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Abstract

Reeb graphs for topological connectomics

by

S. Shailja

Our brain consists of approximately 100 billion neurons that form functional neural

networks across different brain regions. Brain functions involve complex interactions be-

tween these regions that are poorly understood and lack quantitative characterizations.

Diffusion MRI of the brain generates millions of complex curvilinear fibers (streamlines)

in 3D that exhibits the geometry of white matter pathways in the brain. It has been

shown that a critical element in neurological and developmental disorders is the topolog-

ical deterioration in streamlines. Despite this, most existing methods model the neural

connections with connectivity matrices that overlook the topology of connections.

Towards addressing this shortcoming, we model neuronal fibers as context-aware ge-

ometrical objects in three-dimensional space. We introduce a novel Reeb graph-based

method that efficiently encodes the topology and geometry of white matter fibers. Given

the trajectories of neuronal fiber pathways of a neuroanatomical bundle, we re-bundle

the streamlines by modeling their spatial evolution to capture geometrically significant

events (akin to a fingerprint). Reeb graph parameters control the granularity of the model

and handle the presence of improbable streamlines commonly produced by tractography.

Our method meaningfully describes the bundle tracts without oversimplifying them into

skeletons.

To quantify the difference between the connections, we introduce a new Reeb graph-

based distance metric that quantifies the topological differences in bundle comparison.

For the longitudinal repeated measures in the Cognitive Resilience and Sleep History

x



(CRASH) dataset, repeated scans of a given subject acquired weeks apart lead to provably

similar Reeb graphs that differ significantly from other subjects, thus highlighting our

method’s potential for clinical fingerprinting of brain regions. Reeb graph and topological

distance metric are sensitive to variations in brain structure, such as those observed in

the developing brain and in the presence of tumors. This sensitivity is beneficial in the

context of longitudinal studies of brain development and the topological evolution of the

brain. This thesis highlights the potential utility of our topology-based distance metric in

tracking Alzheimer’s disease progression using the ADNI dataset, evaluating the effects

of surgical interventions for brain tumor using the OpenNeuro brain tumor datasets and

quantifying the effect of shunt surgery for NPH brain condition in collaboration with

UCI Medical Center.

Our method is not limited to neuroscience and is general-purpose in its applicabil-

ity. This is demonstrated in our application of Reeb graphs for structure discovery in

spatio-temporal trajectories where we use the model for detecting anomalous trajecto-

ries. Human behavior typically follows a pattern of normalcy in day-to-day activities.

This is marked by recurring activities within specific time periods. Our method models

this behavior using Reeb graphs where any deviation from usual day-to-day activities is

encoded as nodes in the Reeb graph.

In summary, this thesis build up the theoretical framework for modeling spatio-

temporal trajectories in 2D and 3D space, with applications to brain connectome analysis.

A promising direction for future research is to link the Reeb graph-based structural model

presented here with the behavioral model derived from functional MRI. This multi-modal

strategy is expected to yield novel insights into the structural and functional connectivity

of the human brain.
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Chapter 1

Introduction

The human brain is incredibly complex, posing one of neuroscience’s greatest questions:

how can we infer what is actually happening within the brain? Determining the relation-

ship between structural changes in the brain and its functions is challenging. This thesis

aims to advance our understanding of brain structure through data-driven mathematical

modeling.

To model the brain, one might consider detailed examination of specific areas, metic-

ulously mapping individual neurons to understand their precise interactions. However,

focusing solely on individual neurons can overlook the broader context of their interac-

tions. Conversely, attempting to model the entire brain might miss critical details of

neuronal activity.

Our approach strikes a balance by creating a sparse yet structurally significant model

of specific brain areas. This dissertation focuses on the mathematical modeling of brain

connections, developing novel theory to represent neuronal fibers as geometrical objects in

three-dimensional space. This quantitative modeling addresses the generic sub-trajectory

clustering problem and we show how it can be applied to fields beyond neuroscience.

1



Introduction Chapter 1

1.1 Networks are Everywhere

A key observation in this thesis is how several biological structures of interest, such as

blood vessels, neurons, neural circuits, and cell consortia, can be abstracted as networks.

This abstraction is not unique to biology, as we often represent spatiotemporal behavior

of multiple objects dynamically over time with graphs and networks.

Recent advancements in high-throughput biomedical imaging techniques have fur-

ther supported this perspective, enabling researchers to model biological processes as

interconnected networks. Graph theoretical analysis of these networks, combined with

data-driven learning approaches, can boost our understanding of various human disease

pathways and underlying biological phenomena. For example, examining synaptic and

neuronal networks aids in studying the brain, while analyzing cell networks helps in

understanding the growth, death, and grouping of cells.

To study these networks, we formulate a general problem of modeling 3D spatiotem-

poral trajectories. We propose a novel theory of Reeb graphs and their implementation

algorithms to capture connections in trajectories. The collective motion of moving cells,

the transmission of information in neurons, and human movement are characterized by

the trajectories they follow, and this work aims to provide new insights into these complex

processes.

1.2 Imaging the human brain

Over the past two decades, advancements in computing and image acquisition tech-

nology have significantly advanced the field of neuroimaging. These technological im-

provements have deepened our understanding of brain mechanisms and enhanced our

ability to identify the causes of impairments by classifying patients and healthy individ-

2



Introduction Chapter 1

uals. One of the greatest achievements in neuroimaging is the development of various

kinds of magnetic resonance imaging (MRI) techniques. MRI has enabled high resolution

imaging of the human brain, the most elusive human organ. MRI scans are flexible as

radiologists adjust different contrast or relaxation settings [1] to visualize different brain

disorders in varying contexts. For example, the T1 relaxation setting is used in imaging

the cystic components of a tumor core in the brain, while the T2 relaxation is used to

image the whole tumor structure. Even further, scientists used the contrast dependent

properties of water molecules and developed the Diffusion Weighted Imaging (DWI) [2],

another type of MRI. DWI can be used to image the 3D structural information of brain

connectivity, thus offering a different perspective to a physician. In similar vein, func-

tional MRI (fMRI) was developed for spatiotemporal imaging of brain cognition. DWI

and fMRI can “image” molecular activity and cellular function at a resolution that is

impossible for conventional MRI. As a result of this progress in imaging devices, today

there are many high-resolution, large-scale brain imaging data sets available (HCP 1,

ABCD 2, ADNI 3). However, the computational and signal processing tools are lagging

behind. There are no frameworks yet that comprehensively analyze the brain images of

different modalities to explain the brain networks.

With the progress in AI, computational researchers have made significant strides to-

wards understanding and designing cyber-physical systems by applying deep learning

methods to different imaging modalities. However, it would be fair to say that the

premise of this success is the reliance on high-throughput data from well-behaved sys-

tems. Biological systems are highly context-dependent, noisy, and the data modalities

are often low-throughput. The inputs and outputs in these methods are often discon-

nected from the mechanistic details. We note that most deep learning methods are
1https://www.humanconnectome.org/
2https://nda.nih.gov/abcd
3https://adni.loni.usc.edu/
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Introduction Chapter 1

incapable of providing interpretable guidance to clinicians about disease biomarkers or

crucial biomolecular location information about pathology. Therefore, in this thesis we

explore the topology and structure of network data using first-principles, motivated by

one of the most elusive problems — neuronal connectivity in the human brain.

1.3 Summary of Contributions

This dissertation poses a central research question: Can we model the structural

connections of a network in a scalable way to represent spatial information flow? Mo-

tivated by brain connectivity, this work introduces a novel Reeb graph-based method

that efficiently encodes the topology and geometry of the brain’s white matter pathways,

as captured in the diffusion MRI data. By defining the evolution of level sets, we re-

bundle 3D trajectories of neuronal fiber pathways, capturing critical geometric events –

akin to a brain fingerprint. This method proves valuable in detecting disease-related and

age-dependent topology alterations in studies on Alzheimer’s, brain tumors, and iNPH.

Beyond neuroscience, the approach has broader applications, demonstrated through

the development of a general algorithm for discovering structure in spatiotemporal tra-

jectories. This algorithm identifies anomalies in such spatiotemporal data. In summary,

this thesis presents an extensive exploration of spatial Reeb graphs, detailing their im-

plementation for spatiotemporal data and discussing their potential as general purpose

tools for scalable trajectory modeling. The main contributions of this dissertation are

listed below.

1. We develop an efficient method to model the white matter connectivity as a sparse

Reeb graph. We parameterize our model to mitigate the effects of noise in stream-

lines. Noise in this context refers to geometrically implausible streamlines due to

curvature overshoot or short length due to premature termination.
4



Introduction Chapter 1

2. We introduce a new graph-based method to quantify the topological difference be-

tween two bundle tracts that can be used to compare brain connectivity between

individuals or populations. We demonstrate the utility of our approach for visu-

alization and tractograph evaluation using the International Society for Magnetic

Resonance in Medicine (ISMRM) dataset [3].

3. We utilize the proposed model to fingerprint the human brain networks, to track

Alzheimer’s disease progression using the ADNI dataset, and evaluating the effects

of surgical interventions for brain tumor using the OpenNeuro brain tumor dataset.

Towards quantifying the impact of shunt surgery for iNPH patients we demonstrate

the usage of CT scans and discuss how Reeb graph-based pipeline can help us in

multi-modal quantification.

4. We extend our theory to spatiotemporal trajectories. As a case study of this algo-

rithm, we propose a Reeb graph-based method to model the day-to-day activities

of a given agent and detect anomalous behavior.

1.4 Organization of Thesis

An overview of the chapters of this thesis is shown in Figure. 1.1.

Chapter 2: We formulate the problem of spatial trajectory clustering, introducing

the concept of Reeb graphs as a tool to model the bundling structure of high-dimensional

data. We develop a Reeb graph-based algorithm to discover the high-level topological

structure and the evolution of a collection of 3D trajectories. This algorithm computes

a sparse graph representing the latent bundling and unbundling structure of trajectories

in space. To account for the irregular noise in the data, we parameterize the algorithm

with biophysical parameters that capture the topology of the data — ϵ (distance between

5
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Chapter 6
Reeb graph models the GPS trajectories

Chapter 4
Reeb graph fingerprints the connections in brain

Double crossing

Disrupted fibers Distorted fibers

Evaluation with ReTrace Extra node captures disruption Graph captures distortion

Ideal fiber tracking

Chapter 2
Method contribution

Chapter 3
Reeb graph for Tractography

Chapter 5
Reeb graph quantifies impact of

Neurosurgery

Figure 1.1: An overview of the thesis: Reeb graphs for topological connectomics.

a pair of trajectories in a bundle), α (spatial length of a bundle of trajectories), and δ

(bundle thickness).

Chapter 3: Reeb graphs can guide the design of trajectory generation algorithms.

Any trajectory analysis mainly depends on the quality of the trajectory data generated.

As a desired consequence, the Reeb graph models of trajectories can also be tuned to be

highly sensitive to the quality of the data. In neuroimaging, tractography is a trajectory-

generation technique used to reconstruct white matter fiber pathways from diffusion

magnetic resonance images (dMRIs). Therefore, in Chapter 3, we demonstrate the usage

of Reeb graphs as an evaluation method for tractography algorithms. This method

addresses the limitations of existing metrics by focusing on the topological accuracy of

reconstructed pathways.

Chapter 4: We show the practical usage of the theory of Reeb graphs for brain:

(1) For International Society for Magnetic Resonance in Medicine (ISMRM) dataset,

6



Introduction Chapter 1

our method handles the morphology of the white matter tract configurations due to

branching and local ambiguities in complicated bundle tracts like anterior and posterior

commissures; (2) For the longitudinal repeated measures in the Cognitive Resilience and

Sleep History (CRASH) dataset, repeated scans of a given subject acquired weeks apart

lead to provably similar Reeb graphs that differ significantly from other subjects, thus

highlighting the potential of Reeb graphs for clinical fingerprinting of brain regions. We

develop a Reeb graph based pipeline for longitudinal tracking of neuroconditions such as

Alzheimer’s Disease and tumor.

Chapter 5: In this Chapter, we present a case study for using Reeb graphs for

quantifying and localizing neurosurgery. We evaluate the effects of shunt surgery on the

condition of idiopathic Normal Pressure Hydrocephalus (iNPH). We present an AI-based

method for quantifying ventricular volume in iNPH patients pre- and post-surgery. With

Reeb graphs, we develop a multi-modal analysis pipeline that uses segmented CT scans

and diffusion MRI. We discuss how this analysis could improve our understanding of the

disease by interpreting diagnostic symptoms associated with gait, cognition, and bladder

function with respect to structural network changes in iNPH patients.

Chapter 6: The theoretical advances of the algorithm in this thesis are general-

purpose and applicable to other big data contexts, including multi-omics, epidemiology,

human GPS data, and other space-evolving datasets. In Chapter 6, we discuss one such

problem of behavior modeling and anomaly detection in human mobility. Recently, there

has been an increase in location-aware devices that use the Global Positioning System

(GPS) for many applications such as finding efficient routes [4], fitness apps, understand-

ing the progression of infectious diseases [5], and predicting demographic information [6].

This collection of movements, and thus vast amounts of raw trajectories, spotlights the

need for a scalable representation of these trajectories that preserves and highlights the

structurally and topologically important movement patterns. We use Reeb graphs to

7
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extract contextual information for human behavior classification in this chapter. We

discuss how future research in this direction could use the features extracted by Reeb

graphs to create representative embeddings in a graph neural network model for anomaly

prediction.

Chapter 7: We discuss some future directions and conclude this dissertation in this

chapter.

In summary, this dissertation presents a new structure discovery method of brain con-

nectomics using Reeb graphs. This offers a novel perspective on the structural intricacies

of the human brain. By developing advanced computational models and graph-theoretic

approaches, this work not only decodes the complex neural pathways but also establishes

a method for their topological and geometric analysis. The proposed method in this the-

sis quantifies the topological differences in brain structures for localized comparisons for

early diagnosis of neurological conditions. Furthermore, the application of these meth-

ods extends beyond neuroscience demonstrating their versatility in analyzing geo-spatial

data. This interdisciplinary approach deepens our understanding of trajectories, whether

in neural connections in the brain or in human movement trajectories. Reeb graphs hold

promise in modeling such high dimensional and large scale systems effectively.

8



Chapter 2

Spatial Reeb Graphs

Understanding brain is a complex problem! As such, it requires a mix of approaches from

computer vision, geometry, graph theory, and topology. In this chapter, we introduce

brain connectome which describes the structural connections of the brain. Wiring formed

by white matter fibers typically originate in functional regions, merge with nearby fibers

into larger pathways for efficiency, and diverge as they approach their terminal functional

regions. Therefore to understand a brain mathematically, we set up the subtrajectory

clustering problem to model the structure of brain network. General-purpose graph-

theoretical methods are computationally intractable and overlook crucial information

about the physical proximity and bundling structure of fibers. In this chapter, we present

a novel algorithm for addressing the mathematical modeling problem.

The content from this Chapter was published in the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI) [7] and IEEE Transactions on Medical Imag-
ing (TMI) [8].
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2.1 Connectome

A connectome is a wiring diagram. In context with brain, a connectome is a com-

prehensive map of neural connections in the brain. A connectome is constructed by

tracing the neuron in a nervous system and mapping where neurons are connected

through synapses. Recent advances in non-invasive imaging technologies such as dif-

fusion magnetic resonance imaging (dMRI) combined with tractography methods (dis-

cussed in Chapter 4) allows reconstruction of connectome in the human brain as shown

in Figure. 2.1. The field of “Connectomics” focuses on the compilation and examination

of connectome datasets, playing a crucial role in advancing our understanding of neural

structures and functions [9]. This thesis centers around topological connectomics using

Reeb graphs.

Figure 2.1: Coronal view of human brain connectome. This shows a
dMRI image of brain where white matter fibers are tracked using the DSI Studio
(https://dsi-studio.labsolver.org/). DSI studio is a tractography software tool
that maps brain connections. The colors in this figure indicate the various directions
of the fibers.

10
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2.2 Significance of Topology

In the context of brain connectivity and white matter fibers, topology refers to the

arrangement and organization of the fibers into structural networks, taking into account

their arising/ending and branching behavior and the relationships between different re-

gions of the brain. The topology of the white matter fibers is crucial for understanding

the brain’s structural/functional connectivity and how it is affected by various factors,

such as aging, disease, and injury. We assume that the groups of trajectories that are

spatially close to each other share similar properties. In this Chapter, we present our

method, ReeBundle which is a Reeb graph-based model to encode the arising & ending

and the merging & splitting behavior for groups of sub-trajectories.

Neurological disorders can cause two topologically relevant changes in the white mat-

ter fibers: physical disruptions and spatial distortions. The white matter fibers are

physically disrupted in neurological disorders such as stroke or multiple sclerosis. On the

other hand, diseases like brain tumor [10, 11] can cause spatial distortion in the white

matter pathways as tumor mass occupies the brain space [12]. These topologically rel-

evant changes caused by neurological disorders are illustrated in Figure. 2.2. Modeling

word form

word analysis

word articulation/
word analysis

A B

disruption

mass

Figure 2.2: Significance of topology in neurological disorders. A) Branching
disruption in Alexia without agraphia where the branching from word form to word
analysis is disrupted, while the other branch remains intact. B) The pink-colored
tumor mass occupies space in the brain and causes displacement and deviation of
the surrounding white matter fibers. This spatial distortion of white matter fibers is
reflected in the Reeb graphs, with displaced nodes indicating the distortion in white
matter tracts caused by the tumor mass.
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the branching behavior of the white matter fibers using ReeBundle can capture these

topological changes and provide valuable information for understanding and detecting

disease progression. For example, stroke [13] causes direct disruption of portions of clas-

sical tracts. It can lead to a selective disruption of the hand and face motor cortex in the

superior spinal tract of the corticospinal tract (CST) or disrupt the classical language

network that affects word analysis. Another example is Alexia without agraphia [14].

Here, the ability to read is lost while the ability to write remains intact. To analyze

such neurological disorders, branching is important to consider as shown in Figure. 2.2A.

We show the condition where the lower branch that connects the word form with word

articulation stops functioning. Therefore, investigating brain topology by modeling the

branching behavior of the bundle tracts using ReeBundle can provide useful biomarkers

for the study of brain development and the detection of disease progression.

In this chapter, we establish the theoretical framework for the Reeb graph model.

2.3 Definitions

We have 3D Euclidean space with n trajectories and a total of N points. Given an in-

put set of trajectories that correspond to a coherent streamline bundle, I = {T1, T2, ..., Tn},

we compute the Reeb graph R(V,E), where edges represent the set of ϵ-step connected

fibers and vertices represent the arise, disappear, split or merge behavior of trajectories as

shown in Fig 2.3. R is an undirected, weighted graph that captures such critical points of

the trajectories. The parameter ϵ controls the granularity of the grouping desired. Small

values of ϵ allow only very dense sets of subtrajectories to be considered for grouping,

while larger values of ϵ relax the groups and allow larger, sparser groups [15]. In the

three dimensional Euclidean space R3, we define the following terms that help in setting

up the problem.

12
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Trajectory : A trajectory T is as an ordered sequence of points in R3, T = {p1, p2, ..., pm},

where m is the number of points in T and pi ∈ R3.

Subtrajectory : A subtrajectory U of a parent trajectory T starting at s and ending

at t is represented by a consecutive subsequence of points {ps, ps+1, ps+2, ..., pt|pi ∈ T}.

ϵ-(dis)connected points : For any pair of points p1 and p2 in R3, we define d(p1, p2)

as the Euclidean distance between the two points:

d(p1, p2) = ∥p1 − p2∥2,

where ∥ · ∥2 represents the Euclidean norm. Two points p1, p2 are ϵ-connected if d(p1, p2) ≤

ϵ. Similarly, two points p1, p2 are ϵ-disconnected if d(p1, p2) > ϵ.

ϵ-connected trajectories : Two trajectories Ti and Tj are ϵ-connected if every point

in Ti is within ϵ of some point in Tj and vice versa. Note that the definition of ϵ-connected

extends to subtrajectories as well.

Appear event: For each trajectory T , the initial point of its ordered sequence

is labeled for the occurrence of the appear event. For example, for trajectory T1 =

{p1, p2, ..., pm}, we observe the appear event at the point p1.

Disappear event: For each trajectory T , the final point of its ordered sequence

is labeled for the occurrence of the disappear event. For example, for trajectory T1 =

{p1, p2, ..., pm} , we observe the disappear event at pm.

(Dis)connect events: Consider two ϵ-connected subtrajectories U and U ′ belonging

to the trajectories T and T ′,

U = {p1, p2, ..., pm}, U
′
= {p′

1, p
′

2, ..., p
′

q},

then a connect event for the pair (T, T
′
) is defined by (p1, p

′
1) and a disconnect event is

13
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𝑻𝟏 𝑻𝟐 𝑻𝟑
𝑻𝟒 𝑻𝟓 𝑻𝟔𝒑𝟏

𝒑𝟐
𝒑𝟑

𝒑𝒎
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𝑹( 𝑽,𝑬)

𝒗𝒊
𝒆𝒋

Trajectory StructureA B Computed Reeb Graph 

Figure 2.3: Bundling structure of streamlines. (A) An example showing the
branching structure of the streamlines and (B) the Reeb graph where nodes encode
the merge, split, and termination characteristics. Nodes of the Reeb graph R on
the right-hand side are shown in red color and the edges are shown in black color
throughout the thesis.

observed at (pm+1, p
′
q+1). If there is no such pair of points for connect event, it implies

that T and T
′ are disjoint. Moreover, if T and T

′ are ϵ-connected and if T ′ and T ∗ are

also ϵ-connected, then we say that T and T ∗ are ϵ-step connected.

Note that the trajectories estimated from dMRI tractography do not have a specific

beginning or ending as dMRI is not sensitive to the direction of connections. So, reversing

the order of the points in a streamline will produce similar results. The appear and disap-

pear events are used for convenience in describing the algorithm and its implementation.

2.4 Bundling Structure Of Tractographs

White matter fibers in brain space are represented as a set of spatial trajectories

in 3D Euclidean space such that each streamline is a trajectory T = {p1, p2, ..., pm}

where pi ∈ R3 is an ordered sequence of points and m is the total number of points in

T . A common behavior of streamlines is that they start from one brain region, merge

with other streamlines into bundles, and then split towards the end into other brain

regions. Intuitively, we can assume that if a continuous portion of a set of fibers is close

together then they share a common anatomical behavior. In this Chapter, we model

14
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the topology of these streamlines by formulating a problem of computing a Reeb graph

model R(V,E) given a set of trajectories I = {T1, T2, ..., Tn}, where n is the number

of trajectories. The vertices V of the Reeb graph encode the termination (appear and

disappear) or branching (connect and disconnect) of trajectories and the set of edges E

are the group of subtrajectories bundled together.

Bundling structure, as shown in Fig 2.3, partitions the set of trajectories into a group

of subtrajectories to visualize the grouping aspects of the trajectories and to compare

grouping across different input sets. Given I and a distance parameter ϵ, the bundling

structure of a set of trajectories is modeled using a Reeb graph of the ϵ-connected tra-

jectories. We define:

Bundle: A Bundle denoted by B is a set of subtrajectories that consists of at most

one subtrajectory from each trajectory T . Two bundles B and B′ are adjacent if ∃ U ∈ B

that is continued as U ′ ∈ B′, where U and U ′ are the subtrajectories of T . B is ϵ-bundle

if any two subtrajectories in B are ϵ-step connected i.e, connected by a sequence of ϵ-

connected subtrajectories. An ϵ-bundle B is max-width if no other possible ϵ-bundle of

I intersects B and contains a superset of the trajectories represented by B.

Max-width ϵ-bundle partition: Given a set of max-width ϵ-bundles, a max-width

ϵ-bundle partition P = {B1, B2, ..., Bl} such that every point in I is assigned to a bundle.

Note that by the term bundle we mean the set of subtrajectories that are in close

proximity, that is, max-width ϵ-step connected subtrajectories as shown in Figure. 2.4.

A bundle shares the same spatial and shape characteristics and does not necessarily

correspond to neuroanatomical bundle tracts.
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Figure 2.4: Illustration of ϵ−step connected trajectories. Trajectories T1 and
T2 are ϵ−step connected while T1 and T3 are not ϵ−step connected.

2.5 Construction of Reeb Graphs

The central part of solving the problem as stated above is to compute the bundling

structure represented by Reeb Graph R. Towards that end, we compute an undirected,

weighted graph R. In this section, we define the Reeb graph and then proceed to develop

an algorithm that can compute this graph for a set of trajectories. Formally, a Reeb graph

R is defined on a manifoldM∈ R3 using the evolution of level sets L [16]. To adapt this

definition of R for the case of neuronal fiber trajectory evolution, we define a manifold

M in R3 as the union of all points in the tractogram. The set of points of trajectories at

step k is the level set at k. The connected components in the level set at k correspond to

the max-width ϵ-connected trajectories at step k. Unlike previous studies [17], here, any

number of trajectories can become ϵ-(dis)connected at the same location. Reeb graphs

are computed for spatially evolving level sets. Reeb graph, R, describes the evolution

of the connected components over sequential steps. At every step k, the changes in

connected components are represented by vertices in R.

In Section 2.3, for a given trajectory, we defined appear and disappear events. For a
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pair of trajectories, we defined connect and disconnect events. These events describe the

branching structure of the trajectories. To compute the Reeb graph, we process these

events sequentially. We maintain a graph G = (V
′
, E

′
) where the vertices represent the

trajectories. G is a graph that changes with steps representing the connect and disconnect

relations between different trajectories.

Initialization: We spend O(N2) time to store the events for all pairs of the trajec-

tories. This step is massively parallelizable. An initial level of simplification can be done

by using QuickBundles [18] in O(N) on average.

Handling appear, disappear, split and merge events: At each step k, we insert

new nodes at appear events and delete nodes at disappear events. At connect events,

we insert edges in G and at disconnect events, we delete edges. To handle a disconnect

event of trajectories T1 and T2 at step k, we delete the edge (T1, T2) from Gk. Similarly,

for a connect event of trajectories T1 and T2 at step k, we add the edge (T1, T2) to Gk.

These steps are demonstrated in Figure. 2.5. At each step k, an edge (T1, T2) in G shows

that T1 and T2 are directly connected. Therefore the max-width ϵ-connected trajectories

correspond to the connected components in G at step k. We do this for all the connect

and disconnect events as shown in Figure. 2.5.

Computing R from G and P: At each step k, we query Gk−1 and Gk to get the

connected component Ck−1 and Ck respectively. If a connected component ck ∈ Ck is

present in Ck−1, we assign the same bundle id Bi to the points in step k for the trajectories

in the connected component ck. On the other hand, if ck is not present in Ck−1, we create

a new bundle id and assign it to the points in step k for the trajectories in the connected

component ck. This gives us the maximum bundle partition P .

Finally, the Reeb graph R for P is an undirected graph where each edge represents a

max-width ϵ-bundle Bi and each pair of edges ei and ej are connected with a vertex if Bi

and Bj are adjacent bundles as shown in Figure. 2.3. The steps for computing Reeb graph

17



Spatial Reeb Graphs Chapter 2

Algorithm 1 Construction of Reeb Graph
function ConstructReebGraph(I, set of events for all pairs of trajectories)

for all steps k from 0 to maximum length of the trajectory in I do ▷ Event Han-
dling

if appear event of T then
insert new node T to Gk

if disappear event of T then
delete node T from Gk

if connect event between T1 and T2 then
insert edge (T1, T2) to Gk

if disconnect event of trajectories T1 and T2 then
delete edge (T1, T2) from Gk

P ← empty bundle partition ▷ Bundle Partition
Query Gk−1 and Gk to get the connected components Ck−1 and Ck respectively;
for all connected component ck ∈ Ck do

if ck ∈ Ck−1 then
assign the same bundle id Bi to the points for trajectories in ck;

else
create a new bundle id Bi+1 and assign it to the points for trajectories
in ck;

Add Bi+1 to P
Construct Reeb graph R from P by connecting adjacent bundles with nodes and
bundles as edges;
return R

are shown in Algorithm 1. Note that the Reeb graph is monotonous with respect to the

distance parameter ϵ i.e. if B is a bundle for a given ϵ, then for any ϵ′ > ϵ, ∃B′ ⊇ B. The

monotonicity property ensures consistency between models at different levels of detail

and allows tunable coarse-graining of models for the streamlines.

2.6 Parameter Selection For Reeb Graphs

The bundling structure discussed above is susceptible to noise and errors in the

streamlines. It is known that tractography techniques can suffer from a large number of

improbable streamlines due to the reconstruction of streamlines that do not correspond
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Bundle Partition P

B

C

D

Dynamic graphs for level sets

Figure 2.5: Steps for ReeBundle method. A) Input I = {T1, T2, T3, T4} exhibiting
arising, merging, splitting, and ending behavior. Connect, disconnect, appear, and
disappear events are marked by black circles. B) After processing the ordered sequence
of points, k = 0, 2, 5, ..., 21, we modify the Gk respectively. Deleted nodes and edge
queries are represented by dashed circles and dashed lines respectively in Gk. C)
Max-width bundle partition for I is computed using the dynamic graphs. D) R is
computed from Gk. Edges of R encode the maximal group of trajectories and vertices
of R record the topologically significant points of the trajectories. The Reeb graph R
for P is structured as an undirected graph where each bundle Bi in P is linked to an
edge ei in R. Two edges, ei and ej , are connected by a vertex in R if the bundles they
correspond to are adjacent.

to real anatomical bundles [19]. Noise in this context refers to streamlines that are ge-

ometrically implausible due to curvature overshoot; short length because of premature

termination, and spatially distant due to connection density biases. Hence, we propose

a Reeb graph model to detect and discard outlier streamlines based on their geometrical

properties such as length, density, size, and branching. Three key parameters in our

method capture the geometry and topology of the streamlines (i) ϵ – the distance be-

tween a pair of streamlines in a bundle that defines its sparsity (ii) α – the spatial length

of the bundle that introduces persistence and (iii) δ – the bundle thickness. Together,

these parameters control the granularity of the model to provide a compact signature of
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the tracts.

Minor interruptions of length < 2mm in the streamlines would be insignificant when

modeling the bundling structures at the 20mm length scale. Hence, the amount of in-

terruptions that may be considered insignificant is a latent parameter dependent on the

modeling abstraction and the hypothesis underlying the model as shown in Figure. 2.6.

We introduce a parameter α ≥ 0 to model this measure of topological persistence. There-

fore, in the Reeb graph model, the precise events with length at most α are ignored. So,

if a pair of trajectories are ϵ-(dis)connected for less than α interval then the associated

event is ignored. Formally, given an input image I and its max-width bundle partition

P , we define:

α-relaxed ϵ-connected bundles : Two trajectories are α-relaxed and ϵ-connected at

k if and only if they are ϵ connected at some k′ ∈ [k − α/2, k + α/2].

Finally, to control the thickness of the bundles, we introduce a parameter δ to model

the minimum size (number of trajectories) of the bundles in the Reeb graph. This allows

us to model the significant bundles whose size is more than δ trajectories and all other

bundles are ignored. To sum up, we say that a bundle B is robust if it is a bundle

according to the definition in Sec. 2.4 with its components replaced by α-relaxed ϵ-

connected components and |B| > δ. Note that the robust Reeb graph also manifests the

monotonicity property in the parameters α and δ: a bundle B in an interval S remains

a bundle in S on decreasing δ or α. Bundle ids in B are recomputed with respect to the

new persistence (α) and size (δ) parameters.

Weighted Reeb Graph: Bundles in a given image are associated with edges in

the Reeb graph and can be labeled with domain-specific information. Here, we use the

normalized streamline count
(
|B|
n

)
as the anatomical feature to represent the edge weight.

The optimal values for ϵ, α, and δ depend on the specific application being considered.

For instance, in our study, we used a value of ϵ = 2.5 for two main reasons: firstly, it
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Figure 2.6: Effect of Reeb graph parameters. (A) Tuning ϵ, α, and δ obtains
generalized views of the grouping structure and handles noise / false positives illus-
trated using toy trajectories. Common examples of white matter configuration that
are observed in tractography and their Reeb graph models at (B) a finer granularity
and (C) coarse granularity. For example, the fanning structure is finely encoded when
the inter-trajectory distance, ϵ is less in (B). Similarly, the short interruptions while
crossing and kissing can be captured with a smaller value of the persistence parameter
α and can be ignored with a larger value of α.

is sufficiently close to the minimum dMRI resolution of 2mm, enabling us to capture

the smallest reasonable groups. Secondly, it is large enough to ensure the identification

of macroscopic groupings. The choice of parameters for our method is driven by the

hypothesis underlying the Reeb graph construction. For example, a dense graph can

be generated to compare and contrast tractography methods that generate streamlines,

while a sparse graph can be computed for disease studies to suppress false positives

and quantify disease-relevant features. For longitudinal studies, it may be useful to

experiment with different parameter values to obtain the desired structure resolution

and then fix the parameters for computing the Reeb graphs at subsequent time points.

21



Spatial Reeb Graphs Chapter 2

2.7 Time Complexity Analysis For Reeb Graphs

We spend O(N2) time to store the events for all pairs of the trajectories. This step is

parallelizable. An initial level of simplification can be done by using QuickBundles [18]

in O(N) on average.

Theorem 1 For a given ϵ and set of trajectories, I = {T1, T2, ..., Tn} with a total of N

points, the Reeb graph R of I can be computed in O(N log n) time.

Proof: At any given step, G contains an edge (T1, T2) if and only if T1 and T2 are

directly connected at that step. For a given ϵ and resolution of dMRI image, there is

constant number of connections possible for a trajectory Ti. So, G forms a sparse graph

with O(n) nodes and edges. During event computation step, we know all indices of

trajectories at which G changes in advance, we can use therefore maintain the connected

components as the maximum weight spanning forest as an ST-tree [20, 21]. this will

help in connectivity queries, inserts, and deletes, in O(log n) time. In the worst case, we

modify and query the graph G to get the connected components for all the points in I.

Hence, the total time required for the construction of R is O(N log n).

Theorem 2 For a given ϵ and a set of trajectories I, where each trajectory consists of

at most µ points, Reeb graph R can have O(µn2) vertices.

Proof: Consider a pair of trajectories T and T ′. T ′ is ϵ-connected to T during at

most one spatial interval which yields two vertices in R. A pair of trajectories produce

O(µ) vertices when connected and disconnected for at most one interval. For all possible

pairs n2, this gives a total of O(µn2) vertices. This bound is tight in the worst case.

Theorem 3 For a given ϵ, α, and a set of trajectories I, where each trajectory consists

of at most µ points, the Reeb graph R can have O(µn
2

α
) vertices.
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Proof: Consider two trajectories T and T ′. T ′ is ϵ-connected to T during at most

α spatial interval which yields to two vertices in R. A pair of trajectories thus produces

O(µ/α) vertices. There are n2 possible pairs giving a total of O(µn
2

α
) vertices. This bound

is tight in the worst case.

2.8 Summary

In this Chapter, we present our algorithmic theory of Reeb graph-based method

for subtrajectory clustering. We provide an implementation of the discussed method,

ReeBundle as a computational framework which is available as a Python package. Users

can interact with the 3D visualization of the model using the Jupyter notebooks provided

as a part of the GitHub code: https://github.com/UCSB-VRL/ReeBundle. Reeb graph

representations encode topological information that can be used as input in data-driven

methods instead of directly using deep learning methods on limited available and noisy

raw dMRI data. The algorithm’s parameters control the granularity of the bundling

process—small parameter values restrict grouping to very dense sets of subtrajectories,

while larger values allow for the formation of larger and sparser groups.

Our main contributions in this Chapter are summarized below:

1. We develop an efficient method (ReeBundle) to model the white matter connectivity

as a sparse Reeb graph. This tool can be used as a plug-and-play solution for brain

connectivity analysis, this will be discussed in detail in future chapters.

2. We parameterize our model to mitigate the effects of noise in streamlines. Noise

in this context refers to geometrically implausible streamlines due to curvature

overshoot or short length due to premature termination.
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Chapter 3

Reeb Graph Models for Tractography

Our proposed Reeb graph method in Chapter 2 is sensitive to the input set of fibers

and thus can be used as a quality assurance measure to tweak the pre-processing steps

or to decide the fiber tracking methods (tractography). In this Chapter, we utilize the

proposed sparse Reeb graphs to rank and compare different tractography algorithms.

We design novel Reeb graph matching algorithm to quantify the comparison and rank 96

tractography methods for given neuroanatomical bundles of interest. The existing eval-

uation metrics such as the f-score, bundle overlap, and bundle overreach fail to account

for fiber continuity resulting in high scores even for broken fibers, branching artifacts,

and mis-tracked fiber crossing. In contrast, we show that ReTrace effectively penalizes

the incorrect tracking of fibers within bundles while concurrently pinpointing positions

with significant deviation from the ground truth. Based on our analysis of ISMRM chal-

lenge data, we find that no single algorithm consistently outperforms others across all

known white matter fiber bundles, highlighting the limitations of the current tractog-

raphy methods. We also observe that deterministic tractography algorithms perform

better in tracking the fundamental properties of fiber bundles, specifically merging and

The content from this Chapter was published in CDMRI Workshop at the International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI) [22].
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splitting, compared to probabilistic tractography. We compare different algorithmic ap-

proaches for a given bundle to highlight the specific characteristics that contribute to

successful tracking, thus providing topological insights into the development of advanced

tractography algorithms.

3.1 Tractography

Tractography is a technique utilized in neuroimaging to reconstruct white matter

fiber pathways from diffusion magnetic resonance images (dMRIs). The reconstructed

fiber bundles provide valuable insights into the connectivity between different regions

of the brain. They play a crucial role in understanding neuroanatomy and studying

various brain disorders. For instance, tractography has been used to reveal brain abnor-

malities across a range of conditions [11, 23, 24], including multiple sclerosis, cognitive

disorders, Parkinson’s disease, brain trauma, tumors, and psychiatric conditions. To en-

sure accurate interpretation of the obtained tractography results, it is vital to evaluate

the performance of tractography methods on these neuroanatomical bundles and select

appropriate metrics for assessment. Evaluating the performance of tractography methods

is a complex task due to the intricate nature of white matter pathways and the challenges

associated with capturing their neuroanatomical topology [13,25].

Empirical studies have examined the effectiveness of many tractography methods in

investigating a range of neurodegenerative diseases like Alzheimer’s [26], as well as in

measuring patient outcomes following the utilization of tractography for tumor resec-

tion [27]. However, the comparison between tractography algorithms remains mainly

qualitative for the most part. These studies do not provide a comprehensive evaluation

of the tractography algorithms themselves, as they lack a ground truth reference for

the reconstructed bundles. This limitation hinders the ability to quantitatively compare
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standard tracking algorithms and obtain meaningful feedback about their performance.

3.2 Evaluation of Tractography

To quantify tractography, the FiberCup phantom dataset [28] is commonly used.

The International Society for Magnetic Resonance in Medicine (ISMRM) organized a

tractography challenge [19] on revised FiberCup dataset to establish a ground truth

and provide score using the Tractometer [29]. Tractometer provides global connectivity

metrics and facilitates extensive assessment of tracking outputs, fiber bundle detection

accuracy, and incomplete fiber quantification. As bundle analysis is crucial in neurological

studies, the tractograms were divided into 25 major bundles in the ISMRM dataset. To

assess the performance of tractography method on bundles, bundle coverage metrics were

proposed [19]. These metrics transform the fibers into voxel images, which results in the

loss of fiber point-correspondence. They fail to account for many reconstruction errors,

thereby yielding inflated and potentially misleading scores. For example, the topological

complexity arising due to the geometrical structure and branching within valid bundles

is often neglected in voxel-based metrics. In other words, the existing tractography

assessment metrics do not answer “how" the fibers are connected but only analyze the

connection percentages. Hence, there is a critical need for methods that can quantify the

anatomical validity of fiber branching, given the complex fiber topology [30].

Topology pertains to the organization of white matter fibers into structural networks

of brain. It considers the fibers’ origination, termination, and branching, as well as

their relationship to different brain regions. Neurological disorders can induce topolog-

ical changes in white matter fibers, such as physical disruptions in cases like stroke, or

spatial distortions as seen in brain tumors. To effectively assess the topology of the

fiber reconstruction in bundle tracts, we discuss our method ReTrace [22] in this Chap-
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ter. It is a novel graph matching algorithm that is based on the construction of a Reeb

graph [7, 31, 32]. This graph matching algorithm enables a comprehensive quantitative

analysis of topological connectivity patterns by considering both global and local network

features. Further, for each quantitative assessment provided by ReTrace, a graph visu-

alization of the bundle in 3D is also associated. This visualization is crucial in analyzing

the efficacy of the tractography. Finally, ReTrace can also be tuned to explore the output

of a given tractogram in different resolutions. The implementation code and interactive

notebooks for utilizing ReTrace are publicly available on GitHub 1.

Voxel-based tractography evaluation

Branching topology 

Ground truth No branching Discontinuous branching

Over-pruned bundle Discontinuous fibers

Discontinuous fibers Distorted crossing

Ground truth

Ground truth

Crossing topology 

Fiber continuity

True positive = |M1 ∩ M2|
Valid streamlines = |M2|

M2

M1

Bundle overlap (OL) = 

False positive = |M2 \ M1|

False negative = |M1 \ M2|

|M2 ∩ M1|
   |M1|

Bundle overreach (ORGT) =   
|M2 \ M1|
   |M1|

Bundle overreach (ORVS) = 
|M2 \ M1|
   |M2|

True negative =  |M1 ∪M2|

F1 =            2 TP
TP + (FP + FN)/2

A

C

B

D

Figure 3.1: Traditional bundle coverage metrics and their limitations in tractography
evaluation. (A) Mask M1 illustrates the ground truth bundle (black outline), while
Mask M2 reveals valid fibers (red outline) produced by a specific tractography method.
Bundle coverage evaluation uses these voxel masks. (B)-(D) display scenarios where
the traditional metric falls short. Gray fibers represent the ground truth, while orange
fibers depict the reconstructed fibers. (B) highlights potential errors in fiber continu-
ity. (C) demonstrates potential inaccuracies in the branching topology of the tracked
fibers, and (D) exposes potential misinterpretations in crossing topology, which despite
yielding high scores in bundle coverage, might be anatomically implausible.

1https://github.com/s-shailja/ReTrace
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3.3 Limitations of Existing Methods

Quantitative metrics such as global connectivity-dependent metrics in Tractome-

ter [29] and connectivity matrix have been used to evaluate the fiber reconstruction [33].

They give information about the high-level connection of brain regions. However for

the assessment of a given bundle tract, they offer a snapshot of valid bundle coverage

with their ground truth counterparts and do not account for local topological features.

We describe the commonly used metrics in Figure. 3.1A. While the existing metrics are

valuable in assessing volumetric bundle coverage they fall short in capturing fiber con-

tinuity, branching, and crossing as highlighted in Figure. 3.1B, C, and D respectively in

the bundle. Some of these limitations are:

1. Voxel-wise agreement between the algorithm’s output and the ground truth is the

main emphasis in computing the existing metrics. This overlooks the intricate

tractography errors, such as, spurious fibers and incorrect connectivity patterns.

Specifically, these metrics often neglect broken fibers as they could still cover the

volume despite their discontinuity.

2. Spatial localization is not considered to evaluate the errors between the recon-

structed bundles and the ground truth. Similarly, tractography errors cannot be

attributed to specific inaccuracies in tracked fibers within the spatial context to

guide the design of better algorithms.

3. Branching in the reconstructed pathways is largely inconsequential in the compu-

tation of voxel-based metrics. Typically, fiber bundles originate from functional

regions, merge into larger pathways for efficiency, and branch out as they approach

their respective terminal functional areas. Neuroanatomical studies [13, 31] have

pointed out the importance of branching in tractography. But, the conventional
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metrics (in Figure. 3.1A) may fail to detect errors related to this branching topol-

ogy. As such, obscured connections within dense bundles could still achieve high

scores despite inaccuracies.

4. Complex fiber orientations such as fiber crossing are not directly captured by the

existing tractography evaluation metrics.

Our proposed method addresses these limitations for evaluating tractography methods. It

incorporates higher-level tract analysis that considers the topological branching patterns

and pathways. Additionally, our method is sensitive to spatial localization, taking into

account the precise anatomical locations of inaccuracies within the reconstructed bundles.

By addressing the limitations discussed above, our method provides a tunable and robust

evaluation of tractography algorithms in terms of accuracy and anatomical fidelity.

3.4 Quantification of Tractography

ReTrace is an end-to-end tractography evaluation pipeline that starts by processing

the given white matter fiber bundles to generate a Reeb graph model using our algorithm

proposed in Chapter 2. Then, it evaluates the quality of fiber reconstruction by comparing

two graphs taking into account many topological factors. The pipeline is illustrated in

Figure. 3.2. It is based on the construction of a Reeb graph that provides a topological

signature of the fibers. This graph representation makes the tractography evaluation

amenable to graph and network theory methods.

3.4.1 Topology of Anatomical Bundles

A Reeb graph representation of white matter fibers has been discussed [7, 31, 32] in

our previous Chapter. It provides a concise depiction of trajectory branching structures
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Figure 3.2: ReTrace evaluates tractography methods both qualitatively and quantita-
tively by comparing two Reeb graphs, R and Rref. By setting appropriate parameters,
Reeb graphs of different resolutions can be computed from the ground truth data.
Among the graphs of different sparsity, one is chosen based on the level at which trac-
tography evaluation is desired. Similarly, for the candidate tractography algorithm
under evaluation, a Reeb graph is computed from the bundle using the same Reeb
graph parameters as the ground truth. The evaluation metric reflects the distance
between the two graphs: a higher metric value indicates larger discrepancies, and the
candidate algorithm with the lowest metric is assigned the first rank. For qualitative
analysis, one can visually examine the Reeb graphs, locating nodes contributing to the
distance.

by constructing undirected weighted graphs. The given bundle tracts (that is, a group of

streamlines representing a major bundle) is represented as a graph. The vertices of the

graph are critical points where the fibers appear, disappear, merge, or split. Edges of the

graph connect these critical points as groups of sub-trajectories of the given bundle. The

edge weight is the proportion of fibers that participate in the edge. Three key parameters

capture the geometry and topology of fibers:

1. ϵ denotes the distance between a pair of fibers in a bundle, controlling its sparsity.

Smaller ϵ values result in denser subtrajectory groups, while larger values allow for

sparser groups,

2. α represents the spatial length of the bundle, introducing persistence and influenc-

ing the extent of bundling, and
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3. δ determines the bundle thickness to shape the model’s robustness and granularity.

By adjusting these parameters, we can explore the anatomical fiber structure at different

scales of sparsity. For example, the branching structure is finely encoded when the inter-

trajectory distance, ϵ is less. The interruption tolerance can be enhanced by increasing

α. Finally, to ignore spurious fibers and bundles δ can be increased in the Reeb graph.

In this Chapter, we analyze the reconstruction of anatomical bundles in different spa-

tial resolutions, demonstrating the potential of graph-based tractography validation and

evaluation.

Note: Throughout the thesis, we overlay the Reeb graphs on raw fibers (in orange

and ground truth fibers in grey). In the graphs, the nodes are illustrated in red, while

edges are shown in black.

3.4.2 Global Network Features

As discussed, representing the tracts as a graph allows the tractography evaluation to

be compatible with existing network and graph theory metrics. For a given Reeb graph

R(V,E), we compute the global network properties that provide a comprehensive view

of the network’s structure and behavior. Global features can be as simple as number

of nodes (|V |), number of edges (|E|), or average degree (2E/N) to more sophisticated

metrics such as diameter, assortativity, modularity [34], or transitivity depending on the

specific application. These network properties provide valuable insights into the struc-

tural characteristics of anatomical bundles represented by the Reeb graph. For example,

in the Reeb graph, diameter signifies the longest sequence of merging and splitting events

along the trajectories. However, global network-based metrics lack specificity and can

be challenging to trace back and localize. Therefore, we introduce a novel graph match-

ing algorithm that uses spatial location and provides a quantified distance between the
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ground truth and computed fiber bundles using local node features.

Algorithm 2 Topological Distance Computation
function OneWayDistance(R, Rref , ϵ, γ)

I ← V ref ▷ Nodes to be inserted
D ← ∅ ▷ Nodes to be deleted
dedit ← 0 ▷ Score
dpos ← 0 ▷ Spatial score
dnet ← 0 ▷ Network score
for nc ∈ V do

c ← closest node in Vref
if d(nc[“pos”], nr[“pos”]) < 2ϵ then

Remove c from I ▷ Successful correspondence
if d(nc[“pos”], nr[“pos”]) < ϵ then

continue ▷ Equivalence (nothing added)
dpos ← dpos + d(nc[“pos”], nr[“pos”])

▷ Substitution
dnet ← dnet + d(nc[“net”], nr[“net”])

else
Add c to D

dpos ← dpos + |I| · 2ϵ(1 + γ) ▷ Insertion
for ni ∈ I do

dnet ← dnet + d(ni, 0)
dpos ← dpos + |D| · 2ϵ(1 + γ) ▷ Deletion
for nd ∈ D do

dnet ← dnet + d(nd, 0)
dedit ← dpos/|Vref|+ dnet
return dedit

function Distance(R, Rref , ϵ, γ)
scmp ← OneWayDistance(R,Rref , ϵ, γ)
sref ← OneWayDistance(Rref , R, ϵ, γ)
return 0.5 · (scmp + sref )

3.4.3 Topological Graph Matching

For any given node v ∈ V , we calculate two sets of features — spatial position-

based features, denoted as “pos", and local network-level features, denoted as “net".

Each node of the Reeb graph is linked to its 3D spatial location in the brain, so “pos"

corresponds to the 3D coordinate yielding a 3-dimensional feature. On the other hand,

the network features are computed using centrality metrics at the node level: degree

centrality, closeness centrality, betweenness centrality, and eigenvector centrality [35],

producing a 4-dimensional feature.

Our proposed graph matching computation algorithm is adapted from Siminet [36],

enhanced to accommodate additional parameters for robustness against noise in trac-
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tography and to incorporate network metrics with spatial position as node features. It

calculates an edit distance denoted by dedit between two Reeb graphs, quantifying the cost

of operations needed to transform one graph into another, as outlined in Algorithm 2.

The algorithm begins by iterating through the nodes of the comparison graph R and

matching each node with its closest spatial counterpart within a search radius. The

algorithm determines node correspondences by comparing the spatial distances (“pos")

between nodes and their counterparts against a threshold ϵ (inter-fiber distance used in

constructing the Reeb graph). The algorithm also accounts for insertions and deletions

by penalizing them with a score γ proportional to the Euclidean distance between the

centroids of node locations for R and Rref. The proposed metric dedit is computed

considering the Euclidean distance in node attributes: spatial positions and centrality

metrics to compare graph-based representations of white matter bundles, ensuring that

layout similarities correspond to similarities in brain regions.

Limitations: Note that the metric is not normalized, that is, it does not have the

standard 0-1 limits. We opt to keep the distances between graphs unbounded to account

for relative variations (in some cases, the distance could be very large). The ultimate aim

of a new tractography design would be to minimize this distance. A potential limitation,

or rather a feature, is that the user needs to select the resolution parameters based on

the desired comparison of the bundle tracts. While this might appear a manual step, the

preset parameters generally serve well as a great starting point for all the major bundle

tracts. Also, the performance of all tractography evaluation metrics, both existing and

our proposed metric, depends on the quality of bundle segmentation. Hence, further

research on bundle segmentation could enhance metric performance.
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Figure 3.3: Evaluation of tractography algorithms using ReTrace for bundles in the
ISMRM data. The leftmost column displays the ISMRM ground truth fiber bundles
with associated Reeb graphs overlaid on the bundles. For the other columns, grey
streamlines denote the ground truth, overlaid by orange streamlines representing the
candidate tractography algorithm’s results. On top of these, the Reeb graphs are
overlaid with red nodes and black edges. The bundles illustrated in the figure are
labeled from 1 to 5: CP, CA, SCPright, SCPleft, and Fornix respectively. For each
bundle (in a row), the next three columns (a-c) highlight the algorithms that achieved
the highest rank according to our proposed metric. Notice that the algorithms that
are ranked high on existing metrics (displayed in columns d-e), do not show the best
tracked bundle. The reconstructions that do not capture the branches near the end
of the bundles are ranked highly by other metrics. Similarly, fiber continuity and
distorted fibers in the reconstructed output are given high ranks with existing metrics.

3.5 Results on ISMRM Dataset

3.5.1 The ISMRM 2015 Tractography Challenge

The challenge presented participants with a clinical-style dataset: a 2mm isotropic

diffusion acquisition with 32 gradient directions and a b-value of 1000 s/mm². The task

was to reconstruct fiber pathways using a realistically simulated replication of a whole-
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brain diffusion-weighted MR image. The challenge resulted in 96 tractogram submissions,

available publicly for download2. These submissions collectively represent a broad range

of tractography pipelines, encompassing varied pre-processing, tractography, and post-

processing algorithms. This provides a diverse platform for quantitative and qualitative

analysis of tractography methods. We assign each algorithm a unique algorithm number,

ranging from 1-96 (see Figure. 3.5 for the mapping of these ids to the original submission

numbers).

For tractography evaluation, we compute the valid bundles for each submission using

the ROI-based bundle segmentation system proposed by the challenge organizers [37]. An

expert segmented ground truth bundle segmentation provided by the challenge allowed

us to assess the submitted tractography methods based on traditionally computed met-

rics, establishing a baseline for comparison. The extracted bundles were then processed

using the ReTrace pipeline. We can fine-tune the computation of Reeb graphs using the

robustness parameters (ϵ, α, and δ), adjusting the granularity of the desired analysis. In

this study, these are set to ϵ = 2.5, α = 5, and δ = 5. The results for various bundles

using our proposed metric compared with the traditional bundle coverage metrics are

illustrated in Figure. 3.3. When the candidate tractography has less than 5 fibers, Reeb

graphs are not constructed (automatically with the Reeb graph parameter δ = 5) and

the algorithm is rejected without rank assignment. For a more dense analysis δ may be

set to 0. The comparison of existing bundle coverage metrics against our proposed dedit

metric is presented in Table 3.1.

All submissions faced difficulties reconstructing the smaller bundles, such as the an-

terior (CA) and posterior commissures (CP), which possess a cross-sectional diameter

of no more than 2 mm. Due to the minimal branching owing to fewer recovered fibers,

ReTrace performs similar to the existing methods on these bundles. However, as the
2https://zenodo.org/record/840086
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Bundle
# val # val # val # val # val # val # val # val # val # val # val

CP 59 1134 75 38 59 0.29 75 0.02 32 0.42 59 474 56 34 59 14 42 1 59 0.33 58 40.1

CA 37 603 60 72 37 0.59 60 0.05 49 0.43 37 876 38 75 43 22 49 2 37 0.52 37 7.3

SCP right 26 471 44 6 26 0.88 44 0 44 0.08 26 3467 57 1768 57 242 44 1 36 0.57 36 10.6

SCP left 26 440 34 12 26 0.89 34 0 77 0.05 26 3638 57 2245 25 352 34 0 16 0.63 3 10.9

Fornix 26 2698 77 40 26 0.75 77 0 77 0.07 26 7971 25 2595 25 698 77 3 46 0.57 18 8.7

deditORVS TP VS
Endpoints 

OL
Endpoints 

OR f1FN FP OL ORGT

Table 3.1: Comparison of dedit with existing bundle coverage metrics. The columns
labeled as “#" represent the rank 1 algorithm number, while “val" denotes the respec-
tive metric values for each metric. Top-ranking methods according to dedit differ from
those determined by traditional metrics for most bundles. We demonstrate that the
reconstruction ranked the best using dedit effectively captures branching topology that
is overlooked in evaluations using existing methods.

number of fibers increases for bundles like SCPright, SCPleft, and Fornix (as shown in

Figure. 3.3), the importance of accurately branching towards the end of the fibers be-

came apparent. This leads to different algorithms being top-rank with our method as

compared with existing metrics. As an example, while algorithm 36 and 29 achieve high

ranks for the ReTrace evaluation in SCPright, they do not perform as well according to

the existing metrics. It is notable that simply increasing fiber count to cover the bundle

volume without appropriate branching does not lead to a high ReTrace ranking. This is

evident in algorithms 26 and 31 (Figure. 3.3d and 3.3e) as they are ranked high according

to OL, FN, TN, endpoints OL, and VS metrics, but do not contribute significantly to the

ReTrace ranking. The evaluation of all other bundles in the ISMRM dataset using dedit

along with their interactive visualizations are available on our GitHub repository. Be-

yond the topological distance that we calculate here, various other graph attributes such

as variations in the number of nodes, edges, average degree, and diameter can also be

computed and are available in our repository 3. They collectively capture different facets

of the graphs, and as a consequence, highlight various properties of the tractography

reconstruction.

Different tractography methods were employed by different teams. The most im-
3https://github.com/s-shailja/ReTrace
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CP CA FornixRank 1
Rank 2
Rank 3
Rank 4
Rank 5

SCP leftSCP right

Figure 3.4: Correlation between processing steps and the successful reconstruction of
the major bundles as assessed by ReTrace. Different colors represent the ranking of
methods according to the ReTrace pipeline for five different bundles (rank 1 (dark
blue) to rank 5 (yellow)). Y-axis indicate various steps of tractography: Preprocess-
ing (from motion correction to upsampling); Tractography (diffusion modeling beyond
DTI such as constrained spherical deconvolution, and tractography methods beyond
deterministic approaches such as probabilistic tractography); Postprocessing (incorpo-
ration of anatomical priors to streamline clustering). The importance of each step is
evident with how prevalent it is in the top ranked algorithms for each bundle.

portant preprocessing, postprocessing, and tractography steps among top-performing

algorithms are shown in Figure. 3.4. For example, CP proved difficult to reconstruct for

all algorithms, necessitating the use of extensive denoising and correction methods, as

well as probabilistic methods for fiber tracking. Conversely, for other bundles, minimal

preprocessing was required and deterministic fiber tracking was sufficient for accurate

branching. The insights on the steps of the algorithms offer a topological perspective

on designing advanced tractography algorithms and pipelines for future studies. We ob-

serve that none of the algorithms perform consistently well for all the bundles. So, an

additional advantage of this exploration is that new tractography algorithms may be

designed, tailored to specific bundles or neuroanatomical properties of interest.

The results presented in this Chapter are in contrast with the ranking of tractography

algorithms discussed in the existing literature [19,37] but also confirm the findings of the

importance of various steps in tractography [33]. The runtime of the pipeline depends
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on the number of fibers and the desired resolution of the Reeb graph. After computing

the graphs for a bundle, our evaluation method takes less than 120 seconds to obtain the

results on an Intel Xeon CPU E5-2696 v4 @ 2.20 GHz. The mapping of the algorithm IDs

in this Chapter to the original submission IDs in the Tractography Challenge submission

can be found in Figure. 3.5

3.5.2 Evaluating tractography algorithms in fiber-crossing re-

gions

Tractography’s accuracy is influenced by the number of distinct fiber orientations

per voxel, as fiber-crossing regions pose considerable challenges. A probabilistic white

matter atlas highlights these areas with high fiber-crossing frequencies [30]. Conventional

metrics may not fully capture an algorithm’s ability to accurately resolve these complex

regions, instead reflecting its capacity to generate copious or elongated fibers, regardless

of their neurological plausibility or accuracy.

For example, a tractography algorithm might generate spurious fibers connecting

distinct bundles in crossing fiber scenarios, falsely inflating the fiber count. This inflation

could distort performance evaluations if they rely solely on fiber numbers. Endpoint-

matching metrics, such as overlap or intersection between reconstructed and ground

truth fibers, could also be misleading in the presence of crossing fibers: overlaps may not

indicate accuracy if the algorithm incorrectly generates disrupted or distorted fibers due

to crossing fibers. Spatial accuracy metrics, like the average or Hausdorff distance [38]

between reconstructed and ground truth fibers, could also be skewed by crossing fibers.

These regions may compromise the algorithm’s capability to accurately resolve individual

bundles, resulting in spatial inaccuracies or increased distances.
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Figure 3.5: Mapping of algorithm IDs to the original submission IDs.
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HCP Dataset

The efficacy of ReTrace is not limited to synthetic data alone. To demonstrate its

applicability to real datasets and to show how Retrace handles fiber crossing, we use the

average HCP 1065 template, constructed from the diffusion MRI data of 1065 subjects

from the Human Connectome Project (HCP)4. We use the 1 mm population-averaged

FIB file in the ICBM152 space for fiber tracking in DSI Studio.

ReTrace handles fiber crossings effectively, as demonstrated in Figure. 3.6. We select

a small region of interest (a 2mm isotropic 3D region) from the probabilistic atlas in an

area with a high probability (∼ 0.9) of double-crossing fibers. We use the deterministic

streamline tracking method implemented in DSI Studio5 to compute the fibers with the

parameters set (angular threshold, step size, min length, max length, terminate if seeds,

iterations for topological pruning) to 35, 1, 70, 200, 1000, and 16, respectively. This

allowed us to observe successful tracking without broken or distorted fibers. To mimic

the spurious broken fibers that tractography methods may yield, we set the parameters

to 35, 1, 0, 100, 1000, and 16. For observing the angular distortion where the fiber

bends and follows a different path, we set the parameters as 90, 1, 70, 100, 1000, and

16. The resulting Reeb graphs clearly highlight how their nodes capture successful and

unsuccessful tracking. Nodes formed near intersections indicate broken or bent fibers,

as shown in Figure. 3.6. Whenever fibers travel together in a group, they form an edge

in the graph. Any alteration within this group prompts a critical event, resulting in a

node in the Reeb graph. Consequently, if a fiber breaks or diverges, the associated group

changes, generating a node. This node, present at the merging point, contributes to a

larger distance value. In the topological distance computation, dedit, this node could be

weighted more if the goal is to assess an algorithm’s tracking ability in ambiguous fiber
4https://brain.labsolver.org/hcp_template.html
5https://dsi-studio.labsolver.org/
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orientations. By providing a 3D location for our algorithm’s attention, any discrepancy

within that location can significantly affect the overall dedit computation. The code is

open source and can be tailored to specific needs.

B. C.

F. G.

D.

Double crossing
A.

E.

Disrupted fibers Distorted fibers

Evaluation with ReTrace Extra node captures disruption Graph captures distortion

Ideal fiber tracking

Figure 3.6: Evaluation of a tractography algorithm for fiber crossing. (A) shows
the center slice of the probabilistic double crossing atlas. A small ROI with high
double crossing fiber probability (shown in green) is selected. (B)-(D) demonstrate
the reconstruction of fibers using the streamline method implemented in DSI Studio.
(B) shows successful tracking of fiber crossings with ideal parameters. (C) shows fibers
that terminate abruptly near the crossing as a result of reconstruction with different
parameters. (D) shows bending or distortion of fibers when encountering multiple
diffusion orientations. (E)-(G) present the constructed Reeb graphs overlaid on the
computed fibers for each case, respectively (shown below each reconstruction). An
additional node is observed in the Reeb graph that captures the fiber crossing or
bending. A thicker edge in (G) indicates bending of the fibers, whereas ideally, the
fiber should only cross without bending.

3.6 Summary

This chapter introduces ReTrace, an innovative evaluation method for tractography

algorithms. This method addresses existing metrics’ limitations by focusing on the topo-

logical accuracy of reconstructed pathways. We applied ReTrace to both synthetic and

real-world datasets to demonstrate the branching fidelity and errors such as broken or

bent fibers in tractography reconstruction. With the ISMRM dataset, we ranked 96 al-
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gorithms on different neuroanatomical bundles. The rankings proposed by our method

are in contrast with the rankings using the conventional voxel-based tractography met-

rics. We discuss this difference in ranking and performance of different algorithms by

highlighting the topological features such as branching, fiber continuity, localization, and

crossing. We demonstrated the utility of our method on the HCP dataset where we show

the importance of reconstructed fiber crossing and discuss the performance of standard

tractography algorithms. Our approach is disease-agnostic, does not require brain regis-

tration to an atlas, and works across different acquisition protocols. It is important to

note that bundle segmentation is a common bottleneck in any evaluation metric. There-

fore, advancements in segmentation research could greatly enhance these evaluations.

The results on tractography comparison presented here could be extended to be used

as a cost function for data-driven machine learning methods, like generative adversarial

networks. With feedback from neuroscientists, we hope that the results in this Chapter

will pave the way forward in improving existing tractography methods.
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Chapter 4

Reeb Graph Models for Human Brain

Tractography as discussed in the previous Chapter can generate millions of complex

curvilinear fibers (streamlines) in 3D that exhibit the geometry of white matter path-

ways in the brain. In this Chapter, we utilize the theory developed in Chapter 2 to

efficiently encodes the topology and geometry of white matter fibers. Given the trajecto-

ries of neuronal fiber pathways (neuroanatomical bundle), we re-bundle the streamlines

by modeling their spatial evolution to capture geometrically significant events (akin to

a fingerprint). We demonstrate this using two datasets: (1) International Society for

Magnetic Resonance in Medicine (ISMRM) dataset, ReeBundle handles the morphology

of the white matter tract configurations due to branching and local ambiguities in com-

plicated bundle tracts like anterior and posterior commissures; (2) For the longitudinal

repeated measures in the Cognitive Resilience and Sleep History (CRASH) dataset, re-

peated scans of a given subject acquired weeks apart lead to provably similar Reeb graphs

that differ significantly from other subjects, thus highlighting ReeBundle’s potential for

clinical fingerprinting of brain regions.

A critical element in neurological and developmental disorders is the topological dete-

The content from this Chapter was published in IEEE Transactions on Medical Imaging (TMI) [8].
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rioration and irregularities in streamlines. Reeb graph and topological distance metric are

sensitive to variations in brain structure, such as those observed in the developing brain

and in the presence of tumors. This sensitivity is beneficial in the context of longitudinal

studies of brain development and the topological evolution of the brain. In this Chapter,

we have highlighted the potential utility of this metric in tracking Alzheimer’s disease

progression using the ADNI dataset, and evaluating the effects of surgical interventions

for brain tumor using the OpenNeuro brain tumor dataset.

4.1 Existing Brain Network Models

It is important to characterize the underlying brain network structure to understand

the relationship between changes or differences in network connectivity and clinical syn-

dromes, disorders, and diseases. Existing research on modeling brain networks can be

categorized into 1) synaptic networks mapped at a microscopic scale where nodes repre-

sent neurons and synapses represent edges, and 2) whole brain connectome at a macro-

scopic scale using diffusion magnetic resonance imaging (dMRI). Synaptic network mod-

eling [39,40] is desirable and informative but it is almost impossible to access for human

brains. It is also challenging for the study of structural connectomics and analyses of

neurological diseases due to the underlying anatomic complexity. On the other hand,

connectome analysis [41] is a pragmatic strategy for human brain studies. Connectomics

typically generates a connectivity matrix by partitioning the brain cortex into a limited

set of regions derived from anatomical or computational brain atlases. The streamlines

within each brain region are lumped into a single node in this representation to model

their interconnections as shown in Figure. 4.1A. Hence, the dimension of a square connec-

tivity matrix is equal to the number of regions of interest (usually ∼100). Connectivity

matrices can provide measures of structural connectivity of the entire brain [42]. A key
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limitation of the connectivity matrix is that the underlying topology of white matter bun-

dles, as they traverse the brain, is lost in the dimensionality reduction process. The pros

and cons of the two extremes for representing connectivity pose a question of whether

a medium-scale representation is plausible. Can there be a medium-scale computational

model of a brain connectivity network that is sparse but also preserves the topological

information of the white matter connections?

Reeb Graph ModelWhite Matter FibersConnectivity Matrix C

D

BA

appear events
disappear events
connect events
disconnect events

Trajectory Behavior

splitting

ending

merging

arising

8x8 connectivity matrix 
for 8 ROIs

Figure 4.1: Modeling of white matter fibers using dMRI. A) Connectivity ma-
trix represents interconnection between different regions of interest (ROIs). B) White
matter fibers (streamlines) connecting different brain regions. C) Reeb graph allows
the relevant geometric and topological structure of the streamlines to be recovered
that is ignored in the connectivity matrix. D) A basic example of a set of trajectories
displaying the arising, merging, splitting, and ending behaviors. These qualitative
behaviors of a group of trajectories emerge due to the events (appear, connect, discon-
nect, and disappear) of individual trajectories that are encoded as nodes in the Reeb
graph.

Tractometry and tract profiling methods are the ways towards medium-scale analysis

that are based on bundle tracts as the unit of comparison. For example, DSI Studio’s

“Automatic Tractography” [43] uses the topology information from tractography stream-

lines to derive scalar values of their shape descriptors. However, properties that vary

along the tract trajectory are typically averaged over the entire length of the tract. In

contrast, tract profiling techniques like DIPY [44], BUAN [45], and PyAFQ [46] quantify
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diffusion measures like fractional anisotropy, mean diffusivity, radial diffusivity, and axial

diffusivity along bundle tract at multiple locations along the trajectory. These methods

are generally used for statistically comparing groups but they do not consider the shape

and geometry, especially the branching behavior of the tracts. To account for the shape

of the tracts, envelope and contour-based skeleton methods [47,48] have been proposed.

These methods construct a single representative streamline that traverses the tract’s en-

tire center of mass. With this approach, tracts can be localized and shape features can

be extracted for tract-based analyses. But, to model the skeletons of tracts, a carefully

pruned input bundles is often required. Moreover, these methods produce a single core

streamline that ignores the local branching structure of the tracts. In this Chapter, we

discuss our proposed method, ReeBundle. It is a Reeb graph-based method that enables

structure discovery of bundle tract without oversimplifying them into a single skeleton.

To computationally model brain structural connectivity at a medium scale, we pro-

pose a hypothesis-driven computational geometry approach. We model the geometry of

the tract’s trajectories using the concept of Reeb graphs [49]. These have been success-

fully used in a wide variety of applications in computational geometry and graphics, such

as shape matching, topological data analysis, simplification, and segmentation.

We introduced ReeBundle as a method for characterizing white matter topology in

Chapter 2. In this chapter, we will use Reeb graphs to quantify the topological differ-

ences between brains. We adapt the Siminet [36] graph distance metric to introduce a

graph matching technique to compute the distance between two Reeb graphs. Topo-

logical quantification using Reeb graphs is important to model neurological disorders

and fingerprint dMRI scans for an individual. We discuss these aspects in this Chapter.

The source code for the data analysis and the ReeBundle Python tool are available on

GitHub [50]. In Figure. 4.2, we present the proposed step-by-step pipeline to apply the

ReeBundle method to any brain image diffusion MRI (dMRI) dataset.
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Pre-processed 
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Tracts passing 
ROI Reeb Graphs

Topological 
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(*.gpickle)

ReeBundle

- Head motion correction
- Eddy current correction

- Hypothesis-driven
- Deterministic/probabilistic 
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- High-level: higher 
- Detailed study: lower - Topological Distance

- Visualization
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Figure 4.2: Overview of the proposed pipeline for analyzing dMRI data. Step
1: The proposed algorithm processes the dMRI data. Step 2: After standard pre-pro-
cessing, fibers are tracked in a region of interest (ROI) chosen based on hypothesis
using DSI Studio. Step 3: The proposed ReeBundle method is applied to the fiber
bundle to discover the grouping structure of the trajectory in the form of Reeb graphs.
Step 4: The resulting Reeb graphs are compared and analyzed to study and track
disease.

4.2 Topological Distance Between Neuroanatomical Bun-

dles

A Reeb graph representation of white matter fibers allows for the application of graph

theory algorithms in order to assess the statistical and topological properties of networks

reconstructed from dMRI data. Applications of these algorithms have revealed many

properties about brain networks [51]. Any graph distance metric [52] can be adapted for

the purpose of Reeb graph distance computation but our proposed algorithm is moti-

vated by Siminet [36] since it takes into account the node location. This is important,

especially in the context of the intended application to compare graph-based representa-

tions of white matter pathways — if two graphs are similar in layout but correspond to

completely different locations in the brain, then they should not be considered similar.

The key difference is that the original Siminet algorithm did not consider any additional
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parameters for robustness against noise, while the one described here does.

The edit distance denoted as dedit, intakes two graphs – the comparison graph R(V,E)

and the reference graph Rref(Vref, Eref). It measures the overall cost of the operations

(node shifting) to transform the comparison Reeb graph (R) into the reference Reeb

graph (Rref). The graph matching distance denoted by dedit(R,Rref) returns a scalar

representing the node score, which is computed based on node attributes, here, spatial

position. Node attributes may include the degree or other desired network or anatomical

properties of the node.

The node score is computed by forming unique node correspondences between R and

Rref, on the basis of proximity as shown in Figure. 4.3. That is, the algorithm iterates

through nodes in R, attempting to match each node with its closest spatial counterpart

in Rref within some search radius (also referred to as the substitution radius) of size

2ϵ. Any Rref node that is outside the search radius cannot be considered as a potential

counterpart for a given R node. A node-node “correspondence” indicates that a node in

Rref can be obtained by spatially shifting its counterpart in R by some distance. This is

similar to the notion of “node substitution” used by the Siminet algorithm. For example,

if R consisted of only two nodes p0 = (0, 0, 0) and p1 = (0, 0, 5), and Rref had two nodes

at q0 = (−1, 0, 0) and q1 = (0, 0, 10), then p0 would correspond to q0 as it is its closest

option in Rref. Similarly, p1 would correspond to q1. Ideally, if R and Rref are the same

graphs, then every node in R matches with itself.

The limited search radius for counterparts as well as the uniqueness criteria means

that some nodes may not have counterparts. Nodes in one graph get to be associated

with nodes in another on a “first come, first served” basis. So, the order of visitation of

nodes potentially affects the score. For example, if we have a single node in Rref that

spatially sits in the middle between two nodes in R, and all other nodes in Rref are very

far away, then the node that we visit first in R gets to take the single Rref node as its
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counterpart. Any node in R that fails to obtain a counterpart is marked for deletion. On

the other hand, any node in Rref that fails to get selected as a counterpart is marked for

insertion. The issue with the order of visitation is that there is a risk of “outlier nodes” in

R. That is, nodes in R that are very far away from nodes in Rref (relative to other nodes

in R) latching onto nodes in Rref as counterparts. This situation drives up the node score.

However, the limited search radius can prevent this to an extent, restricting the potential

counterparts for these outlier nodes to those that are very close to them. Additionally,

if we have the scenario where several nodes in R surround a single node in Rref which

falls in their search radii, then the order of visitation could lead to a fluctuation in node

score, and potentially drive it up. The small search radius yet again mitigates this issue,

as the area of overlap between search regions is much smaller than the search regions

themselves.

Ultimately, the process of finding node counterparts leads to the creation of several

sets – the deletion set D for nodes in R that cannot find a counterpart, the insertion set

I for nodes in Rref that cannot find a counterpart, and the set of node correspondences

C ⊆ V × Vref. The total node score is computed as a sum of values derived from these

three sets. For each node correspondence, the spatial distance between a node and its

counterpart is compared against ϵ and the substitution radius. This helps to determine

the value of the accumulated node score. If the spatial distance is less than ϵ, then

the nodes are considered equivalent and the node score remains unchanged. This helps

guard against small deviations in spatial positions. If the distance is greater than ϵ,

then the spatial distance itself is added to the node score, indicating that the node in R

can be shifted by this amount to obtain its Rref counterpart. This scoring mechanism is

described by the following function on node-node correspondences (c ∈ C) for two nodes

nc ∈ V and nr ∈ Vref, where d(nc, nr) denotes Euclidean distance between the location

of nc and nr:

49



Reeb Graph Models for Human Brain Chapter 4

c(nc, nr) =


0, d(nc, nr) < ϵ

d(nc, nr), d(nc, nr) ≥ ϵ,

d(nc, nr) = ∥nc − nr∥2,

where ∥ · ∥2 represents the Euclidean norm. Total graph edit distance consists of the

total substitution score (dsubstitution), total deletion score (ddeletion), and total insertion

score (dinsertion):

dsubstitution =
∑

nc∈V,nr∈Vref

c(nc, nr),

ddeletion = |D| · 2ϵ(1 + γ),

dinsertion = |I| · 2ϵ(1 + γ),

dedit(R,Rref) = dsubstitution + ddeletion + dinsertion,

where D is the set of nodes to be deleted and I is the set of nodes to be inserted. γ

in the insertion/deletion score is proportional to the Euclidean distance between the

centroids of node locations for R and Rref. If the centroids of V and Vref are g and gref

respectively, then γ = 1
30
d(g, gref). Here, γ helps in penalizing insertion/deletion more

than substitution and at the same time takes into account the physical distance between

the location of the Reeb graphs R and Rref. In order to compare R and Rref, we measure

the topological distance (TD) between the two as the average edit distance when R is

matched to Rref and when Rref is matched to R:

TD =
1

2
(dedit(R,Rref) + dedit(Rref, R))

Figure. 4.3 summarizes the algorithm. TD score is zero when we compare the same
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𝑣3
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Reeb-graph based topological distance 

Figure 4.3: Computation of topological distance. R and Rref are two Reeb
graphs. We compute the topological distance TD (R,Rref) by finding the node-cor-
respondence and the nodes that will be inserted or deleted. A dotted gray outline
around a node in R represents the search area of radius 2ϵ for the nodes corresponding
to Rref. The nodes in R that need to be deleted are shown with red crosses. The
nodes that need to be inserted from Rref are shown with yellow ticks. The nodes of R
are numbered in the order of traversal. The node correspondence is shown as a solid
orange oval.

bundle tracts or eventually the same Reeb graphs. TD score increases when the bundle

tracts are different representing the difference in the critical points encoded as nodes of

the Reeb graphs. Later, in Sec. 4.3, we show the sensitivity analysis of the TD score

with respect to the parameters introduced in Sec. 2.6.

Theorem 4 For a given pair of graphs – Rref which has Mref nodes and a R which has

M nodes – the total time required to run the comparison algorithm on these two graphs

is O(MrefM), while the total space needed is O(M).

Proof: For each node in R, the potential counterparts are found by filtering Rref for

nodes that are within the substitution radius and are not in the counterparts set taking

O(Mref) time for each node. Once a R node selects a Rref node as its counterpart, it adds

it to the set of counterparts. For each correspondence, a substitution/deletion score is

computed and added to the total substitution score. To compute the insertion scores,

we iterate through the Rref nodes and check if they are members of the counterparts set.

This takes O(MrefM) time, and O(M) space.
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Figure 4.4: Reeb graphs identify anatomically correct structures for ISMRM
dataset. A) Streamlines from the ISMRM dataset are represented in orange color and
their Reeb graphs are overlayed on top. The nodes of the Reeb graphs are in red and
the edges are black color. We observe that only a few points shown by nodes of the
Reeb graphs are required to represent the branching behavior of the trajectories. B)
We compute the base graph Rref at ϵ0 = 3, α0 = 3, and δ0 = 3 represented by blue
circles in the plots. We compute the R by changing ϵ between 0 to 6 mm. Topological
distance is computed between Rref and R with varying ϵ. The same step is repeated
We observe that the topological distance is more sensitive to the change in ϵ and least
sensitive to the change in δ.The distances computed by varying ϵ are plotted on log
scale for better visualization .

To demonstrate that the Reeb graph model is practical and captures the bundling

behavior of the trajectories, we use two types of data sets to demonstrate the use of

ReeBundle as a visualization tool and a fingerprint for longitudinal study: ISMRM [53]

and CRASH dataset [54, 55]. ReeBundle detects and handles the morphology of the

white matter tract configurations due to branching and local ambiguities in complicated

bundle tracts. ISMRM helps in the qualitative validation of the ReeBundle approach.

CRASH helps in the quantitative validation of the Reeb graph as a fingerprint for the

bundle tract that can be used for longitudinal clinical diagnosis.

4.3 Reeb Graph as a Visualization Tool: ISMRM Dataset

We illustrate the behavior of our method by providing qualitative verification of the

bundles that our algorithm re-bundles in the presence of noise and false positives in
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Figure. 2.6. We account for the noisy streamlines by making one fundamental assump-

tion that fibers are naturally organized as bundles in the brain. Therefore, curvature

overshoot and short length streamlines are eliminated using the persistence parameter α

while the isolated streamlines are excluded using the bundle size parameter δ as shown

in Figure. 2.6A. Several complex fiber configurations are observed in tractograms [56]

where streamlines cross, diverge, and turn resulting in crossing, fanning, and kissing

characteristics as illustrated in Figure. 2.6. Such confounding patterns can be included

or excluded in our model using the latent parameters. α is set to the length of the small

encounters to handle the crossing and kissing patterns while δ is set to the size of the

sparse bundle at the end to account for the fanning configuration. ISMRM [3] dataset

is publicly available and consists of major bundle tracts that are representative of the

challenges in human brain imaging in vivo. Tracts span different shapes, lengths, and

sizes that help us in validating the output of our proposed method and analyze the effect

of granularity parameters (ϵ, α, and δ). Figure. 4.4 shows the Reeb graph representation

of the well-known neurological structures from the ISMRM dataset. The Reeb graph

model detects and handles the morphology of the white matter tract configurations due

to branching and local ambiguities such as crossing, kissing, and fanning. We visually

inspect the maximal groups identified by our algorithm and verify the resulting model by

using domain expertise. As an illustration, in all examples of fiber tracts shown in Fig-

ure. 4.4, no interruption is expected at the middle segments while a branching structure

is expected at the end. Our method captures these branching structures. Furthermore,

our model discovers the known termination regions and assigns them nodes (and hence,

locations in brain space) in the Reeb graph. The run time on Intel CPU @ 2.20 GHz

for CA (N = 43710) is 3.03s, for CP (N = 27377) is 3.89s, for SCP_R (N = 109718) is

22.7s, and for SCP_L (N = 126080) is 13.9s.

We present a sensitivity analysis of the topological distance of Reeb graphs to estimate
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BA C

Figure 4.5: Regions of interest and fiber tracts. Isotropic sphere of radius 6 mm
is placed for three bundle tracts as shown in (A) yellow sphere represents ROI for
Corpus callosum (CC_body), B) green sphere represents ROI for Corticospinal tract
(CST) and C) red sphere represents ROI for Inferior fronto-occipital fasciculus (IFOF).

the robustness under parametric uncertainties. This analysis helps in giving an idea of

how an increase or decrease in the parameter’s value affects the topological distance. We

define the sensitivity of the distance with respect to a parameter and a base reference

graphRref as |∆TD|/|∆ϵ|, |∆TD|/|∆α|, and |∆TD|/|∆δ|. We observe that the sensitivity

of the topological distance with δ is low whereas it is high for ϵ. The results are shown

in Figure. 4.4B. Note that the sensitivity of the parameters depends on the dataset as

well.

4.4 Topological Fingerprinting: CRASH Dataset

The CRASH longitudinal dataset comprises of 200 Diffusion Spectrum Imaging (DSI)

scans. Twenty-five participants between the ages of 20 and 35 years old (mean = 22.63;

SD=3.16; 52% male) were recruited from the greater Santa Barbara area as part of

the Cognitive Resilience and Sleep History (CRASH) research study. DSI scans were

acquired at bi-weekly experimental sessions over the course of 16 weeks (8 scans per

subject). For a given 19 minute scan, a DSI scheme was used, and a total of 257 diffusion

samples were acquired and a total of 20 regularly interspersed b0 volumes were included.

The maximum b-value was 4985 s/mm2. The in-plane resolution and slice thickness were

2mm. Data were preprocessed using ANTs [57] that included head motion correction with
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b-vector rotation [54, 55]. Fiber tracking for original non-rotated data was qualitatively

compared to the rotated data.

The HCP1065 tractography atlas [58] consisting of 64 volumetric regions was used

to localize fiber tracts. These 64 NIFTI volumes record the population probability of

each white matter tract aggregated from the tractography of 1065 subjects. We used

spherical regions placed within three of these volumes: Corpus callosum (CC_body),

Corticospinal tract (CST), and Inferior fronto-occipital fasciculus (IFOF) as shown in

Figure. 4.5. Fiber tracking through these spheres was performed in DSI Studio [59].

The diffusion data were reconstructed using generalized q-sampling imaging [60] with

a diffusion sampling length ratio of 1.25. A deterministic fiber tracking algorithm [61]

was used. The ROI was a deformed sphere (sphere ROI in MNI space is warped using

nonlinear registration) for each tract in the subject space. A seeding region was placed on

the whole brain. The anisotropy threshold was randomly selected. The angular threshold

was 35 degrees. The step size was 1 mm. Tracts with lengths shorter than 20 or longer

than 300 mm were discarded. A total of 100000 seeds were placed.

All the ReeBundle parameters are kept the same throughout our experiments. To

show that the parameters are good for all the DSI scans, we hypothesize that the Reeb

graphs for the same subject should be similar even with different sessions. So, we fix the

parameters for session 1 and solve an optimization problem using Markov Chain Monte

Carlo (MCMC) sampling to compute the parameters’ values for other sessions. In Fig-

ure. 4.6, we illustrate Corner plots [62] showing all the 2D projections of the posterior

probability distribution of the granularity parameters ϵ, α, and δ. We show that the

initial parameters represented by blue lines are good enough to capture the topological

characteristics of the bundle tracts. That is beneficial because we can potentially have a

single ϵ, α, and δ that work across all the tracts in a given longitudinal study. Our com-

parison pipeline is sensitive to bundle extraction and can be used as a quality assurance

55



Reeb Graph Models for Human Brain Chapter 4

A B C

D E F

Figure 4.6: Bayesian optimization validates the choice of parameters for the
longitudinal study. A) shows the Reeb graph of session 1 for ϵ0 = 2.5, α0 = 3,
and δ0 = 5. B-F show the marginalized distribution for each parameter solving the
optimization problem to minimize the topological distance between the Reeb graph in
(A) and the Reeb graphs computed at sampled parameter’s value. Blue lines represent
ϵ0, α0, and δ0 and the corresponding Reeb graphs are also illustrated respectively at
the top right in each plot.

measure to tweak the pre-processing steps or to decide the fiber tracking methods.

We perform the topological analysis using our proposed ReeBundle method for the

three bundle tracts: CC, CST, and IFOF of all the 200 DSI scans. An example Reeb graph

and effects of ReeBundle parameters for the CC bundle can be visualized in .mp4 files 1.

The difference between two bundle tracts is equivalent to computing the topological

distance between two Reeb graphs as explained in Sec. 4.2. The first step is to compute

the Reeb graphs (R) for all the scans. Figure. 4.7 A-C show the computed Reeb graphs

for CC, CST, and IFOF respectively. Once we have the Reeb graphs, we compute

the distances between all pairs of graphs. We also compute the distances of the Reeb

graph with itself, which is 0 since the graphs are identical. We refer to the distances
1https://ieeexplore.ieee.org/ielx7/42/10336247/10223239/supp2-3306049.mp4?

arnumber=10223239
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Figure 4.7: Reeb graph as a fingerprint for repeated scans in longitudinal
study. Reeb graphs for A) CC B) CST C) IFOF. Heatmaps for the topological distance
between the Reeb graphs for 6 subjects with respect to D) CC E) CST F) IFOF. The
blue color in the heatmaps shows similar topological characteristics (relatively less
value of TD) for the bundle tracts while the orange color shows higher values for TD.
Heatmaps show low relative topological distances within sessions of the same subject.
D-F shows the streamlines and corresponding Reeb graphs for ϵ = 2.5, α = 3, and
δ = 5 models. G) Heatmaps show large relative topological distances for CC vs. CST,
CC vs. IFOF, and CST vs. IFOF.

computed between different subjects as inter-distance and the distance computed within

the sessions of the same subject as intra-distance. The differences between the inter- and

intra- distances are statistically significant with p ∼ 0 calculated using the T-test.

Figure. 4.7 D-F shows the heatmaps representing the topological distances between

the graphs. Consecutive groups of 8 rows in the heatmap represent 8 sessions of the

same subject. The blue color of the heatmaps shows that the bundles are similar (less

distance) while the orange color shows a larger difference between the bundles. The dark

blue diagonal means that the distance is zero when the Reeb graph is compared to itself.

This implies that topological organization for all the bundles is highly consistent across

the sessions of the subjects in the follow-up scans. Reeb graph also plays the role of
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Table 4.1: Comparison of different graph distance methods [52]
Methods Intra-

distance
Inter-
distance

TD
(RCST ,RIFOF )

DegreeDivergence 0.12 0.13 0.12
IpsenMikhailov 0.37 0.41 0.37
LaplacianSpectral 0.54 0.55 0.54
PortraitDivergence 0.56 0.58 0.67
dkSeries 0.57 0.60 0.62
OnionDivergence 0.78 0.80 0.78
JaccardDistance 0.99 0.99 1.00
NetSimile 9.02 9.69 8.20
NetLSD 47.29 55.31 47.93
Our method 9.23 15.62 31.86

“fingerprint” as seen from the darker orange colors in the heatmaps. All the analyses

were done in the subject space avoiding the impact of registration in the MNI space.

Topological distance allows us to compare bundle tracts. The relative distance of bundle

tracts is the least when compared within subjects while it increases when compared to

different subjects as shown in Figure. 4.7 for 6 subjects (the code to generate heatmaps

of all 25 subjects and the heatmaps as .png files can be found in the GitHub [50]). This

difference further increases when two different bundle tracts are compared as shown in

Figure. 4.7G. This is expected and validates our distance computation. Our comparison

method does not require registration to the common MNI space but can be used to

compare registered bundle tracts as well.

Our method produces a graph object at the end. So, any graph distance metric can

be adapted for Reeb graph comparison. Table 4.1 compares the intra-distance and inter-

distance measures for ten different methods of graph comparison, including our proposed

method. All methods are evaluated based on their ability to distinguish between 25

subjects using CST bundle tract. The values in the table represent the distance measures

between the scans of the same subjects with itself (intra-distance), between graphs of

different subjects (inter-distance), and the distance between two different graphs from
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two different bundle tracts, namely IFOF and CST using TD(RCST ,RIFOF ). For all

methods, TD(R,R) = 0, that is, the distance between graphs that are identical is equal

to zero. The ideal distance metric will minimize the intra-distance within each subject’s

scans, maximize the inter-distance among different subjects, and will exhibit a high

value for tracts that are different. The results show that our method performs well

compared to existing methods, particularly in distinguishing between different subjects as

demonstrated by the relatively high inter-distance values and fingerprinting the subjects

by showing relatively lower intra-distances. We obtain similar results when using any

other tract for comparison.

4.4.1 Comparison With Tractometry Methods

To the best of our knowledge, there are no existing methods in the literature for mod-

eling the branching behavior of the brain fibers that can be used to compare our method

directly. In Sec. 4.1, we discuss the major differences between the connectivity matrix

representation and Reeb graph models. Analyzing the topological organization of white

matter fibers using ReeBundle provides a more specific investigation than considering a

region of interest or tract-averaged metric.

We compare our method with shape analysis introduced in [43] to compute length,

area, volume, and shape metrics from tractography. Specifically, we used number of

tracts, mean length, span, curl, elongation, diameter, volume, trunk volume, branch

volume, total surface area, total radius of end regions, total area of end regions, irreg-

ularity, area of end regions, radius of end regions, irregularity of end regions, quanti-

tative anisotropy (qa), normalized quantitative anisotropy (nqa), generalized fractional

anisotropy (gfa), and isotropic measures (iso). These metrics are calculated using the

DSI studio and saved as .csv file [50]. The inter- and intra- distances were computed for
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each subject by simply finding the difference between the values. The statistical signif-

icance of the difference between inter- and intra- distances based on these tractometry

metrics is negligible (p ∼ .99) whereas ReeBundle provides a graph representation that

visualizes, quantifies, and localizes the significant topological differences.

We also compare our method with BUAN [45] and observe a similar trend of intra-

versus inter- distances. However, since the BUAN metric is normalized, the similarity

scores for inter- subjects were approximately 1 which was the same even when different

bundle tracts were compared while our proposed method shows relative distances. BUAN

compares the same types of bundles while our distance computation can be used to

visualize and compare different sets of bundles.

4.5 Tracking Longitudinal Changes: Alzheimer’s Dis-

ease

Reeb graphs detect disease-related and age-dependent topology alterations. We ap-

ply the step-by-step pipeline (Figure. 4.2) on two example datasets: a) ADNI dataset

“for the Alzheimer’s Disease Neuroimaging Initiative”2, the Reeb graphs were computed
2Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database [63]. As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not participate in analysis or writing of
this report. A complete listing of ADNI investigators can be found at [64]., and b) OpenNeuro brain
tumor dataset [65]. While the pipeline has the potential to be used in group-wise brain comparison
studies, it is particularly well-suited for tracking changes in an individual subject’s brain. This is
because the variability caused by changes within an individual’s brain remains consistent across scans.
As a result, for a given subject, we can obtain coherent Reeb graphs with nodes and edges that can be
tracked consistently. Therefore, the applications of ReeBundle include tracking disease progression and
evaluating the effects of therapeutic and surgical interventions.

We applied the ReeBundle pipeline to the ADNI dataset to track topological changes with increasing
age. We selected two subjects with ages ranging from 75–85 years. Both subjects have the same imaging
protocols. After pre-processing, a deterministic fiber tracking algorithm was used to compute fiber
tracts passing through a small ROI in the corpus callosum area decided from the HCP tractography
probabilistic map (step 1 and step 2). For same choice of parameters as for the CRASH data analysis,
ϵ = 2.5, α = 3, and δ = 5
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for all scans of the subjects (step 3). Finally, the topological distance was computed

between each pair of graphs (step 4). In Figure. 4.8A, we show that the topological

distances significantly increases with time for Alzheimer’s patients. However, in case of

normal subjects, the increase in the topological distance is less pronounced even when the

scans were taken at greater age differences. This demonstrates how Reeb graphs can be

computed at different time stamps to track and quantify changes related to Alzheimer’s

disease progression. Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal

of ADNI has been to test whether serial magnetic resonance imaging, positron emission

tomography, other biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impairment and early

Alzheimer’s disease.

4.6 Quantifying the Post-operative Structural Changes:

Brain Tumor

Similarly, we use the pipeline to study pre- and post-operative patients with Menin-

gioma I in the OpenNeuro brain tumor dataset. We computed the Inferior Fronto Oc-

cipital Fasciculus bundle tracts for a patient (PAT02). We chose this bundle tract since

it is one of the tracts that pass through the segmented tumor mask. The post-operative

Reeb graph for the patient has a marked increase in the edge weight when compared

to the pre-operative Reeb graph edge weight. The edge weights are shown in bold in

Figure. 4.8B and the difference in weights is captured by the thickness of graph edges.

Note that even though the fiber count can be captured by the connectivity matrix, the
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branching ends (see highlighted nodes in the figure) recovered post-surgery cannot be

visualized or quantified in any other methods to the best of our knowledge.

Reeb graphs help in modeling the dynamics of how tumors affect the spatial orienta-

tion of the white matter fibers and how surgical interventions improve these distortions.

In Figure. 4.8B, we observe that the fiber tracts were recovered post-surgery, which were

distorted in the pre-operative patient. We obtained similar results for patient (PAT01)

with the fiber tracts computed for the Cingulum Frontal Parahippocampal R region. For

these ROIs, we observed similar results with scans for another Meningioma I patient as

well. No such distinctions were observed for normal control subjects who did not un-

dergo the surgery but had similar living conditions as the patients who underwent the

tumor surgery. The preliminary results for brain tumor demonstrates that the change in

the Reeb graph provides insights into the structural changes in white matter fiber tracts

post-surgery. The change in the number of fibers and branching patterns in the Reeb

graph after surgery indicates the successful resection of the tumor.

4.7 Discussion

In this Chapter, we discuss unique way to model white matter fibers as a Reeb graph

network that is sparse and preserves underlying geometrical information. ReeBundle is

robust to noise and is a computationally efficient framework to characterize white matter

fibers from a topological point of view. We demonstrate that the proposed approach

captures the fiber branching behavior in the presence of noise and is further validated on

synthetic and real datasets. ReeBundle parameters ϵ, α, and δ control the granularity of

the bundling desired – small values allow only very dense sets of streamlines for grouping,

while larger values of ϵ relax the groups and allow longer, larger, and sparser groups to

form. We note that the tunability of the parameters can be used to apply to a wider set
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Figure 4.8: ReeBundle Application to Neurological Disorders: (A) Tracking
Alzheimer’s Disease Progression using the ADNI dataset. Reeb graphs overlaid on the
streamlines for subjects with (i) Alzheimer’s Disease and (ii) a normal subject at dif-
ferent ages. The topological distance significantly increases with time for Alzheimer’s
patients. In contrast, for normal subjects, the increase in topological distance is less
pronounced even when the scans were taken at greater age differences. (B) Effects of
brain tumor resection on the (i) Inferior Fronto-Occipital Fasciculus and (ii) Cingu-
lum Frontal-Parahippocampal. Distortion in branching is recovered in post-operation
shown by highlighted nodes towards the ends and the edge weights of the Reeb graph
capture changes in the number of fibers.

of problems, from comparing tractography algorithms to studying neurological disorders.

For neuroscience applications, we recommend using the default parameters as an initial

set to begin the study. For general analysis, we recommend setting the ϵ parameter to

around 3 mm, which is close to the minimum dMRI resolution of 2 mm. Sensitivity

analysis indicates the algorithm’s greater sensitivity to ϵ, so, fixing the other parameters

and varying ϵ should be sufficient for most applications.

Our method does not require brain parcellation or registration to model the stream-

lines. Reeb graph and distance metric are sensitive to variations in brain structure, such

as those observed in the developing brain and in the presence of tumors. This sensitivity

is beneficial in the context of longitudinal studies of brain development and the topo-

logical evolution of the brain. We have highlighted the potential utility of this metric in

tracking Alzheimer’s disease progression using the ADNI dataset, and evaluating the ef-
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fects of surgical interventions for brain tumor using the OpenNeuro brain tumor dataset.

As a continuation of this research, we plan to investigate the impact of NPH condition on

the CST bundle and its relationship to motor function of patients in the next Chapter.
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Chapter 5

AI and Reeb Graphs in Neurosurgery

In the previous chapters, we explored the application of our Reeb graph methods for

visualization, fingerprinting, and comparison of human brains using diffusion MRI. Reeb

graphs and the topological distance metric are highly sensitive to variations in brain

structure, such as those observed in the developing brain and in the presence of tumors.

This sensitivity is particularly advantageous for longitudinal studies of brain development

and the topological evolution of neuronal connections. Previously, in Chapter 4 we

have demonstrated the potential utility of this metric in tracking Alzheimer’s disease

progression using the ADNI dataset and in evaluating the effects of surgical interventions

for brain tumors using the OpenNeuro brain tumor dataset. In this chapter we explore

application to Normal Pressure Hydrocephalous (NPH), a neurological condition that

affects elderly population.

We propose using Reeb graphs to represent critical white matter bundles and analyze

the topological differences between pre- and post-surgery scans to measure the impact of

shunt surgery for NPH. This approach, combined with AI-based segmentation of ventric-

ular regions, allows us to model and quantify structural distortions caused by enlarged

The content from this Chapter is accepted for publication in Neurosurgery [66].
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ventricles and correlate these changes with observed symptoms. Our methodology uti-

lizes a population-averaged model from the Human Connectome Project 1 and ReeBundle

pipeline to provide a robust framework for clinical diagnostics and treatment evaluation.

Diffusion MRI has proven effective in predicting surgical outcomes in patients with

iNPH by identifying neural distortions and examining tractography [67, 68]. This tech-

nique is valuable for assessing the potential reversibility of white matter injuries, which

may correlate with NPH symptoms. Prior research has shown that dMRI can differenti-

ate between NPH, Alzheimer’s Disease, and healthy controls based on various measures,

providing insights into microstructural changes in white matter that explain cognitive

and physical impairments in NPH patients.

However, such diffusion MRI studies are rarely done in a clinical setting. To address

this, we explore using the AI-segmented ventricular regions as regions to avoid (ROA)

when tracking fibers affected by iNPH condition based on an average connectome from the

HCP. Reeb graph models from pre- and post-surgery scans of the patient give localized

and quantified information about structure changes in pre- vs post- as well as normal vs

NPH.

In the following we first describe a quantitative method that distinguishes pre- and

post-surgery ventricular volumes, establishing for the first time a direct correlation be-

tween ventricular volume reduction to observed improvement. We then provide our Reeb

graph based analysis.
1https://www.humanconnectome.org/
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5.1 Case Study: Idiopathic Normal Pressure Hydro-

cephalus

Idiopathic Normal Pressure Hydrocephalus (iNPH) is a neurodegenerative condition

characterized by the accumulation of cerebrospinal fluid (CSF) in the brain, which results

in ventriculomegaly. An estimate of more than 700,000 Americans have iNPH, but less

than 20% receive an appropriate diagnosis [69]. The typical symptoms of iNPH are gait

disturbance, urinary incontinence, and progressive dementia [70].

Ventriculo-peritoneal shunt surgery is an effective treatment for iNPH that diverts

CSF from the ventricles to the peritoneal cavity [70]. The surgically treatable nature

of iNPH highlights the recent advancements in diagnostics and treatments that have

improved patient outcomes [71]. Follow-up studies of patients have shown positive results

in gait followed by bladder and cognitive improvements [72].

5.2 AI-based Method for iNPH Shunt Surgery

The clinical improvement after shunt surgery in patients with iNPH is shown to be

associated with a slight reduction of ventricular size. However, this change in the ventric-

ular size is too small to visually detect from scans. Manual or semi-automatic methods

are commonplace to measure this change [73–76]. Consequently, the computed CSF

volume in ventricles cannot be used as a reliable radiographic marker in an automated

manner. We propose a fully automated method with a user-friendly web interface for

computing the ventricular volume metric, enabling the diagnosis and tracking of iNPH

after shunt surgery.

Artificial intelligence (AI) has been used for automatic ventricle segmentation for

brain CT scans and MRIs for various neuro-disorders studies. Prior research has devel-
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oped AI-based methods [77, 78] to segment cerebral ventricles from T2-weighted MRIs

and calculate ventricular volume in pediatric patients with obstructive hydrocephalus.

However, analysis of change in ventricular volume after the shunt surgery remains unex-

plored. CT scans of the head are routinely performed on iNPH patients with VP shunts

because they are faster than MRI and free from artifacts. Automated analysis of brain

CT scans in relation to the subject’s patency and functioning of the VP shunt is crucial

for effective surgical planning and prognosis. In this section, we examine whether quan-

tifiable changes can be detected in ventricular volume in iNPH patients that undergo

ventriculo-peritoneal shunt procedures.

• We propose a novel AI-based ventricular metric (CVV) derived from ventricular

volume in brain CT scans and validate the efficacy of this metric by tracking ven-

tricular volume changes after shunt placement (Figure. 5.1). CVV shows significant

correlation between changes in iNPH symptomatology and our metric before and

after the shunt surgery.

• We provide a user-friendly web interface that automates the computation of CVV

for convenient analysis of post-shunt surgery brain. We also provide the pre- and

post-shunt brain scans publicly through our web-interface for further study.

5.2.1 Ethics approval and consent to participate

This retrospective study was conducted with all images de-identified by the University

of California, Irvine medical center as specified by the IRB agreement. IRB waived the

requirement of patient’s consent as the data was de-identified and none of the information

can be mapped back to the patient.
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Figure 5.1: Computation of the Center Ventricular Volume (CVV) and its
usage. (A) CVV is computed as the ratio of ventricular volume in 2m + 1 slices to
the brain volume in those 2m+1 slices using the segmented scans. m slices are chosen
before and after slice k∗ with the maximum ventricular volume. (B) CVV is used
to distinguish between normal and iNPH subjects and to quantify the effect of shunt
treatment by analyzing the segmented scans before and after surgery.

5.2.2 Retrospective review of study populations

The CT scans of adult patients who had a clinical and radiological diagnosis of iNPH

from January 2015 to December 2022 were selected from the University of California,

Irvine medical center NPH clinic. 47 scans from 15 patients (7 males and 8 females)

that had undergone a ventriculo-peritoneal (VP) shunt ranging in age from 70s to 90s

(mean = 78.5; SD = 5.2) were utilized to compare the pre-operative and post-operative

ventricular volumes. At least one pre-operative CT scan of the brain was taken. Multiple

post-surgery scans were taken in addition to the immediate post-operative scan. The

additional scans were taken as part of routine care usually after a change in the shunt

programming or when the patient had any new neurological complaints or concerns. This

ensured that there was no development of a subdural hematoma or subdural hygroma.
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Figure 5.2: Decrease in ventricular volume after shunt surgery.(A) Pre- and
post-surgery ventricular volume within three months of the shunt surgery. (B) Pre- and
post-surgery ventricular volume after three months of the shunt surgery for a distinct
set of subjects. (C) Ventricular volume reduction in iNPH patients not responding to
the first shunt surgery. After additional time, shunt was adjusted to augment CSF
flow, therefore subsequent CT scans show a decrease in the ventricular volume. (D)
Absolute change in CSF for central ventricular volume in cc after shunt surgery for all
the subjects, showing the correlation between improvement in patients and changes in
ventricular volume.

5.2.3 Ventriculoperitoneal Shunt Surgery

Ventriculoperitoneal shunts were placed via a burr hole in the right frontal region

at Kocher’s point. The shunt tubing was tunneled posteriorly with a post-auricular
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Metrics

User Interface of iNPH Analysis Module Outputs

Figure 5.3: The user interface of the iNPH Analysis module hosted on
BisQue. The module processes both input scans to produce brain image segmen-
tations and then calculates the CVV metric using the segmented results.

intervening incision to travel across the clavicle and the abdomen where it was placed in-

traperitoneally using a general surgery laparoscopic technique. The Catheter was placed

into the frontal horn using neuronavigation (Medtronics-Axiem EM system, Minneapo-

lis, Minnesota). The shunt valve was placed in a subcutaneous pocket posterior to the

ventricular entry site. The shunt used was the Codman-Certas programmable valve with

Bactoseal proximal and distal catheters (Integra life sciences, Princeton, New Jersey). A

post-operative CT scan of the head was done within 6 hours of the surgery to confirm

the placement of the catheter and to ensure that there were no immediate intracranial

complications. Patients were mobilized and the majority (90%) were discharged on the

first post-operative day.

All patients had a pre-operative CT scan which was used for navigation purposes

to help with the placement of the ventricular catheter. They subsequently had a post-
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CSF (pre - post): -20 cc

Figure 5.4: Ventricular Volume Analysis for iNPH Patients.(A) Decrease in
CVV and ventricular volume shows positive response to shunt surgery. (B) Increase in
CVV and ventricular volume indicating worsening iNPH conditions. The iNPH shunt
valve was adjusted for these patients. There is decrease in the CVV and absolute ven-
tricular volume after second shunt surgery in non-responders to the first surgery. This
demonstrates the potential utility of the ventricular volume metric in determining the
need for shunt adjustment. It can be challenging to accurately evaluate the condition
based solely on CT scan visualization.

operative CT scan of the head within 24 hours of surgery as >95% of patients were

discharged to home on post-operative day #1. This was to ensure there was no track

related hemorrhage or subdural hematoma and to document the position of the catheter.

Patients had a follow-up CT scan of the head 6 weeks after surgery just prior to the

first shunt adjustment and one 3 months after surgery when they had had their shunt

adjustments and were felt to be optimized clinically. Additional CT scans were done

if the patients had a fall or injury, and we were concerned about the development of
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subdural hematoma. They were also done if the patient or family were concerned about

a deterioration in neurological status. These additional CT scans were done at the

discretion of the attending neurosurgeon (Prof. Chen from UCI Medical Center).

Patients’ responses to shunting were obtained from retrospective chart reviews. Im-

provement in any of the clinical indices of iNPH (gait, cognition, urinary function) was

given a score of +1. Worsening of symptoms was scored as -1. No change was scored

as 0. If the patient had a normal gait, cognition, or urinary function before or after the

shunt surgery, it was still scored 0. Because of referral patterns and insurance restraints,

CT scans were performed on different machines from other radiology centers. As CT

scans are reported in different orientations (coronal, sagittal, axial), the images selected

for our study are those in the axial-oblique orientation.

5.2.4 Automated pipeline for tracking the impact of shunt surgery

We propose a new metric, the Center Ventricular Volume (CVV) to effectively quan-

tify the ventricular volume, which is a key feature affected in iNPH. CVV quantifies and

tracks the effect of shunt treatment by analyzing the segmented scans before and after

surgery in an automated way. We first segment the axial-oblique scan into ventricles,

subarachnoid, and gray/white matter. We use a UNet-based artificial neural network

developed by the authors at University of California, Santa Barbara [11, 79] to segment

the scan. This neural network model is trained on a different dataset than used in this

study. This ensures that our proposed method is broadly applicable. We can get the

ventricular volume from each segmented slice of the scan by counting the voxels labeled

as ventricles. To calculate the CVV, we find the 2D slice of the segmented brain volume

that shows the largest volume of the ventricles based on the maximum number of voxels

labeled as ventricles. Then, keeping this slice as center slice, we take the slices around
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this to account for 35 mm thickness axially as shown in Figure 5.1.

We define the CVV as the normalized ventricular volume within these representative

slices relative to the overall brain volume. Thus, an increase in the CVV corresponds to

an increase in ventricular volume. The total volume achieved in the center slices used

in this study was chosen to encompass the areas that were most representative (80%) of

the ventricular volume of the brain and 10% of the entire brain volume. Specifically, the

posterior fossa and 4th ventricle are not included. This was intentional, as these areas

are hard to capture consistently on the axial CT scans and there are some variations.

There are also more CT artifacts in the posterior fossa.

5.2.5 Results

The dataset consists of a total of 47 CT scans from pre- and post-surgery of 15

patients. We compute the CVV for all the 47 CT scans and compute the difference

between the corresponding pre- and post-un-normalized ventricular volume. From the

multiple pre- and post-scans available for a given subject, the last pre-scan and the first

available post-scan were used to quantify the impact of the shunt surgery. A clear trend

towards a decrease in ventricular volume and CVV in post-surgery scans is observed that

significantly correlates with the qualitative improvement in the patient’s iNPH condition

as shown in Table 5.1.

All subjects with iNPH showed a positive response to shunt surgery and thus smaller

CVV metric post-surgery. Figure 5.2A shows the subjects with scans collected within

3 months of surgery. In Figure 5.2B, we show the subjects with scans collected after 3

months with time differences between scans ranging up to 40 months. This shows the

longer-term impact of shunt treatment and the quantitative validation of this improve-

ment by the CVV metric. It is commonly perceived that the response to shunt surgery
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Table 5.1: Computation of Evan’s Index, CVV metric, and difference in ventricular
volume in cc for subjects with pre- and post-surgery CT scans.

Anonymized
Sub_id

Diagnosis Shunt
surgery

EI: Evan’s Index Center Ventric-
ular Volume
(CVV)

Change
in Cen-
ter
Ven-
tricle
Volume
(cc) (Pre
– post)

1 worsening of cog fxn (could be attributed to
covid or fall)

Pre 0.352 0.21

improved gait function, improved cognition
has reverted to pre-op levels

Post 0.349 0.2 3

2 Freezing of gait at start, urinary urgency,
mild cog impairment

Pre 0.35 0.22

continued gait problems + bradykinesia Post 0.314 0.18 23
3 gait issues progressed to ataxic, slow, unbal-

anced; some memory/cog issues
Pre 0.345 0.22

gait has much improved Post 0.32 0.18 18
4 progressively worsening gait Pre 0.421 0.26

memory+thinking improved; gait also im-
proved

Post 0.398 0.24 9

5 slow gait, sway side to side; some memory
deficit

Pre 0.384 0.18

feeling of gait improvement, more fluent
speech

Post 0.376 0.17 10

6 wheelchair bound at this time, incontinent Pre 0.43 0.17
some/slow improvement Post 0.428 0.16 2

7 <restricted access to medical record> Pre 0.319 0.12
Improved bladder, overall improvement Post 0.298 0.09 15

9 worsening gait; urinary ur-
gency/incontinence

Pre 0.334 0.22

no more incontinence Post 0.31 0.17 29
10 magnetic gait Pre 0.338 0.21

able to walk independently, still mag-
netic/ataxic gait; improved gait fxn

Post 0.326 0.16 30

11 wide-based, slow, ataxic gait Pre 0.33 0.22
improved gait, cognitive and urinary fxn are
the same

Post 0.32 0.18 21

12 cognitive/memory impairment; urinary in-
continence

Pre 0.33 0.2

made gain with gait and continence; cogni-
tive has not increased or decreased

Post 0.307 0.16 27

13 progressive gait disturbance since 2015, se-
vere balance problems; increased urinary fre-
quency; memory is being impacted

Pre 0.33 0.196

still ataxic and wide-based, but can walk
without walker; slight improvement with
continence

Post 0.316 0.199 -2

still ataxic and wide-based, but is fluid;
shunt adjusted from 4 to 3

Post
(after
shunt
adjust-
ment)

0.308 0.18 10

14 some memory impairment; some urinary in-
continence

Pre 0.306 0.14

fall; still has incontinence; shunt level 4 Post 0.298 0.16 -9
slow, but fluid gait, not magnetic, another
fall; worsening memory; shunt adjusted from
4.5 to 5

Post
(after
shunt
adjust-
ment)

0.3 0.11 29

15 gait difficulty; urinary incontinence; mild
memory loss

Pre 0.306 0.17

no improvement in incontinence; can stand
for 2 mins but not walk yet; codman certa
shunt level 5 to 4

Post 0.303 0.2 -20

can take small steps but gait is still ataxic
and slow; memory is stable; uses adult briefs;
current shunt setting is two

Post
(after
shunt
adjust-
ment)

0.3 0.15 33

16 slow, wide-based gait + ataxic; incontinence, Pre 0.43 0.24
some improvement in gait, continence
greatly improved

Post 0.42 0.22 6
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for iNPH is of limited duration. But, to the contrary, we show here that even after 3

months, the ventricular volume is lower than pre-surgery scans.

A few subjects (sub_id = 13, 14, 15 in Table 1) do not positively respond to the

first shunt surgery (as shown in Figure 5.2C). However, after additional time and shunt

adjustments to augment CSF flow, subsequent CT scans show a decrease in the ven-

tricular volume. This highlights the importance of the continued clinical evaluation and

shunt adjustments to optimize the efficacy of the shunt. The ventricular volume com-

puted after the first surgery shows no response or deterioration after shunt surgery. This

is accurately captured and quantified with our method in the CVV computation. So,

the metric effectively helps neurosurgeons in key decision-making regarding shunt valve

adjustment. This enables more objective comparison of scans from a radiological point

of view.

In Figure 5.2D, we observe the quantity of CSF drained after shunt surgery, repre-

sented by the size of the arrows for all subjects. Smaller arrows correspond to a smaller

quantity of CSF drained. Among these, the two smallest arrows (< 4cc CSF drained)

are associated with worsening conditions in one of the symptoms of gait, cognition, or

bladder control, as indicated by the red block on the right. This observation establishes

a correlation between the quantified volume of CSF drained and qualitative diagnoses.

5.3 Diagnosis of iNPH

We also use CVV to see if it is reliable for differentiating between normal individu-

als and those with iNPH (24 diagnosed with iNPH and 21 normal elderly individuals).

Our proposed metric achieves high accuracy (0.95), precision (0.96), and recall (0.96)

in distinguishing between normal and iNPH subjects. The details and results for this

experiment are included in the following section and Table 5.2.
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Table 5.2: Comparison of methods to distinguish between Normal vs NPH
Methods Threshold (com-

puted from
ROC)

Accuracy Precision Recall

Manual Evan’s Index 0.3 0.86 0.79 1
Fully automated
(UNet)

Center Ventricu-
lar Volume Met-
ric

0.1 0.95 0.96 0.96

5.3.1 Dataset used for training UNet

Another set of 45 brain CT scans from 45 subjects (24 iNPH patients and 21 normal

elderly controls) were acquired as part of the treatment process. This dataset is indepen-

dent of that used in the pre- and post-surgery study. This same set of datasets is used

to demonstrate the diagnostic value of the method in distinguishing iNPH from normal

control subjects. The subjects were aged between 60s and 90s (mean=75; SD=7.7). The

CT scans of adult patients who had a clinical and radiological diagnosis of iNPH from

January 2015 to December 2022 are selected from the Neurosurgery NPH clinic. This

retrospective study is conducted with all images de-identified by the Center for Artifi-

cial Intelligence in Diagnostic Medicine (CAIDM) team at UCI as specified by the IRB

agreement.

5.3.2 CVV metric distinguishes iNPH patients from normal sub-

jects

We compute the CVV metric for the above-mentioned dataset that consists of 45 CT

scans. The metric is calculated for automatically segmented scans using the UNet neural

network trained on this dataset. Additionally, Evan’s Index is manually computed for all

the scans. To classify the scans into iNPH and Normal, we compute the threshold of each

metric and method using a Receiver Operating Characteristic (ROC) curve. The ROC
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curve allows us to evaluate the performance of each metric and method by plotting the

true positive rate against the false positive rate at various threshold values. By examining

the curve, we determine the optimal threshold that balances sensitivity and specificity for

each metric and method. The threshold for EI is 0.3 which is also the standard threshold

to determine the iNPH condition. The threshold for CVV is 0.1. Table 5.2 displays the

computed threshold and provides accuracy, precision, and recall metrics for EI and CVV.

Our results indicate that the CVV performs better than EI for the classification task as

shown in the Table 5.2.

The whole pipeline as shown in Figure 5.1 has been containerized and deployed as

a module on our web platform BisQue13. To access and utilize the module, users are

simply required to register an account on the BisQue platform using this link https:

//bisque2.ece.ucsb.edu/. Once registered, they can initiate and execute the entire

pipeline directly from their web browser, analyzing both pre and post CT scans. The

BisQue module is designed to accept scans in either DICOM or NIFTI file formats. Upon

submission, the module processes these scans to generate brain image segmentations,

subsequently calculating the CVV metric based on the segmented scans, as shown in

Figure 5.3. Detailed instructions on accessing the module and executing them on a

sample pair of scans can be found in the BisQue Online Documentation14 and video 1.

We provide free access to all de-identified pre- and post-surgery CT scans in this study

through the BisQue platform.

5.4 Reeb Graphs for Multimodal Analysis of iNPH

As noted previously, diffusion MRI can be used to predict surgical outcomes in pa-

tients with idiopathic Normal Pressure Hydrocephalus (NPH). It has proven effective in

identifying neural distortions in NPH patients and is valuable for examining tractography
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and the potential reversibility of white matter injuries, which may correlate with NPH

symptoms [68]. In this prior research, dMRI was utilized to gain insights from scans of

individuals with NPH, Alzheimer’s Disease (AD), and healthy controls. Analysis shows

that dMRI can differentiate between these groups based on measures like axial diffusion,

axial kurtosis, and axonal water fraction, which vary significantly among them [67]. The

subtle microstructural changes that are observed in white matter might explain the cog-

nitive and physical impairments seen in NPH patients, supporting the use of dMRI to

assess the likelihood of improvement with shunt treatment. Diffusion MRI also distin-

guishes between patients with NPH and those with AD by identifying changes in the

microstructures of the corticospinal tract (CST) [80].

ATR CC IFOF CST

Figure 5.5: White matter regions of interest (ROIs) for iNPH. White matter
tracts represented in the context of normal ventricular size: anterior thalamic radiation
(ATR), corpus callosum (CC), inferior fronto-occipital fasciculus (IFOF), corticospinal
tract (CST). These are the fibers generated from the group-average MRI data for the
HCP S1200 young adult subjects using DSI studio.

Researchers have investigated the layout and potential reversibility of white matter

injuries in NPH before and shortly after shunting procedures [68]. They redefined regions

of interest (ROIs) into an ‘at-risk’ model for white matter injuries in NPH, encompassing

six key tracts: the genu and body of the corpus callosum (GCC and BCC), the inferior

longitudinal fasciculus (ILF), the anterior thalamic radiation (ATR), the conjunction of
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the inferior fronto-occipital and uncinate fasciculi (IFO/UNC), and the posterior limb of

the internal capsule (PLIC). These are the white matter tracts of interest near ventricular

region of the brain as illustrated in Figure 5.5. We hypothesize that Reeb graphs can be

used to represent these critical white matter bundles, with nodes indicating major areas

of distortion due to ventricular enlargement. The topological differences between the

Reeb graphs for pre- and post-surgery can be analyzed to measure the impact of shunt

surgery, along with CSF volume obtained from CT scans. Changes in the location of

Reeb graph nodes before and after the surgery can help clinicians in understanding and

correlating the improved symptoms post-operation with the associated brain regions.

5.4.1 Comparative analysis using our proposed Reeb graph based

pipeline

For Reeb graph based analysis, we utilize the HCP-1065 Young Adult Fiber Template.

This template is a population-averaged model derived from the diffusion MRI data of

1065 subjects (575 female, 490 male), aged 22 to 37 years, from the Human Connectome

Project’s 1200-subject release in 2017. The mean age is 28.74 years with a first quartile

of 26, a median of 29, and a fourth quartile of 32. The imaging used a multishell diffusion

scheme with b-values of 1000, 2000, and 3000 s/mm², each with 90 diffusion sampling

directions. Both in-plane resolution and slice thickness are 1.25 mm. The data were

processed in MNI space using q-space diffeomorphic reconstruction (QSDR) to map the

spin distribution function, with a diffusion sampling length ratio of 1.7 and an output

resolution of 1 mm. We perform the fiber tracking using DSI Studio, utilizing the ready-

to-track data stored in FIB files (https://brain.labsolver.org/hcp_template.html).

In this section, we focus our analysis of Cortico-spinal tract (CST_L) bundle tract

since one of the most common symptom of NPH is gait impairment, which is known to
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Saggital view in MNI space
CST_L for HCP average

Pre-shunt 83 years old Post-shunt 83 years old

TD = 22.6 TD = 12

TD = 4.8

Coronal view in MNI space

BA

Figure 5.6: Reeb graph modeling of CST_L for pre- vs post- shunt surgery
in iNPH. A) CST_L bundle tract visualized in DSI studio. B) Reeb graphs overlayed
on CST_L tract for HCP average, pre-shunt 83 years old, and post-shunt 83 years old.
ROA is extracted from the segmented ventricles from subject’s CT scans. Topological
distances (TD) are calculated among all the three tracts. This shows how the distance
is larger when HCP average is compared to pre-shunt surgery while it is smaller when
TD is computed against post-shunt surgery tract. This helps us in quantifying the
positive response to the shunt surgery by the given subject.

correlate with this bundle tract. The tracked bundle tract is visualized in DSI studio

as shown in Figure. 5.6. Here, we analyze a 83 years old subject pre- and post shunt

surgery. The main symptom of NPH is the enlarged ventricle volume which affects the

bundle tracts surrounding it. So, we first segment the ventricle using our trained UNet

neural network [78]. We follow this step for both pre and post scan. Now, we apply

the MNI transofrmation to the raw CT scan and save the resulting affine transformation

matrix. Then, we apply that affine transform to segmented ventricle volume to get the

ventricular region in the MNI space. Now this ventricular region in the MNI space acts

as a region of avoidance (ROA) when we track the CST fibers. This simulates the fibers

that are impacted by the increased ventricular volume. Finally, we compute the Reeb

graph and the topological distances among these three sets of CST bundles: HCP normal
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case, normal ventricular volume as ROA, and NPH ventricular volume as ROA. Changes

in the nodes and edges of the Reeb graphs localizes the effect of enlarged ventricle pre

and post surgery. This can be correlated to the symptoms seen in the pre- and post-

surgery.

Topological distances (TD) between the three tracts are presented in Figure 5.6.

The analysis reveals that the TD is greater when compared with the young adult brain

scan from the Human Connectome Project (HCP) average prior to shunt surgery, and

smaller when compared to the tract following post-shunt surgery. This variation in TD

quantitatively demonstrates the subject’s positive response to the shunt surgery.

One of the limitation of this method is that the enlarged ventricle should create a

distortion effect. But due to the use of a region of avoidance the affected fibers have

disappeared in our analysis. Therefore, we call this a simulated analysis, but with the

ventricle segmentation calibrated using real CT scans.

In Section 5.2.5, we demonstrated the utility of the CVV metric for both evaluating

the effectiveness of shunt surgery and distinguishing between normal and NPH conditions.

Building on this, we conduct a comparative analysis using three sets of CST tracts: the

HCP average, a normal 81-year-old subject, and an 81-year-old subject with NPH. This

analysis aims to highlight how Reeb graphs can differentiate normal aging from NPH

pathology. An age-matched normal subject serves as an effective control. ROA is derived

from ventricles segmented from the subjects’ CT scans. Topological distances (TD) are

calculated among the three tracts, indicating that TD is larger when compared to the

NPH subject and smaller against the normal subject. The Reeb graph’s finer edges (edge

density shows number of white matter fibers bundled together) in the NPH subject also

visually represent the impact of fiber loss due to ventricular enlargement, as depicted in

Figure 5.7.
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NPH 81 years oldNormal 81 years oldCST_L for HCP average

TD = 2.4 TD = 7.2

TD = 4.0

Figure 5.7: Reeb graph modeling of CST_L to distinguish Normal from
iNPH. Reeb graphs overlayed on CST_L tract for HCP average, 81 years old normal
subject, and 81 years old NPH subject. ROA is extracted from the segmented ventricles
from subject’s CT scans. Topological distances (TD) are calculated among all the three
tracts. This shows how the distance is larger when HCP average is compared to NPH
while it is smaller when TD is computed against Normal subject. The thinner edges
of the Reeb graph for NPH subject also helps us visualize the effect of the lost fibers
due to enlarged ventricle.

5.5 Discussion

Our proposed AI-based method in this Chapter has the potential to serve as a tool

to assess shunt function which is challenging from CT scans as shown in Figures 5.4A

and 5.4B. The ability to demonstrate a decrease in ventricular volume is significant to

verify that there is patency and functioning of the VP shunt. The clinical significance

is that with iNPH, the lack of improvement or the deterioration in symptoms may not

necessarily be from shunt dysfunction. Demonstration that the decrease in ventricular

volume is maintained directs the clinician to look for alternative explanations. Periodic

quantitative evaluation of the ventricular volume can provide assurance of continued

shunt functioning.
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MRI is an important diagnostic modality in iNPH patients, but it is not common for

routine longitudinal analysis. CT scans of the head are routinely performed on iNPH

patients with VP shunts because they are quickly done and provide anatomical informa-

tion that neurosurgeons may use in their treatment paradigms. MRIs may offer superior

resolution and diagnostic capabilities, but post-surgery MRIs were are not available for

the subjects in this study at multiple time points. Since our primary focus was on the

differential analysis of shunt impact, we use CT scans instead of MRIs. The advantage

of a CT scan over an MRI is its rapid acquisition. Additionally, CT scans are free from

the shunt magnetic artifact that occurs in MRIs.

In this study, the CT scans that were used were derived from different CT scanners

(GE, Siemens, Toshiba) at different institutions. This is the nature of the care of these

patients. Often patients have the CT scans done at their home institute because of

proximity or insurance restraints. If the patient or family perceive a possible neurological

problem, they will go to the closest Emergency Department which is not necessarily our

institute. The number of slices of scans in our analysis varied ranging from 30-57 and

slice thickness resolution ranged from 3-5 mm. We were able to analyze these scans from

various scanners and obtain meaningful quantitative evaluations. The analysis is done

using the axial-oblique orientation to line-up the scans, which is similar across institutions

and reduces the effect of tilting. The proposed method utilizes the resolution of the image

to do all the computations in metric units rather than using a number of voxels. Thus,

our automated analysis pipeline is agnostic to the scanner or CT scan resolution.

The lack of visible decrease in the ventricular size after VP shunting has traditionally

been attributed to a decreased brain compliance in iNPH. As iNPH is more common in

patients over the age of 60, there are a myriad of age-related factors that affect brain com-

pliance including arterial and venous calcifications and aqueductal narrowing or stenosis.

This is the first automated method to show that the ventricular volume changes with
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shunting and correlates with improvement. This suggests that the CSF egress via the

shunt may affect the overall brain compliance. Since the CVV metric is a ratio of ven-

tricular volume to brain, the decrease in CVV with shunting suggests that there is both

a decrease in ventricular volume and/or increase in brain volume.

To conclude, we prersented two approaches: 1) an AI-based method for quantify-

ing ventricular volume, and 2) Reeb graph-based multimodal analysis using segmented

CT scans and diffusion MRI. Reeb graph-based method help in quantifying the struc-

tural changes associated with iNPH condition. These multimodal analyses could enhance

our understanding by interpreting diagnostic symptoms related to gait, cognition, and

bladder function concerning structural network changes in iNPH patients. By utilizing

diffusion MRI and AI-based segmentation of ventricular regions, we model and quantify

structural distortions caused by enlarged ventricles. Our analysis highlights how the

topological distances (TD) between Reeb graphs of pre- and post-shunt surgery tracts

can serve as an indicator of surgical efficacy, with a reduction in TD correlating with

symptomatic improvements. Furthermore, comparing Reeb graphs between normal ag-

ing subjects and those with iNPH reveals distinct patterns of fiber loss and structural

changes, providing valuable insights into the pathology of iNPH. This method underlines

the importance of integrating advanced computational techniques in clinical diagnostics

and treatment evaluation, offering a robust framework for future research and clinical

applications in neuroimaging and neurosurgery.
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Chapter 6

Spatio-temporal Reeb Graphs

The Reeb graph method proposed in the previous chapters can be called spatial Reeb

graph. The Reeb graph was defined and proposed on spatial trajectories. The problem

was motivated from the spatial connections and wiring of the brain. However, even the

spatial trajectories have ordered set of points (which can be considered as temporal) but

they do not have the concept of global time points as can be in trajectories from time

based acquisition such as sampling features with respect to time. Reeb graph model

for connectome proposed in this thesis can be adapted for general-purpose trajectory

analysis. Connectomes refer to the wiring diagram of the trajectories. Any object’s

movement, for example, human movement creates a large scale GPS data which forms

a wiring diagram of their movement pattern just like Connectomes that we have been

discussing in this thesis so far.

In this Chapter, we generalize the Reeb graph-based method to model patterns of

a set of trajectories over time. Given a set of recurring patterns represented by data

collected over time for a given object, we propose a general algorithm to model such

data in a linear time complexity over time. Any deviation from usual normal pattern

The content from this Chapter is submitted for publication [81].
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is encoded as nodes in the Reeb graph. We demonstrate the usage of Reeb graphs and

how it captures the critically significant spatial and temporal deviations using the nodes

of the Reeb graph. For example, in our case studies, we discuss how Reeb graphs can

be utilized to model pattern-of-life in human trajectories (akin to a fingerprint). Human

behavior typically follows a pattern of normalcy in day-to-day activities. Case studies dis-

cussed in this Chapter includes realistic human movement scenarios: visiting uncommon

locations, taking odd routes at infrequent times, uncommon time visits, and uncommon

stay durations. We analyze the Reeb graph to interpret the topological structure of the

spatial trajectories over time. Potential applications of the algorithms introduced in this

Chapter include urban planning, security surveillance, and behavioral research.

6.1 Definitions and Problem Formulation

A trajectory T is defined as a dictionary (key: value) containing an ordered sequence

of time points and their associated spatial coordinates:

T = {t0 : p0, t1 : p1, t2 : p2, . . . , tm : pm}, (6.1)

where m is chosen according to the desired resolution to sample the pattern of the object.

Here m denotes the total number of points in a given trajectory T . The frequency of

data sampling decides m. For example, to model the weekdays of an object’s activities,

the raw data is sampled every second, giving us m = 86400 which is the total number of

seconds in a day. Similarly, if the data is sampled every hour, then m = 24 points per

day. We define n as the total number of trajectories for a given object. For example,

to model month-long data, n = 30 and for weekdays, n = 5. The common setting used

throughout this Chapter for our problem definition is m = 24 and n = 5. Each time point
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ti corresponds to a spatial coordinate pi representing the position of the object at time

ti. pi = (lati, loni), where lati represents the latitude and longi represents the longitude.

The Euclidean distance between two spatial coordinates pi and pi′ is calculated at time

ti as follows:

d(pi, p
′
i) =

√
(lati − lat′i)2 + (loni − lon′i)2, (6.2)

where lati and loni are the latitude and longitude of the first point, and lat′i and lon′i

are those of the second point. d(pi, p
′
i) gives the 2-norm distance between two points

on the Euclidean plane. This approximates the geographic distance of the points. The

algorithm is defined with respect to a distance threshold ϵ within which the points are

considered sufficiently close together i.e. within a small geographical area. This is the

inter-trajectory distance that guides the granularity of the Reeb graphs according to the

problem definition.

Figure 6.1: Reeb Graph Construction Over Time. We show the construction
of Reeb graphs R(V,E) for a set of five trajectories. The appear, disappear, connect,
and disconnect events are shown on the left-hand side. Changes in the grouping of
trajectories due to these events are encoded as nodes on the right-hand side. Nodes
of the Reeb graph R on the right-hand side are shown in red color and the edges are
shown in black color throughout the thesis.

Human behavior typically follows a pattern of normalcy in day-to-day activities. This

is marked by recurring activities within specific time periods. In order to discover the
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large-scale spatio-temporal patterns, we represent the bundling structure of trajectories

as a Reeb graph R(V,E). Nodes of the Reeb graph will pinpoint critical spatial points

of the object’s pattern. Intuitively, if a continuous portion of a behavior of the object

happens at the same time and within the same spatial distance (ϵ) every day then they

present a pattern of normalcy. We formalize this by introducing the concept of “bundles”

to characterize normal behavior through consistent daily subtrajectory events. Each

trajectory begins with an appear event at the first index and concludes with a disappear

event at the last index of T . Deviations from this norm by more than ϵ are classified as

disconnect events, while a return to the norm is labeled a connect event. Formally, for a

given ϵ and m = 23 i.e. sampled every hour, let’s take two trajectories T and T ′:

• At time t0: p0 and p′0 are the appear events.

• At time t23: p23 and p′23 are the disappear events.

• If d(p0, p
′
0) ≤ ϵ, (p1, p

′
1) ≤ ϵ, . . . , d(pk, p

′
k) ≤ ϵ, but d(pk+1, p

′
k+1) > ϵ, then tk+1

represents a disconnect event between T and T ′.

Algorithm 3 Find connect and disconnect events
1: Input: Trajectories T and T ′, threshold ϵ
2: Output: Dictionary of connect/disconnect events, eventsT,T ′

3: Initialize eventsT,T ′ as an empty dictionary
4: Initialize k ← 0
5: Initialize connect_flag ← False
6: while k < m do
7: if d(T [tk], T

′[tk]) < ϵ then
8: eventsT,T ′ [tk]← connect
9: connect_flag ← True

10: while k < m and d(T [tk], T
′[tk]) < ϵ do

11: k ← k + 1
12: if k < m then
13: eventsT,T ′ [tk]← disconnect
14: k ← k + 1
15: return eventsT,T ′
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Algorithm 4 Construction of Reeb Graph
function ConstructReebGraph(set of events for all pairs of trajectories (E))

for all steps k from 0 to |E| do ▷ Dynamic Graphs
if appear event of T then

insert new node T to Gk

if disappear event of T then
delete node T from Gk

if connect event between Tx and Ty then
insert edge (Tx, Ty) to Gk

if disconnect event of trajectories Tx and Ty then
delete edge (Tx, Ty) from Gk

P ← empty bundle partition ▷ Bundle Partition
Query Gk−1 and Gk to get the connected components Ck−1 and Ck respectively;
for all connected component ck ∈ Ck do

if ck ∈ Ck−1 then
assign the same bundle id Bi to the points for trajectories in ck;

else
create a new bundle id Bi+1 and assign it to the points for trajectories
in ck;

Add Bi+1 to P
Construct Reeb graph R from P by connecting adjacent bundles with nodes and
bundles as edges; ▷ Construct Reeb graph
return R

• If d(p0, p
′
0) > ϵ, (p1, p

′
1) > ϵ, . . . , d(pk, p

′
k) > ϵ, but d(pk+1, p

′
k+1) ≤ ϵ, then tk+1

represents a connect event between T and T ′.

6.2 Parameter Selection

In cases where raw trajectories form extended groups, the nodes of the Reeb graph

might be significantly spaced apart. Particularly along extended curves, the nodes and

edges of the Reeb graph may fail to accurately reflect the true topological structure

of these trajectories. This issue can be addressed by imposing a time constraint on

temporal trajectories and a spatial length constraint on spatial trajectories. By doing so,

we ensure that each bundle in the Reeb graph does not exceed a length of τ , as illustrated
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in Figure 6.2.

Trajectories

Reeb Graphwith
long edges

Reeb Graph with 𝜏

Figure 6.2: Reeb graphs with τ parameter to preserve the topological structure.

6.3 Time Complexity Analysis

Reeb graph construction (illustrated in Figure. 6.1) can be divided into the following

major steps: event computation, construction of dynamic graphs (Gs), connectivity query

in the dynamic graph for bundle partition (P ), and construction of the Reeb graphs (R)

from bundles partition as shown in Figure. 6.1. The first step of Reeb graph construction

involves computing the connect and disconnect events. Algorithm 3 outlines the steps

of computing events. The event computation takes O(m) time, where m represents the

number of time points in the trajectories T and T ′. At each time point, the algorithm

looks for O(5 × 5) possibilities of potential events. The second step of the Reeb graph

involves handling the events to construct dynamic graph Gs. The nodes of G represent the

daily trajectories and the edges of the G represent the ϵ-connectivity between them. The

total number of nodes in G is 5 representing one trajectory for each day of the object.

All the nodes of G represents the trajectories and those corresponding points of the

trajectories form the level set at that given time. The connected component of the G will

91



Spatio-temporal Reeb Graphs Chapter 6

Figure 6.3: Map overlay of normal and anomalous trajectories from scenario 2 of the
case study, annotated with semantic labels for points of interest (POIs).

give us the ϵ−step bundle partition of subtrajectories denoted by P = {B1, B2, . . . , Bk}

such that every segment in T0, T1, T2, T3, T4 is uniquely assigned to exactly one bundle.

The final step is to construct the Reeb graph from these bundles. Reeb graph R can

be constructed from P by connecting adjacent bundles with nodes and bundles as edges

similar to the described construction in [8]. So, the time complexity of the Reeb graph

construction step would be O(m) because in the worst case, all the time points will have

events. At each time, the connectivity query to the dynamic graph with 5 nodes takes

constant time. The more detailed steps can be found in the Algorithm 4.

6.4 Case Study

6.4.1 Data generation

We model the pattern of life of a single object over different trajectories. Each trajec-

tory is simulated using the SUMO software package [82] and represents realistic behavior

and movement patterns over the course of one week. We construct the Reeb graph for

each trajectory and show how it sufficiently represents the trajectory’s information with
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significantly fewer nodes.

Figure 6.4: 3D trajectory plots with computed Reeb graph nodes for scenario 1 in
Section 6.4, where day 0 to day 4 are normal trajectories, and the anomalous trajectory
is in red.

In this case study, we analyze the behavioral patterns of a simulated high-school stu-

dent from the city of Santa Barbara, California (Figure 6.3), using trajectory data that

includes multiple points of interest (POIs), such as the student’s home, school, park,

grocery store, and lake. The student’s daily routine typically consists of attending school

from approximately 8:00 AM to 9:00 AM, concluding at around 4:00 PM to 5:00 PM,

followed by visits to recreational sites before returning home. To thoroughly investigate

both normal and anomalous behavioral patterns, we generated five days of normal trajec-

tory data, complemented by additional days tailored to each specific scenario described
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earlier. Each trajectory entry is recorded with timestamps, latitude, and longitude coor-

dinates. Figure. 6.3 displays the student’s trajectories across different POI locations for

the rare location scenario, illustrating the distribution of both routine and deviant move-

ments. Figure. 6.4 displays the same data as a 3D plot, providing a clear spatio-temporal

visualization of the student’s stay locations, duration, and revisit frequencies.

6.4.2 Definition of anomalous behavior

We define L as a set of normal POIs and their corresponding time points,

L = {(lat1, lon1, t1), (lat2, lon2, t2), . . . , (latn, lonn, tn)}

where (lati, loni) represents the geographic coordinates with lati ∈ [−90, 90] and loni ∈

[−180, 180], and ti is the time at which these coordinates were recorded. Relative to this

definition, all the anomaly behaviors for a given object are defined as follows:

Scenario 1 (S1): Rare Location Anomaly Rare location anomaly refers to a

scenario when an object visits a new location (lat∗, lon∗, ti) /∈ L. (lat∗, lon∗) is spa-

tially different from their normal spatial geographical points of interest such as school or

work. Reeb graph will encode this rare location by creating a new node localizing the

abnormality.

Scenario 2 (S2): Rare Route Visit Anomaly In this scenario, the object visits

the same POI locations multiple times but utilizes a uniquely different route on a single

journey. This introduces disconnect event from their normal movement pattern, resulting

in a new node in the Reeb graph. More formally, if (lat∗, lon∗, tk:l) /∈ (lat, lon, t1:k−1) and

/∈ (lat, lon, tl+1:m), then nodes vk and vl will be added to R.

Scenario 3 (S3): Uncommon Time Visit This is a case of time violation where the

object visits a familiar location at an uncommon time t∗ i.e, (lati, loni, t
∗) ̸= (lati, loni, ti)
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Algorithm 5 Trajectory Generation
1: Inputs:
2: POIs – List of Points of Interest as coordinates on a map.
3: TimeListn – Dictionary mapping each POI to normal visit times.
4: TimeLista – Dictionary mapping each POI to abnormal visit times.
5: Road Network – Road network graph for route generation.
6: Output:
7: T – A list of normal trajectories of an object visiting specified POIs.
8: T ∗ – A list of abnormal trajectories of an object visiting specified POIs.
9: Initialize Trajectories list

10: for each POI in the POIs list do
11: Select TimeList based on a decision rule (normal vs abnormal)
12: for each time in TimeList do
13: Generate a starting point for the object
14: Use duarouter to calculate the shortest path from the starting point to the

POI at the given time
15: Pass the list of edges to SUMO for movement simulation
16: Collect the output trajectory from SUMO
17: Append to T or T ∗ based on decision rule
18: return T , T ∗

Scenario 4 (S4): Uncommon Stay Duration Anomaly In this scenario the

object stays for an abnormal duration (∆) at a specific location (lat∗, lon∗, ti+∆). This

results in a disconnect event for the object’s trajectory from the normal pattern of life

at ti.

6.4.3 Reeb Graph Generation

We use a down-sampling rate of one hour for Reeb graphs. This setting helps us to

monitor changes in location grouping states at each hour. The threshold ϵ for spatial

connect and disconnect events is set to 0.0005 GPS degrees (5.56 meters). Initially, we

construct a Reeb graph from the normal activity trajectories of days 0 to 4 to model the

student’s typical pattern of life.

As depicted in Figure. 6.3 and Figure. 6.4, Reeb graph successfully identifies all normal
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POIs as a part of the Reeb graph nodes, demonstrating its efficacy in reflecting the

spatial distribution of the student’s activities. Notably, an anomalous scenario depicted

in Figure. 6.3 and Figure. 6.4 shows the student visiting a movie theater during school

hours which is defined as a deviation from the normal. This is captured by a new Reeb

graph node, highlighting its potential for identifying critical spatial anomalies.

Figure 6.5: 2D Trajectory plots displaying time and latitude dimensions alongside
computed Reeb graph nodes. These plots illustrate both normal and anomalous sce-
narios as outlined in Section 6.4.2. The detailed discussions on node generation and
behavioral analysis can be found in Section 6.4.4.
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6.4.4 Analysis and interpretation of scenarios using Reeb graphs

To better understand the formation of Reeb graph nodes and demonstrate the utility

of the Reeb graph across all six scenarios, we generated time-latitude plots (Figure 6.5).

These plots, with the hour of day on the x-axis and latitude on the y-axis, include trajec-

tory points sampled every 10 seconds alongside Reeb graph nodes. Each plot provides a

visual representation of different behavioral patterns and anomalies and illustrates Reeb

graph’s effectiveness in capturing anomalous trajectories for all scenarios. We explain

the scenarios one by one below:

• Figure 6.5(a) illustrates the student’s normal routine pattern, with stays at home,

school, and visits to various recreational spots. Notable events include appear

and disappear at the beginning and end of each day. There are three discon-

nect events around hour 17 which indicates divergences to different locations after

school.Connect event shows trajectories getting merged back on the way home at

hour 18.

• Figure 6.5(b) for S1 depicts a rare location (lat∗, lon∗) where we visualize an

abnormal visit to the movie theater, showing three additional Reeb nodes and

altered connectivity events at hour 9 and 14.

• Figure 6.5(c) for S2 captures an alternative route to school. At hour 9, instead

of following the normal route, the student deviates towards a direction with a lower

latitude and then returns to school. This deviation is captured by the bottom Reeb

graph node at hour 9. Additionally, a disconnect event occurs at 9, followed by a

connect event at hour 10 when all trajectories converge at the school.

• Figure 6.5(d) for S3 reveals an uncommon time anomaly, where the student

attends school at hour 2 and travels to the park at around hour 10, significantly
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deviating from the typical schedule, but with the same POIs.

• Figure 6.5(e) for S4 shows another time-related anomaly with a prolonged stay

at home until almost hour 12, and similarly, 3 new nodes appear for the reeb graph

because of disconnect event from the usual trajectory.

• Figure 6.5(f) for S4 presents a detailed look at scenario 4, from hour 16 to hour

17. Since the reeb graph sample rate is one hour, the reeb graph nodes appear at

hour 17 to represent the disconnect events in the past hour.

6.4.5 Reeb graph iteratively detects anomalous behavior of an

object

In the context of detecting anomalous trajectories within real-life data (test dataset),

we iteratively construct Reeb graphs on the test dataset to identify daily anomalous

trajectories. An initial Reeb graph is constructed using training data with all normal

trajectories. Subsequently, for each daily trajectory in the test dataset, the Reeb graph

is iteratively updated day by day. To detect anomalous behaviors effectively, we compute

the distance between the existing Reeb graph and every updated version that includes

the additional daily trajectory. The subsequent section details our methodology for

calculating this distance and presents the results derived from our case study.

6.5 Scalability of Reeb Graphs

We successfully applied Reeb graphs to a simulated dataset that is closer to a real-

life distribution. This data is an extended version of the data that we described in this

Chapter for proof-of-concept. Here, instead of modeling weekdays of data sampled every

hour, we model the patterns over a month sampled at every 15-second interval. This
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results in m = 5760 and n = 30. For this dataset, Reeb graphs models the patterns of

daily activities for a simulated population of 800,000 objects. Each object is processed

independently, and the Reeb graphs for the entire dataset were constructed within 7.2

hours, parallel processed across 384 CPU cores (AMD EPYC 9654 @ 3.7 GHz). We also

implemented the spatial Reeb graph, ReeBundle as proposed in [8] but the quadratic time

complexity with respect to m made it computationally challenging. More specifically, for

n = 7 and m = 5760, the Reeb graph construction took around 4 minutes for an object.

Reeb graphs is linear with respect to m and thus for the same problem setting it was

able to construct Reeb graphs in approximately 12 seconds on one CPU core. This is

an important advantage over spatial Reeb graphs which helps us to apply our method

on large-scale datasets. Multi-processing across 384 cores enabled us to construct Reeb

graphs in less than 8 hours. We also tested Reeb graphs on medium-sized data with

10,000 objects over a period of one week, Reeb Graphs were computed in approximately

5.5 minutes. The above experiments show the applicability of Reeb graphs in modeling

object’s data at different resolutions (weekly, monthly, yearly) and also emphasize the

scalability of the proposed algorithm.

6.6 Discussion

In this Chapter, we proposed a general Reeb graph-based approach to model the

patterns of normalcy using day-to-day human trajectory data. The proposed Reeb graphs

abstract large-scale spatio-temporal data into a comprehensible topological construct. We

design distinct real-life anomalous scenarios, develop trajectory generation methods, and

provide a thorough interpretation of Reeb graph results. Our main contributions are

summarized below:

• We present a novel Reeb graph-based approach to model the day-to-day activities
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of a given agent.

• We discuss the algorithm and its time complexity demonstrating the scalability of

the proposed method.

• We design normal and anomalous scenarios, describe the methods for trajectory

generation and present detailed experiments on the interpretation and analysis of

Reeb graphs.
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Chapter 7

Conclusion and Future Work

This thesis presents the theory of Reeb graphs for modeling spatial trajectories, the im-

plementation algorithms, analysis of computational complexity, and applications. Reeb

graphs provide a unique way to model the human brain connectome as a graph net-

work that is sparse and preserves underlying geometrical information. We presented the

ReeBundle pipeline to model the diffusion MRI data that captures the white matter

fiber connectivity in the brain. Reebundle is robust to noise and is a computationally

efficient framework to characterize white matter fibers from a topological point of view.

We demonstrate that the proposed approach captures the fiber branching behavior in the

presence of noise and is further validated on synthetic and real dMRI datasets. ReeBun-

dle parameters ϵ, α, and δ control the granularity of the bundling desired – small values

allow only very dense sets of streamlines for grouping, while larger values of ϵ relax the

groups and allow longer, larger, and sparser groups to form. These parameters can be

tuned to apply the pipeline to a wider set of problems, from comparing tractography algo-

rithms to studying neurological disorders. For neuroscience applications, we recommend

using the default parameters as an initial set to begin the study. For general analysis,

we recommend setting the ϵ parameter to around 3 mm, which is close to the minimum
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dMRI resolution of 2 mm. Sensitivity analysis indicates the algorithm’s greater sensi-

tivity to ϵ, so, fixing the other parameters and varying ϵ should be sufficient for most

applications. We also introduce the Reeb graph-based topological distance score that

quantifies the relative topological difference between two bundle tracts. One limitation

of the score is that it is not normalized to range from 0-1, which implies that it is not

ideal for a standardized comparison across subjects and atlases. Thus, it does not give an

absolute metric of the distance between two Reeb graphs. However, this is by choice since

the distances between two graphs can be very large in some cases. We summarize the

Reeb graph applications presented in this thesis below along with some future directions.

7.1 Tractography Evaluation

Our ReeBundle pipeline depends on the quality of streamlines and at the same time

can be used for quality assessment of the tracts. Therefore, we use Reeb graphs to

develop a new topological evaluation and validation method for tractography algorithms.

We present ReTrace, a novel graph matching-based topological evaluation and validation

method for tractography algorithms. ReTrace uses a Reeb graph whose nodes and edges

capture the topology of white matter fiber bundles. We evaluate the performance of

96 algorithms from the ISMRM Tractography Challenge and the standard algorithms

implemented in DSI Studio for the population-averaged Human Connectome Project

(HCP) dataset. The existing evaluation metrics such as the f-score, bundle overlap, and

bundle overreach fail to account for fiber continuity resulting in high scores even for

broken fibers, branching artifacts, and mis-tracked fiber crossing. In contrast, we show

that our approach effectively penalizes the incorrect tracking of fibers within bundles

while concurrently pinpointing positions with significant deviation from the ground truth.

The ultimate goal of the analysis pipeline is to guide tractography algorithm design
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choices. The future work in this direction is clear: can one design a topologically-aware

tractography algorithm that uses Reeb graphs in a feedback loop to iteratively improve

the quality of tracking?

7.2 Early Diagnosis and Tracking of Neurological Dis-

orders

Fingerprinting the human brain. Our method meaningfully describes the bun-

dle tracts without oversimplifying them into skeletons. For the International Society for

Magnetic Resonance in Medicine (ISMRM) dataset, Reeb graph handles the morphol-

ogy of the white matter tract configurations due to branching and local ambiguities in

complicated bundle tracts like anterior and posterior commissures. To quantify the differ-

ence between the connections, we introduce a new Reeb graph-based distance metric that

quantifies the topological differences in bundle comparison. For the longitudinal repeated

measures in the Cognitive Resilience and Sleep History (CRASH) dataset, repeated scans

of a given subject acquired weeks apart lead to provably similar Reeb graphs that differ

significantly from other subjects, thus highlighting our method’s potential for clinical

fingerprinting of brain regions. Reeb graph and topological distance metric are sensitive

to variations in brain structure, such as those observed in the developing brain and in the

presence of tumors. This sensitivity is beneficial in the context of longitudinal studies

of brain development and the topological evolution of the brain. This thesis highlights

the potential utility of this metric in tracking Alzheimer’s disease progression using the

ADNI dataset, and evaluating the effects of surgical interventions for brain tumor using

the OpenNeuro brain tumor datasets.

Quantification of iNPH Shunt Surgery Efficacy In this thesis, we discussed
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how different imaging modalities can be used together to solve neurological disorders.

In particular, we discussed how the impact of shunt surgery for iNPH subjects can be

quantified using CT scans. Diffusion MRI is collected along with CT scans for such

patients. Future applications could include Reeb graphs for dMRI combined with CT

to aid in interpreting and localizing diagnostic symptoms related to gait, cognition, and

bladder function.

In our study, we demonstrated that quantifiable changes can be detected in ventricular

volume in iNPH patients that undergo ventriculo-peritoneal shunt procedures. Our study

developed an AI tool to provide automated measurement of cerebral ventricular volume

over time for iNPH patients before and after the shunt surgery. We showed that our

proposed metric significantly correlates with the subjective clinical diagnosis over time.

The metric also accurately models non-responders who show significant CSF drainage

and improved symptoms post shunt adjustment. The iNPH AI tool offers a simple drag-

and-drop style interface to a computationally fast method, taking just 2-3 minutes for

brain segmentation and less than 10 seconds for volumetric computation. This serves as

a valuable clinical tool for enhancing patient care. However, our study may be limited

by the absence of patients with fixed valves who required shunt removal due to severe

over-drainage symptoms. Our patient selection was biased as we selectively included

patients who showed improvement after shunt surgery. Additionally, as iNPH typically

affects elderly patients with co-morbidities such as Parkinson’s or Alzheimer’s disease,

the findings may not be generalizable to those populations.

In the light of these results, we anticipate many different research directions stem-

ming from application of our proposed method to neurological conditions. For iNPH, an

interesting research direction is to set a definitive threshold for the decrease in VP shunt

surgery that correlates with “successful” cerebrospinal fluid drainage, akin to established

metrics like Evan’s Index. From the representative data used in this study, few patients

104



Conclusion and Future Work Chapter 7

had multiple pre- surgery scans where we observe that the iNPH condition deteriorates

before surgery resulting in increase in CVV metric with time until surgery (see Supple-

mentary Table 1 [66]). This will be further investigated in future. This direction will

require collecting multiple scans before surgery and after surgery.

7.3 Whole Brain Analysis

ReeBundle is intended for tract-specific analysis of individual white matter bundles or

sub-pathways within a specific region of interest. However, an integration of Reebundle

with tract segmentation methods can be used for whole brain analysis as well. White

matter pathways in the human brain typically consist of different sub-pathways (bundle

tracts). These sub-pathways could include the different geometry shapes, e.g., CC and

cingulum bundle. ReeBundle is intended for tract-specific analysis of individual white

matter bundles or sub-pathways within a specific region of interest. However, an integra-

tion of Reebundle with tract segmentation methods can be used for whole brain analysis

as well. A possible extension of our method for unified brain analysis is illustrated in

Figure. 7.1.

Another interesting direction for future research would be to explore the structure-

behavior relationships, particularly for assessing changes over time. In this thesis, we

show the visualization, quantification, and the analysis of neurological disorders. It is

yet unexplored how these structural models of streamlines link to the behavioral models

of functional MRI. New insights into structural and functional connectivity relationships

in the brain can be explored by integrating these approaches. The critical points captured

in Reeb graphs can serve as potential biomarkers in diseases of the nervous system that

alter white matter morphology.
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Merge the Reeb graphs
 using the node locations in 3D
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Figure 7.1: Unified topology analysis of the whole brain tractogram. The first step
in whole brain analysis with Reebundle would be to obtain tract segmentation of the whole
brain tractograph. Then, using each anatomical bundle as an input, as demonstrated in the
ISMRM datasets, the Reeb graph can be extracted and analyzed. Finally, the results can be
combined either through quantitative analysis to obtain an overall score of the topological
distance or by merging the Reeb graphs to obtain a unified Reeb graph that can then be
compared.

7.4 Reeb Graphs Beyond Neuroscience

Our method is not limited to neuroscience and is general-purpose in its applicability.

Towards that, we presented a general algorithm for structure discovery in spatio-temporal

trajectories. Human behavior typically follows a pattern of normalcy in day-to-day ac-

tivities. This is marked by recurring activities within specific time periods. We model

this behavior using Reeb graphs where any deviation from usual day-to-day activities

is encoded as nodes in the Reeb graph. This approach helps us model patterns of life

in human GPS trajectories (akin to a fingerprint). We propose a Reeb graph-based ap-

proach to model the patterns of normalcy using day-to-day human trajectory data from

GPS sensors. The proposed Reeb graphs abstract large-scale spatio-temporal data into

a comprehensible topological construct. We design distinct real-life anomalous scenarios,

develop trajectory generation methods, and provide a thorough interpretation of Reeb

graph results. Similar to the neuroscience applications, the parameters of Reeb graphs

can control the granularity of the model according to different problem settings. But,

false positives can impact the accuracy of our model. One explanation for this is the

inherent stochasticity of general human behavior.
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Another application is a quantifiable sanity check for raw trajectory data such as

teleports. Our experiment settings un this thesis are based on the assumption that

each agent is independent and the activities conducted by one agent are not related to

the other. However, agents in a given population influence the behavior of each other.

Such correlations could serve as additional features to our existing model. With Reeb

graphs, we have the flexibility to introduce more parameters and features to robustly

support the data abstractions by redefining level sets. For example, level sets can be

defined on geo-foundation points of interests as shown in Figure 7.2. Geo-foundational

features describe the nature of each location that the agent visited such as residential,

commercial, recreational, etc. Nodes of the Reeb graphs can be labeled with such domain-

specific information. Such representations can be used as an input to data-driven methods

instead of directly using deep learning methods on raw GPS trajectories.

Figure 7.2: Redefine level sets on the semantic points of interests. Reeb graph has the
flexibility to introduce more parameters and features to robustly support the data abstraction
by redefining level sets. Geo-foundational features describe the nature of each location the
agent visited such as residential, commercial, recreational, etc. Nodes of the Reeb graphs can
be labeled with such domain-specific information.

7.5 Concluding Thoughts

Big data-driven analytics has played a crucial and transformative role in many appli-

cations, including health, education, transportation, and environmental sciences. Much

of this data is unstructured and in differest resolution. This vast pool of routinely col-
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lected unstructured multimodal data represents a wealth of unexploited opportunities.

If we can successfully link and analyze this time or space evolving data across different

modalities, spatial and temporal resolutions, it would yield new insights for addressing

complex problems. Reeb graphs can provide a powerful means to represent and visualize

dynamics of multimodal data, ultimately aiding in clustering and structure or semantic

discovery. Such comprehensive data analysis is essential for realizing the full potential

of multimodal data towards new scientific discoveries. Many interesting future research

directions branch from the work presented in this thesis. These efforts can help in de-

veloping localized topological context that helps in generalizing the methods to new and

unseen domains.
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