Davies, H. A. Bethe ond L. C. Maximon, Prys. Rev. 23, 788 (1954).
35. J. A. Wheeler and W. E. Lamb, Phys. Rev. 25, 858 (1939) with correction in Phys. Rev. 101, 1836 (1956).
36. V. Vortruba, Phys. Rev. 73, 1468 (1948).
37. S. Cohen, D. L. Judd and R. L. Riddell, Jr., Univeraity of Califoria, Lavrence Radiation Laboratory, UCRL-8391.
38. K. Watson and R. Stuart, Phys. Rev. 82, 738 (1.951).
39. R. H. Phillips and K. M. Crowe, Phys. Rev. 26, 484 (1954).
40. H. W. Koch and J. W. Motz, Reviews of Mod. Phys. 32, 920 (1959),

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates; or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

