Lawrence Berkeley National Laboratory
Recent Work

Title
WES, A WELL TEST ANALYSIS EXPERT SYSTEM

Permalink
https://escholarship.org/uc/item/5tfOx7vw

Author
Mensch, A.

Publication Date
1988-06-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5tf0x7vw
https://escholarship.org
http://www.cdlib.org/

S ~ LBL-25523
UC-11

Y

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division

WES, a Well Test Analysi"é:Ekxpert' System

“A. Mensch

June 1988

B R
LAWRENCE
BERKELEY LABORATQRY

JAN 25 1989

. ,
. LIBRARY AND
DOCUMENTS SECTION

FWO-WEEK LOAN COPY

ating Copy
ed for two weeks. .

This is a Library Circul
which may be borrow

Prepared for the U.S. Départment of Energy under Contract Number DE-AC03-76SF00098.

d

€?

TeSSe- IR

S T e T

/a

e

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

NE

LBL-25523

WES, a Well Test Analysis Expert System
Antoine Mensch

. Information and Computing Sciences Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720
USA

June 1988

This research was supported by the Repository and Technoldgy Program of the Office of
Civilian Radioactive Waste Management of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098.

L)

n?/

&

TABLE OF CONTENTS

Table Of CONLENLS....cucvererrenrereirererrennrissarssssssssassessssssasssssessssssasesssaserssasessene i
List Of FIGUIES..uiiinniiinicneesisianessssssscsssiscssassissasasassssssssssssncscssssssses iii
LSt Of TabIESs.....corieienrerrricenrcnenrerinrerensneerenssssssseesssasassnsssssnasesnsssassssnssssssassens iv
RELEIEICES ettt sttt sasssssssns s sseseasaseseassas s ssasss \4
ACKNOWIEAZEMENLS ..iiiiiirerneanererccsenetsese s se e e ssasnssensasssessassensnasas 1
INtrOAUCHION. ..o etrcctcceenetestect et e e e eeene et e stessatessensenersaseessesesannenes 3
Part I - Description Of The Project...cccoccceceeciecresiacrersenecsencans 5
1.1, WEll TeSt ANALYSIS.....ccerrererieireverereresensssernsrsssesesesssesssesensassessasssnsasans 7
11,1, TREOTY....covrureeeerreeneeeneesersenssnesassnssassssssssesesssaseneresssssasessasans 7
L1111, INtTOdUCHON......coueerrereerirreernerernnenesenesersesssensonenas 7
1.1.1.2. Traditional And Derivative Theories........... 8

1.1.1.3. Well System AnalysiS.....cennecsenssessasenns 12

1.1.2. Applicability Of Expert SyStems.......cceecrsisieressssarene 20

'1.2. The Existing System, WES......cccoeveerveivcesessmerssssnsssessessessessassesssnse 23

© 0 1.2.1. INtrOdUCHION ccucceecreceecteaeee e seesessenesessnsnssesesssanssssssanenss 23

1.2.2. Data SrUCHUTE......c.cevereeerereerereeneseeersessessesssenss veeerreneraeeseneas 24

1.2.3. Rule ATCRItECIUTE.....uoererrrrercereretenteniss st ennans 27
' 1.2.3.1. Data Extraction - Initial Curve -

. DIaWING ecirceicncenenesrenscssesessnansnsassensscssencssssnns 28

1.2.3.2. Data Filtering - Curves Computation...........2 8

1.2.3.3. Description Of CUurves........ccceereeerereeensceeeererennans 31

- 1.2.3.4. Generation Of Possible Models.........c.ccceveuuenns 34

1.2.3.5. Selection Of One Or More Models................... 35

1.3. Problems.........cccournneeee et es st esea et eae et st seeen et eseeereseeees 36

1.3.1. General DeSCTiPlion ...cuececeernrerenreceennsenserereesssssesesessesens 36

1.3.2. Numerical Problems.......ccccceeieriirenererrcneeceneeeeseeneeesvenennen 36

1.3.3. Improvement Of The AnalysiS......ccmvnnniesecennnne 38

1.3.4. Translation Of The Program..........cnn. 39

Part II - ResulfS.iciciiiiiiiiiiiiiiiiiiiiiiecimiiieiisicainsstesiasssssecanns 41

2.1. Numerical Algorithms...........ccouee.... eetrterters et a et s s sas e nanaenansens 43

C 2.1.1. INETOQUCHION corervesrstesernsennssnsrissssss s ssssss s s s ssssssssenssens 43

2.1.2. Derivative Computation..........cocceeeveeereverrveeesrensveesessssnesens 44

2.1.2.1. Algorithm Selection................ sreeerrensrererensasestacnns 44
2.1.2.2. Derivation Interval Length..........ueveeueennene 51
2.1.2.3. Methods For Computing Early And
L Late ValUeS .. icerereenieeccceeesenneneanessesssesessnens 54
2.1.2.4. Influence Of The Superposition
FUNCHOMN.....cuoceeteeeeeierenresaeesmnsentsascsanenesesesansnsnaneecs 54
2.1.2.5. Validity Of The Second Order
DerivVatiVe . ncrresnesescnsssiesssssssennssesasasnenconsesanens 57
2.1.3. Shapes RecoOgnition.......cccceenencireenercencncssssnencssssasnses 58
2.1.3.1. AlZOTIthMS.....ccoereeeeerercneccnissensesessnseseneneesuesessaessanss 58
2.1.3.2. RESUILS uicccicnrenenrecessssiscecsasasnnesesensasessssssassases 60
2.1.3.3. Possible Use Of Expertise In Shapes
RECOZNILON.....eecurererrenrrsseesniinisiscseaneannenessesassansens 62
2.2. Well-test Analysis Improvement.......ccoveeecnrnnnes eereeeeesasnesas 63
2.2.1. INITOAUCLION wocoiercercerenncreecnesennessenseseanasesssensssnansnsensassssorassse 63
2.2.2. Type Curves GeneratioN........ncicmsisesessnns 63
2.2.2.1.- Wellbore Storage Type Curves - Use Of
TaADIES et cemsacs 64
2.2.2.2. Double Porosity Type Curves - Use Of
The Asymptotic Solution......eeecevverrecreericeenanens 66
2.2.2.3. Use Of The Laplace Inversion.......... 68
2.2.3. Real Data Sets.....cccereverveeereerecrencsessesseneoseneesseneeenesessnensseas 68
2.3. Conversion Of The Program...........ueeceeeeerernenenerecseeennneenseeeesseenses 70
2.3.1. INtrOQUCHION ccuercerecencecnrneeresessssssssnstsssse s nenecenecssaseseacncans 70
2.3.2. The C PrograMl........ceeeeceererersesssenssesessasssssesesssssssassssssensens 70
2.3.3. The Remaining ART Program.......cccceeeeeeeererereceesecsaeseences 72
Part III - Conclusions And Extensions........cccccceieiieniienncnnnnns 75
3.1, CONCIUSIONS wececeirrrcrrtrrineenesrecssesersesasasssassensesesesssnsesesnssenesassesesnsssssssnsases 77
3.1.1. Numerical AlgOrithms.....oenrcrreierenenrnreeneeeeeernaens 77
3.1.2. Well-test AnNalysis ..cicrceiercnnscneesescnnsnesesessssnssnssssenes 79
- 3.1.3. Program COnVEISION.......ccceevreievrerernresseeisrsecesesessaressenesnens 80
3.2, EXIENSIONS oreeerccriitircisiieessseeserseseescssssestsssssssasasnesssassessnssssasssssssnns 81
3.2.1. Short Term Developments........ccccererereereecrreneerescseenaenannees 81
3.2.1.1. Use Of Theoretical Data.......ceceeereereccrerseseanneene g1
3.2.1.2. Application To Real Data.......ccuceeerrereereerrennes 82
3.2.2. Extensions To A Larger Problem.........veceeenn. 83
AP PENAICeS.iiiuiiiiuiininiiiciiectseiieieiisiiniiiiectssiorsessossssrsressossscssesssessess 85

11

LIST OF FIGURES

Figure
Figure

Figure

Figure 1-5: Notations used for computing derivatives
2-1:

Figure

Fi gure
Figure
Figure
Figure
Figure

Figure
Figure

Figure

Figure

¢

Fi gure

Figure

Figure .

1-1:
CUTVES.unicnnnaassans SO SN
1-2: Summary of homogeneous reservoir model
TESPONSES creerereneneenes ROS— etesesnesrsrsansena s sesrensaes
1-3: Summary of double porosity reservoir model
TESPOMSES cuuruerecmsircrenennssasesesstssnesesssssesssssntscsssssaseasssssssenss
1-4: Object architecture for wells in WES.........................

2-2

2-3:
2-4:
2-5:
2-6:

2-7:
2-8:
2-9:

2-1

2-1

2-12: Screen obtained during the run

Combined derivative and pressure type

: Semilog and derivative curves for. the six

methods. Noise 1ange = 0%....cccoevevevevevennrerernscereseseeeens

Semilog and derivative curves for methods 1

t0 3. NOiSe range = 2%.....ccceuererrerecersrsssnessrennsennresesensennans

Semilog and derivative curves for methods 1

t0 3. NOISE TANZE = 5. uveerrererereeseeerieeeivnessnesssecsesssensennnes

Influence of interval length for method 1 and

Methods for computing derivative at curve

EXETEIMITIES ivvuierirerereeeseeerereseesnssssesaresssossasensossesessonsennasssenne

Straight lines obtained by the least-squares

MEthod. i ieeeeeeeeeeeeeeeenes rereesrererentereresessensnnsssessssensanann

0: Combined derivative and pressure.type

CUT VS e iiiiiiiiireciiiteiiiatisnttinnssesessarsressessasassersosaessssassesssscssssanses

1: Semilog and derivative type curves for the

double porosity model.....eevceveceeneeeeerereeeeenne

Summary of the derivative methods.............cuc........

Influence of the superposition function.................

Second order derivative for methods 1 to 3.........

...............................

iil

LIST OF TABLES

iv

Table 1-1: Main slots of the generic objects......ivecenrcuccncnne. 26
Table 2-1: Results for methods 1 t0 6...ommmemseeeeeeenssssssmrssssessssns 1
Table 2-2: Different interval lengths used with method 1...... 52
Table 2-3: Different interval lengths used with method 3..... 52

<

+

w)

REFERENCES

2.

Clark, D.‘G'.! and Van Go‘lf-Racht, T.D. (1985). Pressure-
Derivative Approach to Transient Test Analysis: A High-
Permeablhty North Sea Reservoir Example, Journal of

" Petroleum Technology, November 1985, 2023-2039.

Bourdet, D. et al (1983). A New Set of Type Curves Simplifies
Well Test Analysis, World Oil, May 1983, 95-106.

Bourdet D., Ayoub, JA and Pirard, Y.M. (1984). Use of
Pressure Derlvatlve in Well Test Interpretation, paper SPE
12777 presented at the 1984 SPE California Regional
Meeting, Long Beach, April 11-13. ‘
Bourdet, D., Ayoub JLA.,, and A. Alagoa (1985). How To
Simplify The Analysis of Fractured Well Tests, World Oil,
October 1985, 98-101.

. Warren, J.E. and Root, P.J. (1963). The Behavior of Naturally

Fractured Reservoirs, Journal of Petroleum Technology,
September 1963, 245-255.

Agarwal, R.G., Al-Hussainy, R., and Ramey, H.J.(1970). An
Investigation of Wellbore Storage and Skin Effect in
‘Unsteady Liquid Flow: I. Analytical Treatment, Journal of
Petroleum Technology, 1970.

Gringarten, A.C. (1984). Interpretation of Tests in Fissured and
Multilayered Reservoirs With Double Porosity Behavior:
‘Theory and Practice, Journal of Petroleum Technology, April
1984, 549-563.

Vongvuthipornchai, S. and Raghavan, R. (1988). A Note on the
Duration of the Transitional Period of Responses Influenced
by Wellbore Storage and Skin, SPE Formation Evaluation,

~ March 1988, 207-214. |

vi

9. Onur, M. and Reynolds, A.C. (1988). A New Approach for
Constructing Type Curves for Well Test Analysis, SPE
Formation Evaluation, March 1988, 197-206.

10. Barua, J., Horne, R.N., Greenstadt, J.L., and Lopez, L. (1988).
Improved Estimation Algorithms for Automated Type-Curve
Analysis of Well Tests, SPE Formation Evaluation, March
1988, 186-196. _ _ '

11. Tiab, D. and Puthigai, S.K. (1988). Pressure-Derivative Type
Curves for Vertically Fractured Wells, SPE Formation
Evaluation, March 1988, 156-158.

12. Stehfest, H. (1970). Numerical Inversion of Laplace

Transforms, Communications of the ACM, January 1970, 47-

49, ‘ '

N

ACKNOWLEDGEMENTS

First, I would like to thank Esther Schroeder and Daniel Billaux

. for their advice and guidance throughout this work. They have also
 helped me a great deal during my acclimatation period in the lab and

more generally in Berkeley. Without their support, this period would
not have been as pleasant and instructive as it has been.

I would like to thank Sally Benson for her help in the field of
well-test analysis. Although she was very busy during this period,
she always gave me the informations or references I needed.

Craig Eades and Les Tabata have helped me use the different
computers and devices I needed during this period. They were
always prepared to help me with technical problems.

I would like to express my special thanks to Elinor Sigler, English
teacher at the Ecole Centrale de Paris. She helped me to keep in touch
with the school and gave me the administrative informations I
needed.

This work was supported by the Repository and Technology
Program of the Office of Civilian Radioactive Waste Management of
the U.S. Department of Energy under Contract No. DE-ACO03-
76SF00098.

INTRODUCTION

 This report describes part of the development of an expert
system in the domain of well-test analysis. This work has been done
during my final internship, completed at the Lawrence Berkeley
Laboratory between March 29 and June 20. This internship is the
beginning of a longer period of at least six months (and probably two
years).' Therefore the work described in this report must be
considered as part of a more important project, and not at all as a
whole entity in itself.

This project was six months old when 1 first began to work on it.

Therefore the first few weeks were employed to master the existing

system and the expert system shell it uses. During the same time,
some bibliographical researches were done about well-test analy51s
which was a new subject for me too.

The report is divided in three parts: the first one gives a
description of the state of the project at the time I first began to
work on it, and raises some problems that have to be solved. The
second section shows the results that have been reached, and the last
one draws conclusions from these results and proposes extensions
that would be useful in the future.

I would like to apologize for the poor writing style used in this
report: I have tried to make my English as understandable as
possible, therefore repetitions and gallicisms often appear.

PART I - DESCRIPTION OF THE
PROJECT

1.1. WELL TEST ANALYSIS

1.1.1. THEORY

1.1.1.1.. Introduction

This chapter exposes the main articulations of the reasoning in
well test interpretation. This could not be considered as the theory of
well test analysis (which is beyond the scope of this report), but
rather as a simplification of this theory that enhances the
applicability of expert systems in that field. This part is the summary
of a few papers! to 11 published in specialized publications ("Journal
of Petroleum Technology"”, "World Oil") between 1984 and 1988. It
includes the description of the pressure-derivative approach, the
most recently developed method2.3.4 (1984) of well test analysis.

The interpretation of transient test data is the main source of
information on the hydraulic .characteristics and the dynamic
behavior of a reservoir, especially if permeability is high, because a
test can investigate an appreciable volume of the formation. During
such tests, the hydrogeologic regime is perturbed by pumping liquid,

- water or oil, in or out of a well, and the response of the underground

flow system to the perturbation is generally monitored over a long
length of time, yielding curves of pressure versus time.

When an expert works on the interpretation of pumping tests, he
looks for unitlue characteristics, or "signatures” on one or several
representations of the pressure-time data. Classical representations
involve semilog and log-log curves, and a newer method uses a
pressure-derivative curve. Well-known types of hydrogeologic
systems have differents signatures on these curves, such as straight
lines, humps, etc... ‘The task of the expert is therefore to draw the
curves, recognize those features and draw conclusions from them.

Conclusions consist of both a conceptual model, which describes the
nature of the ground water flow system, and an estimate of the
parameters needed to properly characterize this flow system. In this
chapter, only a limited set of conceptual models will be considered:
two general types of reservoir (homogeneous and double porosity),
two different inner boundaries (wellbore storage effect and fractured
well effect), and three outer boundaries (no boundary, no-flow
boundary, pressure-maintenance boundary).

1.1.1.2. Traditional And Derivative Theories

In recent years, the science of transient well test interpretation
has progressed rapidly, most notably through the increased use of
type curves, the introduction of new reservoir models and the
advent of computer interpretation packages. The major improvement
still is the introduction of the pressure-derivative analysis method,
which deals directly with rate of pressure change, rather than
absolute pressures. This new method has been allowed by the advent
of new electronic bottomhole pressure gauges, which has
dramatically improved data quality.

Practical transient test interpretation methods have become
polarized in recent years between two analysis techniques -
conventional and global. The former basically consists of fitting
straight lines to data regions, for example on the semilog plot (Horner
analysis). The latter involves the use of various type curves to
include the entire data set in the process of reservoir system
diagnosis, flow regime identification, and evaluation of system
parameters. It is commonly accepted that great confidence in
interpreted results is obtained by an iterative combination of the two
techniques that starts with the global approach.

The * recently developed pressure-derivative approach has
combined the most powerful aspects of the two previously separate
methods into a single-stage interpretative plot. |

«

-’

o

Both methods (traditional and derivative) are described in this
part for the most common model of a well with wellbore storage and
skin in a homogeneous reservoirl.6,8 (the possibility of comparing '
results obtained by two different approaches ‘could be a very useful
tool for an expert system, therefore both methods are kept).

The most useful traditional type curves depict, on a log-log scale,
the evolution of the dimensionless pressure, pp, with the
dimensionless time group tp/Cp (Cp is the dimensionless wellbore
stofage constant).. For the basic model considered here, the individual
curves are dependant on the wellbore condition group C pe2S (S is the
skin factor). '

These curves have two main drawbacks:

- first, there is the uniqueness of the diagnosis. The various

. curves have similar shapes, particularly when the effect of
- wellbore storage is very short-lived. The main regime of
interest,! for the evaluation of reservoir parameters, infinite-
acting radial flow, has no characteristic shape on a log-log
plot. : _

- second, late- and intermediate-time deviations from the
diagnosed trend (i.e. outer boundary effects) are compressed
to the extent that recognition is unlikely.

Both necessitate the supplementary use of semilog scale plots
(conventional analysis) to obtain more accurate results and to help
recognize and improve evaluation of nonhomogeneous behavior.

In dimensionless terms, infinite-acting radial flow is
conventionally written as |

pp =05 (In (tp/Cp) + 0.80907 + In (Cpe?S)).

This is the "semilog approximation” and is valid only after the

~wellbore storage effect has become negligible. This approximation is

represented by a straight line on the semilog plot, but, as explained
above, has no characteristic shape on the log-log plot.

When fluid movement is confined entirely to expansion or
compression in the wellbore, pure wellbore storage is given by

pp =tp/Cp,

and is represented by a unit-slope straight line on the log-lbg
plot.

In the pressure-derivative approach, the semilog slope of the
dimensionless pressure response is plotted on a log-log plot in place
of the dimensionless pressure. The y axis is the derivative of
pressure with respect to the natural log of time:

dpp/din(tp/Cp) = (tp/Cp)p’p (p'p = dppld(tp/Cp)).

When applied to the infinite-acting radial flow equation, for
which the slope is constant on a semilog scale, the equation becomes

(tp/Cplp’p = 0.5,
a more easily diagnosed horizontal line on a log-log plot.
Pure wellbore storage becomes |
(tp/Cp)p’p = tp/Cp.,

this again is a unit-slope line on log-log paper, as was the
underived form. Hence, the endpoints of all the curves are fixed by
two common asymptotes with a hump-shaped transition whose
shape is controlled by the wellbore condition group C Dezs.

The type curves for this model are shown Figure.l—l.

Several types of heterogeneities commonly are characterized by
either middle-time or late-time deviations from infinite-acting radial
flow, represented by a straight line on semilog paper and a
horizontal line on the log/time derivative form. In general terms, the
pressure-derivative method can be considered as a normalization of
a semilog plot. In doing this, other characteristic behaviors that often
are not easily discernable by traditional methods are accented,

10

19 2

c, o325
2
1818
11
Ty}
18 10
e
i 3
1 2
1o
2
1
1
1e
Ps
1
18 -1 : v
8 -3 Y R 10 18 N
t,/¢, 2 18 3 18 4

Figure 1-1: Combined derivative and pressure ‘type curves.:

11

facilitating model diagnosis, flow regime identification and parameter
evaluation. '

One of the most useful characteristics of the pressure-derivative
approach is the correspondence of the straight lines on the derivative

plot to the straight lines on the traditional plots:
- A straight line of slope m on the pressure plot is
represented by another straight line of similar slope on the
~derivative plot (when both plots are on log-log paper).
- A straight line on the semilog plot of the pressure is
represented by a horizontal straight line on the log-log plot
of the pressure derivative.

1.1.1.3. Well System Analysis
'1.1.1.3.1. DRAWDOWN

This part describes the most commonly observed well system
responses for the case of a drawdown from initial conditions (a
drawdown consists of pumping liquid out of a well with constant
flow rate). As will be discussed later, the 'responses obtained during
buildup can be more complex and can even alter in trend

HOMOGENEOUS RESERVOIRS

A homogeneous reservoir is a well in which reservoir properties
can be represented by a single system model. Departure from this
infinite-acting radial-flow model are caused by inner and outer
boundary conditions. The most common case (Col.1 in Figure 1-2),
that of wellbore storage and skin (inner boundary effect), was
described above.

- Hydraulically fractured wells#.11 (Col. 3 in figure 1-2). This is
~another inner boundary effect. Unless obscured by wellbore storage,
the half-slope line characteristic of fracture linear flow initially is
observed on a traditional log-log plot. In dimensionless terms, this is
given by

pp = (mpg) 12,

12

2yl

Yo

Homogeneous Reservoir
Model "Infinite" Closed Fractured
Systems Systems Wells
Log K,
Log-log
Plot
Semilog
Plot
Log K|
Derivative .5
Plot 1 47
Key ~eInfinite -——- infinite
Conductivity
m = Semilog slope |~——- No Flow)
rcpresen[ing Boundary -—-oUmel'm Flux
infinite acting p
ial flow | ==° ressure
radial - flow. Maintenance (No Wellbore
Boundary Storage)

Figure 1-2: Summary of homogeneous reservoir model responses.

13

When differentiated with respect to the log of time function, this
becomes :

tpp'p= 0.5(mpg) 112,
again giving a half-slope line on log-log.

In radial flow, a difference between two types of fracture
appears: the pressure response is approximated .by

pD = 0.5 (In(tpg) + 2.2) for infinite conductivity
and
pD = 0.5 (In(tpg) + 2.81) for uniform flux.

The difference in the constant term manifests itself on log-log
paper by the stabilization of the final curves at different levels.

On the derivative plot, radial flow again is represented by a
horizontal straight line:

thp'D = 0.35.

‘The two models differ only in the transitional period and give
different curves that are analogous to different skin (Cpe?S) on the

wellbore storage and skin type curves.

- Bounded systems (Col. 1 in figure 1-2). The two most common
outer boundaries are barriers to flow, such as faults and pinchouts,
and pressure maintenance from a gas cap or aquifer. Neither of these
has an easily observable characteristic form on a log-log scale. A
semilog plot normally is used for conventional or type-curve
analysis.

A single no-flow boundary results in the establishment of a
semiradial flow regime with an increased rate of pressure change. On
semilog plots this produces a doubling of the- slope. Consequently,

14

after a transition. period, the boundary .appears on the derivative plot
as a ‘horizontal line: '

(tp/Cplp’p = 1.
A further no-flow boundary can double this to 2.
Pressure-maintenance boundaries, on the other hand, result in a
reduction in the pressure changes at late times. This manifests itself
as a flattening on the semilog plot as the maximum pressure

differential is attained; on the derivative plot, the curve slopes
downward to zero.

In a c'los'edv system (Col. 2 in figure 1-2), the late time
pseudosteady-state response can be written as:

DPp = d(tD/CD) + b,

where a and b are constants dependent on reservoir size, shape,.
and properties. On the log-log plot, the curve tends asymptotically to
a unit slope. ‘ -

.- When the derivative with respect to the log of time is taken, the
second constant is lost:

(tp/Cp)p’p = a(tp/Cp), -
which giveé a unit-slope straight line on a log-log scale.
HETEROGENEOUS RESERVOIRS

There are many reservoirs where the pressure response is the
product of the interplay of more than one conductive medium. Most
current models are composed of two homogeneous media dispersed
throughout the reservoir, with a large permeability contrast between
them3.7. |

The models currently used most extensively are the two
considered for double-porosity systems. Here the observed response
is the result of two media, usually considered as fissures and blocks

15

in naturally fractured reservoirs. For simplicity, this terminology is
often extended to represent the high- and low-permeability layers,
respéctively, in multilayered reservoirs. Initially, flow is almost
entirely from the high-permeability, low-storativity fissure system.
Eventually, there is pressure support from the high-storativity block
system before the two systems finally stabilize; the subsequent
response is that of the total system. This behavior has been best
described with component type curves that use the concept of two
homogeneous system responses (fissure and total), with a transition
regime during the period of pressure support. Two main flow types
between blocks and fissures (interporosity flow), pseudosteady-state
(Col.1 in Figuré 1-3) and transient (Col.2 in Figure 1-3), with
different transition responses have been envisaged.

As both double-porosity models are based on two infinite,
homogeneous systems with a reduction in the rate of pressure
change during transition, the ideal result on a semilog plot shows two
parallel lines (Top illustrations in Figure 1-3), with a transition
portion of smaller slope. (a half-slope region theoretically can be
observed with transient interporosity flow). The existence of the first
straight line, however, is often shadowed by wellbore storage.

When the derivative is taken with respect to the log of time, the
main trend is the same as that of the infinite, homogeneous system,
with a drop in the derivative when the rate of pressure change
decreases during transition. In that region, the response is similar to
that produced by pressure-maintenance boundaries, in the case of
pseudosteady-state interporosity flow. Radial flow 1is again
characterized by a horizontal straight line at

(tp/Cp)p’p =0.35.

The position of the transition dip is controlled by the
interporosity flow coefficient, 4, and the depth and length of the
transition period are dictated by the storativity ratio, .

16

o

Double Porosity Reservoir

Model

Interporosity Flow

Pseudo Steady
- State

Transient

Semilog
Plot
With
Wellbore
Storage
Log K
Derivative i s e
Plot e 3%
Key ——2 // Lines
m =Semilog slope Development
representing o
infinite acting ——~Transition
radial flow. Starts Before
. End Of
F = Fissure Wellbore
T = Total System Storage

Figure 1-3: Summary of double porosity reservoir model responses.

17

The transition period is wusually longer with transient
interporosity flow than with pseudosteady-state interporosity flow,
with the theoretical possibility for the development of a straight line
with a slope equalling half of that which corresponds to radial flow in
the total system. When viewed in the derivative format, the half
slope would be represented by a horizontal line at

(tp/Cp)p’p = 0.25.

The derivative plot gives much more distinctive shapes for the
different double-porosity models although the pseudosteady-state
model with large o values still can be confused with the transient
model. In most cases, if the transition drops below 0.25, then a
pseudosteady-state model can be inferred.

1.1.1.3.2. BUILDUP

Up to this point, the models and type curves have been for an
initial drawdown from static conditions at a constant rate. The
production rate generally is not sufficiently stable for analysis of the
drawdown. Consequently, most transient test analysis is focused on
the buildup when the rate, at the surface at least, is well-defined and
constant -that is, zero (a buildup consists of closing a well after a
production period and letting it reattain its natural hydrogeologic
static regime).

For conventional analysis methods to be useful for buildups,
they' must be modified to account for preceding flow periods. The
most commonly used plot, semilog, is thus replaced by a
superposition plot, where the log of time function [nAt is replaced by
the superposition function! | |

n-1 n-1
— I _ [Z(q,--' qi-1) ln(ZA L+ At)]+ InAt
J=i

Qn- 9n-1 i=

where tp = time at start of flow-test, At; = elapsed time when
the ith flow rate (q;) stopped and At,.; = elapsed time at shut-in.

18

The superposition plot restitutes the semilog straight line
resulting from infinite-acting radial flow by compressing the later
section of the time axis.

For the global approach of type curve matching, the problem of
buildup analysis is more difficult to overcome, as the response is
restricted in magnitude to the final flowing-pressure difference of
the previous flow period. Therefore, the buildup response
asymptotically approaches this level, resulting in a flattening of the
trend at late times. This flattening means that matching buildup data
on drawdown type curves is a very risky process. Although it is
time-consuming, the best method to overcome that problem is the
generation of the appropriate multirate type curves for each buildup,
thus accounting for the preceding changes in flow rate.

If the derivative of the pressure is taken with respect to the
superposition function, then the normalizing effect, which restitutes
the radial-flow straight line, will also reproduces the characteristic
horizontal line of the derivative plot. More precisely, if the preceding
drawdown 1is sufficiently long for the complete combinations of
conditions and boundaries to have been encountered, then the
buildup data can be matched successfully on drawdown type curves.

1.1.2. APPLICABILITY OF EXPERT SYSTEMS

As seen above, the process of reasoning in well-test analysis can
be summed up in two main steps: first, reservoir system diagnosis
from the characteristic patterns on the different plots, and second,
estimation of system parameters using the appropriate set of type
curves. A human expert is able to select at first time a small set of
models to which the considered well could be relevant. This first
analysis is improvedvby the use of the various type curves, which
yields parameters and model for the well. '

An expert system will have more difficulties to determine the
appropriate model for a well: first, it will have to recognize the

19

characteristic. shapes on the plots, second, it will have to infer the
right model from these shapes. As the different models are not too
numerous and have sufficiently characteristic shapes (except for one
‘or two, which will need more specific analysis involving quantitative
evaluations), this second part should not be too difficult for an expert
system: it would be relatively easy to build a knowledge base which
contains the rules to extract the system model from the patterns, as
soon as those patterns are well-defined. One typical rule could be:

"If there is a hump at the beginning of the derivative plot
followed by a horizontal straight line, then the model of
the well is homogeneous with infinite-acting radial flow
and wellbore storage and skin.”

As the data are often very noisy, the main difficulty will
probably appear during the shapes recognition. Two different
approaches can be used to solve this problem: the first one consists
~of having different numerical algorithms to filter, then compute
derivative and patterns, as precisely as possible; the second basically
uses the same algorithms, but with larger error bounds, to be sure to
extract all the characteristic shapes from the curves. A second step
consists of checking the patterns on the different plots, to get rid of
the wrong ones. This second method involves more expertise, and an
expert system could probably deal very well with it. '

The second part of the analysis, the one which uses type curves,
has been developed in recent years with the help of computer
packages. These numerical tools!0 work very well with data not too
far from the analytical models, but give poor results when ‘abnormal
shapes appear on the curves (for instance, in the case of atmospheric
pressure changes during the well-test). An expert system would be
able to select the significant parts of the curves before trying to
match them on the type curves, as a human expert would do.

In a domain like well-test analysis, where the input of the
problem (the patterns on the different plots) can not be exactly
defined, experi systems are probably able to do much better than

20

2

o

classical programs, because they can deal much more easily with
symbolic knowledge (as a hump or a straight line on a plot), and
therefore reproduce part of the human reasoning.

21

1.2. THE EXISTING SYSTEM, WES

1.2.1 INTRODUCTION

WES, Well-test analysis Expert System, was designed at the
beginning to work in the field of nuclear waste disposal. This narrow
field has been extended now to the more general domain of well-test
analysis, method involved not only in waste storage problems, but
also in oil reservoir exploitation. '

The following description represents the state of the program at
the beginning of my internship. Although the current version is very
different in its form, the main architecture remains the same.
Therefore this architecture must be described. In the following
sections, each time the text will refer to the "current state of the
program”, the original state must be considered. The differences
between the original and current versions will be explained in parts
Il and III.

~ In its current state, the prototype is by no means a finished |

system, and solves only a small part of the different kinds of
problems for which it is conceived. However, it can be useful to give
a quick description of this prototype, to discuss what should be
improved and what should be added to the existing program.

The system is based on the theory described in the preceding
parts, the guiding principle in its design has been not only to try to
reproduce the results obtained by the expert, but also to try to mimic
~ the way the expert reaches a conclusion.

In its present state the system can accommodate only a single
testing well, and this ‘test must be a drawdown. It possesses
knowledge about only a limited set of conceptual models, more or
less the ones which have been described in the. first section of this

22

¥

W)

report. However, it underlines the difficulties encountered during the
realization of what has been called in the theory "the first part of the
analysis”, i.e. the identification of the model.

The system is written in ART (Automated Reasoning Tool, from
Inference Corp., Clayton, 1984). ART provides an easy mterface to
LISP, so part of the system is written in LISP.

The following section‘s describe the data structure, the
architecture of the system, the various algorithms wused for
computing derivatives or extract global characteristics of the curves
and the ways the system uses .to deal with the: different conclusions
he reaches during the run.

- 1.2.2 DATA STRUCTURE

The system uses a frame-oriented approach to structure its data
and results obtained during execution. The basic architecture of

objects refers to wells and characteristics of wells, but objects are

also used for graphics and user interface (ART allows windows,
curves and mouse-sensitive icons to be represented as objects).

- The object architecture relative to wells (Figure 1-4) is slightly
different before and during execution. Before execution, only generic
objects (well and its four children, well-semilog, well-loglog
well-derivative and well-model) are defined, along with all the
slots that may be used to characterize these objects. These generic
objects are basically empty structures that reproduce the relational
knowledge. - | '

At execution tirrie, any well-test the program studies (i.e. Lm40)
is viewed by the program as a specified instance of the generic.
parent object well. When needed during the run, the system also
creates instances of the four children objects (i.e. Lm40-semilog,
Lm40-loglog, Lm40-derivative and Lm40-model). These different

23

Instantiated-Window-Icon

is-a

----instance-of -»| Well

A

instance-of

instance-of — Sp4

instance-of

e N
Testa

Sg60

instance-of

Well-semilog

1

instance-of

L m40-semilog

Semilog-of ——»

«+—— Model-of

Well-model

!

instance-of

>4 » L m40

-
<«—— Semilog I Model —>

» Lm40-model

Well-loglog

Well-derivative

t

instance-of

L

T

}

instance-of

Lm40-loglog

Derivative-of
: —

_‘Loglog-of

<+— Loglog Derivative —»

Lm40-derivative

Figure 1-4: Object architecture for wells in WES.

24

'
~

N
kY

instances - are ‘replica of the generic objects, but the empty slots are
replaced by ‘the characteristics of the well (i.e. Lim40).

The generic objects ‘may have several different instances

‘simultaneously during the run: ea_ch' time a new well is considered

for analysis, a new set of specific objects is created. Knowledge is
kept in these specific objects, therefore avoiding any confusion
between the different well-tests.

The main slots of the five generic objects are shown in the table
below: '

Well Well-semilog | Well-loglog. | Well-derivative Well-model
initial-time semilog-of loglog-of derivative-of model-of
initial-pressure|straight-lines|straight-lines{model reservoir
time ~ |semilog-curve|loglog-curve |time boundary
pressure semilog-icons|loglog-icons |p-derivative wellbore-storage
semilog . p-d-derivative |[fractured
loglog straight-lines early

|derivative humps intermediate
model derivative-curve|late
x-scale derivative-icons
ly-scale
initial-curve
filtered-curve
common-icons
window

Table 1-1: Main slots of the generic objects.

Initial knowledge ‘is stored in the parent object (instance of the

generic parent object well) for a given well. It consists of the initial
and filtered time and pressure data, the links to the four children
objects and other objects such as the dimensions of the window
associated with this particular well.

Well-semilog contains knowledge about the semilog curve,
such as straight lines. Well-loglog contains the same knowledge for
the log-log curve. Well-derivative contains the pressure
derivative, the second order derivative, and characteristics of the

pressure derivative curve such as straight lines and humps.

25

Well-model is the object that contains symbolic assertions
about the well, that is, deductions reached by the system according
to the different characteristics of the semilog, log-log and derivative
plots. Reservoir describes the overall behavior of the medium. It
can take the values homogeneous or double-porosity. Boundary
describes the boundary behavior of the system. Its values can be no-
flow, infinite or pressure-maintenance. The attributes wellbore-
storage and fractured contain only true or false depending on the
occurrence of such phenomena.

These five objects contain also graphic-related attributes. In
ART, all graphics (windows, lines, rectangles, text, etc...) are also
represented by objects and attributes. For example, a line object will
have attributes such as origin, endpoint or thickness. The attributes
in the table ending in -curve or -icons point to such objects.

1.2.3. RULE ARCHITECTURE

Even though WES is a rule-based system, in which the flow of
control should be by nature opportunistic, the system always
proceeds' sequentially through a number of steps. Within each of
these steps, several rules are executable at the same time, depending
on whether their left-hand-side (or 'if part) conditions are satisfied
by facts in the current state of the system or not. The rules do not
~ refer to a specific well, but rather can be executed "simultaneously”
for more than one well so that parallel analysis of many wells is
possible.

The differents steps of the execution are:
- Data extraction and initial curve display.
- Data filtering and curves computation.
- Curve characteristics extraction on semilog, log-log and
~ derivative plots.
- Generation of hypotheses.
- Selection of one or more possible models.

26

1.2.3.1. Data Extraction - Initial Curve Drawing.

The initial data (readings of pressure at different times) is read
from a file when a well is selected for analysis. This data can be
stored in different units (hours, seconds for time, psi, pascal for
pressure), but will always be _convérted to seconds and psi;

The initial curve, which represents exactly the data read from
the file, is then drawn in a window, which also contains five mouse-
clickable icons (initial, filtered, semilog, loglog, and derivative).
The reasoning process on a specific well is started by clicking on the
filtered icon. After that, the five icons have the same function of
displaying the éorresponding curve (and its characteristics, such as
straight lines or humps) into the window.

1.2.3.2. Data Filtering - Curves Computation

Since data sets can be very different in size. and may sometimes
contain a lot of data points, the system first filters the initial data set
and selects a specified number of data points (sixty in the present
state). The time scale is then divided in sixty constant intervals (on a
log scale, since the abscissa for all the curves used in the analysis in
the log of time): one data point on the filtered plot is the result of the
averaging of all the data points which are in the corresponding
interval on the initial plot.

Since pressure data is generally recorded at fairly constant time
intervals, the density of 'data_ points on a log scale increases
dramatically with the time. The filtering process thus results often in
a- drastic reduction of the number of late data points, whereas the
system keeps most the data points in the early part of the initial
curve.

Besides discarding too numerous data points the filtering phase
smooths the data in order to avoid undesirable and meaningless
noise.

27

The system then computes the curves used in the analysis, i.e.
the semilog, the log-log and the derivative curve. The program also
checks the validity of the latter curve: since the test under analysis is
a drawdown, the pressure is always diminishing, thus the derivative
must always be negative. In case the system finds a positive
pressure derivative at some particular time, a warning message is
displayed and the value is set to 0, or rather -0.01, which . is the
biggest number that the system can admit (All negative numbers
with an absolute value lower than 0.01 are also set back to -0.01).

In order to achieve the shapes extraction from the curves, the
system will need the slope at each point on the different plots. Thus
the second order derivative (slope of the first order pressure
derivative, i.e. d(In(dp/dint))/dInt) is computed, as well as the
derivative of the log-log curve (dlnp/dint). The slopes on the semilog
plot are already known, since they correspond to the values on the
derivative plot.

One of the main inconveniences of the pressure derivative
approach is that it cannot be measured directly but rather must be
~computed from discrete data. The algorithm that is used currently to
compute the various derivatives is inspired from the one described
in Bourdet et al. It may still be improved but gives acceptable
results, that is, it preserves most of the meaningful response of the
system while removing most of the noisy parts.

The algorithm computes the weighted mean of the slopes
between the point under study and a point preceding it, and between
the point under study and a point following it. The two points are not
the points closest to the point of interest, but instead are defined by
skipping several points to go from the point under study to the two
points where the slope will be taken. Since in WES all the points are
equally spaced on a log scale, this amounts to using points at constant
intervals from the point of interest. The current number of intervals
used by the system is 3.

With the notations of Figure 1-5, the slope p' is given by:

28

>
Y
A
>
Y

29

humps is symmetrical to this one and the two are actually
implemented as one LISP function, which return whether the hump
identified is a hill or a valley hump.

Since the extremum computed by this algorithm is not
necessarily the real extremum on the curve (the second order
derivative 'is often very noisy), the program' then looks for an
extremum on the derivative plot in the neighborhood of the
computed one.

i=0
=, . 1 if p > 0 then goto 2 else i-=.i+l; goto 1

2 J= -
- noise = [tj, t;] : N

3 if tj+1 exists and length(n01se) significant-length
thenlfP1>PJ PJ+1 ' ' -
. . then before-noise = t
noise = [t;, ;]
hump =.[t;, ;]
. if p"jp"j+1 < O then top = ¢
else noise = [before-noise, tJ]
j=jr
goto 3 _ :
else -if length(hump) 2 3 significant-lerigth
- and length([t;, top]) 2. significant-length
and length([top, 4]) 2 significant- 1ength
. then return hump: t, t;, top
. o if tj+1 does notcexist then stop
=)
goto 1

~e

with the same notations as the ones used for the preceding
algorithm. |

-

32

1.2.3.4. Generation Of Possible Models

Partial conceptual models are generated from the descriptions of
the curve in terms of straight lines and humps. Rules try to represent
the decision criteria used by the expert. An example of such a rule is:

"If there is a hill hump followed by a horizontal straight liﬁe on
the derivative plot, then generate the hypothesis of a homogeneous
and infinite system.” |

These rules can generate hypotheses based on small parts of the
pressure versus time curves, for example wellbore storage from
early time data, or the type of boundary from the late part of the
curves. Those partial hypotheses can then be grouped together to
form a complete model, such as wellbore storage in a homogeneous
medium with a no flow boundary. The program can only group
compatible partial model. For example, grouping an infinite system
with a no-flow boundary is not allowed. These incompatible
hypotheses are to be kept separate in different hypothetical worlds.

| This concept of hypothetical worlds is one of the most interesting
features of the system and should be examined with more details.
During the analysis, an expert is likely to follow several alternative
interpretations, until he is eventually convinced that one is more
likely than the others. The analysis may also end-up with a dead-
lock, the expert concluding that more information is needed to reach-
a reliable conclusion.

WES models this kind of behavior ’by generating hypotheses
about the actual model. These different hypotheses are kept in
separate "worlds". Each of these hypothetical worlds is the state of
the data base resulting from one hypothesis, or one group of
compatible hypotheses. The program maintains these worlds
simultaneously, and rules of inference <can be activated
independently in each of them depending on the facts present in the
particular state of the data base. The rules generating hypotheses are
fairly weak, and as soon as there is a slight chance for a particular

33

model to be true, the corresponding hypothesis is generated. This is
the way the system takes care of the inherent imprecision of the
theory.

Note that the basic data architecture described in 1.2.2. is
common to all the subsequent hypothetical worlds generated by the
system. The "raw" data, that is, the time and pressure data and the
different curves are also common to all the hypothetical worlds. The
distinction between these worlds appears for the well-model object.

This concept of hypothetical world is achieved by making use of
the more general concept of viewpoints available in ART. The system
uses one level of viewpoints, and each viewpoint represents one
hypothetical world.

1.2.3.5. Selection Of One Or More Models

In the present state of the program, all possible complete models
are simply printed on the screen. A complete model is a model which
gives at least the type of medium (homogeneous or double porosity)
and the kind of boundary (infinite, no flow or pressure maintenance).
The early time characteristics wellbore storage or fractured
formation near the well, are optional. In the current implementation
of WES, the same model may be printed more than once in some
instances. It means that the system reached the same conclusion by
two or more paths of reasoning. A model that appears more than
once is thus more likely to be true than a model printed only once.

‘In some case, for some data sets, no models are proposed. It
means either that the expertise present in the system is not
sufficient to analyze this particular case or that this data set has
some abnormal shape, due to some external event. '

34

1.3. PROBLEMS

1.3.1. GENERAL DESCRIPTION

The different problems that are to be solved can be divided in
two pafts: the first one consists of improving the solutions that have
been used in the prototype described in the preceding section, and,
for some of these solutions, trying to propose new possibilities. The
second kind of problems is related of the part of the analysis that is
not taken in account in the present state of the program, that is,
introduction of new models and use of the different sets of type
~curves essentially. '

In an other field, the translation of the program written in ART
in a lower level language, such as LISP or C, will have to be studied
in the future. ART is a very powerful tool to build an expert system,
but still has two main drawbacks: first its price ($50000 for private
companies), and second its performances and the environment it
needs. ART is very slow and needs to be run on a SUN. If the
program has to be used in the future in real-time conditions, that is,
if the well-test has to be analyzed during its execution, those
drawbacks would become real problems. As will be seen below, this
problem of translation has appeared sooner than expected.

The following sections describe respectively the work that has to
be done in the numerical field, the well-test analysis field and about
the conversion problem.

1.3.2. NUMERICAL PROBLEMS

During the first part of the analysis, the system has to compute
the curves that will be used for the analysis, and then tries to extract
the signatures of these curves using several algorithms. This is

35

already done in the existing program, but it appears that the results
are not always as good as expected. Since the following of the
analysis depends heavily on this part, it could be worth studying
with more accuracy this question.

Since the derivative plot takes a large importance in the
analysis, the first thing to do is to try different algorithms and figure
out which is the best in the particular case of well-test analysis: this
algorithm will have to keep the meaningful response of the reservoir
while removing the noisy parts. The algorithm in use presently is
certainly one of the best, but may still be improved, especially for
the points in the early and late parts of the curve (these parts are
very important to determine inner and outer boundary effects).

The computation of the main shapes, such as straight lines and
humps, is also achieved by the present system, but suffers of a kind
of rigidity, since the different algorithms use absolute error bounds
to determine whether a point belongs or not to a straight line or a
hump. This first possibility, the easiest one, would be to modify the
existing algorithms (described in section 1.2.3) and introduce more
relative error bounds. A more important modification would be to
introduce more expertise during the pattern recognition, that is, to
combine this recognition with the well model extraction. In the
present state of the program, these two steps are totally distinct, and
this does not correspond to the way a human expert works.

The present description of the curves uses the concepts of
straight lines and humps, which are in turn based on the value of the
second order derivative. This is an other drawback of this method,
because this derivative is often extremely noisy, and sometimes
totally unusable. This difficulty could probably be solved by the
introduction of a slightly different description of the curves that will
be based on straight lines only.

An other numerical problem that has to be studied is the
generation of the different sets of type curves. Since this question is

36

more directly relevant to the well-test analysis field, it will be
described in the following part.

1.3.3. IMPROVEMENT OF THE ANALYSIS

In its present state, the system possesses knowledge about only
a limited set of models, which represents the most general types of
wells that can be found. These models will have to be refined by
introducing new properties that will be able to describe
characteristics such as shape or size of the reservoir. This is certainly
a very important thing to be done in the long term, but the current
state .of the program needs a different kind of work, since even the
basic models are .not always recognized. The first difficulty to
overcome is then to try to obtain a reliable response for the models
the system is able to handle actually before thinking of increasing
the number of these models.

This can be achieved using three different ways: first, improve
the pattern recognition part using either better algorithms or more.
expertise; this possibility has been discussed in the preceding section.
- Second, introduce type curves for the different models the program
has selected for the well under study to refine the analysis (this will
work only if the right model belongs to the set of selected models;
what is not always true in the present state). Third, use more
analytical sets of data to build the knowledge base (the data the
program uses now are often very noisy, sometimes even too noisy to
be usable by a human expert !), and then introduce some . specific
noises in these analytical data to see how the rules react. As ever in
similar cases, a combination of these three methods will probably
lead to the best results. | ’

The generation of type curves and analytical solutions will
probably need a lot of bibliography researches, to find the equations
for the different kinds of behavior a well is able to have. The second
step will be a numerical one, since some of these equations (for
example, the one that models wellbore storage effects) are given in

37

an integral form. The use of tables could also be an acceptable
solution -for some of these type curves. The introduction of different
sorts of noise in the curves will need more help from the expert,
since there are few chances to find something about this problem in
the existing papers.

The introduction of the first set of type curves in the existing
program, written in ART, had an vimportant "side effect": the ART
expert system shell was not able to handle the quantity of facts that
have been introduced, and the execution speed was dramatically
slowed down (Since the system is written in LISP, he uses the
"Garbage Collector” to manage the memory space. This tool is called
automatically when needed. The introduction of the new facts
resulted in an important rise of the number of calls to GC). This
problem leads to the more general question of the translation of the
system, or at least part of the system, in a lower level language, such
as LISP or C.

1.3.4. TRANSLATION OF THE PROGRAM

The problem of the conversion of the existing program, written
in ART and LISP, to an other language was considered at the
beginning in the long term, but the difficulties that appeared with
the introduction of type curves in the ART program give to this
problem a higher priority, and even the highest. The facts present in
the database during the run are obviously too numerous in the
present state of the system, and the important thing to consider is
that only few of these facts are directly useful for the analysis. In
fact, a large majority of them, such as window descriptors or mouse-
sensitive icons, is used for graphics and for the user interface. This
part of the program' is an important one, and have to be kept,
because it gives to the system a lot of flexibility, and therefore
mimic, in one way, the behavior of a human expert. In the other
hand, there is no real need to keep it in ART, since graphics are not
directly used for the expertise. Although this interface is excellent, it

38

should be possible to translate at least part of it in an other language,
to save the memory space for the facts used for the analysis, such as
straight lines or humps. ‘

The question of the final conversion of the system will appear in
the long term, but will concern only the "expert" part, since the
graphic interface will already be in a low-level language. Once the
structure of the system is well-defined, this part might be rewritten,
even if it would probably take a lot of time. |

39

PART II - RESULTS

41

2.1. NUMERICAL ALGORITHMS

© 2.1.1. INTRODUCTION

This . chapter describes the research that has been done in the
field of numerical algorithm improvement. This is not directly
related to Artificial Intelligence and Expert Systems, but is still an
important problem in the'particular case of WES: since all the
analysis is dependent on this first step, the results it gives must be
reliable enough.

The two major problems are derivative computation and shapes
rec.ognitjon (sincé the shapes are computed with numerical
algorithms in the present state of the system). As explained in the
first section, both are actually linked together, since the straight lines
and humps are computed from the slopes of the different curves,
‘which are in turn given by the derivatives. The different results
‘obtained for these two problems are given in the two following
sections. The possibility of using more expertise in the pattern

. recognition - part has not been studied yet, but will be discussed in

the last part of this report.

In the existing program, the initial data is filtered at the
- beginning of the run. This filtering has an interesting smoothing
effect, but also represents a loss of information. As will be seen
below, the different differentiation algorithms . also include a
smoothing effect, and thus the initial filtering of the data is no longer
useful (Since all the programs used for testing these algorithms are
written in C, the problem of speed that appeared in ART with
numerous data’ sets is also solved).

43

2.1.2. DERIVATIVE CO MPUTATION

The problem of derivative computation is not generally
considered as a major difficulty in applied mathematics. In the
domain of well-test analysis, this derivative has to be computed from
real discrete data that is often very noisy. The algorithm should be
therefore able to smooth enough the curve to remove the
meaningless noise while keeping its characteristic shapes. Since the
values of slopes in the early and late parts of the curves are highly
useful in well-test analysis, this particular problem must also be
considered with extreme attention.

The following sections describe respectively the selection of the
algorithm, the estimation of parameter influence, such as the length
of the differentiation interval, and other less general problems, such
as introduction of the superposition function in the case of a buildup.
The validity of the second order derivative (in terms of errors) is
also checked. '

2.1.2.1. Algorithm Selection -

Three methods were basically tested, each of them using two
different ways. Method 1 is the one in use in the existing program
(cf 1.2.3.2.), with some modification in the way the preceding and
following points are computed: instead of choosing these points as
the third from the point of interest in each direction, the program
takes the first point outside of a given interval in each direction. The
main inconvenience of the method based on a fixed number of points
appears when the points are not regularly spaced on the log of time
scale. It was assumed in the design of WES that all the filtered data
points were at fairly constant distances, since each of them was in a
different interval of constant length (cf 1.2.3.2). Problems appear
with data sets that contains less than sixty points (number of filtered
data points currently used by the program): in that case some of the
intervals are empty, especially in the first part of the curve, and this
can lead to important errors in the estimation of the derivative.

44

Methods 1 and 4:

i b
Ap2
. Y
| Apl Ap2 f
Slope TSRy Apl
Pe, Atl + A2, {
Method 1: p' = slope. At on a log of time scale. E' ‘ I !
Method 4 p = t.slqpc. At on a time scale. — At] —i—— A2 —

Methods 1 and 4: Notations.

Methqu 2 and §:

A 7
Ap2
- Y
oL+ A2 _ A2 At ?
Slope ~ Apl Ap?2 Apl '
Atl 0 At2 {
Method 2: p' = slope. At on a log of time scale. i"—— [—r— [—>
Method 5: p' = t.slope. At on a time scale. : Atl = AL

‘Methods 2 and 5: Notations.
Methods 3 and 6:

The slope at the point of interest ' 0 *
(big black point) is computed with e ®
a least-squares method using all
the black points.

Method 3: p' = slope. Abscissas on a
log of time scale.

Method 6: p' = t.slope. Abscissas on
a time scale.

1 D] —»

}

Methods 3 and 6: Notations.

Figure 2-1: Summary of the derivative methods.

45

Method 2 is based on the same principle of computing the
weighted average of two slopes, but the program takes the
geometrical weighted average instead of the classical arithmetical
one. This "exotic" method was successfully used in one particular case
(computation of the wellbore storage type curve derivatives, where
the type curves were given by tables - cf 2.2.), this is why it is
described here. '

Method 3 uses a least-squares algorithm. An interval of given
length is chosen on each side of the point under study, yielding a
subset of data points. The "best" straight line, according to the least-
squares criteria, is then computed for this subset of points: the slope
~of the straight line represents the derivative at the point under
study.

These three methods compute derivatives with respect to the log
of time function, that is, all the interval lengths are given on a log
scale.

- Methods 4, 5 and 6 are respectively the same as methods 1,
2 and 3, but the derivative is computed with respect to the time
function, and then multiplied by the time at the point of interest
(according to the formula: dp/dint = t.dp/dt). '

These different methods are summarized in Figure 2-1.

The algorithms were tested on an analytical function, to compare
the results obtained from discrete derivation with the theoretical
one. The function used is an approximation of the type curve for
double porosity reservoir model5 (see 2.2. for more details) and is
given by

A7) = 172 {Int + 0.80908 + Eif~Atieo(1-)] - Ef-At/(1-0)]}

where 4 = 5.106 and o = 0.1. E; is given by

46

?
[
Po
H
—Idaal curve
4 * Noisy curve
I¥o1sa|<=0.8% of (Pmax-Patn)
3
18 18 2 18 3 0 10 4 18 § 18 6 18 7
£ d
8.6, .
. : . .'
*»
000000000000........."’ ...v'."-
X oo Ce®® .
®eenne : teo . .
e.s Tereseaia . . . L.
4 Ceea,, - S L S
et et .‘f‘" v
* Co T Tt TR e T e
9.4 .
*
41
0.3
—Ideal curve
0.2 * Mathad 1
9 Mathod 2
X Mathod 3
¢ Methad 4
8.1 * Method §
: * Method §
[Ho13e]<=8.8% of (Pmax-Puin)
8.8
19 18 2 . 10 -
3 19 4 195 18's 10

t

Figure 2-2: Semilog and derivative curves for the six
derivative methods. Noise range = 0%.

47

o0

Eim= | Shau

X

This type curve is by no means the most characteristic one (one
including wellbore storage would have been better), but is the only
one which is given by a simple equation: the others type curves are
often given in the Laplace domain or by integral equations.

Results for real data sets are shown in Appendix A.

Random noise of different ranges has been added to the
theoretical curve to study the responses of the algorithms. The
results are given either on plots or in tables. The tables give for a
given range of noise and for each method the maximum deviation
and the average deviation from the theoretical derivative (computed
without noise). These deviations are given in percentage of the
theoretical curve maximum range. The length of the derivation
interval used for all the methods is one half of a natural log cycle, i.e.
0.215 decimal log cycle.

On Figure 2-2, the curves corresponding to the six different
methods for an initial curve without noise have been plotted: it is
obvious that the three algorithms based on the derivative with
respect to the time function give important systematical errors
Moreover, the values given for the early and late parts of the curve
are very bad too. Methods 1, 2 and 3 give very similar results,
smoothing the peak of the analytical derivative. These three methods
are obviously better than methods 4, 5 and 6, and are the ones that
will be considered in the remainder of this study.

On Figure 2-3, the 'range of the random noise is equal to 2% of
the maximum range of the initial data. It shows that method 2 seems
to give worse results than the two others ones. This is confirmed by
Table 2-1, where the results are summarized for the six methods.
When the range of noise increases to 5% of the initial data range,

48

7
[
Po
H]
—— Ideal curve
+ Hoisy curve
¢ IXc150}<=2.8% af (Pmax-Pmin)
3
18 18 2 18 3 : 1o 18 4 18 S 19 6 18 7
4
8.8
-
- a
. 8 g ™ x
a » " a
s T T aey . g
8.4
Pe
8.3
—— Idaal curvs
8.2 . * Kathod 3
) 2 Hethaod 2
* Kathod 3
-] - >y
L]
0.1 - e a%s o
a g a INo1sa{<=2.8T ot (Pmax-Pmin)
e.8
18 18 2 —
. 183 1t w4, . 1S 18 & 18 7

Figure 2-3: Semilog and derivative curves for the
' methods 1 to 3. Noise range = 2%.

49

— Ideal curve
*+ Noisy curve
IHotse]<=5.9% at (Pmax-Pumin)
10 108 2 10 3 o 18 4 18 S 18 6 18 7
-» t] []
N x* -
n s,. *e
» - * xx * . a [
*ax
. x E. 1 . . . s
x o x x
—_x__® * *
o -
.
n
hd »
- % o o
,I
>
a
2
a x
=
[*
x
3
— Ideal curve
.., * Methad %
° o Method 2
° * Méthad 3
L) - [] ° .
o u l’
L] a *
- . - []
a a - -
Ino1se]{=5.9% of (Pwax-Puin)
.
P *
a a
t]
° ° " 2 -8 3 -
18 18 2 18 3 ® 184 18 S .133 18 7

50

Figure 2-4: Semilog and derivative curves for the
methods 1 to 3. Noise range = 5%.

Figure 2-4 is obtained. It shows that the computed derivative is
hardly usable, at least with the derivation interval that has been
used in this example. A more complete set of curves (with more
values for the range of noise) is given in Appendix A.

Noise (%) 0.0 | 10 2.0 5.0 10.0
Deviation [Max D|{ Av. D|Max D| Av. D{Max D} Av. D|Max D| Av. D|Max D{Av. D
Method 1 3.4 081 17.6] 5.6 35.2]1109| 88.0] 27.2]176.0} 54.3
Method 2 3.3 1.0] 249 6.4 | 68.8]14.51883.3| 66.6] ----- ----
Method 3 2.4 0.6 53.4| 49|107.1] 9.41267.7}) 23.2| 535.4} 52.3
Method 4 | 43.8 { 12.6 | 43.3 | 13.5 | 52.2| 18.7 | 108.6| 40.4 { 202.5] 79.5
"Method 5| 43.8 4,11 433 7.4} 69.0] 14.7 {906.3]| 66.8| ----- | ----
Method 6| 10.1 6.7} 42.7 8.0 93.2]11.2 (244.8} 23.8 497.4 46.2

Noise given in percent of Pmax - Pmin. Deviation given in percent of P'max - P'min.

Table 2-1: Results for methods 1 to 6.

There is little difference between the average error ranges given
- by method 1 and method 3 (cf Table 2-1). In the other hand, method
1 gives better results in terms of maximum error ranges, and this is
confirmed by the plots,. which show that the deviation for the early
and late parts of the curves is more important with method 3. Thus
the first method seems to be the best (among the ones considered in
this report). Method 3 has also a particular characteristic: it gives
more continuous curves than method 1 (the derivative is computed
on an interval, instead of being'co'mputed on three points), and this
leads to some kind of periodical behavior (Figure 2-3 and 2-5). This
could become a real drawback for wells that have a real periodical
trend (for example tidal effects), because the two periodical effects
could interfere.

The next section will discuss the effect of the derivation interval
length on the computed derivatives. Results will be given for both
methods 1 and 3, although method 1 has been described as the best.

2.1.2.2. Derivation Interval Length

The derivatives have been computed, for several ranges of noise,
with five different interval lengths: 0, 0.2, 0.5, 1 and 2 decimal log

51

cycles. Figure 2-5 shows the results for both methods 1 and 3, with a
range of noise equal - to 5% of the initial data range. Only curves
corresponding to the intervals of 0.2, 0.5 and 1 log cycle have been
plotted, because the other ones have too important errors (see Table
2-2 and 2-3). The results for large intervals (0.5 and 1 log cycle)
could be considered as acceptable, even if the points obtained with
method 1 and an interval of 0.5 are very dispersed: the main trend
still appears. Here again, the curves obtained with method 3 are by
far more continuous than the ones obtained with method 1. This does
not mean that the results obtained with this method are better, since
the deviation is still very important at the ends of the curves. The
pseudo-periodical trend is still present too.

Noise (%) 0.0 1.0 2.0 5.0 10.0
Deviation |Max D} Av. D|Max DjAv. D|Max D| Av. D{Max D|Av. D|Max D| Av. D
I1=0.0 0.1 001 71.1 | 24.4 | 142.1] 48.9 | 355.1{122.2] 710.1]244.5
I=02 3.4 0.8 1 14.6 5.4 28.7}1 10.6 | 71.9] 26.3] 143.8] 52.5
1=0.5 13.1 3414 15.8 5.1 20.31 7.3{ 39.3] 14.9] 72.01 28.0
=10 35.6 1104 353 | 10.8] 37.9| 11.6| 45.9] 14.5{1 59.2] 20.9
I=20 59.4 123.6158.3 | 23.8}| 57.41 23.91 56.5] 24.6| 63.4| 25.2

Noise given in percent of Pmax - Pmin. Deviation given in percent of P'max - P'min.
I given in decimal log cycle.

Table 2-2: Different interval lengths used with method 1.

Noise (%) 0.0 1.0 2.0 5.0 10.0

Deviation {Max D|Av. D{Max D| Av. D|Max D| Av. D{Max D|Av. D{Max Dl Av. D
I1=00 0.5 0.1] 71.5] 24911443} 51.7 ----- 170.4] ----- ——--
1=0.2 3.4 0.71 53.4 5.0]107.1} 9.5 §267.7] 23.5]|535.4| 53.7
I=05 9.3 2.2 53.4 4.41107.1] 6.7 1267.7] 14.0]535.4} 29.0
I=10 25.6 6.5 53.4 8.61107.11 10.7 |267.71 16.7]1535.4] 29.3
I1=20 482 1 11.5} 53.4 | 13.71107.1| 15.7 | 267.7 21.6]535.4 33.0_

Noise given in percent of Pmax - Pmin. Deviation given in percent of P'max - P'min.
I given in decimal log cycle.

Table 2-3: Different interval lengths used with method 3.

One can draw an other interesting conclusion from the different
tables: for a given interval length, the error rarige seems to be
directly proportional to the noise range. This is obvious for small
intervals, and it is probably the same for larger ones, but the ranges

52

= a
0.s B ‘
X u e
» ° a L4 °
"3’0" x L . ..‘ . ag *x,
| SN . i » ° o
6.5 St %2
ae
»n
x L P
t]
° o
xX
8.4 °
a
Pé : °
8.3 °
— Ideal curve
L]
8.2 @ Interval=8.2
x Intorval=ze.S
b * Intervaizi.g@
a x
a a e
8.1 ¢ a
o {Ma1se|<=5.82 of (Pmax-<Pmin)
. .
8.8 : :
18 18 2 18 3 t 18 4 18 § 18 § o 18 7
-
'.s r ° og
-
9 a4 a
a
[] o e 9 a o
1.5
8.4
P
8.3
— Idaal curve
s-2 o Intervalzs.2
* Intervalza.S
ag ¢ Intarvalzi.8
0.1
INo150]<=5.8% of (Pmax-Puin)
g.0 °
18 18 2 © 18 3 *
to 18 4 18 § 18- 8 . 18 7

Figure 2-5: Influence of interval length for
method 1 (top) and method 3 (bottom).

of noise are not enough big to show it. For large intervals, the error
range is almost constant for small values of noise, and then begins to
increase when the noise range reaches a given value. This could be a
very interesting characteristic to use in WES: if one can estimate the
noise range for the curve under study, one might be able to find the
best interval length for computing the derivative of this curve.

All the graphic results obtained for this problem are shown in
Appendix A.

2.1.2.3. Methods For Computing Early And Late Values

The values of the derivative corresponding to the early and late
parts of the data set are very important for the analysis. Therefore
these values must be computed in a way that minimizes error
ranges. Two algorithms have been tested to study this problem. Both
of them wuse a derivation interval of 0.5 natural log cycle (0.21
decimal log cycle) and are based on Method 1 (see 2.1.2.1.). The only
difference appears in the way the derivation interval is computed: in
the first algorithm, the length of the interval is reduced when the
point under study is near the extremity. Basically, on one side of the
point of interest, the interval is defined by this point and the first (or:
last) point, and on the other side, the symmetrical interval is taken.
In the second method, the length of the interval is kept constant: on
the internal side of the point of interest, the interval is computed as
usual, and on the other side, the interval is defined by the first (or
last) point, and by the first point' farther than the given length.
Graphic explanation and results are shown on Figure 2-6.

The second algorithm seems to give the best results, and is the
method that will be used in the future (in its present state, the
system uses the first algorithm). '

2.1.2.4. Influence Of The Superposition Function

As explained in the first part, the superposition function is used
in the case of a buildup. It is a modification of the log of time

54

Ps

0.3

8.2

8.1

§ I'<l =?<
?"-'- I. - .g * I' b f——— I ._é____‘.
e Atl —>i<——- At2 —» — A ———

i Atl ——

Derivation intervals for method 1. Derivation intervals for method 2.

»n
I.. =
R
o'., e
*2
.
= x
- Idaal curve
x Wathod 1
* Mathod 2
INotsel<=2.8% of (Pmax-Pmin)
18 . 18 2 . 18 3 . 18 4 18 $ 18 6 18.7

Figure 2-6: Methods for computing derivative at curve
extremities (top). Results (bottom).

55

1) Derivativ e ¢ e s
. Dearivative

Figure 2-7: Influence of the superposition function on a buildup
well-test. Results obtained with (right) and without
(left) the use of the superposition function.

2
1
Ps’
[]
LI T}
-]
H
»
-1 —= Idasl curve
» * Method 1 =
° [] o Nethod 2
*x Method 3
2 {Mot1se]|{=2.8% of (Pmax-Pmin)
- - 1 =
18 B
18 2 4 18 3 . 10 4 18 5 18 § 18 7

Figure 2-8: Second order derivative for methods 1 to 3.
Derivation interval length: 0.215. Noise range: 2%.

56

0

function, which is used to keep in consideration the flow history of
the well. Its main advantage is to restore the semilog straight line for
a homogeneous model. When computed with respect to the
superposition function, the derivative also keeps its characteristic
horizontal straight line. This is shown on Figure 2-7 for a real data
set that is currently used by the system. The time axis would have
been modified in real analysis, but in the present case it makes no
difference, since the straight line is horizontal (the superposition
function compresses the late part of the time axis).

2.1.2.5. Validity Of The Second Order Derivativé

In the current state of the program, the second order derivative
is used to compute the slopes on the derivative plot. These slopes are
then used by the program during the patterns recognition process.
As seen above, the derivative algorithms are very sensitive to
random noise. The different tables show that for a noise on the initial
data of 2% range, errors of 10% range are usually obtained. This
means that computing the second order derivative could lead to huge
error ranges (50%, according to the tables).

The second order derivative has thus been studied for the
curves that have been used in the precedirig parts. The curve
obtained for an interval length of 0.5 natural log cycle and a noise
range of 2% is given in Figure 2-8. The three methods used here
were the ones described in section 2.1.2.1. The results are not as bad
as expected, but are still hardly usable. Moreover, second order
derivatives computed for different kinds of curves show much more
important error ranges. Note that the pseudo-periodical trend
obtained with method 3 is obvious on this plot. '

The second order derivative seems to be very noisy, as soon as
small random noises appear on the initial data. This means that using
it in the program is a very risky method, and should be avoided if
possible. Since the shapes recognition algorithms are based on this

57

second order derivative, new algorithms have to be proposed to
overcome this difficulty. Next section describes these algorithms.

2.1.3. SHAPES RECOGNITION

In the current state of the system, two main sorts of shapes are
looked for: humps and straight lines (See 1.2.3.3.). The concept of
hump is heavily based on the second order derivative, since humps
describe the curvature of the curves. In the other hand, humps could
be represented in first approximation by two straight. lines, one going
up followed by another one going down (for a hill hump).

The advantage of using only straight lines is that straight lines
can be computed without the need of the second order derivative:
least-squares methods (or linear regression) give good results using
only points, and not the slopes at those points. These methods have
been studied with the real data sets presently in use in the system,
and the results are given in the following sections.

2.1.3.1. Algorithms

The algorithm described above explains how the straight lines
are computed with the least-squares approach. Basically, two
different methods can be used: the first is the real least-squares
method, where distances from points to lines are computed using the
euclidian way. The second is a linear regression method, where
distances are considered on the y axis only. This difference does not
appear in the main algorithm, since only values are modified. More
details about the difference between these two methods are given in
Appendix B. In the description of the algorithm, some formal
functions are used: interval() returns the interval [defined by the
first points on both sides of the point of interest which are at least at
length log cycle from this point. Line() returns the values of the
slope, the intercept and the quality factor (which is the length of the
line over the standard deviation) of the computed straight line. This
straight line is computed from all the points that are in the interval /.

58

The values of the straight line characteristics is the only part of the
algorithm which is dependant on the method (least-squares or linear
regression).' The notations are [] for an interval, and {a, b, q} for a
straight line, where a is the slope, b the intercept and g the quality

factor. i is the initial point for the computation of each straight line.
i=1
1 if i = end then stop
I = interval(i, length) (= [ti, tril)
line = line(I) (= {a, b, q})
2 I = [ti, tri+1)
line; = line(I;)
if qq > qthen I =1; (ie. fi = fi+1)
line = line; (ie.a=2a; ;b=b; ;q=q1)
I> = [tii-1, tril
line; = line(Iy)
if @g>qthenl=1I
line =liney, _
if ¢ > q; and q > q2 then
return line
i=fi
goto 1
else goto 2

Basically, this algorithm selects an interval (/) of a given length
and computes the straight line corresponding to this interval. Then it
extends the interval to the right (/;) and to the left (/2) and
compares the new quality factors with the old one. While at least one
of them is better, the algorithm repeats this step. When the quality
factor decreases for both sides, the program returns the lines. The
new point of interest, that is, the central point of the new interval, is
defined as the last point of the preceding interval. This means that
two consecutive straight lines are defined on overlapping intervals:
this characteristic gives a good continuity to the straight lines
computed . by this method.

Once the lines are computed, the graphic representation is
obtained by computing the intersection points for each group of two
consecutive straight lines. Figure 2-9 shows examples of the results.

59

Advantages of this method are:
- No use of the second order derivative.
- No use of arbitrary error bounds.
- Smoothing of the curve (least-squares methods are well-"
known for their smoothing effects).
- Obtainment of a quality factor for each straight line. This
quality factor might be used in the following of the analysis.

The main drawback is that this method does not allow to
describe curves in terms of humps. Thus a new knowledge base will
have to be built to deal with the new description of the curve.

2.1.3.2. Results

Two main aspects are studied in this section: one is the selection

of the best method (either real least-squares or linear regression),
the other is the influence of the computation interval length (length
in the algorithm above) on the results. The combination of derivative
smoothing and least-squares smoothing is also described.

Figure 2-9a shows the straight lines that have been computed
for a real data set. The derivative is here extremely noisy, but it
shows that the smoothing effect of the linear regression method is by
far more important than the one obtained with real least-squares.
This is still true with less extreme cases. '

In the data set in use here, the late part of the curve can be
considered as bad data (the pressure derivative becomes positive,
-what is theoretically impossible). The linear regression method gives
for the few last straight lines very bad quality factors: this is a very
interesting point and could probably be used in the analysis to give
less importance to that part of the data. Note that the difference
between quality factors for good and bad data is less important with
the real least-squares method.

Figure 2-9b and 2-9¢c show the influence of the length of the
computation interval on the straight lines. This influence is obvious
when the curve is very noisy (Figure 2-9b). In that particular case

60

—ta e

Dertivetive

e

12
h‘- - - wme
1
FL IR Y B 10
Oertvative
102
-
M 1Y
-2
. - 4
1o -4
(LAY 10

Derivative

-

10 =i

2-9a: Difference between least-squares (right)

Dartivative

and linear regression (left).

Qertvstive

Darivative

Figure 2-9b and c: .Influence of the computation interval. Left: 0.2. Right: 0.1.

Top: Noisy data. Bottom: Smoothed data.

61

the derivative was computed with a small interval (0.05 decimal log
cycle). When the same derivative is computed with an interval of 0.2,
Figure 2-9c is obtained. It shows that the interval length has by far
less importance when the curve is regular enough. More curves
about this problem are given in Appendix A.

The interval length for straight lines computation seems to have
less influence than the derivation interval length. Obviously, too
large intervals can lead to a loss of information, and too small
intervals give too numerous straight lines that are hardly usable. An
average length of 0.2 decimal log cycle (on each side of the initial
point) seems to give good results for the data sets currently used by
the program.

2.1.3.3. Possible Use Of Expertise In Shapes Recognition

Until now, all that has been described in the field of shapes
recognition has been purely numerical. This numerical part is
essential, since the initial data is numerical too. The method
described above returns a small number of straight lines (usually
between ten and twenty lines). An expert system can deal much
more easily with these "symbolic" informations than with a data set
of two hundreds points. Moreover, the linear regression gives a
quality factor for each straight line. This quality factor could be used
by the system to give more or less importance to such and such
straight line.

Nothing has been really done in that field for the moment.
Moreover, use of expertise in shapes recognition must be in relation
with the real expert part of the system. Basically, once a part of the
analysis has been done (for instance, for the early part of the data),
the system might be able to decide if a specific straight line (found
either in the same part or in the other part of the curve) is
compatible or not with the analysis already done.

62

2.2. WELL-TEST ANALYSIS IMPROVEMENT

2.2.1. INTRODUCTION

This part has been almost not developed during the last two
months (i.e. the period of my internship), since a lot of things had to
be fixed in the numerical field (see 2.1.) and since part of the. system
has been translated in C (see 2.3.) during this period. Thus this
chapter describes only type curves computation and some problems
that appear with the data sets currently in use by the program.

This part is the one that is directly relevant to expért systems.
In that way, this is probably the most interesting part of the whole
project. It will probably become in the future the _mosvt important
part of the system. The following sections describe some "tools" that
will be useful for improving the analysis.

2.2.2. TYPE CURVES GENERATION

Type curves are used by human experts to refine their analysis,
once they have found a first estimate of the reservoir model. Since
this step is not already done in the present state of the system (the
system gives sometimes the right result, but this is not always true),
type curves will not be useful in the near future. However, .two sets
of type curves have been generated, using two different ways. The
methods and results are described in the following sections. A third
section will describe an other way to compute type curves.

The different’ tables and equations wused in type curves
generation have been found in different papers on well-test analysis,
most of them published in the "Journal of Petroleum Technology" and
in "World Oil".

63

2.2.2.1. Wellbore Storage Type Curves - Use Of Tables

The wellbore storage type curves are probably the most useful
type curves used in well-test analysis, since wellbore storage
appears in the large majority of the test. The curves actually
generated depend on only one parameter, the wellbore storage -
group, Cpe3S.

Exact solution for these curves is known in the Laplace domain,
but there is no valid approximation in the real domain. Therefore the
curves have been generated from tables found in a technical paperS.
Since this paper has been 'published in 1970, the derivative type
curves are not described in it. The discrete method to compute these
derivative curves is method 5, with the notations of 2.1.2.1. It gives
the most regular results for the curves (Method 1, which is usually
used to compute derivatives, gives small periodical oscillations at the
beginning of the curves).

The tables used yield, for a given value of the skin factor S, the
dimensionless pressure pp as a function of the dimensionless time ¢p
and of the wellbore storage constant Cp. It means that the tables
depend on two parameters, S and Cp. The theory shows that these
two parameters can be grouped in only one, the wellbore storage
group Cpe?S. Thus a new table has been computed from the five
initial tables, and yields the dimensionless pressure as a function of
tp/Cp and Cpe?S. Since the values of the wellbore storage group were
not round values, interpolation has been used to obtain CDeZS as
powers of ten. | |

The table finally contains pressure versus time values for
thirteen values of Cpe?S. The main drawback is the too small number
of time values, that is, the points are not numerous enough to give a
regular aspect to the curves. The same problem appears for the
derivative type curves. Polynomial interpolation has been wused to
smooth these curves.

64

Ca
18 .
10
10
10
—— 18
10
P' i
10
19
]
1e
1
18 -1
18 -1
1
10
18 2
18 3
19 4

- .

65

Figure 2-10 shows the combined log-log and derivative plots of
the type curves. |

2.2.2.2. Double Porosity Type Curves - Use Of The
Asymptotic Solution

The generation of double porosity type curves uses an other
technic and is based on the asymptotic solution given for these
curves>. Here again, the exact solution is known in the Laplace
domain, but in the present case the real approximation is valid on a
large interval. The asymptotic solution is given by

p(t) = 112 {Int + 0.80908 + E;i[-At/w(1-w)] - Ei[-At/(]-0)]}

where p is the dimensionless pressure, 7the dimensionless time,
A the interporosity flow coefficient, and o the storativity ratio. E; is
given by

oo

-
-E. _x_—_f e du
=] 5

In this case, the analytical solution for the derivative type
curves is easily obtained from the asymptotic solution. However, the
type curves shown in Figure 2-11b have been computed from a
discrete set of points on the semilog type curves using Method 1 (see
notations in 2.1.2.1.). It seems better to use the same method to
compute real and type curves, to reproduce the systematical error
that appears using discrete derivation. This is true only if the
systematical error always gives the same distortion. Analytical type
curves could be very easily computed if needed.

Figure 2-1l1a shows the semilog type curves (in this case, the
log-log type curves have no characteristic shapes) and Figure 2-11b
the log-log plot of the derivative type curves.

66

12
T 11

18

18 -1

18 -2

18 -3
1

Tambdazs 18 -9

uz9.081 ws8.01 uso.1

uz=g ‘ 5 v’/‘

lambdaz$ 18 -6

lambdaz=Infinity

1 18 182 18 3 18 4 18 § 18 6 18 7. 18 8 18 3 18 18

Tau

lambdazInfintty 1:-§¢l=s 18 -3 . TamddazS 18 -6 lambdazs 18 -3

w=8.81

wz8.081 wz8.881

18 19 2 18 3 18 4 18 5 18 & 18 7 18 8 18 8 18 18
Tau .

Figure 2-11: Semilog (top) and derivative (bottom) type
curves for the double porosity model.

67

2.2.2.3. Use Of The Laplace Inversion

As seen above, results given by use of tables are not excellent.
Since the exact solution is known for a large majority of type curves
in the Laplace domain, use of Laplace inversion algorithms should be
considered. This has not been done yet, but the algorithm that will be
probably used in the future is the one described by H. Stehfestl2,
which is based on a probabilistic approach. A more complicated one,
using complex numbers, will also be studied.

This method. is certainly time-consuming, but will probably lead
to better results. Moreover, some modifications could be added in the
Laplace equations to model different variations from the basic model,
such as buildup analysis or atmospheric pressure changes. Using the
inversion algorithm, type curves corresponding to these variations
might be easily computed.

2.2.3. REAL DATA SETS

The characteristics of the data sets used by the program during
its development have a considerable importance: the rules are
created and modified to give the right results for at least the facts
contained in the database. In the case of well-test analysis, some of
the initial data sets must have at least enough characteristic shapes
to be easily recognize by an expert.

This is not true for the data sets used by the system until now.
Many. of the well-tests show huge variations from the basic model to
which they belong: geothermal effects, atmospheric pressure
changes, bad data, etc... often appear for most of the well-tests. Thus
recognition needs a lot of very specific rules to be achieved. This is
probably not the right method to build a knowledge base: it is widely
accepted that expert systems should be developed going from the
general to the specific.

68

Therefore a new method is proposed: first, generation of ideal
solutions for the different models, using type curves equations or
tables. A first very simple knowledge base will be created using
these ideal solutions. Second, superposition of different kinds of noise
on the ideal solutions, to model the different problems that can be
encountered during a well-test (random noise, flow rate changes,
atmospheric pressure changes, geothermal effects, tidal effects, etc...).
The knowledge base will be modified to take care of these different
noises. Third and last, real data sets will be introduced to test the
validity of the knowledge base. The different noises that will appear
on these well-tests might be diagnosed, and perhaps corrected, with
the help of the preceding step. |

This method has not been used yet. The very next step that will
be done in the development of the system will be the generation of -
the ideal curves for the different models. This needs a lot of
bibliography research, and therefore takes a lot of time. |

Few things have been done in the field of well-test analysis,
which is the real expert part of the system. The main reason is that
most of the time has been spent to improve. the numerical algorithms
and to translate the graphic interface from ART and LISP to C. This
particular part is described in the next section.

69

2.3. CONVERSION OF THE PROGRAM

2.3.1. INTRODUCTION

The problem of the translation of the system from the ART
language to a lower level language such as LISP or C was first
considered in the long term. But the limits of the expert system shell
has appeared sooner than expected: the system is dramatically
slowed down when too many facts are present in the database. Since
most of the facts used by WES are not directly relevant to the expert
part of the system, one can think of keeping the memory space for
facts used in the analysis and using other means to program the user
interface and the numerical part of the program.

The main problem is to realize a good interface between the ART
shell and the program that will be used for the user .interface (since
the user must have access to the facts and results contained in the
knowledge base). The first possibility is to use LISP, since ART and
LISP are very close to each other (ART is written in LISP). In the
other hand, ART provides the possibility of running a program
through the Unix shell. Moreover, a data stream can be opened
between the ART shell and the Unix program, so both programs can
exchange informations, while they are running in parallel.

This part of the project represents at least two thirds of the
work that has already been done, but is very difficult to comment
without getting into programming details. Therefore only a quick
overview of the program'will be given in the next sections.

2.3.2. THE C PROGRAM

C has been chosen for two main reasons: first it is faster than
LISP for computation and screen management, second window-

70

oriented C libraries are provided for the SUN (WES is run on a SUN
workstation). The main drawback of C is that it is more difficult to
interface with ART than LISP.

The program is written to reproduce exactly the behavior of the
version of WES that has been described in section 1.2. Therefore it
still uses the concept of hump and the second order derivative (the
conversion of the program is the Very first thing that has been done).
It can be divided in three parts: the first one is the graphic-oriented
- user interface, the second one deals with the numerical computations
(curves and shapes), and the last one is the interface between the C
program and the ART shell. '

Graphics represent the main part of the program. As for the ART -
version, one window is associated with each well under study. In
each window, five different curves can be plotted (initial, filtered,
semilog, log-log and derivative plots). The user asks for the one he
wants through a menu. An other menu is used to select the wells that
will be analyzed. This part of the program has been written with the
low-level functions provided by the Sunview package.

An other important part of the program is the computation of
- the curves, the derivatives and the characteristic shapes. This part
was written in LISP in the original program, and therefore was very
slow. The translation to C has improved widely the speed of the
program. Shapes are still computed by a numerical way, since the
program reproduces exactly the behavior of the original one. It has
been explained in the preceding sections that the method currently
in use is'probably not the best. Therefore this part is likely to change
within the few next weeks.

Interface with the ART expert system shell is provided in the
last part of the program. The functions contained in this part send to
ART all the data it needs to achieve the expertise: straight lines and
humps, values of slopes at the beginning and at the end of the
curves, etc... In the present state, the stream is only directed from

71

the C program to ART. If needed, data could easily be sent from ART
to C.

No more details will be given about this program: this part is of
no interest from the expert system point of view. It needed to be
done, ‘and has been done. Listings are given in Appendix C. Figure 2-
12 shows the screen obtained during the run.

2.3.3. THE REMAINING ART PROGRAM

The exisiing program has been rather shortened, since more
than half of it has been rewritten in C. The only parts which remain
written in ART are the definition of the objects (see 1.2.2) and the
expert part, which extracts the model from the patterns of the
curves. These parts are almost unchanged, only a few rules have
been added to read the data on the stream which links ART and the C
program.

As the Unix environment on the SUN allows to run programs in
parallel, the ART part of the system is able to make the analysis of a
well while the C part is computing the shapes for an other one.
Therefore none of the system possibilities to analyze more than one
well simultaneously has been lost. |

This part will also probably change in the future, since most of
the rules are based on humps and values of slopes. The existing rules
can probably be easily modified to use the new representation of the
curves in terms of straight lines: a hump can be represented in first
approximation by two straight lines of different directions. It can be
described more precisely by a group of straight lines whose slopes
increase or decrease. '

72

LIST OF WELLS

COMMAND WINDOW

|-] Possible model for well Sp4:
reservoir: HOMOGENEOUS (h11) hump oa derivative with no valley hump)

boundsry: INFINITE (horizontal straight 1tne at end of derivative)
Possible model for well SP4:
reservoir: NOMOGENEOUS (N111 hump on derivative with no valley hump)
wellbora=-storage: (slope of 1 at start of loglog)
boundary: IKFIMITE (horizontal stratght lins at end of dertvstive)

C3P2.C11
€3P2.C13

(In1t1al) (Filtered) (Semiloa) (Logiog) (Derivative)

clear

load

resst

watch

run

steap

browse

tcon editor
stscellanecus

i

Dertivative

Figure 2-12: Screen obtained during the run. The windows
"List of wells" and "Sp4" belong to the C program.
The other ones art part of the ART shell.

PART III - CONCLUSIONS AND
EXTENSIONS

75

3.1. CONCLUSIONS

This section describes the conclusions that can be drawn from
the results given in the above sections. Since research has been done
in very narrow and separated fields, this synthesis is difficult to do.
Moreover, almost none of those fields is related to Expert Systems, -
which were supposed to be the subject of this project. One have to
consider this work as a preliminary or as a realization of tools useful
for the following of the whole project. I would like to insist on the
importance of the program conversion,which has taken a lot of timie
and was really necessary: the ART expert system shell was no longer
able to support the huge number of facts used by the ’graph'ic
interface. This part is certainly not spectacular, since it consists of the
copy of an existing program, but still has two important effects: the
execution spéed has been multiplied by about five times, and more
than 70% of the memory space has been freed in the expert system
shell.

The next sections draw conclusions for the different parts of the
research that has been done. Since none of the methods described
above are currently in use, these conclusions are only expectations.
They will be probably modified in the future, when new difficulties
will appear. However, they represent a new step in the realization of
the whole project.

3.1.1. NUMERICAL ALGORITHMS

Results on derivative and straight lines computation have been
obtained. About derivatives, two algorithms have been shown as the
best among the ones that have been tested: methods 1 and 3, with
the notations used in 2.1.2.1. Method 1 has been preferred because- it
gives better results at the extremities of the curves, which are of
great importance in the analysis. If method 3 can be improved. to

77

give better results for those parts of the curves, it can probably be
used successfully too. This method gives more continuous results
than method 1, and this characteristic can probably be useful in
some cases. In the other hand, it can lead to analysis errors, since
continuity gives a pseudo-periodical trend to the curves. In the short
term, method 1 will be used to compute derivatives in the program.

An other interesting result about derivatives has been given,
concerning the second order derivative: it has been shown that the
error- range on this derivative can reach large values, even for a
small range of noise on the initial curve. Since this error range is
sometimes twice as big as the error bounds used in the existing
program for shapes recognition, the validity of the method currently
in use is doubtful. Therefore a new method for shapes recognition
that no longer uses the second order derivative has been proposed.

This method is basically a least-squares algorithm, or more
precisely a variation of it, called linear regression. It gives good
results for the data sets currently used by the program, but an
important question remains: the new representation of the curves in
terms of straight lines can not be used by the rules already written.
Therefore its possibility of use in well-test analysis has not been
tested yet.

A new knowledge base will be written to accommodate this new
representation. The main difference between this database and the
existing one will be the disappearance of the hump concept, which is
based on the second order derivative, Since this concept is a very
important one, it will be replaced in the new representation by a
group of two straight lines, one going up followed by another going
down (in the case of a hill). If it appears that the concept of
curvature is needed, this curvature will be represented by a -group of
straight lines whose slopes increase or decrease. Using these
representations, the transformation of the existing database should
not be too difficult.

78

The results described here do not give new possibilities to the
system, since derivative computation and patterns recognition were
already done in the existing program. They should be considered as
improvements of the existing algorithms, whose results were not
always reliable enough. A high attention has been given to these
numerical problems, since the rest of the analysis is based on this
part. New possibilities of improvement will still be considered during
the development of the system. '

3.1.2. WELL-TEST ANALYSIS

Very few things have been done in that field. The main reason is
that other parts of the system needed more urgent work, such as
modifications of the numerical algorithms or translation of the

- graphic interface. This part still is the most important in the

program, since it is the one which contains the knowledge base of the
system. It will be developed in the future, once all the numerical
tools it needs will be created.

Parts of those tools are the type curves for the different models
the system uses. Two sets of type curves have been generated, using
two different methods. The program does not use these type curves
yet, since the results it gives for the model diagnosis are generally
too bad to be useful. Otherwise, the type curves generation has had
important "side effects”, since it has leaded to the study of the
derivative problems and to the translation of the program.

The two ways used to compute type curves are use of tables and
asymptotic solutions. The tables usually give poor results, but are
often the only simple way to generate type curves, since a large
majority of them have no real solutions, and even no asymptotic
approximations. If the system requires more accurate results (this
problem has not appeared yet, since the type curves have never
been used by the program), an other method will be tested: the exact
solution for many of the type curves is known in the Laplace domain,
therefore a Laplace inversion algorithm can probably give good

79

results in type curves generation. Some algorithms have been found
in papers, but none of them have been tested yet.

Analytical data sets are also tools that seem to be needed by the
program: the real data sets currently in use show too many specific -
characteristics and therefore can not be successfully analyzed. The
generation of these new data sets has not been done yet, but is
strongly related to the type curves problem. Here again, Laplace
inversion algorithm will probably be useful.

3.1.3. PROGRAM CONVERSION

As explained above, this part takes most of the time I have
spent on the project. There is no conclusions to draw from it, since it
consists of the exact translation of the original program. It will now
be modified to contain the new algorithms described above. These
modifications should be easy to do, since graphics and computations
have been kept separate in the C program.

This might be considered as a first step in the final conversion of
the system to a low level language. This translation will have to be
done if the system must be used in real time, that is, if the analysis
of a well must be done during the test. In this case, ART and the SUN
workstation would probably be considered as too expensive to be
used on each well. From this point of view, the main drawback of the
current C program is that it is absolutely not standard: all the graphic
functions use the Sunview package, which is specific to the SUN
workstation.

80

3.2. EXTENSIONS

| 3.2.1 SHORT TERM DEVELOPMENTS

3.2.1.1. Use Of Theoretical Data

The very next step in the development of the system will consist
of putting together the solutions that have been given in this report.

This step will be achieved by: _ :
- generating new analytical data sets and corresponding type
curves. - | |
- replacing the numerical algorithms in the current C program
by the new ones.
- writing the corresponding knowledge base to extract ‘the
model from the new straight lines representation.
- using type curves to estimate the parameters of the
different data sets. :

- The problems of curves generation have been described several
times in this report. This part needs a lot of bibliographical
researches to find the equations corresponding to the models in use
in the program. Since most of those equations are given in the
Laplace domain, Laplace inversion will probably be computed. |

Replacing the old numerical algorithms by the new ones will not
be difficult, since all these algorithms have been already written in C
to be tested. Moreover, the graphic and computation functions are
totally separate in the C program, therefore the modification will
consist of replacing 'some numerical functions in one file by other
functions already written.

The knowledge base will ‘need more modifications, since many of
its rules currently used the concept of hump. Humps are no longer
computed with the new least-squares algorithm. If this concept is
really an important one (but there are actually no evidences of that),

81

there are many ways to represent humps with straight lines (see
above for details). Note that more expertise will be used to compute
the curve representation, since only "raw" straight lines will be
computed in C and immediately send to the ART shell: grouping of
straight lines and elimination of the "bad" data (with the help of the
quality factor) will be done in ART. Thus the program will have the
possibility to modify the curve representation during the expertise.

The use of type curves to extract model parameters will be the
~only really new possibility of the program, since it has never been
done until now. This extraction is done by matching the curve under
study, whose model has been obtained, to the corresponding set of
type curves. The problem of the graphic match is a very interestihg
one, and can be achieved using several ways, such as linear or non-
linear regression, but also less sophisticated methods such as
comparing the high of the peaks on the real and the type curves.
None of these methods have been studied until now.

3.2.1.2. Application To Real Data

Once the system will be able to recognize the theoretical models
corresponding to the analytical data sets, different kinds of noise will
be added to these data sets. The knowledge base will then be
modified to accommodate the new data, and recognize the abnormal
shapes on the curves. The possibility of expertise during the shapes
extraction step will probably be very helpful: for example, the
system might have the possibility to consider a strange pattern
either as part of a model or as noisy data.

Type curves will also be used, and some of them could be
modified to take in consideration one specific noise that has been
identified on the "real" curve (the curve can not be considered yet as
real, since it is a superposition of an analytical curve and a given
noise).

The last step will be to introduce real data sets and to test the
results given by the kpngl-ed'g’e base. Since this database will be

82

theoretically able to recognize the effects of a specific noise on a
given model, noises will be discarded, to keep only the meaningful
response of the reservoir. An other way to proceed is to modify rules
to take in consideration the effects of each different noise for a given .
model. In that case, the noise is kept during the analysis, and it is the
basic knowledge base that is modified. From this point of view, type
curves must also be transformed to take the different noises in
consideration. '

Once this step will be reached, the system will be considered as a
real expert system, even if its possibilities will be limited. Other
possible developments are described in the next section. |

3.2.2. EXTENSIONS TO A LARGER PROBLEM

In its present state, the system uses only a small set of sirr{ple
models, like homogeneous or double porosity medium and some
boundaries configurations. More models need to be inserted as well
as a more complete description of the existing ones. This can be done
either during the step of development described above, or once the
system will be able to recognize correctly well-tests relevant to the
existing models.

In the same respect, the system currently analyzes only single
well-tests with a constant flow rate and a drawdown phase.
Modifications should be added to accomodate buildups and more
generally multiple rate pumping tests. The system should be able to
reason about these different phases, compare results between them,
decide which phase is more informative than the others, and so on.
Another step in the development of the system will be to allow more
than one observation well for a single pumping well.

In the long term, the possibility of grouping informations
obtained by different methods of analysis could be considered. These
methods might involved hydrogeologic informations (this is the
object of WES), but also geothermal and geochemical results, and so

83

on. This can lead to the development of a multi-expert system, using
different methods of analysis- to solve the same problem. A multi-
expert system has the possibility of comparing results obtained by
several different ways with more objectivity than a human expert,
since a human expert will have more confidence in his own analysis.

An other extension in the long term will be the complete
translation of the program to a low level language such as LISP or C.
The translation of an expert system involves two problems: first,
programming of the inference engine, second, development of a rule
compiler, which must be able to translate the rules written in some
kind of natural language to the format used by the inference engine.
With this method, rules can still be added after the system
translation, and thus the program keeps part of the flexibility offered
by the expert system shell.

84

APPENDICES

85

APPENDIX A - CURVES

TYPE CURVES
- Figure A-1: Combined wellbore storage derivative and
' pressure type curves. :

- Figure A-2: Double porosity semilog type curves.
- Figure A-3: Double porosity derivative type curves.

 DERIVATIVE METHODS

Selection Of The Algorithm

" - Figure A-4: Methods 1 to.6. Noise = 0%.
- Figure A-5: Methods 1 to 3. Noise = 1%.
- Figure A-6: Methods 1 to 3. Noise = 2%.
- Figure A-7: Methods 1 to 3. Noise = 5%.
- Figure A-8: Methods 1 to 3. Noise = 10%.

Influence Of The Interval Length

- Figure A-9: Method 1. Noise = 0%.

- Figure A-10: Method 1. Noise = 1%.
- Figure A-11: Method 1. Noise = 2%.
- Figure A-12: Method 1. Noise = 5%.
- Figure A-13: Method 1. Noise = 10%.
- Figure A-14: Method 3. Noise = 0%.
- Figure A-15: Method 3. Noise = 1%.
- Figure A-16: Method 3. Noise = 2%.
- Figure A-17: Method 3. Noise = 5%.
- Figure A-18: Method 3. Noise = 10%.

Computation At Extremities

- Figure A-19: Two methods to compute derivatives at curve
extremities.

Effect Of The Superposition Function

- Figure A-20: Effect of the superposition function.

Second Order Derivative

- Figure A-21: Methods 1 to 3. Noise = 1%.
- Figure A-22: Methods 1 to 3. Noise =2%.

Real Data Sets

- Figure A-23: Left: Semilog curve. Right: Derivative curve
(I=0).

- Figure A-24: Derivative curves. Left: 1=0.1. Right: I=0.2.

- Figure A-25: Derivative curves. Left: 1=0.5. Right: I=1.

STRAIGHT LINES

- . Figure A-26: Difference between real least-squares method
(right) and linear regression (left).

- Figure A-27: Combined effects of derivative and least-squares
smoothing. Top: Derivative interval length = 0.05.
Bottom: Derivative interval length = 0.2, Left:
Computation interval length = 0.2. Right: Computation
interval length = 0.1.

88

12

19 28
10 it

19 1t
18 9

19 : .] . 10 ¢

- -
*eerus

18 -1
18

-1 . b 18 18 2 18 3 18 4
[Mt 4

Figure A-1: Combined wellbore storage derivative and pressure type
curves.

89

12 -

11 w=8

10 Jambdaz=5 10 -9

L] w=8.981 w=8.81 v=9.1

p ' ¢ YanbdasS 18 -6

lambdazInfinity

1 19 18 2 18 3 18 4 18 5 18 6 18 7 18 8 18 3 19 18

Tau

Figure A-2: Double porosity semilog type curves.

Tambdaz=Infinity lambdaz=$S 18 -3 lambdaz$ 18 -6 lambdaz$§ 19 -3

AN

~

w=8.01

18 -2 w=8.881

w=0.081

w=8.801

18 -2

18 -3

1 18 18 2 18 3 18 4 18 s 18 6 18 7 18 8 18 9 18 18
Tau

Figure A-3: Double porosity derivative type curves.

90

7
6
Po
H
- 1deal curve
4 + Noisy curve. .
INotse{<z8.8% of (Pmax-Pmin)
3 i)
1@ 18 2 . 18 3 t 18 4 18 § . 18 8 18 7
.
8.§ ' ' , .
1
000000..0‘000......’.’... .'....000:
®sasee ° ...’0 ,‘ o ,e*
9.5 ' ..a.----'tl--..,' ‘0. PS .._..--. -
‘0.: L X X TN ‘i
N ..,,..... .o
8.4 .
*
13
8.3
——1deal curve
* Mathod 1
8.2 9 Mathod 2
x Mathod 3
* Mathod 4
* Mathod S
8.1 * Hathod & .
[No1sa|<=8.8% of (Peax-Pmin)
8.8
18 18 2 ie 3 18 4 v
t 18 § 18 & ie 7

Figure A-4: Methods 1 to 6. Noise = 0%.

91

8.2

~—1deal curve
+ Noisy curve
[Notsa|<=1.8% of (Pmax~-Pmin)
19 19 2 10 3 t 10 4 : 18 S 18 6 18 7
n
L]
L]
.-. xx 2 .
x g s :
'-- L} nl: Y ":
x“
——Ideal curve
a + Method 1
o Mathod 2
x Mathod 3
o ° od
[}
{No18e|<=1.9% of (Pmax-Pmin)
190 18 2 18 3 18 4 18 5 18 6 18 7

to

Figure A-5: Methods 1 to 3. Noise = 1%.

92

17
6
Po
-
—— Ideal curve
4 ¢ Noisy curve
|Notse}<=2.8% of (Pmax-Pmin)
3 - .
18 10 2 ’ 18 3 t 18 4 18 § 18 & 18
[]
e.§
. L]
o.' o = x F
a x
X g . X <N £3' a
H . .
0.5 — et 8
x
x o 3
o8
-
a F 34
0.4 *
a
Pé
8.3
— 1desl curve
R + Method &
8.2 o Nethod 2
x Nethod 3
a ° > "y
* e a%s ©
8.1
° o a |Notse|[<=2.8% of (Pmax~Pmin)
a
8.8 -
18 18 2 18 3 t 184 o 18 § 18 6 . 18

Figure A-6: Methods 1 to 3. Noise = 2%.

93

v
7
s
Po
H
-—Ideal curve
4 + Nafsy curve
[Ho1se|<=5.9% of (Pmax-Pmin)
3
18 18 2 18 3 t 18 4 18 5 16 6 18 7
L d
-]
-
H
> x n a
o.5 s 28 3 .
= &’ ‘e
x * xx . * . o a
* xtex a
L . u® ° 3 R
9.5 Zx e . LI x
8.4
e
8.3
—=Idesl curve
., ¢ Mathod 1
0.2 ° ® Mathod 2
o x Method 3
a * o (]
o
a a x, ®x
* . N .
0.1 o a -
[Mo1sa}<{=5.8% of (Pwax~-Pmtn)
>
- +*
a a
8.8 o ° A x
18 18 2 18 3 18 4 18 5 18 6 18 7
ts * o a

Figure A-7: Methods 1 to 3. Noise = 5%.

94

8
7
[
Po
H
-~ Ideal curve
4 + Noisy curve
INotse](=18.82 of (Pmax-Pmin)
*
3 .
18 18 2 18 3 t . 18 4 18 5 18 6§ 18 7
2
. * x]
t]
a n bt
»
o *.
* 9 x ° : *»
x » nX - -
* ° -]
t 3
x - e x x .
b §
* e x o‘ * x g'
9.5 e a °
x 4 . x n
* x a
a a a - ; -
= - x
x, a . ** ® - e
0.5 M x o - * x
® * . x
8.4 x
*
Pé
*
8.3
*
L] > -
M —— Ideal curveg
+ Mathod 1
-] .0 *
0.2 x ,, g Methad 2
x » x Mgthod 3
a a
*
oo .lﬂ“ ‘e ° » *a .
6.1 x = ° '
a+ 0 . . [No150}<=18.9% of (Pmax-Pein)
. * L %
. .
8.8 - < -] L1 3 °
18 18 2 18 3 *18 4 18 S 18 & 18 7
[} a s L] to - .

Figure A-8: Methods 1 to 3. Noise = 10%.

95

teee x
"‘-Sx--..---o-.'o--..
x4 *no.-

.
tesey ':-...--""..
L d

—— Ideal curve
* Interval=g
o Interval=e.2
x Intervalss.§
¢ Intervalzl.g
* Intervals=2.8

INo1se]¢28.8% af (Pmax-Pmin)

18

18 2 18 3 t 18 4 18 § 18 6 18 7

Figure A-9: Method 1. Noise = 0%.

-

— 1deal curve
* Intsrvalze
¢ 8 Intervalze.2
-’ * Interval=e8.5
* Intervalsi.a

. . INotse]¢=1.8% of (Pmax-Pain)

18

18 2 10 3 10 4 18 S 18 ¢ 19 7

Figure A-10: Method 1. Noise = 1%.

96

»

8.5

Ps

8.2

Ps

8.3

9.2

o
™ a
L]
xg 0 o .
‘Il x x ° a [-]
Mt LTI *e% o 88 xp, © ° ° [o
- Cha
e o " : xx
L o @ x¥ °a
a
~—--Ideal curve
8 Interval=e.2
x Interval=s.§
0 % ¢ Intervailzi.8
a L}
I1Rois8{{=2.8% of (Pmax-Pmin)
18 198 2 18 3 w 18 4 185 - 18 § : 18
Figure A-11: Method 1. Noise = 2%.
a
-]
a
aQ
x %o o °
L L]
x u @
x ° °] a
0030.‘. x x - o.’ e 9a x.‘
L]
:‘ :o ® o " * °
ge
»n
x
z .!
o ° -
a
-] ° l‘
a a
a
-— Ideal curve
@ -
o Intervalse.2
x Intoervalzs.Ss
° ¢ Interval=1.d
a x®
o o a °
° |No1se|<=5.8% of (Pmax-Pmin)
]
a
18 18 2 18 3 18 4 18 § 18 § . 13 7

to

‘Figure A-12: Method 1. Noise = 5%.

97

9.8
9.5
8.4
P
8.3
8.2
* Intervalzs.s
x . Iptarval:l.l
8.1
x INotse|<=18.8% of (Pmax-Pmin)
n
8.8 .
19 18 2 18 3 t. 10 4 FUN 18 6) 18 7
Figure A-13: Method 1. Noise = 10%.
8.6
9.5 -
.4
Pé
8.3
— Ideal curve
+ Intervalzs
8.2 o Intervalz8.2
* Intervalz=8.S
¢ Intervalsi.g
* Interval=2.8
8.1
INo1se}<=0.8% of (Pmax-Pmin)
8.8
18 18 2 18 3 18 4 18 S 18 6 18 7

Figure A-14: Method 3. Noise = 0%.

98

18 7

- -
*
8.6
) .o
* * . . .
* - * ¢ -
ano a * . * . .
8.5 b 2 aSoq, °
l.--x,.,‘ 3
lngno - - aad8ee
L Ed
*
8.4 .
*
L d
Pe
*
8.3 - R
*
* . —— Idaal curve
* + Intervalz=®
8.2 + © Interval=8,2
. % Intervalzs.S
he . * Interval=t1.s
Y >
. * .
8.1
. * {No1sal<=1.8% of (Pmax-Pmin)
0.8
18 18 2) 18 3 % 18 4 18 S 18 §
>
Figure A-15: Method 3. Noise = 1%.
9.6
8.5
8.4
1
8.3 .
- Ideal curve
8.2 a Intervalzg.2
x Intervaizg8.S
* Interval=z1.8
8.1
{Noise]¢=2.8% of (Pmax-Pmin)
8.8

19

‘182 . 18 3 18 4
to

Figure A-16: Method 3. Noise = 2%.

99

18 °

a
8.6 °e
a ag e
o
a s LJ a
8.5 P ° L)
-':“.]Ili
. 2
0.4
Ps a 9
L]
8.3 a
—— Ideal curve
9.2 ° Intervsiz8.2
® Interval=a.5
og . * Intervalzi.9
8.1
INotgal<=5.8% of (Pmax-Pmin)
L]
8.8 O
18 18 2 18 3 0 18 4 : 18 § 18 6 18 7
Figure A-17: Method 3. Noise = 5%.
a2
L]
0.6
L
X xxx
8.5 RxuxX -
* a se?
l“ :!ll
t.4
P
8.3
«~— Idea) curve
8.2
% Interval=8.5
® Interval=1.d
0.2
INotse|<=18.8% of (Pmax-Pmin)
8.8
18 18 2 18 3 10 4 18 S 180 6 18 ?

t

Figure A-18: Method 3. Noise = 10%.

100

=
... .“
* - . .
e.5 % X2 g
X! ..
® x
8.4
Ps
0.3
- Ydeal curve
8.2
x Method 1 -
* Mothod 2
8.1
INoise]<=2.6% of (Pmax-Pmin)
8.8
19 . 18 2 . 18 3 18 4 18 §. 18 §

t

Figure A-19: Two methods to compute derivatives at curve

18 7

extremities.
10 3
10 &
'“‘-5.
10 -2 .
16 & s te -4
Derivative 107 e

Dertvative

‘Figure A-20: Effect’m of the superposition function.

101

a
1
"l
[}
-1 - Ideal curve
x * Mathod 2
' © Mesthod 2
* Mathod 3
INotse|<=1.8% of (Pmax-Pmin)
-2
10 18 2 18 3 t 10 4 ’ 18 5 18 6 18 7
x
Figure A-21: Methods 1 to 3. Noise = 1%.
L]
o
a
2
1
[
|
-1 ~—— Idsal curve
x + Msthod 1 *
a R o © Hethaod 2
’ * Method 3
|No1se|<=2.8% of (Pmax-Pmin)
-2 - . X
18 18 2 18 3 to 18 4 18 § 10 § 18 7

Figure A-22: Methods 1 to 3. Noise =2%.

~

102

”

18 2

.
.
7
&
k4
0
»
.
¢
K
50. .
. -
.“ o R :..\ N .
< R RSN I PP N I -
» .o - . A A
Pad . .© . LI BN RN o .
/7 . .. Lt .
o . .
ll - -
S . e
g .
& .
'o' . woomms cws @e
J
-
"
.
.
.
.
.
.
B
.
[10 -4
e =1 10s 10 <1 1o
Semilog Dertvative

Figure A-23: Left:

Semilog curve.

Right: Derivative curve (I=0).

2 2
.cﬁ’o\ . K4
-ty - AN .
L i e £ e oy
. . .
“ . -
Ll
. M .
. -
me e e
10 -
1 -4 16
Derivative

]

..
. Cemy
AN .\..’.v-‘u"“§. .,

-
T e

-4
1

Dertvattive

Figure A-24: Derivative curves. Left: I=0.1. Right: 1=0.2.

103

LIt e
. * e « oo '"’"m\
. . ..

- - ~,
L S - o
of P) . e

10 -2 » 1" ‘}
TRTY oS -1
Derivative Derivative e

Figure A-25: Derivative curves. Left: I=0.5. Right: I=1.

Berwse cm o0

19 -4

19 -1
Dertivativa s

19 =
18 -1 1
Derivative '

Figure A-26: Difference between real least-squares method (right)
and linear regression (left).

104

19 -

wem e ame

10 -1

10 8

1e -4

Derivative

10 -1

Dertvative

uts

Dertvative

10 -3

Dertvative

Figure A-27: Combined effects of derivative and least-squares

- smoothing. Top: Derivative interval length = 0.05. Bottom: Derivative
interval length = 0.2. Left: Computation interval length = 0.2. Right:
Computation interval length = 0.1.

105

APPENDIX B - DIFFERENCE BETWEEN LEAST-SQUARES |
AND LINEAR REGRESSION

LEAST-SQUARES
The function to be minimized with the least-squares method is

n

2
f(P,, P,, ... B) =2 (ax i - y; +b)

i=1 1 + a2

where P(x1,y1), P2(x2,y2), Pn(xs,yn) are the points used to compute
the straight line, a the slope and b the intercept. fis based on the
euclidian distance. The values of a and b are given by

-B+\] B? + 4A

and b=y - ax

a-=

n

n
where A=) xy- mXy and B=, (c}-yd - a2 7)

i=1 i=1

LINEAR REGRESSION
In this case, the function is given by -

n

f(P, P, ..., B) =Z (ax - y; +b)°
i=1
with the same notations. f is based here on the vertical distance
between each point P; and the straight line. It means that the value
of f increases faster with this method than with the least-squares
one when a increases. The values of a and b are given by

107

108

APPENDIX C - LISTINGS

C PROGRAM
The listings of the following files are given:

- "cmp.h": Declarations for computation functions.

- "cmp_data.c": Read the data, filter it and compute derlvatlves
and curves.

- "cmp_main.c": Call the different functlons used for well
numerical analysis.

- "cmp_pattern.c”: Compute patterns from the curves.

- "cmp_send.c": Interface between C and ART.

- "env.h": Set the environment variables.

- "gph.h": Declarations for graphic functions.
- "gph_main.c": Drawing functions for the curves.
- "gph_util.c": Low-level graphic functlons

- "macro.h": macro function definitions.
- "main.c": function main().
- "pat.h": Declarations for patterns.

- "win.h": Declarations for windows.

- "win_bar.c": Create the explanation line at the bottom of the
, screen. ‘

- "win_base.c": Create the main window (list of wells).

- "win_closer.c": Ask the user for closing windows when too

many of them are opened.

- "win_confirmer.c”: Confirm quit.

- "win events. c" Handle mouse events (clicks, moves, etc...).

- "win_init.c": Initializations for windows.

- "win_main.c": Create all the windows.

- "win_util.c": Utilities for windows.

- "win_wells.c": Create the windows used for curve drawmv

109

ART PROGRAM
Two files are used in the current version

- "init.art": Set the object architecture, functions used to
interface C and ART.

- "model.art": Rules used to extract the models from the
patterns.

110

<}

Jun 21 11:43 1988 cmp.h Page 1

/* "cmp.h" : global constants and variables for computations. *
/***

#ifdef CMP_MAIN
tdefine EXTERN

telse

#define EXTERN extern
tendif

/***

/* wells *
/*******************************t***

#define MAX NBR_WELLS 20

$define MAX NBR_INITIAL PTS 1000
#define MAX NBR_PTS 61

#define INTERV 3

$define EPSILON le-6

EXTERN float initial time[MAX_NBR_WELLS] [MAX_ NBR_INITIAL PTS];
EXTERN float initial_ pressure[MAX NBR WELLS][MAX NBR_INITIAL PTS],

EXTERN float time[MAX NBR_WELLS] [MAX_NBR_PTS] ;
EXTERN float pressure[MAX NBR_WELLS] [MAX NBR_PTS];

EXTERN float p_derivative[MAX NBR_WELLS] [MAX NBR_PTS];
EXTERN float p_d_derivative[MAX NBR_WELLS] [MAX_NBR_PTS];
EXTERN float log_derivative[MAX NBR_WELLS] [MAX NBR_PTS];

- EXTERN float first_pressure[MAX NBR_WELLS] ;
EXTERN float i_last_time[MAX NBR_WELLS] ;

EXTERN float 1 last_pressure[MAX NBR_WELLS] ;
EXTERN float last_time[MAX NBR_WELLS];

EXTERN float last_pressure[MAX NBR_WELLS] ;
EXTERN float min_p_derivative[MAX_NBR_WELLS] ;
EXTERN float max_p_: derivative [MAX_ NBR WELLS],
EXTERN float min_p_d_derivative[MAX NBR_WELLS];
EXTERN float max_p d derlvatlve[MAX NBR WELLS],
EXTERN float local_max_time[MAX NBR WELLS][lO],
EXTERN int i_min_p_; derlvatlve[MAX NBR_WELLS] ;
EXTERN int i_max_p derivative [MAX NBR_WELLS];
EXTERN int i_min_p d_derivative[MAX NBR_WELLS];
EXTERN int i_max_p_d_derivative[MAX_ NBR_WELLS];

/***

/* curves *
/***

#define MAX WIDTH 450

#define MAX HEIGHT 450
#define X ORIGIN 25

111

Jun 21 11:43 1988 cmp.h Page 2

#define Y_ORIGIN 475

EXTERN
EXTERN

EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN
EXTERN

EXTERN
EXTERN

EXTERN
EXTERN
EXTERN

EXTERN
EXTERN

short
short

short
short
short
short
short
short
short
short
short

struct

struct
struct

struct
struct
struct

struct
struct

initial_ curve x[MAX NBR_WELLS] [MAX_NBR_INITIAL PTS];
initial_ curve_y[MAX NBR_WELLS] [MAX_NBR_INITIAL PTS];

curve_x[MAX_ NBR_WELLS] {MAX NBR_INITIAL PTS];
curve_y[MAX NBR_WELLS] [MAX | NBR INITIAL PTS];
curve_yl [MAX NBR_WELLS] [MAX_ NBR INITIAL_PTS];

curve_log_x[MAX_NBR_WELLS] [MAX NBR_INITIAL PTS];
curve_log_y[MAX_NBR_WELLS] [MAX_NBR_INITIAL_PTS];

derivative_log_y[MAX NBR_WELLS] [MAX NBR_INITIAL PTS];

log_x_min[MAX NBR_WELLS];
log_y min{MAX NBR_WELLS] ;
log_cycles[MAX_ NBR_WELLS] ;

axis_mark

axis_mark
axis_mark

axis_mark
axis_mark
axis_mark

axis_mark
axis_mark

{int pos; char text([10]};

initial_x_axis[MAX_NBR_WELLS] [10] ;
initial_y_axis[MAX NBR_WELLS] [10];

x_axis[MAX NBR_WELLS] [10];
y_axis[MAX NBR WELLS][lO],
yl_axis[MAX NBR WELLS] [10];

log_x_axis[MAX_NBR_WELLS] [10];
log_y_axis[MAX_NBR_WELLS] [10];

112

Jun 21 11:52 1988 cmp_data.c Page 1

/***

/* "cmp_data.c" : compute filtered data, derivatives and curves. *
/***
#include <math.h> ’ '

#include <stdio.h>

#include "cmp.h"

#include "env.h"

#include "macro.h"

/***

/* references > *
/***

/***k***

/* contents ' *
/***
extern int read_well();
static float hms_to_s(); -
extern void filter data();
static float *derivative func();
extern void compute_p_derivative();
extern void examine_p_derivative();
extern void compute p_ d_derivative();
extern void compute_ extrema();
extern void compute log_derivative();

static int c_c();
extern void compute_initial_curve();
extern void compute_filtered_curve();
extern void compute_log_scale();
extern void compute_semilog_curve();
extern void compute_loglog_curve();
extern void compute_derivative curve();

/***
/* read initial data for well n *
/***
extern int read_well(n,name)
short n;
char *name;
{ int 1i;

float hour,minute, sec,p;

float time unit,pressure unit, first_time;

char fllename[SO],

FILE *in_ file;

strcpy(filename, PATH) ;
strcat(filename,name) ;
if (!'(in_file = fopen(filename,"r"))) return 0 ;

(void) fscanf(ln file,"(%f %f)",&time_unit, &pressure unit);
while (fgetc(in_file)!='\n');

(void) fscanf(in_file,"(%f %f %f %f)\n",shour, sminute, &sec, &p);

113

Jun 21 11:52 1988 cmp_data.c Page 2

first_time = time_unit*hms_to_s(hour,minute,sec);
initial_time[n] [0]=0.0; .
first_pressure[n] = initial_pressure[n][0] = pressure unit*p;

for (i=1;!feof(in_file);i++) ([
(void) fscanf(in_file,"(%f %f %f %f)\n",&hour, sminute, &sec, &p);
initial_time([n][i] = time_unit*hms_to_s(hour,minute,sec)-first time;
initial pressure[n] [i] = pressure_unit*p;

}

i last_time[n] = initial_time([n][i-1];
i_last_pressure[n]=initial_pressure[n] [i-1];

fclose(in_file);
return i;

}

/***

/* convert hours, minutes, seconds to seconds *
/***

static float hms_to_s(h,m,s)
float h,m,s;
{ return((float)(3600*h+60*m+s));

/***

/* compute filtered data for well n *
/***

extern void filter_data(n)

short n;

{ int i,j,k,last_j; .
double coeff;

coeff = loglO(i_last_time[n])/(MAX_NBR_PTS-1);

time[n] [0] = O;
pressure[n] [0] = first_pressure[n];
for (i=1,j=1,k=1;i<{=MAX_NBR_PTS-1;i++) {
for (last_j=j;
initial time[n]{j]1<=(f10(coeff*i)+EPSILON)
&& initial time(n]{j]:;
j++) |
time[n] [k] += initial_time{n][]j];
pressure([n] [k] += initial pressure([n]{j]:

if (j>last_3j) {
time([n] [k] /= (J-last_j);
pressure[n] [k++] /= (Jj-last_j);
}

}

last_time[n]=time[n] [k-1];
last_pressure[n]=pressure[n] [k-1];

114

Jun 21 11:52 1988 cmp_data.c Page 3

/***
/* derivative function : : *
/***
static float *derivative_func(len,x,y,interv)
int len; .
float x[],y([];
int interv;
{ static float d[MAX _NBR_PTS];
~ float @g,xq,fx,iy,yo,fy;

int i,ii,fi;

for (i=0;i<MAX NBR_PTS;i++) d[i]=0;

for (i=1;i<len-1;i++) {
switch(i) {

case 1l: ii=0;fi=2;break;

case 2: 1i=0;fi=4;break;

default: switch(len—-i) {
case 2: ii=len-3;fi=len-1;break;
case 3: ii=len-5;fi=len-1;break;
default: ii=i-interv;fi=i+interv;break;
} _

break;

1x=x[11] ; x0=x[1i];fx=x[£fi];
iy=y([ii]l;yO0=y[i];fy=y[£fi];
?[1] ((fx-xo)*(yo 1y)/(x0-ix)+(x0- 1X)*(fy-Y0)/(fx-x0))/(fx-1X),

d[0]=(y[1]-y[0])/(x[1])-x[0]);
d{len-1]=(y([len-1]-y[len-2])/(x[len-1]-x[1len-2]);

return(d);

/***

/* compute pressure derivative for well n (= dp/dln(t)) *
/***

extern void compute p derlvatlve(n interv)

short n,interv;

{ int 1i;
float log_t[MAX NBR_PTS],*deriv;
for (i=1;time([n][i];i++) log_t[i]=log(£ime[n][i]);
deriv=derivative_ func(i-1,&log_t[1l}], &pressure[n] [1],interv);

for (i=1;time([n]{i];i++) {
p_derivative([n] [i]= *(deriv+i-1);

/***

115

/
Jun 21 11:52 1988 cmp_data.c Page 4

/* examine pressure derivative and change values greater than -0.01 to -0.01 *
/***

extern void examine_p_derivative(n)
short n;
{ int 1i;

for (i=1;time([n][i];i++)
if (p_derivative[n][i]> -0.01) p_derivative[n][i]= -0.01;

/***

/* compute pressure second derivative for well n (= dln(dp/dln(t))/dln(t)) */

/***

extern void compute_p_d_derivative(n,interv)

short n,interv; v

{ int i; :
float log_t[MAX_NBR_PTS],log_p_d[MAX NBR_PTS],*deriv;

for (i=1;time[n][i];i++) [
log _t[i]=log(time[n] [i]);
log_p d[i]=log(—p_derivative[n] [i]);
}

deriv=deriva£ive_func(i—l,&log_t[l])&log_p_d[l],interv);

for (i=l;time[n][i];i++)
p_d_derivative[n] [i]= *(deriv+i-1);

/***

/* compute extrema of pressure derivatives for well n *
/***
extern void compute_extrema(n)
short n;
{ int i,j,imax,imin;

float x,min,max;

min=max=p_derivative[n] [1];
imin=imax=1;
for (i=2;time[n](i];i++) {
if ((x=p_derivative[n][i])<min) ¢
min=x;
imin=i;

if (x>max) {
max=x;
imax=i;
}
}
min_p derivative([n]=max;
max_p derivative([n]=min;
i_min_p_derivative([n]=imax;
i_max p_derivative[n]=imin;

116

Jun 21 11:52 1988 cmp_data.c Page 5

min=max=p_d_derivative[n][1];
imin=imax=1;
for (i=2;timel[n][i];i++) {
if ((x=p_d_derivative[n][i])<min) {(
min=x;
imin=i;

if (x>max) {
max=x;
imax=i;

}

min_p_d_derivative([n]=max;
max_p_d_derivative[n]=min;
i min_p_d derivative[n]=imax;
i_max_p_d_derivative[n]=imin;

for (i=2,j=0;time[n] [i]<1000;i++)
if (p_d_derivative[n][i-1]>0
&& p_d derivative[n] [1]<0)
local _max_time[n] [j++]=time([n] [i];

/***

/* compute log of pressure derivative for well n (= dln(p)/dln(t)) *
/***

extern void compute_log_derivative(n,interv)
short n,interv;
{ int i;
float log_t[MAX_NBR_PTS],log_p[MAX_NBR_PTS],*deriv;

for (i=1l;time(n](i];i++) {
log_t[il=log(time[n] [i]); , '
log_pl(il=log(first_pressure[n]-pressure[n] [1i]);

deriv=derivative_func(i-1,&log_t{1],&log_p[l],interv);

for (i=1;log_derivative[n][i]= *(deriv+i-1);i++);

/***

/* curves *
/***

/***

/* coordinates computation function *
/***

117

Jun 21 11:52 1988 cmp_data.c Page 6

static int c_c(x,x0,scale,origin)

float x,x0,scale;

int origin;

{ return (origin+(int)(scale*(x-x0))); }

/***

/* initial curve for well n x .
/***
extern void compute_initial_curve(n)
short n;
{ int i;

float x_scale,y_scale;

X_scale=MAX_WIDTH/i_last_time[n];
y_scale=MAX HEIGHT/(i_last_pressure[n]-first pressure([n]);

for (i=0;!i || initial time([n][i];i++) {
initial curve_x[n][i]=c_c(initial_time[n] [i],0.0,
x_scale,X ORIGIN);
initial_curve_y[n][i]l=c c(lnltlal_pressure[n][i] i last_pressure[n],
y_scale,Y ORIGIN);
}

initial_x_axis[n] [0].pos=X_ORIGIN;

lnltlal X ax1s[n][l] pos=X_ORIGIN+MAX WIDTH;
sprlntf(lnltlal x_axis([n] [0].text,"%. 2f",0. 0),
sprintf(initial_x ax1s[n][l] text,"% 2f",1_last_time[n]);

initial_y aXlS[n][O] pos=Y_ ORIGIN;
initial_y_axis[n][1].pos=Y_! ORIGIN—MAX HEIGHT;
sprintf(initial_y axis[n] [0].text,"%. 2f", 1 last_pressure[n]),
sprintf(initial_y_axis[n][1].text,"$.2f",first_pressure[n]);

/***
/* filtered curve for well n *
/***
extern void compute_filtered_curve(n)
short n;
{ int i;

float x_scale,y_scale;

x_scale=MAX WIDTH/last_time[n];
y_scale=MAX HEIGHT/(last_pressure[n]-first_pressure(n]);

for (i=0;!'i || time[n][i];i++) (.
curve x[n][1]=c_p(time[n1[i],0.0,x_scale,X_ORIGIN);
curve_y[n][1]=c_c(pressure[n][i],last_pressure[n],y_scale,Y_ORIGIN);

x_axis[n] [0].pos=X_ORIGIN;

X_axis[n] [1].pos=X_ORIGIN+MAX WIDTH;
sprintf(x_axis[n] [0].text,"%.2£",0.0);
sprintf(x_axis[n] (1].text,"%.2f",last_time[n]);

118

Jun 21 11:52 1988 cmp_data.c Page 7

y_axis[n] [0].pos=Y_ORIGIN;
y_axis[n] [1].pos=Y_ORIGIN-MAX_ HEIGHT;

” sprlntf(y_aXLS[n][O] text,"%.2f" ,last_pressureln]);
sprintf(y_axis[n]{1].text,"%.2f",first pressure[n]);

/***

/* compute log scales for well n *
/***
extern void compute_log_scales(n)
short n;
{ int i, tmax,ymin,ymax;

float x,min,max;

log x min[n}=(int)(logl0(0.98*time[n] [1]})+10)-10;
tmax=(int)(loglO(last_time[n])+10)-9;
log;pycles[n]=tmax—log_x_min[n];

min=max=first pressure{n]-pressure[n]([1];
for (i=2;time[n][i];i++) {

if ((x=first_pressure[n]-pressure(n] [i])<min) min=x;

if (x>max) max=x;

} ' :
ymin=inf((int)(logl0(min)+10)-10, (int)(loglOo(—min_p_derivative[n])+10)—-10);
ymax=sup((int)(loglO(max)+10)-9,(int)(loglO(-max_p_derivative[n])+10)-9);

switch (log_cycles[n]- (ymax—ymln)) {

case 0: log_y_ mln[n]—ymln break;

case 1: log_y min[n]=ymin;break;

case 2: log_y_min[n]=ymin—1;break;
case 3: log _y min[n]=ymin-1;break;
case 4: log y min[n]=ymin-2;break;
case 5: log_y_min[n]=ymin-2;break;
case 6: log_y_| mln[n]=ymln 3; break~

default: log_y min[n]=ymin-4;break;
}

/***

/* semilog curve for well n *
/***k*************************************
extern void compute_semilog_curve(n) ' '
short n;
f int 1i;

float x_scale,y_scale,p0;

pO=first pressure[n]-pressure[n][1];
x_scale=MAX WIDTH/(log_cycles[n]);
y_scale=MAX HEIGHT/(last_pressure[n]-pressure(n][1]);

for (i=1;time[n][i];i++) {
curve_log x[n] [i-1]=c_c(loglO(time[n] [i]),
(float)log_x min([n],
x_scale,X_ORIGIN);

119

Jun 21 11:52 1988 cmp_data.c Page 8
curve_vyl[n] [i-1]=c_c(first_pressure[n]-pressure[n][i],p0,y_scale,Y ORIGIN);
}

for (1=0;i<{=log _cycles[n];i++) {
log_x_axis[n] [1].pos=X_ORIGIN+i*x_scale;

sprintf(log_x axis[n] [0].text,"10 %d",log_x_min[n]);
sprintf(log_x_axis[n] [log_cycles[n]].text," 10 s4d",
log_x_min[n]+log_cycles[n]);

yl_axis[n] [0].pos=Y_ORIGIN;

yl_axis[n] [1].pos=Y_ORIGIN-MAX HEIGHT;

sprintf(yl_axis[n] [0].text,"%. 2f",p0);

sprintf(yl_axis[n][1]. text,"% 2f",first_pressure[n]-last_pressure[n]); ¢

/***
/* loglog curve for well n ’ *
/***
extern void compute_loglog_ curve(n)
short n;
{ int i;

float y_scale;

y_scale=MAX HEIGHT/(log_cycles[n]);

for (i=1l;time[n][i];i++)
curve_log_y[n][i-1]=c_c(loglO(first_pressure[n]-pressure[n] [i]),
(float)log_y min[n],
-y_scale,Y ORIGIN);

for (i=0;1i<=log_cycles[n];i++) {
log_y_axis[n] [i].pos=Y_ORIGIN-i*y scale;

sprintf(log_y_axis[n] [0].text,"10 %d",log_y _min[n});
sprlntf(log_y axis[n] [log_cycles[n]]. text,"lO %d",
log_vy 1 mln[n]+log cycles[n]);

/***

/* derivative curve for well n *
/***ﬁ***

extern void compute_derivative_curve(n)
short n;
{ int i;
float y_scale;
Y_scale=MAX HEIGHT/(log_cycles([n]);
for (i=1;time[n]([i];i++)
derivative log_y[n][i-1]=c_c(loglO(-p_derivative[n][i]),

(float)log_y min([n],
-y_scale,Y ORIGIN);

120

Jun 21 11:52 1988 cmp_data.c Page 9

121

Jun 21 12:03 1988 cmp_main.c Page 1

/***

/* "cmp_main.c" : main procedures for computations : *
/***

#define CMP_MAIN

#include "cmp.h"

/***

/* functions references *
/***

extern int read_well();

extern void filter_data();

extern void compute_p_ derivative();
extern void examine_ p_derivative();
extern void compute_p_d_derivative();
extern void compute_extrema();
extern void compute_log_derivative();
extern void compute_initial_curve();
extern void compute_ filtered_ curve();
extern void compute log_scales();
extern void compute_semilog_curve();
extern void compute_loglog_curve();
extern void compute_derivative curve();

extern void semilog_straight lines();
extern void loglog straight lines();
extern void derivative_straight_lines();
extern void seek humps();

extern void send number();

extern void send_initial_data();

extern void send_semilog_staight_lines();
extern void send_loglog_straight lines(); _
extern void send_derivative_straight_lines();
extern void send humps();

extern void send_local_max_time();

extern void send quit();

/***
/* contents *
/***

extern void do_well_analysis();

/***

/* begin the analysis for well n *
/***

extern void do_well_analysis(n,name)
int n;
char *name;

{

send_number(n,name) ;

(void) read_well(n,name);

122

a

Jun 21 12:03 1988 cmp_main.c Page 2

filter_data(n);
compute_p_derivative(n, INTERV);
examine p derivative(n);
compute_p_d_derivative(n, INTERV);
compute_extrema(n); _
compute_log_derivative(n,INTERV);
send_initial_data(n);
send_local_max_time(n);

- semilog_straight_lines(n);
send_semilog_straight_lines(n);
loglog_straight_lines(n); -
send_loglog_straight lines(n);
derivative_straight_lines(n);
send_derivative_straight_lines(n);
seek_humps(n);
send_humps(n) ;

compute_initial_ curve(n);
compute_filtered_curve(n);
compute log_scales(n);
compute_semilog_curve(n);
compute loglog_curve(n);
compute derivative_curve(n);

123

Jun 21 12:11 1988 cmp_pattern.c Page 1

/***

/* "cmp_pattern.c" : look for pattern in semilog, loglog and derivative curves.*
/***

#define PAT MAIN /* set flag for pattern declarations */

$#include <stdio.h>
#include <math.h>
#include "cmp.h"
#include "pat.h"
#include "macro.h"

/***

/* references *
/***

/***

/* contents ' ' *
/***
extern float slope();

static struct s_line *straight_lines();

static void group_s_s_lines();

static void check_s_s_lines();
extern void semilog_straight_lines();
extern void loglog_straight_lines();

static int expand_d_s_lines_left();

static int group_d_s_lines();

static void modify_d_s_lines();
extern void derivative_ straight_lines();

static void modify_ extrema();
extern void seek humps();

/***

/* staight lines ' *
/***

/***
/* compute the slope of a straight line ' *
/***
extern float slope(c,n,pos)
char c;
int n,pos;
{ int ii, fi;
if (c=='sg'")

ii=semilog_s_lines[n][pos].i;

fi=semilog_s_lines[n] [pos].f;

return (pressure[n][ii]-pressure[n][fi])

/(loglO(time[n] [ii])-loglO(time(n] [fi]));

if (e=='1") {

124

-

Jun 21 12:11 1988 cmp_pattern.c Page 2

ii=loglog_s_lines[n] [pos].i;
fi=loglog_s_lines[n] (pos].f;
return (loglO(abs(pressure[n] [fi]))
-loglO(abs(pressure[n] [1ii])))
/(loglO(time[n] {fi])-1loglO(time[n] [ii]));
}

if (c=='4d") {
ii=derivative_s_lines[n] [pos].i;
f1=der1vatlve s_lines[n] [pos].f;
return (loglO(derlvative[n][fi]) loglO(—p_ derivative[n][li]))
/(loglO(tlme[n][fl]) -loglO0(time([n] [ii])),
} _

/*#***

/* look for straight lines *
/***
static struct s_line *straight_lines(n,deriv,sig_length,error)
int n;
float deriv(],sig_length,error;
{ static struct s_line sl[MAX NBR_S LINES],
int i,3.,k;
float sum,average,current,first;
for (i=1,k=0;time([n][i];i=3) {
flrst—derlv[l],
sum=first;
average=first;

for (j=i+l;time[n][j] && abs((current=deriv([j])—average)<error:
&& abs(average-first)<error;
j++) { .
sum += current;
average = sum/(j—-i+1);

if (loglO(tlme[n][j 1]) loglO(time(n] [i])>sig_length) {
sl{k].i=i;
sl{k++].£f=3-1;
}

}
sl[k}.i=0;
return(sl);
}
/***4
/* group straight lines in the semilog curve for well n *

/***
static void group_s_s_lines(n)
int n;
{ int i,ii1,fi1,ii2, f12 mi,sl_number;
float x=0;

125

Jun 21 12:11 1988 cmp_pattern.c Page 3

for (i=1;time([n]([i];i++) x += p_derivative(n][i];
X /= i-1;

for (i=0;semilog_s_lines([n][i].i;i++);
sl_number=i;

for (i=sl_number-1;i>0;i——) {
iil=semilog_s_lines[n] [i-1].i;
fil=semilog_s_lines([n] [i-1].f;
ii2=semilog_s_lines[n][i].i;
fi2=semilog_s lines(n]{i].f;
mi=(int) ((iil+£i2)/2);
if (abs(slope('s',n,i)-slope('s',n,i~-1))<ABS_ERR
&& (loglO(time[n] [ii2])-loglO(time[n][£i1]))<0.25
&& abs(pressure(n] [mi]-(pressure{n] {iil]
+(pressuren] [fi2]-pressuren] [iil])
*(loglO(time[n] [mi])-1logl0(time(n] [1i1]))"
/(loglOo(time[n] [£i2])-loglO(time[n] [1i1]))))
< abs(xX*REL_ERR)) {
semilog_s lines[n] [i-1}.f=fi2;
semilog_s lines[n][i].i=0;

}

/***

/* check straight lines in the semilog curve for well n ' *
/***

static void check_s_s_lines(n)

int n;

{ int i,3,ii, fi,mi,sl_number;
float x=0;

for (i=1;time[n][i];i++) x += p_derivative[n](i];
x /= i-1;

for (i=0;semilog_s_lines([n][i].i;i++);
sl _number=i;

for (i=0;ii=semilog_s_lines[n]{i].i;i++) {
fi=semilog_s_lines([n]}[i].f
mi=(int) ((ii+£fi)/2);
while ((fi-ii)>2
&& (loglO(time[n] [fi])—-loglO(time[n] {ii]))>2*SIG_LENGTH
&& abs(pressure([n][mi]-(pressureln] {ii]
+ slope('s',n,1i)
*(loglO(time[n] (mi])-loglO(time([n] [ii]))))
> abs(x*REL_ERR)) {
for (j=sl_number-1;j>i;j-——) {
semilog_s_lines{n] [j+1].i=semilog_s_lines{n][j].i;
semilog_s_lines([n] [j+1].f=semilog_s lines([n}[j].f;

sl_number++;

semilog_s lines[n] [i+1].i=mi;
semilog_s_lines[n] [i+1].f=fi;

126

Jun 21 12:11 1988 cmp_pattern.c Page 4

fi=semilog_s_lines[n] [i].f=mi;
mi=(int) ((1ii+£fi)/2);
}

kXA KKKKRAAKAKRAKAKRKRKKRKAAKRARRAKk Rk khkkhkhkkhkhkhkhkkhkhkhkkkkkkkkhkkkkkkhkkkkhkhkkkkhkhkkhkkkhkhkkkxi

/* straight lines in the semilog curve for well n ’ *
/***
extern void semilog_straight_lines(n)
int n;.
{ struct s_line *sl;

int i,ii, fi;

float x=0;

for (i=1;time[n][i];i++) x += p_derivative([n][i];
x /= i-1;

sl=straight_lines(n, &p_derivative[n][0], (float) SIG_LENGTH,
(float) sup(abs(REL_ERR*x),ABS_ERR));

for (i=0;ii=semilog_s_lines[n][1]}.i= sl[l] i;i++) [
fi= semllog s_lines[n][i].f=s1l[i].f;
1

group_s_s_lines(n);

check _s_s lines(n);

/***

/* straight lines in the loglog curve for well n */
/***
extern void loglog_straight_ llnes(n)
int n;
{ struct s_line =*sl;
- int i,ii,fi;

float x=0;

for (1 1; tlme[n][ll ;i++) x += log_derivative({n][i];
X /= 1i-1;

sl=straight__ llnes(n &log_derivative[n] [0], (float) SIG_LENGTH,
: (float) sup(abs(REL_ERR*x),ABS ERR)),

for (i=0;ii=loglog_s_llnes[n][1].1=sl[1].1;1++) {
fi=loglog_s lines([n][i].f=sl[i].f;

/***

/* expand derivative straight lines to the left *
/***

static int expand d_s_lines_left(n)
int n;

127

Jun 21 12:11 1988 cmp_pattern.c Page 5

{ int i,1ii,fi1,flag=0;

ii=derivative_s_lines[n][0].i;
while (ii>1
&& abs(slope('d’',n, 0) p_d derlvatlve[n][ll l])<ABS ERR) (
derivatlve_s_llnes[n][O] i= —-1ii;
flag=1;
}

for (i=1l;ii=derivative_ s lines[n]{i].i;i++) {
fil=derivative_s_lines[n] [i-1].f;
while ((loglO(time[n][ii])-loglO(time[n][£fi1]))>0.2
&& abs(slope('d',n,i)-p_d_derivative[n][ii-1])<ABS_ERR) {
derivative s lines[n][i].i= --ii;
flag=1;
}
}

return flag;

/***
L

/* group derivative straight lines : *
/***
static int group_d_s_lines(n)

int n;

{ int i, fll 1i2,sl_number, flag=0;

for (i=0;derivative_s_lines[n][i].i;i++);
sl _number=i;

for (i=sl_number-1;i>0;i——) {
fil=derivative_s lines[n][i-1].f;
ii2=derivative_s lines(n]{i]. i,
if (abs(slope('d',n,i)-slope('d',n,i- 1))<ABS_ERR
&& (loglO(time([n] [ii2]) loglO(tlme[n][fll]))<0 25
&& abs(p_derivative([n] [ii2]-p_derivative[n][fil])
{(abs(max_p_ derivative[n]/10))) { :
derivative_s lines[n][i- l] f=derivative_s lines[n]{i].f;
derlvatlve_s_llnes[n][l] i=0;
flag=1;
}
}
return flag;

}

/***

/* modify derivative straight lines - *
/***‘
static void modify_d_s_lines(n)
int n;
{ if (group_d_s lines(n))

if (expand_d_s_lines_left(n)) modify _d_s_lines(n);

128

Jun 21 12:11 1988 cmp_pattern.c Page 6

/**t**

/* straight lines in the derivative curve for well n *
/***
extern void derivative stralght lines(n) '
int n;
{ struct s_line *sl;

int i,ii,fi;

float x=0;

for (i=1;time[n][i];i++) x += p_d derivative[n][i];
x /= i-1;

sl=straight_lines(n,&p_d_derivative[n] [0], (float) SIG_LENGTH,
(float) (2.3*sup(0.43*abs(REL_ERR*x),ABS_ERR)));

for (i=0;ii=derivative_s_lines[n][i].i=sl[i].i;i++) {
fi=derivative_s_lines[n][i].f=sl[i].f;

(void) expand _d_s_lines_left(n);
modify d_s lines(n);

/***

/* modify extrema *
/***
static void modify_ extrema(n)
int n; v
{ int 4i,ii, ti;

float diff;

for (i=0;ii=humps[n]([i].i;i++) {

ti=humps(n] [i].t;

diff=p_« derlvatlve[n][ll] -p_ derlvatlve[n][tl],

if (diff>0)

while (p_derivative[n][ti-1]<p_derivative[n][ti]
p_derivative[n] [ti+1]<p_derivative[n] [ti]) {(

if (p_derivative[n][ti-1]<p_derivative[n][ti]) humps[n] [i].t= —ti;
else humps[n] [i].t= ++ti;

else
while (p_derivative[n][ti-1]>p_derivative[n][ti]
p_derivative([n] [ti+1]>p_derivative[n] [ti]) {
if (p_derivative[n][ti-1]>p_derivative[n][ti]) humps[n] [i].t= ——ti;
else humps[n] [i].t= ++ti;

/***,

/* humps *

/***

extern void seek_humps(n)
int n;

129

Jun 21 12:11 1988 cmp_pattern.c Page 7

{ int i,ii,top,j,k,inoise, fnoise;
float first,current,next,bef noise;

for (i=1,%k=0;time[n]{i);i++) {
ii=i;
first=bef noise=p_d_derivative[n] [i];
inoise=fnoise=i;

for (j=i,top=0;time([n] [j+1]
&& (loglO(time(n] [fnoise])—loglO(time[n] [inoise]))<SIG_LENGTH;
j++)
if ((first>0
&& (current=p_d_derivative([n] [j])<bef_noise
&& (next=p_d_derivative[n] [j+1])<current)

(first<0
&& (current=p_d_derivative[n] [j])>bef noise
&& (next=p_d derivative[n][j+1])>current)
) {
bef noise=current;
inoise=fnoise=j;
}
else
fnoise=j;

if (!'top && signum(current)!=signum(first)) top=j;

if ((loglOTtime[n][fnoise])—loglO(time[n][inoise]))<=(SIG_LENGTH/2)
&& ('top (loglO(time(n] [j])—-loglO(time[n] [top]))<=SIG_LENGTH))
l"'] ’ - .

if (top && (loglO(time[n][j-1]1)-loglO(time[n][ii]))>=(3*SIG_LENGTH)
&& (loglO(time(n][j-1])-loglO(time[n] [top]))>=SIG_LENGTH
&& (loglO(time[n] [top])-loglO(time[n] [ii]))>=SIG__ LENGTH
&& sup(abs(loglO(-p_derivative[n][j-1])-loglO(-p_ derlvatlve[n][top]
abs(logl0(-p_derivative({n] [1ii])-1oglO(—-p_derivative[n] [top]))
>=(SIG_LENGTH/2)) {

humps[n] [k] .i=ii;

humps[n] [k] . t=top;

humps([n] [k++] .f=inoise+1;

}

modify extrema(n);
}

130

Jun 21 12:48 1988 cmp_send.c Page 1

/***

* "cmp send.c" : functions for interface between C & ART. . *
P__
/***
#include <stdio.h>
#include <string.h>
#include "cmp.h"
#include "pat.h"

/* references *
/***

extern float slope();

/***

/* contents *
/***
static void send(); '
extern void send number();

extern void send_initial_data();

extern void send_semilog straight lines();

extern void send_loglog_straight_lines();

extern void send_derivative_straight lines();

extern void send _humps();

extern void send_quit();

/***

/* send string to ART *
/***
static void send(buf)

char *buf;

§ write(l,buf,strlen(buf));

/***
/* send well number *
/***
extern void send number(n,name)

int n;

char *name,

{ char buf([80];

sprintf(buf," (1 %d %s)",n,name);
send(buf);

/***

/* send initial data *
/***

extern void send_initial data(n)
int n;

{ char buf([200];
int last,imax=i_max_p_derivative[n];

131

Jun 21 12:48 1988 cmp_send.c Page 2

for (last=1;time[n]{last];last++);

sprintf(buf,” (2 %d %f (3f %f) (%f) (%f 3£ %f %f) (%f %£f))",

n,

last_time[n],

log _derivative([n] [1],log_derivative[n][2],

time[n] [1],

p_d_derivative([n] [1],p_d_derivative[n][2], '

p_d derlvatlve[n][last—zj,p d_derivative[n] [last-1],
time[n] {imax],max_p_derivative[n]);

send(buf); :

}

/***

/* send semilog straight lines *
/***
extern void send_semilog_straight lines(n)
int n;
{ int sl_number,i,ii, fi;

char buf[1000],aux[200];

fof (sl_number=0;semilog_s_lines[n] [sl_number].i;sl_number++);

if (sl_number) {
sprintf(buf," (3 %4 %d",n,sl_number);
for (i=0;i<sl_number;i++) {
ii=semilog_s_lines[n]({i].i;
fi=semilog_s_lines[n][i].f;
sprintf(aux," ((%$f %$£) (3£ $f))",
time[n] {ii],pressure([n] [ii],
time[n] [fi],pressure(n] [fi],
slope('s',n,1));
strcat(buf,aux);

}
strcat(buf,")");
send(buf);

}

/***

/* send loglog straight lines : */
/***

extern void send_loglog_straight lines(n)
int n;
{ int sl _number,i,ii, fi;

char buf[1000], auX[ZOO],

for (sl_number=0;loglog_s_ lines[n] [sl_number].i;sl number++);
if (sl _number) {
sprintf(buf," (4 %4 %d",n,sl_number);

for (i=0;i<sl_number;i++) {
ii= loglog S 1lnes[n][l] i;

132

Jun 21 12:48 1988 cmp._send.c Page 3

fi=loglog_s_lines([n]([i].£f;
sprintf(aux," ((%f %f) (%f %f) %f)",
time[n] [ii],pressure(n]}[ii],
tlme[n][fl],pressure[n][fl],
slope('l',n,i));
strcat(buf,aux);
}
strcat(buf,")");
send(buf);
}

/***
/* send derivative straight lines : *

t/***t***

extern void send_derivative_straight_ llnes(n)
int n;
{ int sl _number,i,ii,fi;

char buf[1000], aux[200],

for (sl_number=0;derivative s lines[n][sl_number].i;sl_number++);

if (sl1_number) {
sprintf(buf," (5 %d:%d4d",n,sl number),
for (i=0;i<sl_number;i++) {
ii=derivative_s_lines[n][i].i;
fi=derivative_s lines[n][i].f;
sprintf(aux," ((3f $f) (%f %£f) s$f)",
time[n] [ii],p_derivative[n] [ii],
time[n] [fi],p_derivative(n] [fi],
slope('d',n,i));
strcat(buf,aux);

}
strcat(buf,")");
send(buf) ;

}

/***

/* send humps *
/***

 extern void send_humps(n)

int n;
{ int h number,i,ii,ti,fi;
char buf[lOOO] aux[ZOO],

for (h_number=0;humps[n][h_number].i;h_number++);

if (h_number) {
sprintf(buf,"(6 %d %d",n,h_number);
for (i=0;i<h_number;i++) {
ii=humps([n] [i].1;
ti=humps([n] [i].t;
fi=humps(n][i].f;

133

Jun 21 12:48 1988 cmp_send.c Page ¢

if (p_d_derivative([n]([ii]>0) {(
sprintf(aux," (hill (%f %f) (%f $f) (3f %f))",
time(n] (ii],p_derivative(n] {ii],
time(n] (£fi],p_derivative([n] [fi],
time({n] [ti] ,p_derivative([n] [ti]);

else {
sprintf(aux," (valley (%f $f) (%f $f) (3f %f))",
time(n] {ii],p_derivative[n] [ii],
time[n] [(fi],p_derivative([n] [fi], ‘
time[n] (ti],p_derivative[n] [ti]); *

}
strcat(buf,aux);

}
strcat(buf,")");
send(buf) ;

}

/***

/* send local maximum of pressure derivative *
/***

extern vold send_local_max_time(n)
int n;
{ int number,i;

char buf[1000],aux{200];

for (number=0;local_max_time[n][number];numbér++);

if (number) {
sprintf(buf, " (7 %d (%f",n,local max_time([n] [0]);

for (i=1;i<number;i++) {
sprintf(aux," %f",local_max_time[n][i]);
strcat(buf,aux);

}
strcat(buf,"))");
send(buf) ;

}

/***

/* send end of execution *
/*******************‘k***

extern void send_quit()
{ char buf[20];

sprintf(buf,"(8)");
send(buf);

134

Jun‘21 12:48 1988 env.h Page 1

/***************’k***
/* "env.h" : Set environment variables *
/**********************‘k***‘k**************

#define PATH "/usr/lola/dm/antoine/Wes/Data/"
#define WELLS_LIST "/usr/lola/dm/antoine/Wes/Data/wells.list"

135

Jun 7 15:17 1988 gph.h Page 1

/**********************************_***
/* "gph.h" : Declarations for graphics */
/***
#include <suntool/sunview.h>

#include <suntool/canvas.h>

#ifdef GPH_MAIN

#define EXTGPH

.#else v -
#define EXTGPH extern

#endif

#define VERTICAL_SIZE 500
#define HORIZONTAL_SIZE 500
#define X ORIGIN 25

#define Y_ORIGIN 475

EXTGPH Pixwin *pw[MAX NBR_WINDOWS];

136

Jun 21 12:50 1988 gph_main.c Page 1

/***

/* "gph_main.c" : Curves drawing. .
KhAAKAKRKKKkKKAAKRKAAAAk Ak hkkAhkhhkdhhkhkhkhkkhkhkhhkhkkrkhkhkhrkkhhkkhhhehrhkhkhkhkkhhhkrhkhrdhhhkhhkkdhkk
#include "cmp.h"

#include "pat.h"

/***

/* functions references : *
/***

/* contents *
/***
extern void draw_initial_curve();

.extern void draw_filtered_curve();

extern void draw_semilog_curve();

extern void draw_semilog_patterns();

extern void draw_loglog curve();

extern void draw_loglog_patterns();

extern void draw_derivative_curve();

extern void draw_derivative patterns();

/***

/* draw the initial curve *
/***
extern void draw_initial_curve(n)

int n;

{

plot(n,&initial_curve x[n] [0],
&initial_curve_y[n][0],
&initial x axis[n] [0},
&lnitial y axis([n][0],
"Initial");

/***

/* draw the filtered curve ‘ *
/***
extern void draw_filtered_curve(n)

int n;

{

plot(n, &curve_x[n][0],
&curve_y[n] [0],
&x_axis[n][0],
&y_axis([n] [0],
"Filtered");

/***

137

Jun 21 12:50 1988 gph_main.c Page 2

/* draw the semilog curve *
/***
extern void draw_semilog_curve(n)

int n;

{

plot(n, &curve_log x[n] [0],
&curve_yl[n] [0],
&log_x_axis[n][0],
&yl_axis([n] [0],
"Semilog");

KhkkhkrARKKKKKRKRKXKRRKRKRKKAKKRKKRRRAKkAKXRKRKRKRKRKKKKkKkhkKRhkkAkRkRkKkAkKhkkhkkkhkkkkkhkkhkkkkrkkhkkkikkkkkk

/* draw the semilog patterns : *
/***
extern void draw_semilog_patterns(n)

int n;

plot_straight_lines(n, &semilog_s_lines([n] (0],
scurve_log_x[n][0],
&curve_yl[n]}[0]);

/***

/* draw the loglog curve *
/***

extern void draw_loglog_curve(n)
int n;
{

plot(n, scurve_log x(n][0],
scurve_log_y[n] (0],
&log_x_axis([n] [0],
&log_y_axis([n][0],
"LOglOg"); '

/***

/* draw the loglog patterns *

/***

extern void draw_loglog_patterns(n)
int n;

{

plot_straight lines(n,&loglog_s_lines({n][0],
&curve_log_x[n][0],
scurve_log_y([n] [0]);

~

/***
/* draw the derivative curve *

138

Jun 21 12:50 1988 gph_main.c Page 3

/***
~ extern void draw_derivative curve(n)
- int n;

{

" plot(n,&curve_log_x[n}][0],
&derivative_log_y[n] [0],
&log_x_axis([n] [0},
&log_y_axis([n] [0],
"Derivative");

/***
/* draw the derivative patterns : ' *
/***
extern void draw, _derivative patterns(n)

int n;

{

plot_straight lines(n,&derivative_s_lines[n][0],
&curve_log x[n][0],
sderivative log~y[n][O]),

plot_humps(n,&humps[n] {0],

&curve_log x[n] [0],

&derivative log_y[n][0]);

139

Jun 7 15:17 1988 gph util.c Page 1

/***r*******************

/* "gph_util.c" : Drawing functions *
/***
#include "cmp.h"
$#include "win.h"
#include "gph.h"
#include "pat.h"

/***

/* references , *
/***

/***

/* contents *
/***

extern void plot();
extern void plot_straight_lines();
extern void plot_humps();

/***

/* plot curve y versus X, X axis and y axis *
/***

extern void plot(w_number,x,y,X_ax,y_ax,title)
int w_number;
short x[]1,y[1;
struct axis_mark x_ax[],y_ax[];
char *title;
{ int i,pos,n=w_window[w_number];

pw;writebackground(pw[n],0,0,HORIZONTAL_SIZE—l,VERTICAL_SIZE—l,PIX_SRC);

for (i=1;x[i];i++)
pw_vector(pw(n] ,x[i-1],y[i-1],x[1i],y[i],PIX_SRC,1);

pw_vector(pw([n] ,X_ORIGIN,Y ORIGIN,X ORIGIN+MAX WIDTH,Y_ ORIGIN PIX SRC,1);
for (i=0;(pos=x_ax[i].pos);i++) (

pw;vector(pw[n],pos Y _ORIGIN-2,pos,Y ORIGIN+2,PIX_SRC,1);

}
pw_text(pw[n],X_ORIGIN,Y ORIGIN+10,PIX_SRC,scale_font,x_ax[0].text);
pw_text(pw(n],X ORIGIN+MAX WIDTH—40 Y ORIGIN+10
PIX_ SRC, scale_ font,x ax[1—l] text),

pw_vector(pw[n],X_ORIGIN,Y ORIGIN,X ORIGIN,Y ORIGIN-MAX HEIGHT PIX SRC,1);
for (i=0;(pos=y_ ax[i].pos);i++) (
pw_vector(pw[n],X_ORIGIN-2,pos,X ORIGIN+2,pos,PIX_SRC,1);
}
pw_ text(pw[n],X_ORIGIN-20,Y ORIGIN-5,PIX SRC,scale font,y ax([0]. text),
pw_text(pwn],X_ _ ORIGIN-20,Y ORIGIN—MAX HEIGHT—S,
PIX_SRC, scale_font y_ax[i-1].text);

pw_text(pw[n],200,Y ORIGIN+20,PIX_SRC,0,title);

140

Jun 7 15:17 1988 gph_ util.c Page 2

/***

/* draw straight lines *
/***
extern void plot_straight_lines(w_number,sl,x,y)

int w_number;

struct s_line sl{];

short x[],y([]; '

{ int i,ii, fi,n=w_window[w_number];

for (i=0;(ii=sl[i].i—l)!=—l;i++) {

fi=gl{i].£f-1

pw_ vector(pw[n] x[(ii],y(i1]),x(£fi],y[£fi],PIX SRC,1);
pw_vector(pw[n], X[il],y[ll] -1 X[fl],y[fl] -1,PIX __SRC,1);
pw_vector(pw[n],x[ii]}-1,y[ii],x[£fi]-1,y[£fi],PIX " SRC,1);
pw;yector(pw[n],x[ii],y[ii]+l,x[fi],y[fi]+l,PIX_SRC,l);
pw_vector(pw(nl] ,x[ii]+1,y(ii],x[fi]+1,y(fi],PIX SRC,1);
3 _

/***
/* draw humps *

/*** _

extern void plot_humps(w_number,h,x,y)
int w_number;

struct hump h[];

short x[],y[]s

{ int i,ii,ti,fi,n=w window[w _number}] ;

for (i=0;(ii=h[i].i-1)!=-1;i++) {

ti=h[i].t-1;

fi=h[i].£f-1;

if (abs(yl[ii]-yl(til)>abs(y[fi]l-y[ti])) {
pw_vector(pwn] ,x[ii],y[ii],x[fi],y[ii],PIX_SRC,1);
pw_vector(pw(n] ,x[ii},y[ti] ,x[£fi],y[ti], PIX __SRC,1);
pw_vector(pw(n],x[ii], Y[ll],X[ll],Y[tl] PIX SRC,1);
pw_vector(pw(n] ,x[fi],y([ii],x(£fi],y[ti], PIX_SRC 1);
}

else {
pw_vector(pw[n] ,x[ii],y(£fi],x[£fi],y(£fi],PIX_SRC,1);
pw_vector(pw([n],x[ii],y[ti],x[£fi],y([ti],PIX SRC,1);
pw_vector(pw{nl],x[ii],y([fi],x[1ii],y([ti], PIX SRC,1);
?w _vector(pwin], X[fl],y[fl],x[fl] y{ti],PIX_SRC,1);

141

Jun 7 15:17 1988 macro.h Page 1

/***

/* "macro.h" : macro—functions definitions. Date : 05/09,/88 *
/***

#define abs(x) (((x)>0) ? (x) : —(X))
#define sup(a,b) (((a)>(b)) ? (a) : (b))
#define inf(a,b) (((a)<(b)) ? (a) : (b))

#define signum(x) (((x)>0) ? 1 : (((x)<0) ? -1 : 0))
#define f10(x) (exp((x)*M_LN10))

142

»

Jun 21 12:49 1988 main.c Page 1

‘/***

/* "main.c" : function main(). *
/***

/***

/* functions references *
/***

extern void create_windows();
extern void start_loop();

/************************t**v

/* main function : *
/***
void main()

create_windows();
start _loop();

exit(0);

143

Jun 7 15:17 1988 pat.h Page 1

/***

/* "global pattern.h" : global declarations for pattern. Date : 05/05/88 *
_P

/***

$ifdef PAT MAIN
#define EXTPAT

telse

#define EXTPAT extern
#endif

4define SIG_LENGTH 0.25
#define ABS_ERR 0.05
#define REL_ERR 0.2

/***

/* straight lines *
/******************7\'***'k****

$define MAX_NBR_S_LINES 10

EXTPAT struct s_line {int i,f;};
EXTPAT struct s_line semilog_s_lines[MAX NBR_WELLS] [MAX NBR_S LINES];

EXTPAT struct s_line loglog_s_lines[MAX_NBR_WELLS] [MAX NBR_S_LINES];
EXTPAT struct s_line derivative_s_lines[MAX NBR_WELLS] [MAX NBR_S_ LINES];

/***
/* humps : *

/***

tdefine MAX_NBR_HUMPS 10

EXTPAT struct hump (int i,t,f;}; :

EXTPAT struct hump humps[MAX NBR_WELLS] [MAX NBR_HUMPS];

144

Jun 7 15:17 1988 win.h Page 1

/***

/* "win.h" : Declarations for windows. *
- #include <suntool/sunview.h> -
#include <{suntool/panel.h>

$ifdef WIN_MAIN
#define EXTWIN

felse

#tdefine EXTWIN extern
#tendif

#define MAX NBR_WELLS 20
$define MAX NBR_WINDOWS 5
#define MAX CHAR_NAME 15
#define DIM_SQ 18

EXTWIN Frame base frame,
w_frame [MAX_NBR_WINDOWS],
confirmer,
closer,
expl bar;

EXTWIN Panel_item square{MAX NBR_WELLS];
EXTWIN struct pixrect *image[MAX NBR_WELLS] [3],
v *closed_square,

*opened_square;
EXTWIN char mess[MAX NBR_WELLS][3][200];
EXTWIN Pixfont *scale_font;

EXTWIN char w_name[MAX NBR_WELLS] [MAX_CHAR_NAME];
EXTWIN int w_analysed[MAX_NBR_WELLS];

EXTWIN int w_window[MAX NBR_WELLS];

EXTWIN int nbr_wells;

"EXTWIN int bound_ frame[MAX NBR_WINDOWS] ;

145

Jun 7 15:17 1988 win_bar.c Page 1

/* "win_bar.c" : Explanation bar. *
/***

#include "win.h"

/***

/* references *x _
/***

/***’
/* contents *
/***
extern void create_expl _bar();

extern void expl mess();

/***
/* create the explanation bar. *
/***
extern void create expl _bar()

{ Rect *r;

expl bar = window_create(base_frame, FRAME,
FRAME_SHOW_LABEL, TRUE,
WIN_SHOW, TRUE,
WIN X,0,
WIN_Y,863,
WIN_WIDTH, 1152,
WIN_HEIGHT, 18,
0);

r = (Rect *) window_get(expl] bar WIN _RECT) ;

r->r_left = -5;

w1ndow;set(expl_bar,WIN_RECT,r,0);

/**%
/* display explanation message *
/***
extern void expl_mess(message)

char *message;

% window_set(expl_bar,FRAME LABEL,message,0);

146

«

‘Jun 7 15:17 1988 win_base.c Page 1

KA I KKK KK KKK KK AKR KK A AR KRR A KA KR KKK IR AR AARKRKKKRARAIAKRRARKRKRAKRAKR AR AR ARk hkkk kR kkk Aok Axkkx

/* "win_base.c" : definition of the main window. Date : 05/26/88 *
/***

#include "win.h"

/***

/* references : *
/***

extern void do_well_analysis();
extern void bind_window_with well();
extern void show_window();

extern void confirm quit();

extern void destroy_all_windows();
extern void send_quit();

extern void well_button_proc();

- extern void quit_button_proc();

/***

/* contents *
/***

extern void create base frame();

+

static Menu new_menu();

static void create wells_panel();
static void open_well(); /* procedure for the Notifier */
static void quit(); /* procedure for the Notifier */

extern void start loop();

/***

/* create the main window : *
/***

void create_base_ frame()

{
base frame = window_create(NULL,FRAME,

FRAME SHOW_LABEL, FALSE,
WIN_X, 5,

WIN Y, 19,

0);

window_set(base_frame,WIN_MENU,new_menu(base_frame),b0);
create_wells panel(base_frame);

window_fit(base_frame);

/***

/* set the menu for the main window *
/***

147

Jun 7 15:17 1988 win_base.c Page 2

static Menu new menu(frame)
Frame frame;
{ Menu menu;

menu = (Menu) window_get(frame, WIN_MENU) ;

menu_set(menu, MENU_REMOVE, 1,
MENU_REMOVE, 1,
MENU_REMOVE, 1,
MENU_REMOVE, 4,
0);

return(menu) ;

}

/***

/* create the panel for the list of wells : *
/***
static void create_wells_panel(frame)
Frame frame;
{ Panel panel;

int 1;

panel = window_create(frame,PANEL,

WIN_CONSUME_PICK_EVENTS, WIN_NO_EVENTS,
LOC_MOVE, '
LOC_DRAG,
LOC_STILL,

. LOC_WINENTER,

LOC_WINEXIT,
L.OC_RGNENTER,
LOC_RGNEXIT,
WIN_MOUSE_BUTTONS,
0,

0);

(void) panel create item(panel,PANEL_MESSAGE,
PANEL_LABEL STRING, " LIST OF WELLS",
0);

for (i=0;i<nbr_wells;i++) {
(void) panel_create_item(panel, PANEL_ BUTTON,
PANEL_CLIENT DATA, i,
PANEL LABEL IMAGE, image[i][0],
PANEL LABEL_ , X, ATTR_COL(O0),
PANEL_LABEL_Y, ATTR _ROW(i+1),
PANEL EVENT_PROC, well button_proc,
PANEI,_NOTIFY PROC, open_well,
- 0);
square(i] = panel_create_item(panel, PANEL_BUTTON,
PANEL_CLIENT DATA, i,
PANEL_LABEL_IMAGE, closed_square,
0);

148

Jun 7 15:17 1988 win_base.c Page 3

(void) panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL IMAGE, panel_button_image(panel,"Quit",0,0),
PANEL_LABEL_X, ATTR_COL(O0),
PANEL_LABEL_Y, ATTR_ROW(i+2),
PANEL_EVENT_PROC, quit_button_proc,
PANEL_NOTIFY PROC, quit,
Q)

-window_fit(panel);

}

/***

/* open one well *
) /***
- static void open_well(item,event)

Panel_item item;

Event *event;

{ int w_number=(int) panel get(item, PANEL_CLIENT DATA);

if (!w_analysed([w_: number]) {
w_analysed[w_number]=1;
dq;well_analy51s(w;pumber,w;name[w;number]);

}

if (!w_window([w_number])
bind_window_with well(w_number);
show_window(w_number) ;

}

/***
/* end of program *
/***
static void quit()
{ if (confirm_quit()) {

destroy_all windows();

send_quit();

} .

/***

/* start loop - *
/***

extern void start_loop()
{ window_main loop(base frame);

}

149

Jun. 7 15:17 1988 win_closer.c Page 1

/***

/* "win_closer.c" : Definition of the closer package. *
/***

#include "win.h"

/***

-

/* references *

extern void free_window();

/***

/* contents *
/***
extern void create_closer();

static void quit_closer(); /* procedure for the Notifier */

extern void call_closer();
static void create_closer_items();
static void close_subframe from closer(); /* procedure for the Notifier */

/***

/* create the closer *
/***
extern void create_closer()

{ Panel panel; » ' ¢

closer = window_create(NULL,FRAME,
FRAME SHOW_ILABEL, FALSE,
WIN_X, 400,
WIN_Y, 400,
0);

panel = window_create(closer,PANEL,0);

(void) panel create_item(panel, PANEL MESSAGE,
PANEL IABEL_STRING, " Too many opened windows. ",
0);

(void) panel create_item(panel, PANEL MESSAGE,
PANEL_LABEL_STRING, " Please close at least",
PANEL_LABEL_X, ATTR_COL(O0),
PANEL_LABEL Y, ATTR_ROW(1),
0);

(void) panel_create_item(panel, PANEL_MESSAGE,
PANEL _LABEIL_ STRING, " one of those wells:",
PANEL,_. , LABEL,_X, ATTR_COL(O0), >
PANEL_LABEL_Y, ATTR_ROW(2), '
0);

. (void) panel create_item(panel, PANEL BUTTON,

PANEL_LABEL_IMAGE, panel_button _image(panel, "0k",0,0),
PANEL LABEL X, ATTR_COL(O0),

150

Jun 7 15:17 1988 win_closer.c Page 2

PANEL_IABEL_Y, ATTR_ROW(9),
PANEL,_| _NOTIFY_PROC, quit_ closer,
- 0);

window_set(closer{WIN_CLIENT_DATA,panel,O);
}

/***

/* quit the closer ' *

static void quit_closer(item,event)

" Panel_item item;

Event *event;

{ window_return();

}

/***

/* call the closer *
/***

extern void call_closer()
{ Panel panel;

panel (Panel) window_get(closer,WIN_CLIENT DATA);
create_closer ltems(panel),
window_loop(closer);

}

/***
/* create the menu of wells ‘ *
/***
static void create_closer_ items(panel)

Panel panel;

{ int i,w number;

for (i=1;i<MAX NBR_WINDOWS;i++) {
w_number = (int) window _get(w_frame[i] ,WIN_CLIENT. DATA);
(void) panel_create_ item(panel,PANEL_BUTTON,
PANEL_LABEL_X, ATTR_COL(O0),
PANEL, . LABEL Y, ATTR_ROW(i+3),
PANEL | _LABEL IMAGE, lmage[w number] [0],
PANEL, CLIENT ' DATA, i,

PANEL_NOTIFY _PROC, close_subframe from_closer,
0); :

window_fit(panel);
window_fit(closer);

/***

/* close a subframe from closer *
/***

static void close_subframe_from_closer(item,event)

151

Jun 7 15:17 1988 win_closer.c Page 3

Panel_item item;
Event *event;
{ int £ number = (int) panel_get(item, PANEL_CLIENT_DATA),
client = (int) window_get(w_frame[f_number],WIN_CLIENT_DATA);

free window(f_number);

panel_set(item,PANEL_LABEL IMAGE,image[client]([1],0);
}

152

Jun 7 15:17 1988 win_confirmer.c Page 1

/***

/* "win_confirmer.c" : definition of the confirmer window *
/***

#include "win.h"

/***

/* contents : *
/***

extern void create_confirmer();
static int yes_no(); /* procedure for the Notifier */

extern int confirm quit();

/***

/* create the confirmer *
/***

extern void create_confirmer()
{ Panel panel;

confirmer = window _create(NULL, FRAME,
FRAME SHOW LABEL, FALSE,
WIN_X, 400,
WIN_Y, 400,
0);

panel = window_create(confirmer,PANEL,0);

(void) panel_create_item(panel, PANEL_ MESSAGE,
PANEL_LABEL_STRING,
" Do you really want to quit? ",
0):

(void) panel create_item(panel, PANEL_BUTTON,
PANEL LABEL_X, ATTR COL(8),
PANEL, LABEL_Y, ATTR_ROW(2),
PANEL _CLIENT_DATA, TRUE,
PANEL LABEL. IMAGE,
panel button _image(panel, "Yes",3 0),
PANEL_NOTIFY_PROC, yes_no,
0):

(void) panel_create_item(panel, PANEL_BUTTON,
PANEL_CLIENT_DATA, FALSE,
PANEL LABEL IMAGE,
panel button _image(panel, "No",3,0),
PANEL NOTIFY PROC, yes_no,
0)i

window_fit(panel);
window_fit(confirme;);

/***

153

Jun 7 15:17 1988 win_confirmer.c Page 2

/* response from the confirmer *
/***
static int yes_no(item,event)

Panel_item item;

Event *event;

{ window_return((int)panel_get(item, PANEL_CLIENT_DATA));
}

/***
/* call the confirmer ' *

/***’
/ A _ _
int confirm quit()

{ return ((int) window_loop(confirmer)):;

154

Jun 7 15:17 1988 win_events.c Page 1

/* "event_handle.c" : handle events for panels. ' *
/***

#include "win.h"

/***

/* references *
/***

extern void expl mess();

/***

/* contents. . *
/**k******************************
extern void well button_proc();

extern void quit_button_proc();

extern void opened_button_proc():

extern void closed_button_proc();

extern void initial button_proc();

extern void filtered_button_proc();

extern void semilog_ button_proc();

extern void loglog button_proc();

extern void derivative button_proc();

/***

/* events for list buttons *
/***
extern void well button_proc(item,event)
Panel_item item;
Event *event;
{ int client=(int)panel_get(item,PANEL_CLIENT_DATA);

static int flag;

switch (event_id(event)) {
"case MS_LEFT: if (event_is_up(event)) {
panel_ accept preview(item,event);
expl_mess(mess[client] [(w_analysed(client])]);
panel_begin_preview(item,event);
3
break;
case PANEL_EVENT MOVE_IN: panel_set(item, PANEL_LABEL _IMAGE,
image(client] [0],0);
panel begln_preVlew(ltem event) ;
expl _mess(mess[client] [(w analysed[cllent])]),
flag=1;
v break;
case PANEL_EVENT DRAG_IN: panel_set(item, PANEL_LABEL IMAGE,
image{client] [0],0);
panel_begin_preview(item,event);
expl_mess(mess[client] [(w_analysed[client])]);
expl_mess(mess{client]);
flag=1;
break;
case LOC_STILL: panel_set(item,PANEL_LABEL_IMAGE,
image[client] {0],0);

155

Jun 7 15:17 1988 win_events.c Page 2

panel_begin_ preview(item,event);
expl_mess(mess{client] [(w_analysed{client})]);
flag=1;
break;
case PANEL _EVENT_CANCEL: if (flag) {
panel_ cancel_ preview(item,event);
panel_set(item,PANEL LABEL_ IMAGE,
image{client] [(w_ analysed[cllent])] 0);
expl mess(""):
flag=0;

}
break;
case LOC_WINEXIT: if (flag) {
panel cancel preview(item,event);
panel_set(item, PANEL ILABEL_IMAGE,
image[client] [(w_analysed[client])],0);
expl mess("");
flag=0;

break;

}
}

/***

/* events for quit button *
/*******************************'*****************************_***********‘k*******
extern void quit_button_proc(item,event)

Panel_item item;

Event *event;

{ static int flag;

switch (event_id(event)) {
case MS_LEFT: if (event_is_up(event)) {
panel_ accept_preVLew(ltem event) ;
flag=0;
}
break;
case PANEL,_EVENT MOVE_IN: if (!'flag) {
panel_begin preview(item,event);
expl__ mess("Back to Art Graphlcs Studio.");
flag=1;

break;
case PANEL_EVENT_DRAG_IN: if (!flag) {
panel_begin_preview(item,event);
expl _mess("Back to Art Graphics Studio.");
flag=1;
}

. break;
case LOC_STILL: if (!flag) {

' panel_begin_ preview(item,event);
expl_mess("Back to Art Graphics Studio.");
flag=1;

}
break;
case PANEL_EVENT_CANCEL: if (flag) {

156

Jun 7 15:17 1988 win_events.c Page 3

panel cancel preview(item,event);
expl _mess("")
flag=0;
}
break;
case LOC_WINEXIT: if (flag) {
panel_cancel preview(item,event);
expl_mess("");
flag=0;
}

break;

/***

/* events for opened square button *
/***
extern void opened_button_proc(item,event)

Panel item item;

Event *event; C

{ int client = (int) panel_get(item,PANEL_ CLIENT DATA);

switch (event_id(event)) {
case MS_LEFT: if (event_is_up(event))
panel accept_preVLew(ltem,event),

break;

case PANEL_EVENT_MOVE_IN: expl mess(mess{client][2]);

break;
case PANEL_EVENT_DRAG_IN: expl_mess{mess[client][2]);

break;
case LOC_STILL: expl mess(mess{client] {2]);

break;
case PANEL_EVENT_CANCEL: expl mess("");
break;
case LOC_WINEXIT: expl mess("")
break;

/***
/* events for closed square button *
/***
extern void closed_button_proc(item,event)

Panel_item item;

Event *event;

{ int client = (int) panel get(item, PANEL_CLIENT DATA);

switch (event_id(event)) {
case MS_LEFT: if (event is up(event))
panel_accept preview(item,event);
break; .
case PANEL_EVENT MOVE_IN: expl mess(mess[client][1]);
' break;
case PANEL_EVENT DRAG_IN: expl_mess(mess[client][1]);

157

Jun 7 15:17 1988 win_events.c Page 4

break;
case LOC_; STILL expl_] mess(mess[cllent][l]),
break;
case PANEL_EVENT_CANCEL: expl mess("");
break;
case LOC_WINEXIT: expl mess("");
break;

/***

/* events for initial button ' *
/***

extern void initial_button_proc(item, event)
Panel_item item;

Event *event;

{ static int flag;

switch (event_id(event)) {
case MS_LEFT: if (event is up(event)) {
panel_accept_preview(item,event);
panel_begin_preview(item,event);

break;
case PANEL_EVENT_MOVE_IN: if (!flag) {
panel_begin preview(item,event);
expl mess("Display the 1n1t1al curve.");
flag=1;

: break;
case PANEL_EVENT DRAG_IN: if (!flag) {
panel begin_ preview(item,event);
expl mess("Dlsplay the initial curve.");
flag=1;
}

break;
case LOC_STILL: if (!flag) {
panel_begin_preview(item,event); :
expl_mess("Display the initial curve.");
flag=1;

break;
case PANEL_EVENT_ CANCEL: if (flag) {
panel_cancel preview(item,event);
expl mess("");
flag=0;
}
break;
case LOC_WINEXIT: if (flag) {
panel cancel_ preview(item,event);
expl mess("");
flag=0;
}

bfeak;

158

Jun 7 15:17 1988 win_events.c Page 5

/***

/* events for filtered button *
/***
extern void filtered_button_proc(item,event)

Panel_item item;

Event *event;

{ static int flag;

switch (event_id(event)) {
case MS_LEFT: if (event_is up(event)) {
panel_accept_preview(item,event);
panel_begin_preview(item,event);

break; .
case PANEL_EVENT MOVE_IN: if (!flag) {
panel_begin_ preview(item,event);
expl_mess("Display the filtered curve.");
flag=1;

: break;

case PANEL_EVENT_DRAG_IN: if (!'flag) { _

. panel_ begin_preview(item,event);
expl_mess("Display the filtered curve.");
flag=1;

}

: break;
case LOC_STILL: if (!flag) {
.panel_begin_preview(item,event);
expl_mess("Display the filtered curve.");
flag=1;
}
break;
case PANEL_EVENT_CANCEL: if (flag) [.
panel_cancel_preview(item,event);
expl _mess("");
flag=0;
}
break;
case LOC_WINEXIT: if (flag) {
panel_cancel_preview(item,event);
expl _mess("");
flag=0;

break;

/***

/* events for semilog button *
/***

extern void semilog_button_proc(item,event)
Panel_item item; .

159

Jun 7 15:17 1988 win_events.c Page 6

Event *event;
{ static int flag;

switch (event_id(event)) {
case MS_LEFT: if (event_is_up(event)) {
panel_accept_preview(item,event);
panel_begin_preview(item,event);

}
break;
case MS_RIGHT: if (event_is_down(event)) {
panel_accept_preview(item,event);
panel_begin_preview(item,event);

break;
case PANEL_EVENT MOVE_IN: if (!flag) {
panel_begin_preview(item,event);
expl mess(
"Dlsplay the semllog curve. L: Alone. R: With patterns.");
flag=1;
}

: break;
case PANEL_EVENT DRAG_IN: if (!flag) {
panel_begin_preview(item,event);
expl mess(
"Display the semilog curve. L: Alone. R: Wlth patterns "y,
flag=1;

break;
case LOC_STILL: if (!flag) {
panel begin_preview(item,event);
expl_mess(
"Display the semilog curve. L: Alone. R: With patterns.");
flag=1;

break;
case PANEL_EVENT_CANCEL: if (flag) {
: ’ panel_cancel_preview(item,event);
expl mess(""y;
flag=0

break;
case LOC_WINEXIT: if (flag) (
panel cancel_prev1ew(ltem event);
expl_mess("");
flag=0;

break;

/***

/* events for loglog button *
/***

extern void loglog_button_proc(item,event)
Panel_item item;

160

Jun 7 15:17 1988 win_events.c Page 7

Event *event;
{ static int .flag;

switch (event_id(event)) {
case MS_LEFT: if (event_is_up(event)) {
panel_accept_preview(item,event);.
panel_begin_preview(item,event);

break;
case MS _RIGHT: if (event_is_down(event)) {
" panel_accept_preview(item,event);
panel_begin_preview(item,event);

break;
case PANEL_EVENT MOVE_IN: if (!'flag) {
panel begin_preview(item,event);
expl_mess(
"Display the loglog curve. L: Alone. R: With patterns.");
flag=1;

break; :
case PANEL EVENT DRAG_IN: if (!flag) {
panel_begin_preview(item,event);
expl mess(
"Display the loglog curve. L: Alone. R: Wlth patterns.");
flag=1

break;
case LOC_STILL: if (!flag) {
panel_begin_preview(item,event);
expl_mess(
"Display the loglog curve. L: Alone. R: With patterns.");
flag=1;
}
break;
case PANEL_ EVENT_CANCEL: if (flag) {
panel cancel preview(item,event);
expl _mess("");
flag=0;

break;
case LOC_WINEXIT: if (flag) {
panel cancel_prev1ew(ltem,event),
expl mess(""),
flag=0;

break;

/***

/* events for derivative button B
/***

extern void derivative button_proc(item,event)
Panel_item item;

161

Jun 7 15:17 1988 win_events.c Page 8

Event *event;
{ static int flag;

switch (event_id(event)) {

case MS LEFT: if (event_is_up(event)) (
panel_accept_preview(item,event);
panel_begin_preview(item,event);
}

break;

case MS _RIGHT: if (event_is_down(event)) {
panel_accept_preview(item,event) ;
panel_begin_preview(item,event);

break;
case PANEL _EVENT MOVE_IN: if (!flag) {
panel_begin_preview(item,event);
expl_mess(
"Display the derivative curve. L: Alcne. R: With patterns.")
flag=1;

break;
case PANEL _EVENT DRAG_IN: if (!flag) {
panel_begin_preview(item,event);
expl_mess(
"Display the derlvatlve curve. L: Alone. R: With patterns. ")
flag=1;

break;
case LOC_ STILL if (!flag) {
panel_begin_ preview(item,event);
expl mess(
"Display the derivative curve. L: Alone. R: With patterns.")
flag=1; :

break;
case PANEL_EVENT_CANCEL: if (flag) {
panel cancel_preview(item,event);
expl mess("");
flag=0;
}

break;
case LOC_WINEXIT: if (flag) {
panel_cancel_preview(item,event);
expl mess("");
flag=0;

break;

162

Jun 7 15:17 1988 win_init.c Page 1

/***

/* "win_init.c" : initializations for windows. *
/***

#define WIN_MAIN

#include "win.h"
#include "env.h"
#include <stdio.h>
#include <string.h>

) /***

/* references *
/***

./***

/* contents *
/***
extern void init windows();

static int read_wells_list();

static void create_lmages(),

static void create_messages();

static void open_fonts();

/***'

/* initializations for windows *
/***

extern void init_windows()
{ nbr_wells=read_wells_list(WELLS_LIST);

create_images();
create_messages();

open_fonts();

/***
/* read the list of wells *
/***
static int read_wells list(name)
char *name;
{ int i;

FILE *in_file;

if (!(in_file = fopen(name,"xr"))) return 0;

for (i=0;!feof(in_file);i++)

fscanf(in_file,"$s*\n",w_name[i]);

fclose(in _file);
return i-1;

163

Jun 7 15:17 1988 win_init.c Page 2

/***

/* create the images for panels *
/***
static void create_images()
{ int i,j,width,length;

struct pixrect *background;

Frame frame;

Panel panel;

frame = window_create(NULL, FRAME, FRAME NO_CONFIRM,TRUE,0);
panel = window_create(frame, PANEL,0);

opened_square = mem_create(DIM_SQ,DIM SQ,1);

pr_vector(opened_ square,0,0,DIM SQ-1,0,PIX SRC,1);
pr_vector(opened square,0,0,0,DIM_SQ-1,PIX SRC,1);
pr_vector(opened_square,0, DIM SQ-1,DIM SQ—l DIM SQ—-1,PIX _SRC,1);
pr_vector (opened_square,DIM_SQ-1,0,DIM SQ—l DIM SQ—l PIX SRC,1);

closed_square = mem_create(DIM SQ,DIM_SQ,1);
pr_rop(closed_ square,0,0,DIM SQ,DIM SQ PIX_NOT(PIX_SRC),opened_square, 0 0);

for (i=0;i<nbr_wells;i++)
image{i] [0] = panel_button_image(panel,w_name[i],MAX CHAR_NAME,O0);

width = image[0] [0]->pr_size.x;
length = image{0] [0]->pr_size.y:

background = mem_create(width,length, 1),
for (i=0;idwidth;i++)
for (j=0; j<length j++)
pr_put(background,i,j, (i+j)%2);

for (i=0;i<nbr_wells;i++) {
image[i] {1] = mem_create(width,length,l);
pr_rop(image[i][17,0,0,width,length,PIX SRC, background,0,0);
pr_rop(image([i] [{1],0,0,width,length,PIX SRC|PIX DST, 1mage[1][0] 0,0);
}

window_destroy(frame);

/***

/* create the messages *
/***

static void create_messages()
{ int ilj;

for (i=0;i<nbr_wells;it++) {
strcpy(mess[l][O],"Start analysis for well ")
strcpy(mess[i] [1] ,"Show window for well ");
strcpy(mess{i] [2] ,"Close window for well ");

for (3=0;3<3;:j++) {

strcat(mess([i] [j],w_name[i]);
strcat(mess[i] [J],".");

164

Jun 7 15:17 1988 win_init.c Page 3

/***

/* open the fonts *
/****************************‘k**
static void open_fonts()

{ scale_font=pf open("/usr/lib/fonts/fixedwidthfonts/screen.r.7");
} : ' '

165

Jun 7 15:17 1988 win_main.c Page 1

g

/***

/* "win_main.c" : call the different procedures used for windows *

#include <stdio.h>

/***

/* references *

'/***
extern void init_windows();

extern void create_base frame();

extern void create_expl bar():;

extern void create well_frames();

extern void create_closer();

extern void create_confirmer(); .

/***

/* contents *
/***

extern void create_windows();

/***

/* create windows *
/***
extern void create _windows()

{ :
init_windows();
create_base frame();
create_expl_bar();
create_well frames();
create_closer();
create_confirmer();

166

"l

5]

extern void closed_button_proc();

Jun 7 15:17 1988 win_util.c Page 1

/***

/* "win_util.c" : utilities for windows. *

#include "win.h"

/***

/* references %
/***

extern void call_closer();

extern void opened_button_proc();
extern void draw_initial_curve();

/***

/* contents ‘ *
/***
extérn void bind_window with well();
static int find next frame();
static void set_opened square();
static void close_well from_square();

extern void free window();
static void set_closed_square();
static void open_well_ from square();

extern void show window();

extern void destroy_all_windows();

/**t
/* link one well to one window *
/***

extern void blnd window_with_well(n)
int n;-

{ int i;

while (! (i=next_frame free()))
call_closer();

w_window[n]=i;
window_set(w_frame{i],FRAME ILABEL,w_name[n],
WIN_ CLIENT DATA, n,
0);
set_opened_square(n);
draw_initial_curve(n);

/***

/* find the next free frame *
/**t**

167

Jun 7 15:17 1988 win_util.c Page 2

static int next frame free()
{ int i;

for (i=1;i<MAX_NBR_WINDOWS;i++)
if (!bound_frame(i]) {(
bound_frame([i]=1;
return 1i;

}

return 0;

/***

/* set the square to "opened" *
/***
static void set_opened_square(n)

int n;

{

panel_set(square[n] PANEL_LABEL_IMAGE,opened square,
PANEL__ _EVENT_PROC, opened_button_proc,
PANEL NOTIFY_PROC,close_well_from_square,
0);

/***

/* close a well from the corresponding square item . *
/***
static void close_well_from_square(item,event)

Panel item item;

Event *event;

{ int w_number=(int) panel_get(item,PANEL_CLIENT_DATA);

free_window(w_window[w_number]);

}

3
/***ﬁ*

/* free one window bx
'/***

extern void free window(f_number)
int f_number;
{- int w_number=(int) window_get(w_frame[f number],WIN_CLIENT_DATA);

bound_frame{f number]=0;

w_window[w_number]=0;

set_closed_square(w_number) ; : ' :
window_set(w_frame[f_number],WIN_SHOW,FALSE,OQ); w

N
/***

/* set the square to "closed" *
/*****************ﬁ***

168

Jun 7 15:17 1988 win_util.c Page 3

static void set closed square(n)
1nt n;

{

panel set(square[n] ,PANEL_LABEL_IMAGE,closed_square,
PANEL EVENT _ _PROC, closed button_proc,
PANEL__ NOTIFY PROC,open_well from_square,

0);
: N\
/***
/* open a well from the corresponding square item » L%

/***
static void open _well from_square(item,event)

Panel_item item;

Event *event;

{ int w number (int) panel get(item, PANEL CLIENT DATA),

bind window_with well(w_number);
show_window(w_number) ;

}

/***
/* show the window for the well n *
/***
extern void show_window(n) ‘ ‘

int n;

»% w1ndow;set(w;frame[(w;wlndow[n])],WIN_SHOW,TRUE,O);

/***
/* destroy all the windows before quitting *
/***
extern void destroy_all windows()

{

- window_set(closer,FRAME NO_CONFIRM, TRUE,O0);
window_set(confirmer, FRAME NO_CONFIRM, TRUE,0);
window_set(base_frame,FRAME_NO_CONFIRM,TRUE,O);

window_destioy(closer);'

window_destroy(confirmer);
window_destroy(base_ frame);

169

Jun 7 15:17 1988 win_wells.c Page 1

A KA A KA AL AT KA KA A KA KA KA KA A KA A AR KA KA AT A A A AR I AR AR AR KA ARAAR R TR RRKRKAKRKAAKAKRKR AR A AR AKRKR R AR A XX
/* "win_wells.c" : definition of the wells windows. Date : 05/26/88 *
/***
#define GPH_MAIN

#include "win.h"
#include "gph.h"

/***

/* references . : * -
/***

extern void free_window();

extern void draw_initial_curve();
extern void draw filtered_curve();
extern void draw_semilog_curve();
extern void draw_loglog_curve();
extern void draw_derivative_curve();
extern void draw_semilog patterns();
extern void draw_loglog_patterns();
extern void draw_derivative_patterns();

extern void initial button_proc();
extern void filtered_button_proc();
extern void semilog_button_proc();
extern void loglog_button_proc();
extern void derivative_button_proc();

/***

/* contents *
/**¢******************

extern void create_well frames();

static Menu new_sub_menu();
static void close_subframe_from menu(); /* procedure for the Notifier */

static void create_curves_panel();

static void display_initial_curve(); /* procedure for the Notifier x/
static void display_ filtered_curve(); /* procedure for the Notifier */
static void display_semilog_curve(); /* procedure for the Notifier */
static void display_loglog_curve(); /* procedure for the Notifier */.

static void display_derivative_curve(); /* procedure for the Notifier */

static void create canvas();

/***
/* create the windows for the wells ' *
/***
extern void create_well_frames()
{ int 1i;

static int x_pos|

] {0,330,480,180,630};
static int y_pos|[]

{0,270,240,300,210};

I

170

Jun 7 15:17 1988 win_wells.c Page 2

for (i=1;i<MAX_NBR_WINDOWS;i++)
w_frame[l] = window _create(base_frame,FRAME,

FRAME SHOW_LABEL, TRUE,
FRAME NO_CONFIRM, TRUE,
WIN_X, x_pos[il],
WIN_ Y, v _pos[i],
WIN_HEIGHT, VERTICAL_SIZE+100,
WIN WIDTH, HORIZONTAL_SIZE,
0);

window_set(w;frame[i],WIN_MENU,ﬁew;sub_menu(i),0);
create_curves_panel(i);
create_canvas(i);

window;fit_height(w;frame[i]);

}

/***,
/* set the menu for the subframe : ' *
/***
static Menu new_sub_menu(f_number)

int f number;

{ Menu menu;

menu = (Menu) window;get(w;frame[f_number],WIN_MENU)}

menu_set(menu, MENU_REMOVE, 1,

MENU_REMOVE, 2,

MENU_INSERT, 0, menu_create item(.
MENU_STRING, "Close",
MENU_ACTION_PROC, close_subframe_from;menu,'
0),

MENU_CLIENT DATA, f number,

0);

return(menu) ;

}

/***

/* close a frame from menu *
/***

static void close_subframe from _menu(m,mi)
Menu m;

Menu_item mi;

% free window((int) menu_get(m,MENU_CLIENT DATA));

/***

/* create the panel for displaying curves *
/***

171

Jun 7 15:17 1988 win_wells.c Page 3

static void create_curves_panel(f_number)
int £ number;
{ Panel panel;

panel = window_create(w_frame[f_ number], PANEL,

WIN_CONSUME_PICK_EVENTS, WIN_NO_EVENTS,
LOC MOVE,
LOC_DRAG,
LOC_STILL,
LOC_WINENTER,
LOC_WINEXIT,
LOC_RGNENTER,
LOC_RGNEXIT,
WIN_MOUSE_BUTTONS,
0,

0):

(void) panel_create_item(panel, PANEL_BUTTON,
PANEL,_LABEL_IMAGE, panel_button_image(panel,"Initial",0,0),
PANEL EVENT ' PROC, initial_ button_proc,
PANEL_NOTIFY PROC, display_initial_curve,
0)y;, .

(void) panel_create_item(panel,PANEL_BUTTON,
PANEL_LABEL_IMAGE, panel_button_image(panel, "Filtered",0,0),
PANEL EVENT _ ' _PROC, filtered_button_proc,
PANEL_NOTIFY _PROC, display_filtered_curve,
0);

(void) panel_create_. ltem(panel PANEL BUTTON, '
PANEL LABEL_IMAGE, panel_button_image(panel, "Semilog",0,0),
PANEL . ,_EVENT_PROC, semilog button_proc, '
PANEL_NOTIFY_PROC, display semilog curve,
0);

(void) panel_create_item(panel, PANEL_BUTTON,
PANEL LABEL_ IMAGE, panel_button image(panel,"Loglog",0,0),
PANEL_EVENT PROC, loglog button_proc,
PANEI,_NOTIFY_PROC, display_loglog curve,
0)i/

(void) panel_create_item(panel,PANEL_BUTTON,

, PANEIL_LABEL IMAGE, panel button_image(panel, "Derivative",0,0),

PANEL EVENT_PROC, derivative button_proc,
PANEL_NOTIFY_PROC, display_derivative_curve,
0);

window_fit_height(panel);
}

/***‘k**k*********

/* display initial curve *

/***

static void display_initial_curve(item,event)

Panel_item item;

Event *event;

{ int client = (int) window_get((Frame) window_get(

: (Panel) panel_get(item, PANEL_PARENT_ PANEL),

WIN_OWNER),

172

6}

<

Jun 7 15:17 1988 win_wells.c Page 4

, , WIN_CLIENT DATA);
draw_initial curve(client); .

}

/***
./* display filtered curve *

/***
static void display_filtered curve(ltem event)

Panel_item item;

Event *event; .
{ int client = (int) window_get((Frame) window_get(
. (Panel) panel_get(item, PANEL_PARENT_PANEL),
WIN_OWNER),
WIN_CLIENT_DATA);
draw_filtered_ curve(client);

}

/***
/* display semilog curve *
/***
static void display_semilog_curve(item,event)

. Panel. item item;

Event *event;

- { int client = (int) window _get((Frame) window_get(

(Panel) panel_get(item,PANEL PARENT PANEL),
WIN_OWNER),
o WIN_CLIENT DATA);
switch(event_id(event)) {
case MS_LEFT: draw_semilog_curve(client);
: break;
case MS_RIGHT: draw_semilog_curve(client);
draw_semilog_patterns(client);
break;

/***
/* display loglog curve ’ ' *
/***
static void display loglog_curve(item,event)
Panel_item item;
Event *event;
{ int client = (int) window_get((Frame) window_get(
. (Panel) panel_ get(ltem PANEL_PARENT PANEL),
WIN_OWNER),
WIN_CLIENT_DATA);
switch(event_id(event)) {

case MS_LEFT: draw_loglog_curve(client);

break;
case MS_RIGHT: draw_loglog curve(client);

draw | loglog_patterns(cllent),

break;

173

e

i

Jun 7 15:17 1988 win_welis.c Page 5

/***

/* display derivative curve *
/***
static void display_derivative_curve(item,event)
Panel_item item;
Event *event;
{ int client = (int) window_get((Frame) w1ndow _get(

(Panel) panel_get(item, PANEL,_PARENT PANEL),

WIN_OWNER),
WIN_CLIENT DATA);
switch(event_id(event)) {
case MS_LEFT: draw_derivative_curve(client);
break;
case MS_RIGHT: draw;derlvatlve_purve(cllent);
draw_derivative_patterns(client);
break;

/***

/* create the graphic window *
/***

static void create canvas(f number)
int f_number; ‘
{ Canvas canvas;

canvas = window_create(w_frame[f number],CANVAS,
WIN_HEIGHT, VERTICAL_ SIZE,
0);

pw[f _number] = canvas_pixwin(canvas);

174

5

May 26 14:54 1988 init.art Page 1

i+ —*— mode: ART; Package: ART-USER; Base:10. —*-
;:: file: well/input.art

.77 This file contains the initial facts and schemata.

;;; The program will use a one level viewpoint structure. This level,
iii called "hypothetical" will contain all hypothesis regarding the
* ;;; nature of the medium.

(def-viewpoint-levels hypothetical) . _ L
;:; Initial facts and relations.

(defrelation start-up (?init) :

"flag for opening window for user interface")
(defrelation abs—d-error (?error)

"absolute imprecision allowed on the derlvatlves“)
(defrelation 51gn1f1cant—length (?sig-length)

"length in fraction of a log cycle'")
(defrelation open-—-stream (?stream)
: "stream between ART and C")
(defrelation read-data (?data)

"raw data from stream")

 (deffacts initial
(start—up yes)
)

(deffacts parameters "used for curve analysis"
(abs—d-error 0.15)
(significant—-length 0.25)
)

(defschema derivative
(instance—-of relation)
(inverse derivative—of))

(defschema semilog
(instance—~of relation)
(inverse semilog-of))

(defschema loglog
(instance-of relation)
(inverse loglog-of))

(defschema model
(instance~of relation)
(inverse model-of))

(defschema straight-line
(instance—-of slot)
(slot-how-many multiple-values))

(defschema hump -

(instance—of slot)
(slot-how-many multiple-values))

175

a2

May 26 14:54 1988 init.art Page 2

(defschema well
(derivative)
(semilog)
(loglog)
(model)
(last—-time)
(number)

)

(defschema well-semilog
(semilog-of)
(straight-line)
)

(defschema well-loglog
(loglog-of)
(log—derivative)
(straight-line)
)

(defschema well-derivative
(derivative—of)
(time)
(p—d-derivative)
(max—-p—-derivative)
(local-max—time)
(straight-line)
ghump)

(defschema well-model
(model-of)
(reservoir)
(resexrvoir-exp ())
(early)

(early-exp ())
(intermediate)
(late)
(wellbore—storage)
(wellbore—exp ())
(fractured)
(fractured-exp ())
(boundary)
(boundary-exp ())

)

(defrule start-C-program
?x {- (start-up yes)
=>
(retract ?x)

(setq c—stream #L({run-unix-program "~antoine/Wes/Exec/c_yes"

(assert (open—stream =c—stream))).

:input :stream
soutput :stream
:wait nil))

176

May 26 14:54 1988 init.art Page 3

(defrule read-stream :
(declare (salience —1000))
- ?x <~ (open-stream ?stream)
(retract ?Xx)
(if (listen ?stream) then
(assert (read-data =(seq*$ (read ?stream)))))
(assert (open-stream ?stream)))

(defrule open-well ' '
?x - (read-data (1 Pwell-number °well))
=>
(retract ?x)
(assert (schema ?well
(instance-of well) -
(semilog =(concat ?well 'semilog))
(loglog =(concat ?well 'loglog))
(derivative =(concat ?well 'derivative))
(model =(concat ?well 'model))
(number ?well-number))))

(defrule initial-data
?x <~ (read-data (2 ?w—n $?data))
' (number ?well ?w-n)
(loglog ?well ?well-1l)
(derivative ?well ?well-d4)

(retract ?X)

(assert (schema °well
(last-time =(nth$?data 1))))

(assert (schema ?well-1l
(log—derivative —(nth$?data 2))))

(assert (schema ?well-d _
(time =(nth$?data 3)) .
(p—d-derivative =(nth$?data 4)) ’
(max-p—-derivative =(nth$?data 5)))))

(defrule semilog-straight-lines
?x (- (read-data (3 ?w-n ?n $?data))
(number ?well ?w-n)
(semilog ?well ?well-s)

(retract ?x)
(for i from 1 to ?n do
(assert (schema ?well-s
(straight-line =(nth$?data i))))))

(defrule loglog-straight—-lines

?x <—- (read—-data (4 ?w-n ?n $?data))
(number ?well ?w-n)
(loglog ?well ?well-l)

(retract ?x)
(for i from 1 to ?n do

177

May 26 14:54 1988 init.art Page 4

(assert (schema ?well-1l
(straight—-line =(nth$?data 1))))))

(defrule derivative-straight-lines
?x <— (read-data (5 ?w-n ?n $?data))
(number ?well ?w-n)
(derivative ?well ?well-d)

(retract ?X)
(for i from 1 to ?n do
(assert (schema ?well-d
(straight-line =(nth$?data 1i))))))

(defrule humps
?X <~ (read-data (6 ?w~-n ?n $7data))
(number ?well ?w-n)
(derivative ?well ?well-d)

(retract ?xX)
(for i from 1 to ?n do
(assert (schema ?well-d
(hump =(nth$?data i))))))

(defrule local-max—time
?x <= (read-data (7 ?w-n ?l-m—time))
(number ?well ?w-n)
(derivative ?well ?well-d)

{retract ?X)
(assert (schema ?well-d
(local-max—-time °l-mrtlme))))

(defrule quit
?xX <— (read-—-data (8))
?y - (open-stream ?stream)

(retract ?x ?y)
(close ?stream))

178

0

May 13 12:45 1988 model.art Page 1

;i;; —*— Mode: ART; Package: ART-USER; Base:10. —*—
;0 file: well/model.art

;;; Rules used to extract a model by generating hypotheses and checking
;;+ those hypotheses on other plots (semilog or loglog).

iii; Locates the end of early-time period by a global or local maximum

(defrule early-data—-global—-max
~(max—-p—derivative ?well-d (?tm ?max-p-d4))
(test (< ?tm '1000))
(derivative—of ?well-d ?well)
(model ?well ?well-m)

(hypothesize (assert (early ?well-m ?tm)))
)

(defrule early-data—local-max
(max-p-derivative ?well-d (?tm&:(?tm >= 1000) 2N
(local-max—time ?well-d ($? ?l-m—t $?))
(not (hump ?well-d (hill ? ? (?th&:(?l-m-t = °th) 2N
(derivative—of ?well-d ?well)
{model ?well ?well-m)

(hypothesize (assert (early ?well-m ?1l-m—t)))
)

;i If there is a hill hump, whose maximum is different from the
;;: max—-p—derivative and located before it, then, this maximum
i ;i corresponds to the end of the early time period

(defrule early-data—hump
(max-p—derivative ?well-d (?tm ?))
(hump ?well-d (hill ? ? (?ths&:(?th < '-’tm) ?)))
(derivative—of ?well-d ?well)
(model ?well ?well-m)

(hypothesize (assert (early ?well-m ?th)))
) _

;i If there is a negative slope at the beginning, it means that there is
;ii no early data, and that the intermediate-time period starts there.

(defrule no-early-data
(p—d-derivative ?well-d (?fpdds:(?fpdd < 0) $?))
(time ?well-d (?first-t $?))
(derivative—of ?well-d ?well)
(model ?well ?well-m)

' (hypothesize (assert (early ?well-m =?first-t)))
)

i7ii If there is a slope 1 at the beginning of the derivative curve,
i7; then there is wellbore storage.

/

179

May 13 12:45 1988 model.art Page 2

(defrule wellbore-storage—on-derivative
(p—d-derivative ?well-d (?p-dl ?p-d2 $?))
(abs—d-error ?error)
(test (< (abs (1= (/ (+ ?p—dl ?p—d2) 2))) ?error))
(derivative—-of ?well-d ?well)
(model ?well ?well-m)

(hypothesize (assert (wellbore-storage ?well—-m yes)))
)

;:7i If the first two slopes at the beginning of the loglog curve are close
;/+; to 1, then there is wellbore storage.

(defrule wellbore-storage-~on—loglog
(loglog—of ?well-1l ?well)
(log~derivative ?well-1l (?sll ?sl2 $°))
(model ?well ?well-m)
(abs—d-error ?error)
(test (< (abs (1- (/ (+ ?sll ?sl2) 2))) ?error))

(hypothesize (assert (wellbdre—storage ?well-m yes)))
)

;7: If there is a slope 1/2 at the beginning, then: fractured

(defrule fractured-on-derivative
(p—d-derivative ?well-d (?p-dl ?p-d2 $?))
(abs—d—-error ?error)
(test (< (abs (- (/ (+ ?p—dl ?p-d2) 2) 0.5)) °error))
(derivative—-of ?well-d ?well)
(model ?well ?well-m)

(hypothesize (assert (fractured ?well-m yes)))
)

iii A 1/2 slope on loglog means fractured system

(defrule fractured-on—-loglog

(loglog—of ?well-1l ?well)

(log—derivative ?well-1 (?sll ?sl2 $?))

(model ?well ?well-m)

(abs-d—-error ?error)

(test (£ (abs (- (/ (+ ?sll ?sl2) 2) 0.5)) ?error))

(hypothesize (assert (fractured ?well-m yes)))

)

ii; Boundary conditions: If the slope at the end is negative, hypothesize
ii; there is a pressure maintenance boundary

(defrule pressure-maintenance-boundary
(p—d-derivative ?well-d ($? °pdd1 ?pdd2))
(test (and (< ?pddl 0)
(< ?pdd2 ?pddl)))
(derivative-of ?well-d ?well)

180

8

o

May 13 12:45 1988 model.art Page 3

(model ?well ?well-m)

(hypothesize (assert (boundary ?well-m pressure—maihtenance)))

)

;ii If the slope at the end is positive, hypothesize there is a closed
;7 system (no—flow boundary) _

(defrule no—flow—boundary
(p—d-derivative ?well-d ($? °pdd1 ?pdd2))
(test (and (> ?pddl 0)
(> ?pdd2 ?pddl)))
(derivative—of ?well-d ?well)
(model ?well ?well-m)

(hypothesize (assert (boundary ?well-m no—flow)))'

)

;:: If, after early time, there is a- doubllng of the slope of the semilog
;:: curve, it means that there is a no-flow boundary

(defrule no—flow-on—semilog
(early ?well-m ?e-time)
(model-of ?well-m ?well)’
(semilog ?well ?well-s)
(abs—d-error ?error)
(straight—line ?well-s ((?itlé&: (°1t1 > ?e~time) ?) (?ftl ?) 9sll))
(straight—-line ?well-s ((?it2 ?) ? ?sl2))
(test (and (> ?it2 ?ftl)
(< (abs (= ?sl2 (* 2-?sll))) °error)))

(hypothesize (assert (boundary ?well-m no-flow)))

)

;i1 If there is a horizontal stralght line at the end there it is an
;77 infinite system

(defrule infinite-system '
(derivative—of ?well-d ?well)
(last—time ?well ?last-t)
(abs—d—error ?error)
(significant—-length ?sig-1)
(straight-line ?well-d (? (?lt ?) ?slope))
(test (and (< (abs ?slope) ?error)
(< (- (log ?last-t 10) (log ?1lt 10)) 951g—l)))
(model ?well ?well-m)

(hypothesize (assert (boundary ?well-m infinite)))

)

iii If there is a valley hump, followed by either a hill hump or a
ii; horizontal straight-line then hypothesize double porosity reservoir

(defrule double-porosity
(abs—-d-error ?error) '
(hump ?well-d (valley (?itl ?) ? 9))

181

May 13 12:45 1988 model.art Page 4

(or (hump ?well-d (hill (?it2&:(?2it2 > 2itl) ?) ? ?))
(straight-line ?well-d ((?it3&:(?it3 > ?2itl) ?)
?

§slope&:((abs ?slope) < ?error))))
(derivative-of ?well-d ?well)
(model ?well ?well-m)

(hypothesize (assert (reservoir ?well-m double-porosity)))

;::; If there is a valley hump close to the end of the data set, then ' -
;7: hypothezise that it is a homogeneous reservoir with a no flow boundary.

(defrule homogeneous—and-closed-system
(significant—-length ?sig-1)
(derivative-of ?well-d ?well)
(last—-time ?well ?last-t)
(hump ?well-d (valley ? (?1lt ?) ?))
(test (< (- (log ?last-t 10) (log ?1lt 10)) ?sig-l))
(model ?well ?well-m)

(hypothesize (assert (reservoir ?well-m homogeneous)))
(hypothesize (assert (boundary ?well-m no-flow)))

)

;++ If there is a hill hump followed by a‘straight line until the end
;i; of the data set, then hypothesize that it is a homogeneous reservoir
;77 with an infinite boundary

(defrule homogeneous—and-infinite-system
(significant-length ?sig-1)
(derivative—-of ?well-d ?well)
(last-time ?well ?last—t)
(abs—d—-error ?error)
(hump ?well-d (hill ? (°hump—lt ?) ?))
(straight-line ?well-d ((?line-it ?) (?line-lt ?) °slope))
(test (and (< ?hump-lt ?line-it)
(< (- (log ?line-it 10) (log ?hump-1lt 10)) O. 25)
(< (abs ?slope) ?Perror)
(< (- (log ?last-t 10) (log ?line-1lt 10)) ?sig-1)))
(model ?well ?well-m)

=>
(hypothesize (assert (reservoir ?well-m homogeneous)))
(hypothesize (assert (boundary ?well-m infinite)))
)
i7i; If there is a hill hump and no valley hump, then hypothe51ze
i + i homogeneous
(defrule homogeneous -
(hump ?well-d (hill ? ? (?th ?)))
(derivative-of ?well-d ?well)
(model ?well ?well-m)
(early ?well-m ?th)
(not (hump ?well-d (valley ? ? ?)))
=) :

182

¢

May 13 12:45 1988 model.art Page 5

(hypothesize (assert (reservoir ?well—m‘homogeneous)))

)

; i+ These rules merge viewpoints. They aggregate all possibilities for every
;::; possible combination of facts in the well-model schemata. It also prints
;:; all possible models for each well ‘

(defrule find-model-with-wellbore-storage

(early ?well-m ?)
(wellbore-storage ?well-m yes)
(reservoir ?well-m ?type)
(boundary ?well-m ?bound)
(model-of ?well-m ?well)

(fresh-line)

(write-string
(write-string
(write—string
(write-string
(write-string
(write-string
(write-string

)

"A possible model for well ")
(string ?well)) :

.II is a ll)

(string ?type))
" reservoir with wellbore storage and a ")
(string ?bound))

" boundary.")

(defrule find-fractured-model

(early ?well-m ?)
(fractured ?well-m yes)
(reservoir ?well-m ?type)
({boundary ?well-m ?bound)
(model~of ?well-m ?well)

(fresh—line)
(write—string
(write—-string

(write-string

(write-string
(write-string
(write-string
(Wwrite—string
)

(defrule find-model

"A possible model for well ")
(string ?well))
" lS a L) Y
(string °type)) -0
" reservoir with a fractured well and a ")
{string ?bound)) ~

" boundary.")

(early ?well-m ?)

(reservoir ?well-m ?type)

(boundary ?well-m ?bound)

(not (or (wellbore—storage ?well-m yes)
(fractured ?well-m yes)))

(model-of ?well-m ?well)

(fresh-line)

(write-string
(write—-string
(write-string
(write-string
(write—-string
(Wwrite-string

"A possible model for well ")
(string ?well))

11t is a ")

(string ?type))

" reservoir with a ")

(string ?bound))

183

May 13 12:45 1988 model.art Page 6

(write—string " boundary.")
)

184

P i I

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

R

