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We improve and extend a method introduced in an earlier paper for 
deriving string field equations. The idea is to impose conformal invari
ance on a generalized sigma model, using a background field method 
that ensures covariance under very general non-local coordinate trans
formations. The method is used to derive the free string equations, as 
well as the interacting equations for the graviton-dilaton system. The 
full interacting string field equations derived by this method should 
be manifestly background independent. 
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1. Introduction 

This paper is the follow up of an earlier paper with the same title (1]. The 
basic idea of both papers is to derive the dynamical equations satisfied by the 
string states by requiring a sigma model on the world sheet to be conformally 
invariant. This idea has a long history, going back to some early papers (2-
6], where the equations satisfied by the massless particles in the spectrum of 
the string were derived by demanding conformal invariance of the effective 
action in the one loop approximation. These early efforts dealt with only 
renormalizable sigma models, which restricted the scope of their investigation 
to the dynamics of the massless states. In order to incorporate the dynamics 
of the massive levels of the string, one has to start with the most general 
non-renormalizable sigma model, subject only to some general requirements 
of invariance. A method of imposing conformal invariance on a a general. 
sigma model was proposed by Banks and Martinec (7], who introduced an 
explicit cutoff and used the Wilson type renormalization group equations 
(8,9]. This approach was further developed and was used to derive the tree 
level closed bosonic string amplitudes by Hughes, Liu and Polchinski(10] 
and others (11-14] . .The idea behind this method is to cancel the conformal 
anomalies due to the quantum corrections against the classical violation of 
the conformal symmetry due to the presence of nonrenormalizable terms 
in the action. Despite its success in reproducing string amplitudes, this 
approach suffers from some drawbacks, among them lack of a sufficiently 
powerful gauge invariance to eliminate all the spurious states (10]. Another 
disadvantage of this approach is the absence of manifest covariance under 
redefinitions of the target space coordinate X ( CY). In fact, it will become 
clear later on that these problems are related; the spurious states are absent 
in a manifestly covariant treatment. 

In the reference cited above (1], we proposed a new method for deriving 
the string field equations, by combining the advantageous features of both 
the earlier work on the sigma model (2-6], and of the Wilson renormalization 
group approach (7,10]. The starting point was the most general nonrenor
malizable sigma model on the world sheet, subject only to two dimensional 
Poincare invariance. The basic idea was again to cancel the quantum con
formal anomaly by the terms in the action that violate conformal invariance 
classically. This was done by first computing the one loop effective action 
with an explicit cutoff, and then by requiring the effective action to be in
variant under conformal transformations. The main goal of the paper was 
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to carry out the calculation of the effective action using a background field 
method [3,15], which is covariant under field transformations. The transfor
mations in question included not only the local diffeomorphisms of general 
relativity, but also non-local ones with derivatives with respect to the world 
sheet coordinates (see eq.(4)). This posed the problem of finding a suitable 
covariant metric in order to be able to use the tools of differential geometry. 
Such a metric can easily be extracted from the action when only covariance 
under the local transformations is required; however, when non-local trans
formations are also included, the problem becomes difficult. In reference [1], 
partial progress was made in this direction by using an expansion in the slope 
parameter; however, only the equations for the first few levels of the string 
could be derived by this method. Even then, the left-right nonsymmetric 
string could not be treated . 

In the present paper, we show how to overcome all ofthe difficulties en
countered in the earlier work. The main new idea is to forget about the 
metric and introduce the connection as a completely independent field. It 
is also necessary to introduce a vector field which generates the conformal 
transformations (conformal Killing vector), again as an independent quan
tity. This means that we make no a priori commitment about the metric and 
the conformal Killing vector, but instead, we let the the equations resulting 
from conformal invariance (the RG equations) decide the issue. However, 
one encounters several problems in applying these equations: They are ex
plicitly cutoff dependent and also they do not seem powerful enough to fix 
the connection and the Killing vector completely. The first problem is not 
really serious; it turns out that almost all of the cutoff dependendence fac
torizes, leaving behind cutoff independent equations. The only exception is 
a set of terms with logarithmic dependence on the cutoff, and these can be 
eliminated by slope renormalization. This is then the only renormalization 
needed to render the theory finite. As for the second problem, it is true that 
the connection and the Killing vector remain mostly undetermined; however, 
this does not mean that the RG equations contain no useful information. A 
subset of the equations turn out to be independent of the connection and 
the Killing vector, and these equations are then the candidates for the string 
field equations. A major part of this paper is devoted to working out the con
sequences of this idea to see whether it actually leads to the correct string 
equations. This comparison is done in two different cases: First, the lin
earized form of the RG equations are shown to be equivalent to the the well 
known free string equations. Also, going beyond the linear approximation, 
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the interacting graviton-dilaton equations come out correctly. 
The paper is organized as follows: In section 2, we review the version 

of the RG equations derived in [1], and we rewrite them in a form conve
nient for future applications. We also discuss in some detail the heat kernel 
method, the regularization scheme we use in this paper. It has a number 
of advantages over the explicit cutoff used in [1]. In sections 3 and 4, the 
linearized RG equations are applied to the massless and the first massive 
levels of the string. There are several reasons for considering these special 
cases before embarking on the general problem. The same special cases were 
considered in [1 ]; here we show how the present treatment overcomes the 
difficulties encountered there. Also, many of the important features of the 
general problem are already present in these special cases, and working them 
out in detail should be helpful. For example, one can easily verify that the 
cutoff dependence of the equations causes no problems. Also, it is instructive 
to see that the covariant treatment helps to eliminate several spurious states 
and the resulting spectrum is then in agreement with the string spectrum. In 
section 5, we apply the linearized RG equations to an arbitrary string state, 
and we show that they can be written in a compact form as a single equation 
using the standard operator formalism familiar from string theory. Section 
6 is devoted to establishing the equivalence of this equation to the standard 
equations satisfied by the free string. Finally, we go beyond the linear ap
proximation in section 7 by applying the full non-linear RG equations to the 
dilaton-graviton system, and we show that the resulting equations are the 
correct ones. 

By working out these examples, we hope to have shown that the approach 
to string field equations proposed here is both correct and useful. As a future 
project, it seems quite feasible to derive the full set of interacting equations 
in the operator formalism of section 5. The main motivation for doing this 
is the realization that these equations should be manifestly background in
dependent. Although initially the calculations are done in the framework of 
an expansion around the flat background, using the methods of sections 5 
and 7, one should be able to sum the series and get rid of the background 
dependence. Lack of manifest background independence is a problem shared 
by many different approaches to string field theory, including the BRST for
malism [16-19]. In addition to background independence, the field equations 
derived by the present method will also be invariant under non-local field 
transformations mentioned earlier. It has been suspected for a long time 
that string theory has a large class of as yet undiscovered hidden symme-
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tries, and that these symmetries may be important in understanding string 
dynamics. For example, duality symmetries (20], which have attracted much 
attention recently, may be the manifestations of a much bigger hidden sym
metry. In any case, any new approach to string theory will hopefully deepen 
our understanding of it. 
2. One Loop RG Equations 

We start this section with a brief review of the one loop RG equations de
rived in [1]. The starting point is a two dimensional action S which describes 
the world sheet structure of an interacting bosonic string theory. The only 
requirement on this action is two dimensional Lorenz invariance, other than 
that, it is the most general local non-renormalizable action constructed from 
the string coordinate XJ..Lu = XJ..L(cr). All of the computations of this paper 
will be carried out in a flat Minkowski background, accordingly, the action 
is split into free and interacting parts: 

S s<o) + S(l), 

s<o) I d2cr a.;xJ..LO' a_xvuTJJ..LV' 

S(l) - I d2cr (<I>(X(cr)) + hJ..Lv(X(cr))a.;xJ..Lua_xvu + · · ·), (1) 

where 1JJ..Lv is the flat Minkowski metric, <I> is the tachyon field, and hJ..Lv is 
related to the gravitational metric 9J..Lv and the antisymmetric tensor BJ..Lv 
through · 

- h- 1(_ - ) B 1(_ - ) 
9J..LV = TJJ..LV + J..LV' 9J..LV = 2 9J..LV + 9vJ..L ' J..LV = 2 9J..LV - 9VJ..L ' (2) 

and a+ = 8u+ and a_ = au_ are derivatives with respect to the world sheet 
coordinates 

The dots represent higher levels which contain more derivatives with respect -
to cr. Eq.(1) is a quasi-local expansion of the action in the derivatives of 
the coordinate XJ..L(cr); the fields are local functions of XJ..L(cr), as opposed to 
functionals. Non-locality is introduced gradually through higher powers of 
o±XJ..Lu. World sheet Lorentz invariance requires equal numbers of a+ and 
a_. The presence of higher derivatives makes the model unrenormalizable, 
and a cutoff is needed to define it. Another way to organize this expansion is 
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to classify the terms according to their classical conformal dimension, which 
is the naive dimension associated with the scaling of cr: Each derivative with 
respect to cr adds a unit to the classical conformal dimension. We note that 
the action is not classically conformal invariant. 

The invariance properties of the model will play an important role. The 
action of eq.(l) is invariant if a total derivative is added to the integrand, 
setting 

the action is invariant under 

(3) 

Later, we will see that in the string language, this corresponds to invariance 
under adding spurious states generated by the application of the Virasoro 
operators L_1 and L_1 to the physical states. We will call this a linear 
gauge transformation. In addition to these invariances, which follow auto
matically from the definition of the action, we will impose invariance under 
the infinitesimal coordinate transformations 

where f's are arbitrary local functions of X ( cr). The first function !'"' cor
responds to the local diffeomorphisms of general relativity, so it ensures the 
imbedding of gravity into the model. We shall see later that the transforma
tions with higher derivatives eliminate spurious states. · 

Finally, we would like the model to be conformally invariant. In the fiat 
world sheet formulation we are using, the two sets of infinitesimal conformal 
transformations are given by 

(5) 

The following operators, acting on the coordinates, generate these transfor-
mations: 

(6) 

However, these generators do not transform properly under the coordinate 
transformations given by eq.(4). To ensure proper transformation properties, 
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a.;xJ..I.a in eq.(6) should be replaced by a vector (Killing vector): 

6v± - I d20"Ff::(X) 6;J..I.a' 

Ff:: - V±(0"±)8±XJ..I.a +I d20"'v±(O"~)j~a(X). (7) 

Here, J:,a is introduced so that Ft: will transform like a contravariant vector 
in the indices J.lO" under the transformations of eq.(4). This then guarantees 
that conformal invariance is coordinate independent. To start with, J:a will 
be left arbitrary, and it will eventually be fixed by the string field equations. 

/The string field equations can be derived [10] by requiring the conformal 
invariance of the string theory based on the actionS (eq.(1)). This action is 
not even classically conformal invariant as it stands; the tachyon field and the 
fields corresponding to massive levels violate classical conformal invariance. 
Quantum mechanically, there is a further violation (anomaly) coming from 
higher order graphs. Conformal invariance can be restored by cancelling the 
classical terms against the quantum anomaly; the resulting conditions are 
then the string field equations. Below, we write down the version of these 
equations derived in [1]: 

Ea+EM = 0, (8) 

where, 

(9) 

and 

p>..r u _u_v _ QAT,J..1.1 a' u v QJ..I.a,>..r _ 6 QJ..I.a,J..i.' a' 1 
( 

i:QJ..i.a,J..i.'a' >:pJ..I.a · >:pJ..i.'a' ) 

2 v §X>..r + §X>..r + §X>..r A 

(10) 

Let us define the expressions that appear in the equation above. F and 
S were discussed earlier, "b" is the slope parameter, and 6A involves the 
variation of the cutoff and it will be explained when we discuss the cutoff 
procedure. The "supermetric" G is defined by 

§25 fAT 6,5 G ,,-~-~...,..-,. J..l.a,J..I. (T - 6)(J..i.a6)(J..I.'a' - J..l.a,J..I.1a1 d)( AT l 
(11) 

and QJ..i.a,J..i.' a' is the inverse of G J..l.a,J..I.' a'. The connection r is introduced in order 
to preserve covariance under the transformations given by eq.(4), and it will 
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be further specified later on. The term Mp.u,p/u' is related to the Jacobian of 
a change of variables, as explained in [1 ], and it depends on the connection r 
alone. In this paper, we only need the terms linear in its expansion in terms 
off: 

, , = -~ (or~;,p.u or~;,p.'u' or~;,p.'u') .. . . (12) 
Mp.u,p. CT 3 oXJ.L'CT' + ox>..T + ox>..T + . 

In the preceding equations, as well as in the rest of the paper, the summation 
convention is also applied to the world sheet variables; repeated variables are 
to be integrated over. We also frequently use the matrix( operator) notation 
for expressions with two sets of indices, for example, Gp.u,p/u' is to be thought 
of as a matrix in the set of indices f-lCJ and J-l1 CJ1

, with an obvious definition of 
the matrix product. Another convention we follow throughout the paper is to 
write only the set equations corresponding to v+(CJ+), when the set involving 
v_(CJ_) can be obtained from the first set by the obvious substitution+ t-t -. 
Following this convention in the above set of equations, we have not displayed 
the set corresponding to v_. Also, the trace in the expression Trlog( G) is 
over the same set of indices. 

The set of eqs.(8,9,10) form the starting point of this paper; they are the 
analogue of the renormalization group equations of reference [10]. ompared 
to [10], it has the advantage of being invariant under the transformations of 
eq.(4), which, as we shall see, is important in eliminating certain spurious 
states. In contrast, in the non-covariant approach of [10], there does not 
Seem to be enough gauge invariance to decouple all the spurious states. 

As they stand, eqs.(8,9,10) are still only formal, since we have not yet 
specified any cutoff or regularization procedure. We now briefly discuss the 
heat kernel method, the regularization procedure we are going to use. It 
differs from the naive cutoff used in [1], and it has several advantages over 
it: It is simple to implement, and it preserves invariance under coordinate 
transformations (eq.(4)). There is a further advantantage in using the heat 
kernel method : Although we have written down eqs.(8,9 and 10) in full 
generality, we are really interested only in the local terms in these equations. 
By this, we mean terms that have a local expansion similar to the expansion 
for S(l) in eq.(1). These terms are the only ones to be considered in a 
renormalization group analysis such as ours, since only they contribute to 
the renormalization of the original local action. The heat kernel method 
provides a very convenient way of extracting these local terms, and it will 
enable us later on to write a finite and local version of the equations (8,9,10). 
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There are two divergent terms that need regularization: The Trlog( G) 
term in eq.(9) and M1.ur,p/u' in eq.(12). Let us first consider the Trlog(G). 
We set 

(13) 

where, 
~/LI:T,Jl.1 U1 = 'TJJ.LJ.L'~u,u'' ~u,u' = -f}+f)_6

2(CJ- CJ1
). 

We shall also need the free propagator ~J.Lu,J.L'u', which is the inverse of ~J.Lu,J.L'u'· 
It satisfies 

and its regularized form is given by 

~Jl.U,J.L'u'-+ ~Jl.U,J.L'u' (€) = loo dt {;~~,Jl.'u'(t), (14) 

with 

G~~ "'u'(t) = B(t) (e-ttl) ,.... ,,.... Jl.U,J1.1U1 

(CJ- CJ')2) . 
4t 

(15) 

The term Trlog( G) is regularized by 

100 dt -
TrlogG -+ - - Tr( G), 

f t 
(16) 

where the full heat kernel G is defined by 

G,u "'u'(t) = B(t) (e-tG) . ,.... ,,.... Jl.U,J1.1u' 

We now compute the conformal variation of Trlog(G). Starting with 

(17) 

it is convenient to split it into two terms: 

(
.r(l) .r(2)) G 
Uv+ + Uv+ Jl.U,J.L' u'. (18) 
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This split is motivated by the observation that conformal transformations are 
a special case of the coordinate transformations; the transformation law of 
a tensor such as G p.u,f.l-' ul under the coordinate transformations contains two 
types of terms: the first type comes from the transformation of the indices of 
the tensor and it is represented by c5i~ or the first two terms on the right hand 
side of eq.(18). The second type of term corresponds to the transformation 
of the coordinates on which the tensor depends and it is given by c5i~. For 
example, acting on the first term in eq.(ll) for G, c5i~ is given by 

(19) 

We shall later see that all of the cutoff independent useful information will 
come from c5i~; c5i~ will only contribute cutoff dependent terms which will 
cancel. 

We now turn to the evaluation of the right hand side of eq.(17). Using 
the definition of the heat kernel, and the identity 

one can easily establish the following result: 

8~~ (Trlog(G)) = 

= ~ [
00 

dt I d20" I d20"1 Gp.u,p.1u1 
( Ou+ (t) ( v( O"+)Hp.u,p.'u1

) + Ou'+ ( v( O"~)Hp.u,p.1 u1
)) 

= ~ Joo dt ld20" ld20"'v(O"+)- v(a~) (H 1 ~~ (tG(~) 1 (t)) 
2 E 0+ - (]"+ p.u,p. U Ot J.L U ,p.u 

-~ /_:

00

_dt' (HG(t')Htu,p.1u1 ! ((t- t')G~~~~,p.u(t- t')) ). (21) 

This equation enables us to make a clean seperation between local and non
local contributions to eqs.(8,9,10). We note that the integrand is a total 
derivative with respect to the variable t. It can therefore be integrated, with 
the result that the contribution from the upper limit oo is the non-local 
part of the integral, and the contribution from the lower limit E is the local 
part. This follows from the well-known properties of the heat kernel, which 
describes the diffusion of a point source as a function of time t. For small t, 
t = E, the source can diffuse only a small distance in space, and so in the limit 
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f. --? 0, the contribution from the lower limit is local. On the other hand, the 
contribution from the upper limit is clearly non-local, since t is very large. 
We now define 8A ( eqs.(9,10)) so as to cancel the unwanted contribution 
from the upper limit of integration overt: 

_.!.jd2 jd2 'v((7+)-v((7~)( G-(o) ()H 11 

2 a a /T /T/ f. J.L1U1 ,J.LU f. J.LU,J.l U 
v+ -v+ 

1 1E -(0) ( - ) ) -
2 

dt'(f.- t')G,,ul ,u(f.- t') HGH . (22) 
0 ,.. ,,.. 1J.U,J.l1U1 

It can easily be shown that this definition ensures that the long distance be
havior of the free propagator is unchanged under conformal transformations. 
For this reason, in the case of free propagator, the regularization we are using 
agrees with the cutoff used in reference [10]. Having extracted the local part 
of eq.(9), we can rewrite eqs.(9,10) in the following form: 

(23) 

We shall often need the part of the above equation linear in fields. It is 
quite straightforward to linearize various terms except perhaps EM. Since 
M already starts at the linear order(eq.(12)), in the factor in front of this 
term, we can replace G by the zeroth order term in its expansion: 

GJ.LU,J.l
1 

u
1 

--? 100 

dt G~~,J.l~ ul ( t), 

and arrive at the result 

(24) 
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Next, we turn our attention to eq.(12) for Mp.u,p.'u'· This expression needs 
regularization, since the integration over the variable T will lead to diver
gences. Again, we use the heat kernel method to regulate it. Making use of 
a basic property of the heat kernel,namely, as c -+ 0, 

lim ( Gi~,p.' u' (c)) -+ 'T}p.p.' 62 
( cr - cr'), 

we can regularize the integration over T by setting, for example 

I d2 r·>.r I d2 I d2 'r·>.r G-(o) ( ) T >..r,p.u -+ T T A'r' ,p.u >..r,A'r' c · 

Combining this with eq.(24) yields the following regulated expression for EM: 

-~I d2
cr I d2cr' I d2

T I d2T1 v(cr;~ = ~~cr~) c ci~,p.'u'(c)G\~,A'r'(c) 

X ( 
6f~Jr' ,p.u 0f~~,p.' u' ) 

2 6Xf.J.'u' + 6XA'r' + ... ' (25) 

where the dots represent higher order terms in the fields that we have not 
written down. Finally, putting everything together, we have the following 
linear version of eq.(23): 

(26) 

where, 

(27) 

In closing this section, let us comment on what has been accomplished 
so far. Using the heat kernel method, we have both regularized the basic 
renormalization group equations (8,9,10) and also extracted their local com
ponent. The result is eq.(23) and its linearized version, eq.(26). At first 
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sight, it is not clear that these equations are powerful enough to give useful 
information. For example, the connection r and the field f (eq.(7)) were 
introduced as independent fields in our equations. On the other hand, since 
the string field equations should ultimately be expressible only in terms of 
the string fields that appear in the basic action of eq.(1), r and f should 
somehow be eliminated in favor of these fundamental fields. In the follow
ing sections, we shall see that there is no need of an a priori determination 
of the auxilliary fields r and F ; the equations themselves will do this job 
for us. The situation is somewhat similar to the first order formulation of 
general relativity, when the connection is introduced as an independent field 
and then determined from the equations of motion. We have somewhat over
simplified the situation here; the equations we have, unlike those in general 
relativity, are not quite powerful enough to determine all the components 
of these auxiliary fields. However, the undetermined components are also 
unneeded; they do not appear in the equations for the string fields. As a 
consequence, the auxiliary fields can be completely eliminated from the final 
string field equations. 

Another question concerns the cutoff dependence of the equations. We 
shall see that the equations neatly seperate into cutoff independent and cutoff 
dependent parts. The cutoff dependent pieces have a different structure than 
the cutoff independent ones, and as a result, they have to cancel among 
themselves. The resulting equations partially fix r and F, but they do not 
lead to any relations between the string fields. As we shall see, the useful 
equations come exclusively from the cutoff independent pieces in eq.(26). 

In the next two sections, eq.(26) will be applied to· the massless and the 
first massive levels of the string, neglecting all the rest of the levels. In section 
5, we generalize our treatment to include all of the levels. The reasons for 
specializing to these two levels are the following: In [1 J, we considered the 
same two levels of the string, with somewhat unsatisfactory results for the 
first massive level. We feel that it is instructive to compare the improved 
treatment given here to the treatment given in [1], and to show that all the 
dificulties encountered in the earlier paper are easily overcome. In addition, 
since the general treatment of all the levels given in section 5 is somewhat 
formal, we felt that working out two simple examples in some detail might 
be useful. 

3. Linearized Equations For the Zero Mass States 
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In this section, we apply eq.(26) to the massless states of the string, 
the graviton, the dilaton and the antisymmetric tensor, suppressing for the 
time being all the other states of the string. Also, we confine ourselves 
to a linearized treatment, which serves as an introduction to the full non
linear treatment of section 6. The action that describes the graviton and the 
antisymmetric tensor is the second term in eq. ( 1): 

(28) 

The dilaton is at the moment missing, and it will make its appearence later 
as part of the connection. As explained earlier, the connection will not be " 
specified yet, and only the following general conditions will be imposed on 
it: 
a) The connection should be a local function of X(o"). 
b) Its classical conformal dimension should be determined by requiring that 
the two terms in eq. (11) have the same dimension. This requirement guar
antees that G JLu,p.' u' will have a well defined classical conformal dimension. 
These requirements fix the form of r to be 

(29) 

We should make it clear that although we are using for it the same symbol 
as the usual metric derived connection of general relativity, r;JL, is as yet an 
undetermined function of X(a). In fact, in the end; it will turn out to be 
different from the standard result. 

We now discuss the expected invariances of the model. Since all the 
higher levels in the action are neglected, invariance under coordinate trans
formations, eq. ( 4), is restricted to the coordinate transformations of general 
relativity, 

(30) 

In addition to these coordinate transformations, there is invariance under the 
gauge transformations given eq.(3). Taking 

we have the well-known gauge transformations of the antisymmetric tensor: 

(31) 
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Finally, the action given by eq.(28) is conformally invariant in the classical 
limit. 

As a consequence of these invariances, in computing the contribution of 
various terms to eq.(26), a number of simplifications occur: 
a) Two of the terms in (26) vanish as a result of the conformal invariance of 
the action, 

0, 

0. (32) 

b) The second term in the same equation also vanishes, since J:,u = 0. This 
is because the first term for Fin eq.(7) already transforms as a vector under 
(30). 
The remaining of the terms are given by, 

I 2 I 2 ,v(cr+)- v(cr~) -
d a d a I € Gp.'u',p.u(t)Hp.u,p.'u' 

(T+- (T+ 

= 4~ 1 d2crv'(cr+)a+xp.ua_xJ.L'u(o'hJ.tiJ.' _ ap.a>.h>.p.' 

+ap.,a>.h>.p.- 2 aJ..L,r~>.) + 
2
:€ 1 d2cr v'(cr+)h>.>., (33) 

EM = 3( 4~)2€ I d2cr v' (a+) ( 28/J.r~p.(X(cr)). + avr~J.I (X(cr))) . (34) 

Substituting these results in eq.(26), we note that terms propotional to the 
factor a+xp.u a_xp.'u and terms that do not have this factor must cancel 
seperately among themselves. Since the terms without this factor are propor
tional to 1/ t, it follows that cutoff dependent terms cancel among themselves, 
and the cutoff factor does not appear in the resulting equations: 

(35) 

(36) 

In addition to eq.(34), which came from conformal transformations on the 
variable a+, there is a a_ counterpart, obtained by letting 
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in that equation: 

oii~'' ~' - 8~'8>.h~'' >. + 8~''8>.h~'>. - 2 8~'' r~>. = 0. (37) 

Combining eqs.(34) and (36) yields the following result: 

>. 1 r JLJ.l = aJ.lhJ.l>- - 2a>-hJ.lJ.l +a>.¢, (38) 

ohJ.lJ.l'- aJ.la>-hJ.t'>-- aJ.l'a>-hJ.t>- + aJ.laJ.l'h>->-- 2 aJ.laJ.l,c/J = o, (39) 

DBJ.tJ.t'- 8J.t8>.B>.J.t' + 8J.t'8>.B>.J.l = 0. (40) 

We now make a few observations: 
a) Eq.(38) determines only r~J.t' the contracted part of the connection, up 
to a total derivative of a new field. We identify this field ¢ with the dilaton 
field. 
b) Eq.(39) is the correct linearized equation for the gravitational field (sym
metric part of h), coupled to the dilaton field. 
c) Eq.( 40) is the correct linearized equation for the antisymmetric tensor. 
d) Those components of r not determined by eqs.(35) and (36) play no role 
in the equations for the fundamental string fields. In fact, r is completely 
absent from the equations for h and B. One can think of this as some kind 
of gauge in variance operating on r, although we will not stress this point of 
view in this paper. 
e) The linearized equation for the dilaton 

D¢=0, 

is~ still missing. It can in fact be derived from the eq.(38) for gravity as 
follows: This equation is invariant under 

(41) 

the standard linearized gauge transformations of gravity. If the d' Alembertian 
acting on hJ.tJL' in (39) is invertible, then his a pure gauge. Therefore, the only 
physical part of h comes from the non-invertible part of the d'Alembertian. 
One can then fix the gauge so that 

DhJ.lV = 0. 

In this gauge, applying the d'Alembertian on both sides of (38), we find that 
¢ satisfies the massies free field equation. 
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To summarize, we have shown in this section that eq.(26) correctly re
produces the coupled gravity-dilaton equations in the linear approximation. 
We stress that no a priori choice of metric or connection was made; in fact, 
the metric played no role at all in our derivation. This is in contrast to the 
standard treatment [2-6], where an initial choice of the metric is made. The 
problem is that when the higher levels of the string are present, they will in 
general contribute to the metric, it is no longer easy to guess the form of this 
contribution. An incorrect initial choice would in general conflict with the 
renormalization group equations. We avoid this problem by letting the equa
tions determine as much of the connection as possible; the components of the 
connection that are left undetermined are spurious and do not appear in the 
equation for the physical fields. The dilaton field, which was not present in 
the original action(eq.(l)), emerges from as part of the connection. Again; 
this differs from the standard approach [5], which introduces the dilaton field 
in the original action. 

4. Linearized Equations For The First Massive Level 

In this section, we apply eq.(26) to the first massive level of the string. In 
general, the action for the first massive level contains 8 terms; however, using 
gauge transformations of the form given by eq.(3), it was shown in [1] that 
five of those terms can be eliminated, resulting in the following completely 
gauge fixed form: 

s{l) - I d2CT( eiJ.liJ.2,vlv28+XP.la+XP.28_Xv1 a_Xv2 

+ ep.1 p.2 p.3 8+8_XP.1 8+XP.2 8_XP.3 + ep.1 p.28+8_XP.1 8+8_XP.2). (42) 

In this formula, the fields, as usual, are assumed to be local functions of 
X ( CT). The full action is again sum of free and interacting terms: 

S = S(o) + 5(1), 

with S(o) given by eq.(l). The coordinate transformations relevant for this 
action are 

These transformations, acting on S(o), generate terms of the same form as 
the terms proportional to ep.1 p. 2 p.3 and ep.1 p.2 in S(l). In fact, these terms can 
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be eliminated by choosing 

(44) 

which shows that the corresponding states are spurious, so long as the theory 
is invariant under ( 43). The only set of states which cannot be decoupled 
are the states represented by the first term in eq. ( 42); these are therefore the 
only physical states. 
At this point, we would like to make the following observations: 
a) The coordinate transformations , acting S(1), generate additional terms. 
Since we are investigating only the linear portion of the theory, these terms 
can be neglected. 
b) The terms eliminated by coordinate in variance are the same terms which 
would vanish, if the free equations of motion for X, 

(45) 

were imposed. Of course, in the linearized theory, the free field equations are 
what remain from the full set of interacting classical equations that follow 
from the action ( 1). Covariantizing the theory with respect to coordinate 
transformations therefore enables one to use the classical equations of mo
tion in conjunction with the renormalization group equations. We should 
stress that, since the renormalization group equations deal with off mass 
shell quantities, the use of the classical equations of motion is in general not 
permissible in a non-covariant approach. This is clearly a good feature of the 
covariant approach, since the states eliminated by the equations of motion 
are also absent in the standard treatment of the string theory. In contrast, 
in a non-covariant treatment of the renormalization group equations, it is 
not clear how to eliminate these unwanted states (10]. It is also interesting 
to know whether what we are doing here is related to the Batalin-Vilkovisky 
program (21,22], which also makes it possible to use the equations of mo
tion in an off-shell formulation. In this context, Henneaux (23] discussed 
the connection between field redefinitions, equations of motion and Batalin
Vilkovisky method. 
c) Let us compare the coordinate transformations of general relativity( eq. ( 30)), 
which are completely local on the world sheet, with the transformations of 
eq. ( 43), which, in contrast, contain derivatives with respect to the world 
sheet coordinates. Invariance under either set of transformations serves to 
eliminate spurious states. There is, however, a difference: Invariance under 
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diffeomorphisms of general relativity, in contrast to invariance under ( 43), 
does not lead to on mass shell constraints . 

The next step is to secure invariance under ( 43) by introducing a suitable 
connection. The conditions that the connection must satisfy are the same 
ones that lead to eq. (29); namely, locality and the correct classical conformal 
dimension, plus world sheet Lorentz invariance. The expansion in terms 
of delta functions in world sheet coordinates and their derivatives is rather 
lengthy; it contains ten terms. To give the reader an idea, we exhibit a few 
typical terms below: 

r~~,JL'u' 62
(7- a)62(a- a')(r~~'~a13 (X(a)) fhXaua_xiJu 

+ r~~~Q a+a_xau) + 62(7- a)8u+62(a- a')r~~~Q a_xau 

+ 62(7- a)8u_62(a- a')r~~~Q a+xau +... (46) 

The reader should have no trouble in constructing the remaining terms acord
ing to the following rules: There are always two delta functions setting the 
worldsheet variables a,a' and 7 equal to each other, and there is one deriva
tive with respect to a+ and one derivative with respect a_, acting on the 
delta functions or on X's. Each term contains also a local function of X(a), 
denoted by f's with superscripts. In a similar fashion, using locality and di
mensional analysis, the unknown function in the definition of the conformal 
Killing vector ( eq. (7)) can be written as 

I d27 v(7+)f!/'(T = v'(a+) (!~~JL a+xvua_x>.u + JPYJL a+a_xvu). (47) 

We now substitute eqs.(42),(46) and (47) into (26); the resulting equations 
are the linear part of the string field equations satisfied by the states at the 
first massive level. Since these equations are rather lengthy and a knowledge 
of their detailed form is not particularly important, in what follows some 
their important general features will be described, and a few of them that 
are really needed will be written down. First of all, it is useful to exhibit the 
cutoff dependence of the equations by writing them in the following form: 

l d2av'(a )(a XJLICT8 XJL2CT8 XV1 CT8 XV2CT A(l) (X(a)) + + + - - JLIJL2,VIV2 

+8+8_XJL1 8+XM8_XJL3 A~~)JL2JL3 + 8+8_XJL1 8+8_XJL2 A~)JL2 

+82 XJL 1 8 XJL28 XJL3 A(4) + 82 XJL 1 8 XJL2 A(S) ) + - - JLI JL2JL3 + - JLI JL2 
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; 

+log(€) I d2a v'(a ) (a XJJ.IU a XMU a Xl/IU a Xl/2
(7 B(l) + .. ·) + + + - - JL1Jl.2,VJI/2 

+~I d2a v'(a+)a+xp.ua+xvucp.v(X(a)) + €~ jd2a v'(a+)D(X(a)) 

= 0. (48) 

Without doing any calculation, the general form given above follows again 
from locality and naive dimensional analysis. The dots stand for terms not 
written down, which can be obtained by replacing A(i)'s by B(i)'s in the line 
above them. We now examine each of these terms in turn: 
a) The last two terms have a dependence on derivatives of X quite different 
from the first two terms and also from each other. As a consequence, it 
follows that C and D must vanish seperately, 

Cp.v = 0, D = 0. 

These equations constrain various pieces of the connection; since they are 
rather lengthy and they do not contribute to string field equations, which 
are our main interest, we are not going to write them out explicitly. The 
important point is that cutoff dependences of the form 1/€ and 1/(€)2 have 
completely dissappeared from the equations. 
b) There is still a cutoff dependence of the form log( €) in the second term, and 
since this term has exactly the same structure as the first (cutoff independent) 
term, we cannot demand that it vanishes seperately. However, after some 
manipulation of the equations, it is not difficult to show that 

(49) 

where S(l) is given by eq.(42). Since S(l) is multiplied by the slope param
eter b (see eq.(9)), we can get rid of the logarithmic cutoff dependence by 
redefining b: 

b' = b log(€) 
+ 167r (50) 

Exactly the same redefinition also eliminates the log( €) dependence from the 
equations for the tachyon and for the higher massive levels. Therefore, the 
renormalization of the slope parameter, which gets rid of terms proportional 
to log( €) is the only renormalization needed ; all the cutoff dependence drops 
out of the equations automatically. 
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c) Having disposed of all the cutoff dependent terms in ( 48), we are left with 
five cutoff independent equations 

(i) -
AJ.'IJLz,VI£12 - 0, i = 1, 2, .. , 5. 

Three of these equations, those involving A(5), A(2) and A(3), provide further 
constraints on the connection and the conformal Killing vector, whereas the 
remaining two, involving A(l) and A(4 ), can be written exclusively in terms of 
the string field eJ.£1J.£2,v1v2 • As the discussion leading to eq. ( 44) shows, among 
the fields of the first massive level given by eq.(42), this field is the only 
physical one, so we expect that the string field equations should finally be 
expressible in terms of only this field. Taking into account the~- counterpart 
of (48) and simplifying, we have, 

(51) 

and, 

1 
o"'eJ.£Ij.£2,vv1 - '6 Ov1 eJ.£IJ.£z,vv = 0, 

1 
QJ.'eJ.'J.£1 ,£1}1/2 - 6 QJ.£1 eJ.'j.£,£1}£12 = 0. (52) 

The above are indeed the correct equations for the first massive level of the 
closed string. In case of eq.(49), this is obvious; on the other hand, eqs.(52) 
may not look familiar. This is because, in writing down eq.(42), we have 
made use of linear gauge transformations of the form of eq.(3) to eliminate 
some spurious states. In the next section, we will show that, in the string 
language, these correspond to gauges generated by the operators L_1 and 
L_1. What we have done amounts to explicitly solving the string equations 

Eqs.(50) are then equivalent to the remaining string equations 

In the standard string approach, one starts with the redundant set of fields 
Ep.1p.2 ,vw2 , EJ.£,v1v 2 , EP.IM,"' and Ep.v (see Appendix B of [1]) without initially 
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imposing any string equations. The connection between our eJL1 JL2 ,v1v2 and 
the string field EJLJJL2,v1 v 2 is 

5 5 
eJ.i.l/-L2,VJV2 = EJ.i.l/-L2,V}V2 + 12 (TJJ.tlJ1.2EJ.i.Jl.,VJV2 + 1JvJV2EJ.i.lJ1.2,vv) + 481}Jl.lJ.t21JvJV2EJ.i.J.t,VV· 

(53) 
It is then not difficult to show that the free string equations for the E's are 
equivalent to eqs.(52). 

At this point, we would like to compare the results obtained here for the 
first massive level to the results of [1]. The main difference is that in [1], 
only left-right symmetric models could be treated, whereas here there is no 
such restriction. Also, the restriction that the coordinate transformations of 
eq.(4) should have unit determinant has been removed. These restrictions 
were due to an improper choice of the connection in [1]; they dissappear when 
the connection is freed from any a priori constraint. 

Finally, in closing this section, let us try to understand how starting 
with a non-renormalizable action ( eq.( 42)) and a largely arbitrary connec
tion (eq.(46)), we were able to derive unique and cutoff independent equa
tions. This result follows from. the structure of eqs.( 48). Since the theory is 
non-renormalizable, there is a singular dependendence on the cutoff, in the 
form of terms proportional to 1 IE and 1 I E2

• Because of their different struc
ture, however, these terms satisfy seperate equations and never mix with 
finite terms or terms proportional to log(E). Dimensional analysis dictates 
the structure of these terms; each additional power .of E must go with an 
additional derivative with respect to the world sheet coordinate. Moreover, 
the equations proportional to 1 IE and 1 I f..2 determine p~rtially only the con
nection and the conformal Killing vector; they impose no constraints on the 
string fields. The remaining equations are similar those coming from a renor
malizable theory; the log(f..) is absorbed into slope renormalization, and at 
the end, one is left with the cutoff independent equations of the form 

(54) 

Furthermore, these equations can be neatly seperated into two sets: Those 
that receive contribution from the connection and the Killing vector and 
those that do not. The structures of these two sets are different; the first set 
of terms can be written in the form 

(55) 
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where both m and n are integers 2:: 1. The second set consists of terms 
that cannot be written in this form. Or, stated otherwise, the first set of 
terms vanish upon imposing the free field equations (45), whereas the second 
set of terms do not. Glancing at eq.(48), we see that A(2), A(3) and A(s) 

belong to the first set and therefore only they receive contributions from the 
connection and the conformal Killing vector. On the other hand, A{l) and 
A (4) belong to the second set, and setting them equal to zero yields the string 
field equations (51, 52). It is not too difficult to see why the connection and 
the Killing vector contribute only to the first set: Both contributions include 
a factor 

8S(o) 
-- - -? a a XJ.LU 8XJ.Lu- ~ + - ' 

which vanishes when the free field equations ( 45) are used. In the next 
section, we shall see that the same seperation into two sets also works in the 
case of all the higher levels. 

5. Linear Equations For All Levels 

In this section, we shall show that, the standard free string equations 

(Lo- l)ls > - 0, (Lo- l)ls >= 0, 

Lnls > - 0, Lnls >= 0, (56) 

can be derived from eq.(26). In the previous two sections, we have already 
shown this for the massless and the first massive levels. Here, we present a 
general proof that applies to all the levels. In constructing the proof, we will 
make use of the following results of the last section: 
a) Only the cutoff independent part of eq.(26) gives useful information about 
the string states; the cutoff dependent equations proportional to inverse pow
ers of € provide only constraints on the connection and the Killing vector. 
This result can be established for the higher levels without much trouble by 
appropriately generalizing eqs.( 46),( 47) and ( 48) to these states. Just as in 
the case of the first massive level, the number of constraints on the connec
tion, for example, are far fewer than the number of allowed components of 
the connection, and therefore, the connection is only partially fixed. 
b) The terms that depend logarithmically on € turn out to be proportional 
to the action, with the same constant of proportionality as in eq.(49). They 
are eliminated by slope renormalization. 
c) The cutoff independent equations can be split into the two sets discussed 
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at the end of the last section (see eq. (55)). Only the second set of equations, 
which do not vanish upon imposing the free field equations ( 45), are free of 
the connection and the Killing vector and hence lead to useful string field 
equations. This is established by the same argument given at the end of the 
last section. 
Let us now extract these "useful" equations from (26), by first eliminating all 
of the cutoff dependent terms and terms belonging to the first set. The third 
and the last terms on the left hand side of this equation are purely cutoff 
dependent and can be dropped. One can also drop the terms proportional to 
the connection and the Killing vector, since they belong to the first set. The 
only remaining term with c dependence is the second term, which, in addi
tion to singular pieces, contains a cutoff independent subterm. To extract 
it, we note that, because of locality, H will turn out to be the sum of terms 
proportional to 62(cr- cr') or some order derivative of it with respect to cr+ 
and cr _. The terms in H that are proportional to the delta function without 
the derivatives have cutoff independendent contributions. This follows from 
eq.(15) for 6<0): 

G-(o) ( )-'2('., ') _ 1 -'2( ') 
€ J.I'CT',J.IU € U CT- CT - 41f TJJ.IJ-1' U CT- CT • 

For this term, we can replace Q(O) by 1 I 41fTJJ.IJ.I'. On the other hand, in the case 
of delta function with derivatives, we can integrate by parts with respect to 
either cr or cr' to transfer all the derivatives on the prefactor in front of H. If 
any of the derivatives act on G(o), it again follows from eq.(15) that the result 
either vanishes or is proportional to an inverse power of €. These are the cutoff 
dependent contributions and they can therefore safely be dropped. The only 
term that survives is the one where all the derivatives act on v(u+)-v~u±), and 

(1+-0'+ 

Q(O) is multiplied by a delta function without derivatives. In this term, G(0) 

can again be replaced by 1l47r, and the derivatives acting on v(u:1=~r±) can 

then be shifted back on H. All this amounts to simply replacing G(o) by 
1 I 47r 7JJ.~J.I'. As a result, we arrive at a cutoff independent relation: 

b'Jd2crv(cr )8 XJ-10' <)S(l) +-1-Jd2crjd2cr'v(cr+)- v(cr~) <)2S{l) "'0. 
+ + <)XJ.~u 167r cr+ - cr+ <)XJ.iu <)XJ.~u' 

(57) 
Although cutoff dependent terms have disappeared, there are still terms be
longing to the first set that have to be eliminated. This explains the need for 
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the "" sign; the above equation is in reality an equivalence relation modulo 
terms of the first set, namely, terms which vanish on the free field equations. 
The source of these unwanted terms is the structure of S(l), to see this, we 
split it into two pieces: 

S(l) = s, + Ss, 

where s, can be written in the same form as (55), 

s, = L I d2
CJ N~r;:·n) a:;ar:_xp.cr, 

m,n 
(58) 

with m and n ~ 1, and Ss is the rest. It is natural to expect that S1 will 
contribute terms of the first set to eq.(57). We will now show that this is 
indeed the case by making use of the identity 

We have not written out the explicitly the terms represented by dots, since 
they do not contribute to eq.(57). To see this, consider the term with deriva
tives with respect to CJ±· There is at least one derivative each with respect 
to (J + and (J-. upon integration by parts, this will kill the factor v(cr:1=:r+). 
A similar argument goes through for terms derivatives with respect to CJ'±, 
and also for the equation which is the CJ_ counterpart of (57). The remain
ing term clearly belongs to the first set. It is therefore justified to drop the 
contribution of S1 altogether, and replace S(l) by Ss in (57). There is, how
ever, an ambiguity in the seperation of S(l) into S1 and Ss that we have 
just outlined. This seperation depends on the form of the integrand, as in 
eq.(58), and partial integration may convert an integrand that appears to 
belong to the second set into one of the first set. One way to eliminate this 
ambiguity is to completely fix the linear gauges generated by integration by 
parts (eq.(3)), as we have done in writing eq.(42). This is not a practical 
procedure in the case of higher levels, so, we shall leave this gauge ambiguity 
unfixed for the time being. Later, we shall see that, in the string language, 
it corresponds to the gauge transformations generated by L_ 1 and L_1 • 
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Eq.(57) has exactly the same form as the linear part of renormalization 
group equation derived in reference [10]. The only difference, but an impor
tant one, is that, S(l) has to be replaced by S8 • This replacement gets rid 
of spurious terms which vanish upon imposing the free field equations (45). 
However, the non-linear terms in the equation derived in this paper, eq.(23), 
appear to be different from the quadratic interaction term given in [10]. 

The next step is to translate eq.(57), with S(l) replaced by Ss, into the 
string language, in order to compare with (56). We shall write the analogue 
of eq.(1) for Ss in the form 

Ss = j d2a ls,o- >, (60) 

where the integrand is represented by a state labeled by s, which can be built 
from the "vacuum" by applying creation operators. These operators stand 
for the derivatives of X with respect to a+ and a_: 

(61) 

The sigma dependence of the operators a and a has been suppressed to sim
plify writing. For example, the state corresponding to the graviton ( eq.(28)) 
is 

(62) 

We note that, since by definition, no mixed derivatives of X, such as 8+8_XJ.£u, 
appear in Ss, one can write the most general Ss in terms of the operators 
defined above. The situation here closely parallels the standard quantization 
of the modes of the free string. There is, however, a difference in the way 
the integers m and n in eq.(61) are assigned; in the standard string quantiza
tion, these would stand for the Fourier modes of X. Here, they represent the 
number of derivatives acting on X, more in parallel with the representation 
of the vertex operator. 

We will now rewrite the linear gauge transformations in the operator 
language, by noticing that the derivatives with respect to o-+ and a_, acting 
on a state, can be represented by 

00 

tJ.£8 +"' tJ.£ Ql J.£ ~ Qm+lGm,J.£' 
m=l 
00 

-tJ.£8 +"' -tJ.£ -
Ql J.£ ~ Qn+l Gn,J.£' (63) 

n=l 
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and so (3) can be rewritten as 

Is, a->--+ Is, a-> +L-1Is+, a-> +L-lls_, a-> . (64) 

In the above equations, ()J.L acts on the argument X(a-) of a wavefunction 
such as h in eq.(62). We have also introduced annihilation operators with 
the standard commutation relations 

Eq.(63) for L_1 and L_1 is not the familiar one given in string theory, but 
one can recover the standard form by the following scaling which preserves 
the commutation relations: 

J.L 1 J.L 
Q' = ro= am, 

m y.un (m -1)! 
a!:=~ (m -1)! at!:, (65) 

and similarly for the barred operators. Here, we are guilty of an abuse 
of notation; a and at are Hermitian conjugates, as the notation indicates, 
whereas a and o:t are not. In what follows, we will nevertheless continue 
using the o:'s, since the resulting formulas look somewhat simpler. 

With these preliminaries over, we will first recast the first term in (57) 
into the operator language. A straightforward calculation gives 

where v<m) stands for the m 'th derivative of v with respect to its argument. 
The last step follows upon integration by parts and by replacing the deriva
tives with respect to a-+ by L_b as in eq.(63). 

We now turn our attention to the second term in (57), and convert the 
integrand of this term into an operator expression: 

~~ ( ) 8Xw'8XJ.Lu' = 82(a-- a')D + ~(o;::_82(a-- a-'))o:~ ()J.L Is, a-> 
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+ ~(-1)ma;:_ ( (82(CT- CT')o:':n811 + ~a!+(82 (CT- CT'))o:':no:k,11 ) ls,CT >) 
+oa_ (· · ·) + Oa'_ (···)+I,. (67) 

The terms represented by dots have not been written out, since they will 

drop out after muliplication by v(a:1=:t±) and integration over CT and CT1
• 

Also, the terms represented by I 1 belong to the first set (eq.(55)), and as 
explained earlier, they do not contribute to the equations for the physical 
fields. Using this result and also the identity 

we have, 

(68) 

In arriving at this result, again integration by parts and eq.(63) has been 
used. Finally, combining eqs.(66) and (68) gives us the following operator 
version of (57): 

Tis>= 0, (69) 

where 

(

oo (-1)m ) 
T = 2: ( )' L"!:1Lm- 1 . 

m=O m+ 1. 

For convenience, we have set 161rb' = 1, which differs from the conventional 
slope normalization by a factor of two. We have also introduced the conformal 
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operators Lo and Lm, with.m > 1:· 
00 

Lo D + L kaj:ak,JL- 1, 
k=l 

2 JL m-l k!(m- k)! JL 
-, am aJL + I: 1 am-kak,JL 
m. k=l m+ 

~ (k + m)! tJL 
+ f;;i (k _ 1)! ak ak+m,w '(70) 

Converting the a's into the a's through eq.(65), the L's defined above are 
readily identified with the usual Virasoro operators of string theory, with the 
standard commutation relations 

(71) 

Eq.(69) is the main result of this section. It is to be supplemented by its 
left moving counterpart, where a's are replaced by a's and L's by L's. These 
two equations are then the linearised form of the string field equations. It is 
easy to check directly that they are invariant under the gauge transformations 
of eq.(64); this follows from the identity 

TL_ 1 = 0, (72) 

where T is the operator defined in eq.(69). In their present form, these 
equations ( ( 69) and its left moving counterpart) look quite different from the 
standard string equations (56); for one thing, there are only two equations 
instead of an infinite set. In the next section, we will show that, by a suitable 
gauge fixing, the standard string equations follow from (69). 

6. Derivation Of The Standard String Equations 

The goal of this section is to show that the equations with L's in (56) 
follow from eq.(69). Since the derivation of the equations with L's is exactly 
the same, we will not consider them any further in this section. Let us first 
write (69) in the form 

(Lo- 1)Js >= L-1ls' >. 

Since the right hand side of this equation is pure gauge, the left hand side 
will also be pure gauge, except for states satisfying 

(Lo- 1)Js >= 0, (73) 
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for which L 0 -1 is not invertible. This is the mass shell condition for physical 
states, which amounts to a partial choice of gauge. We note that a rectricted 
set of gauge transformations, which preserve the mass shell condition, are 
still allowed. Combining (69) with (73) gives 

oo (-l)m 
Uls >= L ( 1)1 L"!.':1 1 Lmls >= 0. (74) 

m=l m+ . 
In arriving at this equation, we have used the fact that, if 

L-1! >= 0, 

acting on a state I >, then that state must vanish. Let us now grade the 
states by the eigenvalues n of the number operator 

00 

N = L m o:t/: O:m,w 
m=l 

The eigenvalues are then the level numbers. The advantage of labeling the 
states by the level number follows from the fact that N commutes with T, 
and so, the states with different level numbers satisfy seperate equations of 
the form (69). We will now work out the consequences of this equation, or, 
equivalently, of eqs.(73) and (74) for a few small values of n, starting with 
n = 0. The state 10 > represents the tachyon, it is annihilated by all the 
o:'s, and it corresponds to p2 == -1. For the next state, at n = 1 and p2 = 0, 
eq.(74) gives the constraint 

L1l1 >= 0. 

When combined with their left moving (barred) counterparts, these are then 
the full set of string equations for the massless states. 

Before going on to the next level, we observe that, since L1 and L_1 are 
mutually adjoint operators, any state can be decomposed as 

(75) 

Using the gauge freedom (eq.(64)), it is therefore always possible to impose 
the condition 

L1ls >= 0, 

on any state. If we impose this condition on the first massive level at n = 2, 
then eq.(74), which in this case is 

1 
(L1- 3L-1L2)I2 >= 0, 
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gives 
L2l2 >= 0. 

We have thus recovered the full set of string equations for the level at n = 2. 
Up to this point, the situation has been relatively simple, but at the next 

level at n = 3, new technical pr<?blems arise. Using the string language, 
what we need is the decomposition of an arbitrary state into a "physical" 
state, plus a number of "spurious" states [24,25]. This decomposition, a 
generalization of (75), reads 

Is>= IP > +lsp > . (76) 

The physical state IP > satisfies the subsidiary conditions of eq.(56); it is 
annihilated by all Ln's with n 2: 1. On the other hand, the spurious states 
lsp > are formed by applying the product of various powers of L_n's, again 
with n 2: 1, on a physical state. Since the L's do not commute, it is con
venient to order this product according to increasing values of n. A general 
spurious state can be written as 

where the state I > on the right is annihilated by all Ln 's with n 2: 1. In 
our case, we can set n1 = 0, since the terms with n1 2: 1 can be eliminated 
by the gauge transformation generated by L_ 1 (eq.(64)). After this gauge 
fixing, the decomposition (76) can be written as 

In this equation, the c's are constants, and the integers n,m, etc. are the 
level numbers of the states. The right hand side is a sum over all the possible 
spurious states with level number n. We are now going to apply eq.(74) to 
the state Is, n >. It is easily verified that the physical state lp, n > satisfies 
this equation, and if we could show that all the c's must vanish, then we 
would have reached our goal of establishing the string equations (56). Before 
tackling the general problem, as a simple example, let us now consider the 
case n = 3, 

(78) 
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The state IP, 3 > satisfies eq.(74), and because 11 > and 12 > satisfy the 
physical state conditions and they have different level numbers, each one 
must satisfy a seperate equation: 

(79) 

Using the algebra the L's satisfy (eq.(71)), the second equation can be sim
plified to 

( 4 L-2 + (~- ~)L:_ 1 ) IO >= 0. 

This equation is clearly impossible, since the two states are linearly indepen
dent and they cannot add up to zero. Hence, we must set c2 = 0 in (78). 
Similarly, the first equation in (79) gives 

Away from the critical dimension c = 26, we can conclude that c1 = 0, 
reaching our goal. However, at c = 26, there is an ambiguity in the definition 
of the physical state; it is possible to add to it a multiple of the state L_2 11 >. 
We note that this state is gauge equivalent to the zero norm state 

lz >= ( L-2 + ~L:_ 1 ) 11 >, 

and that lz > satisfies the string equations (56). The conclusion is that, even 
though the physical state is not unique, nevertheless eq.(69) and gauge in
variance under (64) still imply the standard string equations. The possibility 
of adding zero norm states to a physical state is well known from the theory 
of the critical string [24,25]. 

We would like now to apply the experience gained by working out these 
special cases to the general expansion (77). Let us first sketch our strategy. 
As we have noticed in working out the examples, eq.(74) applied to (77) gives 
rise to several seperate equations; one for each different state lm >, lm >, 
etc. The idea is to pick a generic equation, and try to isolate a term from it 
which has a different structure from the rest of the terms. Such a term has to 
vanish all by itself. The next step is to iterate this procedure and construct 
an inductive argument. What follows is an outline of the various steps of the 
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argument: We first apply the operator U (eq.(74)) to the right hand side of 
(77), and rearrange the products over powers of L_n's so that n increases from 
left to right, just as in (77). This is done using the commutation relations of 
L's to move Ln's for positive n to the right till they hit the state Jm > and 
annihilate it. The result is a complicated sum with many terms; however, one 
term among all others is easy to isolate; it comes only from the application 
of the first term in U, -~L1 , to the first term in (77): 

UJs, n > "" -~c1 L1L':_~L':_~ · · ·Jm > 

( -2 n3 c 1 L':_2
2+

1 L':_3
3-

1 
• • • + · · ·) Jm > . (80) 

Since this contribution has to vanish all by itself, we conclude that n3 = 0. 
After setting n3 = 0 in (77), we next isolate a term of the form 

UJs, n > "" ~c1 L_1L2L':_22L':_~ · · ·Jm > 

( n4 c1 L_ 1 L':_~+l Lr:_~-l · · · + · · ·) Jm > . (81) 

This term, which is again unique, is generated by the application of the 
second term in U to the first term in the expansion of Js, n >. Si~ce it 
cannot be cancelled by any other term, it must again vanish all by itself, 
leading to the result that n4 = 0. Continuing this line of reasoning, it is easy 
to show that all then's except for n2 must vanish. We can therefore rewrite 
eq. (77) in the following form: 

Js, n >= ( c1 L':_~ + c3 L':_~-l L-4 + · · ·) Jm > + · · ·. (82) 

We note that the form of the non-leading terms are severely restricted, since 
their grading with respect to the number operator must match the grading 
of the leading term, which is 2 n2. Again applying U to Js, n > given above, 
we identify two terms which must vanish individually: 
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The resulting equations 

and 
4 2 1 

(3n2 + 3n2 - 6cn2)c1- 2c3 = 0, 

have the only non-trivial solution n2 = 1, c3 = 0, in the critical dimension 
c = 26. This solution, which can be absorbed into into the physical state 
by a redefinition, was discussed following eq.(78). We can therefore conclude 
that 

c1 = 0, c3 = 0. 

Incorporating this result into the expansion (77) gives 

Is, n >= ( C4 L~33L~~ · · · + Cs L~1-:- 1 Ln~ · · · + · · ·) !m > . (84) 

The absence of factors which contain L_2 simplies greatly the next step in 
the argument. We again isolate a unique term from eq.(74): 

Uls, n > "' -~L1 ( C4 L~1L~~ · · · + · · ·) lm > 

"' ( -2 n3 C4 L_2L~1- 1 
• • · + · · ·) lm > . (85) 

For this term to vanish, n3 must be equal to zero. This line of resoning can 
be continued inductively to show that all the spurious states on the right 
hand side of eq.(77) are absent, leaving behind only the physical state. Since 
the physical states by definition satisfy the string field equations of (56), we 
have therefore succeded in deducing these equations from eq.(69). 

7. Gravity To Higher Orders 

So far; we have only studied the linearized form of the string field equa
tions. In this section, we will consider higher order interaction terms of the 
massless fields. To keep the discussion simple, we restrict ourselves to a sym
metric metric, with hp.v = hp.v = hvp. in eq. (28), and drop the antisymmetric 
tensor B, although there is no real difficulty in treating the general case. We 
have already shown in section 3 that the linear terms in the equations of mo
tion are those of gravity coupled to a dilaton, and in view of the postulated 
invariance under coordinate transformations (30), one would expect that the 
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full non-linear set of equations will also turn out to be Einstein's equations 
for the dilaton-graviton system. We think, nevertheless, that it is worthwhile 
to verify that the field equations come out correctly for several reasons. For 
one thing, it is important to demonstrate that the scheme of regularization 
we are using respects the covariance under coordinate transformations. Also, 
it is nice to have a check on the method of using an initially undetermined 
connection. In the linear approximation, it turned out that the connection 
could be completely eliminated from the final field equations, leaving behind 
only the contribution of the dilaton field. We would like to verify that the 
same thing continues to hold true when the higher order terms are taken into 
account. Finally, the computation carried out in this section is a necessary 
preliminary to an explicit construction of a full set cutoff independent non
linear equations for all the levels of the string. Although this latter problem 
is not considered in this paper, we hope to return to it in a future publication. 

The sta~ting point is eq.(23), with the action given by eq.(28) and a 
symmetric h!J.v = h!J.v· We can simplify this equation simplify using eq.(32) 
and setting J:;u = 0. With these simplifications, eq.(23) becomes 

(86) 

where, 

(87) 

W(l), the linear term, was already computed in section 3, so we turn our 
attention to the second term, W(2), which contains all the non-linear contri
bution . In order to keep the exposition simple, we will present here only 
the details of the computation of the quadratic terms in the fields in W(2

), 

although it not too difficult to treat higher order terms by the same method 
we are using. We will also not carry out the calculation of the determinental 
term EM to higher orders. Just as in the linear case (eq.(34)), EM turns out 
to be purely cutoff dependent also in the higher orders, and it is cancelled by 
the cutoff dependent parts of W(l) and W(2). This is the same as computing 
the higher order corrections to eq.(36), and since we are only interested in 
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computing the higher order contributions to eq.(35), we will not consider EM 
any further. 

The part of w<2l quadratic in the fields is given by 

W(2) "' -~ Jd2CJ!d2CJIV(CJ+)- V~CJ~) 
8 (J+- (J+ 

x r dt'(€- t')c~~~~ .. q(€- t') (Hc<0l(t')H) . (88) 
} 0 ,... ,,... p,u,p,' u' 

From its definition (first line of eq.(27)), H can be expressed in terms of the 
metric and the connection: 

Hp,u,p,'u' 8u+8u_ ( c5
2 (CJ- CJ')Ap,p,') 

+ 80'+ (82(CJ- CJ')a_x>..u Ap,p,',>..) + aq_ (82 (CJ- CJ')a+x>..u Ap,p,',>..) 

+ 82(CJ- CJ') (a+x>..ua_xNu Bp,p,',>..N + a+a_x>..u Bp,p,',>..), (89) 

where the A's and the B's are given by 

Ap,v -2 hp,v, 

Ap,v,>.. O>.,hp,v - Ovhp,>.. + Op,hv>.., 

Bp,v,>..N 8p,8vh>..N - 8p,8>..hv>..' - 8p,8Nhv>.. 

+ rzv(8>..h17N + 8Nh17>..- 817 h>..N ), 

Bp,v,>.. -2 811-hv>.. + 2 rzv 911>..- (90) 

Substituting this in eq.(85) expresses the quadratic contributions in terms 
of the metric and the connection. This is not the end of the story, however, 
since we still have to extract the finite and cutoff dependent terms from this 
expression in the limit of E -+ 0. We observe that the cutoff dependendence 
comes from a factor of the form 

n<m~n)(E) = r dt'(E- t')G(~) (E- t')om an (a<ol,(t')). (91) u,u lo u ,u u+ 0'- u,u 

The derivatives acting on the second G come from the derivatives of delta 
functions in the expression for H (eq.(86)), and so 0 :::; m :::; 2, 0 :::; n :::; 2. 
From eq.(15), it can easily be shown that, in the limit of£-+ 0, the D's either 
vanish or tend. to various derivatives of delta functions. Below is a list of the 
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only non-vanishing limits of the D's for both m and n less than or equal to 
two: 

D(l,l) ( ) 
17,171 € ---* 1 2 ') - B1r 8 (a- a , 

D(2,1) ( ) 
17,171 € ---* _.]_a 82(a- a') 

6?T 17+ ' 

D(1,2) ( ) 
17,171 € ---* 1 2( ') --a 8 a-a 61T (j_ ' 

D(2,2) ( ) 
17,171 € ---* _ _'9_a a 82(a- a')+ -

1
-82(a- a'). 

24?T 17
+ 

17
- 41Tc 

(92) 

Putting everything together, in the limit of c ---* 0, W(2) can be written as 

w<2
) =I d2av'(a+)a+X,\17a_xXI7zi~- 8:€ I d2av'(a+)(hp.vhf.w), (93) 

where, 

1 (1 1 1 z<2
) - 81T 2ap.hv,\ap.hv,\' - 4a,\hp.va,\'hp.v - 2ap.hv,\avhp.,\' 

+ ~hp.v(ap.avh,\,\1 - ap.a,\hv,\' - ap.a,\'hv,\) + ~r~~77 (a7]h,\,\' - a,\h7],\' - a,\'h7],\) 

+ a,\' ( hp.v(Bp.hv,\ - r~~,\) + r~~77 h17,\ + r~~,\)). (94) 

The first order contribution to Z was calculated in section 3: 

(95) 

where f(l) and r<2) stand for the linear and quadratic parts of the connection. 
The generalization of eq.(35) to include quadratic terms is then given by 

(96) 

From this equation, using the symmetry of hp.v in J-l and v, it is easy to show 
that 

a,\' ( (9p.v97J.\fZv)(2) - ap.hp.,\ + hp.vap.hv,\) - (). f-7 ).') = 0, 

where the subscript (2) means that only up to second order contributions are 
included. The solution to this equation can be written as 

. (gJJ.Vg7J,\fZJ(2) = aJl.hp.,\- hp.vap.hv,\- ~a,\(hJl.Jl.- hp.vhp.v) +a,\¢, (97) 
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where ¢> is identified with the dilaton field. There is always some ambiguity 
in the definition of the dilaton field; for example, we could have defined a 
different dilaton field by 

- 1 1 
¢> = ¢>- 2hJLJL + 2hp.vhp.v, 

and thereby simplified eq.(93). This ambiguity arises from the well known 
possibility of mixing the dilaton with the determinant of the metric. In the 
definition we have chosen, the dilaton transforms as a scalar under coordinate 
transformations. 

Finally, the terms involving the connection in eq.(92) can be eliminated 
using eq.(93). As promised earlier, to second order in h, the resulting field 
equations coincide with the equations 

of the gravity-dilaton system. 

8. Conclusions 

(98) 

In this paper, we developed further and extended the method for deriving 
string field equations proposed in an earlier paper [1]. As a check on the 
method, we derived the linearized equations for all string states and the full 
non-linear equations for the dilaton-graviton system and compared them with 
the well known results. There seems to be no obstacle to obtaining a full 
set of interacting equations for all levels. These equations would then enjoy 
the dEtsirable properties of background independence and covariance under 
general non-local coordinate transformations. 
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