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Abstract The hippocampus is critical for episodic memory, and synaptic changes induced by

long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal

LTP may be induced through electrical stimulation of the perforant path. To test whether similar

techniques could improve episodic memory in humans, we implemented a microstimulation

technique that allowed delivery of low-current electrical stimulation via 100 �m-diameter

microelectrodes. As thirteen neurosurgical patients performed a person recognition task,

microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP.

Microstimulation in the right entorhinal area during learning significantly improved subsequent

memory specificity for novel portraits; participants were able both to recognize previously-viewed

photos and reject similar lures. These results suggest that microstimulation with physiologic level

currents—a radical departure from commonly used deep brain stimulation protocols—is sufficient

to modulate human behavior and provides an avenue for refined interrogation of the circuits

involved in human memory.

DOI: https://doi.org/10.7554/eLife.29515.001

Introduction
The hippocampus has been implicated in episodic and autobiographical memory formation in animal

models (Devito and Eichenbaum, 2011; Ergorul and Eichenbaum, 2004; Morris et al., 1982;

Squire, 1992) and humans (Squire and Zola-Morgan, 1991; Tulving, 2002). Using electrical stimula-

tion to modulate hippocampal activity to restore memory function has recently become a focus of

considerable interest. This idea is motivated to an extent by a long history of research on long-term

potentiation (LTP), which is accepted as a neural substrate of learning and memory (Bliss and Lomo,

1973; Kandel and Schwartz, 1982) and can be induced by electrical stimulation to hippocampal

afferents, such as the perforant path or Schaffer collaterals (Bliss and Lomo, 1973; Cooke and Bliss,

2006; Larson et al., 1986; Nguyen and Kandel, 1997; Staubli and Lynch, 1987).

Deep brain stimulation (DBS) of hippocampal-related targets, such as the fornix (Hamani et al.,

2008; Miller et al., 2015) and the entorhinal region (Suthana et al., 2012), have shown promise for

modulating human cognition. However, DBS is commonly applied through pairs of large clinical elec-

trodes (e.g., 1.27 mm diameter), which lack target specificity and, hence, may affect wide and
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heterogeneous neuronal assemblies in nearby brain regions. More spatially-focused stimulation in

the medial temporal lobe (MTL) could be achieved using smaller electrodes (for example, 100 mm

diameter microelectrodes), allowing higher anatomical specificity and physiological modulation of

brain circuits critical for learning and memory. Moreover, targeting afferent projections may be a

more specific and efficient strategy to drive downstream neurons (Riva-Posse et al., 2014), as sug-

gested by recent optogenetic studies (Gradinaru et al., 2009; Rajasethupathy et al., 2016).

Microstimulation mimics effects that drive neurons naturally (Fetsch et al., 2014) and has been

shown in animal studies to modulate a variety of specific brain functions, depending on the site of

stimulation (Hamani et al., 2008; Histed et al., 2009; Logothetis et al., 2010). For example, in non-

human primates, stimulation using microelectrodes improved face categorization (Afraz et al.,

2006), modulated motion perception with great specificity (Fetsch et al., 2014), and increased the

learning rate during a reinforcement learning task (Williams and Eskandar, 2006). In humans, micro-

stimulation of primary visual cortex has been shown to induce phosphenes (Schmidt et al., 1996),

and microstimulation of the substantia nigra can influence reinforcement learning (Ramayya et al.,

2014). Further evidence of the high specificity that this method of stimulation can bring to human

brain modulation has been provided by intraoperative investigations (Histed et al., 2013;

Logothetis et al., 2010). Stimulation using microwires presents a novel opportunity to improve

selective and natural activation of neuronal circuits in the human brain.

Here, we asked whether application of microstimulation targeted to the entorhinal afferents into

hippocampus could enhance declarative memory function in humans. We postulated that afferent

stimulation would most directly affect the downstream hippocampal fields, and thus memory func-

tion as well. Importantly, LTP induction by high-frequency microstimulation of the perforant path in

vivo has been shown to cause reorganization of wide hippocampal and cortical networks in rats

(Canals et al., 2009). A theta-burst protocol has been shown to be optimal for inducing LTP

(Larson et al., 1986). We therefore hypothesized that theta-burst microstimulation, targeted to

brain regions containing afferent fibers to the hippocampus, would improve episodic memory per-

formance in humans.

One crucial aspect of episodic memory is pattern separation, the ability to retrieve the specifics

of past events without generalizing to similar or partially overlapping events (Yassa and Stark,

2011). During a task in which subjects studied photos of novel people, microstimulation was applied

in a theta-burst pattern. We show that theta-burst microstimulation of the right entorhinal area,

applied prior to stimulus onset, enhanced memory specificity for these photographs. That is, during

a test phase, subjects performed better at accepting photographs from the encoding stage as previ-

ously viewed, concomitant with rejecting similar (lure) photographs.

Results
Participants were thirteen neurosurgical patients with pharmacoresistant epilepsy, implanted with

intracranial depth electrodes, who performed a person recognition task (Figure 1, Figure 1—source

data 1). During the encoding phase, subjects viewed novel portraits of people. On half of the trials,

randomly selected for each participant, electrical stimulation was applied during the fixation period

prior to stimulus onset (see Microstimulation Protocol section in Materials and methods) (Figure 1A–

B). Stimulation was delivered through a 100 mm diameter microwire that had been targeted to the

left or right entorhinal area (two subjects received stimulation on each side (in separate sessions);

Figure 1—source data 1, Figure 2). In post hoc analysis, all stimulation microwires were determined

to have been located in regions known to include afferent inputs to the hippocampus, including

entorhinal white matter (angular bundle), entorhinal gray matter, or subiculum (Figure 2, Figure 2—

figure supplements 1–2, Figure 1—source data 1) (Yassa et al., 2010; Zeineh et al., 2017).

Because the subiculum contains—in fact, is perforated by—fibers of the perforant path, a major out-

put of the entorhinal cortex, it was included in our sample. After the encoding phase, subjects per-

formed a 30 s distractor task and then were presented with a series of images and asked whether

each was ’old’ (presented during the encoding phase) or ‘new.’ For each image presented during

the encoding phase, two images were included in the test phase; one, the ‘target’ was the exact

same image; the other, the ‘lure,’ was a portrait of a different person who looked similar to the per-

son in the target portrait (Figure 1A,C). These images were presented one at a time, in pseudo-ran-

dom order, during the test phase. Whenever possible, subjects performed the task more than once,
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using a new set of images each time, such that a total of 40 experimental sessions were conducted

(Figure 1—source data 1; Materials and methods).

To determine the behavioral effects of microstimulation, we defined several performance metrics.

For each image presented during encoding, we noted whether it was recognized as ‘old’ during the

test phase, as well as whether its corresponding lure image was correctly identified as ‘new.’ For

each session, we computed the target acceptance rate as the proportion of target images that were

correctly identified as old, and the lure rejection rate as the proportion of lure images that were cor-

rectly identified as new. Independently, these measures are not fully informative; for example, if a

subject has a bias toward answering ‘old’, that would inflate the target acceptance rate while

decreasing the lure rejection rate. Thus, a comparison of responses to targets and lures is required.

On the whole-session level, we can compute the discrimination index (DI), which is the probability of

answering ‘old’ on target images minus the probability of answering ‘old’ on lure images. DI works
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Figure 1. Task Design. (A) The person-recognition task consisted of three phases. In the encoding phase, participants were shown portraits of people

for 4 s each (black bars in timeline), preceded by a 4.2–5.2 s fixation dot (gray bars). Half of the pictures were randomly selected for stimulation. For

these, one second of theta-burst stimulation (red bar) was applied beginning 2.2–2.7 s before picture onset, during viewing of the fixation dot. To

ensure that participants were viewing the portraits, they were asked to report whether the person in each image was male or female. The encoding

phase was followed by a 30 s distractor task in which single digits were presented once per second and the participant was asked to identify each digit

as odd or even. Finally, during the test phase, participants were shown a mixture of images they had seen during the encoding phase (targets) and

portraits of people who looked similar but had not been previously viewed (lures). Participants were asked to report whether each image was ‘old’ or

‘new.’ (B) Theta burst stimulation consisted of 5 sets of current pulses, separated by 200 ms, in which each set included four biphasic stimulation pulses

presented at 100 Hz. (C) Representative pairings of target and lure images. All images used in the task were adapted with permission from the book

Exactitudes (Versluis and Uyttenbroek, 2002). Further examples of images may be viewed at http://exactitudes.com. Demographic data for the study

participants are presented in Figure 1—source data 1.

DOI: https://doi.org/10.7554/eLife.29515.002

The following source data is available for figure 1:

Source data 1. Participant demographics and stimulation location.

DOI: https://doi.org/10.7554/eLife.29515.003
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Figure 2. Electrode localization in participants. (Top) Pre-implantation high-resolution MRI scans (left) were co-registered to post-implantation high-

resolution CT scans (not pictured) for electrode localization. Automated protocols were used to delineate different regions (colored areas in bottom

right magnification), as well as white versus gray matter areas. The red crosshair denotes the location of the microstimulation electrode in the right

angular bundle. Arrow diagrams, shown in the upper right magnification, depict the expected trajectories and directions of afferent pathways to the

Figure 2 continued on next page

Titiz et al. eLife 2017;6:e29515. DOI: https://doi.org/10.7554/eLife.29515 4 of 18

Research article Human Biology and Medicine Neuroscience

https://doi.org/10.7554/eLife.29515


to subtract out the bias toward one answer or another, but does not explicitly compare performance

for specific targets and their corresponding lures. Thus, for each image we assigned a behavioral

label of ‘remembered’ or ‘missed’. ‘Remembered’ images were those that were accepted as previ-

ously viewed, along with rejection of the corresponding lure. This required not only recognizing the

target image but also remembering the details sufficiently to distinguish it from the lure image. We

computed the remembered rate as the proportion of target images that met these criteria. All other

images were categorized as ‘missed.’

To evaluate how microstimulation affected these behavioral metrics, we computed each metric

separately for the subset of stimulated trials and the subset of non-stimulated trials within each ses-

sion and used generalized estimating equations (GEEs) to model the effects of stimulation condition

on these measures. GEEs are a class of generalized linear models that were developed for analyzing

repeated measures data (in our case, multiple experiments for an individual subject) and, contrary to

the conventional repeated measures ANOVA tests, can handle different numbers of observations

per subject and do not assume equal correlations between within-subject observations

(Gardiner et al., 2009; Gueorguieva and Krystal, 2004; Hubbard et al., 2010; Subramanian and

O’Malley, 2010), thus making this a rigorous statistical approach for our study (see Materials and

methods for details)

We hypothesized that stimulation would improve memory specificity, but the effects of stimula-

tion might vary with the precise location of the stimulating electrode. In particular, because previous

studies in both human and non-human primates have indicated that facial processing may be lateral-

ized within the hippocampus (Fried et al., 1997; Haxby et al., 1996), we predicted that stimulation

within the left or right entorhinal area may be differentially effective. Thus, using GEEs, we modeled

the difference in proportion of remembered pictures between stimulated and non-stimulated trials

as a function of stimulation hemisphere. We found that there was a significant effect of stimulation

hemisphere on the degree to which stimulation changed the proportion of remembered portraits

(p=6.17 � 10�4, Wald �
2 = 11.72). Specifically, stimulation of the right entorhinal area significantly

improved performance (Estimated Mean (EM) = 0.12, 95% CI [0.05, 0.18]), while stimulation of the

left entorhinal area had no effect (EM = �0.017, 95% CI [�0.060, 0.025]) (Figure 3A, Figure 3—

source data 1, Source code 1). We confirmed that these results were robust to the precise statistical

method chosen; even a basic t-test on the difference between mean performance on stimulated and

nonstimulated trials per participant revealed an effect of stimulation hemisphere (t(13) = �2.98,

p=0.011), and post hoc t-tests indicated that right entorhinal stimulation caused significant improve-

ment (mean change = 0.12 ± 0.04, t(8) = 3.53, p=0.008; effect size: Cohen’s dz = 1.18, CL = 0.88),

while left entorhinal stimulation did not (mean change = �0.02 ± 0.03, t(5) = �0.77, p=0.48)

(Figure 3B). Further, out of 9 subjects who received microstimulation in the right entorhinal area,

eight had a higher remembered rate for stimulated trials compared to nonstimulated trials, which is

more than expected by chance (p=0.020, binomial test). Finally, because our subjects were patients

with epilepsy, we wanted to ensure that the effect of stimulation was not driven by epileptic activity.

To test this, we applied the GEE model described above to the subset of data that included only

sessions in which the stimulating electrode was located outside of the seizure onset zone. Our results

Figure 2 continued

hippocampus; adapted from Zeineh et al. (2017). 
 denotes fiber tracts traveling transverse to the coronal plane. Perforant path fibers begin in

entorhinal gray matter, travel through the angular bundle, and pass through the subicular pyramidal layer, prior to arriving to either the dentate gyrus

or CA fields of the hippocampus. (Bottom) Segmented MRIs and locations of microelectrodes, same as above, for all other participants in the study.

Numbers in the upper left refer to participant ID (Figure 1—source data 1). Subregions were delineated by hand for participant 13’s right hemisphere,

as the electrode was located farther anterior than the automated protocols are intended to compute. A comparison of the spatial specificity of

microstimulation and macrostimulation is shown in Figure 2—figure supplement 1. Group level localization data are presented in Figure 2—figure

supplement 2.

DOI: https://doi.org/10.7554/eLife.29515.004

The following figure supplements are available for figure 2:

Figure supplement 1. Microstimulation electrodes provide spatially focused stimulation.

DOI: https://doi.org/10.7554/eLife.29515.005

Figure supplement 2. Group-level microelectrode placements.

DOI: https://doi.org/10.7554/eLife.29515.006
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remained qualitatively the same, with a strong effect of stimulation hemisphere on behavior, and sig-

nificant improvement induced by right-sided stimulation (p=9.49 � 10�3, Wald �
2 = 6.73, right

EM = 0.11; 95% CI [.029. 184]).

Although our experimental design included selecting at random which trials in each session

received stimulation, we wanted to ensure that our results were independent of any potential trial

order effects. We thus modeled the behavioral data on a trial by trial basis while accounting for the

trial order as well as whether the target image was presented before the lure image during the test

phase (1207 trials). Here, the model included main effects of normalized trial number, whether the

target was presented first, stimulation condition (trial received stimulation or not), stimulation hemi-

sphere (left or right), and an interaction term between the last two. We found that the interaction

term between the stimulation condition and hemisphere had a strong significant effect on behavior

(p=2.19 � 10�3, Wald �
2= 9.38), while neither of the order variables were a significant predictor

(normalized trial number: p=0.19, presentation of target before lure: p=0.053). Consistent with the

previous model, stimulation of the right entorhinal area increased the probability of remembering a
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Figure 3. Stimulation of the right entorhinal area improved memory specificity. (A) The estimated mean change in fraction of stimulated items that

were remembered compared to non-stimulated items, as estimated with Generalized Estimating Equations, which accounted for within subject

correlations in performance. Positive numbers indicate that stimulated trials were remembered at greater rates. The effect of stimulation hemisphere

was significant (p=6.17 � 10�4, N = 40 sessions from 13 participants (left: 21 sessions from 6 participants; right: 19 sessions from 9 participants)). Error

bars indicate 95% confidence intervals, demonstrating that the increase in performance due to stimulation of the right entorhinal area was greater than

0. (Data and SPSS model definitions: Figure 3—source data 1, Source code 1.) (B) (Left) Remembered rates for each individual participant. For

participants who did the task more than once, average rates are presented. Participants 6 and 13 performed the task with stimulation on each side (in

different sessions), and the sessions from each hemisphere are presented independently. Upward slanting lines correspond to positive change scores,

indicating that stimulation improved performance. (Right) Difference in remembered rates for left and right entorhinal area stimulation (mean ±s.e.m.).

These are significantly different (t(13) = �2.98, p=0.011), and stimulation in the right entorhinal area leads to significantly positive changes in

remembering (t(8) = 3.53, p=0.008). (C) Trial by trial analysis of whether a portrait was subsequently remembered was evaluated with a GEE model

including stimulation condition and stimulation hemisphere, as well as trial-order effects. The only significant predictor was the interaction term

between stimulation condition and hemisphere (p=0.002, N = 1207 trials from 13 participants). Error bars are 95% Wald Confidence Intervals. (Model

coefficients: Figure 3—source data 3, data: Figure 3—source data 2, and SPSS model definitions: Source code 2).

DOI: https://doi.org/10.7554/eLife.29515.007

The following source data is available for figure 3:

Source data 1. Session-level performance data.

DOI: https://doi.org/10.7554/eLife.29515.008

Source data 2. Trial-level performance data.

DOI: https://doi.org/10.7554/eLife.29515.009

Source data 3. Trial by trial analysis of behavioral data.

DOI: https://doi.org/10.7554/eLife.29515.010
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portrait to a greater degree than stimulation of the left entorhinal area (Figure 3C; Figure 3—

source data 2–3, Source code 2).

Because the order of presentation of target and lure trended strongly toward a behavioral

effect—memory was generally better when the target was presented before the lure—we wanted to

ensure that the interaction between stimulation condition and hemisphere was independent of

whether the target or lure had been presented first. We thus divided our dataset into trials in which

the target was presented first (618 trials) and trials in which the lure was presented first (589 trials),

and modeled behavioral outcome with normalized trial number, stimulation condition, stimulation

hemisphere and an interaction for each dataset. Consistent with the full dataset, we found in each

case that normalized trial number was not a significant predictor (target first: p=0.33; lure first:

p=0.55), while the interaction between stimulation site and stimulation condition was (target first:

p=0.018; lure first: p=0.011).

Finally, we tested whether precise electrode targeting had an effect on the degree to which stim-

ulation improved memory. Our electrodes were localized to three distinct regions containing fibers

of the perforant path: the angular bundle (entorhinal white matter), gray matter of the entorhinal

cortex (where perforant path fibers originate), and the nearby subiculum (which is perforated by the

perforant path prior to its arrival in the hippocampus [Zeineh et al., 2017]). We hypothesized that,

because stimulation to the perforant path can induce LTP, stimulating in the region where perforant

path fibers are most densely concentrated might be the most effective. Specifically, we compared

stimulation in the angular bundle, where perforant path fibers are most densely concentrated

(Yassa et al., 2010; Zeineh et al., 2017), to stimulation in either the entorhinal or subicular gray

matter, where these fibers are more spread out and fewer axons would be recruited by stimulation.

Accordingly, we modeled the proportion of the remembered portraits as a function of two factors:

stimulation region (whether the stimulating electrode was in the angular bundle or gray matter) and

stimulation hemisphere (left versus right). We found significant main effects of each stimulation hemi-

sphere (p=1.49 � 10�4, Wald �
2=14.39) and stimulation region (p=0.011, Wald �

2=6.53). The inter-

action between these factors was not significant (p=0.121, Wald �
2=2.41), indicating that the effects

of stimulation on the right side and in the angular bundle each contributed to improved behavioral

performance. Specifically, stimulation was most effective for improving memory specificity when the

electrodes were positioned in the right angular bundle (EM = 0.16, 95% CI [0.09, 0.22]) (Figure 4A,

Figure 3—source data 1; Figure 4—source data 1, Source code 3).

We next applied this expanded model to test the effect of stimulation on the other behavioral

metrics defined above. As expected, DI—also a measure of memory specificity—was improved by

right-sided stimulation (p=2.79 � 10�3, Wald �
2=8.94) and stimulation in the angular bundle

(p=2.53 � 10�3, Wald �
2=9.12; interaction term: p=0.15, Wald �

2=2.07; right angular bundle

EM = 0.15, 95% CI [0.08, 0.23]) (Figure 4B, Figure 3—source data 1; Figure 4—source data 1,

Source code 3). A similar pattern was present in target acceptance, with stimulation in each the

right side (p=0.034, Wald �
2=4.47) and the angular bundle (p=2.52 � 10�5, Wald �

2=17.75) signifi-

cantly increasing target acceptance rates (right angular bundle EM = 0.074, 95% CI [0.0069. 0.1414])

(Figure 4C, Figure 3—source data 1; Figure 4—source data 1, Source code 3). A different pattern

emerged when considering lure rejection rates. Here the interaction between stimulation region and

hemisphere was significant (p=0.018, Wald �
2=5.62; right angular bundle EM = 0.080, 95% CI

[0.025, 0.134]). The difference appears to be driven by stimulation in the right gray matter showing a

trend toward impairing lure rejection (Figure 4D, Figure 3—source data 1; Figure 4—source data

1, Source code 3, Source code 4).

When considering lure rejection and target acceptance together, we found that stimulation on

the right side increased the probability of correctly accepting previously viewed target images,

regardless of the stimulation region. When right-sided stimulation was applied in the angular bundle,

this also led to an increase in appropriately rejecting lure images. When applied in gray matter,

however, stimulation led to an increase in incorrectly accepting lure images. Thus, it appears that

right angular bundle stimulation improved memory specificity by simultaneously increasing the prob-

ability of accepting target images and rejecting lure images. Stimulation of the right gray matter, on

the other hand—by increasing acceptance of both targets and lures—introduced a bias towards

reporting positive memory, rather than increasing memory per se. Conversely, stimulation in the left

entorhinal-adjacent gray matter decreased target acceptance rates and showed a moderate trend
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Figure 4. Stimulation of the right angular bundle improves memory specificity, whereas stimulation of gray matter introduces response bias. The

estimated mean difference in stimulated compared to non-stimulated trials in (A) remembered rate, (B) discrimination index, (C) target acceptance rate,

and (D) lure rejection rate, as computed by GEE models. In all panels, positive values indicate that performance was better for stimulated than non-

stimulated trials. Error bars represent Wald 95% confidence intervals for the estimated means. The main effects of stimulation hemisphere and

stimulation region were significant for all behavioral metrics except lure rejection rate, with stimulation in the right hemisphere and in the angular

bundle improving performance for each (remembered rate: hemisphere: p=1.49 � 10�4, region: p=0.011; DI: hemisphere: p=2.79 � 10�3, region:

p=2.53 � 10�3;target acceptance rate: hemisphere: p=0.034, region: p=2.52�10�5); In the case of lure rejection rate, the interaction between

stimulation hemisphere and region was significant. (p=0.018). (Left gray matter: 11 sessions from three participants; right gray matter: 6 sessions from

three participants; left angular bundle: 10 sessions from three participants; right angular bundle: 13 sessions from six participants.) (Data is in

Figure 3—source data 1; SPSS model effects and definitions are in Figure 4—source data 1 and Source code 3, respectively.).

DOI: https://doi.org/10.7554/eLife.29515.011

The following source data and figure supplement are available for figure 4:

Source data 1. Tests of Model Effects for session-level behavioral metrics.

DOI: https://doi.org/10.7554/eLife.29515.013

Figure supplement 1. Effects of stimulation in the entorhinal area, proper.

DOI: https://doi.org/10.7554/eLife.29515.012
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toward decreasing lure acceptance rates, introducing a bias toward negative memory. Together

these results suggest that in entorhinal/subicular gray matter, stimulation in the left and right hemi-

spheres may introduce opposite biases.

Finally, it should be noted that, although we report uncorrected p-values throughout the results

section, all reported statistically significant effects survive correction for multiple comparisons (see

Materials and methods), further demonstrating the statistical robustness of our results. We also pro-

vide additional analysis in the supplement showing the main effects we report in Figures 3 and

4 when data from the subiculum is excluded (Figure 4—figure supplement 1). The overall results

are similar, but further studies will be necessary to examine potential differences between microsti-

mulation of subicular and entorhinal cortices.

Discussion
We found that microstimulation to the entorhinal area, targeted to maximally affect the entorhinal

projections into the hippocampus, resulted in enhancement of memory specificity for images of

novel people when the stimulating electrode was in the right hemisphere. This suggests a possible

lateralization effect for memory of people, consistent with previous results: the right hippocampus

shows increased metabolic activity during the learning of faces (Haxby et al., 1996), and single-unit

activity in the right hippocampus encodes different facial expressions (Fried et al., 1997). While

direct recordings of neural activity have shown evidence for lateralization, imaging studies have indi-

cated that the encoding of pictorial material involves bilateral activation (Kim, 2011), and lesion

studies noted a lack of asymmetry for encoding of non-verbal material (Lee et al., 2002). This dis-

crepancy may indicate a difference between encoding of faces and visual encoding in general, as

the latter studies were not specific to images of faces or people. On the other hand, our results indi-

cate that that the left hippocampus is not uninvolved during facial encoding, as stimulation of the

left entorhinal area had a behavioral effect, even if it was not to increase memory specificity. Previ-

ous findings of bilateral activation, therefore, may indicate only that the two hemispheres are both

involved, not that they are performing the same function. Thus, these results warrant further studies

into potential lateralization effects, both of function and of the effect of stimulation. It is important

to note that our study was conducted in people with epilepsy, a condition which may disproportion-

ately affect one side of the brain and could result in lateralized effects, such as impairment of cogni-

tive skills lateralized to the affected hemisphere. Thus conclusions with respect to lateralization of

function should be viewed with caution. However, we have repeated our analysis with data restricted

to the sessions in which the stimulating electrode was positioned outside the clinically-determined

seizure onset zone, and found qualitatively similar results.

Previous studies in animals have noted the importance of the frequency and mode of stimulation

on behavioral outcomes. Specifically, theta-burst stimulation has been used to elicit LTP in a wide

range of animal models from hippocampal slices (Nguyen and Kandel, 1997; Staubli and Lynch,

1987) to whole animals (Larson et al., 1986). In the current study, we present evidence supporting

the efficacy of theta-burst microstimulation in protocols aimed at human memory improvement. Fur-

ther research is warranted to determine whether theta-burst stimulation is more effective than other

protocols, such as continuous stimulation. We also made no effort in this study to synchronize our

stimulation protocols to endogenous theta rhythms in the hippocampus; we hypothesize that the

memory effects we observed may be enhanced further by developing a closed-loop stimulation sys-

tem, allowing the theta-burst pattern to be initiated on specific phases of theta.

Beyond the temporal dynamics of stimulation, we found that the spatial targeting of the stimulat-

ing electrode was also a critical factor in determining the effects of stimulation on behavior. Control-

ling this factor is more feasible with microstimulation than macrostimulation, as it is challenging to

confine the spatial extent of delivered current when using macroelectrodes, due to their large con-

tact surface area, wide inter-contact distance for bipolar stimulation, and high magnitude of stimula-

tion current (Figure 2—figure supplement 1). In addition, high frequency stimulation delivered via

macroelectrodes has been shown to inhibit nearby neuronal somata, while also providing excitation

to axonal projections, indicating that small changes in electrode location could lead to substantially

different results (Herrington et al., 2016). For example, stimulating in gray matter could disrupt

neuronal computations, whereas electrodes that are confined to white matter may enhance excit-

atory drive to downstream regions (Afraz et al., 2006; Arcot Desai et al., 2014; Fetsch et al.,
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2014; Histed et al., 2009). Future work examining the physiological effects of microstimulation in

downstream regions, such as the hippocampus, would further enlighten the mechanisms of the dif-

ferential effects when stimulation is applied in gray matter or the angular bundle.

Recently, studies on the effects of DBS—delivered via macroelectrodes in the entorhinal area—on

memory performance have resulted in contradicting outcomes (Jacobs et al., 2016; Suthana et al.,

2012). Stimulation delivered in these studies likely affected different neuronal assemblies, which—

together with other methodological differences between them—may account for the variability in

the reported results. Microstimulation is delivered via a single, small electrode, which eliminates the

heterogeneity introduced in macrostimulation studies by variable inter-contact distances and implan-

tation trajectories, and may make the final localization of the electrode easier to compare between

research groups; this may increase the ease of replicability of studies using microstimulation, even in

the face of other methodological differences.

Additional evidence for the importance of stimulation specificity arises from optogenetic studies

in animals. In particular, a transgenic mouse model of early Alzheimer’s disease shows that the more

focally targeted an intervention is, the more specific of an effect can be elicited. This study demon-

strated that direct optogenetic activation of specific hippocampal memory engram cells resulted in

highly specific memory retrieval (Roy et al., 2016). Other optogenetic studies highlight the advan-

tage of afferent stimulation to target downstream neuronal assemblies compared to direct stimula-

tion of gray matter (Gradinaru et al., 2009; Rajasethupathy et al., 2016).

While optogenetics is the state-of-the-art method for targeting neural circuits with precise spatial

and temporal resolution (Rajasethupathy et al., 2016), it is not likely to be feasible in humans in the

near future. The microstimulation approach may, thus, be the method available in humans that most

closely serves a similar purpose. Compared to macroelectrodes, microelectrodes have much smaller

electrode contacts and affect a more localized region (Arcot Desai et al., 2014). The lower current

levels typically delivered through microelectrodes have also been shown to excite, rather than

inhibit, nearby neurons (Afraz et al., 2006; Arcot Desai et al., 2014; Fetsch et al., 2014), as well as

those downstream of the nearby axonal projections (Histed et al., 2009). Moreover, high frequency

microstimulation of the perforant path that induces LTP in hippocampus has been shown to cause

widespread reorganization in hippocampal networks, as well as in cortical areas, such as medial fron-

tal cortex and nucleus accumbens (Canals et al., 2009). These observations are compatible with the

efficacy of microstimulation of the perforant path to cause overt behavioral changes in memory

performance.

It has been suggested that stimulation in the entorhinal white matter, but not the adjacent gray

matter, might lead to beneficial effects on memory (Suthana et al., 2012). Indeed, the results of the

current study are consistent with this idea, such that applying microstimulation in the right angular

bundle had a significant positive effect on memory for portraits, while applying microstimulation in

the right entorhinal gray matter or subiculum did not improve memory, despite the presence of hip-

pocampal afferents in these regions. This may be due to the fact that axons of the perforant path—a

common locus for induction of LTP—are most densely concentrated in the angular bundle

(Yassa et al., 2010; Zeineh et al., 2017) and hence a larger number would be recruited via stimula-

tion. In parallel, stimulation in the gray matter may more directly impact or interfere with neuronal

computations, which could drive the biases observed in our results due to gray matter stimulation.

Although we hypothesize that LTP induced via the perforant path is likely responsible for the positive

effects of right angular bundle stimulation, it must be borne in mind that the entorhinal region

includes several additional fiber tracts—including the direct projections to CA1 via the alvear path,

and hippocampal efferents—any of which may be affected by microstimulation, and current imaging

techniques do not allow us to separate these various tracts.

Further, it is worth noting that the present study does not address the precise mechanisms by

which microstimulation wields its behavioral influence. The distinct patterns observed as a result of

stimulation in different hemispheres or different regions offer hints of a complex effect. Future stud-

ies investigating how neural signals change in response to microstimulation (and how these changes

vary with the precise targeting of the stimulating electrode) will be critical for increasing our under-

standing, not only of the physiological signatures of microstimulation, but also the microcircuit

dynamics underlying memory.

This study presents the first evidence that microstimulation has the potential to improve hippo-

campal-dependent memory in humans. In addition to the interesting implications for our
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understanding of microcircuit dynamics of memory, this paves the way to developing new avenues

that could one day be used for treating patients with chronic memory impairment. Chronic neural

implants that use macrostimulation to treat conditions such as Parkinson’s Disease and Epilepsy

have become increasingly common (Fisher and Velasco, 2014; Schuepbach et al., 2013). As the

use of neural implants moves toward treating cognitive disorders, one advantage of including micro-

stimulation is the precise spatial targeting it affords, allowing for highly-controlled manipulation of

neural circuits. Additionally, microstimulation requires lower levels of current to be delivered, thus

allowing the implant to consume considerably less power. Future studies will be required to fully

understand the stimulation protocols that provide the best cognitive enhancement for a wide variety

of tasks. Large-scale datasets that evaluate the efficacy of macro- vs microstimulation, stimulation

region and hemisphere, precise timing of stimulation relative to endogenous brain states, and more,

will be required to establish the clinical relevance of stimulation for cognitive enhancement.

At present, there is only one relatively large-scale dataset published to date that attempts to

report the effects of (macro) stimulation on memory (Jacobs et al., 2016). Even that study includes

only five patients with entorhinal stimulation for one task (spatial memory) and seven for the other

(verbal memory). Although that study reported an overall negative effect of stimulation on memory,

it is important to note the many differences between it and the present study. In addition to the criti-

cal differences between micro- and macrostimulation described above, the tasks in the two studies

were quite different. Here we investigated memory specificity in a person recognition task, while in

the Jacobs et al., 2016 the tasks required spatial navigation or memorization of a list of words,

which may be differentially affected by stimulation. We also accounted for possible confounds of the

effectiveness of stimulation, such as the precise location of the stimulating electrode and the hemi-

sphere to receive stimulation. Without accounting for those factors, the positive effects of stimula-

tion could be washed out.

In conclusion, our findings suggest that microstimulation, with its anatomical precision, physio-

logic-level currents, and action via axonal projections, holds promise for modification of memory cir-

cuits and thus for the treatment of memory impairments in people suffering from neurological

disorders. More generally, this method may provide a tool for highly specific modulation of neuronal

activity and human behavior (Young and Deisseroth, 2017).

Materials and methods

Study participants
The study subjects were thirteen patients (N = 13)* with pharmacoresistant epilepsy (Figure 1—

source data 1) who met clinical criteria for depth-electrode placement in the entorhinal area for sei-

zure localization and possible surgical cure by resection of the identified seizure focus. Electrodes

fashioned with macro contacts along the shaft for intracranial EEG (Adtech Medical Instrument

Corp., Racine, WI) and with micro wires at the distal end (California Fine Wire, Grover Beach, CA)

were implanted stereotactically with the aid of CT angiography (CTA) and magnetic resonance imag-

ing (MRI) (Fried et al., 1993; 1999). Among the 13 subjects, 40 experimental sessions were con-

ducted (n = 40), in which stimulation was applied in the right entorhinal area (N = 9, n = 19) or the

left entorhinal area (N = 6, n = 21) (Two subjects performed sessions with right and sessions with

left.)**. Language dominance testing was carried out when deemed clinically necessary. Language

dominance was determined either through a standard Wada protocol or through fMRI language

testing (Połczyńska et al., 2015). All research was carried out at the UCLA Medical Center and the

UCLA Institutional Review Board approved the study protocol. All subjects provided written consent

to participate in the study.

* Fourteen subjects participated in the study, however one subject was excluded due to severe

psychological issues that arose during hospitalization and interfered with the patient’s ability to com-

plete any task.

** In one session (participant 13, left-sided stimulation), a small fraction of trials (17/52) received

mistimed stimulation. These trials were excluded from analysis, but the session was included in the

statistics reported in the main text. Additionally, we re-ran all statistics excluding this session entirely

and the results remain nearly identical.
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Behavioral paradigm
Each experiment consisted of three phases: encoding, distraction, and retrieval. During the encoding

phase, participants completed a behavioral task in which they viewed 31 ± 12 novel portraits of peo-

ple (taken from Versluis and Uyttenbroek, 2002) on a computer screen (Figure 1A). People with

epilepsy exhibit a wide spectrum of cognitive ability, due most likely to the effects of disease etiol-

ogy as well as anti-epileptic drugs (AEDs). As such, we titrated the number of photographs shown

for each subject with the guidance of their previous neuropsychological testing, as well as a short 4-

portrait pre-test, using distinct stimuli, before the first experiment to ensure that the participants

understood the task and could follow instructions. For our titrations, we targeted a 60–70% target

acceptance rate to avoid ceiling or floor effects. During each encoding phase, for half of the images

stimulation was applied for one second during the fixation period preceding image onset

(Figure 1A–B); the subset of images to receive stimulation was selected randomly for each partici-

pant to avoid potential confounds based on stimulus complexity or order effects. After viewing the

novel photographs, subjects performed a distractor task for 30 s in which single digits were pre-

sented serially, one per second, and subjects identified them as odd or even. This task is a non-mne-

monic distractor task that has been shown to increase the demand for hippocampal involvement

during the subsequent test phase (Stark and Squire, 2001). Finally, during the test phase, the same

images from the encoding phase (‘targets’) were intermixed with an equal number of images of simi-

lar-looking portraits of different people (‘lures’) and presented one at a time (Figure 1A,C). In the

test phase, participants were asked to identify whether each image was ‘new’ or ‘old’ by pressing a

button. Participants also reported subjective confidence scores for each image, but these data are

not presented. Target images were classified as ‘remembered’ if the subject correctly accepted the

target as seen before and correctly rejected the corresponding lure. Otherwise, images were classi-

fied as ‘missed’.

Behavioral performance outcomes were studied in four measurements: the proportion of pictures

remembered, the proportion of targets accepted, the proportion of lures rejected, and discrimina-

tion index (DI), which is the proportion of correctly accepted targets minus the proportion of incor-

rectly accepted lure images (Glosser et al., 1998; Suthana et al., 2015).

Microstimulation protocol
Monopolar constant-current microstimulation was applied using a BlackRock R96 Micro-Stimulator

(BlackRock Microsystems, Salt Lake City, UT). The stimulation electrodes consisted of 100 mm diame-

ter Formvar-insulated Platinum-Iridium (Pt/Ir) micro wires with the insulation removed from 1 mm

around the tip, implanted into the right or left entorhinal area (Fried et al., 1999). Stimulation elec-

trode impedance was measured immediately before testing to ensure it remained below 60 kW.

Impedance values averaged 25.2 ± 13.9 kW. 150 mA cathodic-first, biphasic microstimulation was

applied with a pulse width of 200 ms and an inter-pulse interval of 100 ms. Theta burst microstimula-

tion pulse trains consisted of 4 such pulses at 100 Hz every 200 ms (Figure 1B), as this protocol has

previously been demonstrated to be optimal for eliciting LTP in hippocampal slices from rat

(Larson et al., 1986). This stimulation protocol resulted in a charge delivery of 30 nC per phase and

a charge density of 9.32 mC/cm2, well below the generally accepted upper safety limit of 100–150

mC/cm2 for stimulation of neural tissue through Pt/Ir electrodes (Merrill et al., 2005; Rose and Rob-

blee, 1990). Stimulation was applied for 1 s (5 pulse-trains composed of 4 pulses each) beginning at

a time selected randomly from a uniform distribution between 2.2 and 2.7 s before picture presenta-

tion. All stimulation parameters were kept constant across patients, with the exception of precise

electrode localization. Although two patients received stimulation on each side, the stimulating elec-

trode was held constant throughout each experimental session. Electrode placements were con-

firmed post-surgically with co-registration of CT scans with preoperative MRI (See below; Figure 2

and Figure 2—figure supplement 1). Sites of stimulation for each participant are summarized in Fig-

ure 1—source data 1.

Brain imaging parameters
MRI data were acquired on a Siemens Magnetom Prisma 3 Tesla system housed in the Department

of Radiology at UCLA. The whole brain MRI images were collected over 176 axial slices using a T1-

weighted gradient echo sequence (TR 11 ms; TE 2.81 ms; flip angle 20 degrees; matrix size 256 �
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256 mm; FOV 256 mm; in-plane resolution 1 � 1 mm; slice thickness 1 mm; voxel size 1 mm isotro-

pic). A high-resolution T2 weighted structural scan was also acquired for each subject (TR: 5300 ms;

TE: 70 ms; flip angle: 178 degrees; matrix size: 500 � 500 mm; FOV: 200 mm; in-plane resolution:

0.4 � 0.4 mm; slice thickness: 3 mm, voxel size: 0.4 � 0.4 � 3 mm, 19 slices).

Spiral computed CT scans were performed on a 64-row multi-detector CT scanner. All scans had

a pre-contrast series and single phase, post-contrast acquisition, synchronized using bolus tracking

technique for arterial phase. Omnipaque 350 contrast media volume was set as 100 cc with an infu-

sion rate of 3.0 cc/s.

Electrode localization
A high-resolution post-operative computed tomography (CT) scan was co-registered to a pre-opera-

tive whole brain magnetic resonance imaging (MRI) and high-resolution MRI (Figure 2; Figure 2—

Figure supplement 1) using BrainLab stereotactic localization software (www.brainlab.com;

[Gumprecht et al., 1999; Schlaier et al., 2004]) and FSL FLIRT (FMRIB’s Linear Registration Tool

[Jenkinson et al., 2002; Jenkinson and Smith, 2001]). Medial temporal lobe regions (entorhinal,

perirhinal, and parahippocampal cortices, and hippocampal subfields CA23DG [CA2, CA3, dentate

gyrus], CA1, and subiculum) were delineated using the Automatic Segmentation of Hippocampal

Subfields (ASHS [Pluta et al., 2012; Yushkevich et al., 2010]) software using boundaries determined

from MRI visible landmarks that correlate with underlying cellular histology (Amaral and Insausti,

1990; Duvernoy and Bourgouin, 1998). In some cases, pixels that were clearly misplaced (e.g. sin-

gle pixels from one region falling well within another or pixels that were entirely outside the MtL)

were modified for aesthetics. In no case did this modification affect the outcome of the electrode

localization procedure. In a single subject, whose electrode was farther anterior than ASHS can

accommodate, subfields were delineated manually, with reference to brain atlases (Amaral and

Insausti, 1990; Duvernoy and Bourgouin, 1998). White matter and cerebral spinal fluid areas were

outlined using FSL FAST software (Zhang et al., 2001). Together, similar methods have been used

previously to localize microelectrodes and investigate structural and functional dissociations within

human medial temporal lobe subregions (Ekstrom et al., 2008; Suthana et al., 2009; Zeineh et al.,

2017). A single 100 mm microelectrode at the distal tip, 3 mm from the most distal macro- contact,

was used for microstimulation. Macro- and micro-electrode contacts were identified and outlined on

the post-operative CT scan. To confirm white matter location of microelectrodes, the high-resolution

MRI, with ASHS and FAST segmentation results, was overlaid with the co-registered electrode (Fig-

ure 2, Figure 2—figure supplement 1). For group-level electrode placements, individual localiza-

tions were mapped onto a standard MNI brain and visualized using the BrainNet Matlab toolbox

(Figure 2—figure supplement 2) (Xia et al., 2013).

A neurologist reviewed clinical recordings in real-time while stimulation was applied to ensure

absence of after-discharges. Participants did not report noticing any effects of stimulation, nor did

they exhibit any seizures during pre-testing or task execution.

Statistical analysis methods
Data were analyzed using SPSS (IBM Corporation, Armonk, NY) and custom scripts developed in

Matlab (Mathworks, Natick, MA). All statistical models were implemented in SPSS using Generalized

Estimating Equations (GEEs), which are a class of regression marginal models for investigating the

relationships between clustered response data and outcome measures in a multivariate manner and

a within-subject repeated measures design (Data and SPSS model definitions are in Figure 3—

source data 1–2, Source code 1–3; Matlab code is in Source code 4). In our dataset, each subject

performed the task a variable number of times (range: 1–7), due to circumstances that were beyond

our control and unrelated to the experiment itself (most notably, the length of a patient stay in the

hospital is determined by clinical criteria and can vary from several days to several weeks). Due to

this variability, we sought a class of models that could accept different numbers of data points from

each subject—without sacrificing the statistical power that could be derived from having multiple

data points from most subjects—and GEEs were well-suited to the task (Gardiner et al., 2009;

Gueorguieva and Krystal, 2004; Hardin, 2005; Hubbard et al., 2010; Subramanian and O’Malley,

2010).
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Four session-level behavioral metrics were examined: the proportion of pictures remembered, DI,

proportion of targets accepted, and proportion of lures rejected. For each of these, we computed

the effect of stimulation on performance for each session by computing the metric for the subset of

non-stimulated trials and subtracting that from the metric computed for the subset of stimulated tri-

als. We implemented the models with participant identity as a within-subject variable, independent

correlation matrices with robust covariance estimates, and identifying the metrics as linear scale

responses, due to their approximately normal distributions. We included stimulation hemisphere—

and later whether or not the stimulation electrode was in the angular bundle—as factors. We

included model terms for these main effects, and an interaction term when applicable. Model statis-

tics are reported in Figure 4—source data 1. Error bars in the figures (3A, 4A-D) denote Wald 95%

confidence intervals for the estimated means.

For the trial-by-trial model, we selected a binomial logit model, as we had a two-level response

variable (remembered vs missed), and used exchangeable correlation matrices. In addition to stimu-

lation hemisphere, stimulation condition, and the interaction between these, we included whether

the target was presented before the lure as a factor, and normalized trial number (trial number

divided by the number of trials in the set) as a covariate. Model statistics are reported in Figure 3—

source data 3. Error bars in Figure 3C denote Wald 95% confidence intervals for the estimated

means.

Correction for multiple comparisons was performed using the Holm-Bonferroni method. To be as

conservative as possible, we included all statistical tests that evaluated how stimulation’s effect on

memory depended on hemispheric and/or regional effects in a single correction test. This included

the a priori tests from each figure panel in Figures 3 and 4. All tests that were originally reported as

statistically significant at an alpha level of 0.05 were found to remain significant after this correction.

Original, rather than corrected, p-values are reported in the text.
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