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Abstract

This paper proposes and implements a tractable approach to detect group structure in
panel data. The mechanism works by means of a panel structure model, which assumes
that individuals form a number of homogeneous groups in a heterogeneous population.
Within each group, the (linear) regression coe¢ cients are the same, while they may be
di¤erent across di¤erent groups. The econometrician is not presumed to know the group
structure. Instead, a multinomial logistic regression is used to infer which individuals
belong to which groups.
The model is estimated via maximum likelihood. We prove the consistency and asymp-

totic normality of a global MLE under the mild assumption that the time dimension is
larger than the number of regressors in the linear regression. We propose a likelihood ratio
test to test the null of one group against the alternative of multiple groups. Simulation
studies show that the MLE performs quite well and the likelihood ratio test has good size
and power properties in �nite samples.
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1 Introduction

Panel data techniques have become standard machinery for empirical analysts in many disci-
plines, including economics, accounting, �nance, and marketing. In part, this is because panel
data allow us to construct and test more complicated models that can not be identi�ed using
only cross section or time series data. In part also, panel data give more variability and more
degrees of freedom, which leads to more precise estimation. Since panel data usually cover
individuals coming from di¤erent backgrounds and living in di¤erent environments, it is of
paramount importance to control unobserved heterogeneity in panel data modeling.

One way to deal with the unobserved heterogeneity is to assume complete homogeneity
in which regression parameters are the same across all individuals. Under this assumption,
individual observations can be viewed as random draws from a common population. By
pooling observations across all individuals, one can draw more precise inferences on population
characteristics. However, a large body of applied work has tested and rejected parameter
homogeneity. For example, Baltagi and Gri¢ n (1997) rejected the hypothesis that the gasoline
demand elasticities across the OECD countries were equal. Haque, Pesaran and Sharma (2000)
rejected the hypothesis that the savings behaviors across di¤erent countries were equal.

The other way to deal with the unobserved heterogeneity is to assume complete hetero-
geneity in which regression parameters may be completely di¤erent for di¤erent individuals.
Under this assumption, the number of parameters goes to in�nity as the number of individ-
uals approaches in�nity. This leads to the incidental parameter problem in that maximum
likelihood estimators of population-speci�c parameters may be inconsistent for a �xed time
dimension (c.f. Neyman and Scott (1948), Lancaster (2000)). When the time dimension is
small, it is also very di¢ cult to estimate individual-speci�c parameters accurately. For ex-
ample, Baltagi and Gri¢ n (1997) found that completely heterogeneous models led to very
imprecise parameter estimates, which in some cases had the wrong sign. In addition, the
assumption of complete heterogeneity may render the underlying empirical analysis meaning-
less. In an empirical investigation of international growth and convergence, Lee, Pesaran and
Smith (1997, 1998) allowed complete heterogeneity in not only the speed of convergence but
also the steady state growth rate. However, as pointed out by Islam (1998), the extension
to allow varying growth rates runs the risk of robbing the concept of convergence of any real
economic meaning.

Instead of assuming complete heterogeneity or homogeneity, we set up a new model of an
intermediate form, in which individuals form a number of homogeneous groups in a hetero-
geneous population. Within each group, the regression coe¢ cients are the same, while they
may be di¤erent across di¤erent groups. The new model does not assume that the group
structure is known a priori. Instead, it employs a multinomial logistic regression to model
the membership probabilities. The model thus consists of a set of linear response patterns
relating the dependent variable to explanatory variables and a logistic regression that classi�es
these response patterns. From an empirical Bayes perspective, the logistic regression provides
prior probabilities that individuals belong to a particular group, whereas the linear response
patterns provide information to update the priors in order to obtain posterior probabilities.
Based on the posterior probabilities, an individual is assigned to the group of which it is most
likely to be a member. The underlying structure can thus be recovered from the posterior
probabilities.
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The model aims to detect a group structure using panel data, hence the name �panel struc-
ture model.� It can be regarded as a bridge between a model with homogeneous coe¢ cients
and one with completely heterogeneous coe¢ cients. To some extent, the panel structure model
avoids the shortcomings of both models while retaining their advantages. First, compared to
a model with completely homogeneous coe¢ cients, the panel structure model is less likely
to be mis-speci�ed. On the other hand, the presence of a group structure allows us to pool
individuals in the same group, so that we can estimate group-speci�c e¤ects more precisely.
Second, compared to a model with completely heterogeneous coe¢ cients, the panel structure
model avoids the incidental parameter problem, as the number of parameters in the model is
�xed. On the other hand, it controls parameter heterogeneity to a large degree.

The panel structure model has a wide variety of potential applications, as a group structure
exists in almost every aspect of economic activity. A group structure may be also embedded
in some abstract space. Two examples are groups of individuals de�ned by their location in
some socioeconomic �space� (c.f. Akerlof (1997)) and groups of �rms de�ned according to
some measure of economic distance (c.f. Conley and Dupor (2003)). Direct applications of
the panel structure model include the following sets of problems:

(a)History Dependence and Multiple Equilibria. A wealth of literature is concerned
with the occurrence of multiple steady states and their history dependence in economic mod-
eling (e.g. Arthur (1999), Deissenberg et al. (2001)). Depending on historical conditions, the
system converges towards two or more distinct steady states. The panel structure model pro-
vides a natural setting to analyze this problem. Speci�cally, a logistic regression can be used to
capture the history dependence while a linear dynamic model can be employed to characterize
the dynamics associated with a particular steady state. For example, a class of growth models
produces multiple steady states in income per capita or its growth rate. Cross-country growth
behavior in these models typically exhibits convergence clubs, in which countries associated
with the same steady state obey a common linear model. Sun (2001) used the panel structure
model given here to investigate these convergence clubs and unveiled some interesting features
of club composition.

(b) Empirical Sample Splitting. Many economic applications perform sample splitting
in order to investigate whether a linear relationship is stable across sub-samples. Typically, the
sample splitting is based on some pre-speci�ed variable and according to some pre-speci�ed
thresholds. Quite often, the variable and the corresponding thresholds are chosen based on
some subjective judgement. The so formed sub-samples are thus quite arbitrary. To remove
the arbitrariness, a panel structure approach may be employed. In this approach, multiple
variables may be included in the logistic regression, which, together with the linear model,
provides a coherent way to split the sample and investigate the economic problem at hand.
For example, to test whether �nancing constraints a¤ect investment decisions, existing studies
divide a sample of �rms into several groups based on an ad hoc measure of �nancing constraints
such as dividend-income ratio (e.g. Fazzari, Hubbard and Petersen (1988)). Similarly, to test
whether liquidity constraints a¤ect consumption decisions, previous studies split a sample on
the basis of some ad hoc variable such as wealth (e.g. Zeldes (1989)). In both cases, di¤erent
studies tend to use di¤erent measures of �nancial constraints. As a consequence, they reached
quite di¤erent conclusions. The use of a panel structure approach may shed some new light
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on these controversies, as multiple measures can be used together to infer whether a �rm or
consumer is �nancially constrained.

To uncover the underlying group structure, the �rst step is to compute the group proba-
bilities conditional on the data we saw. The group probabilities evidently depend on model
parameters, including the membership parameters in the logistic regression and the regression
parameters in the linear regressions. Since group memberships are not observable, it is not
straightforward to estimate these parameters. The purpose of this paper is to develop and
investigate the maximum likelihood (ML) estimator. The ML approach allows the use of an
MEM (Modi�ed Expectation and Maximization) algorithm for maximization and provides an
asymptotically e¢ cient estimator. We establish the consistency and asymptotic normality of
the ML estimator under the assumption that the number of individuals goes to in�nity for a
�xed time dimension. For many panel data sets, especially survey data, the cross-sectional
dimension is usually large relative to the time dimension so that the consideration of large
N and small T asymptotics is natural. Asymptotics along alternative directions are left for
future research.

We �nd that there always exists a local maximizer of the likelihood function (called the
local MLE), which is consistent and asymptotically normal, even if the likelihood function
is unbounded. However, several local maximizers can exist for a given sample. The major
di¢ culty lies in pinning down the correct one. Interestingly, for the panel structure model, a
global maximizer is consistent when the time dimension is larger than the number of regressors
in the linear regression. For many panel data sets, this mild condition holds even though
the time dimension may not be large. The present paper therefore provides a novel way to
overcome the problem of an unbounded likelihood function.

The unboundedness of the likelihood function in a normal mixture model was �rst demon-
strated by Kiefer andWolfowitz (1956); for an extended discussion, see Titterington, Smith and
Makov (1985). Due to the unboundedness, a global MLE is not de�ned. Various approaches
have been proposed to overcome this problem. For example, Hathaway (1985) proposed a
constrained MLE based on maximization of the likelihood over an appropriately chosen sub-
set of the parameter space. Geweke and Keane (2000) used a Bayesian approach and imposed
Gamma priors for the precision parameters (the inverse of the variance parameters) to ensure
the existence of a posterior distribution. While successful, these approaches may not be ap-
pealing as they impose ad hoc restrictions or priors on the parameter space to circumvent the
unboundedness problem. Instead, by utilizing the time dimension variation that is present in
panel data, this paper shows that the problem is resolved without imposing any restrictions
on the parameter space and without the use of prior distributions. It has long been recognized
by econometricians that the availability of panel data provides opportunities to identify pa-
rameters and overcome estimation problems that may be present when only cross section or
time series data are available. The panel structure model provides a further instance of this
phenomenon.

Another contribution of the paper is that we develop a test for homogeneity (i.e. one
group) against heterogeneity (more than one group). It is well known in both the econometric
and statistical literature that such a testing problem is nonstandard. For a simple mixture
model with constant membership probabilities, we may have the problem that a parameter
is on the boundary of the parameter space or the problem that a parameter is not identi�ed
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under the null hypothesis (e.g. see Cho and White (2003) for a recent discussion on iid
mixtures). Because of these problems, the expected Hessian matrix is singular under the
null, which prevents us from using the empirical process approach of Andrews and Ploberger
(1994, 1995) and Hansen (1996) to derive the asymptotic distribution of the likelihood ratio
statistic. We show that the existence of a covariate in the logistic regression part of the panel
structure model ensures the nonsingularity of the Hessian matrix and the validity of quadratic
approximation of the likelihood function. As a consequence, we can use the empirical process
approach to establish the asymptotic theory of the likelihood ratio test.

The rest of the paper is organized as follows. We describe the model and investigate
its identi�cation in Section 2. Section 3 proposes the maximum likelihood estimation and
describes the MEM algorithm in detail. Section 4 establishes the consistency and asymptotic
normality of a local MLE. Conditions that ensure the existence and consistency of a global
MLE are also presented. Section 5 examines the likelihood-ratio type of test for homogeneity
and establishes the limit of the sup-LR statistic under both the null and the local alternatives.
Section 6 presents two simulation studies. The �rst study shows that the ML estimator
works well while the second study shows that the homogeneity test has good size and power
properties. Section 7 concludes.

Throughout the paper, C is a generic constant that may be di¤erent across di¤erent lines.
���denotes de�nitional equivalence. kak is the Euclidean norm of vector a: 1k is the k � 1
vector of ones.

2 Panel Structure Model and Identi�cation

The panel structure model consists of a set of linear regressions and a logistic regression that
classi�es these linear regressions. In this section, we de�ne the panel structure model and
investigate its identi�cation.

2.1 Panel Structure Model

Let yit be the dependent variable for individual i, measured at time t; i = 1; 2; :::; N; t =
1; 2; :::; T: We consider a model of the form1

yi0 = '(i) + �(i)�i + ei;

yit = ~�(i) + �(i)yit�1 + x
0
it(i) + �

0
t�(i) + z

0
it� + �i + "it; (2.1)

where xit and zit are k1 � 1 and k2 � 1 explanatory variables, respectively,
�t = (�1t ; �

2
t ; :::; �

k3
t )

0 is a k3 � 1 vector of deterministic time trends, ei is iid N(0; �2e;(i)),

�i is iid N(0; �2�;(i)), and "i = ("i1; :::; "iT )
0 is a normal vector with mean zero and diagonal

variance matrix �2";(i)IT : We assume that "i; �i and ei are mutually independent from each
other for all i and that "i and ei are independent of xit and zit for all t:

1We index the parameters by �(i)�instead of `i�in order to distinguish, for example, '(i) from 'g de�ned
below.
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The individual speci�c e¤ect �i may be correlated with xit and zit: An appealing approach
in the literature is to take explicit account of the linear dependence between �i and (xit; zit)
by letting �i = �x0ia(i) + �z

0
ib(i) + �i (Mundlak (1978)) and the model becomes

yi0 = '(i) + �x
0
ia(i)�(i) + �z

0
ib(i)�(i) + �i�(i) + ei;

yit = ~�(i) + �(i)yit�1 + x
0
it(i) + �

0
t�(i) + z

0
it� + �x

0
ia(i) + �z

0
ib(i) + �i + "it; (2.2)

where now �i is assumed to be independent of (xit, zit) for all t: If we include the time
invariant regressors �xi and �zi in xit or zit and add the regressors �xi and �zi to the �rst equation
in (2.1), the estimation of (2.2) is formally equivalent to the estimation of (2.1). So for ease
of exposition, we assume that �i is independent of (xit; zit):

Model (2.1) assumes that yit follows a dynamic linear model, where some regression coe¢ -
cients are population-speci�c whereas other coe¢ cients are individual-speci�c. If all regression
coe¢ cients are the same across di¤erent individuals, the model reduces to the standard dy-
namic panel data model with unrestricted initial conditions (e.g. Arellano (2003, page 96),
Hsiao (2003, page 75)).

The search for a group structure leads us to a model that contains G groups. The regres-
sion coe¢ cients '(i); �(i); ~�(i); �(i); (i); �(i) and the variance parameters �e;(i); ��;(i); �";(i) take
di¤erent values depending on the group membership. Let cig be the indicator of individual i�s
membership of group g; i.e. cig = 1 if individual i belongs to group g: We assume that

'(i) = '0ci; �(i) = �0ci;

~�(i) = ~�0ci; �(i) = �0ci; 
0
(i) = 0ci; �(i) = �0ci; (2.3)

�e;(i) = �0eci; ��;(i) = �0�ci and �";(i) = �0"ci

where ci = (ci1; :::; ciG)
0; ' = ('1; '2; :::; 'G)

0; � = (�1; �2; :::; �G)
0; ~� = (~�1; ~�2; :::; ~�G)

0;
� = (�1; �2; :::; �G)

0;  = (1; 2; :::; G)
0; � = (�1; �2; :::; �G)

0, �e = (�e;1; �e;2; ::::; �e;G)
0; �� =

(��;1; ��;2; ::::; ��;G)
0 and �" = (�";1; �";2; ::::; �";G)0 are vectors of group parameters.

We model the distribution of ci with a polychotomous regression, which is allowed to
depend on covariates speci�c to individual i: Speci�cally, ci is multinomially distributed with
G categories. The probability �ig that individual i belongs to group g is a function of wi =
(wi1; wi2; :::; wik4)

0 in a multinomial logistic regression:

�ig(�) = P (cig = 1jwi) =
exp(w0i�g)PG
j=1 exp(w

0
i�j)

; (2.4)

for g = 1; 2; :::; G: Here �0 = (�01; :::; �
0
G) and �g is a column vector containing the membership

parameters for group g:
The �rst element of wi is assumed to be one, which implies that the membership probabil-

ities f�iggNi=1 are constant across all individuals if no covariate is included. Put another way, if
we can not infer any membership information from any covariate, we assume that membership
probabilities are the same for all individuals. To ensure no crossing between groups over time,
we assume all the covariates are time invariant.

The multinomial logistic model is one of the most often used multinomial choice models as
it yields convenient functional forms for choice probabilities. However, the model su¤ers from
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the well-known IIA (Independence from Irrelevant Alternatives) assumption. To overcome
this problem, we may use the mixed logit model or the multinomial probit model and reply
on Monte Carlo integration techniques to compute the membership probabilities (e.g. Train
(2002)). We will leave the extension along this line to future research.

Equations (2.1), (2.3) and (2.4) combine to de�ne the panel structure model. The underly-
ing data generating process consists of a set ofG subprocesses, which is identi�ed with the set of
unit vectors E = fEg : g = 1; 2; :::; Gg. First, a data point (x0i1; :::; x0iT ; z0i1; :::; z0iT ; w0i)

0 is chosen
from some probability distribution �2 on (
2;F2) � R(k1+k2)T+k4 , where the probability space
(
2;F2; �2) will be speci�ed below. Second, given the data point (x0i1; :::; x0iT ; z0i1; :::; z0iT ; w0i)

0 ;

a subprocess ci 2 E is selected from a multinomial distribution with probabilities f�ig(�)gGg=1.
Finally, given that ci = Eg; for some g; a (T + 2) � 1 vector (ei; �i; "i1; :::; "iT ) is generated
from the multivariate normal N(0; diag(�2e;g; �

2
�;g; �

2
";g; :::; �

2
";g)) and the time series fyitgTt=1 is

generated according to�
yi0 = 'g + �g�i + ei
yit = ~�g + �gyit�1 + x0itg + �

0
t�g + z

0
it� + �i + "it;

(2.5)

t = 1; 2; :::; T: The data generating process implicitly de�nes the population, which is the
entire collection of the data points (x0i1; :::; x

0
iT ; z

0
i1; :::; z

0
iT ; w

0
i; y

0
i0; y

0
i1; :::; y

0
iT )

0 : A sample of size
N is a subset of N individuals from the population where the subset is chosen in such a way
that every individual has the same chance of being selected as any other. Although the panel
structure model has a Bayesian interpretation, we adopt classical inference in this paper.

The panel structure model includes two sets of variables: one for the linear regressions and
the other for the logistic regression. While the former variables a¤ect the dependent variable
through marginal responses, the latter variables exert their e¤ects through the relationship
between the dependent variable and the former variables. In some sense, the latter variables are
more important as they determine which linear speci�cation best describes the relationship
between the dependent variable and the former variables. In many empirical applications,
qualitative variables, such as the degree of openness and the level of democracy, a¤ect the
dependent variable. Quite often, empirical analysts employ some proxies for these variables
and use these proxies in a linear regression. A potentially more fruitful exercise is to use these
proxies in the logistic regression in order to identify groups of individuals that obey a common
and parsimonious relationship.

When the parameters in the second equation of (2.5) are the same for all individuals,
the panel structure model becomes the standard dynamic panel data model except that it
initializes the dynamic process di¤erently. The problem of initialization is important because
the interpretation and consistency properties of the MLE and GLS estimator depend on how
the process is initialized. Existing approaches that treat yi0 as random all assume that 'g;
�g; �e;g are the same for all individuals. This assumption is certainly restrictive and the panel
structure model can be used to relax it.

Although the panel structure model is speci�ed in a dynamic form, it incorporates a static
formation as a special case (i.e. when �g = 0 for all g). In this case, the initial condition
disappears and the model becomes

yit = ~�g + x
0
itg + �

0
t�g + z

0
it� + �i + "it: (2.6)
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We will focus on the dynamic panel data model but all our results hold for the static model.
In the panel structure model, explanatory variables in the linear regressions are divided into

two sets. The division is based on whether the marginal response is membership dependent.
When all marginal responses are membership invariant, the panel structure model reduces to
a model with homogeneous coe¢ cients. On the other hand, when all marginal responses are
membership dependent and the number of groups is equal to the cross-sectional sample size,
the panel structure model becomes a model with completely heterogeneous coe¢ cients. The
inclusion of two sets of explanatory variables thus gives us more �exibility in controlling for
heterogeneity.

Since the panel structure model bears at least super�cial similarity to the threshold regres-
sion model (e.g. see Hansen (2000)), a few words are in order on the precise relationship. Put in
our context, a panel threshold model assumes that the regression coe¢ cients ~�(i); �(i); (i); �(i)
and the variance parameters �e;(i); ��;(i); �";(i) take di¤erent values depending on the magni-
tude of some threshold variable wi. When there is only one threshold, i.e. G = 2; the panel
threshold model includes the following speci�cation:

�i1 = 1 fwi � sg ; �i2 = 1 fwi > sg (2.7)

for some parameter s; where 1 f�g is the indicator function. Comparing this to (2.4), we
see that the panel threshold model can be framed as a degenerate panel structure model,
with group probabilities equal to zero or one. In addition, a non-degenerate panel structure
model can be easily made to approximate a panel threshold model. All that is required is
to note that the logistic function can be made to approximate the indicator function, i.e.
(1 + exp[(wi � s) �])�1 ! 1 fwi � sg as � !1:

2.2 Identi�cation

For a panel structure model to successfully characterize the group structure in a panel data
set, it is necessary that the model be identi�ed. Before exploring the issue of identi�cation
we �rst introduce some notation. Denote v0i = (v0i1; :::; v

0
it; :::; v

0
iT ); v

0
it = (x0it; z

0
it) and yi =

(yi1; :::; yiT )
0: Let (v0; w0)0 be a random vector with probability distribution �2 on (
2;F2);

where 
2 =
�

Tt=1
t2

�

 
w2 ; 
t2 � Rk1+k2 ; 
w2 2 Rk4 and F2 =

�

Tt=1F t2

�

 Fw2 : Let y0 be a

random variable with probability distribution P0 on (
0;F0); conditional on v and w: Let y
be a random vector with probability distribution P on (
1;F1); conditional on y0; v; and w:
With these notations, we are ready to derive the density of (yi; yi0) conditional on vi and wi
and investigate the identi�cation of the model.

First, conditional on the group membership g; the probability density m0(yi0;'g; !g) of
yi0 with respect to the Lesbegue measure �0 is

m0(yi0;'g; !g) = (2�)
�1=2 ��!2g ���1=2 exp

 
�(yi0 � 'g)

2

2!2g

!
; (2.8)

where !2g = �2g�
2
�;g + �

2
e;g: Second, conditional on yi0 and group membership g; we have

�i s N(�g(yi0 � 'g); �2�;g � �2g!2g) where �g = �g�
2
�;g=!

2
g : (2.9)
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Therefore, the conditional distribution of �i+"i = �i+("i1; "i2; :::; "iT )
0 is multivariate normal

with mean �g(yi0 � 'g) and variance �g :

�g =
�
�2�;g � �2g!2g

�
JT + �

2
";gIT

= �2";g (IT � JT =T ) +
�
T
�
�2�;g � �2g!2g

�
+ �2";g

�
JT =T

� �2";g (IT � JT =T ) + �2o;gJT =T; (2.10)

where IT is the T �T identity matrix and JT is the T �T matrix with unity in every element.
It follows that the probability density m(yi; �g; �g; �) of yi conditional on yi0; vi; wi and group
membership g is given by

m(yi; �g; �g; �) = (2�)
�T=2 j�gj�1=2 exp

�
�1
2
u0i;g�

�1
g ui;g

�
; (2.11)

where �0g = (�
0
g; �

0
g; 

0
g; �

0
g; �

0
g); �g = ~�g � �g'g; �0g =

�
�0o;g; �

0
";g

�
and

ui;g = yi � �g � �gyi;�1 � x0ig � � 0�g � z0i� � �gyi0: (2.12)

As a consequence, the density of (yi; yi0) conditional on vi and wi is

f(yi; yi0; ) =

GX
g=1

�ig(�)m(yi; �g; �g; �)m
0(yi0;'g; !g); (2.13)

where  = (�0; �0; �0; �0; '0; !0)0 and

�ig(�) =
exp(w0i�g)PG
j=1 exp(w

0
i�j)

: (2.14)

The dominating measure for the conditional density is the Lesbegue measure �0 � �1 on

0 
 
1: Since �2 is the probability measure on 
2 induced by the random variables vi and
wi: (2.13) is also the joint density of (yi; yi0; vi; wi) with respect to the measure �0 � �1 � �2:

Equations (2.11), (2.13) and (2.14) provide an unrestricted parameterization of the group
structure. Note that there is a one-to-one correspondence between (�g; �0g; 

0
g; �

0
g; �g; �g; 'g; !g)

and (~�g; �0g; 
0
g; �

0
g; �eg; ��;g; �";g; 'g; �g), we will focus on (�g; �

0
g; 

0
g; �

0
g; �g; �g; 'g; !g) and �

hereafter. For this parameterization, the density f(yi; yi0; ) is invariant under all permuta-
tions of the group labels:

(�0g; �
0
g; �

0
g; '

0
g; !

0
g)
0 ! (�0per(g); �

0
per(g); �

0
per(g); '

0
per(g); !

0
per(g))

0 (2.15)

for g = 1; 2; :::; G, where (per(1); :::; per(G)) = per(1; :::; G) is any permutation of (1; :::; G):
The density f(yi; yi0; ) is also invariant under the translation � ! � + �0 for any constant
vector �0:

To uniquely identify the parameters, we impose restrictions to break the invariance. Specif-
ically, we order the regression parameters to break the permutation invariance, and initialize
the membership parameters to break the translation invariance. We assume throughout that
(i) the parameters f(�0g; �0g; '0g; !0g)0gGg=1 are ordered lexicographically, i.e. (�0g; �0g; '0g; !0g)0 �
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(�0g0 ; �
0
g0 ; '

0
g0 ; !

0
g0)
0 if (a) �g1 < �g01 or (b) �g1 = �g01 but �g2 < �g02; and so on; (ii) the mem-

bership parameters are initialized by setting �G = 0: Through ordering and initializing, we
achieve the uniqueness of parameterization.

Now we drop the subscript i for clarity of exposition and introduce the notion of identi�-
cation:

De�nition: The panel structure model is identi�ed, if for any two parameter combinations
 (1) and  (2); f(y; (1)) = f(y; (2)) for almost all (y0; y00; (v

0; w0))0 2 
1

0

2 if and only
if  (1) =  (2):

Apparently, a necessary condition for the identi�cation of f is: m(y; �
(1)
g ; �

(1)
g ; �(1)) =

m(y; �
(2)
g ; �

(2)
g ; �(2)) for almost all y only if �(1)g = �

(2)
g ; �

(1)
g = �

(2)
g and �(1) = �(2): We �rst

investigate whether this condition is satis�ed. Let

M(�g) =

0BBBBB@
1 0 0 : : : 0
�g 1 0 : : : 0
�2g �g 1 : : : 0
...

...
... : : :

...
�T�1g �T�2g �T�3g : : : 1

1CCCCCA ; (2.16)

V (�g; �g) =M(�g)�(�g)M
0(�g); �(�g) � �g; (2.17)

and

A(�g; �) =M(�g)xg +M(�g)z� +M(�g)��g

+M(�g)1T�g +M(�g)1T�gy0 + y0(�g; �
2
g ; :::; �

T
g )
0; (2.18)

where x = (x�1; x�2; :::; x�T )0; z = (z�1; z�2; :::; z�T )0; and � = (�1; �2; :::; �T )0: Then m(y; �g; �g; �)
can be written as

m(y; �g; �g; �) = (2�)
�T=2 jV (�g)j�1=2 exp

�
�1
2
[y �A(�g; �)]0V �1(�g; �g)[y �A(�g; �)]

�
;

(2.19)
which is a multivariate normal density. For any two vectors (�(1)0g ; �

(1)0
g ; �(1)0)0 and (�(2)0g ; �

(2)0
g ; �(2)0)0;

m(y; �
(1)
g ; �

(1)
g ; �(1)) = m(y; �

(2)
g ; �

(2)
g ; �(2)) with probability one if and only if A(�(1)g ; �(1)) =

A(�
(2)
g ; �(2)) and V (�(1)g ; �

(1)
g ) = V (�

(2)
g ; �

(2)
g ) hold with probability one. The following lemma

shows that A(�(1)g ; �(1)) = A(�
(2)
g ; �(2)) and V (�(1)g ; �

(1)
g ) = V (�

(2)
g ; �

(2)
g ) hold with probability

one if and only if �(1)g = �
(2)
g ; �

(1)
g = �

(2)
g and �(1) = �(2): The following quantities arise in the

Lemma and the subsequent theorem:

Dt
v(�) = fv�t : v0�t� = 0g; Dw(�) = fw : w0� = 0g; (2.20)

�t2 = marginal probability distribution of v�t on (

t
2;F t2); (2.21)

�w2 = marginal probability distribution of w on (

w
2 ;Fw2 ): (2.22)

Lemma 1 Assume that
(i) For some integer t0 2 [1; T ]; �t02 (Dt0

v (�)) < 1 for any � 6= 0; � 2 Rk1+k2.
(ii) The probability distribution of y0 is not degenerate.
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(iii) The matrix (�; 1T ) has full column rank.
If m(y; �(1)g ; �

(1)
g ; �(1)) = m(y; �

(2)
g ; �

(2)
g ; �(2)) with probability one, then �(1)g = �

(2)
g ; �

(1)
g = �

(2)
g

and �(1) = �(2):

An intermediate corollary of Lemma 1 is that if m0(y0;'
(1)
g ; !

(1)
g ) = m0(y0;'

(2)
g ; !

(2)
g ) with

probability one, then '(1)g = '
(2)
g and !(1)g = !

(2)
g : To see this, we note that m0(y0;'g; !g) can

be viewed as a special case of m(y; �g; �g; �) with �g = g = �g = �g = �o;g = � = 0:
Lemma 1 assists in proving the following theorem, which establishes the identi�cation of

the panel structure model.

Theorem 2 Assume
(i) For some integer t0 2 [1; T ]; �t02 (Dt0

v (�)) < 1 for any � 6= 0; � 2 Rk1+k2;
(ii) The probability distribution of y0 is not degenerate;
(iii) The matrix (�; 1T ) has full column rank;
(iv) �w2 (Dw(�)) < 1; for any � 6= 0; � 2 Rk4 ;
Then the panel structure model is identi�ed.

By assuming that �t02 (D
t0
v (�)) < 1 for any nonzero �; the theorem implicitly assumes

an appropriate level of variability of (x0�t0 ; z
0
�t0)

0. When (x0�t0 ; z
0
�t0)

0 contains only continuous
random variables, a su¢ cient condition is that �t02 has a positive density with respect to
the Lebesgue measure on 
t02 : When (x

0
�t0 ; z

0
�t0)

0 contains only discrete random variables, a
su¢ cient condition is that the support of (x0�t0 ; z

0
�t0)

0 spans Rk1+k2 : When (x0�t0 ; z
0
�t0)

0 contains
both continuous and discrete random variables, say (x0�t0 ; z

0
�t0) = ((v

c
t0)
0; (vdt0)

0); where vct0 and
vdt0 contain only continuous and discrete variables respectively, su¢ cient conditions are: (i) v

c
t0

has a positive density with respect to the underlying Lebesgue measure; (ii) the support of vdt0
spans the space Rkd ; where kd is the number of discrete variables. The su¢ cient conditions
are easily seen from the proof of the theorem. Similar su¢ cient conditions can be derived for
w.

3 ML Estimation and Classi�cation

Let yi = (yi1; yi2; :::; yiT )0; xi = (xi1; xi2; :::; xiT )0; zi = (zi1; zi2; :::; ziT )0; and � = (�1; :::; �T )0:
Then conditioning on fxigNi=1; fzigNi=1; fwigNi=1; the log-likelihood of the panel structure model
can be expressed as

L( jy; y0) =
NX
i=1

log

GX
g=1

�ig(�)m(yi; �g; �g; �)m
0(yi0;'g; !g): (3.1)

To estimate the model parameters, we maximize the log-likelihood function:

 ̂ = (�̂0; �̂0; �̂0; �̂0; '̂0; !̂0)0 = argmax
 2	

L( jy; y0): (3.2)

When  ̂ globally maximizes the likelihood function over the parameter space 	; we call it a
global MLE. In contrast, when  ̂ maximizes the likelihood function over a closed subset of the
parameter space, we call it a local MLE.
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Given the estimate  ̂; we can assign the group membership as follows: individual i is
assigned to group g if

�ig(�̂)m(yi; �̂g; �̂g; �̂)m
0(yi0; '̂g; !̂g) = max

j
�ij(�̂)m(yi; �̂j ; �̂j ; �̂)m

0(yi0; '̂j ; !̂j): (3.3)

In other words, we assign a given individual to the group of which it is most likely to be a
member based on the posterior probabilities. Such an assignment rule is consistent with loss
minimization for the 0-1 loss function. More speci�cally, let Loss(g1; g2) be the price paid for
assigning a group g1 individual to group g2: For a given assignment rule A(yi; yi0; vi; wi), the
expected loss is

E (Loss) = E
GX
g=1

Loss(g;A(yi; yi0; vi; wi))P (gjyi; yi0; vi; wi) ; (3.4)

where P (gjyi; yi0; vi; wi) is the probability of belonging to group g conditional on (yi; yi0; vi; wi)
and the expectation is taken with respect to the joint distribution of (yi; yi0; vi; wi) : With the
0-1 loss function where all mis-assignments are charged a single unit, the expected loss becomes

E (Loss) = 1� E
GX
g=1

1 fA(yi; yi0; vi; wi) = ggP (gjyi; yi0; vi; wi) : (3.5)

Minimizing the above expected loss gives

A(yi; yi0; vi; wi) = g0 if P (g0jyi; yi0; vi; wi) = max
g=1;:::;G

P (gjyi; yi0; vi; wi) : (3.6)

Note that P (gjyi; yi0; vi; wi) is proportional to �ig(�)m(yi; �g; �g; �)m0(yi0;'g; !g): So the as-
signment rule (3.3) minimizes the expected loss for the 0-1 loss conditioning on the parameter
estimates.

To search for maximizers of the likelihood function, the so-called Expectation Maximiza-
tion (EM) algorithm can be used (Dempster, Laird and Rubin (1977)). The EM algorithm is
a general technique for maximum likelihood estimation in a wide variety of situations best de-
scribed as the incomplete data problem. The recent monograph by McLachlan and Krishman
(1996) provides an excellent introduction to the EM algorithm.

An application of the EM algorithm generally begins with the observation that the opti-
mization of the likelihood function would be simpli�ed if a set of missing variables or hidden
variables were known. In our context, if the group membership ci is observable, then the
log-likelihood for fyi0;yig and fcig becomes

L( jy; y0; c) =
NX
i=1

GX
g=1

cig
�
log �ig(�) + logm(yi; �g; �g; �) + logm

0(yi0;'g; !g)
	
: (3.7)

The use of the indicator variable cig has allowed the logarithm to be brought inside the
summation sign, substantially simplifying the maximization problem. But cig is not observable.
Instead of maximizing L( jy; y0; c) itself, we maximize the expectation of L( jy; y0; c), where
the expectation is taken with respect to all the unobserved cig: In the expectation step, the
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conditional expectation of L( jy; y0; c) given fyi; yi0; vi; wig is calculated. In the maximization
step, the so obtained expected log-likelihood is maximized with respect to  ; which provides
an updated estimate of  : Finally, we keep iterating between the E-step and the M-step until
convergence is attained. Dempster, Laird and Rubin (1977) showed that the likelihood function
L( jy; y0) increases along the iterated parameter values. We modify the EM algorithm for the
panel structure model and show that the modi�ed EM (MEM) algorithm converges to a local
maximum of the likelihood function. The e¤ectiveness of the MEM algorithm is demonstrated
by the simulation experiments in Section 6.

Let  (k) = (�(k)0; �(k)0; �(k)0; �(k)0; '(k)0; !(k)0)0 be the current estimate of  ; and
 (k+1) = (�(k+1)0; �(k+1)0; �(k+1)0; '(k+1)0; !(k+1)0)0 stand for the updated estimate. We follow
the steps below:

The E-step: The conditional expectation is given by

Q( j (k)) = E
�
L( jy; y0; c)j (k)

�
=

NX
i=1

GX
g=1

p
(k)
ig

�
log �ig(�) + logm(yi; �g; �g; �) + logm

0(yi0;'g; !g)
	
; (3.8)

where p(k)ig = pig( 
(k)) and

pig ( ) = E(cigjyi; yi0; vi; wi; )

=
�ig(�)m(yi; �g; �g; �)m

0(yi0;'g; !g)PG
j=1 �ij(�)m(yi; �j ; �j ; �)m

0(yi0;'j ; !j)
: (3.9)

The modi�ed M-step: To get the updated estimate  (k+1); we maximize Q( j (k))
with respect to  : By inspection, parameters �g; �g and � a¤ect Q only through the termPN

i=1

PG
g=1 p

(k)
ig logm(yi; �g; �g; �); parameters 'g and !g a¤ect Q only through the termPN

i=1

PG
g=1 p

(k)
ig logm

0(yi0;'g; !g); and parameter � a¤ects Q only through the termPN
i=1

PG
g=1 p

(k)
ig log �ig(�). Therefore, we can maximize these three terms of Q( j (k)) sep-

arately.
(i) We �rst maximize

PN
i=1

PG
g=1 p

(k)
ig log �ig(�) with respect to �: This objective function

may be seen as a log-likelihood in a multinomial logistic regression with fractional observations
fp(k)ig g: It is also similar to the log-likelihood function in a multinomial logistic regression for
grouped data. The �rst order conditions are easily shown to be

NX
i=1

�
p
(k)
i � �i(�)

�

 wi = 0; (3.10)

where p(k)i = (p
(k)
i1 ; p

(k)
i2 ; :::; p

(k)
iG )

0 and �i(�) = (�i1(�); �i2(�):::; �iG(�))
0 : Intuitively, �(k+1)

should be chosen so that �ig(�(k+1)) is as close to p
(k)
ig as possible. Since the �rst element

of wi is 1, we have

1

N

NX
i=1

�ig(�) =
1

N

NX
i=1

p
(k)
ig for g = 1; 2; :::; G: (3.11)
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In other words, the predicted shares are the same as the �observed�shares. Some calculations
show that the Hessian of

PN
i=1

PG
g=1 p

(k)
ig log �ig(�) is given by H� ( ) = �

PN
i=1covi(�)
wiw0i

where

covi � covi(�) =

0BB@
�i1(�)� �2i1(�) ��i2(�)�i1 (�) ::: ��iG (�)�i1 (�)
��i1 (�)�i2 (�) �i2 (�)� �2i2 (�) ::: :::

::: ::: ::: :::
��i1 (�)�iG (�) ::: ::: �iG (�)� �2iG (�)

1CCA : (3.12)

Note that covi is the covariance matrix of the multinomially distributed vector (ci1; ci2; :::; ciG)
with parameters (�i1; �i2; :::; �iG), covi is positive semi-de�nite and H� ( ) is negative semi-
de�nite. When �G is normalized to be zero, we need to remove the last k4 rows and k4 columns
ofH� ( ) to get the Hessian ~H� ( ) for the remaining parameters. It is easy to show that ~H� ( )

is negative de�nite and the maximand
PN

i=1

PG
g=1 p

(k)
ig log �ig(�) is globally concave. We can

�nd the optimal � by the Newton-Raphson algorithm using ~�(k) as the starting point:

~�(k+1) = ~�(k) � ~H�1
�

�
 (k)

� NX
i=1

�
~p
(k)
i � ~�i(�(k))

�

 wi

!
; (3.13)

where ~�0 = (~�01; ~�
0
2; :::;

~�0G�1); ~p
(k)
i = (p

(k)
i1 ; p

(k)
i2 ; :::; p

(k)
iG�1)

0 and ~�i(�) = (�i1(�); �i2(�):::; �iG�1(�))
0 :

For notational convenience, we have assumed that Newton-Raphson algorithm stops after one
iteration. In practice, we may have to use the above iterative formula a few times to attain
convergence.

(ii) We next maximize
PN

i=1

PG
g=1 p

(k)
ig logm(yi; �g; �g; �) with respect to �g; �g and �: This

is a nonlinear optimization problem, which has no closed form solution. To accommodate the
iterative nature of our estimating strategy, we propose to maximizePN

i=1

PG
g=1 p

(k)
ig logm(yi; �g; �g; �) with respect only to the regression parameters for a �xed

�g. This is an easier task as it is equivalent to solving the minimization problem:

min
�g ;�

NX
i=1

GX
g=1

p
(k)
ig u

0
i;g

�
�(k)g

��1
ui;g; (3.14)

where ui;g = yi��i�g � zi�, �i = (1T ; yi;�1; xi; �; 1T yi0) and yi;�1 = (yi0; yi1; :::; yi;T�1): Using
the well-known result that�

�(k)g

��1=2
=
�
�(k)o;g

��1
JT =T +

�
�(k)";g

��1
(IT � JT =T ) ; (3.15)

we have (�(k)g )�1=2ui;g = (�
(k)
";g )�1~u

(k)
i;g ; where

~u
(k)
i;g =

�
yi � %(k)g �yi

�
�
�
�i � %(k)g ��i

�
�g �

�
zi � %(k)g �zi

�0
� (3.16)

and %(k)g = 1� �(k)";g =�(k)o;g : Therefore, the minimization problem in (3.14) reduces to

min
�g ;�

NX
i=1

GX
g=1

p
(k)
ig ~u

(k)0
i;g ~u

(k)
i;g =

�
�(k)";g

�2
: (3.17)
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Let ~y(k)i = yi � %
(k)
g �yi; ~�

(k)
ig = �i � %

(k)
g
��i; and ~z

(k)
i = zi � %

(k)
g �zi. Then some algebraic

manipulations show that the solution to (3:17) is:

�(k+1) =

8<:
NX
i=1

GX
g=1

p
(k)
ig

�
zoig
�0 �

�(k)";g

��2
zoig

9=;
�18<:

NX
i=1

GX
g=1

p
(k)
ig

�
zoig
�0 �

�(k)";g

��2
yoig

9=; ; (3.18)

�
�(k+1)g

�0
=

(
NX
i=1

p
(k)
ig

�
~�
(k)
ig

�0 �
~�
(k)
ig

�)�1( NX
i=1

p
(k)
ig

�
~�
(k)
ig

�0
yoi

)
; (3.19)

where yoi = ~y
(k)
i � ~z(k)i �(k+1) and

zoig = ~z
(k)
i � ~�(k)i

(
NX
i=1

p
(k)
ig

�
~�
(k)
ig

�0 �
~�
(k)
ig

�)�1 NX
i=1

p
(k)
ig

�
~�
(k)
ig

�0
~z
(k)
i ;

yoig = ~y
(k)
i � ~�(k)i

(
NX
i=1

p
(k)
ig

�
~�
(k)
ig

�0 �
~�
(k)
ig

�)�1 NX
i=1

p
(k)
ig

�
~�
(k)
ig

�0
~y
(k)
i : (3.20)

Here yoi ; y
o
ig; and z

o
ig should have an additional superscript (k); which is omitted for notational

simplicity.
It remains to update the variance parameters �2";g and �

2
o;g: Let u

(k)
i;g = yi��(k)i �

(k)
g �zi�(k):

Plugging the regression parameters in (3.18) and (3.19) into
PN

i=1

PG
g=1 p

(k)
ig logm(yi; �g; �g; �)

yields:

NX
i=1

GX
g=1

p
(k)
ig

�
�T
2
log (2�)� 1

2
log j�gj �

1

2

�
u
(k)
i;g

�0
��1g u

(k)
i;g

�

=

NX
i=1

GX
g=1

p
(k)
ig

�
�T
2
log (2�)� 1

2
log �2(T�1)";g � 1

2
log(�2o;g)

� 1

2T�2o;g

�
u
(k+1)
i;g

�0
JTu

(k+1)
i;g � 1

2�2";g

�
u
(k)
i;g

�0
(IT � JT =T )u(k)i;g

�
(3.21)

where we have used j�gj = �
2(T�1)
";g �2o;g and

��1g = ��2o;gJT =T + �
�2
";g (IT � JT =T ) : (3.22)

Maximizing (3.21) produces the updated maximum likelihood estimators:

(�2";g)
(k+1) =

PN
i=1 p

(k)
ig

�
u
(k)
i;g

�0
(IT � JT =T )u(k)i;g

(T � 1)
PN

i=1 p
(k)
ig

; (3.23)

(�2o;g)
(k+1) =

PN
i=1 p

(k)
ig

�
u
(k)
i;g

�0
JTu

(k)
i;g

T
PN

i=1 p
(k)
ig

: (3.24)
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(iii) Finally, we maximize
PN

i=1

PG
g=1 p

(k)
ig logm

0(yi0;'g; !g) to update '
(k)
g and !(k)g : It is

easy to see that the solution is

'(k+1)g =

 
NX
i=1

p
(k)
ig yi0

!
=

 
NX
i=1

p
(k)
ig

!
; (3.25)

(!2g)
(k+1) =

 
NX
i=1

p
(k)
ig (yi0 � '

(k)
g )2

!
=

 
NX
i=1

p
(k)
ig

!
: (3.26)

The MEM algorithm reduces the maximization problem into a sequence of logit regressions
and weighted least squares regressions. The computational cost of the MLE for a panel
structure model is thus comparable to that of the MLE for a dynamic panel data model. The
idea of dividing the model parameters into di¤erent blocks and updating one block at a time
while holding other blocks constant can be used to attack other missing data problems.

We proceed to investigate the convergence of the MEM algorithm. The following theorem
establishes the relationship between the MEM algorithm and a gradient based optimization
algorithm:

Theorem 3 The updating scheme in equations (3.13), (3.18), (3.19), and (3.23)�(3.26) sat-
is�es

 (k+1) �  (k) = �H�1
mem( 

(k))
@L( jy; y0)

@ 
j = (k)

for some matrix Hmem( 
(k)): In addition, if the model is identi�ed and N is large enough,

then Hmem( 
(k)) is negative de�nite with probability one.

To ensure and speed up the convergence of the MEM algorithm, we may multiply the step
size by a positive number, say �; to get

 (k+1) �  (k) = ��H�1
mem( 

k)
@L( (k)jy; y0)

@ 
: (3.27)

As in the Newton-Raphson algorithm or any other gradient-based algorithms, we may do a
grid search over � 2 [0; 1] to pick up the optimal � at each iteration.

Equations (3.23), (3.24) and (3.26) use �(k)g , �(k) and '(k)g to update �g and !g: If we use

�
(k+1)
g , �(k+1) and '(k+1)g instead, we obtain

(�2";g)
(k+1) =

PN
i=1 p

(k)
ig

�
u
(k+1)
i;g

�0
(IT � JT =T )u(k+1)i;g

(T � 1)
PN

i=1 p
(k)
ig

; (3.28)

(�2o;g)
(k+1) =

PN
i=1 p

(k)
ig

�
u
(k+1)
i;g

�0
JTu

(k+1)
i;g

T
PN

i=1 p
(k)
ig

; (3.29)

(!2g)
(k+1) =

PN
i=1 p

(k)
ig (yi0 � '

(k+1)
g )2PN

i=1 p
(k)
ig

: (3.30)
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In this case, Theorem 3 does not hold for the above updating formulae. However, for these
updating formulae, we have Q( (k+1)j (k)) � Q( (kj (k)): This is because

Q( (k+1)j (k)) = Q(�(k+1); �(k+1); �(k+1); �(k+1); '(k+1); !(k+1)j (k))
� Q(�(k+1); �(k+1); �(k+1); �(k); '(k+1); !(k)j (k)) (3.31)

� Q(�(k); �(k); �(k); '(k); �(k); !(k)j (k)) = Q( (kj (k));

where the two inequalities follow by de�nition. It now follows from the general EM theory
of Dempster, Laird and Rubin (1977) that L( (k+1)jy; y0) � L( (k)jy; y0): In our particular
situation,

Q( j (k))� L( jy; y0) =
NX
i=1

GX
g=1

pig( 
(k)) log pig( ): (3.32)

Hence

Q( (k+1)j (k))� L( (k+1)jy; y0) =
NX
i=1

GX
g=1

pig( 
(k)) log pig( 

(k+1)

�
NX
i=1

GX
g=1

pig( 
(k)) log pig( 

(k) = Q( (k)j (k))� L( (k)jy; y0); (3.33)

which implies that L( (k+1)jy; y0)�L( (k)jy; y0) � Q( (k+1)j (k))�Q( (k)j (k)) � 0: There-
fore, the MEM algorithm will converge to a local maximum of the likelihood function, no
matter which updating scheme is used to update the variance parameters.

The MEM algorithm calls for an initial estimate of  : To initialize, we set �(0)g = 0; so
that �ig = 1=G for g = 1; 2; :::; G; and randomly assign individuals to G groups. That is, for
each individual i; we randomly generate an integer between 1 and G: If this random integer
equals g; then we assign individual i to group g: With this assignment, we can obtain the
initial estimate  (0). The MEM algorithm can then start from this initial estimate.

4 Consistency and Asymptotic Normality of theML Estimator

To establish the consistency and asymptotic normality of the ML estimator, we need the
following assumptions.

Assumption 1 (y0i0; x
0
it; z

0
it; w

0
it) are cross-sectionally independent for all t; and

E(y0i0; x
0
it; z

0
it; w

0
i)
0(y0i0; x

0
is; z

0
is; w

0
is) <1; for all t and s:

Assumption 2 "i is cross-sectionally independent, and "i is independent of (y0i0; x
0
it; z

0
it; w

0
it)

for all i and t:

Assumption 3 (ei; �i; "i) is a normal vector with mean zero and scalar variance matrix
diag(�2e;g; �

2
�;g; �

2
";g; ::::; �

2
";g) given that individual i belongs to group g:

Assumption 4 Ey4i0 <1; E kxitk
4 <1; E kzitk4 <1; E kwik4 <1 for all i and t:
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Assumption 5 The true parameter  0 = (�00; �
0
0; �

0
0; �

0
0; '

0
0; !

0
0)
0 is an interior point of a

compact space 	.

Assumptions 1 and 2 impose cross-sectional independence, an assumption that may be
restrictive for some economic applications. However, because of the lack of natural ordering,
there is no completely satisfactory and general way of modelling cross-sectional dependence,
although some important progresses have been made, see, for example, Conley (1999), Phillips
and Sul (2003) and Andrews (2003). In this paper, we follow the large panel data literature
and maintain the assumption of cross sectional independence.

The distributional assumption in Assumption 3 validates the use of the ML estimator.
Under this assumption, yi follows a mixture distribution with multivariate normal components.
In view of the fact that any continuous distribution can be arbitrarily well approximated by
large enough normal mixtures, the normality assumption is not as restrictive as it seems.
Nevertheless, it is worthwhile to relax the distributional assumption and only impose some
moment conditions, even if this may invalidate the convenient MEM algorithm. Assumption 3
also imposes temporal independence of f"itgTt=1; which facilitates the presentation. Our results
should be easily extended to allow for general forms of weak temporal dependence at the cost
of notational complications.

Assumption 4 imposes some moment conditions, which is used only in proving the asymp-
totic normality of the MLE. Assumption 4 is stronger than necessary and is in a form which
makes a brief proof possible. Assumption 5 is standard in the nonlinear estimation literature.
It is necessary for the MLE to be asymptotically normal.

4.1 Consistency

Before we investigate the consistency of the ML estimator, we present a standard lemma
that provides su¢ cient conditions for the existence of a consistent sequence of maximizers in
a stochastic maximization problem. Next, we apply the lemma to the maximization of the
likelihood function in (3.1).

Let QN ( ) = 1=N
PN

i=1 q(Ui; ); for N � 1 be a sequence of maximands for estimation of
the parameter  2 K � Rk, where K is a compact parameter space. Let  0 be the true value
of the parameter.

Lemma 4 (a) Suppose
(i) fq(Ui; ) : i � 1g are independently and identically distributed.
(ii) q(U ; ) is continuous at each  2 K with probability one.
(iii) There is a function d(U) with jq(U ; )j � d(U) for all  2 K and Ed(U) <1:
Then QN ( ) converges to Eq(U ; ) uniformly over  2 K:
(b) In addition,
(iv) for any  2 K;  6=  0; Eq(U ; ) < Eq(U ; 0):
Then  ̂ = argmaxK QN ( ) is consistent as N !1:

Let q(Ui; ) = log f(yi; yi0; ) and K = 	: To establish the consistency of an MLE,
a typical argument would verify all the conditions in Lemma 4. However, the domination
condition (iii) is not satis�ed if the variance parameters f!ggGg=1 of  2 	 are not bounded
below from zero.
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To illustrate this point, consider G = 2 and T = 2: In this case, q(Ui;  ) equals

log

"
�i1(�)m(yi; �1; �1; �)

1p
2�!21

exp

�
�1
2

(yi0 � '1)2
!21

�

+ �i2(�)m(yi; �2; �2; �)
1p
2�!22

exp

�
�1
2

(yi0 � '2)2
!22

�#
: (4.1)

If we set  = ~ such that ~!1 = 0; ~!2 > 0; ~�2";g > 0; ~�2o;g > 0; �ig(~�) > 0 for all i =
1; :::; N; g = 1; :::; G; and ~'1 = yi�;0 for some i�; then q(Ui� ; ~ ) = 1: As a consequence,
E sup 2K jq(Ui� ;  )j � Eq(Ui� ; ~ ) = 1; and condition (iii) can not be true. In addition, for
i 6= i� such that yi0 6= ~'1;

q(Ui; ~ ) = log

"
�i2(~�)m(yi; ~�2; ~�2; ~�)

1p
2�!22

exp

�
�1
2
(yi0 � '2)2

�#
> �1: (4.2)

Therefore, QN ( ~ ) =1.
Because of the unboundedness, a global MLE always fails to exist. This is a major di¢ culty

in using ML to estimate a normal mixture model. The di¢ culty can be overcome by imposing
some restriction on the parameter space (Redner (1981), Hathaway (1985)). For example, we
may assume that !g � c0; g = 1; :::; G for some positive constant c0: But c0 is not known
a priori, such a restriction is thus quite arbitrary. Fortunately, even with the unconstrained
parameter space 	, we can still prove the consistency of a local MLE.

The idea of the proof is to show that all the conditions in Lemma 4 are satis�ed if we
consider the parameters in a small neighborhood of the true value. Speci�cally, let K be the
closed ball centered on the true parameter with radius r:We choose r to be small so that for all
possible parameter values in K we have ! 2 [!min; !max]; �";g 2 [�";min; �";max]; �o;g 2 [�o;min;
�o;max]; 0 < !min < !max < 1; 0 < �";min < �";max < 1, and 0 < �o;min < �o;max < 1 for
g = 1; 2; :::; G. For the so chosen compact set K; conditions (i) and (ii) are trivially satis�ed.
Conditions (iii) and (iv) are established in the following lemma.

Lemma 5 Let Assumptions 1, 2, 3, and 5 hold. If the panel structure model is identi�ed,
then
(a) E sup 2K j log f(yi; yi0; )j <1:
(b) for any  2 K;  6=  0; E log f(yi; yi0; ) < E log f(yi; yi0; 0):
(c) there exists a consistent local MLE.

The consistency result in Lemma 5 seems to contradict the well-known inconsistency of the
ML estimator for a dynamic panel model with �xed e¤ects. In the latter case, the number of
parameters goes to in�nity, which leads to the incidental parameter problem. In contrast, the
number of the parameters in the panel structure model above is �xed, and so the incidental
parameter problem is avoided from the beginning. However, for the panel structure model,
even if the number of the groups goes to in�nity so that the number of parameters goes to
in�nity, we conjecture that there exists a consistent local ML estimator, as long as the number
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of individuals grows faster than the number of groups. This is because in�nitely many cross-
sectional observations are available for estimating a �nite number of parameters speci�c to a
particular group.

Lemma 5 only shows the existence of a consistent local maximizer, but does not propose a
method to isolate a consistent one among possibly multiple and local maximizers. If a consis-
tent estimate is available, then the local maximizer closest to it is also consistent. Therefore,
the problem of selecting a consistent local MLE amounts to searching for a consistent estimate.
We now propose such a consistent estimate of  c = (�0; �0; �0; �0)

0 : Let

fc(yi; c) =

GX
g=1

�ig(�)m(yi; �g; �g; �) (4.3)

be the density of yi conditional on yi0; xi; zi and wi: De�ne the conditional maximum likelihood
estimator as:

 ̂c = arg max
 c2	c

NX
i=1

log fc(yi; c); (4.4)

where 	c is the coordinate projection of the parameter space 	; i.e.

	c =
n�
�0; �0; �0; �0

�0
:
�
�0; �0; �0; �0; '0; !0

�0 2 	 for some '; !o : (4.5)

The following theorem shows that when the time dimension is large enough, the conditional
MLE is consistent.

Theorem 6 Let Assumptions 1, 2, 3, and 5 hold. If the panel structure model is identi�ed
and T > k1 + k2 + k3 + 3; then  ̂c is consistent.

To prove the theorem, we �rst show that: (i) the maximum value of the conditional
likelihood function over 	c is achieved at  2 	0c with probability one when N is large
enough, where 	0c is the set of parameter values in 	c satisfying

PG
g=1 �";g�o;g � r for some

positive constant r: In other words,

 ̂c = arg max
 2	0c

NX
i=1

log fc(yi; c); (4.6)

with probability one when N is large enough. So we can take 	0c as the parameter space in
an attempt to establish the consistency. For any vector  c 2 	0c ; there exists at least one g0
such that �";g0�o;g0 > r=G > 0. This ensures that log fc(yi;  c) is continuous for  c 2 	0c : We
next observe that: (ii) yi � �i�g � zi� = 0 > 0 for any �g and �; with probability one for all i:
This holds because T > k1 + k2 + k3 + 3 and "i is assumed to be (conditionally) normal. The
essential point is that �g and � can not be chosen such that some time series is perfectly �tted.
Time series information thus ensures that log fc(yi;  c) is bounded and uniformly integrable
over  c 2 	c: These two steps help verify the conditions in Lemma 4. The details of the proof
are provided in the appendix.

Given the consistent estimator  ̂c; we can construct consistent estimators of ' and ! using
the full maximum likelihood approach. We maximize L( jy; y0) and choose the maximizer
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 ̂� =
�
�̂�0; �̂�0; �̂�0; �̂�0; '̂�0; !̂�0

�0
such that the subvector (�̂�0; �̂�0; �̂�0; �̂�0)0 is closest to  ̂c: This

method avoids the unbounded problem because in large samples no element of !̂� converges
to zero. The claim can be proved by contradiction. If an element of !̂� converges to zero,
then there is a group of cross sectional units whose initial observations are the same and
membership probabilities of belonging to the group that they form converge to one. But this
group is formed by pure coincidence (i.e. their initial observations y0 happen to be the same).
As a result, �̂� can not be consistent and  ̂� can not be the local maximum with subvector
(�̂�0; �̂�0; �̂�0; �̂�0)0 that is closest to  ̂c. This argument shows that the so-chosen  ̂� must be a
consistent local maximum rather than the inconsistent global maximum.

In the simulation study below, we �rst obtain  ̂c using the MEM algorithm for the condi-
tional likelihood function and construct initial estimates of ' and ! using (3.25) and (3.26).
We then use these estimates as the starting point to implement the MEM algorithm for the full
likelihood function. These steps ensure that the local maximum of the full likelihood function
we obtained is the one that is closest to  ̂c:

It is important to point out that the �rst observations fyi0g are used only to improve the
e¢ ciency of the MLE. The e¢ ciency improvement comes at the cost of additional computing
time. If the time dimension is reasonably large, then e¢ ciency improvement is expected to be
small, in which case the conditional MLE is recommended for practical use.

4.2 Asymptotic Normality

In this subsection, we show that the consistent maximizer is asymptotically normal. Typically,
the asymptotic normality of an ML estimator calls for domination and integrability conditions,
which hold for the panel structure model under Assumption 4.

Before presenting the asymptotic normality result, we introduce some notation. Let

si( ) =
@

@ 
log f(yi; yi0; ) and hi( ) =

@2

@ @ 0
log f(yi; yi0; ): (4.7)

Denote

S( ) =
1

N

NX
i=1

si( ) and H( ) =
1

N

NX
i=1

hi( ): (4.8)

Let 	0 = f : jj �  0jj � �g; where � is chosen to be small so that ! 2 [!min; !max];
�";g 2 [�";min; �";max]; �o;g 2 [�o;min; �o;max]; 0 < !min < !max <1; 0 < �";min < �";max <1,
and 0 < �o;min < �o;max < 1 for g = 1; 2; :::; G for all possible parameter values in 	0: With
the consistency result, it su¢ ces to take 	0 as the parameter space in attempting to establish
the asymptotic normality.

Theorem 7 Let Assumptions 1-5 hold. Then
(a)

R
sup 2	0

��� @
@ r

f(yi; yi0; )
��� d�0d�1d�2 <1; for r = 1; 2; :::;

(b)
R
sup 2	0

��� @2

@ r@ s
f(yi; yi0; )

��� d�0d�1d�2 <1; for r; s = 1; 2; :::;
(c) E sup 2	0

��� @2

@ r@ s
log f(yi; yi0; )

��� <1; for r; s = 1; 2; :::;
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(d)
p
NS( 0)) N(0; I) where I is the Fisher information matrix

I = Esi( 0)s
0
i( 0): (4.9)

(e) If the panel structure model is identi�ed, the solution  ̂ = argmax 2	0
PN

i=1 log f(yi; yi0; )
is asymptotically normally distributed and

p
N( ̂ �  0)) N(0; I�1): (4.10)

The proof of the theorem is given in the appendix.
Part (c) of Theorem 7 ensures that a uniform law of large numbers holds for H( ) =

1=N
PN

i=1 hi( ): Together with the consistency of  ̂; this result implies that �H( ̂) is a
consistent estimate of the information matrix I. However, for panel structure models with
many covariates, the calculation of the Hessian matrix hi( ) is algebraically tedious. Hence
we use the outer product of the score function to approximate the information matrix. From
equation (4.9), the information matrix can be estimated by

1

N

NX
i=1

si( ̂)s
0
i( ̂): (4.11)

This is validated by the uniform convergence of
PN

i=1 si( )s
0
i( )=N and the consistency of  ̂:

The uniform convergence follows easily from Lemma 4 by noting that

E sup
 2K

����@f(yi; yi0; )@ r

@f(yi; yi0; )

@ 0s

1

f2

���� <1; (4.12)

which is implied by Part (c) of Theorem 7.
The consistency and asymptotic normality results are established under the assumption

that the model is correctly speci�ed. The results may be extended to a mis-speci�ed model in
the direction of White (1994), in which case the estimator converges to a value which makes
the model closest to the true model in the sense of the Kullback-Leibler distance.

5 A Homogeneity Test

The previous sections assume that the population is heterogeneous due to the presence of a
group structure. A practical question is: does the group structure really exist or is G really
greater than 1? One way to address this question is to consider testing the null H0 : G = 1
against the alternative H1 : G = G1 for some G1 > 1: It has long been pointed out in the
statistical literature that such a problem is not regular for simple mixture models with constant
mixing probabilities. In this section, we provide a novel way to establish the asymptotic
distribution of the likelihood ratio statistic.

To motivate our method, consider a simple mixture model in which the density of Y
is �f(y; �1) + (1� �) f(y; �2) for �1; �2 2 A � R and � 2 [0; 1]: Our objective is to test
H0 : Y s f(y; �0) for some unknown �0 2 A against H1 : Y s �f(y; �1) + (1� �) f(y; �2)
for some unknown �1 6= �2 and � 6= 0; 1: Given the maintained hypothesis, the null can be
formally described as

H0 : �1 = �2; or � = 0; or � = 1: (5.13)
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With this formulation, we can see that several standard assumptions are violated, leading to
the nonstandard limiting distribution of the likelihood ratio statistic. First, when � = 0 or
1, we have the problem that the true parameter is on the boundary of the parameter space;
see Andrews (2001). In addition, �1 is not identi�ed when � = 0 while �2 is not identi�ed
when � = 1: Second, when �1 = �2; � is not identi�ed. We have the problem that a nuisance
parameter is present only under the alternative; see Davies (1977, 1987). In this case, one
may attempt to use the empirical process approach of Andrews and Ploberger (1994, 1995)
and Hansen (1996) to derive the limiting distribution of the LR statistic. However, when
�1 = �2 = �0; the expected Hessian matrix under the null hypothesis is

�
�

�2 � (1� �)
� (1� �) (1� �)2

�
E

�
@ log f(Y; �)

@�

�2
j�=�0 (5.14)

for any given �; where the expectation is taken under the null that Y s f(y; �0): Obviously, the
expected Hessian matrix is singular, which prevents us from using a quadratic approximation
of the log-likelihood function for a given �: Indeed, Andrews and Ploberger (1994, 1995) and
Hansen (1996) pointed out that their techniques are not directly applicable to simple mixture
models.

These two problems are potentially present for the panel mixture model. However, when
the membership probabilities depend on some covariatesW; the boundary problem disappears
and the expected Hessian matrix is no longer singular. This is an important observation
that enables us to derive the asymptotic theory for the LR test. To illustrate the basic idea,
consider a mixture model in which the density of Y conditional on a covariate W = w is given
by

�(w; �)f(y; �1) + (1� �(w; �)) f(y; �2); (5.15)

where
�(w; �) = exp(w�)=(1 + exp(w�)): (5.16)

This model is di¤erent from the simple mixture model with constant membership probabilities
in the following aspects. First, when the parameter � lies in a compact space, the membership
probabilities are always greater than 0 and less than 1: Because of this, the null hypothesis of
homogeneity holds only under the condition that �1 = �2. Note that the compactness of the
parameter space is a mild condition that is typically assumed in nonlinear models. Second,
the membership probabilities are random variables. The expected Hessian becomes

�

0@ E�(W; �)2
�
@ log f(Y;�0)

@�

�2
E�(W; �) (1� �(W; �))

�
@ log f(Y;�0)

@�

�2
E�(W; �) (1� �(W; �))

�
@ log f(Y;�0)

@�

�2
E (1� �(W; �))2

�
@ log f(Y;�0)

@�

�2
1A ;

(5.17)
which is not singular under certain conditions. For example, when �(W; �) is independent of
@ log f(Y; �0)=@�; the expected Hessian is proportional to�

E�(W; �)2 E [�(W; �) (1� �(W; �))]
E [�(W; �) (1� �(W; �))] E [1� �(W; �)]2

�
; (5.18)

which is in general non-singular because

fE [�(W; �) (1� �(W; �))]g2 < E�(W; �)2E [1� �(W; �)]2 : (5.19)
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Only when � is a constant such that � is proportional to (1� �) ; the expected Hessian matrix
is singular.

We now proceed to examine the LR test for H0 : G = 1 against the alternative H1 : G > 1:
Recall that

f(yi; yi0; ) =
GX
g=1

�ig(�)m(yi; �g; �g; �)m
0(yi0;'g; !g): (5.20)

For notational convenience, let

m(yi; yi0; �g; �) = m(yi; �g; �g; �)m
0(yi0;'g; !g); (5.21)

where �g =
�
�0g; �

0
g; '

0
g; !

0
g

�0
: Then the unrestricted log-likelihood is

Lur(�; #) =
NX
i=1

log
GX
g=1

�ig(�)m(yi; yi0; �g; �); (5.22)

where #0 = (� 01; :::; �
0
G; �

0). Let #̂ur := #̂ur(�) be the unrestricted maximum likelihood esti-
mator for any given � and #00 = (�

0
0; �

0
0; :::; �

0
0; �

0
0) be the true parameter value under the null

hypothesis. In the appendix, we prove the quadratic approximation:

2(Lur(�; #̂ur)� Lur(�; #0))

=

�
1p
N

@Lur(�; #0)

@#

�0
I�1ur (�; #0)

1p
N

@Lur(�; #0)

@#
+ op (1) ; (5.23)

uniformly over � 2 �; where

Iur(�; #) = �E
1

N

@2urL(�; #)

@#@#0
: (5.24)

Here @Lur(�; #0)=@# is understood to be @Lur(�; #)=@# evaluated at # = #0:We use the same
convention hereafter.

The restricted log-likelihood is

Lr(�; #r) =
NX
i=1

logm(yi; yi0; �r; �r) where �r =
�
�01; �

0
1; '

0
1; !

0
1

�0
: (5.25)

and #r = (� 0r; �
0
r; :::; �

0
r; �

0
r)
0: Let #̂r = (�̂ 0r; �̂

0
r; :::; �̂

0
r; �̂

0
r)
0 be the restricted MLE. Following the

same argument, we have the quadratic approximation:

2(Lr(�; #̂r)� Lr(�; #0))

=

�
1p
N

@Lr(�; #0)

@ (� 0r; �
0
r)
0

�0
I�1r (�; �0; �0)

�
1p
N

@Lr(�; #0)

@ (� 0r; �
0
r)
0

�
+ op (1) (5.26)

uniformly over � 2 �; where

Ir(�; �r; �r) = �E
1

N

@2Lr(�; #r)

@ (� 0r; �
0
r)
0 @ (� 0r; �

0
r)
: (5.27)
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In view of Lur(�; #0) = Lr(�; #0); we get

2(Lur(�; #̂ur)� Lr(�; #̂r))

=

�
1p
N

@Lur(�; #0)

@#

�0
I�1ur (�; #0)

1p
N

@Lur(�; #0)

@#

�
�
1p
N

@Lr(�; #0)

@ (� 0r; �
0
r)
0

�0
I�1r (�; �0; �0)

�
1p
N

@Lr(�; #0)

@ (� 0r; �
0
r)
0

�
+ op(1); (5.28)

uniformly over � 2 �: Let

R =

�
10G 
 Ik1+k2+7 0

0 Ik2

�
(5.29)

be a [(k1 + k3 + 7) + k2] by [G(k1 + k3 + 7) + k2] matrix, then it is easy to show that

@Lr(�; #0)

@ (� 0r; �
0
r)
0 = R

@Lur(�; #0)

@#
: (5.30)

Therefore,
�2(Lr(�; #̂r)� Lur(�; #̂ur)) = NS0N (�)Q(�)SN (�) + op(1); (5.31)

uniformly over � 2 �; where

Q(�) = I�1=2ur (�; #0)
h
I � I1=2ur (�; #0)R

0 �RIur(�; #0)R0��1RI1=2ur (�; #0)
i
I�1=2ur (�; #0);

SN (�) =
1

N

@Lur(�; #0)

@#
=
1

N

NX
i=1

si(�; #0); (5.32)

and

si(�; #0) =

�
�i(�)
 @ logm(yi; yi0; �0; �0)=@�

@ logm(yi; yi0; �0; �0)=@�

�
: (5.33)

Let

I =
�
I�� I��
I0�� I��

�
:= E

@ logm(yi; yi0; �; �)

@(� 0; �0)0

�
@ logm(yi; yi0; �; �)

@(� 0; �0)0

�0 ����=�0;�=�0 : (5.34)

Then we have the following theorem.

Theorem 8 Let Assumptions 1-5 hold. De�ne LR(�) := �2
h
Lr(�; #̂r)� Lur(�; #̂ur)

i
: If the

panel structure model is identi�ed and the support of ~�i = (�i;1; :::; �i;G�1)0 spans RG�1; then
under the null hypothesis of homogeneity,

LR(�))W (�)0Q(�)W (�) for � 2 �; (5.35)

where W (�) is a Gaussian process with mean 0 and covariance kernel

C(�1; �2) = cov (W (�1);W (�2)) =

�
E�(�1)�

0(�2)
 I�� E�(�1)
 I��
E�0(�2)
 I0�� I��

�
;

and
sup
�2�

LR(�)) sup
�2�

W (�)0Q(�)W (�): (5.36)
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Theorem 8 gives the limiting distribution of the empirical process LR(�). For each
�; the marginal distribution of the limiting process is a Chi-square distribution. Hence,
W (�)0Q(�)W (�) is called a Chi-square process. In this paper, we use supLR(�); a func-
tional of the LR(�) process as our test statistic. We can also use other functionals of LR(�);
such as an average exponential form of LR(�) (Andrews and Ploberger (1994, 1995)), as the
test statistics. The extension along this line is left for future research.

To investigate the power of the sup-LR test, we consider a sequence of local alternatives
parameterized by

�N = �0; �N = �0; �Ng = �0 +
dgp
N
, g = 1; 2; 3; :::; G (5.37)

for some vectors fdggGg=1. We have the following theorem, which establishes the consistency
of the sup-LR test. The condition that d 2 DA in the theorem is a technical condition that
facilitates the proof.

Theorem 9 Let Assumptions 1-5 hold. If the panel structure model is identi�ed and the
support of ~�i = (�i;1; :::; �i;G�1)0 spans RG�1; then under the local alternatives,

lim
kdk!1;d2DA

lim
N!1

P

(
sup
�2�

LR(�) > CV

)
= 1 (5.38)

for any �nite constant CV where

d = (d01; d
0
2; d

0
3; :::; d

0
G;0

0
k3)

0;

0k3 is the k3 � 1 vector of zeros and

DA = fd : none of the elements of I(�0; #0)d is zerog :

6 Monte Carlo Simulations

In this section, we conduct two sets of Monte Carlo experiments. In the �rst set, we investigate
the �nite sample properties of the ML estimator. In the second set, we investigate the �nite
sample performance of the homogeneity test.

6.1 ML Estimation and Classi�cation

To evaluate the �nite sample properties of the MLE, we consider a simple dynamic panel data
model:

yi0 = '+ ��i + ei

yit = �+ �yi;t�1 + �i + "it; (6.1)

where �i is iid N(0; �2�), "it is iid N(0; �
2
") and ei is iid N(0; �

2
e) and �i; ei and "it are mutually

independent.
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For simplicity, we consider the case of two groups. For the �rst group, the model parameters
are chosen such that fyitg is stationary. More speci�cally, the parameters for the �rst group
satisfy

� =
1

1� � ; �
2
e =

1

1� �2�
2
" and ' =

�

1� � : (6.2)

Given this, the free parameters in the �rst group are �; �; �2�; and �2" : Without the loss
of generality, we normalize �2" to be 1: As a result, we only need to choose �; � and �

2
� to

generate the data for the �rst group. We set � = 0 and consider all possible combinations of
� = 0:25; 0:5 and �2� = 0:5; 1; 1:5: For the second group, all parameters except � are the same
as those in the �rst group. When � = 0:25 for the �rst group, we consider � = 0:5; 0:75 for
the second group. When � = 0:5 for the �rst group, we consider � = 0:75; 1 for the second
group.

We consider the case of two covariates in the logistic regression. We let wi1 = 1 and wi2
be standard normal:We set �1 = (0; 3) and normalize �2 = (0; 0): For the so-chosen �, the two
groups are of the same size on average. We have also considered other values for �1 so that
the two groups are of di¤erent sizes but the qualitative results are similar.

The experiments are carried out for a wide range of (N;T ) combinations. For each (N;T )
combination, there are 12 di¤erent data generating processes. We perform 1000 replications.
A single experiment consists of the following steps:

(a) Let wi1 = 1 and draw wi2 from the standard normal.

(b) Calculate

�ig =
exp (�g1 + wi2�g2)PG
k=1 exp (�k1 + wi2�k2)

; g = 1; 2; (6.3)

and generate a uniformly distributed variable �i 2 [0; 1]: If �i � �i1; assign individual i
to group 1. Otherwise, assign individual i to group 2:

(c) Let individual i be assigned to group g in step (b). Construct fyitg according to

yi0 = 'g + �g�i + �e;gei

yit = �g + �gyi;t�1 + ��;g�i + �";g"it; (6.4)

where (�i; ei; "i1; "i2; :::; "iT ) is iid N(0; IT+2):

(d) Assuming that all model parameters are di¤erent across the two groups, compute the
MLE using the algorithm outlined in Section 3.

(e) Classify cross section units according to (3.3) and compute the percentage of correct
classi�cations.

For each of the regression parameters including �g; �g; 'g and �g; we report the bias and
standard deviation of the MLE. The bias and standard deviation for an estimator, say �̂g; are
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computed as follows:

bias(�̂g) =
1

B

BX
b=1

�
�̂bg � �0g

�
; (6.5)

sd(�̂g) =
1

B

BX
b=1

 
�̂bg �

1

B

BX
b=1

�̂bg

!2
; (6.6)

where �̂bg is the estimate for the b-th replication and �
0
g is the true value. These numbers are

of obvious interest as we want to see whether the MLE is substantially biased and whether
the ML approach provides an estimator with reasonable precision. We also construct a 95%
con�dence interval (CI) based on the asymptotic distribution, and report the true coverage
probability of the CI. For example, the CI for dynamic parameter �1 is�

�̂1 � 1:96ŝ�1 ; �̂1 + 1:96ŝ�1
�
; (6.7)

where �̂1 is the ML estimate and ŝ�1 is its asymptotic standard error. The coverage proba-
bility is the percentage of the number of times that the true value belongs to the CI. If the
asymptotic theory is reasonably reliable, we should �nd the coverage probability to be close
to 95%. Finally, we report the average and the standard deviation of the percentage of correct
classi�cations, in an attempt to see to what extent the model can correctly classify the cross
sectional units.

We focus on the estimation of the �1 and �2: Tables 1 and 2 report the biases and standard
errors of �̂1 and �̂2 and the coverage probabilities of 95% CI�s constructed as above. We report
the cases N = 100; 200 and omit the case N = 400 to save space. The tables show that the
asymptotic results are re�ected in the �nite sample scenarios. For all the cases considered,
the biases of the ML estimates are quite small, and the empirical coverage probabilities are
in general close to 95%, indicating the reliability of the asymptotic approximation. As we
expect, for a given �2�; the absolute bias and standard error decrease as N or T increases.
For a given (N;T ) combination, the absolute bias and standard error tend to decrease as �2�
increases, although this pattern is not very clear. All else being equal, the absolute bias and
standard error become smaller as �2 moves away from �1: This is not surprising, as the larger
the di¤erence between �1 and �2 is, the easier it is to detect the group structure.

Tables 3 and 4 report the percentage of correct classi�cations for all data generating
processes and for di¤erent (N;T ) combinations. For each given values of �2� and (�1; �2);
we �rst use the estimated parameters to calculate the percentage of correct classi�cation and
then use the true parameters to carry out the same calculation. In the table, the former is
denoted as P̂ and the latter is denoted as P �. Since the true parameters are not known in
practice, P � is not feasible in empirical applications and is used here only as a benchmark. As
it is clear from the tables, when (�1; �2) = (0:25; 0:50), (0:50; 0:75) ; the average of P � is around
86%. Therefore, even if the true parameters are known, there is still some uncertainty about
group memberships. Note that the average of P̂ is always lower than that of P �, classi�cation
is thus not a trivial problem for the data generating processes we considered.

We now discuss the results on P̂ : First, for a given N , the average of P̂ increases as T
increases. This is expected, as the longer a time series is, the more membership information
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it reveals. Second, for a given T; the average of P̂ also increases as N increases. The reason
for this is that a larger N leads to more precise estimates and more reliable classi�cation.
However, a larger N also means more individuals to be classi�ed. P̂ is thus expected to
become closer to P � as N goes to in�nity. This observation is corroborated by the results
reported in Tables 3 and 4. Third, P̂ increases as �2� increases. This pattern is consistent
with the modest decrease of both absolute bias and standard error as �2� increases. We may
conclude that the larger the individual e¤ects (compared to the idiosyncratic e¤ects) are, the
easier it is to detect the group memberships. Finally, P̂ increases substantially as �2 moves
away from �1: This is well expected as it is easier to classify the cross sectional units when
their di¤erence is larger.

The main results of the �rst set of Monte Carlo experiments can be summarized as follows.
The ML estimator performs quite well. The asymptotic results are quite reliable, at least for
the (N;T ) combinations considered here. If the data generating process is correctly speci�ed,
the panel structure model provides a reasonably reliable classi�cation.

6.2 Homogeneity Test

In this subsection, we investigate the �nite sample performance of the homogeneity test. The
data generating process is the same as in the previous subsection. For each of �2� = 0:5; 1; 1:5;
we consider the following combinations of �1 and �2 :

�1 0 0 0 0 0 0 0 0 0 0 0

�2 0 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50

For all the combinations, we set �1 = (0; 3) and normalize �2 = (0; 0): When (�1; �2) = (0; 0) ;
the null hypothesis of homogeneity holds, in which case the percentage of rejections gives the
empirical size of the test. For other combinations, the alternative of two groups holds, in
which case, the percentage of rejections gives us the �nite sample power of the test.

To carry out the sup-LR test, we need to maximize the log-likelihood function

L( jy; y0) =
NX
i=1

log
GX
g=1

�ig(�)m(yi; �g; �g; �)m
0(yi0;'g; !g) (6.8)

for each � in the parameter space �. For a given �; the maximum value of L( jy; y0) gives
us Lr(�; #̂r) when G = 1 and gives us Lur(�; #̂ur) when G = 2: By de�nition, LR(�) =

�2
h
Lr(�; #̂r)� Lur(�; #̂ur)

i
: Since � is a continuous parameter space, calculation of LR(�)

is excessively costly. To overcome this problem, we replace � by a discrete approximation
�A := f(�1; �2) j �2 = (0; 0); �1 = (0; �12) for �12 = (0; 0:5; 1; 1:5; ::::; 10)g : The test statistic we
use is then sup�2�A LR(�): The reason for choosing �A is that the probability density function
(pdf) of �i1(�) has a wide range of shapes. It is easy to see that when wi is standard normal,
the pdf of �i1(�) is given by

pdf(x) =
1

x� x2
1p
2��12

exp

 
�
�
log
�
x�1 � 1

��2
2�212

!
: (6.9)
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Figure 1 graphs the pdf for �12 = 0:5; 1:0; :::; 2:5; illustrating the richness of the possible
distributions when � 2 �A: It should be pointed out that replacing � by �A has implications
on the power of the test; see Hansen (1996) for a detailed discussion.
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Figure 1: Probability Density of �i1 (�) for Di¤erent Values of �

Theorem 8 establishes the asymptotic distribution of the sup-LR statistic. However, the
limiting distribution is nonstandard and nonpivotal. To obtain the critical values for the sup-
LR test, we use the resampling technique proposed by Hansen (1996). Although a bootstrap-
ping method is also an option, it requires repeated maximizations of the likelihood function.
Following Hansen (1996), we outline the main steps in generating the statistic that has the
same asymptotic distribution as the sup-LR statistic:

(i) Generate fei;j ; i = 1; 2; :::; N; j = 1; 2; :::; Jg iid N(0; 1) random variables.

(ii) Compute

Q̂N (�) := I�1=2ur (�; #̂r)

�
I � Î1=2ur (�; #̂r)R

0
�
RÎur(�; #̂r)R0

��1
RÎ1=2ur (�; #̂r)

�
Î�1=2ur (�; #̂r);

(6.10)

where #̂r =
�
�̂ 0r; �̂

0
r; �̂

0
r

�0
is the ML estimate of # under the null hypothesis and

Îur(�; #̂r) = �
1

N

@2Lur(�; #)

@#@#0
j#=#̂r : (6.11)
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To reduce the computational cost, we estimate Iur(�; #0) using the outer-product form:

Îur(�; #̂r) =
1

N

NX
i=1

si(�; #̂r)s
0
i(�; #̂r): (6.12)

(iii) For each j = 1; 2; :::; J; compute

W j
N (�) :=

1p
N

NX
i=1

si(�; #̂r)ei;j ; (6.13)

where si(�; #) is the individual score function de�ned in (5.33). It is important to note
that W j

N (�) converges weakly to W (�) as N ! 1: This result can be proved using the
conditional central limit theorem; see Pollard (1990, Theorem 10.2) and Hansen (1996,
Theorem 2).

(iv) For each j = 1; 2; :::; J; compute

dLRj(�) :=W j
N (�)

0Q̂N (�)W
j
N (�) (6.14)

and �nd the maximum value ofdLRj(�) : \supLRj := max�2�AdLRj(�):
It can be shown that the empirical distribution of f \supLR

j
gJj=1 converges to the asymp-

totic distribution of sup�2�A LR(�); as J !1: In this simulation study, we set J = 1000: The
95% empirical quantile of f \supLR

j
gJj=1 is used as the critical value for the sup-LR test with

nominal size 5%.
Figure 2 reports the percentage of rejections against the di¤erence �2 � �1 when �2� = 1:

The �gures for other values of �2� are similar. When �2 � �1 = 0; �gure 2 presents the
empirical size of the test. We �nd that for all the cases considered, the empirical size is
smaller than the normal size. However, the di¤erence between the empirical size and nominal
size is smaller than 2% in the worst scenario. The size distortion becomes smaller as either N
or T increases. When N = 200; T = 10; there is virtually no size distortion. Given that the
standard deviation of the empirical size is 0:7% (

p
0:05� 0:95=1000); we can conclude that

the asymptotic distribution in Theorem 8 provides an excellent approximation to the �nite
sample distribution. When �2 � �1 6= 0; �gure 2 presents the power of the test. As expected,
power is increasing in �2��1; N and T:When the di¤erence between �2 and �1 is larger than
0.2, N is larger than 200 (400) and T is larger than 10 (5), the power of the test is larger than
80%. The simulated power curve corroborates the asymptotic result given in Theorem 9. We
can conclude that the homogeneity test has good size and power properties in �nite samples.

7 Conclusion and Discussion

This paper has developed a framework for detecting group structure in panel data. The
mechanism is via a panel structure model, which assumes that individuals form a number of
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Figure 2: Size and Power of the Homogeneity Test

homogeneous groups in a heterogeneous population. Within each group, individuals follow the
same behavioral equations while these equations may be di¤erent across di¤erent groups. The
econometrician is not presumed to know the group structure. Instead, some covariates are used
in a multinomial logistic regression to infer which individuals belong to which groups. Simu-
lation experiments show that the asymptotic results are re�ected in �nite sample performance
and that the proposed classi�cation methodology is quite reliable.

The present study can be extended in several ways, and we brie�y discuss some possibilities
as follows:

First, we may relax the assumption that covariates in the logistic regression are time
invariant. With this relaxation, individuals may switch memberships over time. A Markov
Chain may be constructed to describe the membership dynamics. Knowledge of membership
dynamics may deepen our understanding of the relationship between the dependent variable
and the explanatory variables and may be useful in prediction.

Second, the model can be extended to incorporate nonstationary processes with consequent
e¤ects on the asymptotic theory and model interpretation. In panel cointegration modeling,
for instance, cointegrating vectors are often assumed to be the same across all individuals.
This may be restrictive. It may well be the case that the cointegrating vectors are the same
only within groups of individuals. For example, in testing the PPP hypothesis, countries with
large mutual trade �ows are logically connected and we may expect those countries to form a
natural group and share the same cointegrating vector. The PPP hypothesis may then hold
within such country groupings but not for countries across groups.
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Finally, the paper considers testing the null of one group against the alternative of mul-
tiple groups. The idea of using covariate variation in the logistic regression to facilitate the
development of asymptotic theory can be extended to test G groups against G+ 1 groups for
any G � 1: If no covariate is available in the logistic regression in empirical applications, we
can arti�cially introduce one, but the resulting test may not be the most powerful one. In this
case, we may use a locally conic parameterization of the panel structure model and employ
the approach of Dacunha-Castelle and Gassiat (1999) to derive the asymptotic distribution of
the sup-LR statistic.

32



Table 1: Bias and Standard Error of the Maximum Likelihood Estimators �̂1 and �̂2
and Coverage Probability of 95% Con�dence Interval for N = 100

�1 �2 �1 �2 �1 �2 �1 �2
True Value 0:25 0:50 0:25 0:75 0:50 0:75 0:50 1:00

T = 5
�2� = 0:5

Bias �0:07 �0:03 �0:01 �0:04 �0:06 �0:03 �0:00 �0:00
Standard Error 0:15 0:14 0:11 0:16 0:15 0:13 0:11 0:09
Coverage 0:93 0:93 0:94 0:90 0:94 0:96 0:97 0:98

�2� = 1:0

Bias �0:04 0:01 0:00 �0:00 �0:03 �0:00 0:00 �0:00
Standard Error 0:15 0:13 0:12 0:13 0:14 0:12 0:12 0:07
Coverage 0:95 0:97 0:94 0:96 0:96 0:97 0:97 0:97

�2� = 1:5

Bias �0:03 0:02 0:00 0:00 �0:02 0:01 0:01 0:00
Standard Error 0:14 0:14 0:12 0:11 0:14 0:11 0:12 0:05
Coverage 0:94 0:97 0:95 0:97 0:96 0:98 0:97 0:97

T = 10
�2� = 0:5

Bias �0:01 0:01 �0:00 0:00 �0:01 0:00 �0:00 0:00
Standard Error 0:10 0:09 0:07 0:06 0:08 0:07 0:06 0:02
Coverage 0:90 0:93 0:94 0:98 0:91 0:96 0:97 0:98

�2� = 1:0

Bias �0:01 0:01 �0:00 0:00 �0:01 0:00 �0:00 0:00
Standard Error 0:09 0:08 0:07 0:05 0:08 0:06 0:06 0:02
Coverage 0:91 0:92 0:94 0:98 0:92 0:97 0:96 0:98

�2� = 1:5

Bias �0:01 0:01 �0:00 0:00 �0:01 0:00 �0:00 0:00
Standard Error 0:09 0:08 0:06 0:04 0:08 0:05 0:06 0:01
Coverage 0:91 0:93 0:94 0:98 0:93 0:97 0:96 0:98
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Table 2: Bias and Standard Error of the Maximum Likelihood Estimators �̂1 and �̂2
and Coverage Probability of 95% Con�dence Interval for N = 200

�1 �2 �1 �2 �1 �2 �1 �2
True Value 0:25 0:50 0:25 0:75 0:50 0:75 0:50 1:00

T = 5
�2� = 0:5

Bias �0:02 0:02 �0:00 0:01 �0:01 0:01 0:00 0:00
Standard Error 0:10 0:11 0:08 0:10 0:10 0:11 0:09 0:05
Coverage 0:94 0:96 0:95 0:95 0:96 0:96 0:97 0:96

�2� = 1:0

Bias �0:01 0:02 �0:00 0:01 �0:00 0:01 0:00 0:00
Standard Error 0:10 0:12 0:08 0:08 0:10 0:09 0:09 0:03
Coverage 0:94 0:96 0:96 0:96 0:95 0:96 0:97 0:96

�2� = 1:5

Bias �0:01 0:02 �0:00 0:00 0:00 0:01 0:00 0:00
Standard Error 0:09 0:11 0:08 0:06 0:09 0:08 0:09 0:03
Coverage 0:94 0:96 0:95 0:96 0:95 0:96 0:97 0:96

T = 10
�2� = 0:5

Bias �0:00 0:01 0:00 �0:00 0:00 0:00 0:00 �0:00
Standard Error 0:06 0:06 0:04 0:04 0:05 0:05 0:04 0:02
Coverage 0:91 0:91 0:95 0:97 0:93 0:96 0:96 0:97

�2� = 1:0

Bias �0:00 0:00 0:00 �0:00 0:00 �0:00 0:00 �0:00
Standard Error 0:06 0:08 0:04 0:04 0:05 0:06 0:04 0:01
Coverage 0:91 0:92 0:96 0:96 0:94 0:96 0:97 0:97

�2� = 1:5

Bias �0:00 0:00 0:00 �0:00 0:00 �0:00 0:00 �0:00
Standard Error 0:06 0:05 0:04 0:03 0:05 0:04 0:04 0:01
Coverage 0:91 0:92 0:96 0:96 0:94 0:96 0:97 0:96
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Table 3: Average and Standard Deviation of
the Percentage of Correct Classi�cations for N = 100

(�1; �2) (0:25; 0:50) (0:25; 0:75) (0:50; 0:75) (0:50; 1:00)

P � P̂ P � P̂ P � P̂ P � P̂

T = 5
�2� = 0:5 Mean 84:89 64:06 88:06 83:30 85:64 68:04 90:17 88:08

S.D. 3:55 16:72 3:21 8:07 3:48 19:54 2:89 5:17
�2� = 1:0 Mean 85:15 65:52 88:74 85:09 86:25 72:21 91:40 89:83

S.D. 3:52 17:12 3:14 6:71 3:42 18:79 2:78 5:15
�2� = 1:5 Mean 85:33 66:33 89:28 86:37 86:82 74:76 92:29 91:16

S.D. 3:48 17:63 3:08 5:63 3:37 18:74 2:58 4:05

T = 10
�2� = 0:5 Mean 85:87 74:13 90:89 89:33 87:08 79:93 93:67 92:92

S.D. 3:38 12:58 2:91 3:73 3:26 10:19 2:43 2:57
�2� = 1:0 Mean 86:14 74:99 91:48 90:14 87:83 82:56 94:74 94:09

S.D. 3:37 12:76 2:84 3:44 3:23 8:49 2:26 2:43
�2� = 1:5 Mean 86:41 76:33 91:98 90:75 88:41 84:33 95:38 94:89

S.D. 3:34 12:00 2:76 3:51 3:16 7:32 2:09 2:24

Table 4: Average and Standard Deviation
of the Percentage of Correct Classi�cations for N = 200

(�1; �2) (0:25; 0:50) (0:25; 0:75) (0:50; 0:75) (0:50; 1:00)

P � P̂ P � P̂ P � P̂ P � P̂

T = 5
�2� = 0:5 Mean 84:91 72:96 88:06 86:44 85:77 77:31 90:35 89:59

S.D. 2:52 13:86 2:22 3:23 2:44 15:25 2:11 2:34
�2� = 1:0 Mean 85:11 74:29 88:76 87:41 86:41 80:15 91:58 91:07

S.D. 2:50 13:90 2:17 2:91 2:41 13:78 2:00 2:51
�2� = 1:5 Mean 85:35 75:44 89:36 88:25 86:97 82:25 92:44 92:06

S.D. 2:50 14:00 2:17 2:71 2:38 12:16 1:90 2:00

T = 10
�2� = 0:5 Mean 85:81 80:11 90:78 89:98 86:94 84:20 93:61 93:23

S.D. 2:42 7:75 2:01 2:27 2:30 4:32 1:78 1:84
�2� = 1:0 Mean 86:07 81:15 91:37 90:70 87:68 85:61 94:66 94:35

S.D. 2:37 7:06 1:94 2:17 2:23 3:64 1:65 1:68
�2� = 1:5 Mean 86:29 81:88 91:86 91:32 88:28 86:59 95:30 95:05

S.D. 2:34 6:83 1:88 2:07 2:18 3:51 1:54 1:57

Note: P̂ indicates the classi�cation based on the estimated parameters while P � indicates
the classi�cation based on the true parameters
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8 Appendix

A.1 Proof of Lemma 1

Since V (�(1)g ) = V (�
(2)
g ) if and only if (V (�(1)g ))1=2 = (V (�

(2)
g ))1=2:We �rst calculate (V (�g))1=2:

Note that �g = �2";g (IT � JT =T )+�2o;gJT =T , JT =T and (IT � JT =T ) are idempotent symmet-
ric matrices, we have

�1=2g = �";g (IT � JT =T ) + �o;gJT =T = �";gIT + (�o;g � �";g) JT =T: (A.1)

It follows that (V (�g))
1=2 = M(�g) [�";gIT + (�o;g � �";g) JT =T ] : Some elementary manipula-

tions show that the equality (V (�(1)g ))1=2 = (V (�
(2)
g ))1=2 implies that

�(1)g = �(2)g ; �(1)";g = �(2)";g ; and �
(1)
o;g = �(2)o;g : (A.2)

In view of equation (A.2) and the assumption A(�(1)g ; �(1)) = A(�
(2)
g ; �(2)) with probability one,

we have

M(�(1)g )x(1)g �M(�(2)g )x(2)g +M(�(1)g )z�(1) �M(�(2)g )z�(2)

+M(�(1)g )1T�
(1)
g y0 �M(�(2)g )1T�

(2)
g y0 (A.3)

=M(�(2)g )��(2)g �M(�(1)g )��(1)g +M(�(2)g )1T�
(2)
g �M(�(1)g )1T�

(1)
g ;

with probability one. But (A.2) implies M(�(1)g ) = M(�
(2)
g ): Note that M(�(1)g ) and M(�(2)g )

are invertible, we can write (A.3) as

x
�
(1)g � (2)g

�
+ z

�
�(1) � �(2)

�
+ 1T

�
�(1)g � �(2)g

�
y0

= �
�
�(2)g � �(1)g

�
+ 1T

�
�(2)g � �(1)g

�
: (A.4)

In particular,

x0�t0

�
(1)g � (2)g

�
+ z0�t0

�
�(1) � �(2)

�
+
�
�(1)g � �(2)g

�
y0

= �t0

�
�(2)g � �(1)g

�
+
�
�(2)g � �(1)g

�
: (A.5)

But (A.5) holds with probability one only if

(1)g = (2)g , �(1) = �(2) and �(1)g = �(2)g (A.6)

by conditions (i) and (ii). Combining (A.4) and (A.6) yields

�
�
�(2)g � �(1)g

�
+ 1T

�
�(2)g � �(1)g

�
= 0: (A.7)

Since the matrix (�; 1T ) has full column rank by condition (iii), (A.7) implies

�(1)g = �(2)g and �(1)g = �(2)g : (A.8)

The lemma is thus proved. �
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A.2 Proof of Theorem 2

If f(y; y0; (1)) = f(y; y0; 
(2)) for almost all (y0; y00; (v

0; w0))0; then

GX
g=1

�g(�
(1))m(y; �(1)g ; �(1)g ; �(1))m0(y0;'

(1)
g ; !(1)g ))

=
GX
g=1

�g(�
(2))m(y; �(2)g ; �(2)g ; �(2))m0(y0;'

(2)
g ; !(2)g )) (A.9)

for almost all (y0; y00; (v
0; w0))0: The equation can be put in the form

G�X
g=1

K(��g ; '�g; !�g)m(y; ��g ; ��g ; ��) = 0; (A.10)

where G � G� � 2G;
�
��0g ; �

�0
g ; �

�0�0 ; g = 1; 2; : : : ; G� are mutually distinct vectors from the

collection of 2G vectors f(�(1)0g ; �
(1)0
g ; �(1)0)0; (�

(2)0
g ; �

(2)0
g ; �(2)0)0gGg=1: The function K(��g ; '�g; !�g)

is obtained from taking the di¤erence of the coe¢ cients of m(y; ��g ; �
�
g ; �

�) on the two sides of

(A.9). ThereforeK(��g ; '�g; !�g) has the form �g(�
(1))m0(y0;'

(1)
g ; !

(1)
g ))��g(�(2))m0(y0;'

(2)
g ; !

(2)
g ))

if m(y; ��g ; �
�
g ; �

�) appears on both sides of (A.9), or has the form ��g(�)m0(yi0;'g; !g)) for

(�; 'g; !g) = (�(1); '
(1)
g ; !

(1)
g ) or (�(2); '(2)g ; !

(2)
g ) if m(y; ��g ; �

�
g ; �

�) appears only on one side of
(A.9). Since f(��0g ; ��0g ; ��0)0gG

�
g=1 are mutually distinct, it follows from Lemma 1 that there

exists a set Y 2 F1 with �1(Y) > 0 such that the vectors
�
A(��g ; �

�)0; [V ec(V (��g))]
0�G�
g=1

are
mutually distinct for all y 2 Y. In view of the identi�cation of �nite normal mixtures, we
deduce that fm(y; ��g ; ��g ; ��)gG

�
g=1 are linearly independent functions of y on Y � 
1 (see Te-

icher (1963), Yakowitz and Spargins (1967)). That is to say, if
PG�

g=1 agm(y; �
�
g ; �

�
g ; �

�) = 0
with positive probability, then ag = 0; for 1 � g � G�: As a consequence, K(��g ; '�g; !�g) = 0;
g = 1; 2; :::; G� for all (y0; y00; w

0) such that y 2 Y. Therefore, when y 2 Y, each distinct factor
m(y; ��g ; �

�
g ; �

�) must appear on both sides of (A.9). Hence

�(1)g = �(2)g ; �(1)g = �(2)g for all g; �(1) = �(2), G� = G: (A.11)

Next, since K(��g ; '�g; !�g) = 0; g = 1; 2; :::; G� for (y0; y00; w0) such that y 2 Y; we have

�g(�
(1))m0(y0;'

(1)
g ; !(1)g ))� �g(�(2))m0(y0;'

(2)
g ; !(2)g )) = 0 (A.12)

for (y0; y00; w
0) such that y 2 Y: Note that the condition y 2 Y does not restrict the support of

(y00; w
0); equation (A.12) thus holds for almost all y0 and w:

We now consider two cases. First, if ('(1)g ; !
(1)
g ) = ('

(2)
g ; !

(2)
g ); then

exp(w0�
(1)
g )PG

g=1 exp(w
0�
(1)
g )

=
exp(w0�

(2)
g )PG

g=1 exp(w
0�
(2)
g )

; g = 1; 2; :::; G (A.13)
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for almost all w: In particular, when g = G; (A.13) becomes

GX
g=1

exp(w0�(1)g ) =
GX
g=1

exp(w0�(2)g ) (A.14)

for almost all w: This is because �(1)G and �(2)G are initialized parameters so that �(1)G = �
(2)
G = 0:

Combining (A.13) and (A.14) leads to w0�(1)g = w0�
(2)
g for almost all w: In view of condition

(iv), this implies �(1)g = �
(2)
g :

Second, if ('(1)g ; !
(1)
g ) 6= ('

(2)
g ; !

(2)
g ); then conditional on w; m0(y0;'

(1)
g ; !

(1)
g )) and

m0(y0;'
(2)
g ; !

(2)
g )) are linearly independent. As a result, we must have �g(�(1)) = �g(�

(2));

which implies �(1)g = �
(2)
g :Given that �(1)g = �

(2)
g ; we havem0(y0;'

(1)
g ; !

(1)
g )) =m0(y0;'

(2)
g ; !

(2)
g ))

for almost all y0: This contradicts with the assumption that ('
(1)
g ; !

(1)
g ) 6= ('(2)g ; !

(2)
g ): There-

fore we can only have ('(1)g ; !
(1)
g ) = ('

(2)
g ; !

(2)
g ): This completes the proof of the theorem.

�

A.3 Proof of Theorem 3

Let L � L( jy; y0): We will prove that

~�(k+1) � ~�(k) = � ~H�1
�

�
 (k)

� @L
@ ~�
j = (k) (A.15)

�
�(k+1) � �(k))
�(k+1) � �(k))

�
= �H�1

�� ( 
(k))

� @L
@�
@L
@�

�
 = (k)

(A.16)

 �
�2";g

�(k+1) � ��2";g�(k)�
�2o;g

�(k+1) � ��2o;g�(k)
!
= �H�1

� ( (k))

 
@L
@�2";g
@L
@�2o;g

!
 = (k)

(A.17)

 
'
(k+1)
g � '(k)g�

!2g
�(k+1) � �!2g�(k)

!
= �H�1

'! ( 
(k))

 
@L
@'g
@L
@!2g

!
 = (k)

(A.18)

where ~H�( 
(k)) is de�ned in (3.13),

H��( 
(k)) = �

0BBBB@
a1( 

(k)) 0 ::: 0 b1( 
(k))

0 a2( 
(k)) ::: 0 b2( 

(k))
::: ::: ::: ::: :::

0 0 ::: aG( 
(k)) bG( 

(k))

b01( 
(k)) b02( 

(k)) ::: b0G( 
(k)) c( (k))

1CCCCA (A.19)

H�( 
(k)) = �

0B@
(T�1)

PN
i=1 pig( 

(k))

2(�4";g)
(k) 0

0
PN
i=1 pig( 

(k))

2(�4og)
(k)

1CA (A.20)
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H'!( 
(k)) = �

0B@
PN
i=1 pig( 

(k))

(!(k))
2 0

0
PN
i=1 pig( 

(k))

2(!4g)
(k)

1CA (A.21)

and

ag( 
(k)) =

NX
i=1

pig( 
(k))�0i

�
�(k)g

��1
�i (A.22)

bg( 
(k)) =

NX
i=1

pig( 
(k))�0i

�
�(k)g

��1
zi (A.23)

c( (k)) =

NX
i=1

GX
g=1

pig( 
(k))z0i

�
�(k)g

��1
zi: (A.24)

First, we calculate the gradient of the log-likelihood function. Some simple algebraic manip-
ulations show that

@L

@�g
=

NX
i=1

(pig( )� �ig(�))wi; (A.25)

@L

@�g
=

NX
i=1

pig( )�
0
i�
�1
g ui;g; (A.26)

@L

@�
=

NX
i=1

GX
g=1

pig( )z
0
i�
�1
g ui;g; (A.27)

@L

@�2";g
= �1

2

NX
i=1

pig( )

(
T � 1
�2";g

� 1�
�2";g

�2 (ui;g)0 (IT � JT =T )ui;g
)
; (A.28)

@L

@�2o;g
= �1

2

NX
i=1

pig( )

(
1

�2o;g
� 1�

�2o;g
�2 (ui;g)0�JTT

�
ui;g

)
; (A.29)

@L

@'g
=

NX
i=1

pig( )

�
yi0 � 'g
!2g

�
; (A.30)

and
@L

@!2g
= �1

2

NX
i=1

pig( )

�
1

!2g
� (yi0 � 'g)

2

!4g

�
: (A.31)

Second, we prove each of the relationships in (A.15)�(A.18). (A.15) follows immediately from
(3.13) and (A.25). To prove (A.16), we note that �(k+1)g and �(k+1) satisfy

0 =

NX
i=1

pig( 
(k))�0i

�
�(k)g

��1
(yi � �0i�(k+1)g � z0i�(k+1)): (A.32)
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In view of (A.26), we have

@L

@�g
j = (k) =

NX
i=1

pig( 
(k))�0i

�
�(k)g

��1
(yi � �0i�(k)g � z0i�(k)): (A.33)

It follows from (A.32) and (A.33) that

@L

@�g
j = (k) =

NX
i=1

pig( 
(k))�0i

�
�(k)g

��1 �
�i(�

(k+1)
g � �(k)g ) + zi(�

(k+1) � �(k))
�
: (A.34)

Similarly, we can show that

@L

@�
j = (k) =

NX
i=1

GX
g=1

pig( 
(k))z0i

�
�(k)g

��1 �
�i(�

(k+1)
g � �(k)g ) + zi(�

(k+1) � �(k))
�
: (A.35)

Combining the above two equations yields (A.16).

To prove (A.17), we note that
�
�2";g

�(k+1) satis�es
0 = �1

2

NX
i=1

pig( 
(k))

�
(T � 1)

�
�2";g

�(k+1) � �u(k)i;g �0 (IT � JT =T )u(k)i;g� : (A.36)

But�
�4";g

�(k) @L

@�2";g
j = (k) = �

1

2

NX
i=1

pig( 
(k))

�
(T � 1)

�
�2";g

�(k) � �u(k)i;g �0 (IT � JT =T )u(k)i;g� :
(A.37)

So �
�4";g

�(k) @L

@�2";g
j = (k) =

1

2

NX
i=1

pig( 
(k))(T � 1)

n�
�2";g

�(k+1) � ��2";g�(k)o ; (A.38)

which implies that

�
�2";g

�(k+1) � ��2";g�(k) = 2
�
�4";g

�(k)
(T � 1)

PN
i=1 pig( 

(k))

@L

@�2";g
j = (k) : (A.39)

Similarly, we can show that

�
�2o;g

�(k+1) � ��2o;g�(k) = 2
�
�4o;g

�(k)PN
i=1 pig( 

(k))

@L

@�2o;g
j = (k) : (A.40)

Combining (A.39) and (A.40) leads to the stated result.
To prove the �rst relationship in (A.18), we note that

@L

@'g
j = (k) =

NX
i=1

pig( 
(k))

 
yi0 � '(k)g�
!(k)

�2
!
; (A.41)

0 =

NX
i=1

pig( 
(k))

 
yi0 � '(k+1)g�

!(k)
�2

!
: (A.42)
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We deduce immediately from the above two equations that

'(k+1)g � '(k)g =

 PN
i=1 pig( 

(k))�
!(k)

�2
!�1

@L

@'g
j = (k) ; (A.43)

as desired. Following the same step as the proof of (A.39), we can prove the second relationship
in (A.18). Details are omitted.

Finally, we prove H�( 
(k));H��( 

(k));H�( 
(k)) and H'!( 

(k)) are negative de�nite with
probability one for largeN . By inspection, it su¢ ces to show thatH��( 

(k)) is negative de�nite
with probability one for large N: This is true because for any vector (�0; �0)0 = (�01; :::�

0
G; �

0)0

we have

(�0; �0)H��( 
(k))(�0; �0)0 = �

GX
g=1

�0gag( 
(k))�g � �0c� �

GX
g=1

2�0gbg( 
(k))� � 0: (A.44)

The inequality holds because
PG

g=1 �
0
gag( 

(k))�g � 0; �0c� � 0 and������
GX
g=1

2�0gbg( 
(k))�

������ �
GX
g=1

NX
i=1

pig( 
(k))2

�����0g�0i ��(k)g ��1 zi�����
�

GX
g=1

NX
i=1

pig( 
(k))�0g�

0
i

�
�(k)g

��1
�i�g +

GX
g=1

NX
i=1

pig( 
(k))�0z0i

�
�(k)g

��1
zi�

=

GX
g=1

�0gag( 
(k))�g + �

0c�: (A.45)

The above inequality also implies that (�0; �0)H��( 
(k))(�0; �0)0 = 0 if and only if �i�g = zi�

for all i = 1; :::; N: The latter holds with probability zero when the model is identi�ed and N
is large enough. Therefore, H��( 

(k)) is negative de�nite with probability one for large N:
This completes the proof of the theorem. �

A.4 Proof of Lemma 4

Part (a) of the Lemma is the same as Lemma 2.4 of Newey and McFadden (1994). Part (b)
follows from standard textbook arguments. Details are omitted. �

A.5 Proof of Lemma 5

Proof of Part (a)
Since for all parameter values in K; �2o;g � �2o;min > 0; �2";g � �2";min > 0; !2g � !2min > 0 for
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g = 1; :::; G, we have

log

0@ GX
g=1

�ig(�)m(yi; �g; �g; �)m
0(yi0;'g; !g)

1A
� log

0@ GX
g=1

�
2��2(T�1)";g �2o;g

��1=2 �
2�!2g

��1=21A �M; (A.46)

for some constant M > 0: On the other hand,

log

0@ GX
g=1

�ig(�)m(yi; �g; �g; �)m
0(yi0;'g; !g)

1A
� log

�
�ig�(�)m(yi; �g� ; �g� ; �)m

0(yi0;'g� ; !g�)
�

(A.47)

for any 1 � g� � G: Using (A.46) and (A.47), we have������log
0@ GX
g=1

�ig(�)m(yi; �g; �g; �)m
0(yi0;'g; !g)

1A������
�M + jlog (�ig�(�))j+ jlogm(yi; �g� ; �g� ; �)j+

��logm0(yi0;'g� ; !g�)
�� . (A.48)

Let jAj signify the matrix consisting of the absolute values of the elements of A: Let B be
a positive scalar such that j�gj � B; j�gj � B; jgj � B1k1 ; j�j � B1k2 , j�gj � B1k3 and
j�gj � B1k4 for all 1 � g � G; where the inequalities hold element by element. We now bound
each term in (A.48). Firstly,

jlog (�ig�(�))j =

������log �exp(w0i�g�)�� log
0@ GX
g=1

exp(w0i�g)

1A������
= log

0@ GX
g=1

exp(w0i�g)

1A� w0i�g� � log
0@ GX
g=1

exp
�
w0i�g

�1A+ ��w0i�g���
� log

0@ GX
g=1

exp

0@ k4X
j=1

jwij jB

1A1A+ k4X
j=1

jwij jB

�

0@2B k4X
j=1

jwij j

1A+ logG: (A.49)

Secondly, since ��1g is positive de�nite and j�gj�1 = �
�2(T�1)
";g ��2o;g � �

�2(T�1)
";min ��2o;min; the largest

eigenvalue of ��1g is less than
�
�
�2(T�1)=T
";min �

�2=T
o;min

�
: Therefore
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jlogm(yi; �g� ; �g� ; �)j
� C + C(y�i � ��i �g� � zi�)0��1g (y�i � ��i �g� � zi�)
� C + C(y�i � ��i �g� � zi�)0(y�i � ��i �g� � zi�)0 (A.50)

� C + C(y�0i y
�
i + �

0
g��

�0
i �

�
i �g + �

0ziz
0
i�)

� C + C(y�0i y
�
i + 1

0
k1+k3+1 j�

�
i j
0 j��i j 1k1+k3+1 + 10k2 jzij jzij

0 1k2);

where C is a generic constant. Similarly,
��logm0(yi0;'g� ; !g�)

�� � C + Cy2i0: So

sup
 2K

������log
0@ GX
g=1

�ig(�)m(yi; �g; �g; �)m
0(yi0;'g; !g)

1A������ (A.51)

� C

k4X
j=1

jwij j+ C(y�0i y�i + 10k1+k3+1 j�
�
i j
0 j��i j 1k1+k3+1 + 10k2 jzij jzij 1k2)1k2 + Cy

2
i0 + C:

Under Assumption 4, the above upper bound has a �nite expectation. We have thus proved
E sup 2K jlog f(yi; yi0; )j <1 as desired.

Proof of Part (b)
Note that

PG
g=1 �ig(�)m(yi; �g; �g; �)m

0(yi0;'g; !g) is the density of (yi; yi0) conditioning on
(vi; wi): By the Kullback-Leibler information inequality, we have

E (log f(yi; yi0; ) j(vi; wi)) < E (log f(yi; yi0; 0) j(vi; wi)) (A.52)

for all  6=  0;  2 K: The inequality is strict because the model is identi�ed on K: Taking
expectations with respect to vi and wi on both sides of (A.52) yields

E (log f(yi; yi0; )) < E (log f(yi; yi0; 0))

for all  6=  0;  2 K:

Proof of Part (c)

Part (c) holds because all the conditions in Lemma 4 are satis�ed. �

A.6 Proof of Theorem 6

Let f c;`g 2 	c be a sequence of estimates satisfying lim`!1 �";g0;` = 0 or 1 for some
g0: Let f 0c;`g 2 	c be another sequence of estimates, which is obtained by changing the
variance parameter �";g0;` of  c;` into c0; for some small positive constant c0. Since T >
k1+k2+k3+3; u

0
i;g(IT�JT =T )ui;g > 0 with probability one for all i and g: Therefore, with prob-

ability one, lim`!1m(yi; �g0;`; �o;g0;`; �";g0;`; �`) = 0 and lim`!1m(yi; �g0;`; �o;g0;`; c0; �`) >

0; which implies lim`!1
PN

i=1 log fc(yi; c;`) < lim`!1
PN

i=1 log fc(yi; 
0
c;`). It follows that
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PN
i=1 log fc(yi; c); as a function of �

2
";g0;`

; achieves its maximum value at some interior point
of the interval (0;1): Invoking the �rst order condition, we can show that the maximizer ofPN

i=1 log fc(yi; ; c); as a function of �
2
";g0 ; is given by

�2";g0 =

PN
i=1 pig0u

0
i;g0
(IT � JT =T )ui;g0

(T � 1)
PN

i=1 pig0
; (A.53)

where ui;g0 = yi � �i�g0 � zi� and

pig0 =
�ig0(�)m(yi; �g0 ; �g0 ; �)PG
j=1 �ij(�)m(yi; �j ; �j ; �)

: (A.54)

Let �
�i"
�2
= min

�;�
(yi � �i� � zi�)0 (IT � JT =T ) (yi � �i� � zi�) ; (A.55)

which is independent of any parameter. Then

�2";g0 =

PN
i=1 pig0u

0
i;g0
(IT � JT =T )ui;g0

(T � 1)
PN

i=1 pig0
�

PN
i=1 pig0

�
�i"
�2

(T � 1)
PN

i=1 pig0
: (A.56)

Similarly, we can show that

�2o;g0 =

PN
i=1 pig0u

0
i;g0
(JT =T )ui;g0PN

i=1 pig0
�
PN

i=1 pig0
�
��i"
�2PN

i=1 pig0
; (A.57)

where �
��i"
�2
= min

�;�
(yi � �i� � zi�)0 (JT =T ) (yi � �i� � zi�) : (A.58)

Therefore

j�";g0�o;g0 j �
 PN

i=1 pig0
�
�i"
�2

(T � 1)
PN

i=1 pig0

!1=2 PN
i=1 pig0

�
��i"
�2PN

i=1 pig0

!1=2

� 1p
T � 1

PN
i=1 pig0�

i
"��
i
"PN

i=1 pig0
�
PN

i=1 pig0
���i"��i"��p

T � 1N
; (A.59)

which implies that
GX

g0=1

j�";g0�o;g0 j �
PN

i=1

���i"��i"��p
T � 1N

: (A.60)

Since f(T � 1)�1
���i"��i"��gNi=1 are iid, and E

���i"��i"�� < 1; we have, by a strong law of large
numbers,

lim
N!1

PN
i=1 pig0

���i"��i"��p
T � 1N

= 2r; (A.61)
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with probability one for some positive constant r: This is because when T > k1 + k2 +
k3 + 3;

���i"��i"�� > 0 with probability one for all i. Therefore, with probability one, we havePG
g0=1

j�";g0�o;g0 j � r when N is large enough. As a consequence,

 ̂c = arg max
 c2	c

NX
i=1

log fc(yi; c) = arg max
 c2	0c

NX
i=1

log fc(yi; c); (A.62)

with probability one when N is large enough, where

	0c =

8<: c :  c 2 	c;
GX

g0=1

j�";g0�o;g0 j � r

9=; : (A.63)

Let q(Ui;  c) = log fc(yi; c), K = 	0c , and de�ne m(yi; �g; �g; �) = 0 if �2";g = 0 or 1; or
�2o;g = 0 or 1: We now verify the conditions in Lemma 4. Condition (i) in Lemma 4 is

obviously satis�ed. Since
PG

g0=1
j�";g0�o;g0 j � r; fc(yi; c) > 0 with probability one. It follows

that log fc(yi; c) is continuous with probability one. Hence condition (ii) holds. Condition
(iv) can be veri�ed in the same way as in the proof of Lemma 5.

It remains to verify condition (iii). First, since

exp(�x2=2) � C
�
x2
��T=2

; T � 2; (A.64)

for some positive constant C; we have

m(yi; �g; �g; �)

= (2�)�T=2 ��(T�1)";g exp

�
�
u0i;g(IT � JT =T )ui;g

2�2";g

�
��1o;g exp

�
�
u0i;g(JT =T )ui;g

2�2o;g

�

� (2�)�T=2 ��(T�1)";g C

�
u0i;g(IT � JT =T )ui;g

�2";g

��T=2
��1o;g

�
u0i;g(JT =T )ui;g

�2o;g

��1
� C�o;g�";g

�
u0i;g(IT � JT =T )ui;g

��T=2 �
u0i;g(JT =T )ui;g

��1
: (A.65)

Therefore, with probability one,

log

0@ GX
g=1

�ig(�)m(yi; �g; �g; �)

1A
� C + log

GX
g=1

�
u0i;g(IT � JT =T )ui;g

��T=2 �
u0i;g(JT =T )ui;g

��1 �M; (A.66)

for some constant M > 0: This is because
h
u0i;g(IT � JT =T )ui;g

i
�
h
u0i;g(JT =T )ui;g

i
> C for

some small positive C with probability one.
Next,

log

0@ GX
g=1

�ig(�)m(yi; �g; �g; �)

1A � log (�ig�(�)m(yi; �g� ; �g� ; �)) (A.67)
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for some g� such that �";g��o;g� > 0: Since
PG

g=1 j�";g�o;gj � r > 0 on 	0c ; there always exists
such a g�:

Using (A.66) and (A.67), we have������log
0@ GX
g=1

�ig(�)m(yi; �g; �g; �)

1A������ �M + jlog (�ig�(�))j+ jlogm(yi; �g� ; �g� ; �)j : (A.68)

Since �";g��o;g� > 0; the largest eigenvalue of ��1g� is bounded above. Hence (A.50) holds. It
then follows from the proof similar to that of Lemma 5 that

E sup
 2K

������log
0@ GX
g=1

�ig(�)m(yi; �g; �g; �)

1A������ <1: (A.69)

Since all the conditions in Lemma 4 are veri�ed,  ̂c = argmax c2	c
PN

i=1 log f(yi; c) is
consistent. �

A.7 Proof of Theorem 7

Proof of Part (a)
For notational convenience, we write �ij = �ij (�) ; mij = m(yi; �j ; �j ; �) and m0

ij =

m0(yi0;'j ; !j): Since the proofs are similar for di¤erent r�s, we consider @f(yi; yi0; )=@�j =
�ijmijm

0
iju

0
i;j�

�1
j yi;�1 as an example. The uniform integrability of other partial derivatives

follows from the same argument.
Using the fact that 	0 is bounded, let fB( (`) ; �) : ` = 1; :::;Lg be a �nite cover of 	0:

ThenZ
sup
 

���� @@�j f(yi; yi0; )
���� d�0d�1d�2

�
Z
sup
 (`)

���� @@�j f(yi; yi0; (`))
���� d�0d�1d�2

+

Z
sup
 (`)

sup
 2B( (`);�)

���� @@�j f(yi; yi0; )� @

@�j
f(yi; yi0; (`))

���� d�0d�1d�2
�
Z
sup
 (`)

���� @@�j f(yi; yi0; (`))
���� d�0d�1d�2

+

Z
sup
 (`)

sup
 2B( (`);�)

@

@�j
f(yi; yi0; (`))

����� @@�j f(yi; yi0; )
�
@

@�j
f(yi; yi0; (`))

��1
� 1
����� d�0d�1d�2

(A.70)

�
Z
sup
 (`)

���� @@�j f(yi; yi0; (`))
���� d�0d�1d�2 + C Z sup

 (`)

���� @@�j f(yi; yi0; (`))
���� d�0d�1d�2

� C

LX
`=1

Z ���� @@�j f(yi; yi0; (`))
���� d�0d�1d�2 � C;
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where the third inequality follows because @
@�j

f(yi; yi0; )
h
@
@�j

f(yi; yi0; (`))
i�1

is uniformly

continuous on 	0 and hence����� @@�j f(yi; yi0; )
�
@

@�j
f(yi; yi0; 

0)

��1
� 1
����� � C for all  and  0 such that

 �  0 � �:

Proof of Part (b)
Note that the second order derivatives with respect to regression parameters speci�c to

di¤erent groups are always equal to zero, Part (b) automatically holds for these derivatives.
For other second order derivatives, we �rst write down their explicit expressions and then use
the same proof in part (a) to show that these second order derivatives are uniformly integrable.
Details are omitted.

Proof of Part (c) Note that

sup
 2	0

���� @2

@ r@ s
log f(yi; yi0; )

����
= sup

 2	0

����@2f(yi; yi0; )@ r@ s
f � @f(yi; yi0; )

@ r

@f(yi; yi0; )

@ s

���� ��f�2(yi; yi0;  )��
� sup

 2	0

����@2f(yi; yi0; )@ r@ s

1

f

����+ sup
 2	0

����@f(yi; yi0; )@ r

@f(yi; yi0; )

@ s

1

f2

���� ; (A.71)

some manipulations show that sup 2	0

��� @2

@ r@ s
log f(yi; yi0; )

��� is bounded by a �nite order
polynomial of (jyitj; jyit�1j; jxitj; jzitj): The highest order is 4. Since all the random variables
are assumed to have �nite fourth moment, we have

E sup
 2	0

���� @2

@ r@ s
log f(yi; yi0; )

���� <1:
Proof of Part (d)
Di¤erentiating the identity

R
f(yi; yi0;  0)d�0d�1d�2 = 1 twice, and interchanging the

orders of di¤erentiation and integration, as allowed by Parts (a) and (b), we have

Esi( 0) = 0; Esi( 0)s
0
i( 0) = �Ehi( 0): (A.72)

From Part (c), we have

Esi( 0)s
0
i( 0) = �Ehi( 0) � E sup

 2	0

���� @2

@ @ 0
log f(yi; yi0; )

���� <1; (A.73)

where the inequality holds element by element. It then follows from the Lindberg-Levy central
limit theorem that

p
NS( 0)) N(0; I).
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Proof of Part (e)
We �rst show that, there exist a �� > 0 such thatH( )! E @2

@ @ 0 log f(yi; yi0; ) uniformly
for all  2 B( 0; ��) \	0: To prove this, we apply Lemma 4 with q(Ui;  ) = hi( ): It is easy
to see that Conditions (i) and (ii) in Lemma 4 are satis�ed. Condition (iii) in Lemma 4 holds
because of Part (c).

Taking a Taylor series expansion of S( ̂); we have

S( ̂) = S( 0) +H( 
�)( ̂ �  0); (A.74)

where  � is between  and  ̂: Since  ̂ is consistent,  � 2 B( 0; ��); with probability approach-
ing one. Combine this with the uniform convergence of H( ) over  2 B( 0; �

�); we have
H( �) = H( 0) + op(1) uniformly.

So
p
N( ̂ �  0) = �H�1( �)

p
NS( 0) = I�1

p
NS( 0) + op(1)) N(0; I�1): (A.75)

�

A.8 Proof of Theorem 8

We start by showing that the quadratic approximations (5.23) and (5.26) hold uniformly

over � 2 �. The uniform approximations hold if (i) sup�2�
#̂ur(�)� #0 = op (1) under

the null hypothesis; (ii) #̂r � #0 = op (1) ; (iii) HN (�; #) = N�1@2Lur(�; #)=@#@#0 converges
uniformly over � 2 � and # 2 �0 where �0 is some neighborhood of #0; (iv) Iur(�; #) is
uniformly continuous in (�; #) over � � �0 and (v) Iur(�; #0) is uniformly positive de�nite,
i.e. inf�2� �min (Iur(�; #0)) > 0: Condition (i) can be veri�ed by establishing the uniform
convergence of the log-likelihood function to the limit function and the uniform identi�ability
condition on the limit function. The technical arguments are similar to those in the proofs
of Lemma 5 and Theorem 7. Conditions (ii) and (iii) can be veri�ed using Lemmas 4 and 5.
Condition (iv) follows from condition (iii), the continuity of HN (�; #) and the compactness of
���0: We now prove condition (v) by contradiction. Note that

Iur(�; #0) = E

 
�(�)
 @ logm(y;y0;�0;�0)

@�
@ logm(y;y0;�0;�0)

@�

! 
�(�)
 @ logm(y;y0;�0;�0)

@�
@ logm(y;y0;�0;�0)

@�

!0
: (A.76)

Assume that there is a �� 2 � such that Iur(��; #0) is singular. As a consequence, there exists
a nonzero vector c = (a0; b0)0 where a = (a01; a

0
2; :::; a

0
G)
0 such that c0Iur(��; #0)c = 0: But the

latter holds if and only if

GX
g=1

��;g(�
�)a0g

@ logm(y; y0; �0; �0)

@�
+ b0

@ logm(y; y0; �0; �0)

@�
= 0 (A.77)

with probability one. Given that the support of ~� = (��;1; :::; ��;G�1)
0 spans RG�1 and thatPG

g=1 ��;g(�
�) = 1; equation (A.77) holds only in the following two cases. In the �rst case,

a0g
@ logm(y; y0; �0; �0)

@�
= 0 for all g; (A.78)
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and

b0
@ logm(y; y0; �0; �0)

@�
= 0: (A.79)

In the second case, a1 = a2 = ::: = aG = a0 for some a0; and

a00
@ logm(y; y0; �0; �0)

@�
+ b0

@ logm(yi; yi0; �0; �0)

@�
= 0: (A.80)

Note that the identi�ability of the model implies that (@ logm(y; y0; �0; �0)=@� 0; @ logm(y; y0; �0; �0)=@�0)
are linearly independent functions. Therefore, in both cases, we have ag = 0 for all g and b = 0;
and hence that c = 0: This contradicts with the assumption that c 6= 0: We have thus proved
that inf�2� �min (Iur(�; #0)) > 0:

The uniform quadratic approximations (5.23) and (5.26) imply that

2(Lur(�; #̂ur)� Lr(�; #̂r)) = NS0N (�)Q(�)SN (�) + op(1); (A.81)

uniformly over � 2 �:
Next, we show that

p
NSN (�) converges in distribution to a Gaussian process with mean

zero and covariance kernel C(�1; �2): Note that for each � 2 �; si(�; #0) is an iid process with
�nite second moment. Using the pointwise central limit theorem, we can show that the �nite
dimensional distributional convergence holds. It remains to show that SN (�) is stochastically
equicontinuous. Given that � is compact, si(�; #0) is continuous in � on � and si(�; #0) is an
iid process, it su¢ ces to prove E sup�2� jjsi(�; #0)jj <1: By de�nition,

si(�; #0) =

 
�i(�)
 @ logm(yi;yi0;�0;�0)

@�
@ logm(yi;yi0;�0;�0)

@�

!
; (A.82)

so

E sup
�2�

jjsi(�; #0)jj = E sup
�2�

�����0i(�)�i(�)�@ logm(yi; yi0; �0; �0)@�

�0 @ logm(yi; yi0; �0; �0)
@�

+

�
@ logm(yi; yi0; �0; �0)

@�

�0 @ logm(yi; yi0; �0; �0)
@�

����
� E

�����@ logm(yi; yi0; �0; �0)@�

�0 @ logm(yi; yi0; �0; �0)
@�

����
+ E

�����@ logm(yi; yi0; �0; �0)@�

�0 @ logm(yi; yi0; �0; �0)
@�

����
<1 (A.83)

as required. Hence
p
NSN (�))W (�):

Invoking the continuous mapping theorem completes the proofs of (5.35) and (5.36).�

A.9 Proof of Theorem 9

For any given � 2 �; the probability limit of the unrestricted log-likelihood function Lur(�; #)
under the sequence of local alternatives is the same as that under the �xed alternative #0: This
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is also true for the restricted log-likelihood function Lr(�; #r): Hence, sup�2�
#̂ur(�)� #0 =

op (1) and #̂r�#0 = op (1) : It is not hard to show that under the local alternatives HN (�; #) =
N�1@2Lur(�; #)=@#@#0 converges to �Iur(�; #) uniformly over � 2 � and # 2 �0. Let

si(�; #) =

0BBBBBB@
�i1(�)

@m(yi;yi0;�1;�)
@�1

�PG
g=1 �ig(�)m(yi; yi0; �g; �)

��1
:::

�iG(�)
@m(yi;yi0;�G;�)

@�G

�PG
g=1 �ig(�)m(yi; yi0; �g; �)

��1
PG

g=1 �ig(�)
@ logm(yi;yi0;�g ;�)

@�

�PG
g=1 �ig(�)m(yi; yi0; �g; �)

��1

1CCCCCCA (A.84)

then we have

2(Lur(�; #̂ur)� Lr(�; #̂r)) =
hp

NS0N (�)
i
Q(�)

hp
NSN (�)

i
+ op(1); (A.85)

uniformly over � 2 �; where

p
NSN (�) =

1p
N

@Lur(�; #0)

@#
=

1p
N

NX
i=1

si(�; #0)

=
1p
N

NX
i=1

[si(�; #0)� Esi(�; #0)] +
p
NEsi(�; #0): (A.86)

It can be shown that 1=
p
N
PN

i=1 [si(�; #0)� Esi(�; #0)] converges in distribution to a Gaussian
process �W (�) with mean zero and covariance kernel �C(�1; �2) = cov(si(�1; #0); si(�2; #0)): It re-
mains to �nd the limit of

p
NEsi(�; #0): To this end, we �rst obtain the limit of

p
NEsi(�0; #0):

Note that

1p
N

NX
i=1

si(�0; #0) =
1p
N

NX
i=1

si(�0; #N ) +
1

N

NX
i=1

@si(�0; #0)

@#

p
N(#N � #0) + op(1)

=
1p
N

NX
i=1

si(�0; #N )� Iur(�0; #0)d+ op (1)

!d N (�Iur(�0; #0)d; Iur(�0; #0)) ; (A.87)

which implies that limN!1
p
NEsi(�0; #0) = �Iur(�0; #0)d: Let F (�; �0) be a diagonal matrix

such that
Esi(�; #0) = F (�; �0)Esi(�0; #0):

Since d 2 DA; F (�; �0) is always well de�ned. Now

lim
N!1

p
NEsi(�; #0) = �F (�; �0) Iur(�0; #0)d: (A.88)

As a consequence,

2(Lur(�; #̂ur)� Lr(�; #̂r)) (A.89)

)
�
�W (�)� F (�; �0) Iur(�0; #0)d

�0
Q(�)

�
�W (�)� F (�; �0) Iur(�0; #0)d

�0
;

from which the theorem follows.
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