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Abstract

There is increasing interest in the plant microbiome as it relates to both 

plant health and agricultural sustainability. One key unanswered question 

is whether we can select for a plant microbiome that is robust after 

colonization of target hosts. We used a successive passaging experiment to

address this question by selecting upon the tomato phyllosphere 

microbiome. Beginning with a diverse microbial community generated from

field-grown tomato plants, we inoculated replicate plants across five plant 

genotypes for four eight-week long passages, sequencing the microbial 

community at each passage. We observed consistent shifts in both the 

bacterial (16S amplicon sequencing) and fungal (ITS amplicon sequencing) 

communities across replicate lines over time, as well as a general loss of 

diversity over the course of the experiment, suggesting that much of the 

naturally observed microbial community in the phyllosphere is likely 

transient or poorly adapted within the experimental setting. We found that 

both host genotype and environment shape microbial composition, but the 

relative importance of genotype declines through time. Furthermore, using a

community coalescence experiment, we found that the bacterial 

community from the end of the experiment was robust to invasion by the 

starting bacterial community. These results highlight that selecting for a 

stable microbiome that is well adapted to a particular host environment is 

indeed possible, emphasizing the great potential of this approach in 
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agriculture and beyond. In light of the consistent response of the 

microbiome to selection in the absence of reciprocal host-evolution (co-

evolution) described here, future studies should address how such 

adaptation influences host health.

Keywords

Microbiome assembly; microbiome selection; microbiome engineering; 

experimental evolution; phyllosphere; Solanum

Significance Statement

There is great interest in selecting for host-associated microbiomes 

that confer particular functions to their host, and yet it remains unknown 

whether selection for a robust and stable microbiome is possible. Here, we 

use a microbiome passaging approach to measure the impact of host-

mediated selection on the tomato phyllosphere (above ground plant 

surfaces  ) microbiome. We find robust community responses to selection 

across replicate lines that are shaped by plant host genotype in early 

passages, but are genotype-independent in later passages. Work such as 

ours is crucial to understanding the general principles governing 

microbiome assembly and adaptation, and is widely applicable to both 

sustainable agriculture and microbiome-related medicine. 
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Introduction    

The study of microbiomes (diverse microbial communities and their 

collective genomes) spans both basic and applied research in human 

health, agriculture, and environmental change. As our understanding of the

ability of the microbiome to influence host health and shape host traits 

deepens, there is increasing interest in selecting and/or designing 

microbiomes for specific traits or functions. Such trait-based selection of 

microbiomes has the potential to shape the future of agriculture and 

medicine [1–3]. In agriculture, below-ground microbiota have already proven 

capable of shifting the flowering time of plant hosts [4], enhancing drought 

resistance [5, 6], improving plant fitness [7], and even altering above-ground

herbivory [8]. However, long-term, repeatable success of future efforts will 

rely on a fundamental understanding of the assembly of, selection within, 

and co-evolution among microbiota within these communities. One of the 

challenges facing successful, rational microbiome manipulation and 

assembly is disentangling the forces naturally shaping the communities, 

including both host characteristics and microbial immigration on community 

stability. For example, in both humans and plants, there is conflicting 

evidence as to the relative importance of the environment versus host 

genotype in shaping the microbiome [9–17], and dispersal has been shown 

to override host genetics in an experimental zebra fish system [18]. 

One powerful but under-utilized approach to understand and 

experimentally control for the factors shaping microbiome composition and 
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diversity is experimental evolution. Measuring changes of populations or 

communities over time under controlled settings in response to a known 

selection pressure has proved a powerful force in gaining fundamental 

understanding of both host-pathogen (co)evolution [19] and microbial 

evolution [20]. Here, we harness an experimental evolution approach in 

order to study how an entire microbial community can be selected upon in 

a plant host environment that varies across disease resistance-associated 

genotypes. We test the fundamental yet relatively untested assumption 

that a microbiome can be selected to adapt to its host in a robust fashion. 

We do so in the absence of selection on a particular plant-associated trait 

(e.g. flowering time or fecundity) in an attempt to capture how an entire 

community might naturally change over time to become well adapted to a 

host environment. To do this, we employ a microbiome passaging approach 

using the phyllosphere microbiome of tomato (Solanum) as a model system 

to select for a community that is capable of growth in this relatively 

oligotrophic environment and is resilient to perturbation via competition with

a non-‘adapted,’ but more diverse community. The phyllosphere, defined as 

the aerial surfaces of the plant, is a globally important microbial habitat [21],

and can shape important plant traits such as protection against foliar disease

[22, 23] and growth [24, 25]. Successful trait-based selection on the 

phyllosphere (previously undemonstrated) could therefore allow for 

enhancement of plant health, but this critically depends on the ability to 

select for a well-adapted microbial community that is relatively stable 
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against invasion, particularly in open environments in which dispersal from 

neighboring hosts or the surrounding environment is inevitable. 

We collected a diverse phyllosphere microbiome from tomatoes grown 

in an agricultural setting and transplanted it onto green-house grown plants 

using a transplantation method previously shown to be effective for lettuce

[26]. We serially passaged this diverse microbiome on each of four cohorts of

tomato plants (six lines per cohort) of five different genotypes (pairs of near 

isogenic S. lycopersicum genotypes that differed at known disease resistance

loci, as well as a wild tomato accession, S. pimpinellifolium) for a total of 30 

weeks. On each plant, during each passage, community assembly and 

dynamics might be driven by neutral processes or reflect positive or negative

selection of specific taxa by the plant, dispersal of taxa from the greenhouse 

environment, and/or the other microbial taxa present. We therefore sought 

to characterize the relative importance of neutral versus deterministic 

processes both computationally using a neutral model, and empirically using 

community coalescence experiments [27] in which communities from 

different passaged lines are combined together and re-inoculated onto host 

plants in a common garden experiment. Overall, we were able to measure 

and characterize the response of the phyllosphere microbiome to selection 

in the plant host environment under greenhouse conditions, and our 

findings suggest selection for a stable and well-adapted plant-associated 

microbiome.
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Results

Serial passaging experiment 

A diverse starting inoculum was collected from field grown, mature 

tomato plants. This field-microbiome was spray inoculated onto 30 tomato 

plants of 5 different genotypes, with six replicates each (Figure 1a). Two-

week old tomato plants were spray-inoculated once per week for five 

weeks, and then sampled in their entirety ten days after the final 

inoculation (Figure 1b). The phyllosphere microbiome of each plant was 

then individually passaged on these genetically distinct hosts over the 

course of four eight-week long passages; P1, P2, P3, and P4 (Figure 1a; see

methods for details). Microbiomes were not pooled across plants within a 

given plant genotype, resulting in 30 independent selection lines. Control 

plants were inoculated with an equal volume of either heat killed inoculum 

(P1) or sterile buffer (subsequent passages) every week. At the end of each

passage, bacterial density was measured and normalized to the weight of 

each plant (Figure 1c), and communities were sequenced using 16S rRNA 

amplicon sequencing. 

We first measured the impact of host genotype on bacterial 

community structure (Figure 2a). Using Bray-Curtis dissimilarity measures, 

we performed permutational multivariate analysis of variance tests 

(PERMANOVA) at each passage   using the Adonis function in the Vegan R 

package [28, 29]. We   found that in P1,   plant genotype explains 29% of 

dissimilarity between microbiomes (F4, 27 =2.331  , p=0.003). This result is 
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robust to the removal of an outlying sample (see supplement for statistical 

results of that model). In P2, plant genotype similarly explains 28% of the 

variation in bacterial community dissimilarity  (F4, 24 =1.906, p=0.004).  

However, genotype becomes an insignificant driver of community 

composition in both P3 (R2=0.18, F4, 23= 1.018, p=0.378) and P4 (R2=0  .09, 

F3, 19= 0.527  , p=0.937). The five genotypes can be classified as pathogen 

“resistant” or “susceptible” based on known loci, and despite the overall 

effect of genotype at P1 and P2, there was no significant effect of disease 

resistance on Bray-Curtis dissimilarities either overall or in any single 

passage. In some passages, an unequal number of samples across 

genotypes were analyzed due to exclusion of samples with poor 

sequencing quality. In order to account for this and ensure the genotype 

effect observed in P1 and P2 was not due to heterogeneous dispersion of 

samples within a group, we tested for homogeneity of multivariate 

dispersions using the betadisper function in Vegan [30, 31]. The 

betadispersion results are insignificant in both P1 (p=0.234) and P2 

(p=0.231), indicating that the significant effects of genotype observed 

above are likely not an artifact of dispersion and indeed reflect biological 

differences.  To further test the robustness of these findings, we removed 

replicate lines from accession 2934 and re-analyzed the data. We did so 

because lines from accession 2934 were lost after P3 due to a stem rot 

fungal pathogen present in the original inoculum that seemingly only 

infected this genotype. Significance of genotype in all passages is 
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unchanged by exclusion of these lines from the dataset (see supplement 

for statistical details).

We next sought to determine if there were more subtle influences of 

host genotype on the community that were not uncovered through 

analyzing Bray-Curtis dissimilarity alone. From the original inoculum 

sample, we identified ten Operational Taxonomic Units (OTUs) using linear 

discriminant analysis effect-size (LEfSe) [32] that were significantly 

associated with particular genotypes in P1 and P2. We compared their 

presence/absence at the end of P4 to those OTUs that were not found to be

associated with genotype. Interestingly, those OTUs that were significantly 

associated with particular genotypes at the start of the experiment were 

significantly more likely to be present at the end of the experiment than 

those not associated with genotype (Fisher’s exact test, p=0.013), 

suggesting that the loss of genotype effect observed was not driven by loss

of particular genotype-associated OTUs. 

In addition to genotype effects, we were interested in what other 

factors were driving the observed change in community composition. Using

a multivariate PERMANOVA  ,   w  e found that the both the   number of 

passages on tomato plants and sample type (e.g. experimental, control, or 

inoculum  )   strongly shaped microbial community diversity (  Supplementary 

Figure   S  1  :   Passage:   R  2      =  0.408,   F  3, 110  =   27.764  , p=   0.001  ; Sample Type: 

R  2      =0.043, F  5, 110  =   4.379  , p=   0.001  ).   Again, we find   the results of a 

betadispersion test are insignificant   for both passage and sample type, 
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indicating that the observed significant effects are   likely   not   an artifact of 

unequal dispersion   (  Passage:   F  3,11  2  =   1.501  ,   p=0.201;     Sample Type:   F  2,113  =   

1.457, p=0   0.213  ).     When inoculum and control samples are removed from 

analysis, there remains both   a significant effect of passage number and   an   

overall effect of plant genotype   (  Passage:   R  2      =   0.514,     F  3, 89  =   34.191  , 

p=0.001  ;   Genotype:   R  2      =  0.040,   F  4, 89  =   1.999  , p=0.001  )  .   In this model  ,   we 

took into account that   individual   microbiome lines were passaged and 

sampled   at each   passage     by performing the   multivariate PERMANOVA with 

Line     ID   used   as   strata  .   Note: we were unable to conduct a true nested time-

series analysis with our multivariate data due to limitations of currently 

available statistical tests (see methods for specific model  s   and further 

discussion  )  .   As above,     we   performed a   betadispersion test   and found   no   

significant effect of dispersion   regarding     genotype   or   passage   (  Genotype: 

F  4, 92  =   0.725  , p=   0.58; Passage:   F  3, 93  =   2.359, p=   0.077).   Taken together  , 

the results     of these models   indicate that the   reported findings   are robust   to

differences   arising due to   both repeated sampling of the same line  s   and 

unequal sample sizes   between genotypes and passages.    

We next sought to determine the role of dispersal of taxa amongst 

tomato plants on the greenhouse bench in shaping the phyllosphere 

microbiome over time. We did this by directly comparing the communities 

found on experimental and control plants. We calculated the proportion of 

OTUs on control plants that were from the inoculum that was sprayed onto 

experimental plants. At every passage, over 50% of inoculum OTUs were 
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detectable on control plants, suggesting that dispersal in the greenhouse 

was occurring. Despite this, control and experimental plants are found to 

host significantly different communities at every passage (PERMANOVA: all 

p-values <0.04) and overall have significantly lower bacterial abundance 

(Figure 1c). Taken together, these data suggest that the effects of low 

levels of dispersal of taxa amongst plants in the experiment (as might be 

expected due to the plants’ proximity to one another and their 

randomization on the greenhouse bench) are minimal relative to the 

effects resulting from inoculations. 

To better understand how the original, diverse, field inoculum 

changed over four passages on plants in the greenhouse, we calculated the

percentage of OTUs in the original inoculum that were detectable over the 

course of the experiment (Figure 2b, green diamonds). At the end of P1, 

92% of the field inoculum OTUs were still present on the plants, but by P4, 

this was reduced to 29%. We then calculated if the decrease in original 

community member diversity was the result of replacement by non-

inoculum taxa (i.e. those that colonized plants over the course of the 

experiment). In this case, we observed that the proportion of sequencing 

reads (divided by total reads) representing the original inoculum OTUs 

remains above 78% (Figure 2b, box plots). This indicates poor persistence 

of the majority of the original taxa from the field-grown plant inoculum, but

those that remained seemed to dominate the community. This also 

suggests that a relatively small percentage of the community was made up

11

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253



of OTUs that colonized plants from the greenhouse environment. 

Furthermore, there is no visual indication (heat map presented in 

Supplemental Figure S  2) that a large portion of these non-inoculum OTUs 

arrived and persisted on the plants for multiple passages. Of note, some 

OTUs considered “non-inoculum” were likely present in the initial inoculum,

but in too low of abundance to detect. To account for the impact of the 

small percentage of arriving species on community composition, we re-

analyzed the dataset using only those OTUs that were observed to be 

present in the initial inoculum (Supplemental Figure S3a). Using the same 

multivariate PERMANOVA model  s   as   above   with permutations limited to 

within Line ID  s  , we found that   passage number and genotype   remain 

significant drivers   of community dissimilarity   (Passage: R  2      =   0.546, F  3 87  =   

38.192, p=0.001; Genotype: R  2      =   0.039  , F  4, 87  =   2.062  , p=  0.001  ). 

We next measured changes in bacterial density and diversity over 

the course of passaging and across lines. In P1, we estimated the fold 

change of bacterial abundance on control plants that were sprayed with 

heat-killed inoculum, and found an average change of 0.76, which is 

significantly lower than the averaged 11-fold change for experimental 

plants which received live inoculum (Welch’s Two sample T-Test, 

p<0.0001). Using   a   repeated measures ANOVA  , w  e found an overall   

significant decrease in both   OTU richness and alpha diversity over time 

across all plant genotypes (  p<0.001   for both  )  .   Significant differences 

between each passage     were   determined by   multiple comparisons of 
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means  , and corrected P values   (  using   Bonferroni correction  s  ) are   

illustrated on   Figure 2c-  d and Supplemental Figure S3b  .   Neither genotype 

nor overall disease resistance had a significant effect on richness and 

diversity at any passage. Importantly, the overall drop in diversity from P1 

to P4 does not correspond to a decrease in overall bacterial abundance on 

plants (see Figure 1c). To test whether this decrease in richness and 

diversity could be driven by replacement of slower-growing taxa with fast-

growing competitors, we analyzed 16S rRNA mean copy number as an 

indicator of bacterial ecological strategies [33–35]. At each passage, we 

analyzed taxa that made up 95% of total reads. For each taxon, we 

recorded mean 16S copy number for that particular family using the rrnDB

[36] and calculated “copy number to relative abundance” ratio for each 

taxon at each passage (1 through 4). We found that there is no significant 

effect of Passage on “copy number to relative abundance” ratio (ANOVA: 

F3, 54=0.735, p=0.536). There is also not a significant effect of Passage on 

“copy number” (where copy number is not normalized to relative 

abundance of that taxon; F3, 54=0.738, p=0.534). Finally, although 

passaging was performed in a control temperature greenhouse, outside 

high and low temperatures and humidity all varied significantly across 

passages (Supplemental Figure S  4; ANOVA P<0.001 for all measures), 

which may have impacted the observed differences in both abundance and

growth across passages. 

With the knowledge that communities were drastically changing over 
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time, we sought to determine if the rate at which the communities were 

changing was consistent. To do this, we calculated Bray-Curtis dissimilarity

of microbiomes in each passage to P1 microbiomes (Figure 2e). As we 

similarly observed through ordination plots in Figure 1, the communities 

become more dissimilar to P1 over time. We then fit both a linear and 

quadratic regression to these data, and we found that both were 

significant, but there is a better fit of a quadratic model than linear as 

evidenced by higher R2 and lower AIC values (Linear R2 0.774, AIC -

3563.231; Quadratic R2 0.8379, AIC: -4414.637). When the regression 

models are compared using an ANOVA, we find that the quadratic model is 

a significantly better fit for the data (p<0.0001), suggesting that the rate 

of community change may be slowing down. However, when we calculate 

Bray-Curtis dissimilarity across passages for each microbiome line, we 

observe no significant effect of “passage comparison” on Bray-Curtis 

dissimilarity (Supplemental Figure S5; ANOVA: F1, 17  = 0.332  , p= 0.572  ), 

suggesting that the community change may be slowing with respect to 

comparison to P1, but rate of change from one passage to another seems 

more constant. From the same model, w  e also find a moderately significant

effect of “Line ID” on dissimilarity, indicating that some lines may be have 

changed at a different rate than others (F26, 17  = 1.396  , p= 0.052  ).   We did 

not find   there to be a significant   interaction between LineID and 

Comparison (  F  20, 17  =   1.396, p=0.246). 

We next observed changes in relative abundance of specific taxa 
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within lines over time (Figure 3, top 100 OTUs plotted). At each passage, 

there are numerous taxa that are differentially abundant compared to 

other passages. In some cases, there was evidence for replacement of 

OTUs within taxonomic groups. For example, within the family 

Pseudomonadaceae, there are three OTUs that are differentially abundant 

between P1 and P4. 

Two Pseudomonads (OTU0010 and 0004) are in significantly higher relative

abundance in P1 compared to P4 (paired samples Wilcoxon test: 

p<0.0001). As visualized in Figure 3, these taxa gradually decrease in 

relative abundance over the course of passaging. An unclassified 

Pseudomonadaceae (0002) is significantly more abundant in P4 as 

compared to P1 (paired samples Wilcoxon test: p<0.0001). All three OTUs 

are present in the initial spray inoculum, although OTU0002 represents 

only 0.03% of rarified spray inoculum reads whereas Pseudomonas 

OTU0004 represents 27% and Pseudomonas OTU0010 represents 21%. 

To better understand how bacterial community dynamics were 

changing over the course of the four passages, we utilized a recently 

developed cohesion metric to quantify connectivity of a microbial 

community [37]. In brief, community cohesion is a computational method 

used to predict within-microbiome dynamics by quantifying connectivity of 

microbial communities based on pairwise correlations and relative 

abundance of taxa. Changes in community cohesion over time are 

suggestive of biotic interactions, where connectivity can arise from either, 
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or both, positive and negative interactions resulting from cross-feeding 

(positive) or competition (negative) as well as environmental co-filtering. 

When applied to our dataset (Supplemental Figure S6a), we find a minor 

but significant increase in positive cohesion values (among 200 

permutations) from P1 to P4 (R2=0.19, p<0.0001). Consistent with positive 

cohesion values showing increased biotic interactions, there are also 

increasingly negative cohesion values from P1 to P4, which again is minor 

but significant (R2=0.257, p<0.0001). To further test our hypothesis that 

community change was due to deterministic processes, a null prediction 

was generated based on the known community composition of inocula 

applied at each passage, and we compared our observed communities to 

the predicted neutral community using a recently developed approached

[38] (see methods for complete details). We found that Bray Curtis 

dissimilarities between predicted (null) and observed communities 

moderately increases over time (R2=0.261, p<0.0001; Supplemental Figure

S6b), as would be expected if community change over the course of the 

experiment is the result of deterministic rather than stochastic processes.

 Further evidence for a shift away from neutrality can be observed 

using occupancy- abundance curves in which the occupancy, or proportion of

individuals in which an OTU is found, is plotted against its relative abundance

(Figure 4). A positive correlation between the two is expected to occur by 

chance, as observed in a neutrally assembled community, but a change in 

distribution of individuals may indicate a community shaped by deterministic
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processes [39, 40]. When our data are visualized in this manner, we see that 

in P1 (Figure 4a), the most abundant taxa also occupy the highest proportion

of plants, as you would expect in a neutral community not undergoing niche 

selection. However, this trend collapses by P4 (Figure 4d) with many 

abundant taxa occupying far fewer individuals than would be expected under

neutrality. When regressions are fit to these distributions, there is an overall 

decrease in correlation between occupancy and abundance, regardless of 

whether a linear or polynomial regression is used. Fit to a linear model 

decreases from an R2 of 0.88 at P1 to 0.60 at P4. There is a significant effect 

of Phyla on the linear model fit across all passages (ANOVA: F4, 12 = 5.318, p=

0.0107). Overall, a polynomial (n=4) regression is a better fit to the data (P1:

R2=0.96; P4: R2=0.66), but the effect of Phyla in this case is insignificant 

(ANOVA: F4, 12 = 2.566, p= 0.0924).  

We next designed an experiment in which we could explicitly test the

robustness of the shift away from neutrality by comparing empirical results

to model predictions. The experimental design (Supplemental S7a) was to 

pool together all lines from the end of P4 and re-inoculate this single 

inoculum onto replicate tomato plants across genotypes, mimicking the 

inoculation procedure from the first passage and allowing for a direct 

comparison to neutral models assuming a shared species pool. Plants that 

received the P4-combined inoculum had significantly different bacterial 

community composition than the P4 plants themselves (48% of variation 

explained, P=0.001; Supplemental S7b). Unlike in P1, we did not observe 
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an effect of genotype on the communities assembled from this combined 

inoculum (p=0.565). We also found that the majority of the variation 

between samples (76%, p=0.001) was driven by an exceptional situation of

introduction of a greenhouse taxon (OTU0003) to the plants (Supplemental 

S7c). To test if neutral processes were driving community structure in this 

experiment, we applied the Sloan neutral community model [41] to our 

data. This model assumes equal dispersal amongst hosts (and thus it could

not be used for analysis of P2-P4 data, as microbiomes were passaged 

without pooling.) In this case, as with P1, the assumption of equal dispersal

potential among plants is met. In 200 iterative predictions, the fit of the 

neutral model is significantly higher in P1 (R2=0.87  0.01) than P4-

Combined (R2=0.52  0.05; Student’s t-test, p-value < 0.01), suggesting 

that neutral processes are dictating the community structure after the first 

passage, but not in the P4-Combined experiment (Supplemental S7d). We 

also see the occupancy-abundance relationship breakdown in P4-Combined

when compared to P1 directly (Supplemental S7e). 

Mycobiome 

In an effort to understand how the fungal community changed overall from 

the first to the final passage, we used ITS amplicon sequencing to describe 

the fungal communities across lines in P1 and P4. We observe patterns that

are similar in some regards to the bacterial communities. Using 

multivariate PERMANOVA model  s   as   were performed   for the bacterial 
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dataset, w  e again found both   a significant effect of passage number and 

sample type   on fungal communities (Supplemental Figure S8a; Passage: 

R  2      =   0.4  2,   F1, 43  = 34.3948  , p=0.001; Sample Type: R  2      =   0.048,   F  2, 43  =   1.976, 

p=   0.043  ). The   significant effect of passage number remained after 

inoculum, control samples, and accession 2934 were removed and LineID 

were   used as strata for permutations   (Supplemental Figure S8b; R  2      = 0.472,

F  1, 38  =   34.021  , p=0.001  ).   However, unlike in the bacterial community 

analysis, we found no significant differences in community composition 

between control and experimental plants when this was tested at each 

passage using a series of univariate PERMANOVAs (  P1 F1, 21= 2.1057, R2= 

0.09113, p=0.066;   P4 (F1, 24=0.6479, R2= 0.02629, p=0.612).   Additionally, 

we did not find an   effect of host genotype at either passage (F4, 16= 

0.87756, R2= 0.17992, p=0.595; F3, 19=0.92402, R2= 0.12732, p=0.53).   We 

also measured a significant decrease in both OTU richness (paired samples

Wilcoxon tests, p=0.0316) and Shannon’s diversity (p=0.0067) between P1

and P4 across all genotypes (Supplemental Figure S8c, d). In all analyses, 

there were no significant effects of disease resistance. Finally, analysis of 

the five most common taxa overall identified a single OTU, identified as 

Rhodosporidiobolus nylandii, which was not detectable in the inoculum or 

P1 but which dominated the fungal community in P4 (Supplemental Figure 

S8e). 

Testing microbiome adaptation using community coalescence
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The similarity of changes in community structure both across replicates 

and genotypes over the course of the passaging experiment (Figures 1-4) 

led us to predict that these microbiomes were becoming well adapted to 

the local plant conditions (by which we mean that the taxa present were 

positively selected for over time). To further determine if the community 

changes we observed from P1 to P4 were due to habitat selection rather 

than neutral processes, we employed a community coalescence 

competition experiment. In this experiment (Figure 5a), phyllosphere 

communities from the end of P1 (pooled across all lines) and the end of P4  

(again, pooled across lines) were inoculated onto a new cohort of plants, 

either on their own or in an approximately 50:50 mixture of live cells (as 

determined using live/dead PMA treatment followed by ddPCR; see 

methods for complete details). To ensure that our method for the mixed 

inoculum was effective, we sequenced multiple replicates of the P1, P4, 

and Mix inocula and began by comparing just these original inoculum 

samples. We found that source explains 88% of dissimilarity amongst 

inocula (PERMANOVA: F2, 8= 30.196, p=0.002). A betadispersion test was 

insignificant  , indicating differences in inoculum samples were not due to 

heterogeneous   variance   (F  2,8  =   1.536, p=   0.28)  .      To confirm that the Mix 

inoculum was significantly different than both P1 and P4 separately, we 

compared P1 and Mix inocula directly and found that 75% of difference 

between samples can be explained by this variable (PERMANOVA: F1, 5= 

15.138, p=0.022). Similarly, when P4 and Mix are compared directly, 74% 
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of variation in the community is explained (PERMANOVA: F1,5=13.999, 

p=0.032). This consistent difference among the starting   inocula   allowed us 

to compare the communities colonizing plants from each treatment. 

We first measured final bacterial abundance and found that 

colonization was lower on these plants than in previous experiments, but 

did not significantly differ among treatments (ANOVA: F3, 32= 0.971, 

p=0.419), apart from control plants, where bacterial colonization was 

greatly reduced (Figure 5b). We then compared bacterial communities 

again using 16S amplicon sequencing. Plants that received P1 inoculum 

have distinctly different communities than those that received either P4 or 

the Mixed inoculum (Figure 5c). Plants that received the Mixed inoculum 

clustered together with those receiving P4 and were relatively 

indistinguishable. Using a multivariate PERMANOVA  ,   w  e determined that 

inoculum source can explain 45% of Bray-Curtis dissimilarity amongst 

samples (F2, 31  = 13.486  , p=0.001), but   there was no effect of plant 

genotype (R  2      =  0.034,     F2, 31  = 1.017  , p= 0.376  ; although note that only three 

genotypes were used in this experiment). In a pairwise analysis between 

P1 and Mixed, inoculum source explains 39% of the community 

dissimilarity (PERMANOVA: F1, 22= 13.988, p=0.001). In contrast, inoculum 

source does not explain any significant variation in dissimilarity amongst 

P4 and Mixed inoculum plants (PERMANOVA: F1, 22= 2.4378, p=0.103). 

Together, these results suggest that the plants receiving the 50:50 mixed 

inoculum were indistinguishable in community composition from those 
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receiving the pooled, P4 passaged microbiomes, and thus that these 

selected communities were not invadable by the microbial communities 

from the start of the experiment. Consistent with our results from the 

passaging experiment itself, alpha diversity was found to be highest in P1 

plants compared to both P4 and Mixed plants (Figure 5d). Alpha diversity 

did not differ amongst communities colonizing plants from the P4 and 

Mixed inoculums, despite being different between the two inocula 

themselves. We also examined compositional makeup of the communities 

(Figure 5e), and consistent with P1 to P4 passaging results, we see 

differentially abundant taxa between groups (Supplemental Figure S9). 

Again, two Pseudomonas OTUs are more abundant in P1 plants as 

compared to P4 and Mix, in which there is an unclassified Pseudomonaceae

that is higher in relative abundance. 

Discussion         

The impact of a microbiome on host health and fitness depends not 

only on which microbial organisms are present in the community, but also 

on how they interact with one another within the microbiome [42]. 

Unlocking the great potential of microbiome manipulation and pre/probiotic

treatment in reshaping host health will therefore depend on our ability to 

understand and predict these interactions. We took a microbiome 

passaging approach, inspired by classic experimental evolution, to test 

how selection for growth in the tomato phyllosphere under greenhouse 
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conditions would impact microbiome diversity and adaptation across 

genotypes that differ in disease resistance genes. 

Across independently selected lines passaged on five tomato 

genotypes, we observed a dramatic shift in community structure and 

composition, accompanied by a loss of alpha diversity (Figures 1 and 2). We 

cannot differentiate the relative contribution of evolutionary versus 

ecological change to the communities, but we expect both to have 

occurred within the time scale of these experiments. We also found that 

host genotype shapes bacterial community composition early in passaging 

(P1 and P2), explaining over 24% of variation amongst samples, but 

diminishes over time. We had originally predicted that disease resistance 

would impact the microbiome as a whole as a result of differing interactions 

with the host immune system. Interestingly, however, we did not observe an 

overall effect of resistance in shaping community composition. This suggests 

that there were other genetic differences among hosts that were driving the 

effect of genotype on microbiome composition in P1 and P2.  In general, the 

relative importance of host genotype and environment in shaping 

microbiome composition remains highly debated. Our results suggest that 

the relative importance of genotype versus other factors, such as the growth

environment or strength of within-microbiome interactions, changes over the

course of passaging on a constant host background. It is possible that 

genotype-driven differences may become subtler after selection, and thus 

we are unable to detect them by OTU analysis. Future studies taking a more 
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fine-scale resolution may be able to detect subtler effects when overall taxa 

richness decreases.  We did find that even in the absence of a strong 

genotype effect, there remains a legacy of genotype effect, in that OTUs 

found to be significantly associated with particular genotypes early on are 

more likely to be present at the end of passaging than those that did not 

exhibit any host preference. 

In order to test if the phyllosphere microbiome undergoes habitat 

filtering, we chose to begin the experiment with a diverse inoculum. This 

starting community generated from field grown tomato plants likely 

contained microbes from other surrounding plant species, dust, soil, and 

other sources. In particular, neighboring plants have been shown to 

contribute to both the density and composition of local airborne microbes

[43]. We found that although the total number of these field inoculum OTUs 

decreased over the course of the experiment, the taxa that remained 

consistently made up 78-95% of the community. This provides strong 

evidence that the original spray inoculum underwent niche selection over the

course of the experiment. We also see evidence for niche selection through 

changing occupancy-abundance distributions. Increased incidents of high-

abundance, low-occupancy taxa in P4, or “clumping” [39], is suggestive of 

niche selection. Gonzalez et al. found a similar breakdown of occupancy-

abundance relations in animal communities using miniature moss 

microcosms [40]. The authors predict that this was due to dispersal 

limitation, as their experimental design created habitat fragmentation, and 
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they did not observe this similar decline in correlation in communities that 

were connected by “habitat corridors”. 

In this work, we detect some evidence for dispersal both amongst 

plants and from the environment onto the plants. Specifically, we 

consistently find OTUs on control plants that originated from the spray 

inoculum that experimental plants received, indicating that some taxa were 

spread amongst all plants via, for example, water splash, touching leaves, or 

insects. We also find a continual influx of taxa from the greenhouse 

environment onto tomato plants (Supplemental Figure S2), but these taxa do

not appear to be establishing themselves on the plants and displacing 

resident microbes. Taken together, we conclude that dispersal was present 

in our system but not sufficient to explain the patterns we observe.  

Importantly, the key findings that microbiomes vary amongst genotypes in 

P1 and P2, and that the communities are well adapted to their environment 

after four passages, are robust to the low-levels of dispersal that are likely to

have occurred. Future experiments should include filter traps or ”fake 

plants” in order to explicitly test the prevalence and importance of dispersal 

in the system. Such controls could also be used to measure the role of 

ecological drift in shaping a community over time, independent of the host. 

To directly test the alternative hypothesis that community changes 

were due to neutral processes such as bottlenecking, ecological drift, or 

random dispersal as discussed above, we first fit our data to neutral and null 

models, finding a poorer fit over time. We next experimentally tested for 
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non-neutral microbiome adaption by conducting a community coalescence 

experiment to measure fitness of passaged microbiomes as compared to 

those from the start of the experiment. The results of this experiment 

strongly support the idea that these phyllosphere microbiomes adapted to 

the plant host environment over the course of four passages (Figure 4). 

Independent of overall bacterial abundance, P4 microbiomes were able to 

outcompete the less-adapted P1 microbiomes. One potential explanation 

for this ability of P4 communities to outcompete P1 is that the taxa that do 

particularly well in this environment, and are able to reach higher 

abundances at the end of P4, outcompete the taxa from P1 because they 

are at higher densities in the mixed inoculum. However, it is not clear how 

these possible density effects could be distinguished from the possibility 

that they are better adapted to the environment. Future work focusing on 

bacterial functional traits and/or culture-based experiments in which taxa 

are applied in different relative abundances could help shed insight to 

whether the observed competitive interactions were the result of density-

dependent effects or competition.

The community coalescence approach [27] allowed us to 

demonstrate non-neutral selection of a bacterial community that is 

independent of host genotype and resistant to invasion by a more diverse, 

non-selected community. This approach was used by others in a study 

conducted on methanogenic bacterial communities [44]. The authors found

that when multiple methanogenic communities were combined, a single 
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dominant community emerged from the mix. This emergent dominant 

community resembled the single community with the highest methane 

production that went into the combination, suggesting that the most-fit 

community is capable of reassembly, even in the presence of other 

community members. 

While adaptation to both the local host environment (tomato plants, 

host genotype) and the larger environment (the greenhouse) were likely 

driving the increasingly non-neutral selection over time, the strength of 

within microbiome biotic interactions likely also increased over the course of 

the experiment. We see evidence for this through both increasing positive 

and negative community cohesion values. We also uncovered a strong effect

of a greenhouse-acquired taxon on the community in one of the experiments

(Figure S6). Though we are not able to determine what drove certain plants 

to be more colonized by this taxon than others, we did observe strong shifts 

in community composition associated with its relative abundance that may 

be due to spatial organization of plants in the greenhouse and/or stochastic 

initial colonization events. In a greenhouse study conducted on Arabidopsis 

thaliana phyllosphere communities, the authors found that abundance of 

certain dominant taxa could be tied to spatial organization of the plants that 

was likely driven by early stochastic events [15]. 

Although we focus primarily on the bacterial portion of the microbiome,

the mycobiome changed over the course of passaging as well (Figure S7). 

Similar to the bacterial community, we observe significant decrease in 
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diversity and richness from P1 to P4, and we also see changing community 

composition. We did not observe any effect of genotype on the fungal 

community, but the low richness of fungi we recovered from leaf surfaces 

may have impeded our ability to detect genotype-driven differences. It may 

be the case that the dominant fungal taxa analyzed (epiphytic yeasts) were 

not impacted by host genotype. Previous work that demonstrates plant 

genotype influences the fungal community has primarily included 

endophytes in addition to epiphytes in their collection and analysis [45–47]. 

The overall low richness of fungi we uncovered may be attributed to our 

experimental methods, particularly the process of collecting microbes via 

sonication, which may have biased passaging towards bacterial taxa and 

fungal epiphytes. Yeasts are thought to be the dominant epiphytical fungal 

group in the phyllosphere [48], and indeed, we find yeast to be in the highest

relative abundance compared to filamentous fungi. Although it is possible 

that multi-kingdom interactions played a role in shaping community 

composition (as has been demonstrated in A. thaliana [49]), we were unable 

to perform these analyses due to the relatively few number of fungal taxa 

that our analyses included. Similarly, our passaging method (e.g. pelleting 

and removing supernatant at each passage) would have selected against 

any free viruses; bacteriophages, mycovirsues, or others. Thus any effect of 

viruses on the microbiome were eliminated from this study, although we 

previously found that bacteriophages are capable of altering both abundance

and composition in the tomato phyllosphere [50]. It is possible that within 

28

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644



microbiome interactions may be contributing to the parallel changes 

observed over time in the passaged lines. For this reason, and because there

is increasing interest in taking a multi-kingdom approach to studying the 

microbiome, future work should be designed in a way that enhances the 

collection and analysis of the complete microbiome, although technical 

limitations often hinder our ability to do so. 

Given the naturally distinct spatial structure, ease of sampling, high 

culturability, and demonstrated role in plant health [24, 51], the 

phyllosphere microbiome is an ideal model for testing theories of niche 

selection and microbiome adaptation, as we have done here. Through spray 

inoculation, the environment can be evenly saturated with diverse inoculum, 

and it is possible to sample the successfully colonized community its 

entirety. Moreover, bacterial abundance and growth can be tracked using 

ddPCR, and communities can be described using next generation 

sequencing. We were able to use the phyllosphere model to not only select 

upon entire host-associated microbial communities, but to then 

experimentally test our hypotheses regarding microbiome adaption in 

subsequent experiments. These results also underscore the need for proper 

no-selection control lines in any study evolving microbiomes that confer a 

particular host-level trait.

Through this work, we also shed light on a notable challenge in 

microbiome research. One intriguing interpretation of our data is that when 

describing the microbiome of an open environment, such as plant surfaces, 
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many of the taxa found there may be transient visitors. In the case of the 

phyllosphere, there are microbes on leaf surfaces that may have emigrated 

from air, soil, surrounding plants, or other non-plant habitats and do not 

necessarily represent an adapted community that is capable of growth and 

persistence. Passaging of microbiomes in the absence of specific trait-based 

selection, as we have done here, is a powerful way of differentiating those 

taxa that are, or can rapidly become, well adapted to the plant host 

environment. It also raises the question as to if a microbiome should be 

defined as the community that is found upon sampling and sequencing, or if 

a true microbiome is one that is adapted to its host or environment. 

Overall, we were able to show robust habitat selection of these 

communities over relatively short plant-host time scales. The results uncover

great promise of this approach and system for answering fundamental 

questions about the forces shaping microbiome assembly over time, and also

pave the way for selecting stable, uninvadable host-associated 

microbiomes, which may inform rational microbiome manipulation and 

probiotic design. Experiments such as these are crucial if we are to 

understand general principles governing microbiome assembly and 

adaptation and use this knowledge for transformative applications in both 

medicine and agriculture. 

Materials/Methods (See supplement for complete methods) 

Tomato accessions: Tomato accessions were obtained from the Tomato 
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Genetics Resource Center. Five tomato genotypes were used: Solanum 

lycopersicum money maker disease susceptible (TGRC 2706); S. 

lycopersicum money maker disease resistant (TGRC 3472); S. lycopersicum

Rio Grande disease susceptible control for TGRC 3342 (TGRC 3343); S. 

lycopersicum Rio Grande disease resistant (TGRC 3342); and S. 

pimpinellifolium wild ancestor (2934). All genotypes were used for 

passages one, two, three, and p4-combined. Genotype 2934 was not used 

in passage four, as that genotype succumbed to fungal disease in the third 

generation. The community coalescence competition experiment included 

genotypes 2706, 3472, and 2934. 

Tomato germination and growth: Seeds were surface sterilized using 

TGRC recommendations then transferred onto 1% water agar plates and 

placed in the dark at 21°C until emergence of the hypocotyl. At that point, 

seedling plates were moved into a growth chamber and allowed to continue 

germination for 1 week. After approximately one week, seedlings were 

transferred planted in sunshine mix #1 soil in seedling trays. After 

approximately one more week of growth, seedlings were transplanted into 8”

diameter pots, making the plants approximately 2.5-3 weeks old at the first 

time of microbial inoculation. Age of inoculation varied slightly from 

experiment to experiment but was kept identical amongst genotypes within 

an experiment. 

Inoculation preparation, first passage: Microbial inoculum for the first 

passage of the experiment was generated from field-grown tomato plants 
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from the UC Davis Student Organic Farm collected in September and 

October of 2016. Above-ground plant material was collected from various 

genotypes of tomatoes across nine different sites spread through four 

fields. Other plant types, such as lettuce, eggplant, corn, and oak trees, 

surrounded the tomato fields. Sterile phosphate freezing buffer was added 

to the bags of leaves, and the entire bags were placed in a Branson M5800 

sonicating water bath. Material was sonicated for 10 minutes. This gentle 

sonication washes microbes from the surfaces of the leaves but does not 

damage cells.  The resulting leaf wash from each site was pooled and 

divided into 6 aliquots and stored in glycerol freezing buffer. For each 

inoculation in the first passage, an aliquot was thawed, cells pelleted, and 

re-suspended in 200mL 10mM MgCl2 buffer.  Of this, 40mL were heat killed 

in an autoclave for a 30 minutes at 121°C. Both live and heat-killed 

inoculum were plated. There was no growth from heat-killed inoculum, and 

live-inoculum concentration was calculated to be 1.1 X 10 ^6 CFU/mL. Soil 

from each site, which had been stored at -20°C, was combined in a sterile 

bucket and thoroughly mixed before inoculation. 

Inoculation procedure: Soil inoculation: The top layer of every pot was 

supplemented with 40 grams of UC Davis Farm Soil. Soil inoculation was 

only performed once and only for the first passage of plants. Spray 

inoculation: Each plant was sprayed with 4.5mL of inocula using misting 

spray tops. Control plants from passage 1 were inoculated with the heat-

killed inocula. Control plants from P2 onward were inoculated with sterile 
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10mM MgCl2. Immediately after inoculation, plants were placed in a 

random order in a high-humidity misting chamber for 24 hours. After 24 

hours, the plants were moved to a greenhouse bench. Plants were 

inoculated once per week in the same manner and were placed in the 

misting chamber for 24 hours after every inoculation. 

Plant sampling and inoculation preparation for passaging lines: 

Ten days after the final spray inoculation, plants were sampled. With the 

exception of the P4-Combined experiment, all plants were cut off at the 

base and immediately placed into sterile 1L bottles individually. By the end

of P4-Combined, the plants had grown too large to sample the entire plant, 

and instead, roughly 2/3 of the plant material was sampled from each 

plant, with care taken to sample the same age of branches from every 

plant. After collection, plant material was weighed, sterile buffer added, 

and the entire bottle sonicated as above. Half of the volume from each 

plant was pelleted and re-suspended in ~1mL of 1:1 KB Broth Glycerol and 

stored at -80°C for inoculation of the subsequent passage. The other half of

the volume was pelleted and stored as a pellet at -20°C for DNA 

extractions. To prepare inoculation of the next passage, microbiome 

glycerol stocks were thawed, briefly pelleted to remove glycerol, and re-

suspended in sterile 10mM MgCl2. 

 Inoculation preparation, combination of P4 microbiomes (Figure 

S7): Frozen microbiomes from all plants from the end of passage four were

thawed, and half the volume was removed from each aliquot. These 
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aliquots were combined into one pooled meta-inoculum. This was divided 

into six aliquots. One was used immediately, and the rest of the aliquots 

were stored at -20°C in KB Glycerol and thawed by aliquot for each week of

inoculation, as above. 

P1, P4 coalescence experiment (Figure 5): Genotypes 2706, 3472, 

and 2934 were used for this experiment, and four plants of each genotype 

received each treatment (P1, P4, and Mix). One control plant of each 

genotype was spray inoculated with MgCl2 as a control.  To prepare the 

inoculum, microbiomes from the end of passage one and the end of 

passage four were combined. The same was done for all of the individual 

microbiomes that came off of passage 4 plants. In order to quantify only 

live cells, we used PMA treatment, using a method adapted from others

[52], prior to ddPCR quantification (see below). Bacterial concentration was

matched to 7.7 x 106 cells/mL. Plants were inoculated for three weeks and 

harvested 10 days after the final inoculation as described previously. 

Bacterial quantification using ddPCR: The BioRad QX200 system was 

used for culture independent quantification of bacteria. Complete ddPCR 

methods are described elsewhere [50]. Bacterial abundance was measured

directly after microbes were sonicated off plant surfaces into sterile buffer. 

For consistency, the same region of the 16S gene used below for amplicon 

sequencing was used for bacterial quantification.  PNAs were used as well 

to limit any background amplification of plant mitochondrial or chloroplast 

DNA. All data were normalized to weight, in grams, and concentrations are 
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reported as 16S copy number/gram.

 DNA extractions: DNA was extracted from microbial pellets using the 

Qiagen PowerSoil DNA extraction kit. A buffer control extraction was included

for every set of extractions in order to identify and exclude taxa present in 

the dataset due to buffer contamination. 

16S Libraries: The 16S rRNA gene was amplified using dual-indexed 

primers designed for the V3- V4 region [53] using the following primers: 341F

(5 -CCTACGGGNBGCASCAG-3) and 785R (5 -GACTACNVGGGTATCTAATCC-3)

[54]. Additionally, we also used peptide nucleic acids, PNAs [55] to decrease 

amplification of plant mitochondrial and chloroplast DNA. Negative buffer 

controls and PCR controls were sequenced along with experimental samples.

Amplicons from each sample were pooled in equimolar concentrations, 

cleaned using an AMpure bead clean-up kit. Libraries were prepared for 

paired 300-PE reads in Illumina’s MiSeq V3 platform (Illumina) at The 

California Institute for Quantitative Biosciences (QB3) at UC Berkeley. 

ITS Libraries: Using the same DNA as above, the ITS2 region was 

amplified using ITS9-F: GAACGCAGCRAAIIGYGA and ITS4-R: 

TCCTCCGCTTATTGATATGC following a protocol published online by the 

Joint Genome Institute. A second PCR was performed (7 cycles) in order to 

anneal MiSeq illumunia adapters and barcodes onto the amplicons. PCRs 

were carried out in duplicate and pooled before they were prepared for 

sequencing by the QB3 sequencing facility as described above. 

Sequence Processing and Data Analysis: MiSeq sequencing files were 
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demultiplexed by QB3 sequencing facility. Bacterial reads were combined 

into contigs using VSearch [56], and the remainder of the analysis was 

carried out in Mothur [57] following their MiSeq SOP [58] (See supplement for

specifics). We used a 97% similarity cut-off for defining OTUs and the Silva 

reference database [59] for taxonomic assignment. Bacterial were rarified to 

8,000 reads per sample. For the fungal community, an OTU table was 

generated from the fungal community sequencing data using QIIME2 

(version 2018.8) (See supplement for specifics). Reads were clustered into 

OTUs at 97% identity and assigned taxonomy using the UNITE database and 

the feature-classifier plug-in [60]. Once bacterial and fungal OTU tables were

generated in Mothur and QIIME2, the remainder of the analysis was 

performed in R using the following packages: Phyloseq [61], vegan [28], 

ampvis2 [62], and MicrobiomeSeq (Alfred Ssekagiri, William T. Sloan, Umer 

Zeeshan Ijaz). Occupancy-Abundance curves were generated using 

“Trifolium nodule microbiome analysis script” [63].

Incorporation of repeated measures into statistical models: In the 

serial passaging experiment, each microbiome line was independently 

passaged across four cohorts of tomato plants, and each microbiome line 

was sampled at the end of each passage. Although the microbiomes were 

never sampled multiple times from the same tomato plant, the data 

structure is similar to what one would find in time series experiment. Thus, 

wherever possible, “Line ID” was incorporated into models to take this into 

account. The following linear mixed effects model was utilized for 
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determining significant changes in diversity over time: lmer(Value  s   ~ 

Passage + (1|LineID).   In the case of PERMANOVAs, the strata term was used 

to limit permutations within Line IDs to test for the main effect of “Passage”. 

Furthermore, “Strata” cannot be utilized when determining significance of 

terms by=”margin” (Type III tests). Instead, significance is assigned to each 

term sequentially from first to last. Thus, order of terms in the model may 

impact significance. In the data presented in this manuscript, all iterations of 

term order were tested in each model. Statistics are presented using the 

following models with the use of strata: adonis(bray.matrix ~ Passage + 

Genotype, permutations=999, strata= LineID).   Importantly, although 

changing the order of terms sometimes slightly altered the R2   values, none 

of the differences had any impact on a variable’s significance level. Changing

the order of terms did not impact the interpretation of the importance of any 

variable tested in this dataset. The adonis2 test with the by=”margin” term 

was used whenever the strata term was not included in the model. The 

following model was utilized in these cases: adonis(bray.matrix ~ Passage + 

SampleType, method=”bray”, by=”margin”, permutations=999). 

Community Cohesion Metrics: The estimations of positive and negative 

cohesion values follows the cohesion metrics approach proposed by Herren 

et al. [37]. We modified their method to estimate cohesion values by using 

two relative abundance profiles of a training set and test set. Relative 

abundance profile of the training set was obtained by randomly selecting half

of the samples in each microbiome passage. The test set consists of the 
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other half of the samples. Using the training set and following the same 

procedure as Herren et al., connectedness metrics were calculated. The 

estimated connectedness metrics subtracts a null model. The obtained 

connectedness metrics are multiplied by relative abundance profile of test 

set to estimate positive and negative cohesion values. Two hundred 

iterations of sampling randomization in each microbiome passage were 

carried out at OTU level to obtain training set and test set for P1, P2, P3, and 

P4. 

Neutral model: The neutral model was proposed by Sloan et al. to describe 

both microbial diversity and taxa-abundance distribution of a community

[41]. Burns et al. [18] have developed a R package based on Sloan’s neutral 

model to determine the importance of neutral processes to community 

assembly. In brief, the neutral model creates a potential neutral community 

by a single free parameter describing the migration rate, m, based on two 

sets of abundance profiles – a local community and metacommunities. The 

local community describes the observed relative abundance of OTUs, while 

the metacommunity is estimated by the mean relative abundance across all 

local communities. The estimated migration rate is the probability of OTU 

dispersal from the metacommunity to replace a randomly lost individual in 

the local community. The migration rate can be interpreted as dispersal 

limitation. In each microbiome passage, half of the samples were randomly 

selected and the relative abundance profile at the OTU level was used. The 

neutral model fit and migration rate were estimated in the resolution results 
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of 200 iterations for P1, P2, P3, P4, and P4 Combined. 

Null model predictions: We applied a null model approach on the serial 

passaging data P1-P4 to characterize the changes of stochastic process 

driving the assembly of plant microbiome over time. Lines that had high 

quality sequencing data at every time point (thirteen in total) were used for 

this analysis. The null scenario for each line at each passage was generated 

using the data for that same line at the previous passage. The null scenario 

of P1 was generated using the original field inoculum sample. The null model

approach was based on community pairwise dissimilarity proposed by Chase 

and Myers [64] and extended by Stegen et al. to incorporate species 

abundance [65]. Chase and Myers proposed a degree of species turnover by 

a randomization procedure where species probabilistically occur at each 

local community until observed local richness is reached. However, the 

estimated degree of turnover does not include species abundance. To take 

full advantage of our dataset, we also incorporated species relative 

abundance into the procedure proposed by Stegen et al.  Zinger et al. has 

developed R code for the null model and applied the null model approach on 

the soil microbiome [38]. This approach does not require a priori knowledge 

of the local community condition and determines if each plant microbiome at

the current passage deviates from a null scenario generated by that same 

microbiome at the previous passage. In brief, the null scenario of each was 

generated by random resampling of OTUs and remained the same richness 

and number of reads with the original sample. Total OTUs observed in the 
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sample and the corresponding relative abundance was used as probabilities 

of selecting an OTU and its associated number of reads, respectively. The 

Bray-Curtis metric is used to calculate dissimilarities across null communities

with 1,000 permutations. The average of dissimilarities among permutations 

represents null expectations of community dissimilarities. The null deviation 

shows the differences between average null expectation and the observed 

microbiome of the same line. 
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Figure Legends 

Figure 1 Serial passaging of the phyllosphere microbiome 

Experimental design of serial passaging experiment in which microbial 

inoculum from an agricultural tomato field was inoculated onto replicates 

of five genotypes and passaged for four passages (a). Plants were first 
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inoculated when they were 2 weeks old, and the entire plant was sampled 

at 8 weeks old (b). Bacterial abundance was measured at the end of each 

passage from experimental and control plants using ddPCR and normalized

to the weight of each plant. Inoculum density was calculated as well (c). 

Note that our measures of bacterial growth likely overestimate the starting

densities and do not account for population turnover (as a result of cell 

death and replacement within a passage), and are therefore highly 

conservative.

Figure 2 Bacterial community change over time

PCoA plots of Bray-Curtis dissimilarity show a significant effect (determined
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by a PERMANOVA test) of genotype in P1 and P2 (a) Ellipses indicate 95% 

confidence around the clustering. The percent of original inoculum OTUs 

present at each passage was calculated (green diamonds), and the 

reads/sample of inoculum OTUs out of total reads was calculated for each 

plant at every passage and displayed on a box plot (b). Plots of richness (c)

and Shannon’s alpha diversity index   (d) at each passage show a significant

decrease over time. Bray-Curtis dissimilarities between microbiomes in P1 

were compared to those in P1, P2, P3, and P4, and linear and quadratic 

models were fit to the data (e). Corrected p   values of multiple   pairwise 

comparisons in (c) and (d) are illustrated on the graph * p≤0.05; ** p≤0.01;

*** p≤0.001; ****p≤0.0001. 
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Figure 3 Changing relative abundance of top 100 OTUs

A heat map showing relative abundance of the top 100 OTUs illustrates the

changing community composition at multiple taxonomic levels. Full 

taxonomy of OTUs is found in Supplemental Table 1. 
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Figure 4 Occupancy- Abundance curves 

For each OTU, its occupancy (or, proportion of plant hosts in which it was 

found) is plotted against the log (10) of its relative abundance. OTUs 

belonging to phyla other than those in the top four phyla are classified as 

“other”. 
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Figure 5 Testing microbiome adaptation 

Plants were inoculated with pooled, passaged microbiomes from the end of

P1, P4, or a 50:50 Mix of the two (a). Bacterial abundance was measured 

using ddPCR (b). A PCoA plot of Bray-Curtis dissimilarity (colored by 

inoculum source) shows that P1 plants have bacterial communities that are

significantly different from P4 and Mix plants, which are indistinguishable 

(c). Shannon’s alpha diversity index   of the inoculum and experimental 

plants (d) show significant differences between samples. A bar graph 

illustrating composition of the top 10 OTUs shows differences in taxa 

amongst both the inoculum and experimental plants (e). Corrected p 

values of multiple pairwise comparisons   in (d) are illustrated on the graph *

p≤0.05; ** p≤0.01; *** p≤0.001; ****p≤0.0001.
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