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A B S T R A C T

Nanobeam electron diffraction can probe local structural properties of complex crystalline materials including
phase, orientation, tilt, strain, and polarization. Ideally, each diffraction pattern from a projected area of a few
unit cells would produce a clear Bragg diffraction pattern, where the reciprocal lattice vectors can be measured
from the spacing of the diffracted spots, and the spot intensities are equal to the square of the structure
factor amplitudes. However, many samples are too thick for this simple interpretation of their diffraction
patterns, as multiple scattering of the electron beam can produce a highly nonlinear relationship between
the spot intensities and the underlying structure. Here, we develop a stacked Bloch wave method to model
the diffracted intensities from thick samples with structure that varies along the electron beam. Our method
reduces the large parameter space of electron scattering to just a few structural variables per probe position,
making it fast enough to apply to very large fields of view. We apply our method to SrTiO3/PbTiO3/SrTiO3
multilayer samples, and successfully disentangle specimen tilt from the mean polarization of the PbTiO3 layers.
We elucidate the structure of complex vortex topologies in the PbTiO3 layers, demonstrating the promise of
our method to extract material properties from thick samples.
1. Introduction

Multiple scattering is often viewed as an unwanted and cumber-
some artifact in electron microscopy as it is responsible for confound-
ing effects such as contrast reversals in phase contrast images and
electric field maps [1,2], complex features inside nanobeam diffrac-
tion disks that hinder precise strain mapping [3–6], and failure of
many super-resolution imaging techniques [7]. Despite this, the rich
physics of dynamical diffraction also provides us with the ability to
very precisely measure material properties. John Spence pioneered the
practice of inverting the dynamical scattering process to retrieve the
features of materials, developing numerous algorithms for recovering
detailed structural information from electron diffraction patterns [8–
11]. Following Spence’s legacy, this contribution follows applies the
ideas of dynamical inversion to a large-area four-dimensional scanning
transmission electron microscopy dataset.

In a naïve sense, an electric field built in to a thin sample causes
a tilt of the electron wave as it propagates through the material. De-
pending on the optical setup and the length scale of the changes in the
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field this manifests as an intensity redistribution in a diffraction pattern
when using a larger convergence angle [12], or a shift of the diffraction
pattern when using a small convergence angle [13,14]. In materials
where the polarization is associated with a structural distortion, the
diffracted intensities also change as a result of the change in the lattice
electrostatic potential [15]. This is shown schematically in Fig. 1a,
which shows a sequence of diffraction patterns simulated at differing
polarization for a thin (4 u.c., ≈ 1.6 nm) sample of PbTiO3 (PTO).

When the sample thickness increases and multiple scattering occurs,
however, the changes in the diffraction patterns become far more
complex than this description. Deb et al. showed that when diffraction
disks overlap, under the weak phase approximation there should be no
contrast between opposing pairs of diffraction disks due to polariza-
tion; however, anomalous contrast between Friedel pairs arises when
multiple scattering pathways are considered [16]. Mahr et al. [17]
showed that for an interface with an electric field due to a difference
in mean inner potentials, dynamical scattering causes the measured
vailable online 14 April 2023
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electric field to oscillate wildly for most experimental setups, with
beam precession providing the only partial remedy. Nguyen et al. [18]
also observed that when measuring chiral polarization domains via the
diffraction intensity changes associated with a structural distortion, the
chiral directions flip as a function of thickness. This case is shown
schematically in Fig. 1b for sample of PTO that is thick enough (16
u.c., ≈ 6.3 nm) to cause multiple scattering of the electron probe.

Various approaches for reconstructing sample properties or struc-
ture under conditions of multiple scattering have been developed that
utilize the -matrix description of the scattering process [8,19–22]. In
these approaches, the electron scattering process is encapsulated in the
‘‘scattering matrix’’, an object which contains the information about
the material structure and thickness-propagation effects, such that the
-matrix multiplies with a vector representing the incident electron
wave to yield a vector representing the scattered wave [23]. As we
will discuss in the theory section below, there is useful correspondence
between the entries of the -matrix and the properties of the sample,
such as its thickness, polarization, or tilt. This correspondence can be
used in both the forward direction to simulate diffraction intensities
given known structural parameters, as well as in the reverse direction to
recover structural parameters from diffraction intensities. Much of the
literature on this method is concerned with atomic-resolution recon-
struction of the sample potential. Donatelli and Spence demonstrated a
method for recovering the sample potential at high resolution from a
tilt series of diffraction patterns by iterative inversion of the -matrix
and without prior knowledge of the sample thickness [8]. Brown and
coworkers have developed methods for recovery of the -matrix, orig-
inally from focal series 4D-STEM data [19,22] and later extended to a
single defocus [21]. Their former method provided some 3-dimensional
information about the sample, which they recovered from the -matrix
by an optical sectioning approach. Alternatively, when the approximate
structure of the material is known, and variation along the beam
direction can be ascribed to a small number of parameters, the PRIMES
(parameter retrieval and inversion from multiple electron scattering)
family of methods can be used to obtain property variation along the
beam direction [24–27]. These methods all utilize a stacked -matrix
model to represent parameter variation along the beam direction,
which are refined against test CBED patterns using various numerical
optimization schemes. Similarly, Jacob et al. used quantitative CBED
(QCBED) for the determination of structural information from buried
interfaces by modeling of the dynamical scattering [28].

In this work, we analyze a complex sample consisting of multiple
distinct layers through the thickness, and use a model of the electron
multiple scattering to extract information about the material. The sam-
ple, consisting of 16 unit cells of SrTiO3 (STO), 16 unit cells of PTO, and
16 units cells of STO (total thickness ≈ 19 nm), is shown in Fig. 1c. The
vortex structures in this material have been previously studied by plan-
view and cross section transmission electron microscopy [15,29] and by
X-ray coherent diffractive imaging [30]. These vortex structures offer
the promise of creating new electronic states of matter, with structured
domains with nanometer-scale domain sizes. Similar to PRIMES, we do
not aim to recover the full atomic structure of the material. Instead, we
model the scattering matrix using parameters (local tilt and polariza-
tion) that represent small perturbations from an a priori known average
structure of the material, and refine the model to match measured
diffraction intensities. Parameterizing the scattering model allows us
to choose a small and physically meaningful set of variables to refine
against, and by computing gradients of the model semi-analytically
we are able to dramatically accelerate the discovery of the model
parameters. Because mistilt is specifically included as a parameter of
the model, slight deviation from the zone axis configuration does not
couple into errors in the other recovered signals. By computing the full
scattering matrix we are also able to include all beams present in the
experiment, enabling the method to work at high-symmetry orienta-
tions. By operating on shallow convergence angle nanobeam diffraction
patterns, we are able to approximate the diffraction condition as a
2

Fig. 1. Nanobeam electron diffraction signals from lattices with varying in-plane
polarization, indicated by the arrows. Diffraction pattern simulations of (a) thin (4
u.c.) PbTiO3, (b) thick (16 u.c.) PbTiO3, and (c) multilayer with 16:16:16 unit cells of
SrTiO3:PbTiO3:SrTiO3. Left to right, the in-plane PbTiO3 polarization varies smoothly
from zero, full left-facing, zero, full right-facing, and zero polarization.

plane-wave experiment, enabling us to use a smaller -matrix that is
faster to compute than CBED-based methods such as QCBED, at the cost
of reduced sensitivity from losing the rich phase contrast information
present in a CBED pattern. As a result, our method is sufficiently fast
to allow us to perform the parameter matching for each probe position
in a four-dimensional scanning transmission electron microscopy (4D-
STEM) scan, where a shallow converged electron probe is rastered in
a 500 × 400 pixel grid across the sample surface. We find that an
advantage of using this dynamical refinement procedure to obtain the
local tilt and polarization is that we are able to robustly disentangle
these two signals, which often confound one another when measured
using conventional approaches, especially for the multi-layer system we
examine.

In the Bloch wave description of electron diffraction, which we
utilize in this work, the -matrix is computed from the Fourier coef-
ficients of the crystal electrostatic potential, the beam direction, and
the sample thickness. Thus, our approach can capture a wide variety of
structural distortions, such as polar distortions, subtle phase changes,
chemical (dis)ordering, and other atomic rearrangements that do not
distort the locations of the reciprocal lattice points. The stacked -
matrix model is further able to incorporate the thickness and tilt of
each layer independently. Properties such as strain that distort the
(reciprocal) lattice in a continuous manner without substantial change
in the Fourier coefficients, or major phase changes that alter the (recip-
rocal) lattice in an abrupt manner, are not included in this approach
as the entries of the -matrix cannot be expressed in terms of these
parameters.

2. Theory

To compute the dynamical diffraction intensities, we utilize the
Bloch wave method, which is fully described in DeGraef [31]. In this
method, the electron wave is written as a combination of Bloch states,
and thus the Schrödinger equation for the fast electron wave is cast as
an eigenvalue/eigenvector decomposition

̄ = 2𝑘 𝛾, (1)
𝑛
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where the ‘‘structure’’ matrix ̄ is determined by the crystal structure
nd orientation of the sample,  is a matrix whose column vectors
ontain the Bloch wave coefficients, 𝑘𝑛 is the normal component of the

incident wavevector, and 𝛾 relative normal component of each of the
loch waves. The entries of the structure matrix are given by

̄ =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝑈−𝐠 ⋯ 𝑈−𝐡
𝑈𝐠 2𝑘0𝑠𝐠 ⋯ 𝑈𝐠−𝐡
⋮ ⋮ ⋱ ⋮
𝑈𝐡 𝑈𝐡−𝐠 ⋯ 2𝑘0𝑠𝐡

⎤

⎥

⎥

⎥

⎥

⎦

(2)

where 𝑈𝒈−𝒉 is the Fourier component of the sample electrostatic poten-
tial corresponding to the scattering vector 𝒈−𝒉 and 𝑠𝒈 is the excitation
error for the beam 𝒈. The excitation error is given by

𝑠𝒈 =
−𝒈 ⋅ (2𝒌 + 𝒈)
2|𝒌 + 𝒈| cos 𝛼

(3)

where 𝒌 is the wavevector of the incident electron beam, and 𝛼 is the
angle between the sample normal and the incident beam direction. To
include absorption due to thermal diffuse or inelastic scattering, an
imaginary component of the sample potential 𝑈 ′

𝒈 is included in the
matrix ̄ by adding i𝑈 ′

𝟎 to the diagonal and i𝑈 ′
𝒈−𝒉 to the off-diagonal.

By computing the eigenvalue/eigenvector decomposition of this matrix,
we obtain the Bloch wave coefficients 𝐶 (𝑗)

𝒈 and the normal components
𝛾 (𝑗), which are used to obtain the scattered wave amplitudes for a given
crystal thickness. The electron wave 𝝍 at a depth 𝑧 in the crystal is

𝝍(𝑧) = (𝑧)−1𝝍0 = (𝑧)𝝍0 (4)

where  is the matrix containing the eigenvectors and (𝑧) = e2𝜋i𝛾(𝑗)𝑧𝛿𝑖𝑗
is a diagonal matrix which depends on the thickness and the Bloch wave
normal components. 𝝍0 is a vector containing the Fourier coefficients
of the incident electron wave—in the case of plane wave illumination,
it is a vector with the value of 1 at the index corresponding to the
incident beam direction and zero elsewhere.

This transformation can be compactly represented by the scattering
matrix  which maps the vector representing the incident electron
wave to the scattered wave at depth 𝑧. Writing the equation in this
form, we see that the -matrix is the exponential of the structure matrix
 multiplied by 2𝜋i𝑧.

2.1. Stacked -matrix model

In the description of the Bloch wave model above, we obtained a sin-
gle -matrix which transformed a plane wave 𝝍0 incident onto a crystal
of some thickness 𝑧 into the scattered wave 𝝍 . If the electron wave
were to immediately enter another crystal, we can model this further
scattering by simply using the -matrix of that layer to transform the
previously scattered wave into the final scattered wave [24,32]. This
operation is equivalent to multiplying the complex -matrices together
and applying it once to the original wave. From a numerical standpoint,
it is more convenient to successively apply the -matrices to 𝝍0 rather
than multiply the -matrices first, as matrix–vector multiplications are
cheaper than the matrix–matrix products needed to construct the total
-matrix.

In this work, we will model the trilayer STO:PTO:STO sample using
the product of 3 -matrices:

 = STO PTO STO (5)

For the trilayer sample we consider here, the epitaxial relationship
between the layers considerably simplifies the use of the stacked -
matrix approach, as the layers share the same lattice—this ensures that
all of the -matrices share the same set of beams. In a situation where
the layers do not share the same lattice, one must ensure that all of the
component -matrices include all of the beams from all of the layers.
Further, in such case it is possible for a beam scattered by the top
layer to be evanescent in a lower layer, with exponentially decaying
3

intensity [32]. e
2.2. Derivatives of the stacked -matrix model

Using the Bloch wave method, we have obtained a scattering matrix
which is the exponential of the structure matrix, whose entries are
readily obtained from the crystal properties. The full scattering matrix
describing the multilayer is represented as a product of three such
-matrices. In order to match the parameters of the model to our
experimental data, we will use an optimization procedure to minimize
the error between the model and the experiment. Unfortunately, each
evaluation of the scattered wave using this model requires (for each
layer) building a new -matrix and diagonalizing it, which is com-
putationally expensive and makes numerical optimization inefficient.
Therefore we aim to obtain the derivatives of the scattering matrix
with respect to the entries of the structure matrix, so that we can
compute the gradient of the error without the large number of function
evaluations necessitated by finite differences. Najfeld and Havel [33]
define the directional derivative 𝐷𝑽 (𝑡,𝑨) of a matrix exponential 𝑒𝑡𝑨 in
the direction 𝑽 as

𝐷𝑽 (𝑡,𝑨) ≡ lim
ℎ→0

1
ℎ
(

𝑒𝑡(𝑨+ℎ𝑽 ) − 𝑒𝑡𝑨,
)

(6)

We will also use the notation 𝑑
𝑑𝜃 to refer to the derivative of a scattering

matrix in the direction 𝑽 𝜃 , where 𝜃 is one of the structural perturbation
parameters. For a matrix which has been spectrally decomposed as 𝑨 =
𝜦𝑼−1, (i.e. its eigendecomposition has been computed, where the

olumns of 𝑼 contain the eigenvectors and the diagonal of 𝜦 contains
he eigenvalues 𝜆𝑖) the directional derivative of its exponential can be
omputed as [33]

𝑽 (𝑡,𝑨) = 𝑼
((

𝑼−1𝑽 𝑼
)

⊙𝜱(𝑡)
)

𝑼−1. (7)

here ⊙ is the Hadamard, or elementwise, product. The entries of 𝜱(𝑡)
depend on the eigenvalues of 𝑨:

𝛷𝑖𝑗 (𝑡) =
{

(𝑒𝑡𝜆𝑖 − 𝑒𝑡𝜆𝑗 )∕(𝜆𝑖 − 𝜆𝑗 ) if 𝜆𝑖 ≠ 𝜆𝑗
𝑡𝑒𝑡𝜆𝑖 if 𝜆𝑖 = 𝜆𝑗

(8)

To compute the derivative of the total -matrix comprised of an
ordered collection of 𝑁 separate scattering matrices indexed with the
superscript (𝑗) (i.e.  =

∏

𝑗  (𝑗)), with respect to a parameter 𝜃 we use
the product rule

𝑑
𝑑𝜃

=
𝑁
∑

𝑖=0

[𝑗=𝑖−1
∏

𝑗=0
 (𝑗) ⋅

𝑑 (𝑖)

𝑑𝜃
⋅
𝑘=𝑁
∏

𝑘=𝑖+1
 (𝑘)

]

. (9)

Due to our choice of parameters for the model, many of the derivatives
𝑑(𝑗)

𝑑𝜃 will be zero. For the terms where there are nonzero derivatives,
he derivative of the total -matrix comprises the scattering up to the
ayer affected by the parameter 𝜃, the change in scattering within that
ayer, and the further scattering of the wave by the following layers in
he heterostructure.

In our model of the trilayer sample, there are two relevant classes of
tructural perturbation that we will attempt to recover: crystal tilt and
tructural distortion due to polarization. In the following section, we
ill derive the direction matrices 𝑽 𝜃 for these types of perturbation.

.2.1. Crystal tilt
Because tilt of the crystal is included solely in the diagonal elements

f the structure matrix via the excitation errors 𝑠𝒈, the derivative
irection is

𝑽 tilt
)

𝒈,𝒉 = 2𝑘0
𝑑𝑠𝒈
𝑑𝒌𝟎

𝛿𝒈−𝒉 (10)

he derivative of 𝑠𝒈 with respect to the transverse (𝑥 and 𝑦) components
f the incident wavevector are approximately
𝑑𝑠𝒈

𝑑𝑘{𝑥,𝑦}
= −

𝑔{𝑥,𝑦}
|𝒈 + 𝒌𝟎|

+
(𝑔{𝑥,𝑦} + 𝑘{𝑥,𝑦})(𝒈 ⋅ (2𝒌 + 𝒈))

2|𝒈 + 𝒌|3
. (11)

e have neglected the cos 𝛼 term in the denominator of 𝑠𝒈 in this
erivation to greatly simplify the expression at the cost of some small
rror in the magnitude of 𝑑𝑠 .
𝑑𝑘
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2.2.2. Polarization
While it is possible under certain conditions to recover the locations

of each atom in the unit cell by recovering the full -matrix from
diffraction data, [8,19] here we parameterize the model in terms of the
polarization directly, and displace the Ti and O sites by interpolating
between their positions in the canonical non-polar and polar structures.
For each atom in the unit cell, we define displacement vectors 𝛿𝒓(𝑗)𝑎 and
𝒓(𝑗)𝑏 which takes the atom from its site 𝒓(𝑗) in the non-polar structure to

its site in the canonical polar structure, for polarizations in the 𝑎 and
directions respectively. This fully polar structure for PTO is related

o the nonpolar one by displacing the Pb site by 0.0281 lattice units,
he ( 12 , 0,

1
2 ) and ( 12 ,

1
2 , 0) O sites by −0.0849, and the (0, 12 ,

1
2 ) O site

y −0.1058, while leaving the Ti sites undisturbed, in the case of 𝑎-
xis polarization. For intermediate or mixed-direction polarizations, we
inearly scale the displacement vectors by the relative polarization, 𝜌𝑎

and 𝜌𝑏 for 𝑎 and 𝑏 polarizations respectively. The Fourier coefficients
f the crystal potential are thus written as

𝒈 =
1
𝛺

∑

𝑗
𝑓 (𝑗)
𝑒 𝑒2𝜋𝑖((𝒓

(𝑗)+𝜌𝑎𝛿𝒓
(𝑗)
𝑎 +𝜌𝑏𝛿𝒓

(𝑗)
𝑏 )⋅𝒈) (12)

where 𝛺 is the unit cell volume, and the atomic form factors 𝑓 (𝑗)
𝑒 are

computed using the absorptive Weickenmeier–Kohl parameterization
for isolated neutral atoms [34]. The derivative of the structure factor
with respect to the relative 𝑎-axis polarization parameter, 𝜌𝑎, is then
𝑑𝑈𝒈
𝑑𝜌𝑎

= 1
𝛺

∑

𝑗
2𝜋𝑖𝑓 (𝑗)

𝑒 (𝒈 ⋅ 𝛿𝒓𝑎)𝑒
2𝜋𝑖((𝒓(𝑗)+𝜌𝑎𝛿𝒓

(𝑗)
𝑎 +𝜌𝑏𝛿𝒓

(𝑗)
𝑏 )⋅𝒈) (13)

and a similar expression arises for 𝑑𝑈𝒈
𝑑𝜌𝑏

. The derivative direction matrix
or polarization is simply filled with the derivatives of the Fourier
oefficients, e.g.

𝑽 𝜌{𝑎,𝑏}

)

𝒈,𝒉
=

𝑑𝑈𝒈−𝒉
𝑑𝜌{𝑎,𝑏}

(14)

Note that we do not take into account expansion of the unit cell, so the
mean inner potential term 𝑈𝟎 does not change, and thus polarization
only affects the off-diagonal elements of the structure matrix.

2.3. Numerical optimization

To fit the stacked -matrix model to the experimental measure-
ments, we implemented a version of the alternating direction method
of multipliers [35]. At each iteration of the optimization algorithm, we
first update the model parameters at each probe position using our
previously derived gradients and taking a step along the direction of
steepest descent. We then perform regularization of the fitted model
parameters to ensure convergence to a physically sensible solution and
enforce smoothness.

2.3.1. Gradient descent
The loss function  is the sum squared difference between the

simulated diffraction intensities from the model and the experimental
intensities for each Bragg beam recorded

 =
∑

𝒈

(

𝐼exp(𝒈) − 𝜇|𝝍0(𝒈)|2 − 𝜈
)2 (15)

The modeled intensities have both an additive intensity offset 𝜈 and
multiplicative scaling 𝜇, which we found necessary in order to compen-
sate for background noise and intensity variation in the experimental
data. Note that the -matrix calculations are performed using a differ-
ent, and larger, set of Bragg beams, in order to include scattering into
the higher order beams (not recorded on the detector) in the forward
model. Our experimental diffraction patterns measure the intensities of
69 Bragg beams, with a maximum scattering vector of 1.1 Å−1. The
-matrix calculations include 109 beams, with a maximum scattering

−1
4

angle of 1.5 Å . Only the Bragg beams present in the experiment
contribute to the loss function. The derivatives of the loss function with
respect to the intensity scale parameters are given as
𝜕
𝜕𝜇

=
∑

𝒈
−2|𝝍0|

2 (𝐼exp − 𝜇|𝝍0|
2 − 𝜈

)

(16)

𝜕
𝜕𝜈

=
∑

𝒈
−2

(

𝐼exp − 𝜇|𝝍0|
2 − 𝜈

)

(17)

(where we have dropped the dependence on 𝒈 from the notation for
ompactness). The derivatives with respect to the structure perturba-
ions involve the derivatives of the -matrix, and so are much more

complicated expressions. For a generic parameter 𝜃 that enters into the
-matrices, the derivative of the loss function is

𝜕
𝜕𝜃

= −4𝜇Re

[

𝝍∗ 𝑑
𝑑𝜃
𝝍0

]

⋅
[

𝐼exp − 𝜇|𝝍0|
2 − 𝜈

]

(18)

The gradients with respect to the tilt and polarization variables are ob-
tained using the derivative directions in Eqs. (11) and (13), the product
rule in Eq. (9), and the -matrix derivative method in Eq. (7). At each
step of the optimization procedure, we update the parameters by taking
a step along the negative gradient direction of this loss function. In
some previous works, such as those based on quantitative CBED [36],
optimization would begin by first refining the geometrical factors in the
model such as tilt and thickness before proceeding to refine structural
distortions such as polarization. In this work, we instead begin updating
all parameters from the start of iteration but use regularization in order
to rapidly and robustly converge on a solution.

2.3.2. Regularization
In order to obtain physically sensible solutions to the optimization

problem we found it necessary to apply several regularizers. Before
performing the optimization, we de-noise the integrated disk intensities
using principal component analysis, retaining the first 16 components.

At each iteration step, we apply further regularization. First, the
estimated parameters are smoothed across the real-space dimensions
of the scan using a Gaussian kernel. Since the intensity scale and offset
and the tilts are expected to vary slowly across the field of view, we
used a kernel size of 50 nm for the intensity parameters and 25 nm for
the tilts. The polarization is expected to vary more rapidly, so we used
a kernel size of 2 nm. Note that the experiment used a probe step size
of 1 nm, giving equivalent values for the size of each kernel in terms
of the number of probe positions.

In addition, we also clip the fitted parameters to be within set
bounds, so that outliers do not excessively propagate error to their
neighbors via the smoothing kernel. We note that we do not apply
any explicit high-pass filtering to the fitted polarization values (on the
contrary, they are Gaussian filtered, albeit with a very small kernel
size). However, the strong smoothing regularization applied to the tilt
and intensity signals can have the side effect of forcing all of the high
frequency variation into the polarization channel.

2.4. Atomic form factors

Wu et al. [37] showed that 4D-STEM may be sensitive to the charge
transfer between sites in ionic materials, using strontium titanate as a
model system, which would imply that the independent atom model
for the crystal potential may not be valid for our computations. To
test this possibility we used the GPAW density functional theory pack-
age [38] to simulate the charge transfer between species, and then
used abTEM [39] to perform diffraction simulations for the simulated
charge densities that match our experimental conditions. From these
simulations we observed that the maximum deviation in the diffracted
intensities between the DFT and IAM potentials was approximately
0.1% of the probe intensity, validating the use of the IAM model for

our computations.
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Fig. 2. Confounding of tilt and polarization signals for a STO:PTO:STO trilayer. (a) Sequences of diffraction patterns simulated at relative 𝑥-direction polarization varying from
0–1 for various mistilts from a perfect [001] orientation. The two diffraction disks conventionally used to measure polarization, (200) and (200) are highlighted, and the inset
text indicates the relative polarization measured as 𝐼200−𝐼200

𝐼200+𝐼200
. (b) Line traces of selected diffraction intensities for different mistilts, with the (200) and (200) reflections highlighted.

(c) Map of apparent polarization signal for a trilayer with 𝑃𝑥 = 1 as measured from the asymmetry of the (200) and (200) disks for different mistilts. Contrast reversals in the
polarization signal occur with at little as 5 mrad mistilt. The overlaid numbers indicate the tilt values corresponding to the rows of (a).
3. Methods

3.1. Heterostructure growth

We synthesized a trilayer structure consisting of 16 unit cells of
SrTiO3, 16 unit cells of PbTiO3, and 16 unit cells of SrTiO3, on top
of a SrRuO3 buffer layer on a single crystal DyScO3 substrate, giving
a total heterostructure thickness of ≈ 19 nm. The layers were grown
at 610 ◦C in a 100 mTorr oxygen atmosphere, using reflection high-
energy electron diffraction (RHEED)-assisted pulsed laser deposition
(PLD) with a KrF laser. The trilayer structure was prepared for TEM
analysis by mechanical polishing followed by ion milling. Within the
imaged area the substrate has been completely removed, leaving only
the heterostructure.

3.2. 4D-STEM experiments

We performed 4D-STEM measurements on the TEAM I microscope,
an aberration-corrected Thermo Fisher Scientific Titan operated at 300
kV with a probe current of 100 pA. We used a STEM probe semiangle
of 2 mrad, and a STEM probe step size of 1 nm. We recorded zero-loss
filtered diffraction patterns using a Gatan K3 direct electron detector
located beyond a Gatan Continuum energy filter. We operated the K3
detector in electron counting mode using a binning of 4 × 4 pixels,
a camera length of 1.05 m, and an exposure time of 47 ms. We
analyzed the 4D-STEM experiments using custom Python and Matlab
code. The diffraction pattern simulations and Bloch wave calculations
and optimizations have been implemented as part of the py4DSTEM
analysis toolkit [40–42]. Initial processing of the data was performed by
selecting the 69 Bragg disks visible on the detector and integrating their
intensities. All further analysis was conducted using these integrated
disk intensities rather than the pixelwise intensity of the recorded
patterns. As a result, the analysis is not expected to be sensitive to
distortion by the post-specimen optics or the point-spread function of
the detector.
5

4. Results & discussion

4.1. Tilt/polarization confounding

Fig. 2 shows how local mistilts of the sample from the perfect zone
axis orientation can confound the measurement of local polarization
when using a conventional metric based on Friedel pair asymmetry. The
top row of Fig. 2a shows a sequence of simulated diffraction patterns
for the STO/PTO trilayer sample at varying polarization in the 𝑥-
direction. The inset numbers indicate the polarization signal measured
using the anomalous contrast of the (200) Friedel pair [16], computed
as (𝐼200 − 𝐼200)∕(𝐼200 + 𝐼200) and normalized to the 𝜃𝑥 = 𝜃𝑦 = 0,
𝑃𝑥 = 1 value. The signal is monotonic with increasing polarization and
approximately linear, indicating that in the ideal case the symmetry
breaking of this pair of diffraction disks is a good measurement of the
local polarization. As shown in the left panel of Fig. 2b, the intensities
of these disks branch as a function of polarization. When tilting the
incident beam towards the positive 𝑦-axis, as in the second row of
Fig. 2a, the symmetry of (200) pair of diffraction disks is not broken,
but the different excitation of these beams (shown in the center panel
of Fig. 2b) causes the signal to be suppressed by approximately 20%.
However, when the beam is tilted by 5 mrad (≈ 0.3◦) towards the 𝑥-
axis (as shown in the right panel of Fig. 2b), the effect of the tilting
is to break the symmetry of the (200) disks. This slight mistilt in
either direction along the 𝑥-axis completely destroys the polarization
measurement. In the third row of Fig. 2a, where the beam is tilted
towards the positive 𝑥-axis, there is an apparent nonzero polarization
even when the material is not polarized. In the fourth row of Fig. 2a
(and the right panel of Fig. 2b) a tilt towards the negative 𝑥-axis causes
an inversion of the polarization signal when 𝑃𝑥 > 0, non-monotic
behavior when 𝑃𝑥 < 0, as well as an apparent nonzero polarization
even when the material is not polarized. These effects are plotted as a
function of 𝑥 and 𝑦 tilts in Fig. 2c.
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Fig. 3. Derivatives of the diffracted intensities with respect to 𝑥-polarization 𝑃𝑥 and tilt about the 𝑥-axis 𝜃𝑥. The inset numbers show the value of 𝜕𝐼200
𝜕𝜗

− 𝜕𝐼200
𝜕𝜗

in arbitrary units,
where 𝜗 represents polarization for the left 3 columns, and tilt for the right 3 columns.
4.2. Gradients of the diffracted intensities

Computations of the derivatives of the diffraction disk intensities
with respect to 𝑥-direction polarization and tilt are shown in Fig. 3,
evaluated over a range of tilts and polarizations. The inset numbers
indicate the difference between the derivative of the (200) Friedel
pair, which demonstrates the sensitivity of the signal derived from
the anomalous contrast of those reflections to the chosen parameter.
The difference in overall magnitude between the polarization and tilt
derivatives is affected by the choice of units for the parameters; in
the figure they have been scaled to be visually uniform, and in the
optimization procedure the problem is rescaled to promote uniform
convergence along all the parameter directions. In the on-zone, un-
polarized case (𝑃 = 0, 𝜃 = 0) in the top left, the (200) anomalous
contrast signal will not distinguish between polarization of the crystal
and tilt, as both cause the same anomalous contrast. However, other
reflections respond in different ways to polarization and tilt. Thus,
when considering all of the diffracted beams the gradient directions
for tilt and polarization are approximately 62◦ separated. Since they
are not orthogonal, an iterative optimization will be needed in order
to solve the polarization and tilt. In the case of nonzero polarization
and tilt, the gradients tend to become more parallel. In particular the
gradients with respect to 𝑦-direction polarization and tilt, which are
fully orthogonal to the 𝑥-direction parameter gradients at 𝑃 = 0, 𝜃 = 0,
will become partially coupled to the other direction when the crystal
is tilted or polarized.

4.3. Experimental results

The fitted polarization and tilts of the STO:PTO:STO multilayer
sample are plotted in Fig. 4 over the full field of view. Immediately,
we can see several domains in the polarization maps in Figs. 4a and
b where the regular periodic structures show the tubular vortex struc-
tures. The ‘‘axial’’ polarization represents the PTO polarization along
the directions parallel to the vortex cores, while the ‘‘lateral’’ polariza-
tion is perpendicular. Inside each vortex, the projected polarization is
relatively constant in a given domain. Various domain boundaries are
also visible, where the polarization abruptly changes sign, in either the
axial or lateral directions, or both. These domain structures and domain
walls are in good agreement with previous observations of STO/PTO
multilayer samples [15,29,43]. The tilt maps shown in Figs. 4c and d
6

show significant rotation from the ideal zone axis, especially in the 𝑦-
axis direction. These maps demonstrate the need to include tilt in the
modeling of the diffraction signals. The smoothness of the estimated
tilt is due in part to the strong regularization applied during the
reconstruction.

The polarization maps contain many complex domain and domain
wall structures. We expect that the vortex cores will have alternating
polarization signs in the axial direction. This alternating structure is
visible in all domains in Fig. 4a, though interestingly we also observe
a negative offset from zero mean axial polarization in the largest
domain spanning the grain in the bottom half of the map. The grains
at the top and bottom edges also show a significant positive offset
from zero mean. These observations suggest that there may be a net
axial polarization in many of the domains, which cannot be directly
observed from qualitative estimates of the polarization which have
been high-pass filtered [43].

By contrast, in the lateral direction we expect oscillations in the
polarization, but that each domain will have a larger net positive or
negative polarization. This is because phase field predictions of the
polarization structure of the PTO vortex phase predict that every other
vortex will be displaced towards one of the STO/PTO interfaces, while
the remaining vortices will be displaced towards the other PTO/STO
interface [43]. This in turn causes a net polarization flow to one of the
lateral directions. Susarla et al. provide more phase field modeling and
predicted vortex domain structures [43]. These net polarization fea-
tures are indeed observed in Fig. 4b, and the overall magnitude of the
measured polarization is similar to those observed previously. Domains
in the top third of the map and bottom left show significant polarization
towards the negative direction, while the domains in the bottom two
thirds show significant polarization in the positive direction. Various
small domains are interspersed into the larger domains, but each shows
a non-zero mean polarization. Overall, these observations provide a
significant step forward in accurate modeling of the intensity of Bragg
peaks when the beam undergoes significant multiple scattering and the
sample has a large mistilt from the ideal zone axis.

The goodness of fit of the model is plotted for each scan position in
Fig. 5, using the residue, or 𝑅-value, defined as

𝑅 =

∑

𝒈
|

|

|

𝐼exp(𝒈) − 𝜇|𝝍0(𝒈)|2
|

|

|

∑

𝒈 𝐼exp(𝒈)
(19)

Overall the 𝑅 values are relatively high, with an average of about
55%, though they are consistent across the field of view. The overall
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Fig. 4. (a),(b) Polarization and (c),(d) tilt of the STO:PTO:STO sample recovered from experimental measurements using the optimization procedure. Approximate polarization
directions are labeled above.
Fig. 5. 𝑅 value of the fitted model at each scan position.

high value of this residue may point to a systematic mismatch be-
tween the experiment and the model. Surface contamination, a small
amount of remaining buffer layer from the synthesis procedure, or
the presence of an amorphous damage layer could all contribute to
another source of diffracted intensity that cannot be accounted for
by the model. Incorrect estimates of the Debye–Waller factors also
change the distribution of intensity between the different orders of
diffraction, leading to high residue values but not preventing the local
parameter variations from being recovered well. The application of
strong regularization on the recovered parameters is also likely to lead
to larger residue values. A better fit could be achieved by tuning global
parameters such as the Debye–Waller factors, regularization strength,
or weighting of intensities in the loss function, though this would
add considerably to the computational complexity. Recent advances in
interpretable machine learning may offer an efficient means for tuning
these hyperparameters, in particular the methods known as ‘‘algorithm
unrolling’’, which provides a connection between iterative algorithms
like the one we use here, and deep learning frameworks [44]. In
addition, there is finer variation in the residue which corresponds to
the fluctuations in polarization. As we discuss in the following section,
the structure of the polarization in this sample is more complex than the
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model we have used can capture, as it varies along the beam direction
as well as in-plane.

4.4. Future directions

In this work we have shown a stacked -matrix model for scattering
through a trilayer heterostructure parameterized with a single homo-
geneous polarization direction within the PTO layer. However, the
samples we investigated are known to have polarization that varies in a
complex manner through the thickness. A natural extension of Eq. (5)
to account for this is to model the PTO layer with a product of 𝑁𝐿
-matrices with distinct polarization:

PTO =
𝑁𝐿
∏

𝑖
̂PTO(𝜌𝑎,𝑖, 𝜌𝑏,𝑖; 𝑡 = 𝑇 ∕𝑁𝐿) (20)

where 𝜌𝑎,𝑖 and 𝜌𝑏,𝑖 are the relative polarization of the 𝑖th layer in the
𝑎 and 𝑏 directions, and 𝑇 is the total thickness. This modification to
the model allows us to more accurately reproduce the physics of the
scattering, at the cost of adding substantially more optimization vari-
ables. This added complexity can be mitigated somewhat by applying
constraints to the variation in polarization with thickness. For example,
if the polarization is constrained to vary linearly then the polarization
variables at the 𝑖th layer are expressed in terms of just two optimization
variables, 𝜌top and 𝜌bottom regardless of the number of layers modeled

𝜌𝑖 = 𝜌top + 𝑖
𝑁𝐿 − 1

(𝜌bottom − 𝜌top) (21)

Pennington and Koch [26] have used a similar stacked model to solve
for polarization changes along the beam direction, but their approach
relies on having a ‘‘composite’’ CBED measurement that spans a large
range of incident beam directions. This approach is both experimentally
more challenging and several orders of magnitude more computation-
ally intensive, but the inclusion of many beam directions may be
necessary in order to obtain 3D information. It may also be possible
to use multibeam electron diffraction [45] to obtain several nanobeam
diffraction patterns with large angular separation simultaneously.
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5. Conclusions

In this work, we have constructed a model of the electron multiple
scattering through a complex multi-layer sample, parameterized over
the physically relevant variables, and utilized an optimization proce-
dure to fit the model to experimental data. Simple models for measuring
the polarization of materials from nanobeam electron diffraction pat-
terns, using symmetry breaking of pairs of diffracted disks, break down
in the presence of even small tilts of the crystal, causing contrast
changes and reversals. Using a stacked -matrix approach, we are able
to use all of the scattered beams to determine polarization and tilt
simultaneously. In order to make the problem computationally feasible
for a large area scan, we derived the analytic gradients of the diffraction
intensities and used them to perform regularized gradient descent.
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